Science.gov

Sample records for air gap length

  1. Temperature dependence of beat-length and confinement loss in an air-core photonic band-gap fiber

    NASA Astrophysics Data System (ADS)

    Xu, Zhenlong; Li, Xuyou; Hong, Yong; Liu, Pan; Yang, Hanrui; Ling, Weiwei

    2016-05-01

    The temperature dependence of polarization-maintaining (PM) property and loss in a highly-birefringent air-core photonic band-gap fiber (PBF) is investigated. The effects of temperature variation on the effective index, beat-length and confinement loss are studied numerically by using the full-vector finite element method (FEM). It is found that, the PM property of this PBF is insensitive to the temperature, and the temperature-dependent beat-length coefficient can be as low as 2.86×10-8 m/°C, which is typically 200 times less than those of conventional panda fibers, the PBF has a stable confinement loss of 0.01 dB/m over the temperature range of -30 to 20 °C for the slow axis at the wavelength of 1.55 μm. The PBF with ultra-low temperature-dependent PM property and low loss can reduce the thermally induced polarization instability apparently in interferometric applications such as resonant fiber optic gyroscope (RFOG), optical fiber sensors, and so on.

  2. Air-gap heterostructures

    SciTech Connect

    Heyn, Ch.; Schmidt, M.; Schwaiger, S.; Stemmann, A.; Mendach, S.; Hansen, W.

    2011-01-17

    We demonstrate the fabrication of thin GaAs layers which quasi hover above the underlying GaAs substrate. The hovering layers have a perfect epitaxial relationship to the substrate crystal lattice and are connected to the substrate surface only by lattice matched nanopillars of low density. These air-gap heterostructures are created by combining in situ molecular beam epitaxy compatible self-assembled droplet-etching and ex situ selective wet-chemical etching.

  3. Gap Filling as Exact Path Length Problem.

    PubMed

    Salmela, Leena; Sahlin, Kristoffer; Mäkinen, Veli; Tomescu, Alexandru I

    2016-05-01

    One of the last steps in a genome assembly project is filling the gaps between consecutive contigs in the scaffolds. This problem can be naturally stated as finding an s-t path in a directed graph whose sum of arc costs belongs to a given range (the estimate on the gap length). Here s and t are any two contigs flanking a gap. This problem is known to be NP-hard in general. Here we derive a simpler dynamic programming solution than already known, pseudo-polynomial in the maximum value of the input range. We implemented various practical optimizations to it, and compared our exact gap-filling solution experimentally to popular gap-filling tools. Summing over all the bacterial assemblies considered in our experiments, we can in total fill 76% more gaps than the best previous tool, and the gaps filled by our method span 136% more sequence. Furthermore, the error level of the newly introduced sequence is comparable to that of the previous tools. The experiments also show that our exact approach does not easily scale to larger genomes, where the problem is in general difficult for all tools. PMID:26959081

  4. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... § 56.6603 Air gap. At least a 15-foot air gap shall be provided between the blasting circuit and...

  5. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... § 56.6603 Air gap. At least a 15-foot air gap shall be provided between the blasting circuit and...

  6. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND...-Surface and Underground § 57.6603 Air gap. At least a 15-foot air gap shall be provided between...

  7. Determinants of gap length in esophageal atresia with tracheoesophageal fistula and the impact of gap length on outcome

    PubMed Central

    Rassiwala, Muffazzal; Choudhury, Subhasis Roy; Yadav, Partap Singh; Jhanwar, Praveen; Agarwal, Raghu Prakash; Chadha, Rajiv; Debnath, Pinaki Ranjan

    2016-01-01

    Aim: This study was aimed at identifying factors which may affect the gap length in cases of esophageal atresia with tracheoesophageal fistula (EA-TEF) and whether gap length plays any role in determining the outcome. Materials and Methods: All consecutive cases of EA-TEF were included and different patient parameters were recorded. Plain radiographs with a nasogastric tube in the upper esophagus were taken. Patients were grouped into T1-T2; T2-T3; T3-T4; and T4 depending on the thoracic vertebral level of the arrest of the tube. During surgery, the gap length between the pouches was measured using a Vernier caliper and the patients were grouped into A, B, and C (gap length >2.1 cm; >1-≤2 cm and ≤1 cm). The operative gap groups were compared with the radiography groups and the other recorded parameters. Results: Total numbers of cases were 69. Birth weight was found to be significantly lower in Group A (mean = 2.14 kg) as compared to Group B (mean = 2.38 kg) and Group C patients (mean = 2.49 kg) (P = 0.016). The radiographic groups compared favorably with the intraoperative gap length groups (P < 0.001). The need for postoperative ventilation (70.83% in Group A vs. 36.84% in Group C, P = 0.032) and mortality (62.5%, 26.9% and 15.8% in Group A, B, and C, respectively, P = 0.003) co-related significantly with the gap length. Conclusion: Birth weight had a direct reciprocal relationship with the gap length. Radiographic assessment correlated with intraoperative gap length. Higher gap length was associated with increased need for postoperative ventilation and poor outcome. PMID:27365907

  8. Engine piston having an insulating air gap

    DOEpatents

    Jarrett, Mark Wayne; Hunold,Brent Michael

    2010-02-02

    A piston for an internal combustion engine has an upper crown with a top and a bottom surface, and a lower crown with a top and a bottom surface. The upper crown and the lower crown are fixedly attached to each other using welds, with the bottom surface of the upper crown and the top surface of the lower crown forming a mating surface. The piston also has at least one centrally located air gap formed on the mating surface. The air gap is sealed to prevent substantial airflow into or out of the air gap.

  9. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous...

  10. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous...

  11. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous...

  12. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous...

  13. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous...

  14. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous...

  15. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous...

  16. Development of a highly efficient brushless dc motor utilizing both radial and axial air gaps

    NASA Astrophysics Data System (ADS)

    Kang, K. J.; Jang, G. H.; Sung, S. J.; Chang, J. H.

    2012-04-01

    This research proposes an effective structure for a brushless dc motor utilizing both radial and axial air gaps. The proposed motor generates torque in both the radial and axial air gaps, while the conventional motor generates torque only in the radial air gap. The proposed motor was optimized to minimize the electromagnetic loss of the motor to increase the effective air gap length and fill-factor of the coil while decreasing the saturation of the core at the same time. The electromagnetic loss was reduced by 35% in comparison with a conventional motor.

  17. Length and energy gap dependences of thermoelectricity in nanostructured junctions.

    PubMed

    Asai, Yoshihiro

    2013-04-17

    The possibilities of an enhanced thermoelectric figure of merit value, ZT, in a nanostructured junction are examined for a wide range of parameter values in a theoretical model. Our research shows that the figure of merit can take a very large maximum, which depends both on the length and the energy gap values. The maximum of ZT is achieved when the Fermi level of the electrodes is aligned to the edge of the electronic transmission function of the junction, where both the conductance and the Seebeck constant are significantly enhanced. On the basis of our results, we conclude that nanowires and molecular junctions form a special class of systems where a large ZT can be expected in some cases. PMID:23528878

  18. Tunable optofluidic dye laser with integrated air-gap etalon

    NASA Astrophysics Data System (ADS)

    Song, Wuzhou; Vasdekis, Andreas E.; Psaltis, Demetri

    2010-11-01

    In this work we demonstrate an integrated air-gap etalon that enables single wavelength operation and tuning ability for optofluidic dye laser. The integrated elastomeric air-gap etalon is controlled by air pressure. The chip was fabricated with polydimethylsiloxane (PDMS) via replica molding. It comprises a liquid waveguide and micro-scale air-gap mirrors providing the feedback. The lasing wavelength is chosen by the interference between two parallel PDMS-air interfaces inside the internal tunable air-gap etalon, of which pneumatic tuning can be realized by inflating the air-gap etalon with compressed air. This dye laser exhibits a pumping threshold of 1.6 μJ/pulse, a lasing linewidth of 3 nm and a tuning range of 14 nm.

  19. Air Gap Effects in LX-17

    SciTech Connect

    Souers, P C; Ault, S; Avara, R; Bahl, K L; Boat, R; Cunningham, B; Gidding, D; Janzen, J; Kuklo, D; Lee, R; Lauderbach, L; Weingart, W C; Wu, B; Winer, K

    2005-09-26

    Three experiments done over twenty years on gaps in LX-17 are reported. For the detonation front moving parallel to the gaps, jets of gas products were seen coming from the gaps at velocities greater than the detonation velocity. A case can be made that the jet velocity increased with gap thickness but the data is scattered. For the detonation front moving transverse to the gap, time delays were seen. The delays roughly increase with gap width, going from 0-70 ns at 'zero gap' to around 300 ns at 0.5-1 mm gap. Larger gaps of up to 6 mm width almost certainly stopped the detonation, but this was not proved. Real-time resolution of the parallel jets and determination of the actual re-detonation or failure in the transverse case needs to be done in future experiments.

  20. Gap and out-gap solitons in modulated systems of finite length: exact solutions in the slowly varying envelope limit

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Kirr, K.; Kovalev, A. S.; Kroon, L.

    2011-06-01

    We discuss nonlinear excitations in finite-size one-dimensional modulated systems. Considering a binary modulated discrete nonlinear Schrödinger chain of large but finite length with periodic boundary conditions, we obtain exact elliptic-function solutions corresponding to stationary excitations in the slowly varying envelope limit. From these solutions, we analyze how the transformation between (localized) gap and (delocalized) out-gap solitons manifests itself in a system of finite length. The analogue of a localized gap soliton appears through a bifurcation at a critical point, so that gap soliton analogues exist only for chains longer than a critical value, which scales inversely proportional to the modulation depth. The total norm of these gap-out-gap states is found to be a monotonic function of the frequency, always inside a 'nonlinear gap' with edges defined by the main nonlinear modes which approach the linear spectrum gap boundaries in the small-amplitude limit. The transformation from a gap to an out-gap state is associated with a particular frequency, close to the lower boundary of the linear gap; at this point the elliptic functions become trigonometric, corresponding to a finite-size analogue of an algebraic soliton. We compare the scenario with earlier results obtained numerically for purely discrete chains with few degrees of freedom.

  1. 64. INTERIOR VIEW LOOKING DOWN LENGTH OF AIR CONDITIONING EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. INTERIOR VIEW LOOKING DOWN LENGTH OF AIR CONDITIONING EQUIPMENT REPAIR SHOP. - Baltimore & Ohio Railroad, Mount Clare Shops, South side of Pratt Street between Carey & Poppleton Streets, Baltimore, Independent City, MD

  2. Transmission properties of frequency selective structures with air gaps

    NASA Astrophysics Data System (ADS)

    Meng, Zhi-Jun; Wang, Li-Feng; Lü, Ming-Yun; Wu, Zhe

    2010-12-01

    The transmission properties of compound frequency selective structures with dielectric slab and air gaps were investigated by computation and experimentation. Mechanism analyses were also carried out. Results show that the air gaps have a distinct influence on the transmission properties. Resonant frequency of the structure would increase rapidly when the air gap appears. After the gap gets larger to a specific value, generally 1/5 wavelength corresponding to the resonant frequency, the transmission properties would change periodically with the gap thickness. The change of transmission properties in one period has a close relationship with the dielectric thickness. These results provide a new method for designing a bandpass radome of large incidence angle and low loss with the concept of stealth shield radome.

  3. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  4. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S.

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  5. Standard value for the radiation length in air

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    The radiation length in air, was studied. Calculations were finished and give new values for t sub o in atomic oxygen and nitrogen which are entirely free of dependence on the Thomas-Fermi approximate model. With the usual small corrections for atmospheric A and CO2, these give t sub o air = 37.15 g cm/2, in close agreement with a value recommended, but in contrast to t sub o air = 36.66 g cm/2 obtained using the Thomas-Fermi approximation.

  6. The Air Gap Phenomenon in Children's Landscape Drawings.

    ERIC Educational Resources Information Center

    Hargreaves, David J.; And Others

    1981-01-01

    These studies confirm the view that the "air gap" phenomenon, which refers to the area that remains when ground and sky lines are constructed at the bottom and top of a drawing, is commonly found in the free drawings of middle and later childhood, but that it is readily abandoned when task demands are modified accordingly. (Author/DB)

  7. Relationship between band gap and bond length alternation in organic conjugated polymers

    NASA Astrophysics Data System (ADS)

    Bredas, J. L.

    1985-04-01

    A description is given of calculations of the evolution of the band gap as a function of geometry in conjugated polymers based on aromatic rings; polyparaphenylene, polypyrrole, polythiophene. The results demonstrate that the gap decreases as a function of increasing quinoid character of the backbone and is thus not minimal in the case of zero bond length alternation, in contrast to the situation found in polyacetylene-like compounds. The consequences of these results are stressed for the understanding of the effects of doping and for the design of new organic polymers with small gaps.

  8. Gap-dependent transitions of atmospheric microplasma in open air

    SciTech Connect

    Chu, Hong-Yu; Huang, Bo-Shiun

    2011-04-15

    We report on the gap dependence of the planar atmospheric microplasma in air. We investigate the transitions of the dielectric barrier discharge in open air, including the random walk filaments (plasma columns), localized filaments, stochastic filaments, and diffuse discharge. A star-shaped filamentary discharge pattern is observed after the formation of the localized filaments. The liquid drops found on the dielectric surface further become a confining pattern for star-shaped discharge. We also demonstrate the applications of the insulating pattern for the use of the plasma display in open air by the handwritten characters with UV adhesive.

  9. An ultrasonic air pump using an acoustic traveling wave along a small air gap.

    PubMed

    Koyama, Daisuke; Wada, Yuji; Nakamura, Kentaro; Nishikawa, Masato; Nakagawa, Tatsuyuki; Kihara, Hitoshi

    2010-01-01

    An ultrasonic air pump that uses a traveling wave along a small air gap between a bending vibrator and a reflector is discussed. The authors investigate ultrasonic air pumps that make use of bending vibrators and reflectors and confirm that air can be induced to flow by generating an asymmetric acoustic standing wave along an air gap. In this paper, we proposed a novel ultrasonic air pump in which a traveling wave along an air gap induces acoustic streaming and achieves one-way airflow. Two new reflector configurations, stepped and tapered, were designed and used to generate traveling waves. To predict airflow generation, sound pressure distribution in the air gap was calculated by means of finite element analysis (FEA). As a preliminary step, 2 FEA models were compared: one piezoelectric-structure-acoustic model and one piezoelectric- structure-fluid model, which included the viscosity effect of the fluid. The sound pressure distribution in the air gap, including fluid viscosity, was calculated by the FEA because it is expected to be dominant and thus have a strong effect on the sound pressure field in such a thin fluid layer. Based on the FEA results of the stepped and the tapered reflectors, it was determined that acoustic traveling waves could propagate along the gaps. Experiments were carried out with the designed bending vibrator and the reflectors. The acoustic fields in the air gap were measured via a fiber optic probe, and it was determined that the sound pressure and the phase distribution tendencies corresponded well with the results computed by FEA. Through our experiments, one-way airflow generation, in the same direction of the traveling wave and with the maximum flow velocity of 5.6 cm/s, was achieved.

  10. Theoretical and experimental studies on air gap membrane distillation

    NASA Astrophysics Data System (ADS)

    Liu, G. L.; Zhu, C.; Cheung, C. S.; Leung, C. W.

    Air gap membrane distillation (AGMD) is an innovative membrane separation technique for pure water extraction from aqueous solutions. In this study, both theoretical and experimental investigations are carried out on AGMD of different aqueous solutions, namely, tap water, salted water, dyed solutions, acid solutions, and alkali solutions. A simple mechanistic model of heat and mass transfer associated with AGMD is developed. Simple relationships of permeate flux, total heating or cooling load and thermal efficiency of AGMD with respect to the membrane distillation temperature difference are obtained. Effects of solution concentration and the width of the air gap in AGMD are analyzed. In the experimental study, the experiments were conducted using 1m PTFE membrane with a membrane distillation temperature difference up to 55∘C. The AGMD system yields a permeate flux of pure water of up to 28kg/m2h. Direct comparison of the experimental results with the proposed modeling predictions shows a fairly good match.

  11. Lowering of intralevel capacitance using air gap structures

    SciTech Connect

    Fleming, J.G.; Roherty-Osmun, E.; Farino, A.J.

    1996-11-01

    Interconnect delays, arising in part from intralevel capacitance, are one of the limiting factors in the performance of advanced integrated circuits. In addition, the problem of filling the spaces between neighboring metal lines with an insulator is becoming increasingly severe as aspect ratios increase. We address these problems by intentionally creating a air gap between closely spaced metal lines. The ends of the air gap and reentrant features are then sealed using a spin on dielectric. The entire structure is then capped with silicon dioxide and planarized . Simple modeling of mechanical test structures on silicon predicts an equivalent dielectric constant of 1.9 on features similar to those expected for 0.25 micron technologies. Metal to metal test structures fabricated in a 0.5 micron CMOS technology show that the process can be readily integrated with chemical mechanical polishing and current standard CMOS processes.

  12. Discrimination of brief gaps marked by two stimuli: effects of sound length, repetition, and rhythmic grouping.

    PubMed

    Kuroda, Tsuyoshi; Hasuo, Emi; Grondin, Simon

    2013-01-01

    We examined the effects of sound marker length, marker repetition, and rhythmic grouping on auditory gap discrimination. The discrimination ofthe duration of a gap between two markers was impaired by lengthening these markers (from 150 to 262.5 ms). Discrimination was impaired by lengthening the preceding marker relative to lengthening the following marker, while the impairment was not increased when both markers were lengthened compared with when only the preceding marker was lengthened. This indicates that the level of discrimination is not decided by a simple summation of the effects of the preceding and of the following marker's length. Moreover, discrimination of a gap between a short (S) and a long (L) marker and of a gap between a long and a short marker was improved by repeating the presentation of these gaps (ie by repeating the markers alternately as SLSLSL...): both types of discrimination led to near identical performance. Finally, under the repetition condition each type of discrimination was not related to the tendency for each individual to perceive the stimulus sequences as segmented into rhythmic chunks of a short tone followed by a long tone (as [SL][SL][SL]...), or those of a long tone followed by a short tone (as S][LS][LS][L...).

  13. Energy Dependence and Scaling Property of Localization Length near a Gapped Flat Band

    NASA Astrophysics Data System (ADS)

    Ge, Li; Tureci, Hakan

    Using a tight-binding model for a one-dimensional Lieb lattice, we show that the localization length near a gapped flat band behaves differently from the typical Urbach tail in a band gap: instead of reducing monotonically as the energy E moves away from the flat band energy Ef, the presence of the flat band causes a nonmonotonic energy dependence of the localization length. This energy dependence follows a scaling property when the energy is within the spread (W) of uniformly distributed diagonal disorder, i.e. the localization length is only a function of (E-Ef)/W. Several other lattices are compared to distinguish the effect of the flat band on the localization length, where we eliminate, shift, or duplicate the flat band, without changing the dispersion relations of other bands. Using the top right element of the Green's matrix, we derive an analytical relation between the density of states and the localization length, which shines light on these properties of the latter, including a summation rule for its inverse. This work is partially supported by NSF under Grant No. DMR-1506987.

  14. Simple air-gap fiber Fabry-Perot interferometers based on a fiber endface with Sn-microsphere overlay

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Ling; Hung, Cheng-Hung; Li, Chai-Ming; You, Yan-Wun

    2012-10-01

    This study presents a simple, cost-effective and sensitive air-gap fiber Fabry-Perot interferometer (AG-PPFI) which is based on a metal Tin (Sn)-overlaying fiber technique. An extremely small drop of metallic Sn was heated and then melted to shrink into a microsphere owing to the cohesion of the material. When a fiber was inserted into the melting Sn microsphere, an air gap was naturally formed between the fiber endface and the metal Sn during the cooling process. By carefully controlling the reaction time, various air-gaps can be formed as the Fabry-Perot interferometric cavities for the proposed AG-PPFIs. Measurements reveal that a smaller length of air-gap and heavier mass of Sn-microsphere are associated with higher sensitivity of temperature, but the former is dominated. A best temperature sensitivity of wavelength shift with +4.3 nm/°C is achieved when the air-gap is about 5 μm with mass of Sn-microsphere of about 10 μg. The variation of the wavelength shift is equivalent to sensitivity for a change in the cavity length of +14.83 nm/°C.

  15. Direct control of air gap flux in permanent magnet machines

    DOEpatents

    Hsu, John S.

    2000-01-01

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  16. Classification of Regional Radiographic Emphysematous Patterns Using Low-Attenuation Gap Length Matrix

    NASA Astrophysics Data System (ADS)

    Tan, Kok Liang; Tanaka, Toshiyuki; Nakamura, Hidetoshi; Shirahata, Toru; Sugiura, Hiroaki

    The standard computer-tomography-based method for measuring emphysema uses percentage of area of low attenuation which is called the pixel index (PI). However, the PI method is susceptible to the problem of averaging effect and this causes the discrepancy between what the PI method describes and what radiologists observe. Knowing that visual recognition of the different types of regional radiographic emphysematous tissues in a CT image can be fuzzy, this paper proposes a low-attenuation gap length matrix (LAGLM) based algorithm for classifying the regional radiographic lung tissues into four emphysema types distinguishing, in particular, radiographic patterns that imply obvious or subtle bullous emphysema from those that imply diffuse emphysema or minor destruction of airway walls. Neural network is used for discrimination. The proposed LAGLM method is inspired by, but different from, former texture-based methods like gray level run length matrix (GLRLM) and gray level gap length matrix (GLGLM). The proposed algorithm is successfully validated by classifying 105 lung regions that are randomly selected from 270 images. The lung regions are hand-annotated by radiologists beforehand. The average four-class classification accuracies in the form of the proposed algorithm/PI/GLRLM/GLGLM methods are: 89.00%/82.97%/52.90%/51.36%, respectively. The p-values from the correlation analyses between the classification results of 270 images and pulmonary function test results are generally less than 0.01. The classification results are useful for a followup study especially for monitoring morphological changes with progression of pulmonary disease.

  17. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-05-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lens elements. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far commercial measurement systems were not available for testing of IR objectives since many materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The fiber-optic set-up is based on a Michelson-Interferometer in which the light from a broadband super-luminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a photo detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative lens' surface distances are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. The set-up allows the contactless determination of thicknesses and air gaps inside of assembled infrared objective lenses with accuracy in the micron range. It therefore is a tool for the precise manufacturing or quality control.

  18. Use of air gap structures to lower intralevel capacitance

    SciTech Connect

    Fleming, J.G.; Roherty-Osmun, E.

    1997-03-01

    Interconnect delays, arising in part from intralevel capacitance, are one of the factors limiting the performance of advanced circuits. In addition, the problem of filling the spaces between neighboring metal lines with an insulator is becoming increasingly acute as aspect ratios increase. We address these problems simultaneously by intentionally creating an air gap between closely spaced metal lines. Undesirable topography is eliminated using a spin-on dielectric. We then cap the wafers with silicon dioxide and planarize using chemical mechanical polishing. Simple modeling of test structures predicts an equivalent dielectric constant of 1.9 on features similar to those expected for 0.25 micron technologies. Two level metal test structures fabricated in a 0.5 micron CMOS technology show that the process can be readily integrated with current standard CMOS processes. The potential problems of via misalignment, overall dielectric stack height, and the relative difficulty of ensuring void formation compared to that of ensuring a void-free fill are considered.

  19. The effect of very small air gaps on small field dosimetry

    NASA Astrophysics Data System (ADS)

    Charles, P. H.; Crowe, S. B.; Kairn, T.; Kenny, J.; Lehmann, J.; Lye, J.; Dunn, L.; Hill, B.; Knight, R. T.; Langton, C. M.; Trapp, J. V.

    2012-11-01

    The purpose of this study was to investigate the effect of very small air gaps (less than 1 mm) on the dosimetry of small photon fields used for stereotactic treatments. Measurements were performed with optically stimulated luminescent dosimeters (OSLDs) for 6 MV photons on a Varian 21iX linear accelerator with a Brainlab µMLC attachment for square field sizes down to 6 mm × 6 mm. Monte Carlo simulations were performed using EGSnrc C++ user code cavity. It was found that the Monte Carlo model used in this study accurately simulated the OSLD measurements on the linear accelerator. For the 6 mm field size, the 0.5 mm air gap upstream to the active area of the OSLD caused a 5.3% dose reduction relative to a Monte Carlo simulation with no air gap. A hypothetical 0.2 mm air gap caused a dose reduction >2%, emphasizing the fact that even the tiniest air gaps can cause a large reduction in measured dose. The negligible effect on an 18 mm field size illustrated that the electronic disequilibrium caused by such small air gaps only affects the dosimetry of the very small fields. When performing small field dosimetry, care must be taken to avoid any air gaps, as can be often present when inserting detectors into solid phantoms. It is recommended that very small field dosimetry is performed in liquid water. When using small photon fields, sub-millimetre air gaps can also affect patient dosimetry if they cannot be spatially resolved on a CT scan. However the effect on the patient is debatable as the dose reduction caused by a 1 mm air gap, starting out at 19% in the first 0.1 mm behind the air gap, decreases to <5% after just 2 mm, and electronic equilibrium is fully re-established after just 5 mm.

  20. Mapping forest canopy gaps using air-photo interpretation and ground surveys

    USGS Publications Warehouse

    Fox, T.J.; Knutson, M.G.; Hines, R.K.

    2000-01-01

    Canopy gaps are important structural components of forested habitats for many wildlife species. Recent improvements in the spatial accuracy of geographic information system tools facilitate accurate mapping of small canopy features such as gaps. We compared canopy-gap maps generated using ground survey methods with those derived from air-photo interpretation. We found that maps created from high-resolution air photos were more accurate than those created from ground surveys. Errors of omission were 25.6% for the ground-survey method and 4.7% for the air-photo method. One variable of inter est in songbird research is the distance from nests to gap edges. Distances from real and simulated nests to gap edges were longer using the ground-survey maps versus the air-photo maps, indicating that gap omission could potentially bias the assessment of spatial relationships. If research or management goals require location and size of canopy gaps and specific information about vegetation structure, we recommend a 2-fold approach. First, canopy gaps can be located and the perimeters defined using 1:15,000-scale or larger aerial photographs and the methods we describe. Mapped gaps can then be field-surveyed to obtain detailed vegetation data.

  1. Aging and the 4-kHz Air-Bone Gap

    ERIC Educational Resources Information Center

    Nondahl, David M.; Tweed, Ted S.; Cruickshanks, Karen J.; Wiley, Terry L.; Dalton, Dayna S.

    2012-01-01

    Purpose: In this study, the authors assessed age- and sex-related patterns in the prevalence and 10-year incidence of 4-kHz air-bone gaps and associated factors. Method: Data were obtained as part of the longitudinal, population-based Epidemiology of Hearing Loss Study ( Cruickshanks et al., 1998). An air-bone gap at 4 kHz was defined as an…

  2. Bias stress effect in "air-gap" organic field-effect transistors.

    PubMed

    Chen, Y; Podzorov, V

    2012-05-22

    The origin of the bias stress effect related only to semiconductor properties is investigated in "air-gap" organic field-effect transistors (OFETs) in the absence of a material gate dielectric. The effect becomes stronger as the density of trap states in the semiconductor increases. A theoretical model based on carrier trapping and relaxation in localized tail states is formulated. Polar molecular vapors in the gap of "air-gap" OFETs also have a significant impact on the bias stress effect via the formation of bound states between the charge carriers and molecular dipoles at the semiconductor surface. PMID:22499410

  3. Diffusion length in nanoporous TiO{sub 2} films under above-band-gap illumination

    SciTech Connect

    Park, J. D.; Son, B. H.; Park, J. K.; Kim, Sang Yong; Park, Ji-Yong; Lee, Soonil; Ahn, Y. H.

    2014-06-15

    We determined the carrier diffusion lengths in TiO{sub 2} nanoporous layers of dye-sensitized solar cells by using scanning photocurrent microscopy using an ultraviolet laser. Here, we excited the carrier directly in the nanoporous layers where the diffusion lengths were found to 140 μm as compared to that of visible illumination measured at 90 μm. The diffusion length decreased with increasing laser modulation frequency, in which we determined the electron lifetimes and the diffusion coefficients for both visible and UV illuminations. The diffusion lengths have been studied in terms of the sintering temperatures for both cells with and without binding molecules. We found a strong correlation between the diffusion length and the overall light-to-current conversion efficiency, proving that improving the diffusion length and hence the interparticle connections, is key to improving cell efficiency.

  4. Influence of film thickness and air exposure on the transport gap of manganese phthalocyanine

    SciTech Connect

    Haidu, F.; Fechner, A.; Salvan, G.; Gordan, O. D.; Fronk, M.; Zahn, D. R. T.; Lehmann, D.; Mahns, B.; Knupfer, M.

    2013-06-15

    The interface formation between manganese phthalocyanine (MnPc) and cobalt was investigated combining ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy. The transport band gap of the MnPc increases with the film thickness up to a value of (1.2 {+-} 0.3) eV while the optical band gap as determined from spectroscopic ellipsometry amounts to 0.5 eV. The gap values are smaller compared to other phthalocyanines due to metallic Mn 3d states close to the Fermi level. The transport band gap was found to open upon air exposure as a result of the disappearance of the occupied 3d electronic states.

  5. Experimental investigation on plasma parameter profiles on a wafer level with reactor gap lengths in an inductively coupled plasma

    SciTech Connect

    Kim, Ju-Ho; Chung, Chin-Wook; Kim, Young-Cheol

    2015-07-15

    The gap length effect on plasma parameters is investigated in a planar type inductively coupled plasma at various conditions. The spatial profiles of ion densities and the electron temperatures on the wafer level are measured with a 2D probe array based on the floating harmonic method. At low pressures, the spatial profiles of the plasma parameters rarely changed by various gap lengths, which indicates that nonlocal kinetics are dominant at low pressures. However, at relatively high pressures, the spatial profiles of the plasma parameter changed dramatically. These plasma distribution profile characteristics should be considered for plasma reactor design and processing setup, and can be explained by the diffusion of charged particles and the local kinetics.

  6. Air Pollution and Health: Bridging the Gap from Health Outcomes: Conference Summary

    EPA Science Inventory

    Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes,” an international specialty conference sponsored by the American Association for Aerosol Research, was held to address key uncertainties in our understanding of adverse health effects related to air po...

  7. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.

    PubMed

    Fan, Zichuan; Jiang, Wentao; Cai, Maolin; Wright, William M D

    2016-02-01

    Air-coupled ultrasonic inspection using leaky Lamb waves offers attractive possibilities for non-contact testing of plate materials and structures. A common method uses an air-coupled pitch-catch configuration, which comprises a transmitter and a receiver positioned at oblique angles to a thin plate. It is well known that the angle of incidence of the ultrasonic bulk wave in the air can be used to preferentially generate specific Lamb wave modes in the plate in a non-contact manner, depending on the plate dimensions and material properties. Multiple reflections of the ultrasonic waves in the air gap between the transmitter and the plate can produce additional delayed waves entering the plate at angles of incidence that are different to those of the original bulk wave source. Similarly, multiple reflections of the leaky Lamb waves in the air gap between the plate and an inclined receiver may then have different angles of incidence and propagation delays when arriving at the receiver and hence the signal analysis may become complex, potentially leading to confusion in the identification of the wave modes. To obtain a better understanding of the generation, propagation and detection of leaky Lamb waves and the effects of reflected waves within the air gaps, a multiphysics model using finite element methods was established. This model facilitated the visualisation of the propagation of the reflected waves between the transducers and the plate, the subsequent generation of additional Lamb wave signals within the plate itself, their leakage into the adjacent air, and the reflections of the leaky waves in the air gap between the plate and receiver. Multiple simulations were performed to evaluate the propagation and reflection of signals produced at different transducer incidence angles. Experimental measurements in air were in good agreement with simulation, which verified that the multiphysics model can provide a convenient and accurate way to interpret the signals in

  8. Technical Note: Spatial resolution of proton tomography: Impact of air gap between patient and detector

    SciTech Connect

    Schneider, Uwe; Besserer, Juergen; Hartmann, Matthias

    2012-02-15

    Purpose: Proton radiography and tomography were investigated since the early 1970s because of its low radiation dose, high density resolution, and ability to image directly proton stopping power. However, spatial resolution is still a limiting factor. In this note, preliminary results of the impact of an air gap between detector system and patient on spatial resolution are presented. Methods: Spatial resolution of proton radiography and tomography is governed by multiple Coulomb scattering (MCS) of the protons in the patient. In this note, the authors employ Monte Carlo simulations of protons traversing a 20 cm thick water box. Entrance and exit proton coordinate measurements were simulated for improved spatial resolution. The simulations were performed with and without a 5 cm air gap in front of and behind the patient. Loss of spatial resolution due to the air gap was studied for protons with different initial angular confusion. Results: It was found that spatial resolution is significantly deteriorated when a 5 cm air gap between the position sensitive detector and the patient is included. For a perfect parallel beam spatial resolution worsens by about 40%. Spatial resolution is getting worse with increasing angular confusion and can reach 80%. Conclusions: When proton radiographies are produced by measuring the entrance and exit coordinates of the protons in front of and behind the patient the air gap between the detector and the patient can significantly deteriorate the spatial resolution of the system by up to 80%. An alternative would be to measure in addition to the coordinates also the exit and entrance angles of each proton. In principle, using the air gap size and proton angle, images can be reconstructed with the same spatial resolution than without air gap.

  9. Air gap resonant tunneling bandpass filter and polarizer.

    PubMed

    Melnyk, A; Bitarafan, M H; Allen, T W; DeCorby, R G

    2016-04-15

    We describe a bandpass filter based on resonant tunneling through an air layer in the frustrated total internal reflection regime, and show that the concept of induced transmission can be applied to the design of thin film matching stacks. Experimental results are reported for Si/SiO2-based devices exhibiting a polarization-dependent passband, with bandwidth on the order of 10 nm in the 1550 nm wavelength range, peak transmittance on the order of 80%, and optical density greater than 5 over most of the near infrared region. PMID:27082360

  10. 30 CFR 285.659 - What requirements must I include in my SAP, COP, or GAP regarding air quality?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What requirements must I include in my SAP, COP, or GAP regarding air quality? 285.659 Section 285.659 Mineral Resources MINERALS MANAGEMENT SERVICE... must I include in my SAP, COP, or GAP regarding air quality? (a) You must comply with the Clean Air...

  11. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-10-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lenses. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far, commercial measurement systems were not available for testing of IR objectives since most materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The set-up is based on a Michelson interferometer in which the light from a broadband superluminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative distances of the lens surfaces are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. Together with an LWIR autocollimator, this technique allows for the determination of centering errors, lens thicknesses and air spacings of assembled IR objective lenses with a micron accuracy. It is therefore a tool for precision manufacturing and quality control.

  12. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  13. Slip length measurement of confined air flow on three smooth surfaces.

    PubMed

    Pan, Yunlu; Bhushan, Bharat; Maali, Abdelhamid

    2013-04-01

    An experimental measurement of the slip length of air flow close to three different solid surfaces is presented. The substrate was driven by a nanopositioner moving toward an oscillating glass sphere glued to an atomic force microscopy (AFM) cantilever. A large separation distance was used to get more effective data. The slip length value was obtained by analyzing the amplitude and phase data of the cantilever. The measurements show that the slip length does not depend on the oscillation amplitude of the cantilever. Because of the small difference among the slip lengths of the three surfaces, a simplified analysis method was used. The results show that on glass, graphite, and mica surfaces the slip lengths are 98, 234, and 110 nm, respectively.

  14. Measuring air gap width of permanent magnet linear generators using search coil sensor

    SciTech Connect

    Waters, R.; Danielsson, O.; Leijon, M.

    2007-01-15

    A concept for a wave power plant is being developed at the Centre for Renewable Electric Energy Conversion at the Angstroem Laboratory at Uppsala University. The concept is based on a permanent magnet linear generator placed on the seabed, directly driven by a surface following buoy. Critical for the survival of the generator is that the air gap between the moving and static parts of the generator is constantly fixed at the designed width to prevent the moving and static parts from connecting during operation. This paper shows the design and evaluation of an inductive sensor for measuring the air gap width during generator operation. In order to survive during years on the seafloor inside the wave power plants, the sensor has deliberately been chosen to be a passive component, as well as robust and compact. A coil etched on a printed circuit board, i.e., a search coil, was the chosen basis for the sensor. The sensor has been tested on an existing test rig of a wave power plant and the results have been compared with finite element simulations.The results show that a search coil magnetic sensor etched on a printed circuit board is a suitable concept for measuring the air gap width. Experimentally measured and theoretically calculated sensor signals show very good agreement. The setup has a sensitivity of {+-}0.4 mm in the range of 4-9.5 mm air gap. The potential for future improvements of the sensitivity is considerable.

  15. CHARACTERIZING DETONATING LX-17 CHARGES CROSSING A TRANSVERSE AIR GAP WITH EXPERIMENTS AND MODELING

    SciTech Connect

    Lauderbach, L M; Souers, P C; Garcia, F; Vitello, P; Vandersall, K S

    2009-06-26

    Experiments were performed using detonating LX-17 (92.5% TATB, 7.5% Kel-F by weight) charges with various width transverse air gaps with manganin peizoresistive in-situ gauges present. The experiments, performed with 25 mm diameter by 25 mm long LX-17 pellets with the transverse air gap in between, showed that transverse gaps up to about 3 mm could be present without causing the detonation wave to fail to continue as a detonation. The Tarantula/JWL{sup ++} code was utilized to model the results and compare with the in-situ gauge records with some agreement to the experimental data with additional work needed for a better match to the data. This work will present the experimental details as well as comparison to the model results.

  16. The effect of body postures on the distribution of air gap thickness and contact area

    NASA Astrophysics Data System (ADS)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2016-08-01

    The heat and mass transfer in clothing is predominantly dependent on the thickness of air layer and the magnitude of contact area between the body and the garment. The air gap thickness and magnitude of the contact area can be affected by the posture of the human body. Therefore, in this study, the distribution of the air gap and the contact area were investigated for different body postures of a flexible manikin. In addition, the effect of the garment fit (regular and loose) and style (t-shirts, sweatpants, jacket and trousers) were analysed for the interaction between the body postures and the garment properties. A flexible manikin was scanned using a three-dimensional (3D) body scanning technique, and the scans were post-processed in dedicated software. The body posture had a strong effect on the air gap thickness and the contact area for regions where the garment had a certain distance from the body. Furthermore, a mathematical model was proposed to estimate the possible heat transfer coefficient for the observed air layers and their change with posture. The outcome of this study can be used to improve the design of the protective and functional garments and predict their effect on the human body.

  17. Forests under climate change and air pollution: gaps in understanding and future directions for research.

    PubMed

    Matyssek, R; Wieser, G; Calfapietra, C; de Vries, W; Dizengremel, P; Ernst, D; Jolivet, Y; Mikkelsen, T N; Mohren, G M J; Le Thiec, D; Tuovinen, J-P; Weatherall, A; Paoletti, E

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development.

  18. Measurement of air refractive index fluctuation based on interferometry with two different reference cavity lengths.

    PubMed

    Chen, Qianghua; Luo, Huifu; Wang, Sumei; Wang, Feng; Chen, Xinhua

    2012-09-01

    A measurement method based on interferometry with two different reference cavity lengths is presented and applied in air refractive index measurement in which the two cavity lengths and a laser wavelength are combined to generate two wavelength equivalents of cavity. Corresponding calculation equations are derived, and the optical path configuration is designed, which is inspired by the traditional synthetic wavelength method. Theoretical analyses indicate that the measurement uncertainty of the determined index of refraction is about 2.3×10(-8), which is mainly affected by the length precision of the long vacuum cavity and the ellipticity of polarization components of the dual-frequency laser, and the range of nonambiguity is 3.0×10(-5), which is decided by the length difference of the two cavities. Experiment results show that the accuracy of air refractive index measurement is better than 5.0×10(-8) when the laboratory conditions changes slowly. The merit of the presented method is that the classical refractometry can be also used without evacuation of the gas cavity during the experiment. Furthermore, the application of the traditional synthetic wavelength method may be extended by using the wavelength equivalents of cavity, any value of which can be easily acquired by changing cavity length rather than using actual wavelengths whose number is limited. PMID:22945157

  19. 30 CFR 285.659 - What requirements must I include in my SAP, COP, or GAP regarding air quality?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What requirements must I include in my SAP, COP, or GAP regarding air quality? 285.659 Section 285.659 Mineral Resources BUREAU OF OCEAN ENERGY... Pipeline Deviations § 285.659 What requirements must I include in my SAP, COP, or GAP regarding air...

  20. Band gap of two-dimensional fiber-air photonic crystals

    NASA Astrophysics Data System (ADS)

    Yang, Shu; Li, Masha

    2016-04-01

    A two-dimensional photonic crystal (PC) composed of textile fiber and air is initially discussed in this paper. Textile materials are so called soft materials, which are different from the previous PCs composed of rigid materials. The plain wave expansion method is used to calculate band structure of different PCs by altering component properties or structural parameters. Results show that the dielectric constant of textile fibers, fiber filling ratio and lattice arrangement are effective factors which influence PCs' band gap. Yet lattice constant and fiber diameter make inconspicuous influence on the band gap feature.

  1. A barometric pressure sensor based on the air-gap scale effect in a cantilever

    NASA Astrophysics Data System (ADS)

    Minh-Dung, Nguyen; Takahashi, Hidetoshi; Uchiyama, Takeshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2013-09-01

    The most common structure for a conventional barometric pressure sensor consists of a vacuum-sealed cavity and a diaphragm. However, we hypothesize that a simple structure with an unsealed cavity and an ultra-thin cantilever can provide more sensitive measurements. We produced a 300-nm-thick cantilever with a small spring constant, which made the cantilever sensitive to low pressures. We demonstrated that miniaturizing the air-gap of the cantilever enables the sensor to measure barometric pressure changes at a low pressure change rate with a high resolution, which was 1 Pa at 0.05 Hz, and for a gap size of 1.7 μm.

  2. The measurement of water vapour transfer rate through clothing system with air gap between layers

    NASA Astrophysics Data System (ADS)

    Oh, Ae-Gyeong

    2008-02-01

    The experiments described in this paper are designed to test the water vapour transfer rates through outdoor clothing system with air gap between layers under conditions more closely actual wear. It was adopted distance of 5 mm to ensure no disturbance of the air gap thickness between layers throughout the measurement period with all fabrics. The results have indicated that the water vapour transfer rates of clothing system decrease very slightly with time, it is shown that they approached nearly equilibrium state throughout the experiment. It is revealed that the water vapour transfer rates of the clothing system were ordered into groups determined by the type of waterproof breathable fabric as a shell layer being ordered.

  3. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect

    Souers, P C; Hernandez, A; Cabacungan, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2008-02-05

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in 0 reactive flow JWL++ and Linked Cheetah V4, mostly at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. The physical basis of the input parameters is considered.

  4. Local droplet etching – Nanoholes, quantum dots, and air-gap heterostructures

    SciTech Connect

    Heyn, Ch.; Sonnenberg, D.; Graf, A.; Kerbst, J.; Stemmann, A.; Hansen, W.

    2014-05-15

    Local droplet etching (LDE) allows the self-organized generation of nanoholes in semiconductor surfaces and is fully compatible with molecular beam epitaxy (MBE). The influence of the process parameters as well as of droplet and substrate materials on the LDE nanohole morphology is discussed. Furthermore, recent applications of LDE, the fabrication of quantum dots by hole filling and the creation of air-gap heterostructures are addressed.

  5. Dynamics of air gap formation around roots with changing soil water content.

    NASA Astrophysics Data System (ADS)

    Vetterlein, D.; Carminati, A.; Weller, U.; Oswald, S.; Vogel, H.-J.

    2009-04-01

    Most models regarding uptake of water and nutrients from soil assume intimate contact between roots and soil. However, it is known for a long time that roots may shrink under drought conditions. Due to the opaque nature of soil this process could not be observed in situ until recently. Combining tomography of the entire sample (field of view of 16 x 16 cm, pixel side 0.32 mm) with local tomography of the soil region around roots (field of view of 5 x 5 cm, pixel side 0.09 mm), the high spatial resolution required to image root shrinkage and formation of air-filled gaps around roots could be achieved. Applying this technique and combining it with microtensiometer measurements, measurements of plant gas exchange and microscopic assessment of root anatomy, a more detailed study was conducted to elucidate at which soil matric potential roots start to shrink in a sandy soil and which are the consequences for plant water relations. For Lupinus albus grown in a sandy soil tomography of the entire root system and of the interface between taproot and soil was conducted from day 11 to day 31 covering two drying cycles. Soil matric potential decreased from -36 hPa at day 11 after planting to -72, -251, -429 hPa, on day 17, 19, 20 after planting. On day 20 an air gap started to occur around the tap root and extended further on day 21 with matric potential below -429 hPa (equivalent to 5 v/v % soil moisture). From day 11 to day 21 stomatal conductivity decreased from 467 to 84 mmol m-2 s-1, likewise transpiration rate decreased and plants showed strong wilting symptoms on day 21. Plants were watered by capillary rise on day 21 and recovered completely within a day with stomatal conductivity increasing to 647 mmol m-2 s-1. During a second drying cycle, which was shorter as plants continuously increased in size, air gap formed again at the same matric potential. Plant stomatal conductance and transpiration decreased in a similar fashion with decreasing matric potential and

  6. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment.

    PubMed

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42%. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  7. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    NASA Astrophysics Data System (ADS)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  8. Experimental method to reveal the effect of rotor magnet size and air gap on artificial heart driving motor torque and efficiency.

    PubMed

    Qian, K X; Yuan, H Y; Ru, W M; Zeng, P

    2002-01-01

    To investigate experimentally the effect of rotor magnet design on artificial heart driving motor performance, seven rotors with different magnet lengths or thicknesses, as well as different peripheral angles, were manufactured and tested in the same motor stator with different rotating speeds. The input power (voltage and current) and output torque were measured and the motor efficiency was computed. The results demonstrated that the reduction of rotor magnet size and the enlargement of the air gap between the rotor magnets and the stator coil core have no significant effect on motor efficiency, but will reduce the torque value on which the motor achieves the highest efficiency; it could be remedied however by increasing the rotating speed, because the torque at the high efficiency point will increase along with the rotating speed. These results may provide a basis for developing small rotor magnets, large air gap and high efficiency motors for driving an artificial heart pump.

  9. Emulating microwave-induced breakdown in air with trigatron spark gap

    NASA Astrophysics Data System (ADS)

    Lenardo, B.; Romero-Talamas, C. A.; Granatstein, V. L.; Nusinovich, G. S.

    2011-10-01

    A spark gap and power supply have been constructed to emulate the duration and energy dissipation of air breakdown induced by a 670GHz gyrotron beam, a source that our group plans to use to explore remote detection of concealed radioactive materials. The spark gap is being used in calibration and testing of diagnostics, including atomic line spectroscopy, mass spectrometry, and microwave scattering. The power supply accepts a variable high voltage input up to 5 kV, stores energy in a 1.8 microfarad capacitor, and arcs across a gap of 1.34 mm. The gap is triggered by a AA-battery powered piezoelectric igniter available commercially (used in common gas grills). Preliminary results show that for a charging voltage of 3 kV, we are able to trigger a spark with energy 1.78 +/- 0.23 Joules lasting approximately 2 microseconds, values which can be tuned by varying resistance and charging voltage of the discharge circuit. Our goal is to dissipate 3 Joules in 10 microseconds, which we expect to see in the gyrotron beam breakdown.

  10. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect

    Souers, P C; Hernandez, A; Cabacungen, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2007-05-30

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in the Linked Cheetah V4.0 reactive flow code at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. A report card of 25 tests run with the same settings on LX-17 is shown, possibly the most extensive simultaneous calibration yet tried with an explosive. The physical basis of some of the input parameters is considered.

  11. Tuning efficiency and linewidth of electrostatically actuated multiple air-gap filters

    NASA Astrophysics Data System (ADS)

    Römer, F.; Prott, C.; Irmer, S.; Daleiden, J.; Tarraf, A.; Hillmer, H.; Strassner, M.

    2003-01-01

    We investigated the tuning efficiency of electrostatically actuated multiple air-gap filters fabricated in InP for dense wavelength division multiplex applications by comparing measured tuning curves with the results of optical and mechanical simulations. These filters exhibit a record tuning range of 127 nm at 7.3 V tuning voltage. The filters were measured in reflection using standard single mode fiber. The subsequent analysis is based on a one-dimensional electromechanical and optical model providing a reasonable estimation for the pull-in voltage. Optical simulations show that the filter linewidth does not affect the tuning efficiency.

  12. Vertical cavity surface emitting laser based on gallium arsenide/air-gap distributed Bragg reflectors: From concept to working devices

    NASA Astrophysics Data System (ADS)

    Mo, Qingwei

    Vertical-cavity surface-emitting lasers (VCSELs) have created new opportunities in optoelectronics. However, VCSELs have so far been commercialized mainly for operation at 0.85 mum, despite their potential importance at other wavelengths, such as 1.3 mum and 1.55 mum. The limitations at these longer wavelengths come from material characteristics, such as a low contrast ratio in mirror materials, lower mirror reflectivity, and smaller optical gain for longer wavelength materials versus AlGaAs/GaAs quantum wells. A similar situation, insufficient gain relative to the cavity loss, existed in the past for shorter wavelength VCSELs before high quality epitaxial mirrors were developed. Semiconductor/air-gap Distributed Bragg Reflectors (DBRs) are attractive due to their high index contrast, which leads to a high reflectivity, wide stop band and low optical loss mirror with a small number of pairs. This concept is ready to be integrated into material systems other than AlGaAs/GaAs, which is studied in this work. Therefore, the impact of these DBRs can be extended into both visible and longer infrared wavelengths as a solution to the trade-off between DBR and active region materials. Air-gap DBRs can also be used as basic building blocks of micro-opto-electro-mechanical systems (MOEMS). The high Q microcavity formed by the air-gap DBRs also provide a good platform for microcavity physics study. Air-gap DBRs are modeled using the transmission matrix formulae of the Maxwell equations. A comparison to existing DBR technology shows the great advantage and potential that the air-gap DBR possesses. Two types of air-gap are proposed and developed. The first one includes multiple GaAs/air pairs while the second one combines a single air-gap with metal and dielectric mirrors. New device structures and processing designs, especially an all-epitaxial lateral current and optical confinement technique, are carried out to incorporate air-gap DBRs into VCSEL structures. The first VCSEL

  13. 30 CFR 585.659 - What requirements must I include in my SAP, COP, or GAP regarding air quality?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... implementing regulations as promulgated by the EPA under 40 CFR part 55. (b) For air quality modeling that you... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What requirements must I include in my SAP, COP... What requirements must I include in my SAP, COP, or GAP regarding air quality? (a) You must comply...

  14. 30 CFR 585.659 - What requirements must I include in my SAP, COP, or GAP regarding air quality?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... implementing regulations as promulgated by the EPA under 40 CFR part 55. (b) For air quality modeling that you... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What requirements must I include in my SAP, COP... What requirements must I include in my SAP, COP, or GAP regarding air quality? (a) You must comply...

  15. 30 CFR 585.659 - What requirements must I include in my SAP, COP, or GAP regarding air quality?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... implementing regulations as promulgated by the EPA under 40 CFR part 55. (b) For air quality modeling that you... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What requirements must I include in my SAP, COP... What requirements must I include in my SAP, COP, or GAP regarding air quality? (a) You must comply...

  16. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface.

  17. Sensitivity analysis of air gap motion with respect to wind load and mooring system for semi-submersible platform design

    NASA Astrophysics Data System (ADS)

    Huo, Fa-li; Nie, Yan; Yang, De-qing; Dong, Gang; Cui, Jin

    2016-07-01

    A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and potential deck impact to the semi-submersible platform. It is important to predict air gap response of platforms accurately in order to check the strength of local structures which withstand the wave slamming due to negative air gap. The wind load cannot be simulated easily by model test in towing tank whereas it can be simulated accurately in wind tunnel test. Furthermore, full scale simulation of the mooring system in model test is still a tuff work especially the stiffness of the mooring system. Owing to the above mentioned problem, the model test results are not accurate enough for air gap evaluation. The aim of this paper is to present sensitivity analysis results of air gap motion with respect to the mooring system and wind load for the design of semi-submersible platform. Though the model test results are not suitable for the direct evaluation of air gap, they can be used as a good basis for tuning the radiation damping and viscous drag in numerical simulation. In the presented design example, a numerical model is tuned and validated by ANSYS AQWA based on the model test results with a simple 4 line symmetrical horizontal soft mooring system. According to the tuned numerical model, sensitivity analysis studies of air gap motion with respect to the mooring system and wind load are performed in time domain. Three mooring systems and five simulation cases about the presented platform are simulated based on the results of wind tunnel tests and sea-keeping tests. The sensitivity analysis results are valuable for the floating platform design.

  18. Water desalination by air-gap membrane distillation using meltblown polypropylene nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Rosalam, S.; Chiam, C. K.; Widyaparamitha, S.; Chang, Y. W.; Lee, C. A.

    2016-06-01

    This paper presents a study of air gap membrane distillation (AGMD) using meltblown polypropylene (PP) nanofiber membrane to produce fresh water via desalination process. PP nanofiber membranes with the effective area 0.17 m2 are tested with NaCl solutions (0.5 - 4.0 wt.%) and seawater as the feed solutions (9400 - 64800 μS/cm) in a tubular membrane module. Results show that the flux decreases with increasing the membrane thickness from 547 to 784 μm. The flux increases with the feed flow rate and temperature difference across the membrane. The feed concentration affects the flux insignificantly. The AGMD system can reject the salts at least 96%. Water vapor permeation rate is relatively higher than solute permeation rate resulting in the conductivity value of permeate decreases when the corresponding flux increases. The AGMD system produces the fresh water (200 - 1520 μS/cm) that is suitable for drinking, fisheries or irrigation.

  19. A fiber inclinometer using a fiber microtaper with an air-gap microcavity fiber interferometer

    NASA Astrophysics Data System (ADS)

    Feng, Zhongyao; Gang, Tingting; Hu, Manli; Qiao, Xueguang; Liu, Nan; Rong, Qiangzhou

    2016-04-01

    A micro-inclinometer is proposed and demonstrated experimentally; the device consists of a micro-fiber taper followed by an air-gap microcavity. A part of the core mode can couple to cladding modes via the taper. These cladding modes and residual core modes transmitted to downstream of the Fabry-Perot (FP) interferometer. A fraction of these modes are reflected back to the SMF by two surfaces of the FP cavity and eventually recoupled to the leading-in SMF, resulting in a well-defined interference spectrum. The fringe contrast of the interferometer is highly sensitive to fiber bending with direction-independence and thus is capable of measuring tilt angles in high resolution. In addition, the interference wavelength always remains unchanged during the fiber bending.

  20. Surfactant-Assisted Voltage-Driven Silver Nanoparticle Chain Formation across Microelectrode Gaps in Air.

    PubMed

    Shah, Nidhi; Zamborini, Francis P

    2015-10-27

    Here we describe the electrodeposition of Ag in the presence of cetyltrimethylammonium bromide (CTAB) onto 5 μm gap Au interdigitated array (IDA) electrodes that are bare, thiol-functionalized, or thiol-functionalized and seeded with 4 nm diameter Au nanoparticles (NPs). After deposition, applying a voltage between 5 and 10 V in air for 0 to 1000 s resulted in one-dimensional (1D) Ag NP chains spanning across the IDA gap. The Ag NP chains form on IDAs functionalized with thiols and Au NP-seeded at about 5 V and at 10 V for the other nonseeded surfaces. Ag NP chains do not form at all up to 10 V when IDAs are treated with ozone or water soaking to remove possible CTA(+) ions from the surface, when Ag deposition takes place in the absence of CTAB, or when the voltage is applied under dry N2 (low humidity). Chain formation occurs by Ag moving from the positive to negative electrode. Coating the devices with a negatively charged surfactant, sodium dodecyl sulfate, also results in Ag NP chains by Ag moving from the positive to the negative electrodes, which confirms that the chains form by electrochemical oxidation at the positive electrode and deposition at the negative electrode. The surfactant ions and thin layer of water present in the humid environment facilitate this electrochemical process. PMID:26344389

  1. Surfactant-Assisted Voltage-Driven Silver Nanoparticle Chain Formation across Microelectrode Gaps in Air.

    PubMed

    Shah, Nidhi; Zamborini, Francis P

    2015-10-27

    Here we describe the electrodeposition of Ag in the presence of cetyltrimethylammonium bromide (CTAB) onto 5 μm gap Au interdigitated array (IDA) electrodes that are bare, thiol-functionalized, or thiol-functionalized and seeded with 4 nm diameter Au nanoparticles (NPs). After deposition, applying a voltage between 5 and 10 V in air for 0 to 1000 s resulted in one-dimensional (1D) Ag NP chains spanning across the IDA gap. The Ag NP chains form on IDAs functionalized with thiols and Au NP-seeded at about 5 V and at 10 V for the other nonseeded surfaces. Ag NP chains do not form at all up to 10 V when IDAs are treated with ozone or water soaking to remove possible CTA(+) ions from the surface, when Ag deposition takes place in the absence of CTAB, or when the voltage is applied under dry N2 (low humidity). Chain formation occurs by Ag moving from the positive to negative electrode. Coating the devices with a negatively charged surfactant, sodium dodecyl sulfate, also results in Ag NP chains by Ag moving from the positive to the negative electrodes, which confirms that the chains form by electrochemical oxidation at the positive electrode and deposition at the negative electrode. The surfactant ions and thin layer of water present in the humid environment facilitate this electrochemical process.

  2. Tunable complete photonic band gap in anisotropic photonic crystal slabs with non-circular air holes using liquid crystals

    NASA Astrophysics Data System (ADS)

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-06-01

    In this study, we analyze the tunability of complete photonic band gap of square and triangular photonic crystal slabs composed of square and hexagonal air holes in anisotropic tellurium background with SiO2 as cladding material. The non-circular holes are infiltrated with liquid crystal. Using the supercell method based on plane wave expansion, we study the variation of complete band gap by changing the optical axis orientation of liquid crystal. Our numerical results show that noticeable tunability of complete photonic band gap can be obtained in both square and triangular structures with non-circular holes.

  3. Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities

    SciTech Connect

    Tao, Renchun Kako, Satoshi; Arita, Munetaka; Arakawa, Yasuhiko

    2013-11-11

    Using the thermal decomposition technique, non-polar III-nitride air-gap distributed Bragg reflector (DBR) microcavities (MCs) with a single quantum well have been fabricated. Atomic force microscopy reveals a locally smooth DBR surface, and room-temperature micro-photoluminescence measurements show cavity modes. There are two modes per cavity due to optical birefringence in the non-polar MCs, and a systematic cavity mode shift with cavity thickness was also observed. Although the structures consist of only 3 periods (top) and 4 periods (bottom), a quality factor of 1600 (very close to the theoretical value of 2100) reveals the high quality of the air-gap DBR MCs.

  4. Study of Various Slanted Air-Gap Structures of Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    SciTech Connect

    Tolbert, Leon M; Lee, Seong T

    2010-01-01

    This paper shows how to maximize the effect of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field excitation (BFE) for application in a hybrid electric vehicle. The BFE structure offers high torque density at low speed and weakened flux at high speed. The unique slanted air-gap is intended to increase the output torque of the machine as well as to maximize the ratio of the back-emf of a machine that is controllable by BFE. This irregularly shaped air-gap makes a flux barrier along the d-axis flux path and decreases the d-axis inductance; as a result, the reluctance torque of the machine is much higher than a uniform air-gap machine, and so is the output torque. Also, the machine achieves a higher ratio of the magnitude of controllable back-emf. The determination of the slanted shape was performed by using magnetic equivalent circuit analysis and finite element analysis (FEA).

  5. A fluorenone based low band gap solution processable copolymer for air stable and high mobility organic field effect transistors.

    PubMed

    Sonar, Prashant; Ha, Tae-Jun; Dodabalapur, Ananth

    2013-02-25

    A fluorenone based alternating copolymer () with a furan based fused aromatic moiety has been designed and synthesized. exhibits a small band gap with a lower HOMO value. Testing this polymer semiconductor as the active layer in organic thin-film transistors results in hole mobilities as high as 0.15 cm(2) V(-1) s(-1) in air.

  6. Extinction measurements for optical band gap determination of soot in a series of nitrogen-diluted ethylene/air non-premixed flames.

    PubMed

    Adkins, Erin M; Miller, J Houston

    2015-01-28

    Visible light extinction was measured in a series of nitrogen-diluted, ethylene/air, non-premixed flames and this data was used to determine the optical band gap, OBG, as a function of flame position. Collimated light from a supercontinuum source is telescopically expanded and refocused to match the f- number of a dispersing monochromator. The dispersed light is split into a power metering channel and a channel that is periscoped and focused into the flame. The transmitted light is then recollimated and focussed onto a silicon photodiode detector. After tomographic reconstruction of the radial extinction field, the OBG was derived from the near-edge absorption feature using Tauc/Davis-Mott analysis. A slight evolution in OBG was observed throughout all flame systems with a consistent range of OBG observed between approximately 1.85 eV and 2.35 eV. Averaging over all positions the mean OBG was approximately 2.09 eV for all flame systems. Comparing these results to previously published computational results relating calculated HOMO-LUMO gaps for a variety of D2h PAH molecules to the number of aromatic rings in the structure, showed that the observed optical band gap is consistent with a PAH of about 14 rings or a conjugation length of 0.97 nm. This work provides experimental support to the model of soot formation where the transition from chemical to physical growth starts at a modest molecular size; about the size of circumpyrene.

  7. A fiber air-gap Fabry-Pérot temperature sensor demodulated by using frequency modulated continuous wave

    NASA Astrophysics Data System (ADS)

    Zheng, Wanfu; Xie, Jianglei; Li, Yi; Xu, Ben; Kang, Juan; Shen, Changyu; Wang, Jianfeng; Jin, Yongxing; Liu, Honglin; Ni, Kai; Dong, Xinyong; Zhao, Chunliu; Jin, Shangzhong

    In this study, a fiber in-line air-gap Fabry-Pérot interferometer (FPI) is fabricated by HF acid etching. For a low-cost and higher precise measurement, a demodulation system based on frequency modulated continuous wave (FMCW) technique is build up and demonstrated in this air-gap FPI. In temperature measurements, the temperature sensitivity is about 1.75 rad/°C by phase shift detection. We also test the long term performance of the system and the RMS error is about 0.04 rad, which corresponds to the temperature resolution of ~0.02 °C. It is much higher than the measurement resolution by using the traditional wavelength shift detection method. Our experiments show that the FMCW can provide a low-cost, high resolution and high speed interrogation solution to the fiber FPIs.

  8. Plasmonic waveguide ring resonators with 4 nm air gap and λ0(2)/15,000 mode-area fabricated using photolithography.

    PubMed

    Lee, Jaehak; Song, Juhee; Sung, Gun Yong; Shin, Jung H

    2014-10-01

    Plasmonic air-gap disk resonators with 3.5 μm diameter and a 4 nm thick, 40 nm wide air gap for a mode area of only λ0(2)/15,000 were fabricated using photolithography only. The resonant modes were clearly identified using tapered fiber coupling method at the resonant wavelengths of 1280-1620 nm. We also demonstrate the advantage of the air-gap structure by using the resonators as label-free biosensors with a sensitivity of 1.6 THz/nm.

  9. Evaluation of Length-of-Stain Gas Indicator Tubes for Measuring Carbon Monoxide in Air.

    ERIC Educational Resources Information Center

    Klaubert, Earl C.; And Others

    Techniques for detection and measurement of carbon monoxide (CO) in air are of interest and utility in many aspects of automotive safety. CO concentrations may range from less than 100 parts per million (ppm), or 0.01 percent, to about 10 percent by volume. Gas indicator tubes have been used for many years primarily as detectors of hazardous gases…

  10. Mortality, length of life, and physical examination attendance in participants of the Air Force Health Study.

    PubMed

    Ketchum, Norma S; Michalek, Joel E; Pavuk, Marian

    2007-01-01

    Begun in 1982, the Air Force Health Study (AFHS) has assessed the mortality of veterans of Operation Ranch Hand, the unit responsible for aerially spraying herbicides in Vietnam. A comparison group of other Air Force veterans involved with aircraft missions in Southeast Asia during the same period, but not involved with spraying herbicides, was included in the study. Among 18,082 veterans, this report examined whether attendance at AFHS physical examinations from 1982 to 1999 played a role in mortality experience and potential lengthening of life relative to veterans who did not attend. The years of potential life lost for 1173 veterans who died before age 65 was calculated. No statistically significant difference in risk of death was found from all causes, cancer, or circulatory disease between attendees and nonattendees. No evidence was found to suggest that attending physical examinations decreased mortality or substantially lengthened life in AFHS participants. PMID:17274267

  11. Experimental Study on Branch and Diffuse Type of Streamers in Leader Restrike of Long Air Gap Discharge

    NASA Astrophysics Data System (ADS)

    Chen, She; Zeng, Rong; Zhuang, Chijie; Zhou, Xuan; Ding, Yujian

    2016-03-01

    One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-streamer propagation is one of most important stages in long air gap discharge. In the conductor-tower lattice configuration, we have measured the voltage, the current on the high voltage side and the electric field in the gap. While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape, the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in the experiment. Besides, it is found that the leader velocity, width and injected charge for the branch type streamer are greater than those of a diffuse type. We propose that the phenomenon results from the high humidity, which was 15.5-16.5 g/m3 in our experiment. supported by the Fund of the National Priority Basic Research of China (2011CB209403) and National Natural Science Foundation of China (Nos. 51325703, 51377094, 51577098)

  12. The influence of the sand-dust environment on air-gap breakdown discharge characteristics of the plate-to-plate electrode

    NASA Astrophysics Data System (ADS)

    He, Bo; Zhang, Gang; Chen, Bangfa; Gao, Naikui; Li, Yaozhong; Peng, Zongren; Jin, Haiyun

    2010-03-01

    The experiments of plane-plane gap discharge was carried out in an environment of artificial sandstorm. By comparing and analyzing the differences in gap breakdown voltage between the sand & dust environment and clean air, some problems were investigated, such as effects of wind speed and particle concentration on the breakdown voltage, differences of gap discharge characteristics between the dust & sand medium and the clean air medium. The results showed that compared with the clean air environment, the dust & sand environment had a decreased gap breakdown voltage. The longer the gap distance, the greater the voltage drop; the breakdown voltage decreased with the increase of particle concentration in flow. With the increase of wind speed, the breakdown voltage decreased at the beginning and rose afterwards. The results of the paper may helpful for further research regarding the unidentified flashover and external insulation characteristics of the HV power grid in the dust & sand environment.

  13. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air

    PubMed Central

    Wagner, Tino

    2016-01-01

    Summary Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions. PMID:27335735

  14. Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has established National Ambient Air Quality Standards (NAAQS) for six principal air pollutants (“criteria” pollutants): carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO2), particulate matter (PM) in two size ranges [...

  15. The influence of air traffic control message length and timing on pilot communication

    NASA Technical Reports Server (NTRS)

    Morrow, Daniel; Rodvold, Michelle

    1993-01-01

    The present paper outlines an approach to air traffic control (ATC) communication that is based on theories of dialogue organization and describes several steps or phases in routine controller-pilot communication. The introduction also describes several kinds of communication problems that often disrupt these steps, as well as how these problems may be caused by factors related to ATC messages, the communication medium (radio vs. data link) and task workload. Next, a part-task simulation study is described. This study focused on how problems in radio communication are related to message factors. More specifically, we examined if pilots are more likely to misunderstanding longer ATC messages. A more general goal of the study is to show that communication analysis can help trace where problem occur and why.

  16. Wind tunnel tests of a zero length, slotted-lip engine air inlet for a fixed nacelle V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.; Beck, W. E., Jr.; Glasgow, E. R.

    1982-01-01

    Zero length, slotted lip inlet performance and associated fan blade stresses were determined during model tests using a 20 inch diameter fan simulator in the NASA-LeRC 9 by 15 foot low speed wind tunnel. The model configuration variables consisted of inlet contraction ratio, slot width, circumferential extent of slot fillers, and length of a constant area section between the inlet throat and fan face. The inlet performance was dependent on slot gap width and relatively independent of inlet throat/fan face spacer length and slot flow blockage created by 90 degree slot fillers. Optimum performance was obtained at a slot gap width of 0.36 inch. The zero length, slotted lip inlet satisfied all critical low speed inlet operating requirements for fixed horizontal nacelles subsonic V/STOL aircraft.

  17. Band gap shift in the indium-tin-oxide films on polyethylene napthalate after thermal annealing in air

    NASA Astrophysics Data System (ADS)

    Han, H.; Mayer, J. W.; Alford, T. L.

    2006-10-01

    Indium-tin-oxide (ITO) thin films on polyethylene napthalate (PEN) with high carrier concentration (˜1021/cm3) have been grown by electron-beam deposition without the introduction of oxygen into the chamber. The electrical properties of the ITO films (such as, carrier concentration, electrical mobility, and resistivity) abruptly changed after annealing in the air atmospheres. In addition, optical transmittance and optical band gap values significantly changed after heat treatment. The optical band gap narrowing behavior is observed in the as-deposited sample because of impurity band and heavy carrier concentration. The influence of annealing in air on the electrical and optical properties of ITO/PEN samples can be explained by the change in the free electron concentration, which is evaluated in terms of the oxygen content. Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy analyses are used to determine the oxygen content in the film. Hall effect measurements are used to determine the dependence of electrical properties on oxygen content.

  18. Air-Gapped Structures as Magnetic Elements for Use in Power Processing Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.

    1977-01-01

    Methodical approaches to the design of inductors for use in LC filters and dc-to-dc converters using air gapped magnetic structures are presented. Methods for the analysis and design of full wave rectifier LC filter circuits operating with the inductor current in both the continuous conduction and the discontinuous conduction modes are also described. In the continuous conduction mode, linear circuit analysis techniques are employed, while in the case of the discontinuous mode, the method of analysis requires computer solutions of the piecewise linear differential equations which describe the filter in the time domain. Procedures for designing filter inductors using air gapped cores are presented. The first procedure requires digital computation to yield a design which is optimized in the sense of minimum core volume and minimum number of turns. The second procedure does not yield an optimized design as defined above, but the design can be obtained by hand calculations or with a small calculator. The third procedure is based on the use of specially prepared magnetic core data and provides an easy way to quickly reach a workable design.

  19. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  20. Ultra sub-wavelength surface plasmon confinement using air-gap, sub-wavelength ring resonator arrays

    NASA Astrophysics Data System (ADS)

    Lee, Jaehak; Sung, Sangkeun; Choi, Jun-Hyuk; Eom, Seok Chan; Mortensen, N. Asger; Shin, Jung H.

    2016-02-01

    Arrays of sub-wavelength, sub-10 nm air-gap plasmonic ring resonators are fabricated using nanoimprinting. In near infra-red (NIR) range, the resonator supports a single dipole mode which is excited and identified via simple normal illumination and explored through transmission measurements. By controlling both lateral and vertical confinement via a metal edge, the mode volume is successfully reduced down to 1.3 × 10‑5 λ03. The advantage of such mode confinement is demonstrated by applying the resonators biosensing. Using bovine serum albumin (BSA) molecules, a dramatic enhancement of surface sensitivity up to 69 nm/nm is achieved as the modal height approaches the thickness of the adsorbed molecule layers.

  1. Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Jin, Shuo; Ruan, Jiangjun; Du, Zhiye; Zhu, Lin; Shu, Shengwen

    2016-10-01

    This paper proposes a new method to predict the corona onset voltage for a rod-plane air gap, based on the support vector machine (SVM). Because the SVM is not limited by the size, dimension and nonlinearity of the samples, this method can realize accurate prediction with few training data. Only electric field features are chosen as the input; no geometric parameter is included. Therefore, the experiment data of one kind of electrode can be used to predict the corona onset voltages of other electrodes with different sizes. With the experimental data obtained by ozone detection technology, and experimental data provided by the reference, the efficiency of the proposed method is validated. Accurate predicted results with an average relative less than 3% are obtained with only 6 experimental data. supported by National Natural Science Foundation of China (No. 51477120)

  2. Ultra sub-wavelength surface plasmon confinement using air-gap, sub-wavelength ring resonator arrays

    PubMed Central

    Lee, Jaehak; Sung, Sangkeun; Choi, Jun-Hyuk; Eom, Seok Chan; Mortensen, N. Asger; Shin, Jung H.

    2016-01-01

    Arrays of sub-wavelength, sub-10 nm air-gap plasmonic ring resonators are fabricated using nanoimprinting. In near infra-red (NIR) range, the resonator supports a single dipole mode which is excited and identified via simple normal illumination and explored through transmission measurements. By controlling both lateral and vertical confinement via a metal edge, the mode volume is successfully reduced down to 1.3 × 10−5 λ03. The advantage of such mode confinement is demonstrated by applying the resonators biosensing. Using bovine serum albumin (BSA) molecules, a dramatic enhancement of surface sensitivity up to 69 nm/nm is achieved as the modal height approaches the thickness of the adsorbed molecule layers. PMID:26923610

  3. Dual rotor single- stator axial air gap PMSM motor/generator drive for high torque vehicles applications

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Deaconu, S. I.; Boldea, I.; Popa, G. N.

    2014-03-01

    The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors, destined for hybrid electric vehicles (HEV) and military vehicles applications. The proposed topologies and the magneto-motive force analysis are the core of the paper.

  4. [Spatiotempaoral distribution patterns of photosynthetic photon flux density, air temperature, and relative air humidity in forest gap of Pinus koraiensis-dominated broadleaved mixed forest in Xi-ao Xing' an Mountains].

    PubMed

    Li, Meng; Duan, Wen-biao; Chen, Li-xin

    2009-12-01

    A continuous measurement of photosynthetic photon flux density (PPFD), air temperature, and relative air humidity was made in the forest gap in primary Pinus koraiensis-dominated broadleaved mixed forest in Xiao Xing' an Mountains to compare the spatiotemporal distribution patterns of the parameters. The diurnal maximum PPFD in the forest gap appeared between 11:00 and 13:00 on sunny and overcast days. On sunny days, the maximum PPFD during various time periods did not locate in fixed locations, the diurnal maximum PPFD occurred in the canopy edge of northern part of the gap; while on overcast days, it always occurred in the center of the gap. The mean monthly PPFD in the gap was the highest in June and the lowest in September, with the largest range observed in July. The maximum air temperature happened between 9:00 and 15:00 on sunny days, between 15:00 and 19:00 on overcast days, the locations were 8 m in the southern part of gap center both on sunny and overcast days. From 5:00 to 9:00, the air temperature at measured positions in the gap was higher on overcast days than on sunny days; but from 9:00 to 19:00, it was opposite. The mean monthly air temperature was the highest in June, and the lowest in September. The maximum relative humidity appeared between 5:00 and 9:00 on sunny and overcast days, and occurred in the canopy border of western part of the gap, with the relative air humidity on overcast days being always higher than that on sunny days. The mean monthly relative humidity was the highest in July, and the lowest in June. The heterogeneity of PPFD was higher on sunny days than on overcast days, but the heterogeneities of air temperature and relative humidity were not obvious. The maximum PPFD, air temperature, and relative humidity were not located in the same positions among different months during growing season. For mean monthly PPFD and air temperature, their variation gradient was higher in and around the center of gap; while for mean monthly

  5. Estimation of Minimal Breakdown Point in a GaP Plasma Structure and Discharge Features in Air and Argon Media

    NASA Astrophysics Data System (ADS)

    Kurt, H. Hilal; Tanrıverdi, Evrim

    2016-08-01

    We present gas discharge phenomena in argon and air media using a gallium phosphide (GaP) semiconductor and metal electrodes. The system has a large-diameter ( D) semiconductor and a microscaled adjustable interelectrode gap ( d). Both theoretical and experimental findings are discussed for a direct-current (dc) electric field ( E) applied to this structure with parallel-plate geometry. As one of the main parameters, the pressure p takes an adjustable value from 0.26 kPa to 101 kPa. After collection of experimental data, a new theoretical formula is developed to estimate the minimal breakdown point of the system as a function of p and d. It is proven that the minimal breakdown point in the semiconductor and metal electrode system differs dramatically from that in metal and metal electrode systems. In addition, the surface charge density σ and spatial electron distribution n e are calculated theoretically. Current-voltage characteristics (CVCs) demonstrate that there exist certain negative differential resistance (NDR) regions for small interelectrode separations (i.e., d = 50 μm) and low and moderate pressures between 3.7 kPa and 13 kPa in Ar medium. From the difference of currents in CVCs, the bifurcation of the discharge current is clarified for an applied voltage U. Since the current differences in NDRs have various values from 1 μA to 7.24 μA for different pressures, the GaP semiconductor plasma structure can be used in microwave diode systems due to its clear NDR region.

  6. Air-gap gating of MgZnO/ZnO heterostructures

    SciTech Connect

    Tambo, T.; Falson, J. Kozuka, Y.; Maryenko, D.; Tsukazaki, A.; Kawasaki, M.

    2014-08-28

    The adaptation of “air-gap” dielectric based field-effect transistor technology to controlling the MgZnO/ZnO heterointerface confined two-dimensional electron system (2DES) is reported. We find it possible to tune the charge density of the 2DES via a gate electrode spatially separated from the heterostructure surface by a distance of 5 μm. Under static gating, the observation of the quantum Hall effect suggests that the charge carrier density remains homogeneous, with the 2DES in the 3 mm square sample the sole conductor. The availability of this technology enables the exploration of the charge carrier density degree of freedom in the pristine sample limit.

  7. Resistance modulation in VO2 nanowires induced by an electric field via air-gap gates

    NASA Astrophysics Data System (ADS)

    Kanki, Teruo; Chikanari, Masashi; Wei, Tingting; Tanaka, Hidekazu; The Institute of Scientific; Industrial Research Team

    Vanadium dioxide (VO2) shows huge resistance change with metal-insulator transition (MIT) at around room temperature. Controlling of the MIT by applying an electric field is a topical ongoing research toward the realization of Mott transistor. In this study, we have successfully switched channel resistance of VO2 nano-wire channels by a pure electrostatic field effect using a side-gate-type field-effect transistor (SG-FET) viaair gap and found that single crystalline VO2 nanowires and the channels with narrower width enhance transport modulation rate. The rate of change in resistance ((R0-R)/R, where R0 and R is the resistance of VO2 channel with off state and on state gate voltage (VG) , respectively) was 0.42 % at VG = 30 V in in-plane poly-crystalline VO2 channels on Al2O3(0001) substrates, while the rate in single crystalline channels on TiO2 (001) substrates was 3.84 %, which was 9 times higher than that using the poly-crystalline channels. With reducing wire width from 3000 nm to 400 nm of VO2 on TiO2 (001) substrate, furthermore, resistance modulation ratio enhanced from 0.67 % to 3.84 %. This change can not be explained by a simple free-electron model. In this presentation, we will compare the electronic properties between in-plane polycrystalline VO2 on Al2O3 (0001) and single crystalline VO2 on TiO2 (001) substrates, and show experimental data in detail..

  8. Similarity laws for cathode-directed streamers in gaps with an inhomogeneous field at elevated air pressures

    SciTech Connect

    Bolotov, O. V.; Golota, V. I.; Kadolin, B. B.; Karas', V. I.; Ostroushko, V. N.; Zavada, L. M.; Shulika, A. Yu.

    2010-11-15

    Results are presented from experimental studies of cathode-directed streamers in the gap closure regime without a transition into spark breakdown. Spatiotemporal, electrodynamic, and spectroscopic characteristics of streamer discharges in air at different pressures were studied. Similarity laws for streamer discharges were formulated. These laws allow one to compare the discharge current characteristics and streamer propagation dynamics at different pressures. Substantial influence of gas photoionization on the deviations from the similarity laws was revealed. The existence of a pressure range in which the discharges develop in a similar way was demonstrated experimentally. In particular, for fixed values of the product pd and discharge voltage U, the average streamer velocity is also fixed. It is found that, although the similarity laws are violated in the interstreamer pause of the discharge, the average discharge current and the product of the pressure and the streamer repetition period remain the same at different pressures. The radiation spectra of the second positive system of nitrogen (the C{sup 3{Pi}}{sub u}-B{sup 3{Pi}}{sub g} transitions) in a wavelength range of 300-400 nm at air pressures of 1-3 atm were recorded. It is shown that, in the entire pressure range under study, the profiles of the observed radiation bands practically remain unchanged and the relative intensities of the spectral lines corresponding to the {sup 3{Pi}}{sub u}-B{sup 3{Pi}}{sub g} transitions are preserved.

  9. Correlation of chain length compatibility and surface properties of mixed foaming agents with fluid displacement efficiency and effective air mobility in porous media

    SciTech Connect

    Sharma, M.K.; Bringham, W.E.; Shah, D.O.

    1984-05-01

    The effects of chain length compatibility and surface properties of mixed foaming agents on fluid displacement efficiency and effective air mobility in porous media were investigated. Sodium dodecyl sulfate (C/sub 12/H/sub 25/SO/sub 4/Na) and various alkyl alcohols (e.g., C/sub 8/OH,C/sub 10/OH,C/sub 12/OH,C/sub 14/OH, and C/sub 16/OH) were used as mixed foaming agents. It was observed that the surface properties of surfactant solutions and flow behavior of foams through porous media were influenced by the chain length compatibility of the surfactant molecules. The increase in the length of porous media improved fluid displacement efficiency while breakthrough time per unit length decreased slightly with increase in the length of porous media. For mixed surfactant systems, a minimum in surface tension, a maximum in surface viscosity, a minimum in bubble size, a maximum in breakthrough time, a maximum in fluid displacement efficiency, and a minimum in effective air mobility were observed when the two components of the surfactant system had the same chain length. These results indicate that the surface properties of foaming solutions and molecular packing at interfaces exhibit a striking correlation with breakthrough time, fluid displacement efficiency, and effective air mobility in porous media.

  10. Effect of perfluoroalkyl chain length on monolayer behavior of partially fluorinated oleic acid molecules at the air-water interface.

    PubMed

    Baba, Teruhiko; Takai, Katsuki; Takagi, Toshiyuki; Kanamori, Toshiyuki

    2013-01-01

    A series of oleic acid (OA) analogs containing terminal perfluoroalkyl groups (CF3, C2F5, n-C3F7, n-C4F9 or n-C8F17) was synthesized to clarify how the fluorinated chain length affects the stability and molecular packing of liquid-expanded OA monolayers at the air-water interface. Although the substitution of terminal CF3 group for CH3 in OA had no effect on monolayer stability, further fluorination led to a gradual increase in monolayer stability at 25 °C. Surface pressure-area isotherm revealed that partially fluorinated OA analogs form more expanded monolayers than OA at low surface pressures, and that the monolayer behavior of OA analogs with the even-carbon numbered fluorinated chain is almost the same as that of OA upon monolayer compression, whereas the behavior of OA analogs with the odd-carbon numbered fluorinated chain significantly differs from that of OA. These results indicate: (i) the terminal short part (at least C2 residue) in OA predominantly determines the liquid-expanded monolayer stability; (ii) the molecular packing state of OA may be perturbed by the substitution of a short odd-carbon numbered fluorinated chain; (iii) hence, OA analogs with even-carbon numbered chain are considered to be preferable as hydrophobic building blocks for the synthesis of fluorinated phospholipids.

  11. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    PubMed Central

    Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  12. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    PubMed

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  13. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    PubMed

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-04-18

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  14. Detection of air-gap eccentricity and broken-rotor bar conditions in a squirrel-cage induction motor using the radial flux sensor

    SciTech Connect

    Hwang, Don-Ha; Woo, Byung-Chul; Sun, Jong-Ho; Kang, Dong-Sik; Han, Sang-Bo; Kim, Byung-Kuk; Cho, Youn-Hyun

    2008-04-01

    A new method for detecting eccentricity and broken rotor bar conditions in a squirrel-cage induction motor is proposed. Air-gap flux variation analysis is done using search coils, which are inserted at stator slots. Using this method, the leakage flux in radial direction can be directly detected. Using finite element method, the air-gap flux variation is accurately modeled and analyzed. From the results of the simulation, a motor under normal condition shows maximum magnetic flux density of 1.3 T. On the other hand, the eccentric air-gap condition displays about 1.1 T at 60 deg. and 1.6 T at 240 deg. A difference of flux density is 0.5 T in the abnormal condition, whereas no difference is detected in the normal motor. In the broken rotor bar conditions, the flux densities at 65 deg. and 155 deg. are about 0.4 T and 0.8 T, respectively. These simulation results are coincided with those of experiment. Consequently, the measurement of the magnetic flux at air gap is one of effective ways to discriminate the faulted conditions of the eccentricity and broken rotor bars.

  15. Detection of air-gap eccentricity and broken-rotor bar conditions in a squirrel-cage induction motor using the radial flux sensor

    NASA Astrophysics Data System (ADS)

    Hwang, Don-Ha; Han, Sang-Bo; Woo, Byung-Chul; Sun, Jong-Ho; Kang, Dong-Sik; Kim, Byung-Kuk; Cho, Youn-Hyun

    2008-04-01

    A new method for detecting eccentricity and broken rotor bar conditions in a squirrel-cage induction motor is proposed. Air-gap flux variation analysis is done using search coils, which are inserted at stator slots. Using this method, the leakage flux in radial direction can be directly detected. Using finite element method, the air-gap flux variation is accurately modeled and analyzed. From the results of the simulation, a motor under normal condition shows maximum magnetic flux density of 1.3T. On the other hand, the eccentric air-gap condition displays about 1.1T at 60° and 1.6T at 240°. A difference of flux density is 0.5T in the abnormal condition, whereas no difference is detected in the normal motor. In the broken rotor bar conditions, the flux densities at 65° and 155° are about 0.4 T and 0.8T, respectively. These simulation results are coincided with those of experiment. Consequently, the measurement of the magnetic flux at air gap is one of effective ways to discriminate the faulted conditions of the eccentricity and broken rotor bars.

  16. A comparative study on the effects of air gap wind and walking motion on the thermal properties of Arabian Thawbs and Chinese Cheongsams.

    PubMed

    Cui, Zhiying; Fan, Jintu; Wu, Yuenshing

    2016-08-01

    This paper reports on an experimental investigation on the effects of air gap, wind and walking motion on the thermal properties of traditional Arabian thawbs and Chinese cheongsams. Total thermal resistance (It) and vapour resistance (Re) were measured using the sweating fabric manikin - 'Walter', and the air gap volumes of the garments were determined by a 3D body scanner. The results showed the relative changes of It and Re of thawbs due to wind and walking motion are greater than those of cheongsams, which provided an explanation of why thawbs are preferred in extremely hot climate. It is further shown that thermal insulation and vapour resistance of thawbs increase with the air gap volume up to about 71,000 cm(3) and then decrease gradually. Thawbs with higher air permeability have significantly lower evaporative resistance particularly under windy conditions demonstrating the advantage of air permeable fabrics in body cooling in hot environments. Practitioner Summary: This paper aims to better understand the thermal insulation and vapour resistance of traditional Arabian thawbs and Chinese cheongsams, and the relationship between the thermal properties and their fit and design. The results of this study provide a scientific basis for designing ethnic clothing used in hot environments.

  17. The effect of coronae on leader initiation and development under thunderstorm conditions and in long air gaps

    NASA Astrophysics Data System (ADS)

    Aleksandrov, N. L.; Bazelyan, E. M.; Carpenter, R. B., Jr.; Drabkin, M. M.; Raizer, Yu P.

    2001-11-01

    The initiation and development of a leader is theoretically studied by considering an electrode which is embedded in a cloud of space charge injected by a corona discharge. The focus is on the initiation of upward lightning from a stationary grounded object in a thundercloud electric field. The main results are also applicable to the leader process in long laboratory air gaps at direct voltage. Simple physical models of non-stationary coronae developing in free space near a solitary stressed sphere and of a leader propagating in the space charge cloud of coronae are suggested. It is shown that the electric field redistribution due to the space charge released by the long corona discharge near the top of a high object hinders the initiation and development of an upward leader from the object in a thundercloud electric field. The conditions for the formation of corona streamers that are required to initiate a leader are derived. The criteria are obtained for a leader to be initiated and propagate in the space charge cloud. A hypothesis is proposed that the streamers are never initiated near the top of a high object under thunderstorm conditions if at ground level there is only a slowly-varying electric field of the thundercloud. The streamers may be induced by the fast-rising electric field of distant downward leaders or intracloud discharges.

  18. A Coupled Multiphase Fluid Flow And Heat And Vapor Transport Model For Air-Gap Membrane Distillation

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sumit

    2010-05-01

    Membrane distillation (MD) is emerging as a viable desalination technology because of its low energy requirements that can be provided from low-grade, waste heat and because it causes less fouling. In MD, desalination is accomplished by transporting water vapour through a porous hydrophobic membrane. The vapour transport process is governed by the vapour pressure difference between the two sides of a membrane. A variety of configurations have been tested to impose this vapour pressure gradient, however, the air-gap membrane distillation (AGMD) has been found to be the most efficient. The separation mechanism of AGMD and its overall efficiency is based on vapour-liquid equilibrium (VLE). At present, little knowledge is available about the optimal design of such a transmembrane VLE-based evaporation, and subsequent condensation processes. While design parameters for MD have evolved mostly through experimentations, a comprehensive mathematical model is yet to be developed. This is primarily because the coupling and non-linearity of the equations, the interactions between the flow, heat and mass transport regimes, and the complex geometries involved pose a challenging modelling and simulation problem. Yet a comprehensive mathematical model is needed for systematic evaluation of the processes, design parameterization, and performance prediction. This paper thus presents a coupled fluid flow, heat and mass transfer model to investigate the main processes and parameters affecting the performance of an AGMD.

  19. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs.

    PubMed Central

    Ezzati, Majid; Kammen, Daniel M

    2002-01-01

    Globally, almost 3 billion people rely on biomass (wood, charcoal, crop residues, and dung) and coal as their primary source of domestic energy. Exposure to indoor air pollution (IAP) from the combustion of solid fuels is an important cause of morbidity and mortality in developing countries. In this paper, we review the current knowledge on the relationship between IAP exposure and disease and on interventions for reducing exposure and disease. We take an environmental health perspective and consider the details of both exposure and health effects that are needed for successful intervention strategies. We also identify knowledge gaps and detailed research questions that are essential in successful design and dissemination of preventive measures and policies. In addition to specific research recommendations, we conclude that given the interaction of housing, household energy, and day-to-day household activities in determining exposure to indoor smoke, research and development of effective interventions can benefit tremendously from integration of methods and analysis tools from a range of disciplines in the physical, social, and health sciences. PMID:12417475

  20. Indium phosphide all air-gap Fabry-Pérot filters for near-infrared spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Ullah, A.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2016-08-01

    Food quality can be characterized by noninvasive techniques such as spectroscopy in the Near Infrared wavelength range. For example, 930 -1450 nm wavelength range can be used to detect diseases and differentiate between meat samples. Miniaturization of such NIR spectrometers is useful for quick and mobile characterization of food samples. Spectrometers can be miniaturized, without compromising the spectral resolution, using Fabry-Pérot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. The most commonly used mirrors in the design of FP filters are Distributed Bragg Reflections (DBRs) consisting of alternating high and low refractive index material pairs, due to their high reflectivity compared to metal mirrors. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer detector. Therefore, a bandpass filter is usually required to restrict wavelengths outside the stopband of the FP DBRs. Such bandpass filters are difficult to design and implement. Alternatively, high index contrast materials must be can be used to broaden the stopband width of the FP DBRs. In this work, Indium phosphide all air-gap filters are proposed in conjunction with InGaAs based detectors. The designed filter has a wide stopband covering the entire InGaAs detector sensitivity range. The filter can be tuned in the 950-1450 nm with single mode operation. The designed filter can hence be used for noninvasive meat quality control.

  1. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  2. Studies in short haul air transportation in the California corridor: Effects of design runway length; community acceptance; impact of return on investment and fuel cost increases, volume 1

    NASA Technical Reports Server (NTRS)

    Shevell, R. S.; Jones, D. W., Jr.

    1973-01-01

    The impact of design runway length on the economics and traffic demand of a 1985 short haul air transportation system in the California Corridor was investigated. The community acceptance of new commercial airports for short haul service was studied. The following subjects were analyzed: (1) travel demand, (2) vehicle technology, (3) infrastructure, (4) systems analysis, and (5) effects on the community. The operation of the short haul system is compared with conventional airline operations.

  3. Determination and comparison of how the chain number and chain length of a lipid affects its interactions with a phospholipid at an air/water interface.

    PubMed

    Ngyugen, Hang; McNamee, Cathy E

    2014-06-01

    We determined how the number of chains in a lipid and its chain length affects its interactions with a phospholipid model membrane, and whether the number of chains or the chain length of lipids affects their interactions with the phospholipids more. This was achieved by using a Langmuir trough and a fluorescence microscope to study the interactions of mono-, di-, and triglycerides with a phospholipid monolayer at an air/water interface. The effect of the number of chains in a lipid on its interactions with phospholipids at air/water interfaces was shown by surface pressure-area per molecule isotherms and their thermodynamic analysis to worsen as the number of alkyl chains was increased to be greater than one. An increase in the packing density decreased the mixing ability of the lipids with the phospholipids, resulting in the formation of aggregates in the mixed monolayer. The aggregation was explained by the intermolecular hydrophobic and van der Waals attractions between the lipid molecules. Fluorescence microscopy revealed partial mixing without aggregation for monoglycerides, but the presence of lipid aggregation for diglycerides and triglycerides. The effect of decreasing the chain length of triglycerides from a long chain to a medium chain caused the interactions of the lipids with the phospholipid molecules at the air/water interface to significantly improve. Decreasing the chain length of monoglycerides from a long chain to a medium chain worsened their interaction with the phospholipid molecules. The effect of decreasing the triglyceride chain length on their interactions with phospholipids was much greater than the effect of decreasing the number of alkyl chains in the lipid.

  4. Bridging the Gap Between Large-scale Data Sets and Analyses: Semi-automated Methods to Facilitate Length Polymorphism Scoring and Data Analyses.

    EPA Science Inventory

    Amplified fragment length polymorphism (AFLP) markers can be developed more quickly and at a lower cost than microsatellite and single nucleotide polymorphism markers, which makes them ideal markers for large-scale studies of understudied taxa — such as species at risk. However,...

  5. Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water

    NASA Astrophysics Data System (ADS)

    Liu, Jukun; Jia, Tianqing; Zhao, Hongwei; Huang, Yaoqing

    2016-11-01

    We report the period-increasing effect of low spatial frequency ripples on a GaP crystal irradiated by 1 kHz, 50 fs, 800 nm femtosecond laser pulses. Massive free electrons are excited by a two-photon absorption process and surface plasmon is excited. The Drude model is used to estimate the changing of the dielectric constant of the GaP crystal. The period-increasing effects of low spatial frequency laser-induced ripples are theoretically predicted in air/water, and the experimental results agree well. The experimental and theoretical results indicate that surface plasmon excited by two-photon absorption plays a key role in the formation of low spatial frequency ripples.

  6. Introduction: Special Issue of Air Quality, Atmosphere and Health for Air Pollution and Health: Bridging the Gap from Source-to-Health Outcomes

    EPA Science Inventory

    The U.S. Environmental Protection Agency has established the National Ambient Air Quality Standards for six principal air pollutants (criteria pollutants): carbon monoxide (CO), lead (Pb), nitrogen dioxide, particulate matter in two size ranges [less than 2.5 μm (PM2.5) and less ...

  7. Special Issue of Inhalation Toxicology for Air Pollution and Health: Bridging the Gap from Sources-to-Health Outcomes

    EPA Science Inventory

    Pollution and Health: Bridging the Gap from Sources to Health Outcomes”, an international specialty conference by the American Association for Aerosol Research (AAAR) (http://aaar.2010specialty.org/), provided one such opportunity for these interactions. The Conference was organi...

  8. Characteristics of a laser triggered spark gap using air, Ar, CH4, H2, He, N2, SF6, and Xe

    NASA Astrophysics Data System (ADS)

    Kimura, W. D.; Kushner, M. J.; Seamans, J. F.

    1988-03-01

    A KrF discharge laser (248 nm) has been used to laser trigger, by volume preionization, a spark gap switch (38-65 kV, >10 kA, 100 ns pulse duration) filled with 20 different gas mixtures using various combinations of air, Ar, CH4, H2, He, N2 SF6, and Xe. A pulsed laser interferometer is used to probe the spark column. Characteristics studied include the internal structure of the column, the arc expansion rate, and evidence of any photoionization precursor effect. Our results show that the rate of arc expansion varies depending on the average molecular weight of the mixtures. In this experiment, pure H2 has the highest rate (≊9.5×105 cm/s) and air has one of the lowest (≊7×105 cm/s) for the same hold-off voltage. A computer model of the spark column formation is able to predict most of the structure observed in the arcs, including the effect of mixing gases with widely different molecular weights. The work suggests that, under proper circumstances, the spark gap switch performance may be improved by using gases lighter than conventional switch gases such as SF6.

  9. X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Shut'ko, Yuliya V.; Yan, Ping

    2011-05-01

    In this paper, using two repetitive nanosecond generators, x-rays were detected in atmospheric air with a highly inhomogeneous electric field by a point-to- plane gap. The rise times of the generators were about 15 and 1 ns. The x-rays were directly measured by various dosimeters and a NaI scintillator with a photomultiplier tube. X-rays were detected in the continuous mode at pulse repetition frequency up to 1 kHz and a voltage pulse rise time of ˜15 ns. It is shown that the maximum x-ray intensity is attainable at different pulse repetition frequencies depending on the voltage pulse parameters and cathode design. In atmospheric pressure air the x-ray intensity is found to increase with increasing the pulse repetition frequency up to 1 kHz. It is confirmed that the maximum x-ray intensity is attained in a diffuse discharge in a point-to-plane gap.

  10. X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap

    SciTech Connect

    Shao Tao; Yan Ping; Tarasenko, Victor F.; Shut'ko, Yuliya V.; Zhang Cheng

    2011-05-15

    In this paper, using two repetitive nanosecond generators, x-rays were detected in atmospheric air with a highly inhomogeneous electric field by a point-to- plane gap. The rise times of the generators were about 15 and 1 ns. The x-rays were directly measured by various dosimeters and a NaI scintillator with a photomultiplier tube. X-rays were detected in the continuous mode at pulse repetition frequency up to 1 kHz and a voltage pulse rise time of {approx}15 ns. It is shown that the maximum x-ray intensity is attainable at different pulse repetition frequencies depending on the voltage pulse parameters and cathode design. In atmospheric pressure air the x-ray intensity is found to increase with increasing the pulse repetition frequency up to 1 kHz. It is confirmed that the maximum x-ray intensity is attained in a diffuse discharge in a point-to-plane gap.

  11. Effect of Mach number, valve angle and length to diameter ratio on thermal performance in flow of air through Ranque Hilsch vortex tube

    NASA Astrophysics Data System (ADS)

    Devade, Kiran D.; Pise, Ashok T.

    2016-04-01

    Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.

  12. AIR POLLUTION EXPOSURE AND TELOMERE LENGTH IN HIGHLY EXPOSED SUBJECTS IN BEIJING, CHINA: A REPEATED-MEASURE STUDY

    PubMed Central

    Hou, Lifang; Wang, Sheng; Dou, Chang; Zhang, Xiao; Yu, Yue; Zheng, Yinan; Avula, Umakanth; Hoxha, Mirjam; Díaz, Anaité; McCracken, John; Barretta, Francesco; Marinelli, Barbara; Bertazzi, Pier Alberto; Schwartz, Joel; Baccarelli, Andrea A.

    2013-01-01

    Background Ambient particular matter (PM) exposure has been associated with short- and long-term effects on cardiovascular disease (CVD). Telomere length (TL) is a biomarker of CVD risk that is modified by inflammation and oxidative stress, two key pathways for PM effects. Whether PM exposure modifies TL is largely unexplored. Objectives To investigate effects of PM on blood TL in a highly-exposed population. Methods We measured blood TL in 120 blood samples from truck drivers and 120 blood samples from office workers in Beijing, China. We measured personal PM2.5 and Elemental Carbon (EC, a tracer of traffic particles) using light-weight monitors. Ambient PM10 was obtained from local monitoring stations. We used covariate-adjusted regression models to estimate percent changes in TL per an interquartile-range increase in exposure. Results Covariate-adjusted TL was higher in drivers (mean=0.87, 95%CI: 0.74; 1.03) than in office workers (mean=0.79, 95%CI: 0.67; 0.93; p=0.001). In all participants combined, TL increased in association with personal PM2.5 (+5.2%, 95%CI: 1.5; 9.1; p=0.007), personal EC (+4.9%, 95%CI: 1.2; 8.8; p=0.01), and ambient PM10 (+7.7%, 95%CI: 3.7; 11.9; p<0.001) on examination days. In contrast, average ambient PM10 over the 14 days before the examinations was significantly associated with shorter TL (−9.9%, 95%CI: −17.6; −1.5; p=0.02). Conclusions Short-term exposure to ambient PM is associated with increased blood TL, consistent with TL roles during acute inflammatory responses. Longer exposures may shorten TL as expected after prolonged pro-oxidant exposures. The observed TL alterations may participate in the biological pathways of short- and long-term PM effects. PMID:22871507

  13. Measurement of molecular length of self-assembled monolayer probed by localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ito, Juri; Kajikawa, Kotaro

    2016-02-01

    We propose a method to measure the variation of the molecular length of self-assembled monolayers (SAMs) when it is exposed to solutions at different pH conditions. The surface immobilized gold nanospheres (SIGNs) shows strong absorption peak at the wavelengths of 600-800 nm when p-polarized light is illuminated. The peak wavelength depends on the length of the gap distance between the SIGNs and the substrate. The gap is supported by the SAM molecules. According to the analytical calculation based on multiple expansion, the relation between the peak wavelength of the SIGN structures and the gap distance is calculated, to evaluate the molecular length of the SAM through the optical absorption spectroscopy for the SIGN structures. The molecular length of the SIGN structure was measured in air, water, acidic, and basic solutions. It was found that the molecular lengths are longer in acidic solutions.

  14. Experimental investigations on decay heat removal in advanced nuclear reactors using single heater rod test facility: Air alone in the annular gap

    SciTech Connect

    Bopche, Santosh B.; Sridharan, Arunkumar

    2010-11-15

    During a loss of coolant accident in nuclear reactors, radiation heat transfer accounts for a significant amount of the total heat transfer in the fuel bundle. In case of heavy water moderator nuclear reactors, the decay heat of a fuel bundle enclosed in the pressure tube and outer concentric calandria tube can be transferred to the moderator. Radiation heat transfer plays a significant role in removal of decay heat from the fuel rods to the moderator, which is available outside the calandria tube. A single heater rod test facility is designed and fabricated as a part of preliminary investigations. The objective is to anticipate the capability of moderator to remove decay heat, from the reactor core, generated after shut down. The present paper focuses mainly on the role of moderator in removal of decay heat, for situation with air alone in the annular gap of pressure tube and calandria tube. It is seen that the naturally aspirated air is capable of removing the heat generated in the system compared to the standstill air or stagnant water situations. It is also seen that the flowing moderator is capable of removing a greater fraction of heat generated by the heater rod compared to a stagnant pool of boiling moderator. (author)

  15. The Influence of Roughness Length on Simulated Surface air Temperature (2 m), Wind (10 m), Precipitation, and Energy and Water Fluxes in Eastern China

    NASA Astrophysics Data System (ADS)

    Zuo, J.; Lu, L.

    2012-12-01

    The heterogeneity of land cover characteristics has significant impact on the land-atmosphere water, energy, and momentum exchanges. The aerodynamic roughness length (z0) is an important surface parameter for estimating surface fluxes in numerical models. This study is to investigate the sensitivity of z0 on weather and climate in Eastern China, which has experienced dramatic growth in the urban areas over the past 30 years. Driven by ERA-40 reanalysis product as atmospheric lateral boundary conditions, Regional Atmospheric Modeling System (RAMS) was used to perform a series of one-year ensemble simulations over the eastern China. Ten sensitivity experiments were conducted by increasing and decreasing vegetation roughness length by 10%, 25%, 50%, 70%, 90%, as well as a control run by using the model's default parameterization of z0, which is derived from a look-up table based on vegetation type. Furthermore, a data assimilation run using the real time z0 map that is derived from MODIS product was carried out, which includes the heteorogenous z0 within the same vegetation type. The difference between the data assimilation run and the default run will help us to understand how remotely sensed land-surface information influences land-atmosphere interactions and mesoscale circulations. The preliminary results show that the bigger the magnitude of z0 changes, the larger the responses in surface air temperatures, wind speeds, and fluxes, except that these changes are opposite in sign with z0 changes. More localized changes occur in the Southeast China than Northeast China, as there are more vegetation cover variations in the south. In addition, z0 has larger effect on spring and summer surface air temperature, and summer sensible heat fluxes. The remote sensing product derived z0 map shows different spatial and temporal distribution when compare to the default z0 distribution, which in turn results in both spatial and seasonal differences in simulated climate variables.

  16. Evolution of the air/SF6 turbulent mixing zone for different lengths of SF6: shock tube visualizations and 3D simulations

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Griffond, Jerome; Souffland, Denis; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane

    2015-11-01

    A turbulent mixing zone (TMZ) is created in a vertical shock tube (based in ISAE DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a thin nitrocellulose membrane maintained flat and parallel to the shock by two wire grids. The upper grid (SF6 side) of square mesh spacing hu 1.8 or 12.1 mm is expected to seed perturbation for the Richtmyer-Meshkov instability (RMI) while the lower grid with hl 1 mm is needed to prevent the membrane from bulging prior to the shot. The experiments were carried out for different lengths L of SF6 between the initial interface and the shock tube's end plate: 10, 15, 20, 25 and 30 cm. The time resolved Schlieren image processing based on space and frequency filtering yields similar evolution for the TMZ thickness. Before reshock, the thickness grows initially fast then slows down and reaches different values (10 to 14 mm) according to L. Soon after reshock, the TMZ thickness growths rate is 21 mm/ms independently of L and hu. Numerical Schlieren images generated from 3D numerical simulations (performed at CEA DAM IDF) are analyzed as the experimental ones for L 15 and 25 cm and for hu 1.8 and 12.1 mm. The very weak experimental dependence on hu is not obtained by simulation as expected from dimensional reasoning. This discrepancy remains paradoxical.

  17. Characterization of the NOx-Ox relationship in a mountain gap rural area of interchange of air masses southeast of the Metropolitan Area of Mexico City

    NASA Astrophysics Data System (ADS)

    Ruiz Suarez, L.; Garcia-Yee, J.; Torres-JArdon, R.; Barrera Huertas, H.; Torres-Jaramillo, A.; Ortinez, A.

    2013-05-01

    Varying levels of oxidants (Ox = O3 + NO2) with respect to NOx were registered at three sites in a mountain southeast of the Mexico City Metropolitan Area (MCMA) in February and March 2011. The Ox-NOx ratio was used to gain a better understanding of the photochemical and transport processes happening over this mountain pass. Relatively high concentrations of O3 (moving average concentrations of 8 hours) exceeded maximum levels of the World Health Organization, and the European Union. The cumulative exceedances above background level of O3 in the one month-long campaign also exceeded the three months accumulative UN-ECE AOT40 critical level for crop protection. It was observed that the level of Ox in the mountain gap sites consisted of two contributions: One, independent of NOx emissions, extremely dominant and considered equivalent to the regional background O3 concentration; the second and much smaller was dependent of NOx local concentrations. Evidence was found that the oxidation of NO provided the major contribution of NO2 to Ox, rather than direct NO2 emissions. The contribution of regional Ox dominated from midmorning to noon when the boundary layer height began to increase due to sunlight heating of the surface leading to the mixing of higher concentrations of O3 above the nighttime thermal inversion. After noon, when the ozone vertical distribution was uniform, the Ox and O3 concentrations reached their maximum; they were very similar with very low levels of NO2. The analysis of wind data collected at the monitoring sites showed that from mid-morning to early afternoon, a northerly weak flow was common. Afterwards stronger southerly winds became dominant bringing in O3 rich air parcels into the atmospheric basin where MCMA is located. The high regional ozone concentrations add evidence for the need of coordinated air quality management policies for the complete central part of Mexico. Keywords: mountain gap, oxidant, ground level ozone, Central Mexico

  18. The effects of stroke length and Reynolds number on heat transfer to a ducted confined and semi-confined synthetic air jet

    NASA Astrophysics Data System (ADS)

    Rylatt, D. I.; O'Donovan, T. S.

    2014-07-01

    Heat transfer to three configurations of ducted jet and un-ducted semiconfined jets is investigated experimentally. The influence of the jet operating parameters, stroke length (L0/D) and Reynolds (Re) number on the heat transferred to the jet is of particular interest. Heat transfer distributions to the jet are reported at H/D = 1 for a range of experimental parameters Re (1000 to 4000) and L0/D (5 to 20). Secondary and tertiary peaks are discernable in the heat transfer distributions across the range of parameters tested. It is shown that for a fixed Re varying the L0/D has little effect on the magnitude of the stagnation region heat transfer but does effect the position and magnitude of the secondary and tertiary peaks in the heat transfer distribution. It is also shown that for a fixed L0/D increasing the Re has a significant effect on the magnitude of the stagnation region heat transfer but has little impact on the position of the secondary and tertiary peaks in the heat transfer distributions. Ducting is added to the configuration to improve heat transfer by drawing cold air from a remote location into the jet flow. Ducting is shown to increase stagnation region and area averaged heat transfer across the range of jet parameters tested when compared with an un-ducted jets of equal confinement. Increasing the stroke length from L0/D = 5 to 20 for a Reynolds number of 2000 reduces the enhancement in stagnation region heat transfer provided by the ducting from 35% to 10%; the area averaged heat transfer provided by the ducting also changes from a 42% to a 21% enhancement. This is shown to be partly due to relative magnitude of the peaks in heat transfer outwith the stagnation region; at low stroke lengths, the difference in the magnitude of these peaks is large and reduces with increasing L0/D. It is also shown that as L0/D is increased the stagnation region heat transfer to the un-ducted jets increases while for the ducted jets stagnation region heat transfer

  19. Measuring HOMO/LUMO gap of explosive film at air interface using ESFG: model for explosive at void surface

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Kohl, Ian; Kearney, Sean; Rupper, Stephen; Martin, Laura; Alam, Kathy; Knepper, Robert; Kay, Jeffery

    Vibrational broadband sum frequency generation has enabled measurements of heat transfer/disorder under shock compression on monolayer length scales (Carter, JPCA, 2008). At Sandia, we are extending this approach to examine shock-induced changes in the electronic structure of secondary explosives at surfaces using electronic sum frequency generation (ESFG)(Yamaguchi, JCP, 2008). Theoretical studies suggest explosives at voids and grain boundaries may have different reactivity than bulk material based on shifts in the bandgap at defects (Kuklja, Appl. Phys. A 2003). We seek to measure these electronic shifts for the first time using a thin film explosive samples as a model for the void surface. We will report electronic sum frequency data from vapour deposited thin film explosive compared to UV/Vis data of the bulk film at ambient pressures and discuss application of ESFG technique to samples under shock compression.

  20. Axial gap rotating electrical machine

    DOEpatents

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  1. Propagation or failure of detonation across an air gap in an LX-17 column: continuous time-dependent detonation or shock speed using the Embedded Fiber Optic (EFO) technique

    SciTech Connect

    Hare, D E; Chandler, J B; Compton, S M; Garza, R G; Grimsley, D A; Hernandez, A; Villafana, R J; Wade, J T; Weber, S R; Wong, B M; Souers, P C

    2008-01-16

    The detailed history of the shock/detonation wave propagation after crossing a room-temperature-room-pressure (RTP) air gap between a 25.4 mm diameter LX-17 donor column and a 25.4 mm diameter by 25.4 mm long LX-17 acceptor pellet is investigated for three different gap widths (3.07, 2.08, and 0.00 mm) using the Embedded Fiber Optic (EFO) technique. The 2.08 mm gap propagated and the 3.07 mm gap failed and this can be seen clearly and unambiguously in the EFO data even though the 25.4 mm-long acceptor pellet would be considered quite short for a determination by more traditional means such as pins.

  2. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    PubMed

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation. PMID:21114115

  3. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    PubMed

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.

  4. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  5. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  6. Gap and stripline combined monitor

    DOEpatents

    Yin, Yan

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  7. The formation of surface multilayers at the air-water interface from sodium diethylene glycol monoalkyl ether sulfate/AlCl3 solutions: the role of the alkyl chain length.

    PubMed

    Xu, Hui; Penfold, Jeffrey; Thomas, Robert K; Petkov, Jordan T; Tucker, Ian; Webster, John P R

    2013-10-15

    The influence of the alkyl chain length on surface multilayer formation at the air-water interface for the anionic surfactant sodium diethylene glycol monoalkyl ether sulfate, SAE2S, in the presence of Al(3+) multivalent counterions, in the form of AlCl3, is described. In the absence of electrolyte, the saturated monolayer adsorption is determined by the headgroup geometry and is independent of the alkyl chain length. In the presence of Al(3+) counterions, surface multilayer formation occurs, due to the strong SAE2S/Al(3+) binding and complexation. The neutron reflection data show that the alkyl chain length of the surfactant has a significant impact upon the evolution of the surface multilayer structure with surfactant and AlCl3 concentration. Increasing the alkyl chain length from decyl to tetradecyl results in the surface multilayer formation occurring at lower surfactant and AlCl3 concentrations. At the short alkyl chain lengths, decyl and dodecyl, the regions of multilayer formation with a small number of bilayers are increasingly extended with decreasing alkyl chain length. For the alkyl chain lengths of tetradecyl and hexadecyl, the surface behavior is further affected by decreases in the surfactant solubility in the presence of AlCl3, and this ultimately dominates the surface behavior at the longer alkyl chain lengths.

  8. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  9. Gap Resolution

    2009-06-16

    With the continued improvements of next generation DNA sequencing technologies and their advantages over traditional Sanger sequencing, the Joint Genome Institute (JGI) has modified its sequencing pipeline to take advantage of the benefits of such technologies. Currently, standard 454 Titanium, paired end 454 Titanium, and Illumina GAll data are generated for all microbial projects and then assembled using draft assemblies at a much greater throughput than before. However, it also presents us with new challenges.more » In addition to the increased throughput, we also have to deal with a larger number of gaps in the Newbler genome assemblies. Gaps in these assemblies are usually caused by repeats (Newbler collapses repeat copies into individual contigs, thus creating gaps), strong secondary structures, and artifacts of the PCR process (specific to 454 paired end libraries). Some gaps in draft assemblies can be resolved merely by adding back the collapsed data from repeats. To expedite gap closure and assembly improvement on large numbers of these assemblies, we developed software to address this issue.« less

  10. Large scale Tesla coil guided discharges initiated by femtosecond laser filamentation in air

    NASA Astrophysics Data System (ADS)

    Arantchouk, L.; Point, G.; Brelet, Y.; Prade, B.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-07-01

    The guiding of meter scale electric discharges produced in air by a Tesla coil is realized in laboratory using a focused terawatt laser pulse undergoing filamentation. The influence of the focus position, the laser arrival time, or the gap length is studied to determine the best conditions for efficient laser guiding. Discharge parameters such as delay, jitter, and resistance are characterized. An increase of the discharge length by a factor 5 has been achieved with the laser filaments, corresponding to a mean breakdown field of 2 kV/cm for a 1.8 m gap length. Consecutive guided discharges at a repetition rate of 10 Hz are also reported.

  11. Virtual gap dielectric wall accelerator

    DOEpatents

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  12. An examination of boundary layer structure under the influence of the gap winds in Urumqi, China, during air pollution episode in winter.

    PubMed

    Li, Xia; Xia, Xiangao; Xin, Yu; Ma, Yufen; Yang, Jing; Li, Jinglin; Yang, Xinghua

    2012-01-01

    Tethered-sonde measurements of atmospheric profiles were performed at Urumuqi, capital of the Xinjiang Uyghur Autonomous Region of China, from 29 December 2008 to 14 January 2009. The data were used to examine the boundary layer structure during this severe air pollution period. Diurnal evolution of local wind flow near Urumqi was simulated using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5). Measurements from operational radiosonde data showed that a southeasterly elevated low-level jet often intruded upon Urumqi through the middle Tianshan Mountain pass to the south of the city. The tethered-sonde measurements showed that calm and northwesterly winds prevailed near the surface in Urumqi, whereas the southeasterly winds of relatively higher speed were dominant above approximately 400 m. Both temperature inversion and humidity inversion frequently occured during day and nighttime. Temperature inversion intensity could sharply rise as the stronger elevated southeasterly gale (ESEG) happened. Model simulations showed that the winds near the surface around Urumqi remained calm during nighttime and developed toward the mountains during daytime. As cool airflow in the basin confronted the southeasterly winds from the pass in the lower layer, they formed a convergence line around Urumqi city, which was not favor for dilution of air pollutants.

  13. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, De-zheng; Wang, Wen-chun; Liu, Zhi-jie; Wang, Sen; Jiang, Peng-chao; Zhang, Shuai

    2014-09-01

    In this paper, positive, negative, and bipolar nanosecond pulses are employed to generate stable and diffuse discharge plasma using array needles-plate electrode configuration at atmospheric pressure. A comparison study of discharge images, electrical characteristics, optical emission spectra, and plasma vibrational temperature and rotational temperatures in three pulsed polarity discharges is carried on under different discharge conditions. It is found that bipolar pulse is beneficial to the excitation of diffuse dielectric barrier discharge, which can generate a room temperature plasma with more homogeneous and higher discharge intensity compared with unipolar discharges. Under the condition of 6 mm electrode gap distance, 26 kV pulse peak voltage, and 150 Hz pulse repetition rate, the emission intensity of N2 (C3Πu → B3Πg) of the bipolar pulsed discharge is 4 times higher than the unipolar discharge (both positive and negative), while the plasma gas temperature is kept at 300 K, which is about 10-20 K lower than the unipolar discharge plasma.

  14. Thin plate gap bridging study for Nd:YAG pulsed laser lap welds.

    SciTech Connect

    Roach, Robert Allen; Fuerschbach, Phillip William; Bernal, John E.; Norris, Jerome T.

    2006-01-01

    In an on going study of gap bridging for thin plate Nd:YAG laser lap welds, empirical data, high speed imaging, and computer modeling were utilized to better understand surface physics attributed to the formation and solidification of a weld pool. Experimental data indicates better gap bridging can be achieved through optimized laser parameters such as pulse length, duration, and energy. Long pulse durations at low energies generating low peak powers were found to create the highest percent of gap bridging ability. At constant peak power, gap-bridging ability was further improved by using a smaller spot diameter resulting in higher irradiances. Hence, welding in focus is preferable for bridging gaps. Gas shielding was also found to greatly impact gap-bridging ability. Gapped lap welds that could not be bridged with UHP Argon gas shielding, were easily bridged when left unshielded and exposed to only air. Incident weld angle and joint offset were also investigated for their ability to improve gap bridging. Optical filters and brightlight surface illumination enabled high-speed imaging to capture the fluid dynamics of a forming and solidifying weld pool. The effects of various laser parameters and the weld pool's interaction with the laser beam could also be observed utilizing the high-speed imaging. The work described is used to develop and validate a computer model with improved weld pool physics. Finite element models have been used to derive insight into the physics of gap bridging. The dynamics of the fluid motion within the weld pool in conjunction with the free surface physics have been the primary focus of the modeling efforts. Surface tension has been found to be a more significant factor in determining final weld pool shape than expected.

  15. GAPS IN THE GD-1 STAR STREAM

    SciTech Connect

    Carlberg, R. G.; Grillmair, C. J. E-mail: carl@ipac.caltech.edu

    2013-05-10

    GD-1 is a long, thin, Milky Way star stream that has readily visible density variations along its length. We quantify the locations, sizes, and statistical significance of the density structure, i.e., gaps, using a set of scaled filters. The shapes of the filters are based on the gaps that develop in simulations of dark matter sub-halos crossing a star stream. The high Galactic latitude 8.4 kpc long segment of GD-1 that we examine has 8 {+-} 3 gaps of 99% significance or greater, with the error estimated on the basis of tests of the gap-filtering technique. The cumulative distribution of gaps more than three times the width of the stream is in good agreement with predictions for dark matter sub-halo encounters with cold star streams. The number of gaps narrower than three times the width of the GD-1 stream falls well below the cold stream prediction which is taken into account for the gap creation rate integrated over all sizes. Simple warm stream simulations scaled to GD-1 show that the falloff in gaps is expected for sub-halos below a mass of 10{sup 6} M{sub Sun }. The GD-1 gaps requires 100 sub-halos >10{sup 6} M{sub Sun} within 30 kpc, the apocenter of GD-1 orbit. These results are consistent with LCDM sub-halo predictions but further improvements in stream signal-to-noise and gap modeling will be welcome.

  16. Studies in short haul air transportation in the California corridor: Effects of design runway length; community acceptance; impact of return on investment and fuel cost increases. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Shevell, R. S.; Jones, D. W., Jr.

    1973-01-01

    The development of a forecast model for short haul air transportation systems in the California Corridor is discussed. The factors which determine the level of air traffic demand are identified. A forecast equation for use in airport utilization analysis is developed. A mathematical model is submitted to show the relationship between population, employment, and income for indicating future air transportation utilization. Diagrams and tables of data are included to support the conclusions reached regarding air transportation economic factors.

  17. Gap-minimal systems of notations and the constructible hierarchy

    NASA Technical Reports Server (NTRS)

    Lucian, M. L.

    1972-01-01

    If a constructibly countable ordinal alpha is a gap ordinal, then the order type of the set of index ordinals smaller than alpha is exactly alpha. The gap ordinals are the only points of discontinuity of a certain ordinal-valued function. The notion of gap minimality for well ordered systems of notations is defined, and the existence of gap-minimal systems of notations of arbitrarily large constructibly countable length is established.

  18. Detonation propagation in narrow gaps with various configurations

    NASA Astrophysics Data System (ADS)

    Monwar, M.; Yamamoto, Y.; Ishii, K.; Tsuboi, T.

    2007-08-01

    In general all detonation waves have cellular structure formed by the trajectory of the triple points. This paper aims to investigate experimentally the propagation of detonation in narrow gaps for hydrogen-oxygen-argon mixtures in terms of various gap heights and gap widths. The gap of total length 1500 mm was constructed by three pair of stainless plates, each of them was 500 mm in length, which were inserted in a detonation tube. The gap heights were varied from 1.2 mm to 3.0 mm while the gap widths were varied from 10 mm to 40 mm. Various argon dilution rates were tested in the present experiments to change the size of cellular structure. Attempts have been made by means of reaction front velocity, shock front velocity, and smoked foil to record variations of cellular structure inside the gaps. A combination probe composed of a pressure and an ion probe detected the arrival of the shock and the reaction front individually at one measurement point. Experimental results show that the number of the triple points contained in detonation front decreases with decrease in the gap heights and gap widths, which lead to larger cellular structures. For mixtures with low detonability, cell size is affected by a certain gap width although conversely cell size is almost independent of gap width. From the present result it was found that detonation propagation inside the gaps is strongly governed by the gap height and effects of gap width is dependent on detonability of mixtures.

  19. Measuring Thermodynamic Length

    SciTech Connect

    Crooks, Gavin E

    2007-09-07

    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information, and Rao's entropy differential metric. Therefore, thermodynamic length is of central interestin understanding matter out of equilibrium. In this Letter, we will consider how to denethermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.

  20. Behind the Pay Gap

    ERIC Educational Resources Information Center

    Dey, Judy Goldberg; Hill, Catherine

    2007-01-01

    Women have made remarkable gains in education during the past three decades, yet these achievements have resulted in only modest improvements in pay equity. The gender pay gap has become a fixture of the U.S. workplace and is so ubiquitous that many simply view it as normal. "Behind the Pay Gap" examines the gender pay gap for college graduates.…

  1. Practice Gaps in Pruritus.

    PubMed

    Silverberg, Jonathan I

    2016-07-01

    There are several practice gaps in the evaluation and management of itch. These gaps include a dearth of objective measures of itch, infrequent use of validated patient-reported outcomes for itch, non-evidence-based treatment, and lack of consensus about the ideal workup for generalized itch. The present article reviews these gaps and presents potential solutions. PMID:27363881

  2. The Brillouin zones and band gaps of a two-dimensional phononic crystal with parallelogram lattice structure

    NASA Astrophysics Data System (ADS)

    Hu, JiaGuang; Xu, Wen

    2014-06-01

    We present a detailed theoretical study on the acoustic band structure of two-dimensional (2D) phononic crystal. The 2D phononic crystal with parallelogram lattice structure is considered to be formed by rigid solid rods embedded in air. For the circular rods, some of the extrema of the acoustic bands appear in the usual high-symmetry points and, in contrast, we find that some of them are located in other specific lines. For the case of elliptic rods, our results indicate that it is necessary to study the whole first Brillouin zone to obtain rightly the band structure and corresponding band gaps. Furthermore, we evaluate the first and second band gaps using the plane wave expansion method and find that these gaps can be tuned by adjusting the side lengths ratio R, inclined angle θ and filling fraction F of the parallelogram lattice with circular rods. The results show that the largest value of the first band gap appears at θ=90° and F=0.7854. In contrast, the largest value of the second band gap is at θ=60° and F=0.9068. Our results indicate that the improvement of matching degree between scatterers and lattice pattern, rather than the reduction of structural symmetry, is mainly responsible for the enhancement of the band gaps in the 2D phononic crystal.

  3. Rho/RacGAPs

    PubMed Central

    Csépányi-Kömi, Roland; Lévay, Magdolna; Ligeti, Erzsébet

    2012-01-01

    Regulatory proteins such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) determine the activity of small GTPases. In the Rho/Rac family, the number of GEFs and GAPs largely exceeds the number of small GTPases, raising the question of specific or overlapping functions. In our recent study we investigated the first time ARHGAP25 at the protein level, determined its activity as RacGAP and showed its involvement in phagocytosis. With the discovery of ARHGAP25, the number of RacGAPs described in phagocytes is increased to six. We provide data that indicate the specific functions of selected Rho/RacGAPs and we show an example of differential regulation of a Rho/Rac family GAP by different kinases. We propose that the abundance of Rho/Rac family GAPs is an important element of the fine spatiotemporal regulation of diverse cellular functions. PMID:22751505

  4. Neandertal clavicle length

    PubMed Central

    Trinkaus, Erik; Holliday, Trenton W.; Auerbach, Benjamin M.

    2014-01-01

    The Late Pleistocene archaic humans from western Eurasia (the Neandertals) have been described for a century as exhibiting absolutely and relatively long clavicles. This aspect of their body proportions has been used to distinguish them from modern humans, invoked to account for other aspects of their anatomy and genetics, used in assessments of their phylogenetic polarities, and used as evidence for Late Pleistocene population relationships. However, it has been unclear whether the usual scaling of Neandertal clavicular lengths to their associated humeral lengths reflects long clavicles, short humeri, or both. Neandertal clavicle lengths, along with those of early modern humans and latitudinally diverse recent humans, were compared with both humeral lengths and estimated body masses (based on femoral head diameters). The Neandertal do have long clavicles relative their humeri, even though they fall within the ranges of variation of early and recent humans. However, when scaled to body masses, their humeral lengths are relatively short, and their clavicular lengths are indistinguishable from those of Late Pleistocene and recent modern humans. The few sufficiently complete Early Pleistocene Homo clavicles seem to have relative lengths also well within recent human variation. Therefore, appropriately scaled clavicular length seems to have varied little through the genus Homo, and it should not be used to account for other aspects of Neandertal biology or their phylogenetic status. PMID:24616525

  5. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  6. Zero-point length from string fluctuations

    NASA Astrophysics Data System (ADS)

    Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.

    2006-02-01

    One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a "virtual memory" of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., √{α‧}. Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory.

  7. Method and radial gap machine for high strength undiffused brushless operation

    DOEpatents

    Hsu, John S.

    2006-10-31

    A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). A method of non-diffused flux enhancement and flux weakening for a radial gap machine is also disclosed.

  8. Plasmon transmission through excitonic subwavelength gaps.

    PubMed

    Sukharev, Maxim; Nitzan, Abraham

    2016-04-14

    We study the transfer of electromagnetic energy across a subwavelength gap separating two co-axial metal nanorods. In the absence of spacer in the gap separating the rods, the system exhibits strong coupling behavior between longitudinal plasmons in the two rods. The nature and magnitude of this coupling are studied by varying various geometrical parameters. As a function of frequency, the transmission is dominated by a split longitudinal plasmon peak. The two hybrid modes are the dipole-like "bonding" mode characterized by a peak intensity in the gap and a quadrupole-like "antibonding" mode whose amplitude vanishes at the gap center. When the length of one rod is varied, this mode spectrum exhibits the familiar anti-crossing behavior that depends on the coupling strength determined by the gap width. When off-resonant 2-level emitters are placed in the gap, almost no effect on the frequency dependent transmission is observed. In contrast, when the molecular system is resonant with the plasmonic line shape, the transmission is strongly modified, showing characteristics of strong exciton-plasmon coupling. Most strongly modified is the transmission near the lower frequency "bonding" plasmon mode. The presence of resonant molecules in the gap affects not only the molecule-field interaction but also the spatial distribution of the field intensity and the electromagnetic energy flux across the junction. PMID:27083741

  9. Myofilament length dependent activation

    SciTech Connect

    de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C.

    2010-05-25

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  10. Length Paradox in Relativity

    ERIC Educational Resources Information Center

    Martins, Roberto de A.

    1978-01-01

    Describes a thought experiment using a general analysis approach with Lorentz transformations to show that the apparent self-contradictions of special relativity concerning the length-paradox are really non-existant. (GA)

  11. Editorial: Redefining Length

    SciTech Connect

    Sprouse, Gene D.

    2011-07-15

    Technological changes have moved publishing to electronic-first publication where the print version has been relegated to simply another display mode. Distribution in HTML and EPUB formats, for example, changes the reading environment and reduces the need for strict pagination. Therefore, in an effort to streamline the calculation of length, the APS journals will no longer use the printed page as the determining factor for length. Instead the journals will now use word counts (or word equivalents for tables, figures, and equations) to establish length; for details please see http://publish.aps.org/authors/length-guide. The title, byline, abstract, acknowledgment, and references will not be included in these counts allowing authors the freedom to appropriately credit coworkers, funding sources, and the previous literature, bringing all relevant references to the attention of readers. This new method for determining length will be easier for authors to calculate in advance, and lead to fewer length-associated revisions in proof, yet still retain the quality of concise communication that is a virtue of short papers.

  12. Equilibrium CO bond lengths

    NASA Astrophysics Data System (ADS)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  13. Thiophene-Diketopyrrolopyrrole-Based Quinoidal Small Molecules as Solution-Processable and Air-Stable Organic Semiconductors: Tuning of the Length and Branching Position of the Alkyl Side Chain toward a High-Performance n-Channel Organic Field-Effect Transistor.

    PubMed

    Wang, Chao; Qin, Yunke; Sun, Yuanhui; Guan, Ying-Shi; Xu, Wei; Zhu, Daoben

    2015-07-29

    A series of thiophene-diketopyrrolopyrrole-based quinoidal small molecules (TDPPQ-2-TDPPQ-5) bearing branched alkyl chains with different side-chain lengths and varied branching positions are synthesized. Field-effect transistor (FET) measurement combined with thin-film characterization is utilized to systematically probe the influence of the side-chain length and branching position on the film microstructure, molecular packing, and, hence, charge-transport property. All of these TDPPQ derivatives show air-stable n-channel transporting behavior in spin-coated FET devices, which exhibit no significant decrease in mobility even after being stored in air for 2 months. Most notably, TDPPQ-3 exhibits an outstanding n-channel semiconducting property with electron mobilities up to 0.72 cm(2) V(-1) s(-1), which is an unprecedented value for spin-coated DPP-based n-type semiconducting small molecules. A balance of high crystallinity, satisfactory thickness uniformity and continuity, and strong intermolecular interaction accounts for the superior charge-transport characteristics of TDPPQ-3 films. Our study demonstrates that tuning the length and branching position of alkyl side chains of semiconducting molecules is a powerful strategy for achieving high FET performance. PMID:26134920

  14. High crystallizability under air-exclusion conditions of the full-length LysR-type transcriptional regulator TsaR from Comamonas testosteroni T-2 and data-set analysis for a MIRAS structure-solution approach

    PubMed Central

    Monferrer, Dominique; Tralau, Tewes; Kertesz, Michael A.; Panjikar, Santosh; Usón, Isabel

    2008-01-01

    The full-length LysR-type transcriptional regulator TsaR from Comamonas testosteroni T-2 was heterologously overexpressed in Escherichia coli, purified and stabilized under conditions that favoured its rapid crystallization using the microbatch-under-oil technique. The purified protein was highly crystallizable and two different crystal forms were readily obtained. However, only monoclinic crystals gave diffraction beyond 2 Å and there was a slight variation in unit-cell parameters between crystals. The only other LysR-type regulator for which a full-length crystal form is available is CbnR, but no solution could be obtained when this was used as a model in molecular replacement. Mercury and xenon derivatives were therefore produced in order to phase the structure using a MIRAS approach. PMID:18678953

  15. Narrowing Participation Gaps

    ERIC Educational Resources Information Center

    Hand, Victoria; Kirtley, Karmen; Matassa, Michael

    2015-01-01

    Shrinking the achievement gap in mathematics is a tall order. One way to approach this challenge is to think about how the achievement gap manifests itself in the classroom and take concrete action. For example, opportunities to participate in activities that involve mathematical reasoning and argumentation in a safe and supportive manner are…

  16. The National "Expertise Gap"

    ERIC Educational Resources Information Center

    Hamilton, Kendra

    2005-01-01

    This article discusses the Woodrow Wilson National Fellowship Foundation's report, "Diversity and the Ph.D.," released in May, which documents in troubling detail the exact dimensions of what the foundation's president, Dr. Robert Weisbuch, is calling the national "expertise gap." Weisbuch states that the expertise gap extends beyond the…

  17. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  18. California: Emigrant Gap

    Atmospheric Science Data Center

    2014-05-15

    article title:  Emigrant Gap Fire, California     View Larger ... The most prominent plume arises from the Emigrant Gap Fire, located about 40 kilometers west of Lake Tahoe. The animated panorama ... left is Mount Shasta. As of August 30, 2001, the US Forest Service reported the total year-to-date area burned in Northern ...

  19. Knowledge Gaps, Social Locators, and Media Schemata: Gaps, Reverse Gaps, and Gaps of Disaffection.

    ERIC Educational Resources Information Center

    Fredin, Eric S.; And Others

    1994-01-01

    Studies a public school controversy and finds a knowledge gap--a gap of disaffection. Finds that, among women only, higher education leads to greater knowledge but does so partly through reduced trust of government and lower perceived fairness of the news media. Shows similar findings with other less powerful groups. (SR)

  20. The Parenting Gap

    ERIC Educational Resources Information Center

    Reeves, Richard V.; Howard, Kimberly

    2013-01-01

    The parenting gap is a big factor in the opportunity gap. The chances of upward social mobility are lower for children with parents struggling to do a good job--in terms of creating a supportive and stimulating home environment. Children lucky enough to have strong parents are more likely to succeed at all the critical life stages, which means…

  1. Conditions for electron runaway under leader breakdown of long gaps

    SciTech Connect

    Ul'yanov, K. N.

    2008-04-15

    An original hydrodynamic model in which inelastic collisions in the equations of motion and energy balance play a decisive role is developed and applied to simulate electron avalanches in strong electric fields. The mean energy and drift velocity of electrons, as well as the ionization coefficient and electric field in a wide range of mean electron energies, are determined for helium and xenon. A criterion is derived for the runaway of the average electron in discharges with ionization multiplication. It is shown that runaway can take place at any value of E/p, provided that the momentum mean free path exceeds the gap length. The voltage corresponding to electron runaway is found for helium, xenon, and air as a function of the electric field, the electron mean energy, and the parameter pd. Conditions for the formation of a precursor in electronegative gases are analyzed. It is shown that the presence of a precursor with a high electric conductance is necessary for the formation of a new leader step. The voltage and time ranges corresponding to efficient electron runaway and X-ray generation during leader breakdown in air are determined.

  2. Anion gap acidosis.

    PubMed

    Ishihara, K; Szerlip, H M

    1998-01-01

    Although an anion gap at less than 20 mEq/L rarely has a defined etiology, significant elevations in the anion gap almost always signify presence of an acidosis that can be easily identified. Anion gap acidoses can be divided into those caused by lactate accumulation, ketoacid production, toxin/drugs, and uremia. Lactic acidoses caused by decreased oxygen delivery or defective oxygen utilization are associated with high mortality. The treatment of lactic acidosis is controversial. The use of bicarbonate to increase pH is rarely successful and, by generating PCO2, may worsen outcome. Ketoacidosis is usually secondary to diabetes or alcohol. Treatment is aimed at turning off ketogenesis and repairing fluid and electrolyte abnormalities. Methanol, ethylene glycol, and salicylates are responsible for the majority of toxin-induced anion gap acidoses. Both methanol and ethylene glycol are associated with severe acidoses and elevated osmolar gaps. Treatment of both is alcohol infusion to decrease formation of toxic metabolites and dialyses to remove toxins. Salicylate toxicity usually is associated with a mild metabolic acidosis and a respiratory alkalosis. Uremia is associated with a mild acidosis secondary to decreased ammonia secretion and an anion gap caused by the retention of unmeasured anions. A decrease in anion gap is caused by numerous mechanisms and thus has little clinical utility.

  3. THE PAL 5 STAR STREAM GAPS

    SciTech Connect

    Carlberg, R. G.; Hetherington, Nathan; Grillmair, C. J. E-mail: hetherington@astro.utoronto.ca

    2012-11-20

    Pal 5 is a low-mass, low-velocity-dispersion, globular cluster with spectacular tidal tails. We use the Sloan Digital Sky Survey Data Release 8 data to extend the density measurements of the trailing star stream to 23 deg distance from the cluster, at which point the stream runs off the edge of the available sky coverage. The size and the number of gaps in the stream are measured using a filter which approximates the structure of the gaps found in stream simulations. We find 5 gaps that are at least 99% confidence detections with about a dozen gaps at 90% confidence. The statistical significance of a gap is estimated using bootstrap resampling of the control regions on either side of the stream. The density minimum closest to the cluster is likely the result of the epicyclic orbits of the tidal outflow and has been discounted. To create the number of 99% confidence gaps per unit length at the mean age of the stream requires a halo population of nearly a thousand dark matter sub-halos with peak circular velocities above 1 km s{sup -1} within 30 kpc of the galactic center. These numbers are a factor of about three below cold stream simulation at this sub-halo mass or velocity but, given the uncertainties in both measurement and more realistic warm stream modeling, are in substantial agreement with the LCDM prediction.

  4. Mappability and read length

    PubMed Central

    Li, Wentian; Freudenberg, Jan

    2014-01-01

    Power-law distributions are the main functional form for the distribution of repeat size and repeat copy number in the human genome. When the genome is broken into fragments for sequencing, the limited size of fragments and reads may prevent an unique alignment of repeat sequences to the reference sequence. Repeats in the human genome can be as long as 104 bases, or 105 − 106 bases when allowing for mismatches between repeat units. Sequence reads from these regions are therefore unmappable when the read length is in the range of 103 bases. With a read length of 1000 bases, slightly more than 1% of the assembled genome, and slightly less than 1% of the 1 kb reads, are unmappable, excluding the unassembled portion of the human genome (8% in GRCh37/hg19). The slow decay (long tail) of the power-law function implies a diminishing return in converting unmappable regions/reads to become mappable with the increase of the read length, with the understanding that increasing read length will always move toward the direction of 100% mappability. PMID:25426137

  5. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  6. Gaps in Oncology

    Cancer.gov

    The first plenary of the EPEC-O (Education in Palliative and End-of-Life Care for Oncology) Self-Study Original Version provides background for the curriculum and identifies gaps in current and desired comprehensive cancer care.

  7. Fiber optic gap gauge

    DOEpatents

    Wood, Billy E.; Groves, Scott E.; Larsen, Greg J.; Sanchez, Roberto J.

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  8. Photonic band gap materials

    SciTech Connect

    Soukoulis, C.M. |

    1993-12-31

    An overview of the theoretical and experimental efforts in obtaining a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, is presented.

  9. Robotic Tube-Gap Inspector

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.; Maslakowski, John E.

    1993-01-01

    Robotic vision system measures small gaps between nearly parallel tubes. Robot-held video camera examines closely spaced tubes while computer determines gaps between tubes. Video monitor simultaneously displays data on gaps.

  10. Vowel length in Farsi

    NASA Astrophysics Data System (ADS)

    Shademan, Shabnam

    2001-05-01

    This study tests whether Farsi vowels are contrastive with respective to length. Farsi has a six-vowel system with three lax vowels and three tense vowels. Both traditional grammarians and modern linguists believe that Farsi tense vowels are longer than lax vowels, and that there are no vowel pairs that contrast only in length. However, it has been suggested that Farsi exhibits compensatory lengthening, which is triggered by the deletion of glottal consonants in coda position in informal speech (Darzi, 1991). As a result, minimal pairs such as [tar] and [tarh] should contrast only with respect to vowel length. A corpus of 90 words of the form CVC, CVCG, CVGC, and CVCC (where V=a vowel and G=a glottal consonant) was recorded, and durations of vowels in different contexts were measured and compared. Preliminary results show that lax vowel durations fall into three groups with CVCC longer than CVCG/CVGC, and the latter longer than CVC. It remains to be seen whether CVCG/CVGC words show compensatory lengthening when the glottal consonant is deleted.

  11. Vertical coupling between gap plasmon waveguides.

    PubMed

    Hoffman, Galen B; Reano, Ronald M

    2008-08-18

    This work examines vertical coupling between gap plasmon waveguides for use in high confinement power transfer and power splitting applications at 1.55 microm free space wavelength. The supermode interference method is used to obtain key coupler performance parameters such as coupling length, extinction ratio, net coupled output power, radiated power, and reflected power as a function of waveguide center-to-center spacing, core refractive index, and gap width. The initial power distribution among the two coupler supermodes is obtained via the mode matching method for a single input waveguide feed. Excellent agreement with three-dimensional finite difference time domain simulations is observed for the case of square 50 nm gaps with core refractive indices of 2.50 and a center-to-center spacing of 112 nm. Local maxima in the net coupled output power are found to coincide with local minima in the coupling length. An increase in the core refractive index from 1.00 to 2.5 increases the local maximum net coupled output power from 6.4% to 49% but decreases the extinction ratio from 12.7 to 6.94. A sweep of the width of the core from 25 to 100 nm increases the net coupled output power from 43.7% to 52.0%, but increases the coupling length from 1.58 to 3.19 ???m and decreases the extinction ratio from 7.39 to 6.57.

  12. Gap Cycling for SWIFT

    PubMed Central

    Corum, Curtis A.; Idiyatullin, Djaudat; Snyder, Carl J.; Garwood, Michael

    2014-01-01

    Purpose SWIFT (SWeep Imaging with Fourier Transformation) is a non-Cartesian MRI method with unique features and capabilities. In SWIFT, radiofrequency (RF) excitation and reception are performed nearly simultaneously, by rapidly switching between transmit and receive during a frequency-swept RF pulse. Because both the transmitted pulse and data acquisition are simultaneously amplitude-modulated in SWIFT (in contrast to continuous RF excitation and uninterrupted data acquisition in more familiar MRI sequences), crosstalk between different frequency bands occurs in the data. This crosstalk leads to a “bulls-eye” artifact in SWIFT images. We present a method to cancel this inter-band crosstalk by cycling the pulse and receive gap positions relative to the un-gapped pulse shape. We call this strategy “gap cycling.” Methods We carry out theoretical analysis, simulation and experiments to characterize the signal chain, resulting artifacts, and their elimination for SWIFT. Results Theoretical analysis reveals the mechanism for gap-cycling’s effectiveness in canceling inter-band crosstalk in the received data. We show phantom and in-vivo results demonstrating bulls-eye artifact free images. Conclusion Gap cycling is an effective method to remove bulls-eye artifact resulting from inter-band crosstalk in SWIFT data. PMID:24604286

  13. Capacitor and rail-gap development for the Atlas machine Marx modules

    SciTech Connect

    Reass, W.A.; Bowman, D.W.; Gribble, R.F.; Griego, J.R.; Thompson, C.; Parsons, W.M.; Cooper, R.A.; Casper, D.C.

    1995-09-01

    This paper presents the engineering issues and development criteria utilized to evolve the Atlas Marx bank pulse power components. The capacitor and rail-gap required alterations from existing designs to minimize system inductance and component count, maximize reliability, and enhance maintainability. For the capacitors, development has resulted in a plastic cased device with double ended bushings. The design of the capacitors` output electrodes, foil packs, and internal interconnect webbing results in a capacitor with improved performance. The capacitors are rated at 33.5 uF and 60 kV and are housed in a 28 in. {times} 29 in. {times} 13 in. fiberglass case. Terminal inductance is less than 15 nH with a design discharge current greater than 650 kA. An improved ``third generation`` rail-gap will be utilized and is a product of the ACE machine developments at Maxwell Laboratories. The gap has a polyurethane body and one piece electrodes. To minimize prefires, a modified internal profile reduces the E-field and increases tracking length between the electrodes. With an individual Marx stage charged ``+`` and ``{minus}`` and a trigger rail with 50/50 grading (mid-plane), external trigger bias or coupling components are not required. This further reduces system component count. To further reduce gap prefires and environmental concerns, high pressure air, instead of the typical Argon/SF6 mixture, will be used. The metallic switching by-products will form insulating oxides and the gap flushing procedures are simplified. To ensure multi-channel discharges, fast dV/dT trigger voltages ({approximately}30 kV/nS), similar to those developed for the Staged Theta-Pinch railgaps (a Scyllac era machine at Los Alamos), will be utilized.

  14. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  15. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  16. Bridging NCL research gaps.

    PubMed

    Stehr, Frank; van der Putten, Herman

    2015-10-01

    The neuronal ceroid lipofuscinoses, collectively called NCLs, are rare and fatal lysosomal storage diseases that mainly affect children. Due to the fact that NCLs are both rare and heterogeneous (mutations in thirteen different genes) significant gaps exist in both preclinical and clinical research. Altogether, these gaps are major hurdles to bring therapies to patients while the need for new therapies is urgent to help them and their families. To define gaps and discuss solutions, a round table discussion involving teams and different stake holders took place during the 14th International Conference on Neuronal Ceroid Lipofuscinoses (Batten Disease) in Cordóba, Argentina. Topics covered by the teams and their leaders (in parentheses) included basic and translational research gaps with regard to large animal models (I. Tammen, D.N. Palmer), human NCL pathology and access to human tissue (J.D. Cooper, H.H. Goebel), rare NCLs (S. Hofman, I. Noher), links of NCLs to other diseases (F.M. Platt), gaps between clinic and clinical trials (H. Adams, A. Schulz), international collaborative efforts working towards a cure (S.E. Mole, H. Band) perspectives on palliative care from patient organizations (M. Frazier, A. West), and issues NCL researchers face when progressing to independent career in academia (M. Bond). Thoughts presented by the team leaders include previously unpublished opinions and information on the lack of understanding of disease pathomechanisms, gene function, assays for drug discovery and target validation, natural history of disease, and biomarkers for monitoring disease progression and treatment effects. This article is not intended to review the NCL literature. It includes personal opinions of the authors and it provides the reader with a summary of gaps discussed and solutions proposed by the teams. This article is part of a Special Issue entitled: Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease). PMID:26056946

  17. Length of stain dosimeter

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor)

    1994-01-01

    Payload customers for the Space Shuttle have recently expressed concerns about the possibility of their payloads at an adjacent pad being contaminated by plume effluents from a shuttle at an active pad as they await launch on an inactive pad. As part of a study to satisfy such concerns a ring of inexpensive dosimeters was deployed around the active pad at the inter-pad distance. However, following a launch, dosimeters cannot be read for several hours after the exposure. As a consequence factors such as different substrates, solvent systems, and possible volatilization of HCl from the badges were studied. This observation led to the length of stain (LOS) dosimeters of this invention. Commercial passive LOS dosimeters are sensitive only to the extent of being capable of sensing 2 ppm to 20 ppm if the exposure is 8 hours. To map and quantitate the HCl generated by Shuttle launches, and in the atmosphere within a radius of 1.5 miles from the active pad, a sensitivity of 2 ppm HCl in the atmospheric gases on an exposure of 5 minutes is required. A passive length of stain dosimeter has been developed having a sensitivity rendering it capable of detecting a gas in a concentration as low as 2 ppm on an exposure of five minutes.

  18. Mind the Gap

    NASA Astrophysics Data System (ADS)

    Litim, Daniel F.

    We discuss an optimisation criterion for the exact renormalisation group based on the inverse effective propagator, which displays a gap. We show that a simple extremisation of the gap stabilises the flow, leading to better convergence of approximate solutions towards the physical theory. This improves the reliability of truncations, most relevant for any high precision computation. These ideas are closely linked to the removal of a spurious scheme dependence and a minimum sensitivity condition. The issue of predictive power and a link to the Polchinski RG are discussed as well. We illustrate our findings by computing critical exponents for the Ising universality class.

  19. Spark gap electrode erosion

    NASA Astrophysics Data System (ADS)

    Krompholz, H.; Kristiansen, M.

    1984-12-01

    The results of a one-year contract on electrode erosion phenomena are summarized. The arc voltage drop in a spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was extended. A jet model for electrode erosion was proposed and an experimental arrangement for testing the model was constructed. The effects of inhomogeneities and impurities in the electrodes were investigated. Some of the work described here is scheduled for completion in 1985 under a current grant (AFOSR 84-0032). The areas of investigation described here include: (1) Self breakdown voltage distributions; (2) Electrode erosion; (3) Spark gap voltage recovery.

  20. Health risk assessment of migrant workers' exposure to polychlorinated biphenyls in air and dust in an e-waste recycling area in China: Indication for a new wealth gap in environmental rights.

    PubMed

    Wang, Yalin; Hu, Jinxing; Lin, Wei; Wang, Ning; Li, Cheng; Luo, Peng; Hashmi, Muhammad Zaffar; Wang, Wenbo; Su, Xiaomei; Chen, Chen; Liu, Yindong; Huang, Ronglang; Shen, Chaofeng

    2016-02-01

    Migrant workers who work and live in polluted environment are a special vulnerable group in the accelerating pace of urbanization and industrialization in China. In the electronic waste (e-waste) recycling area, for example, migrant workers' exposure to pollutants, such as PCBs (polychlorinated biphenyls), is the result of an informal e-waste recycling process. A village in an electronic waste recycling area where migrant workers gather was surveyed. The migrant workers' daily routines were simulated according to the three-space transition: work place-on the road-home. Indoor air and dust in the migrant workers' houses and workplaces and the ambient air on the roads were sampled. The PCB levels of the air and dust in the places corresponding to the migrant workers are higher than those for local residents. The migrant workers have health risks from PCBs that are 3.8 times greater than those of local residents. This is not only caused by the exposure at work but also by their activity patterns and the environmental conditions of their dwellings. These results revealed the reason for the health risk difference between the migrant workers and local residents, and it also indicated that lifestyle and economic status are important factors that are often ignored compared to occupational exposure. PMID:26641519

  1. Health risk assessment of migrant workers' exposure to polychlorinated biphenyls in air and dust in an e-waste recycling area in China: Indication for a new wealth gap in environmental rights.

    PubMed

    Wang, Yalin; Hu, Jinxing; Lin, Wei; Wang, Ning; Li, Cheng; Luo, Peng; Hashmi, Muhammad Zaffar; Wang, Wenbo; Su, Xiaomei; Chen, Chen; Liu, Yindong; Huang, Ronglang; Shen, Chaofeng

    2016-02-01

    Migrant workers who work and live in polluted environment are a special vulnerable group in the accelerating pace of urbanization and industrialization in China. In the electronic waste (e-waste) recycling area, for example, migrant workers' exposure to pollutants, such as PCBs (polychlorinated biphenyls), is the result of an informal e-waste recycling process. A village in an electronic waste recycling area where migrant workers gather was surveyed. The migrant workers' daily routines were simulated according to the three-space transition: work place-on the road-home. Indoor air and dust in the migrant workers' houses and workplaces and the ambient air on the roads were sampled. The PCB levels of the air and dust in the places corresponding to the migrant workers are higher than those for local residents. The migrant workers have health risks from PCBs that are 3.8 times greater than those of local residents. This is not only caused by the exposure at work but also by their activity patterns and the environmental conditions of their dwellings. These results revealed the reason for the health risk difference between the migrant workers and local residents, and it also indicated that lifestyle and economic status are important factors that are often ignored compared to occupational exposure.

  2. The Academic Generation Gap

    ERIC Educational Resources Information Center

    Dronzek, Anna

    2008-01-01

    The current generation gap in academia is different--fundamentally shaped by the structural problems of academic employment. The job market has especially exacerbated tensions between senior and junior faculty by ratcheting up expectations and requirements at every stage of the academic career. The disparities have been mentioned often enough to…

  3. Graphene: Mind the gap

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    2007-10-01

    Research now shows that interaction with silicon carbide substrate leads to the opening of a semiconductor gap in epitaxial graphene. This is an important first step towards bandgap engineering in this two-dimensional crystal, and its incorporation in electronic devices.

  4. Estimating Gender Wage Gaps

    ERIC Educational Resources Information Center

    McDonald, Judith A.; Thornton, Robert J.

    2011-01-01

    Course research projects that use easy-to-access real-world data and that generate findings with which undergraduate students can readily identify are hard to find. The authors describe a project that requires students to estimate the current female-male earnings gap for new college graduates. The project also enables students to see to what…

  5. Crossing the Gap

    ERIC Educational Resources Information Center

    Lockette, Tim

    2009-01-01

    In a nation where education is funded largely by local property taxes, schools in wealthy communities have plenty of funds to spend on programs that get their kids ready for college. Schools in poor communities scrimp and save to get the job done--or hope that funding from the state will help fill in the gap. This article describes how students…

  6. Closing the Performance Gap.

    ERIC Educational Resources Information Center

    Riggins, Cheryl G.

    2002-01-01

    Describes how the principal of a K-2, 400-student suburban elementary school near Flint, Michigan, worked with her staff and superintendent to develop and implement a strategic plan to close the student achievement gap. Reports significant improvement in reading and math scores after 1 year. (PKP)

  7. STEMMING the Gap

    ERIC Educational Resources Information Center

    Kahler, Jim; Valentine, Nancy

    2011-01-01

    America has a gap when it comes to youth pursuing science and technology careers. In an effort to improve the knowledge and application of science, technology, engineering, and math (STEM), after-school programs can work in conjunction with formal in-school curriculum to improve science education. One organization that actively addresses this…

  8. Gaining on the Gap

    ERIC Educational Resources Information Center

    Smith, Robert G.

    2010-01-01

    About three-quarters of the 2009 graduates of the highly diverse Arlington, Virginia, Public Schools completed one or more Advanced Placement or International Baccalaureate courses during their high school careers. That figure serves as one indicator of a decade-long initiative to eliminate achievement gaps while raising achievement for all…

  9. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  10. Narrow gap electronegative capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2013-10-01

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage Vrf=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density ne0 is depressed below the density nesh at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at Vrf=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  11. Narrow gap electronegative capacitive discharges

    SciTech Connect

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2013-10-15

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  12. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain.

    PubMed

    Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-01-01

    Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.

  13. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain.

    PubMed

    Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-01-01

    Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder. PMID:26871048

  14. Maternal telomere length inheritance in the king penguin

    PubMed Central

    Reichert, S; Rojas, E R; Zahn, S; Robin, J-P; Criscuolo, F; Massemin, S

    2015-01-01

    Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks' age. PMID:25052413

  15. Maternal telomere length inheritance in the king penguin.

    PubMed

    Reichert, S; Rojas, E R; Zahn, S; Robin, J-P; Criscuolo, F; Massemin, S

    2015-01-01

    Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks' age. PMID:25052413

  16. Maternal telomere length inheritance in the king penguin.

    PubMed

    Reichert, S; Rojas, E R; Zahn, S; Robin, J-P; Criscuolo, F; Massemin, S

    2015-01-01

    Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks' age.

  17. Deterministic multidimensional nonuniform gap sampling.

    PubMed

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities.

  18. Deterministic multidimensional nonuniform gap sampling

    NASA Astrophysics Data System (ADS)

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities.

  19. Heat and moisture transfer in gaps between sweating imitation skin and nonwoven cloth: effect of gap space and alignment of skin and clothing on the moisture transfer

    NASA Astrophysics Data System (ADS)

    Morozumi, Yoshio; Akaki, Kenichi; Tanabe, Naomasa

    2012-07-01

    This study investigates heat and moisture transfer between a sweating film and a nonwoven sheet both experimentally and numerically. A mathematical model based on heat conduction and moisture diffusion in both the air gap and cloth is presented. The evaporation rate and surface temperature of the sweating film are well predicted under various conditions such as air gap height, heating conditions, and sweating film orientation by evaluating the effective thermal conductivity and diffusion coefficient from the empirical equations of the Nusselt number for a fluid layer, even though the air gap height is sufficiently large to cause natural convections.

  20. Mind the Gap

    NASA Astrophysics Data System (ADS)

    Staedter, Tracy

    2007-03-01

    A new finding gets scientists one step closer to understanding what causes the gap in the Van Allen radiation belts. The discovery could help better predict fluxes of energetic particles that have the potential for damaging spacecraft and satellites and harming astronauts. An improved understanding could also give space physicists better insight into the radiation belts of other planets, including Jupiter, Saturn, Uranus, and Neptune, all of which have strong magnetic fields.

  1. Minding the Gap

    SciTech Connect

    Firestone, Millicent Anne

    2015-02-23

    Neutron & X-ray scattering provides nano- to meso-scale details of complex fluid structure; 1D electronic density maps dervied from SAXS yield molecular level insights; Neutron reflectivity provides substructure details of substrate supported complex fluids; Complex fluids composition can be optimized to support a wide variety of both soluble and membrane proteins; The water gap dimensions can be finely tuned through polymer component.

  2. Gender gaps within management.

    PubMed

    Ronk, L L

    1993-05-01

    Traditional roles need not become self-fulfilling prophecies if managers can bridge the gender gap. Feminine, as well as masculine, characteristics can be incorporated into managerial styles to enhance effective leadership. Autonomy, decision-making and assertiveness are as important as nurturing and caring. What are little girls made of? Little girls are made of sugar and spice and everything nice. What are little boys made of? Little boys are made of rats and snails and puppy dog tails.

  3. THE DYNAMICS OF STAR STREAM GAPS

    SciTech Connect

    Carlberg, R. G.

    2013-10-01

    A massive object crossing a narrow stream of stars orbiting in the halo of the galaxy induces velocity changes both along and transverse to the stream that can lead to the development of a visible gap. For a stream narrow relative to its orbital radius, the stream crossing time is sufficiently short that the impact approximation can be used to derive the changes in angular momenta and radial actions along the star stream. The epicyclic approximation is used to calculate the evolution of the density of the stream as it orbits around in a galactic potential. Analytic expressions are available for a point mass, however, the general expressions are easily numerically evaluated for perturbing objects with arbitrary density profiles. With a simple allowance for the velocity dispersion of the stream, moderately warm streams can be modeled. The predicted evolution agrees well with the outcomes of simulations of stellar streams for streams with widths up to 1% of the orbital radius of the stream. The angular momentum distribution within the stream shears out gaps with time, further reducing the visibility of streams, although the size of the shear effect requires more detailed simulations that account for the creation of the stream. An illustrative model indicates that shear will set a lower limit of a few times the stream width for the length of gaps that persist. In general, the equations are useful for dynamical insights into the development of stream gaps and their measurement.

  4. Codes with Monotonic Codeword Lengths.

    ERIC Educational Resources Information Center

    Abrahams, Julia

    1994-01-01

    Discusses the minimum average codeword length coding under the constraint that the codewords are monotonically nondecreasing in length. Bounds on the average length of an optimal monotonic code are derived, and sufficient conditions are given such that algorithms for optimal alphabetic codes can be used to find the optimal monotonic code. (six…

  5. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    PubMed

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  6. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    PubMed

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer. PMID:27171416

  7. SOUTHWEST REGIONAL GAP LAND COVER

    EPA Science Inventory

    The Gap Analysis Program is a national inter-agency program that maps the distribution

    of plant communities and selected animal species and compares these distributions with land

    stewardship to identify gaps in biodiversity protection. GAP uses remote satellite imag...

  8. Skills Gaps in Australian Firms

    ERIC Educational Resources Information Center

    Lindorff, Margaret

    2011-01-01

    This paper reports the results of a survey of more than 2000 managers examining perceptions of skills gaps in a range of Australian firms. It finds that three quarters report a skills gap, and almost one third report skills gaps across the whole organisation. Firm size and industry differences exist in perceptions of the effect of the skills gap…

  9. Bridging Gaps Between Refractory Tiles

    NASA Technical Reports Server (NTRS)

    Haney, J. W. J.

    1982-01-01

    Excessively large gaps between tiles on Space Shuttle eliminated without time-consuming and costly procedure of removing and replacing tiles. Ceramic tile silver is bonded in gap. Bonded silver prevents airframe under gap from getting too hot during reentry and presents aerodynamically smooth exterior surface.

  10. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  11. Mind the gap

    NASA Astrophysics Data System (ADS)

    Bhagwat, M. S.; Krassnigg, A.; Maris, P.; Roberts, C. D.

    2007-03-01

    In this summary of the application of Dyson-Schwinger equations to the theory and phenomenology of hadrons, some deductions following from a nonperturbative, symmetry-preserving truncation are highlighted, notable amongst which are results for pseudoscalar mesons. We also describe inferences from the gap equation relating to the radius of convergence of a chiral expansion, applications to heavy-light and heavy-heavy mesons, and quantitative estimates of the contribution of quark orbital angular momentum in pseudoscalar mesons; and recapitulate upon studies of nucleon electromagnetic form factors.

  12. Photonic band gap materials

    NASA Astrophysics Data System (ADS)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  13. Study of Discharging Characteristics of Hollow Cathode Surge Protective Gap

    NASA Astrophysics Data System (ADS)

    Yao, Xueling; Chen, Jingliang; Xu, Xiaowei; Liu, Yong; Zhao, Yong

    2010-02-01

    A hollow cathode surge protective gap (HCSPG) was designed, and the discharge characteristics was investigated in an air and nitrogen gas environment. For both the gap spacing D and the hole diameter varphi of HCSPG of 3 mm, the voltage protective value Up of HCSPG is about 3.5 kV and its converting time tc exceeds 100 ns at an air pressure from 10 Pa to 100 Pa. The maximum converting time tc from glow to arc discharging reaches 1600 ns at an air pressure of 100 Pa, while the minimum converting time tc is 120 ns at 10 Pa. For a triggered HCSPG, Up is reduced to about 1.6 kV while the converting time is 120 ns with a semiconductor trigger device and 50 ns with a dielectric porcelain trigger device under an air pressure of 100 Pa.

  14. Turbine blade tip gap reduction system

    DOEpatents

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  15. Gapped domain walls, gapped boundaries, and topological degeneracy.

    PubMed

    Lan, Tian; Wang, Juven C; Wen, Xiao-Gang

    2015-02-20

    Gapped domain walls, as topological line defects between (2+1)D topologically ordered states, are examined. We provide simple criteria to determine the existence of gapped domain walls, which apply to both Abelian and non-Abelian topological orders. Our criteria also determine which (2+1)D topological orders must have gapless edge modes, namely, which (1+1)D global gravitational anomalies ensure gaplessness. Furthermore, we introduce a new mathematical object, the tunneling matrix W, whose entries are the fusion-space dimensions W(ia), to label different types of gapped domain walls. By studying many examples, we find evidence that the tunneling matrices are powerful quantities to classify different types of gapped domain walls. Since a gapped boundary is a gapped domain wall between a bulk topological order and the vacuum, regarded as the trivial topological order, our theory of gapped domain walls inclusively contains the theory of gapped boundaries. In addition, we derive a topological ground state degeneracy formula, applied to arbitrary orientable spatial 2-manifolds with gapped domain walls, including closed 2-manifolds and open 2-manifolds with gapped boundaries.

  16. IMPEDANCE OF FINITE LENGTH RESISTOR

    SciTech Connect

    KRINSKY, S.; PODOBEDOV, B.; GLUCKSTERN, R.L.

    2005-05-15

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity {sigma}, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency, k >> 1/a. In the equilibrium regime, , the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity {sigma}. In the transient regime, ka{sup 2} >> g, we derive analytic expressions for the impedance and wakefield.

  17. Polyketide chain length control by chain length factor.

    PubMed

    Tang, Yi; Tsai, Shiou-Chuan; Khosla, Chaitan

    2003-10-22

    Bacterial aromatic polyketides are pharmacologically important natural products. A critical parameter that dictates product structure is the carbon chain length of the polyketide backbone. Systematic manipulation of polyketide chain length represents a major unmet challenge in natural product biosynthesis. Polyketide chain elongation is catalyzed by a heterodimeric ketosynthase. In contrast to homodimeric ketosynthases found in fatty acid synthases, the active site cysteine is absent from the one subunit of this heterodimer. The precise role of this catalytically silent subunit has been debated over the past decade. We demonstrate here that this subunit is the primary determinant of polyketide chain length, thereby validating its designation as chain length factor. Using structure-based mutagenesis, we identified key residues in the chain length factor that could be manipulated to convert an octaketide synthase into a decaketide synthase and vice versa. These results should lead to novel strategies for the engineered biosynthesis of hitherto unidentified polyketide scaffolds.

  18. Experimental studies on an air-air jet exhaust pump

    SciTech Connect

    Chou, S.K.

    1986-01-01

    Industrial ventilation employing an air-air jet exhaust pump connected to a compressed-air line was investigated. The motive air supply pressure was maintained between 2 and 3 bar. A unique ejector housing was constructed to receive both the convergent-divergent primary nozzle and the mixing chamber. The entire unit adapts readily to any existing compressed-air system. The mixing chamber was so constructed that the length of its cylindrical section may be changed. Pressure variations along the mixing chamber were recorded, and this offered a valuable appreciation of the effects of the length-to-diameter ratios. Results indicate the influence of the supply air pressure and pressure ratio on the jet entrainment capacity and efficiency. It has also been shown that the present design is capable of achieving the maximum reported jet-pump efficiency of around 25% corresponding to a nozzle-to-mixing chamber area ratio of 0.15.

  19. The Gap-Tpc

    NASA Astrophysics Data System (ADS)

    Rossi, B.; Anastasio, A.; Boiano, A.; Catalanotti, S.; Cocco, A. G.; Covone, G.; Di Meo, P.; Longo, G.; Vanzanella, A.; Walker, S.; Wang, H.; Wang, Y.; Fiorillo, G.

    2016-02-01

    Several experiments have been conducted worldwide, with the goal of observing low-energy nuclear recoils induced by WIMPs scattering off target nuclei in ultra-sensitive, low-background detectors. In the last few decades noble liquid detectors designed to search for dark matter in the form of WIMPs have been extremely successful in improving their sensitivities and setting the best limits. One of the crucial problems to be faced for the development of large size (multi ton-scale) liquid argon experiments is the lack of reliable and low background cryogenic PMTs: their intrinsic radioactivity, cost, and borderline performance at 87 K rule them out as a possible candidate for photosensors. We propose a brand new concept of liquid argon-based detector for direct dark matter search: the Geiger-mode Avalanche Photodiode Time Projection Chamber (GAP-TPC) optimized in terms of residual radioactivity of the photosensors, energy and spatial resolution, light and charge collection efficiency.

  20. Undecidability of the spectral gap.

    PubMed

    Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M

    2015-12-10

    The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  1. Line Lengths and Starch Scores.

    ERIC Educational Resources Information Center

    Moriarty, Sandra E.

    1986-01-01

    Investigates readability of different line lengths in advertising body copy, hypothesizing a normal curve with lower scores for shorter and longer lines, and scores above the mean for lines in the middle of the distribution. Finds support for lower scores for short lines and some evidence of two optimum line lengths rather than one. (SKC)

  2. Who Takes a Gap Year and Why? Longitudinal Surveys of Australian Youth. Briefing Paper 28

    ERIC Educational Resources Information Center

    Lumsden, Marilyn; Stanwick, John

    2012-01-01

    Taking a gap year--a break between high school and university--is becoming increasingly popular with Australian students. In terms of length and purpose, the traditional notion of a gap year being a year off between school and university has expanded considerably over time. For the purposes of the analysis reported in this paper, a person who…

  3. Terminology gap in hydrological cycle

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Water is central to life on Earth. People have been trying to understand how water moves in the hydrosphere throughout the human history. In the 9th century BC, the famous Greek poet Homer described the hydrological cycle in Iliad as "okeanos whose stream bends back in a circle" with a belief that rivers are ocean-fed from subterranean seas. Later, Aristotle (4th century BC) claimed that most of the water came from underground caverns in which air was transformed into water. It was only until 1674, French scientist Perrault developed the correct concept of the water cycle. In modern times, scientists are interested in understanding the individual processes of the hydrological cycle with a keen focus on runoff which supplies water to rivers, lakes, and oceans. Currently, the prevailing concepts on runoff processes include 'infiltration excess runoff' and 'saturation excess runoff'. However, there is no term to describe another major runoff due to the excess beyond the soil water holding capacity (i.e., the field capacity). We argue that a new term should be introduced to fill this gap, and it could be called 'holding excess runoff' which is compatible with the convention. This new term is significant in correcting a half-century misnomer where 'holding excess runoff' has been incorrectly named as 'saturation excess runoff', which was introduced by the Xinanjiang model in China in 1960s. Similar concept has been adopted in many well-known hydrological models such as PDM and HBV in which the saturation refers to the field capacity. The term 'holding excess runoff' resolves such a common confusion in the hydrological community.

  4. Undecidability of the spectral gap

    NASA Astrophysics Data System (ADS)

    Cubitt, Toby S.; Perez-Garcia, David; Wolf, Michael M.

    2015-12-01

    The spectral gap—the energy difference between the ground state and first excited state of a system—is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding ‘halting problem’. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  5. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  6. Definition of Magnetic Exchange Length

    SciTech Connect

    Abo, GS; Hong, YK; Park, J; Lee, J; Lee, W; Choi, BC

    2013-08-01

    The magnetostatic exchange length is an important parameter in magnetics as it measures the relative strength of exchange and self-magnetostatic energies. Its use can be found in areas of magnetics including micromagnetics, soft and hard magnetic materials, and information storage. The exchange length is of primary importance because it governs the width of the transition between magnetic domains. Unfortunately, there is some confusion in the literature between the magnetostatic exchange length and a similar distance concerning magnetization reversal mechanisms in particles known as the characteristic length. This confusion is aggravated by the common usage of two different systems of units, SI and cgs. This paper attempts to clarify the situation and recommends equations in both systems of units.

  7. Experimental investigations of argon spark gap recovery times by developing a high voltage double pulse generator.

    PubMed

    Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C

    2014-06-01

    The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.

  8. Measuring the Gap

    PubMed Central

    She, Xinshu; Zhao, Deqing; Scholnick, Jenna

    2016-01-01

    China is a large country where rapid development is accompanied by growing inequalities. How economic inequalities translate to health inequalities is unknown. Baseline health assessment is lacking among rural Chinese children. We aimed at assessing baseline student health of rural Chinese children and comparing them with those of urban children of similar ages. A cross-sectional study was conducted using the 2003 Global School-Based Student Health Survey among 100 students Grade 4 to 6 from rural Guizhou, China. Results were summarized and compared with public data from urban Beijing using multivariate logistic regression models. Rural children are more likely to not wash their hands before a meal (odds ratio [OR] = 5.71, P < .01) and after using the toilet (OR = 5.41, P < .01). They are more likely to feel sick or to get into trouble after drinking (OR = 7.28, P < .01). They are more likely to have used drugs (OR = 8.54, P < .01) and to have no close friends (OR = 8.23, P < .01). An alarming percentage of rural (8.22%) and urban (14.22%) children have had suicidal ideation in the past year (OR = 0.68, P > .05). Rural parents are more likely to not know their children’s whereabouts (OR = 1.81, P < .05). Rural children are more than 4 times likely to have serious injuries (OR = 4.64, P < .01) and to be bullied (OR = 4.01, P < .01). In conclusion, school-age rural Chinese children exhibit more health risk behaviors and fewer protective factors at baseline compared to their urban counterparts. Any intervention aimed at improving child health should take this distributive gap into consideration. PMID:27335999

  9. Paramagnetically induced gapful topological superconductors

    NASA Astrophysics Data System (ADS)

    Daido, Akito; Yanase, Youichi

    2016-08-01

    We propose a generic scenario for realizing gapful topological superconductors (TSCs) from gapless spin-singlet superconductors (SCs). Noncentrosymmetric nodal SCs in two dimensions are shown to be gapful under a Zeeman field, as a result of the cooperation of inversion-symmetry breaking and time-reversal-symmetry breaking. In particular, non-s -wave SCs acquire a large excitation gap. Such paramagnetically induced gapful SCs may be classified into TSCs in the symmetry class D specified by the Chern number. We show nontrivial Chern numbers over a wide parameter range for spin-singlet SCs. A variety of the paramagnetically induced gapful TSCs are demonstrated, including D +p -wave TSC, extended S +p -wave TSC, p +D +f -wave TSC, and s +P -wave TSC. Natural extension toward three-dimensional Weyl SCs is also discussed.

  10. Characterization of photonic amorphous structures with different characteristic lengths

    NASA Astrophysics Data System (ADS)

    Wen, Cheng-Chi; Hung, Yu-Chueh

    2016-04-01

    Photonic amorphous structure (PAS) has attracted increasing research attention due to their interesting characteristics, such as noniridescent structural colors and isotropic photonic band gap. In this work, we present PAS with different characteristic lengths and analyze their structural and topological properties. First, a Fourier spectral method was used to solve Cahn-Hilliard equation and generate a spinodal binary phase structure. By changing the time of the evolution of phase field, mobility, and standard deviation, the characteristic length of amorphous structures can be adjusted. We present the numerical analysis based on finite-difference time-domain (FDTD) method to characterize the density of state (DOS) of PAS based on different time of the evolution of phase field. The corresponding spatial Fourier spectrum of PAS is calculated to examine the characteristic length, and the photonic band gap properties will be discussed in association with the characteristic length. These results are crucial for design of new optical materials display devices base on dielectric amorphous photonic structures.

  11. Mind the Gap

    NASA Astrophysics Data System (ADS)

    2008-09-01

    Astronomers have been able to study planet-forming discs around young Sun-like stars in unsurpassed detail, clearly revealing the motion and distribution of the gas in the inner parts of the disc. This result, which possibly implies the presence of giant planets, was made possible by the combination of a very clever method enabled by ESO's Very Large Telescope. Uncovering the disc ESO PR Photo 27a/08 Planet-forming Disc Planets could be home to other forms of life, so the study of exoplanets ranks very high in contemporary astronomy. More than 300 planets are already known to orbit stars other than the Sun, and these new worlds show an amazing diversity in their characteristics. But astronomers don't just look at systems where planets have already formed - they can also get great insights by studying the discs around young stars where planets may currently be forming. "This is like going 4.6 billion years back in time to watch how the planets of our own Solar System formed," says Klaus Pontoppidan from Caltech, who led the research. Pontoppidan and colleagues have analysed three young analogues of our Sun that are each surrounded by a disc of gas and dust from which planets could form. These three discs are just a few million years old and were known to have gaps or holes in them, indicating regions where the dust has been cleared and the possible presence of young planets. The new results not only confirm that gas is present in the gaps in the dust, but also enable astronomers to measure how the gas is distributed in the disc and how the disc is oriented. In regions where the dust appears to have been cleared out, molecular gas is still highly abundant. This can either mean that the dust has clumped together to form planetary embryos, or that a planet has already formed and is in the process of clearing the gas in the disc. For one of the stars, SR 21, a likely explanation is the presence of a massive giant planet orbiting at less than 3.5 times the distance

  12. Metal induced gap states at alkali halide/metal interface

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-10-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide.

  13. GAP Analysis Bulletin Number 15

    USGS Publications Warehouse

    Maxwell, Jill; Gergely, Kevin; Aycrigg, Jocelyn; Canonico, Gabrielle; Davidson, Anne; Coffey, Nicole

    2008-01-01

    The Mission of the Gap Analysis Program (GAP) is to promote conservation by providing broad geographic information on biological diversity to resource managers, planners, and policy makers who can use the information to make informed decisions. As part of the National Biological Information Infrastructure (NBII) ?a collaborative program to provide increased access to data and information on the nation?s biological resources--GAP data and analytical tools have been used in hundreds of applications: from basic research to comprehensive state wildlife plans; from educational projects in schools to ecoregional assessments of biodiversity. The challenge: keeping common species common means protecting them BEFORE they become threatened. To do this on a state or regional basis requires key information such as land cover descriptions, predicted distribution maps for native animals, and an assessment of the level of protection currently given to those plants and animals. GAP works cooperatively with Federal, state, and local natural resource professionals and academics to provide this kind of information. GAP activities focus on the creation of state and regional databases and maps that depict patterns of land management, land cover, and biodiversity. These data can be used to identify ?gaps? in conservation--instances where an animal or plant community is not adequately represented on the existing network of conservation lands. GAP is administered through the U.S. Geological Survey. Through building partnerships among disparate groups, GAP hopes to foster the kind of collaboration that is needed to address conservation issues on a broad scale. For more information, contact: John Mosesso National GAP Director 703-648-4079 Kevin Gergely National GAP Operations Manager 208-885-3565

  14. Method and apparatus for wind turbine air gap control

    DOEpatents

    Grant, James Jonathan; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; DiMascio, Paul Stephen; Gadre, Aniruddha Dattatraya; Qu, Ronghai

    2007-02-20

    Methods and apparatus for assembling a wind turbine generator are provided. The wind turbine generator includes a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis, a rotor rotatable about the generator longitudinal axis wherein the rotor includes a plurality of magnetic elements coupled to a radially outer periphery of the rotor such that an airgap is defined between the stator windings and the magnetic elements and the plurality of magnetic elements including a radially inner periphery having a first diameter. The wind turbine generator also includes a bearing including a first member in rotatable engagement with a radially inner second member, the first member including a radially outer periphery, a diameter of the radially outer periphery of the first member being substantially equal to the first diameter, the rotor coupled to the stator through the bearing such that a substantially uniform airgap is maintained.

  15. MoS2 transistors with 1-nanometer gate lengths

    NASA Astrophysics Data System (ADS)

    Desai, Sujay B.; Madhvapathy, Surabhi R.; Sachid, Angada B.; Llinas, Juan Pablo; Wang, Qingxiao; Ahn, Geun Ho; Pitner, Gregory; Kim, Moon J.; Bokor, Jeffrey; Hu, Chenming; Wong, H.-S. Philip; Javey, Ali

    2016-10-01

    Scaling of silicon (Si) transistors is predicted to fail below 5-nanometer (nm) gate lengths because of severe short channel effects. As an alternative to Si, certain layered semiconductors are attractive for their atomically uniform thickness down to a monolayer, lower dielectric constants, larger band gaps, and heavier carrier effective mass. Here, we demonstrate molybdenum disulfide (MoS2) transistors with a 1-nm physical gate length using a single-walled carbon nanotube as the gate electrode. These ultrashort devices exhibit excellent switching characteristics with near ideal subthreshold swing of ~65 millivolts per decade and an On/Off current ratio of ~106. Simulations show an effective channel length of ~3.9 nm in the Off state and ~1 nm in the On state.

  16. Persistence Length of Stable Microtubules

    NASA Astrophysics Data System (ADS)

    Hawkins, Taviare; Mirigian, Matthew; Yasar, M. Selcuk; Ross, Jennifer

    2011-03-01

    Microtubules are a vital component of the cytoskeleton. As the most rigid of the cytoskeleton filaments, they give shape and support to the cell. They are also essential for intracellular traffic by providing the roadways onto which organelles are transported, and they are required to reorganize during cellular division. To perform its function in the cell, the microtubule must be rigid yet dynamic. We are interested in how the mechanical properties of stable microtubules change over time. Some ``stable'' microtubules of the cell are recycled after days, such as in the axons of neurons or the cilia and flagella. We measured the persistence length of freely fluctuating taxol-stabilized microtubules over the span of a week and analyzed them via Fourier decomposition. As measured on a daily basis, the persistence length is independent of the contour length. Although measured over the span of the week, the accuracy of the measurement and the persistence length varies. We also studied how fluorescently-labeling the microtubule affects the persistence length and observed that a higher labeling ratio corresponded to greater flexibility. National Science Foundation Grant No: 0928540 to JLR.

  17. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K–1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  18. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  19. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.

  20. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, Karl T.; King, Edward L.; Follstaedt, Donald W.

    1992-01-01

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

  1. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  2. When Does Length Cause the Word Length Effect?

    ERIC Educational Resources Information Center

    Jalbert, Annie; Neath, Ian; Bireta, Tamra J.; Surprenant, Aimee M.

    2011-01-01

    The word length effect, the finding that lists of short words are better recalled than lists of long words, has been termed one of the benchmark findings that any theory of immediate memory must account for. Indeed, the effect led directly to the development of working memory and the phonological loop, and it is viewed as the best remaining…

  3. Graded-index optical fiber tweezers with long manipulation length.

    PubMed

    Gong, Yuan; Huang, Wei; Liu, Qun-Feng; Wu, Yu; Rao, Yunjiang; Peng, Gang-Ding; Lang, Jinyi; Zhang, Ke

    2014-10-20

    Long manipulation length is critical for optical fiber tweezers to enhance the flexibility of non-contact trapping. In this paper a long manipulation distance of more than 40 μm is demonstrated experimentally by the graded-index fiber (GIF) tweezers, which is fabricated by chemically etching a GIF taper with a large cone angle of 58°. The long manipulation distance is obtained by introducing an air cavity between the lead-in single mode fiber and the GIF as well as by adjusting the laser power in the existence of a constant background flow. The influence of the cavity length and the GIF length on the light distribution and the focusing length of the GIF taper is investigated numerically, which is helpful for optimizing the parameters to perform stable optical trapping. This kind of optical fiber tweezers has advantages including low-cost, easy-to-fabricate and easy-to-use. PMID:25401560

  4. Continuously variable focal length lens

    DOEpatents

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  5. Implications of mercury interactions with band-gap semiconductor oxides

    SciTech Connect

    Granite, E.J.; King, W.P.; Stanko, D.C.; Pennline, H.W.

    2008-09-01

    Titanium dioxide is a well-known photooxidation catalyst. It will oxidize mercury in the presence of ultraviolet light from the sun and oxygen and/or moisture to form mercuric oxide. Several companies manufacture self-cleaning windows. These windows have a transparent coating of titanium dioxide. The titanium dioxide is capable of destroying organic contaminants in air in the presence of ultraviolet light from the sun, thereby keeping the windows clean. The commercially available self-cleaning windows were used to sequester mercury from oxygen–nitrogen mixtures. Samples of the self-cleaning glass were placed into specially designed photo-reactors in order to study the removal of elemental mercury from oxygen–nitrogen mixtures resembling air. The possibility of removing mercury from ambient air with a self-cleaning glass apparatus is examined. The intensity of 365-nm ultraviolet light was similar to the natural intensity from sunlight in the Pittsburgh region. Passive removal of mercury from the air may represent an option in lieu of, or in addition to, point source clean-up at combustion facilities. There are several common band-gap semiconductor oxide photocatalysts. Sunlight (both the ultraviolet and visible light components) and band-gap semiconductor particles may have a small impact on the global cycle of mercury in the environment. The potential environmental consequences of mercury interactions with band-gap semiconductor oxides are discussed. Heterogeneous photooxidation might impact the global transport of elemental mercury emanating from flue gases.

  6. Continuous lengths of oxide superconductors

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  7. Overview of bunch length measurements.

    SciTech Connect

    Lumpkin, A. H.

    1999-02-19

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed.

  8. Ion emission intensity ratios as a function of electrode gap, melting current, and pressure during low current vacuum arc remelting

    SciTech Connect

    Williamson, R.L.; Grose, S.M.

    1994-08-01

    The arc energy distribution in the electrode gap plays a central role in the vacuum arc remelting (VAR) process. However, very little has been done to investigate the response of this important process variable to changes in process parameters. Emission spectroscopy was used to investigate variations in arc energy in the annulus of a VAR furnace during melting of 0.43 m diameter Alloy 718 electrode into 0.51 in diameter ingot. Time averaged (1 second) intensity data from various chromium atom and ion (Cr{sup +}) emission lines were simultaneously collected and selected intensity ratios were subsequently used as air energy indicators. These studies were carried out as a function of melting current, electrode gap, and CO partial pressure. The data were modeled and the ion electronic energy was found to be a function of electrode gap, the energy content of the ionic vapor decreasing with increasing gap length; the ion ratios were not found to be sensitive to pressure. On the other hand, the chromium atom electronic energy was difficult to model in the factor space investigated, but was determined to be sensitive, to pressure. The difference in character of the chromium ion and atom energy fluctuations in the furnace annulus are attributed to the difference in the origins of these arc species and the non-equilibrium nature of the metal vapor arc. Most of the ion population is emitted directly from cathode spots, whereas much of the atomic vapor arises due to vaporization from the electrode and pool surfaces. Also, the positively charged ionic species interact more strongly with the electron gas than the neutral atomic species, the two distributions never equilibrating due to the low pressure.

  9. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  10. Communication Through Gap Junctions in the Endothelium.

    PubMed

    Schmidt, K; Windler, R; de Wit, C

    2016-01-01

    A swarm of fish displays a collective behavior (swarm behavior) and moves "en masse" despite the huge number of individual animals. In analogy, organ function is supported by a huge number of cells that act in an orchestrated fashion and this applies also to vascular cells along the vessel length. It is obvious that communication is required to achieve this vital goal. Gap junctions with their modular bricks, connexins (Cxs), provide channels that interlink the cytosol of adjacent cells by a pore sealed against the extracellular space. This allows the transfer of ions and charge and thereby the travel of membrane potential changes along the vascular wall. The endothelium provides a low-resistance pathway that depends crucially on connexin40 which is required for long-distance conduction of dilator signals in the microcirculation. The experimental evidence for membrane potential changes synchronizing vascular behavior is manifold but the functional verification of a physiologic role is still open. Other molecules may also be exchanged that possibly contribute to the synchronization (eg, Ca(2+)). Recent data suggest that vascular Cxs have more functions than just facilitating communication. As pharmacological tools to modulate gap junctions are lacking, Cx-deficient mice provide currently the standard to unravel their vascular functions. These include arteriolar dilation during functional hyperemia, hypoxic pulmonary vasoconstriction, vascular collateralization after ischemia, and feedback inhibition on renin secretion in the kidney.

  11. Communication Through Gap Junctions in the Endothelium.

    PubMed

    Schmidt, K; Windler, R; de Wit, C

    2016-01-01

    A swarm of fish displays a collective behavior (swarm behavior) and moves "en masse" despite the huge number of individual animals. In analogy, organ function is supported by a huge number of cells that act in an orchestrated fashion and this applies also to vascular cells along the vessel length. It is obvious that communication is required to achieve this vital goal. Gap junctions with their modular bricks, connexins (Cxs), provide channels that interlink the cytosol of adjacent cells by a pore sealed against the extracellular space. This allows the transfer of ions and charge and thereby the travel of membrane potential changes along the vascular wall. The endothelium provides a low-resistance pathway that depends crucially on connexin40 which is required for long-distance conduction of dilator signals in the microcirculation. The experimental evidence for membrane potential changes synchronizing vascular behavior is manifold but the functional verification of a physiologic role is still open. Other molecules may also be exchanged that possibly contribute to the synchronization (eg, Ca(2+)). Recent data suggest that vascular Cxs have more functions than just facilitating communication. As pharmacological tools to modulate gap junctions are lacking, Cx-deficient mice provide currently the standard to unravel their vascular functions. These include arteriolar dilation during functional hyperemia, hypoxic pulmonary vasoconstriction, vascular collateralization after ischemia, and feedback inhibition on renin secretion in the kidney. PMID:27451099

  12. Formation of GaP nanocones and micro-mesas by metal-assisted chemical etching.

    PubMed

    Kim, Jaehoon; Oh, Jihun

    2016-02-01

    Metal-assisted chemical etching (MaCE) of a (100) n-type GaP using patterned Pd catalysts in a mixed solution of HF and H2O2 at room temperature is reported for the first time. Various patterns of Pd catalysts, i.e., meshes and patches, with length scales ranging from 200 nm to several μm were used. Depending on the sizes of the Pd catalysts, GaP exhibits two distinctively different MaCE mechanisms: the conventional and inverse MaCE. With Pd nanomeshes, the ordered arrays of GaP nanocones were formed by the preferential removal of GaP directly under the Pd catalysts by the MaCE mechanism. When Pd micro-patches with several μm in length were used, bare GaP uncovered with the Pd patches was selectively dissolved to form GaP micro-mesa structures, following an inverse MaCE mechanism. We attribute these size-dependent etching behaviors to the dissolution limited etching characteristics of GaP during MaCE. Furthermore, we show that etched GaP structures can exhibit both mechanisms when a micro-patterned Pd nanomesh is used. The morphological evolution of etched GaP structures produced by MaCE is also presented. PMID:26780962

  13. Eight electrode optical readout gap

    DOEpatents

    Boettcher, Gordon E.; Crain, Robert W.

    1985-01-01

    A protective device for a plurality of electrical circuits includes a pluity of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  14. Finite length Taylor Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cylinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments.

  15. Incubation length of dabbling ducks

    USGS Publications Warehouse

    Wells-Berlin, A. M.; Prince, H.H.; Arnold, T.W.

    2005-01-01

    We collected unincubated eggs from wild Mallard (Anas platyrhynchos), Gadwall (A. strepera), Blue-winged Teal (A. discors), and Northern Shoveler (A. clypeata) nests and artificially incubated them at 37.5??C. Average incubation lengths of Mallard, Gadwall, and Northern Shoveler eggs did not differ from their wild-nesting counterparts, but artificially incubated Blue-winged Teal eggs required an additional 1.7 days to hatch, suggesting that wild-nesting teal incubated more effectively. A small sample of Mallard, Gadwall, and Northern Shoveler eggs artificially incubated at 38.3??C hatched 1 day sooner, indicating that incubation temperature affected incubation length. Mean incubation length of Blue-winged Teal declined by 1 day for each 11-day delay in nesting, but we found no such seasonal decline among Mallards, Gadwalls, or Northern Shovelers. There is no obvious explanation for the seasonal reduction in incubation length for Blue-winged Teal eggs incubated in a constant environment, and the phenomenon deserves further study. ?? The Cooper Ornithological Society 2005.

  16. Adverse Drug Event Ontology: Gap Analysis for Clinical Surveillance Application.

    PubMed

    Adam, Terrence J; Wang, Jin

    2015-01-01

    Adverse drug event identification and management are an important patient safety problem given the potential for event prevention. Previous efforts to provide structured data methods for population level identification of adverse drug events have been established, but important gaps in coverage remain. ADE identification gaps contribute to suboptimal and inefficient event identification. To address the ADE identification problem, a gap assessment was completed with the creation of a proposed comprehensive ontology using a Minimal Clinical Data Set framework incorporating existing identification approaches, clinical literature and a large set of inpatient clinical data. The new ontology was developed and tested using the National Inpatient Sample database with the validation results demonstrating expanded ADE identification capacity. In addition, the newly proposed ontology elements are noted to have significant inpatient mortality, above median inpatient costs and a longer length of stay when compared to existing ADE ontology elements and patients without ADE exposure.

  17. Adverse Drug Event Ontology: Gap Analysis for Clinical Surveillance Application

    PubMed Central

    Adam, Terrence J.; Wang, Jin

    2015-01-01

    Adverse drug event identification and management are an important patient safety problem given the potential for event prevention. Previous efforts to provide structured data methods for population level identification of adverse drug events have been established, but important gaps in coverage remain. ADE identification gaps contribute to suboptimal and inefficient event identification. To address the ADE identification problem, a gap assessment was completed with the creation of a proposed comprehensive ontology using a Minimal Clinical Data Set framework incorporating existing identification approaches, clinical literature and a large set of inpatient clinical data. The new ontology was developed and tested using the National Inpatient Sample database with the validation results demonstrating expanded ADE identification capacity. In addition, the newly proposed ontology elements are noted to have significant inpatient mortality, above median inpatient costs and a longer length of stay when compared to existing ADE ontology elements and patients without ADE exposure. PMID:26306223

  18. Optical responses of a metal with sub-nm gaps

    PubMed Central

    Park, Sang Jun; Kim, Tae Yun; Park, Cheol-Hwan; Kim, Dai-Sik

    2016-01-01

    If the size of a metallic structure is reduced to be comparable to or even smaller than the typical quantum-mechanical lengths such as the Fermi wavelength or Thomas-Fermi wavelength, the electronic structure and optical responses are modulated by quantum effects. Here, we calculate the optical responses of a metal with sub-nm gaps using the eigenstates obtained from an effective-mass quantum theory. According to our simulation, the dielectric responses can be significantly modified by tuning the inter-gap distances. Remarkably, sub-nm gaps occupying a 0.3% volumetric fraction can elongate the penetration depth by an order of magnitude in the terahertz regime. We find that the detailed dependences of electron-photon interaction matrix elements on the involved electronic wavefunctions play an important role in the optical responses. The results draw our attention to these recently fabricated systems. PMID:26964884

  19. Gap plasmon excitation in plasmonic waveguide using Si waveguide

    NASA Astrophysics Data System (ADS)

    Okuda, Koji; Kamada, Shun; Okamoto, Toshihiro; Haraguchi, Masanobu

    2016-08-01

    Plasmonic waveguides have attracted considerable attention for application in highly integrated optical circuits since they can confine light to areas smaller than the diffraction limit. In this context, in order to realize a highly integrated optical circuit, we fabricate and evaluate the optical characteristics of a poly(methyl methacrylate) junction positioned between Si and plasmonic waveguides. For the plasmonic waveguide, we employ a gap plasmonic waveguide in which the energy of the plasmonic wave can be confined in order to reduce the scattering loss at the junction. By experimental measurement, we determine the coupling efficiency between the Si and gap plasmonic waveguides and the propagation length at the gap plasmonic waveguide to be 52.4% and 11.1 µm, respectively. These values agree with those obtained by the three-dimensional finite-difference time-domain simulation. We believe that our findings can significantly contribute to the development of highly integrated optical circuits.

  20. Seismic Hazard and Fault Length

    NASA Astrophysics Data System (ADS)

    Black, N. M.; Jackson, D. D.; Mualchin, L.

    2005-12-01

    If mx is the largest earthquake magnitude that can occur on a fault, then what is mp, the largest magnitude that should be expected during the planned lifetime of a particular structure? Most approaches to these questions rely on an estimate of the Maximum Credible Earthquake, obtained by regression (e.g. Wells and Coppersmith, 1994) of fault length (or area) and magnitude. Our work differs in two ways. First, we modify the traditional approach to measuring fault length, to allow for hidden fault complexity and multi-fault rupture. Second, we use a magnitude-frequency relationship to calculate the largest magnitude expected to occur within a given time interval. Often fault length is poorly defined and multiple faults rupture together in a single event. Therefore, we need to expand the definition of a mapped fault length to obtain a more accurate estimate of the maximum magnitude. In previous work, we compared fault length vs. rupture length for post-1975 earthquakes in Southern California. In this study, we found that mapped fault length and rupture length are often unequal, and in several cases rupture broke beyond the previously mapped fault traces. To expand the geologic definition of fault length we outlined several guidelines: 1) if a fault truncates at young Quaternary alluvium, the fault line should be inferred underneath the younger sediments 2) faults striking within 45° of one another should be treated as a continuous fault line and 3) a step-over can link together faults at least 5 km apart. These definitions were applied to fault lines in Southern California. For example, many of the along-strike faults lines in the Mojave Desert are treated as a single fault trending from the Pinto Mountain to the Garlock fault. In addition, the Rose Canyon and Newport-Inglewood faults are treated as a single fault line. We used these more generous fault lengths, and the Wells and Coppersmith regression, to estimate the maximum magnitude (mx) for the major faults in

  1. Pneumatic gap sensor and method

    SciTech Connect

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    This patent describes in a casting system which including an apparatus for monitoring the gap between a casting nozzle and a casting surface of a substrate during casting of molten material, wherein the molten material is provided through a channel of the casting nozzle for casting onto the casting surface of the substrate for solidification. It comprises: a pneumatic gap mounted at least partially within a cavity in the casting nozzle adjacent the channel and having a sensor face located within the gap between the nozzle and the casting surface of the substrate, means for supply gas under predetermined pressure to the inlet orifice; and means for measuring the pressure of the gas within the sensor chamber during casting procedures, whereby relative changes in the gap can be determined by corresponding changes in the measured pressure. This patent also describes a method for monitoring the gap between a casting nozzle and a casting surface of a substrate for continuous casting of molten material. It comprises: providing a casting nozzle with a channel for directing the flow of molten material, locating the nozzle and the casting surface is proximity with one another and having a predetermined gap there-between, and dressing the sensor face to correspond in conformation to the casting surface and to adjust the predetermined distance as desired; providing a molten material to the nozzle for casting onto and casting surface; supplying gas at a predetermined pressure to the inlet orifice of the sensor during casting procedures.

  2. Measurement of reflection phase using thick-gap Fabry-Perot etalon.

    PubMed

    Yung, Tsz Kit; Gao, Wensheng; Leung, Ho Ming; Zhao, Qiuling; Wang, Xia; Tam, Wing Yim

    2016-09-10

    We report measurement of the reflection phase of a dielectric (glass)/titanium (Ti) surface in the visible wavelength using a thick-gap Fabry-Perot (FP) interferometry technique. Using a two-beam interference model for the reflection peaks and troughs of the FP etalon, we obtain the air-gap spacing of the etalon and, more importantly, the reflection phase of the etalon substrate. We find systematic dependence of the as-measured reflection phase on the air-gap spacing due to the numerical aperture effect of the measuring objective. However, the relative reflection phase of Ti with respect to glass is independent of the air-gap spacing. As a demonstration of our approach in the optical characterization of small metamaterial samples, we also measure the reflection phase of a micron-sized 2D Au sawtooth nanoarray. The experiment is in good agreement with the model simulation. PMID:27661366

  3. Measurement of reflection phase using thick-gap Fabry-Perot etalon.

    PubMed

    Yung, Tsz Kit; Gao, Wensheng; Leung, Ho Ming; Zhao, Qiuling; Wang, Xia; Tam, Wing Yim

    2016-09-10

    We report measurement of the reflection phase of a dielectric (glass)/titanium (Ti) surface in the visible wavelength using a thick-gap Fabry-Perot (FP) interferometry technique. Using a two-beam interference model for the reflection peaks and troughs of the FP etalon, we obtain the air-gap spacing of the etalon and, more importantly, the reflection phase of the etalon substrate. We find systematic dependence of the as-measured reflection phase on the air-gap spacing due to the numerical aperture effect of the measuring objective. However, the relative reflection phase of Ti with respect to glass is independent of the air-gap spacing. As a demonstration of our approach in the optical characterization of small metamaterial samples, we also measure the reflection phase of a micron-sized 2D Au sawtooth nanoarray. The experiment is in good agreement with the model simulation.

  4. Air Pollution and Control Legislation in India

    NASA Astrophysics Data System (ADS)

    P Bhave, Prashant; Kulkarni, Nikhil

    2015-09-01

    Air pollution in urban areas arises from multiple sources, which may vary with location and developmental activities. Anthropogenic activities as rampant industrialization, exploitation and over consumption of natural resources, ever growing population size are major contributors of air pollution. The presented review is an effort to discuss various aspects of air pollution and control legislation in India emphasizing on the history, present scenario, international treaties, gaps and drawbacks. The review also presents legislative controls with judicial response to certain landmark judgments related to air pollution. The down sides related to enforcement mechanism for the effective implementation of environmental laws for air pollution control have been highlighted.

  5. Outdoor air pollution and asthma

    PubMed Central

    Guarnieri, Michael; Balmes, John R.

    2015-01-01

    Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma. PMID:24792855

  6. Verb gapping: an action-gap compatibility study.

    PubMed

    Claus, Berry

    2015-03-01

    This study addresses the processing of verb-gapping sentences, e.g., John closes a juice bottle and Jim [ ] a lemonade bottle. The goal was to explore if there would be an interaction between language comprehension and motor action not only for overt action verbs but also for gapped verbs. Participants read gapping sentences that either described clockwise or counter-clockwise manual rotations (e.g., closes vs. opens a juice bottle). Adopting a paradigm developed by Zwaan and Taylor (2006), sentence presentation was frame-by-frame. Participants proceeded from frame to frame by turning a knob either clockwise or counter clockwise. Analyses of the frame reading-times yielded a significant effect of compatibility between the linguistically conveyed action and the knob turning for the overt-verb (e.g., closes/opens a juice bottle) as well as for the gapped-verb frame (e.g., a lemonade bottle) - with longer reading times in the match condition than in the mismatch condition - but not for any of the other frames (e.g., and Jim). The results are promising in providing novel evidence for the real-time reactivation of gapped verbs and in suggesting that action simulation is not bound to the processing of overt verbs. PMID:25103783

  7. Air resources

    SciTech Connect

    1995-10-01

    This section describes the ambient (surrounding) air quality of the TVA region, discusses TVA emission contributions to ambient air quality, and identifies air quality impacts to human health and welfare. Volume 2 Technical Document 2, Environmental Consequences, describes how changes in TVA emissions could affect regional air quality, human health, environmental resources, and materials. The primary region of the affected environment is broadly defined as the state of Tennessee, as well as southern Kentucky, western Virginia, southern West Virginia, western North Carolina, and northern Georgia, Alabama, and Mississippi. This area represents the watershed of the Tennessee River and the 201 counties of the greater TVA service area. Emissions from outside the Tennessee Valley region contribute to air quality in the Valley. Also, TVA emissions are transported outside the Valley and have some impact on air quality beyond the primary study area. Although the study area experiences a number of air quality problems, overall air quality is good.

  8. Thermal properties and two-dimensional photonic band gaps

    NASA Astrophysics Data System (ADS)

    Elsayed, Hussein A.; El-Naggar, Sahar A.; Aly, Arafa H.

    2014-03-01

    The effect of temperature on a two-dimensional square lattice photonic crystal composed of Si rods arranged in an air background was investigated theoretically using the plane-wave expansion method. Both the thermal expansion effect and thermo-optical effect are considered simultaneously. We have discussed the role of temperature in creating the complete photonic band gap as a function of temperature. Two different shapes of rods, i.e. square and circular, are considered in the presence of the two polarization states, i.e. TE and TM waves. The numerical results show that the photonic band gap can be significantly enlarged compared to the photonic band gap at room temperature. The effect of temperature on the complete photonic band width in the cylindrical rods case is more significant. Cylindrical and square Si rods may work as a temperature sensor or filter, among many other potential applications.

  9. Effects of gaps on long range surface plasmon polaritons

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1983-01-01

    Fukui et al. (1979) and Stegeman et al. (1982) have shown theoretically that surface plasmon polaritons can be guided over long distances by thin metal films bounded by identical dielectric media. In principle, the possibility arises for the propagation of highly localized fields. In order to obtain long propagation distances, most of the energy will have to be carried outside the metal. THis makess it necessary to operate near the mode cutoff condition. In the present investigation, it is shown that very small air gaps between the metal and dielectric surfaces will cause the mode to become radiative, and, therefore, no longer bounded to the metal film. Calculations show that gaps of dimension 100 A and less can cause severe problems in geometries relying on long range surface plasmon polaritons. High refractive index liquids placed in the gaps should alleviate these problems.

  10. Superior canal dehiscence length and location influences clinical presentation and audiometric and cervical vestibular-evoked myogenic potential testing.

    PubMed

    Niesten, Marlien E F; Hamberg, Leena M; Silverman, Joshua B; Lou, Kristina V; McCall, Andrew A; Windsor, Alanna; Curtin, Hugh D; Herrmann, Barbara S; Grolman, Wilko; Nakajima, Hideko H; Lee, Daniel J

    2014-01-01

    Superior canal dehiscence (SCD) is caused by an absence of bony covering of the arcuate eminence or posteromedial aspect of the superior semicircular canal. However, the clinical presentation of SCD syndrome varies considerably, as some SCD patients are asymptomatic and others have auditory and/or vestibular complaints. In order to determine the basis for these observations, we examined the association between SCD length and location with: (1) auditory and vestibular signs and symptoms; (2) air conduction (AC) loss and air-bone gap (ABG) measured by pure-tone audiometric testing, and (3) cervical vestibular-evoked myogenic potential (cVEMP) thresholds. 104 patients (147 ears) underwent SCD length and location measurements using a novel method of measuring bone density along 0.2-mm radial CT sections. We found that patients with auditory symptoms have a larger dehiscence (median length: 4.5 vs. 2.7 mm) with a beginning closer to the ampulla (median location: 4.8 vs. 6.4 mm from ampulla) than patients with no auditory symptoms (only vestibular symptoms). An increase in AC threshold was found as the SCD length increased at 250 Hz (95% CI: 1.7-4.7), 500 Hz (95% CI: 0.7-3.5) and 1,000 Hz (95% CI: 0.0-2.5), and an increase in ABG as the SCD length increased at 250 Hz (95% CI: 2.0-5.3), 500 Hz (95% CI: 1.6-4.6) and 1,000 Hz (95% CI: 1.3-3.3) was also seen. Finally, a larger dehiscence was associated with lowered cVEMP thresholds at 250 Hz (95% CI: -4.4 to -0.3), 500 Hz (95% CI: -4.1 to -1.0), 750 Hz (95% CI: -4.2 to -0.7) and 1,000 Hz (95% CI: -3.6 to -0.5) and a starting location closer to the ampulla at 250 Hz (95% CI: 1.3-5.1), 750 Hz (95% CI: 0.2-3.3) and 1,000 Hz (95% CI: 0.6-3.5). These findings may help to explain the variation of signs and symptoms seen in patients with SCD syndrome. PMID:24434937

  11. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  12. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  13. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  14. Softness Correlations Across Length Scales

    NASA Astrophysics Data System (ADS)

    Ivancic, Robert; Shavit, Amit; Rieser, Jennifer; Schoenholz, Samuel; Cubuk, Ekin; Durian, Douglas; Liu, Andrea; Riggleman, Robert

    In disordered systems, it is believed that mechanical failure begins with localized particle rearrangements. Recently, a machine learning method has been introduced to identify how likely a particle is to rearrange given its local structural environment, quantified by softness. We calculate the softness of particles in simulations of atomic Lennard-Jones mixtures, molecular Lennard-Jones oligomers, colloidal systems and granular systems. In each case, we find that the length scale characterizing spatial correlations of softness is approximately a particle diameter. These results provide a rationale for why localized rearrangements--whose size is presumably set by the scale of softness correlations--might occur in disordered systems across many length scales. Supported by DOE DE-FG02-05ER46199.

  15. Hospitalization length of insanity acquittees.

    PubMed

    Steadman, H J; Pasewark, R A; Hawkins, M; Kiser, M; Bieber, S

    1983-07-01

    Used step-wise multiple regression procedures to predict length of hospitalization of 225 defendants acquitted by reason of insanity in New York state. Of the 21 variables considered, only 9 (severity of offense, sex, marital status, days prior imprisonment, homicide offense, days previous civil hospitalization, educational level, race, number of victims) contributed to the significance of the regression equation. However, these accounted for but 11% of the observed variance.

  16. Universality of modulation length exponents

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Saurish; Seidel, Alexander; Nussinov, Zohar

    2012-02-01

    We study systems (classical or quantum) with general pairwise interactions. Our prime interest is in frustrated spin systems. First, we focus on systems with a crossover temperature T^* across which the correlation function changes from exhibiting commensurate to incommensurate modulations. We report on a new exponent, νL, characterizing the universal nature of this crossover. Near the crossover, the characteristic wave-vector k on the incommensurate side differs from that on the commensurate side, q by |k-q||T-T^*|^νL. We find, in general, that νL=1/2, or in some special cases, other rational numbers. We discuss applications to the axial next nearest neighbor Ising model, Fermi systems (with application to the metal to band insulator transition) and Bose systems. Second, we obtain a universal form of the high temperature correlation function in general systems. From this, we show the existence of a diverging correlation length in the presence of long range interactions. Such a correlation length tends to the screening length in the presence of screening. We also find a way of obtaining the pairwise interaction potentials in the high temperature phase from the correlation functions.

  17. Bubble dynamics in a variable gap Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Piedra, Saul; Domiguez, Roberto; Ramos, Eduardo

    2015-11-01

    We present observations of the dynamics of individual air bubbles ascending in a Hele-Shaw cell filled with water. Cells with gaps of 1 mm, 1.5 and 2.5 mm are used and the volume of the bubbles is such that we observe bubbles with apparent diameter from 2 mm to 7.3 mm. Given that we work with air and water in all experiments, the Morton number is constant and equal to 2 . 5 ×10-11 . The results are given in terms of the Eotvos, Archimedes and Reynolds numbers, and the trajectories and wakes of the bubbles are described as functions of the gap. In all cases we observe a linear relationship between the Reynolds and Archimedes numbers, but the proportionality constant varies with the gap. Also, although the wake is composed of alternating vortices similar to the von Karman vortex street, the size and location of the vortices vary with the gap. The analysis of some features of the observations and the description of the shape of the bubbles and dominant forces are made with a two dimensional numerical solution of the conservation equations using a front tracking strategy.

  18. Explaining the gender wealth gap.

    PubMed

    Ruel, Erin; Hauser, Robert M

    2013-08-01

    To assess and explain the United States' gender wealth gap, we use the Wisconsin Longitudinal Study to examine wealth accumulated by a single cohort over 50 years by gender, by marital status, and limited to the respondents who are their family's best financial reporters. We find large gender wealth gaps between currently married men and women, and between never-married men and women. The never-married accumulate less wealth than the currently married, and there is a marital disruption cost to wealth accumulation. The status-attainment model shows the most power in explaining gender wealth gaps between these groups explaining about one-third to one-half of the gap, followed by the human-capital explanation. In other words, a lifetime of lower earnings for women translates into greatly reduced wealth accumulation. After controlling for the full model, we find that a gender wealth gap remains between married men and women that we speculate may be related to gender differences in investment strategies and selection effects.

  19. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  20. Crop yield gaps in Cameroon.

    PubMed

    Yengoh, Genesis T; Ardö, Jonas

    2014-03-01

    Although food crop yields per hectare have generally been increasing in Cameroon since 1961, the food price crisis of 2008 and the ensuing social unrest and fatalities raised concerns about the country's ability to meet the food needs of its population. This study examines the country's potential for increasing crop yields and food production to meet this food security challenge. Fuzzy set theory is used to develop a biophysical spatial suitability model for different crops, which in turn is employed to ascertain whether crop production is carried out in biophysically suited areas. We use linear regression to examine the trend of yield development over the last half century. On the basis of yield data from experimental stations and farmers' fields we assess the yield gap for major food crops. We find that yields have generally been increasing over the last half century and that agricultural policies can have significant effects on them. To a large extent, food crops are cultivated in areas that are biophysically suited for their cultivation, meaning that the yield gap is not a problem of biophysical suitability. Notwithstanding, there are significantly large yield gaps between actual yields on farmers' farms and maximum attainable yields from research stations. We conclude that agronomy and policies are likely to be the reasons for these large yield gaps. A key challenge to be addressed in closing the yield gaps is that of replenishing and properly managing soil nutrients.

  1. Growing-season length and climatic variation in Alaska

    SciTech Connect

    Sharratt, B.S.

    1992-03-01

    The growing season has lengthened in the contiguous United States since 1900, coinciding with increasing northern hemispheric air temperatures. Information on growing season trends is needed in arctic regions where projected increases in air temperature are to be more pronounced. The lengths of the growing season at four locations in Alaska were evaluated for characteristic trends between 1917 and 1988. Freeze dates were determined using minimum temperature criteria of O deg and -3 deg C. A shortening of the season was found at Sitka and lengthening of the season at Talkeetna. The growing season shortened at Juneau and Sitka during the period 1940 to 1970, which corresponded with declining northern hemisphere temperature. Change in the growing season length was apparent in the Alaska temperature record, but the regional tendency for shorter or longer season needs further evaluation.

  2. Determination of Boundary Scattering, Intermagnon Scattering, and the Haldane Gap in Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Ueda, Hiroshi; Kusakabe, Koichi

    2012-02-01

    Low-lying magnon dispersion in a S=1 Heisenberg antiferromagnetic (AF) chain with boundary S/2 spins coupling antiferromagnetically (Jend> 0) is analyzed by use of the non-Abelian DMRG method. The Haldane gap δ, the magnon velocity v, the inter-magnon scattering length a, and the scattering length ab of the boundary coupling are evaluated. The length ab, which represents the contribution of boundary effects, depends on Jend drastically, while δ, v, and a are constant irrespective of Jend. Our method estimates the gap of the S=2 AF chain as δ= 0.0891623(9) using a chain length up to 2048, which is longer than the correlation length.

  3. Direct band gap silicon allotropes.

    PubMed

    Wang, Qianqian; Xu, Bo; Sun, Jian; Liu, Hanyu; Zhao, Zhisheng; Yu, Dongli; Fan, Changzeng; He, Julong

    2014-07-16

    Elemental silicon has a large impact on the economy of the modern world and is of fundamental importance in the technological field, particularly in solar cell industry. The great demand of society for new clean energy and the shortcomings of the current silicon solar cells are calling for new materials that can make full use of the solar power. In this paper, six metastable allotropes of silicon with direct or quasidirect band gaps of 0.39-1.25 eV are predicted by ab initio calculations at ambient pressure. Five of them possess band gaps within the optimal range for high converting efficiency from solar energy to electric power and also have better optical properties than the Si-I phase. These Si structures with different band gaps could be applied to multiple p-n junction photovoltaic modules.

  4. ABORT GAP CLEANING IN RHIC.

    SciTech Connect

    DREES,A.; AHRENS,L.; III FLILLER,R.; GASSNER,D.; MCINTYRE,G.T.; MICHNOFF,R.; TRBOJEVIC,D.

    2002-06-03

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance.

  5. Folk Belief Theory, the Rigor Gap, and the Achievement Gap

    ERIC Educational Resources Information Center

    Torff, Bruce

    2014-01-01

    Folk belief theory is suggested as a primary cause for the persistence of the achievement gap. In this research-supported theory, culturally specified folk beliefs about learning and teaching prompt educators to direct more rigorous curriculum to high-advantage students but not to low-advantage students, resulting in impoverished pedagogy in…

  6. Minority Gaps Smaller in Some Pentagon Schools. The Achievement Gap.

    ERIC Educational Resources Information Center

    Viadero, Debra

    2000-01-01

    This third in a four-part series on why academic achievement gaps exist explains how U.S. Department of Defense schools for children of military families offer lessons on how to raise academic achievement among minority students. Minority students in these schools do better than their counterparts almost anywhere in the United States on…

  7. Experimental Study on Electrical Breakdown for Devices with Micrometer Gaps

    NASA Astrophysics Data System (ADS)

    Meng, Guodong; Cheng, Yonghong; Dong, Chengye; Wu, Kai

    2014-12-01

    The understanding of electrical breakdown in atmospheric air across micrometer gaps is critically important for the insulation design of micro & nano electronic devices. In this paper, planar aluminum electrodes with gaps ranging from 2 μm to 40 μm were fabricated by microelectromechanical system technology. The influence factors including gap width and surface dielectric states were experimentally investigated using the home-built test and measurement system. Results showed that for SiO2 layers the current sustained at 2-3 nA during most of the pre-breakdown period, and then rose rapidly to 10-30 nA just before breakdown due to field electron emission, followed by the breakdown. The breakdown voltage curves demonstrated three stages: (1) a constantly decreasing region (the gap width d < 5 μm), where the field emission effect played an important role just near breakdown, supplying enough initial electrons for the breakdown process; (2) a plateau region with a near constant breakdown potential (5 μm < d < 10 μm) (3) a region for large gaps that adhered to Paschen's curve (d > 10 μm). And the surface dielectric states including the surface resistivity and secondary electron yield were verified to be related to the propagation of discharge due to the interaction between initial electrons and dielectrics.

  8. The AIRES Optical Design

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    AIRES (Airborne InfraRed Echelle Spectrometer) is the facility spectrometer for SOFIA (Stratospheric Observatory For Infrared Astronomy). AIRES is a long-slit (approximately 160 in) spectrometer designed to cover the 17 to 210-micron range with good sensitivity using three spectroscopic arrays. Initially, only the 30-130 micron, mid-wavelength array will be available. The instrument has a cryogenic K-mirror to perform field rotation and a slit-viewing camera (lambda < 28 microns, FOV = 160 in diameter) to image source morphology and verify telescope pointing. AIRES employs a large echelle grating to achieve a spectral resolving power (lambda/delta lambda) of approximately 1.0 x 10(exp 6)/lambda (sub mu), where lambda (sub mu) is the wavelength in microns. Hyperfine, Inc. has ruled and tested the AIRES' echelle; its wave-front error is 0.028 waves RMS (root mean square) at 10.6 microns. The instrument is housed in a liquid-helium cryostat which is constrained in diameter (approximately 1 m) and length (approximately 2 m) by the observatory. Hence, the length of the echelle (approximately 1.1 m) and the focal length of its collimator (approximately 5.2 m) severely drive the optical design and packaging. The final design uses diamond-turned aluminum optics and has up to 19 reflections inside the cryostat, depending on the optical path. This design was generated, optimized, and toleranced using Code V. The predicted performance is nearly diffraction-limited at 17 microns; the error budget is dominated by design residuals. Light loss due to slit rotation and slit curvature has been minimized. A thorough diffraction analysis with GLAD (G-Level Analysis Drawer) was used to size the mirrors and baffles; the internal light loss is shown to be a strong function of slit width.

  9. Telomere length in Hepatitis C.

    PubMed

    Kitay-Cohen, Y; Goldberg-Bittman, L; Hadary, R; Fejgin, M D; Amiel, A

    2008-11-01

    Telomeres are nucleoprotein structures located at the termini of chromosomes that protect the chromosomes from fusion and degradation. Hepatocyte cell-cycle turnover may be a primary mechanism of telomere shortening in hepatitis C virus (HCV) infection, inducing fibrosis and cellular senescence. HCV infection has been recognized as potential cause of B-cell lymphoma and hepatocellular carcinoma. The present study sought to assess relative telomere length in leukocytes from patients with chronic HCV infection, patients after eradication of HCV infection (in remission), and healthy controls. A novel method of manual evaluation was applied. Leukocytes derived from 22 patients with chronic HCV infection and age- and sex-matched patients in remission and healthy control subjects were subjected to a fluorescence-in-situ protocol (DAKO) to determine telomere fluorescence intensity and number. The relative, manual, analysis of telomere length was validated against findings on applied spectral imaging (ASI) in a random sample of study and control subjects. Leukocytes from patients with chronic HCV infection had shorter telomeres than leukocytes from patients in remission and healthy controls. On statistical analysis, more cells with low signal intensity on telomere FISH had shorter telomeres whereas more cells with high signal intensity had longer telomeres. The findings were corroborated by the ASI telomere software. Telomere shortening in leukocytes from patients with active HCV infection is probably due to the lower overall telomere level rather than higher cell cycle turnover. Manual evaluation is an accurate and valid method of assessing relative telomere length between patients with chronic HCV infection and healthy subjects. PMID:18992639

  10. Acoustic Band Gap Formation in Two-Dimensional Locally Resonant Sonic Crystals Comprised of Helmholtz Resonators

    NASA Astrophysics Data System (ADS)

    Chalmers, L.; Elford, D. P.; Kusmartsev, F. V.; Swallowe, G. M.

    2010-12-01

    We present a new type of sonic crystal technology offering a novel method of achieving broad acoustic band gaps. The proposed design of a locally resonating sonic crystal (LRSC) is constructed from "C"-shaped Helmholtz resonators as opposed to traditional solid scattering units. This unique construction enables a two band gap system to be generated in which the first -- a Bragg type band gap, arises due to the periodic nature of the crystal, whilst the second gap results from resonance of the air column within the resonators. The position of this secondary band gap is found to be dependent upon the dimensions of the resonating cavity. The band gap formation is investigated theoretically using finite element methods, and confirmed through experimental testing. It is noted that the resonance band gaps detected cover a much broader frequency range (in the order of kHz) than has been achieved to date. In addition the possibility of overlapping such a wide band gap with the characteristic Bragg gap generated by the structure itself could yield gaps of even greater range. A design of sonic crystal is proposed, that comprises of several resonators with differing cavity sizes. Such a structure generates multiple resonance gaps corresponding to the various resonator sizes, which may be overlapped to form yet larger band gaps. This multiple resonance gap system can occur in two configurations. Firstly a simple mixed array can be created by alternating resonator sizes in the array and secondly using a System coined the Matryoshka (Russian doll) array in which the resonators are distributed inside one another. The proposed designs of LRSC's offer a real potential for acoustic shielding using sonic crystals, as both the size and position of the band gaps generated can be controlled. This is an application which has been suggested and investigated for several years with little progress. Furthermore the frequency region attenuated by resonance is unrelated to the crystals lattice

  11. Acoustic Band Gap Formation in Two-Dimensional Locally Resonant Sonic Crystals Comprised of Helmholtz Resonators

    NASA Astrophysics Data System (ADS)

    Chalmers, L.; Elford, D. P.; Kusmartsev, F. V.; Swallowe, G. M.

    We present a new type of sonic crystal technology offering a novel method of achieving broad acoustic band gaps. The proposed design of a locally resonating sonic crystal (LRSC) is constructed from "C"-shaped Helmholtz resonators as opposed to traditional solid scattering units. This unique construction enables a two band gap system to be generated in which the first — a Bragg type band gap, arises due to the periodic nature of the crystal, whilst the second gap results from resonance of the air column within the resonators. The position of this secondary band gap is found to be dependent upon the dimensions of the resonating cavity. The band gap formation is investigated theoretically using finite element methods, and confirmed through experimental testing. It is noted that the resonance band gaps detected cover a much broader frequency range (in the order of kHz) than has been achieved to date. In addition the possibility of overlapping such a wide band gap with the characteristic Bragg gap generated by the structure itself could yield gaps of even greater range. A design of sonic crystal is proposed, that comprises of several resonators with differing cavity sizes. Such a structure generates multiple resonance gaps corresponding to the various resonator sizes, which may be overlapped to form yet larger band gaps. This multiple resonance gap system can occur in two configurations. Firstly a simple mixed array can be created by alternating resonator sizes in the array and secondly using a system coined the Matryoshka (Russian doll) array in which the resonators are distributed inside one another. The proposed designs of LRSC's offer a real potential for acoustic shielding using sonic crystals, as both the size and position of the band gaps generated can be controlled. This is an application which has been suggested and investigated for several years with little progress. Furthermore the frequency region attenuated by resonance is unrelated to the crystals

  12. The NIST Length Scale Interferometer

    PubMed Central

    Beers, John S.; Penzes, William B.

    1999-01-01

    The National Institute of Standards and Technology (NIST) interferometer for measuring graduated length scales has been in use since 1965. It was developed in response to the redefinition of the meter in 1960 from the prototype platinum-iridium bar to the wavelength of light. The history of the interferometer is recalled, and its design and operation described. A continuous program of modernization by making physical modifications, measurement procedure changes and computational revisions is described, and the effects of these changes are evaluated. Results of a long-term measurement assurance program, the primary control on the measurement process, are presented, and improvements in measurement uncertainty are documented.

  13. The Length of Time's Arrow

    SciTech Connect

    Feng, Edward H.; Crooks, Gavin E.

    2008-08-21

    An unresolved problem in physics is how the thermodynamic arrow of time arises from an underlying time reversible dynamics. We contribute to this issue by developing a measure of time-symmetry breaking, and by using the work fluctuation relations, we determine the time asymmetry of recent single molecule RNA unfolding experiments. We define time asymmetry as the Jensen-Shannon divergencebetween trajectory probability distributions of an experiment and its time-reversed conjugate. Among other interesting properties, the length of time's arrow bounds the average dissipation and determines the difficulty of accurately estimating free energy differences in nonequilibrium experiments.

  14. Discontinuous Tapered Surface Plasmon Polariton Waveguides with Gap.

    PubMed

    Lee, Dong Hun; Lee, Myung-Hyun

    2016-06-01

    We investigate characteristics of discontinuous tapered surface plasmon polariton waveguides with a gap (DTG-SPPWs) to control a guided surface plasmon polariton (SPP) at a telecommunication wavelength of 1.55 μm. The DTG-SPPWs are composed of an input 2 μm-wide and 10 μm-long reverse tapered IMI-W (RT-IMI-W) and a 10 μm-long tapered and output 2 μm-wide IMI-W (T-IMI-W) with the 8 μm-long gap. The width and length of the tapered regions in the RT-IMI-W and the T-IMI-W were varied from 2 to 10 μm and 1 to 8 μm, respectively. Gold is used as the metal in the insulator-metal-insulator waveguides (IMI-Ws). The thickness of the gold strips is fixed with 20 nm. A low-loss polymer is used for the 30 μm-thick upper and lower cladding layers. The coupling losses of the DTG-SPPWs are less than 0.055 dB with an 8 μm-long gap and various taper widths up to 10 μm. The normalized transmissions (NTs) of the DTG-SPPWs are less than about -0.060 dB with various taper widths up to 10 μm. The NTs of the DTG-SPPWs are less than about -0.069 dB with various taper lengths up to 8 μm. The maximum NT of about -0.042 dB was obtained using the 6 μm-wide taper width and the 3 μm-long taper length in the DTG-SPPW. The DTG-SPPWs have potential as a new plasmonic modulation device via control of the guided SPP through interaction with an applied force in the gap. PMID:27427702

  15. Ab-initio study of structural, electronic, and transport properties of zigzag GaP nanotubes.

    PubMed

    Srivastava, Anurag; Jain, Sumit Kumar; Khare, Purnima Swarup

    2014-03-01

    Stability and electronic properties of zigzag (3 ≤ n ≤ 16) gallium phosphide nanotubes (GaP NTs) have been analyzed by employing a systematic ab-intio approach based on density functional theory using generalized gradient approximation with revised Perdew Burke Ernzerhoff type parameterization. Diameter dependence of bond length, buckling, binding energy, and band gap has been investigated and the analysis shows that the bond length and buckling decreases with increasing diameter of the tube, highest binding energy of (16, 0) confirms this as the most stable amongst all the NTs taken into consideration. The present GaP NTs shows direct band gap and it increases with diameter of the tubes. Using a two probe model for (4, 0) NT the I-V relationship shows an exponential increase in current on applying bias voltage beyond 1.73 volt.

  16. Tunable gaps and enhanced mobilities in strain-engineered silicane

    SciTech Connect

    Restrepo, Oscar D.; Mishra, Rohan; Windl, Wolfgang; Goldberger, Joshua E.

    2014-01-21

    The recent demonstration of single-atom thick, sp{sup 3}-hybridized group 14 analogues of graphene enables the creation of materials with electronic structures that are manipulated by the nature of the covalently bound substituents above and below the sheet. These analogues can be electronically derived from isolated (111) layers of the bulk diamond lattice. Here, we perform systematic Density Functional Theory calculations to understand how the band dispersions, effective masses, and band gaps change as the bulk silicon (111) layers are continuously separated from each other until they are electronically isolated, and then passivated with hydrogen. High-level calculations based on HSE06 hybrid functionals were performed on each endpoint to compare directly with experimental values. We find that the change in the electronic structure due to variations in the Si-H bond length, Si-Si-Si bond angle, and most significantly the Si-Si bond length can tune the nature of the band gap from indirect to direct with dramatic effects on the transport properties. First-principles calculations of the phonon-limited electron mobility predict a value of 464 cm{sup 2}/Vs for relaxed indirect band gap Si-H monolayers at room temperature. However, for 1.6% tensile strain, the band gap becomes direct, which increases the mobility significantly (8 551 cm{sup 2}/Vs at 4% tensile strain). In total, this analysis of Si-based monolayers suggests that strain can change the nature of the band gap from indirect to direct and increase the electron mobility more than 18-fold.

  17. Theory and Experiments on Supersonic Air-to-Air Ejectors.

    NASA Technical Reports Server (NTRS)

    Fabri, J; Paulon, J

    1958-01-01

    A comparison of experiment with theory is made for air ejectors having cylindrical mixing sections and operating under conditions of supersonic primary flow and either mixed or supersonic regimes of mixing. The effect on ejector performance of such parameters as mixer length and cross section, terminating diffuser, primary Mach number, and primary nozzle position is presented in terms of mass flow and pressure ratio.

  18. NMR Measures of Heterogeneity Length

    NASA Astrophysics Data System (ADS)

    Spiess, Hans W.

    2002-03-01

    Advanced solid state NMR spectroscopy provides a wealth of information about structure and dynamics of complex systems. On a local scale, multidimensional solid state NMR has elucidated the geometry and the time scale of segmental motions at the glass transition. The higher order correlation functions which are provided by this technique led to the notion of dynamic heterogeneities, which have been characterized in detail with respect to their rate memory and length scale. In polymeric and low molar mass glass formers of different fragility, length scales in the range 2 to 4 nm are observed. In polymeric systems, incompatibility of backbone and side groups as in polyalkylmethacrylates leads to heteogeneities on the nm scale, which manifest themselves in unusual chain dynamics at the glass transition involving extended chain conformations. References: K. Schmidt-Rohr and H.W. Spiess, Multidimensional Solid-State NMR and Polymers,Academic Press, London (1994). U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 81, 2727 (1998). S.A. Reinsberg, X.H. Qiu, M. Wilhelm, M.D. Ediger, H.W. Spiess, J.Chem.Phys. 114, 7299 (2001). S.A. Reinsberg, A. Heuer, B. Doliwa, H. Zimmermann, H.W. Spiess, J. Non-Crystal. Solids, in press (2002)

  19. The Racial Academic Achievement Gap

    ERIC Educational Resources Information Center

    Green, Toneka M.

    2008-01-01

    Closing the racial academic achievement gap is a problem that must be solved in order for future society to properly function. Minorities including African-American and Latino students' standardized test scores are much lower than white students. By the end of fourth grade, African American, Latino, and poor students of all races are two years…

  20. Closing the Teacher Quality Gap

    ERIC Educational Resources Information Center

    Haycock, Kati; Crawford, Candace

    2008-01-01

    Schools and districts rarely have a fair distribution of teacher talent. Poor children and black children are less likely to be taught by the strongest teachers and more likely to be taught by the weakest. Several districts have implemented programs to reduce the teacher quality gap. Hamilton County, Tennessee, launched an initiative that included…

  1. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  2. The Widening Income Achievement Gap

    ERIC Educational Resources Information Center

    Reardon, Sean F.

    2013-01-01

    Has the academic achievement gap between high-income and low-income students changed over the last few decades? If so, why? And what can schools do about it? Researcher Sean F. Reardon conducted a comprehensive analysis of research to answer these questions and came up with some striking findings. In this article, he shows that income-related…

  3. Multiple input electrode gap controller

    DOEpatents

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  4. Multiple input electrode gap controller

    DOEpatents

    Hysinger, Christopher L.; Beaman, Joseph J.; Melgaard, David K.; Williamson, Rodney L.

    1999-01-01

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows.

  5. Coulomb gap at finite temperatures

    NASA Astrophysics Data System (ADS)

    Sarvestani, Masoud; Schreiber, Michael; Vojta, Thomas

    1995-08-01

    The Coulomb glass, a model of interacting localized electrons in a random potential, exhibits a soft gap, the Coulomb gap, in the single-particle density of states (DOS) g(ɛ,T) close to the chemical potential μ. In this paper we investigate the Coulomb gap at finite temperatures T by means of a Monte Carlo method. We find that the Coulomb gap fills with increasing temperature. In contrast to previous results the temperature dependence is, however, much stronger than g(μ,T)~TD-1 as predicted analytically. It can be described by power laws with the exponents 1.75+/-0.1 for the two-dimensional model and 2.7+/-0.1 for the three-dimensional model. Nevertheless, the relation g(μ,T)~g(ɛ,T=0) with ||ɛ-μ||=kBT seems to be valid, since energy dependence of the DOS at low temperatures has also been found to follow power laws with these exponents.

  6. Closing the Gaps. Research Brief

    ERIC Educational Resources Information Center

    Johnston, Howard

    2011-01-01

    Achievement gaps between groups of students (minority and white, rich and poor, English speakers and English language learners) are complex and intractable. Increasingly, they are being seen as a result of disparities between opportunities for learning available to different groups. By changing the opportunity structures of schools and…

  7. Brain Responses to Filled Gaps

    ERIC Educational Resources Information Center

    Hestvik, Arild; Maxfield, Nathan; Schwartz, Richard G.; Shafer, Valerie

    2007-01-01

    An unresolved issue in the study of sentence comprehension is whether the process of gap-filling is mediated by the construction of empty categories (traces), or whether the parser relates fillers directly to the associated verb's argument structure. We conducted an event-related potentials (ERP) study that used the violation paradigm to examine…

  8. The effect of reduced air density on streamer-to-leader transition and on properties of long positive leader

    NASA Astrophysics Data System (ADS)

    Bazelyan, E. M.; Raizer, Yu P.; Aleksandrov, N. L.

    2007-07-01

    New results of observations of the leader process in a pressure chamber are presented for reduced air pressures. The analysis of these data and observations of the leader discharge in peak regions shows that the length of the leader tip and some other characteristics vary by several times as pressure decreases from 1 to 0.3 atm, whereas, under the conditions considered, the leader velocity remains almost independent of air density, the leader current being the same. These data are used to extract relationships between discharge parameters. It is shown that, at reduced air densities, electric field in a 'young' section of the leader channel exceeds electric field in the streamer zone. Therefore, transition of the leader process to the final-jump phase is not inevitably followed by a breakdown of the gap for reduced pressures, as opposed to the discharge in atmospheric pressure air. The model suggested previously by the authors for the streamer-to- leader transition at atmospheric pressure is amended to take into account hydrodynamic expansion of the channel and used to simulate the process at a relative air density of 0.3. The calculated results are used to interpret the observations of the leader process at reduced air pressures.

  9. Gaps"

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    This study investigated the effect of daily quizzes on the performance of college students. Students in an introductory psychology course used their own wireless-enabled devices to take short Internet-based quizzes at the beginning of every class. The quiz items were drawn approximately equally from material covered in the readings and the…

  10. The healing lengths in two-band superconductors in extended Ginzburg-Landau theory

    NASA Astrophysics Data System (ADS)

    Komendová, L.; Shanenko, A. A.; Milošević, M. V.; Peeters, F. M.

    2012-09-01

    We study the vortex profiles in two-gap superconductors using the extended Ginzburg-Landau theory. The results shed more light on the disparity between the effective length scales in two bands. We compare the behavior expected from the standard Ginzburg-Landau theory with this new approach, and find good qualitative agreement in the case of LiFeAs.

  11. Geometry of area without length

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming; Inami, Takeo

    2016-01-01

    To define a free string by the Nambu-Goto action, all we need is the notion of area, and mathematically the area can be defined directly in the absence of a metric. Motivated by the possibility that string theory admits backgrounds where the notion of length is not well defined but a definition of area is given, we study space-time geometries based on the generalization of a metric to an area metric. In analogy with Riemannian geometry, we define the analogues of connections, curvatures, and Einstein tensor. We propose a formulation generalizing Einstein's theory that will be useful if at a certain stage or a certain scale the metric is ill defined and the space-time is better characterized by the notion of area. Static spherical solutions are found for the generalized Einstein equation in vacuum, including the Schwarzschild solution as a special case.

  12. An RF bunch length monitor for the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D.

    1997-05-01

    In preparation for the 1997 SLC run, a novel RF bunch-length monitor has been installed in the SLC South Final Focus. The monitor consists of a ceramic gap in the beam pipe, a 160-ft long X-band waveguide (WR90), and a set of dividers, tapers and microwave detectors. Electromagnetic fields radiated through the ceramic gap excite modes in the nearby open-ended X-band waveguide, which transmits the beam-induced signal to a radiation-free shack outside of the beamline vault. There, a combination of power dividers, tapers, waveguides, and crystal detectors is used to measure the signal power in 4 separate frequency channels between 7 and 110 GHz. For typical rms bunch lengths of 0.5-2 mm in the SLC, the bunch frequency spectrum can extend up to 100 GHz. In this paper, the authors present the overall monitor layout, describe MAFIA calculations of the signal coupled into the waveguide based on a detailed model of the complex beam-pipe geometry, estimate the final power level at the RF conversion points, and report the measured transmission properties of the installed waveguide system.

  13. 103. North Carolina Route 1130 grade separation structure at Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. North Carolina Route 1130 grade separation structure at Air Bellows Gap. Elevation view of concrete slab bridge built in 1937. Looking southeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  14. 105. North Carolina Route 1130 grade separation structure at Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    105. North Carolina Route 1130 grade separation structure at Air Bellows Gap. View showing the access road from the parkway. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  15. 104. North Carolina Route 1130 grade separation structure at Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    104. North Carolina Route 1130 grade separation structure at Air Bellows Gap. Detail of the stepped wing wall. Looking southwest. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  16. Emplacement Gantry Gap Analysis Study

    SciTech Connect

    R. Thornley

    2005-05-27

    To date, the project has established important to safety (ITS) performance requirements for structures, systems, and components (SSCs) based on the identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Bases for License Application'' (NSDB) (BSC 2005 [DIRS 171512], Table A-11). Further, SSCs credited with performing safety functions are classified as ITS. In turn, assurance that these SSCs will perform as required is sought through the use of consensus codes and standards. This gap analysis is based on the design completed for license application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and final selection will not be determined until further design development has occurred. Therefore, for completeness, alternative designs currently under consideration will be discussed throughout this study. This gap analysis will evaluate each code and standard identified within the ''Emplacement Gantry ITS Standards Identification Study'' (BSC 2005 [DIRS 173586]) to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied, a gap is highlighted. This study will identify requirements to supplement or augment the code or standard to meet performance requirements. Further, this gap analysis will identify nonstandard areas of the design that will be subject to a design development plan. Nonstandard components and nonstandard design configurations are defined as areas of the design that do not follow standard industry practices or codes and standards. Whereby, assurance that an SSC will perform as required may not be readily sought though the use of consensus standards. This

  17. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  18. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  19. Does a global DNA barcoding gap exist in Annelida?

    PubMed

    Kvist, Sebastian

    2016-05-01

    Accurate identification of unknown specimens by means of DNA barcoding is contingent on the presence of a DNA barcoding gap, among other factors, as its absence may result in dubious specimen identifications - false negatives or positives. Whereas the utility of DNA barcoding would be greatly reduced in the absence of a distinct and sufficiently sized barcoding gap, the limits of intraspecific and interspecific distances are seldom thoroughly inspected across comprehensive sampling. The present study aims to illuminate this aspect of barcoding in a comprehensive manner for the animal phylum Annelida. All cytochrome c oxidase subunit I sequences (cox1 gene; the chosen region for zoological DNA barcoding) present in GenBank for Annelida, as well as for "Polychaeta", "Oligochaeta", and Hirudinea separately, were downloaded and curated for length, coverage and potential contaminations. The final datasets consisted of 9782 (Annelida), 5545 ("Polychaeta"), 3639 ("Oligochaeta"), and 598 (Hirudinea) cox1 sequences and these were either (i) used as is in an automated global barcoding gap detection analysis or (ii) further analyzed for genetic distances, separated into bins containing intraspecific and interspecific comparisons and plotted in a graph to visualize any potential global barcoding gap. Over 70 million pairwise genetic comparisons were made and results suggest that although there is a tendency towards separation, no distinct or sufficiently sized global barcoding gap exists in either of the datasets rendering future barcoding efforts at risk of erroneous specimen identifications (but local barcoding gaps may still exist allowing for the identification of specimens at lower taxonomic ranks). This seems to be especially true for earthworm taxa, which account for fully 35% of the total number of interspecific comparisons that show 0% divergence.

  20. Gap Test Calibrations and Their Scaling

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2011-06-01

    Common tests for measuring the threshold for shock initiation are the NOL large scale gap test (LSGT) with a 50.8-mm diameter donor/gap and the expanded large scale gap test (ELSGT) with a 95.3-mm diameter donor/gap. Despite the same specifications for the explosive donor and polymethyl methacrylate (PMMA) gap in both tests, calibration of shock pressure in the gap versus distance from the donor scales by a factor of 1.75, not the 1.875 difference in their sizes. Recently reported model calculations suggest that the scaling discrepancy results from the viscoelastic properties of PMMA in combination with different methods for obtaining shock pressure. This is supported by the consistent scaling of these donors when calibrated in water-filled aquariums. Calibrations with water gaps will be provided and compared with PMMA gaps. Scaling for other donor systems will also be provided. Shock initiation data with water gaps will be reviewed.

  1. Band gap engineering in silicene: A theoretical study of density functional tight-binding theory

    NASA Astrophysics Data System (ADS)

    Zaminpayma, Esmaeil; Nayebi, Payman

    2016-10-01

    In this work, we performed first principles calculations based on self-consistent charge density functional tight-binding to investigate different mechanisms of band gap tuning of silicene. We optimized structures of silicene sheet, functionalized silicene with H, CH3 and F groups and nanoribbons with the edge of zigzag and armchair. Then we calculated electronic properties of silicene, functionalized silicene under uniaxial elastic strain, silicene nanoribbons and silicene under external electrical fields. It is found that the bond length and buckling value for relaxed silicene is agreeable with experimental and other theoretical values. Our results show that the band gap opens by functionalization of silicene. Also, we found that the direct band gap at K point for silicene changed to the direct band gap at the gamma point. Also, the functionalized silicene band gap decrease with increasing of the strain. For all sizes of the zigzag silicene nanoribbons, the band gap is near zero, while an oscillating decay occurs for the band gap of the armchair nanoribbons with increasing the nanoribbons width. At finally, it can be seen that the external electric field can open the band gap of silicene. We found that by increasing the electric field magnitude the band gap increases.

  2. Design and fabrication of long focal length microlens arrays

    NASA Astrophysics Data System (ADS)

    Hsieh, Hsin-Ta; Lin, Vinna; Hsieh, Jo-Lan; Su, Guo-Dung John

    2011-10-01

    In this paper, we present microlens arrays (MLA) with long focal length (in millimeter range) based on thermal reflow process. The focal length of microlens is usually in the same order of lens diameter or several hundred microns. To extend focal length, we made a photoresist (SU-8) MLA covered by a Polydimethylsiloxane (PDMS) film on a glass substrate. Because the refractive index difference between PDMS and photoresist interface is lower than that of air and MLA interface, light is less bended when passing through MLA and is focused at longer distance. Microlenses of diameters from 50 μm to 240 μm were successfully fabricated. The longest focal length was 2.1 mm from the microlens of 240 μm diameter. The numerical aperture (NA) was reduced 0.06, which is much lower than the smallest NA (~ 0.15) by regular thermal reflow processes. Cured PDMS has high transmittance and becomes parts of MLA without too much optical power loss. Besides, other focal lengths can be realized by modifying the refractive index different between two adjacent materials as described in this paper.

  3. Sub-micron gap in-plane micromechanical resonators based on low-temperature amorphous silicon thin-films on glass substrates

    NASA Astrophysics Data System (ADS)

    Gualdino, A.; Gaspar, J.; Chu, V.; Conde, J. P.

    2015-07-01

    In this work, high-frequency bulk mode resonators made from low stress hydrogenated amorphous silicon (a-Si:H) thin-films are demonstrated. The microelectromechanical structures are fabricated using surface micromachining techniques at a maximum processing temperature of 175 °C on glass substrates. The silicon thin-film based resonators presented here are temperature compatible with post processing on standard CMOS. The resonators are capacitively driven and sensed across 400 nm air gaps. A proof of concept design consisting of a 200 µm side length square has been selectively excited in the Lamé-mode at a characteristic vibration frequency of 13.64 MHz. The quality factor of the resonators is in the 103 range and the motional resistance was measured to be approximately 21.8 MΩ at a DC bias voltage of 40 V.

  4. Aerodynamic heating in gaps of thermal protection system tile arrays in laminar and turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Avery, D. E.

    1978-01-01

    An experimental heat-transfer investigation was conducted on two staggered arrays of metallic tiles in laminar and turbulent boundary layers. This investigation was conducted for two purposes. The impingement heating distribution where flow in a longitudinal gap intersects a transverse gap and impinges on a downstream blocking tile was defined. The influence of tile and gap geometries was analyzed to develop empirical relationships for impingement heating in laminar and turbulent boundary layers. Tests were conducted in a high temperature structures tunnel at a nominal Mach number of 7, a nominal total temperature of 1800 K, and free-stream unit Reynolds numbers from 1.0 x 10 million to 4.8 x 10 million per meter. The test results were used to assess the impingement heating effects produced by parameters that include gap width, longitudinal gap length, slope of the tile forward-facing wall, boundary-layer displacement thickness, Reynolds number, and local surface pressure.

  5. Reducing the effect of the gap between a ferromagnetic testpiece and a rod electromagnet

    SciTech Connect

    Fedorishcheva, E.E.; Chernova, G.S.; Tabachnik, V.P.

    1986-05-01

    The possibilities are considered of reducing the effect of the air gap between the pole of a rod electromagnet and the testpiece on the results of magnetic flaw detection. It is shown that magnetizing the testpiece at constant induction in the field of the electromagnet greatly reduces the effect of the gap on the components of the residual magnetic field at the surface of the testpiece.

  6. p190RhoGAP has cellular RacGAP activity regulated by a polybasic region.

    PubMed

    Lévay, Magdolna; Bartos, Balázs; Ligeti, Erzsébet

    2013-06-01

    p190RhoGAP is a GTPase-activating protein (GAP) known to regulate actin cytoskeleton dynamics by decreasing RhoGTP levels through activation of the intrinsic GTPase activity of Rho. Although the GAP domain of p190RhoGAP stimulates the intrinsic' GTPase activity of several Rho family members (Rho, Rac, Cdc42) under in vitro conditions, p190RhoGAP is generally regarded as a GAP for RhoA in the cell. The cellular RacGAP activity of the protein has not been proven directly. We have previously shown that the in vitro RacGAP and RhoGAP activity of p190RhoGAP was inversely regulated through a polybasic region of the protein. Here we provide evidence that p190RhoGAP shows remarkable GAP activity toward Rac also in the cell. The cellular RacGAP activity of p190RhoGAP requires an intact polybasic region adjacent to the GAP domain whereas the RhoGAP activity is inhibited by the same domain. Our data indicate that through its alternating RacGAP and RhoGAP activity, p190RhoGAP plays a more complex role in the Rac-Rho antagonism than it was realized earlier.

  7. The Anion Gap is a Predictive Clinical Marker for Death in Patients with Acute Pesticide Intoxication.

    PubMed

    Lee, Sun-Hyo; Park, Samel; Lee, Jung-Won; Hwang, Il-Woong; Moon, Hyung-Jun; Kim, Ki-Hwan; Park, Su-Yeon; Gil, Hyo-Wook; Hong, Sae-Yong

    2016-07-01

    Pesticide formulation includes solvents (methanol and xylene) and antifreeze (ethylene glycol) whose metabolites are anions such as formic acid, hippuric acid, and oxalate. However, the effect of the anion gap on clinical outcome in acute pesticide intoxication requires clarification. In this prospective study, we compared the anion gap and other parameters between surviving versus deceased patients with acute pesticide intoxication. The following parameters were assessed in 1,058 patients with acute pesticide intoxication: blood chemistry (blood urea nitrogen, creatinine, glucose, lactic acid, liver enzymes, albumin, globulin, and urate), urinalysis (ketone bodies), arterial blood gas analysis, electrolytes (Na(+), K(+), Cl(-) HCO3 (-), Ca(++)), pesticide field of use, class, and ingestion amount, clinical outcome (death rate, length of hospital stay, length of intensive care unit stay, and seriousness of toxic symptoms), and the calculated anion gap. Among the 481 patients with a high anion gap, 52.2% had a blood pH in the physiologic range, 35.8% had metabolic acidosis, and 12.1% had acidemia. Age, anion gap, pesticide field of use, pesticide class, seriousness of symptoms (all P < 0.001), and time lag after ingestion (P = 0.048) were significant risk factors for death in univariate analyses. Among these, age, anion gap, and pesticide class were significant risk factors for death in a multiple logistic regression analysis (P < 0.001). In conclusions, high anion gap is a significant risk factor for death, regardless of the accompanying acid-base balance status in patients with acute pesticide intoxication.

  8. Experimental and Theoretical Studies of Photonic Band gaps in Artificial Opals

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yin, Ming; Arammash, Fouzi; Datta, Timir

    2014-03-01

    Photonic band structure and band gap were numerically computed for a number of closed packed simple cubic and Hexagonal arrangements of non-conducting spheres using ``Finite Difference Time Domain Method''. Photonic gaps were found to exist in the simple cubic overlapping spheres with index of refraction (n) >3.2. Gap increased linearly from 0.117- 0.161 (1/micron) as lattice constant decreased from 0.34 to 0.18 (micron). For less than 3.2 no gap was obtained. Also, no gaps were obtained for hexagonal packing. UV-VIS reflectivity and transmission measurements of polycrystalline bulk artificial opals of silica (SiO2) spheres, ranging from 250nm to 300nm in sphere diameter indicate a reflection peak in the 500-600 nm regimes. Consistent with photonic band gap behavior we find that reflectivity is enhanced in the same wavelength where transmission is reduced. To the best of our knowledge this is the first observation of photonic gap in the visible wave length under ambient conditions. The wave length at the reflectance peak increases with the diameter of the SiO2 spheres, and is approximately twice the diameter following Bragg reflection. DOD Award No 60177-RT-H from ARO.

  9. Electronic gap sensor and method

    DOEpatents

    Williams, Robert S.; King, Edward L.; Campbell, Steven L.

    1991-01-01

    An apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces.

  10. Electronic gap sensor and method

    DOEpatents

    Williams, R.S.; King, E.L.; Campbell, S.L.

    1991-08-06

    Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.

  11. Homolumo gap and matrix model

    SciTech Connect

    Andric, I.; Jonke, L.; Jurman, D.; Nielsen, H. B.

    2008-06-15

    We discuss a dynamical matrix model by which probability distribution is associated with Gaussian ensembles from random matrix theory. We interpret the matrix M as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show that a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest occupied eigenvalue and the lowest unoccupied eigenvalue.

  12. Circumferential gap propagation in an anisotropic elastic bacterial sacculus

    NASA Astrophysics Data System (ADS)

    Taneja, Swadhin; Levitan, Benjamin A.; Rutenberg, Andrew D.

    2014-01-01

    We have modeled stress concentration around small gaps in anisotropic elastic sheets, corresponding to the peptidoglycan sacculus of bacterial cells, under loading corresponding to the effects of turgor pressure in rod-shaped bacteria. We find that under normal conditions the stress concentration is insufficient to mechanically rupture bacteria, even for gaps up to a micron in length. We then explored the effects of stress-dependent smart autolysins, as hypothesized by A. L. Koch [Adv. Microb. Physiol. 24, 301 (1983), 10.1016/S0065-2911(08)60388-4; Res. Microbiol. 141, 529 (1990), 10.1016/0923-2508(90)90017-K]. We show that the measured anisotropic elasticity of the peptidoglycan (PG) sacculus can lead to stable circumferential propagation of small gaps in the sacculus. This is consistent with the recent observation of circumferential propagation of PG-associated MreB patches in rod-shaped bacteria. We also find a bistable regime of both circumferential and axial gap propagation, which agrees with behavior reported in cytoskeletal mutants of B. subtilis. We conclude that the elastic anisotropies of a bacterial sacculus, as characterized experimentally, may be relevant for maintaining rod-shaped bacterial growth.

  13. Prometheus and the Keeler gap

    NASA Astrophysics Data System (ADS)

    Tajeddine, Radwan; Nicholson, Phillip D.; Hedman, Matthew M.; French, Richard G.; Tiscareno, Matthew S.; Burns, Joseph A.

    2014-11-01

    Linblad resonances with Saturn’s satellites are located at many radii in the rings. While some cause density or bending waves, others hold gap edges from spreading, like the 2:1 resonance with Mimas located at the B-ring edge, the 7:6 resonance with Janus at the A-ring edge, and the 32:31 resonance with Prometheus at the inner edge of the Keeler gap. The latter is the case of study here.Theoretically, the inner edge of the Keeler gap should have 32 regular sinusoidal lobes, where either the maximum or the minimum radius is expected to be aligned with Prometheus and rotating with its mean motion. We show that such is not the case. Fit of occultation data shows the presence of the 32:31 resonance, however, the fit residuals is as high as the amplitude of the resonance amplitude (about 2 km). Analysis of the ISS data, shows irregularities overlapping the lobes (Tiscareno et al. 2005, DPS), that follow Keplerian motion. These irregularities may be due to clumps of particles with different eccentricities than the rest of the edge particles. This phenomenon may be caused by the resonance, as it has not been observed at other circular edges were no resonance is present at their location. The ISS data also shows that the lobe’s minimum/maximum is not perfectly aligned with the longitude of Prometheus, which may be due to libration about the centre of the resonance.

  14. The Fundamental Gap of Simplices

    NASA Astrophysics Data System (ADS)

    Lu, Zhiqin; Rowlett, Julie

    2013-04-01

    The gap function of a domain {Ω subset {R}^n} is ξ(Ω) := d^2 (λ_2 - λ_1) , where d is the diameter of Ω, and λ1 and λ2 are the first two positive Dirichlet eigenvalues of the Euclidean Laplacian on Ω. It was recently shown by Andrews and Clutterbuck (J Amer Math Soc 24:899-916, 2011) that for any convex {Ω subset {R}^n}, ξ(Ω) ≥ 3 π^2 , where the infimum occurs for n = 1. On the other hand, the gap function on the moduli space of n-simplices behaves differently. Our first theorem is a compactness result for the gap function on the moduli space of n-simplices. Next, specializing to n = 2, our second main result proves the recent conjecture of Antunes-Freitas (J Phys A: Math Theor 41(5):055201, 2008) for any triangle {T subset {R}^2}, ξ(T) ≥ 64 π^2/9 , with equality if and only if T is equilateral.

  15. Flow noise induced by small gaps in low-Mach-number turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Hao, Jin; Wang, Meng; Ji, Minsuk; Wang, Kan

    2013-11-01

    The flow-noise induced by small gaps underneath low-Mach-number turbulent boundary layers at Reθ = 4755 is studied using large-eddy simulation and Lighthill's theory. The gap leading-edge height is 13% of the boundary-layer thickness, and the gap width and trailing-edge height are varied to investigate their effects on surface-pressure fluctuations and sound generation. The maximum surface pressure fluctuations, which increase with gap width and trailing-edge height, occur at the trailing edge or near the reattachment point if there is separation from the trailing edge. The downstream recovery towards an equilibrium boundary layer is significantly faster for gap flows compared to step flows, and the recovery distance scales with the reattachment length for gaps with trailing-edge separation. The acoustic field is dominated by the forward-facing step in the gap and resembles forward-step sound for wide gaps and/or asymmetric gaps with trailing edge higher than leading edge. In these cases, the dominant acoustic source mechanisms are the impingement of the separated shear layer from the leading edge onto the trailing edge and the unsteady separation from the trailing edge, coupled with edge diffraction. For narrow and symmetric gaps, the destructive interference of sound from the leading and trailing edges causes a significant decline in low-frequency sound and thereby creates a broad spectral peak in the mid-frequency range. The effects of gap acoustic non-compactness and free-stream convection are investigated by comparing solutions based on a compact gap Green's function with those from a boundary-element calculation. They are found to be negligible at the typical hydroacoustc Mach number of 0.01, but become significant at Mach numbers as low as 0.1 and moderately high frequencies.

  16. Direct band gap wurtzite gallium phosphide nanowires.

    PubMed

    Assali, S; Zardo, I; Plissard, S; Kriegner, D; Verheijen, M A; Bauer, G; Meijerink, A; Belabbes, A; Bechstedt, F; Haverkort, J E M; Bakkers, E P A M

    2013-04-10

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555-690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality.

  17. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  18. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  19. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  20. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  1. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  2. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  3. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  4. 7 CFR 51.610 - Midrib length.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Midrib length. 51.610 Section 51.610 Agriculture... Consumer Standards for Celery Stalks Definitions § 51.610 Midrib length. Midrib length of a branch means the distance between the point of attachment to the root and the first node....

  5. 7 CFR 51.610 - Midrib length.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Midrib length. 51.610 Section 51.610 Agriculture... Consumer Standards for Celery Stalks Definitions § 51.610 Midrib length. Midrib length of a branch means the distance between the point of attachment to the root and the first node....

  6. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Hair length. 551.4 Section 551.4 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MISCELLANEOUS Grooming § 551.4 Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b)...

  7. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  8. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, Gerald J.; Roose, Lars D.

    1996-01-01

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed.

  9. Gap Year: Time off, with a Plan

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2009-01-01

    A gap year allows people to step off the usual educational or career path and reassess their future. According to people who have taken a gap year, the time away can be well worth it. This article can help a person decide whether to take a gap year and how to make the most of his time off. It describes what a gap year is, including its pros and…

  10. Urban air

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Air pollution and the risk of potential health effects are not sufficiently convincing reasons for people to stop driving their cars, according to a study by the Population Reference Bureau (PRB) released on November 18.While sufficient levels of suspended particulate matter, carbon monoxide, and lead can present health concerns, the study found that many people surveyed for the study were not convinced of the clear linkage between air pollution and health.

  11. Subgroup Achievement and Gap Trends: Oklahoma, 2010

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    This paper profiles the student subgroup achievement and gap trends in Oklahoma for 2010. Oklahoma made progress in narrowing achievement gaps for most major subgroups on the End-of-Instruction (EOI) test in Algebra I. Trends in achievement gaps could not be determined for other grades in math, or for any grades in reading, because the state…

  12. Closing the Achievement Gap: Four States' Efforts

    ERIC Educational Resources Information Center

    Wixom, Micah Ann

    2015-01-01

    The achievement gap separating economically disadvantaged students from their more advantaged peers disproportionately affects students of color and has been the focus of discussion, research and controversy for more than 40 years. While the gap between black and white students narrowed considerably from the 1950s to the 1980s, that gap has…

  13. Reducing the White-Nonwhite Achievement Gap.

    ERIC Educational Resources Information Center

    Ramey, Madelaine

    It is well documented that there continues to be a gap between white and nonwhite student achievement. A study develops and tests a measure of white-nonwhite achievement gap reduction. The ultimate purpose is to use the measure as the dependent variable in a qualitative study of what works in reducing the gap. The strategy used in addressing this…

  14. Gapping in Farsi: A Crosslinguistic Investigation

    ERIC Educational Resources Information Center

    Farudi, Annahita

    2013-01-01

    This dissertation explores a longstanding challenge in work on gapping through the empirical lens of gapping in Farsi (the Tehrani variant of Modern Persian). While gapping has much in common with more uncontroversial elliptical constructions such as VPE and sluicing, it also differs from ellipsis in ways that accounts combining TP or CP…

  15. Quantum mechanical effects in plasmonic structures with subnanometre gaps

    NASA Astrophysics Data System (ADS)

    Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G.; Baumberg, Jeremy J.; Nordlander, Peter; Lezec, Henri J.; Aizpurua, Javier; Crozier, Kenneth B.

    2016-06-01

    Metallic structures with nanogap features have proven highly effective as building blocks for plasmonic systems, as they can provide a wide tuning range of operating frequencies and large near-field enhancements. Recent work has shown that quantum mechanical effects such as electron tunnelling and nonlocal screening become important as the gap distances approach the subnanometre length-scale. Such quantum effects challenge the classical picture of nanogap plasmons and have stimulated a number of theoretical and experimental studies. This review outlines the findings of many groups into quantum mechanical effects in nanogap plasmons, and discusses outstanding challenges and future directions.

  16. Quantum mechanical effects in plasmonic structures with subnanometre gaps

    PubMed Central

    Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G.; Baumberg, Jeremy J.; Nordlander, Peter; Lezec, Henri J.; Aizpurua, Javier; Crozier, Kenneth B.

    2016-01-01

    Metallic structures with nanogap features have proven highly effective as building blocks for plasmonic systems, as they can provide a wide tuning range of operating frequencies and large near-field enhancements. Recent work has shown that quantum mechanical effects such as electron tunnelling and nonlocal screening become important as the gap distances approach the subnanometre length-scale. Such quantum effects challenge the classical picture of nanogap plasmons and have stimulated a number of theoretical and experimental studies. This review outlines the findings of many groups into quantum mechanical effects in nanogap plasmons, and discusses outstanding challenges and future directions. PMID:27255556

  17. Autoxidation of medium chain length polyhydroxyalkanoate.

    PubMed

    Schmid, Manfred; Ritter, Axel; Grubelnik, Andreas; Zinn, Manfred

    2007-02-01

    Polyhydroxyalkanoates (PHAs) are a class of biopolymers that are currently the subject of intensive research for various applications (packaging, consumer products, medical applications, etc.). It is known from synthetic polymers that all plastic materials show more or less pronounced autoxidation (aging induced by UV radiation, temperature, heavy metal ions, etc.). There is less knowledge as yet regarding the autoxidation behavior of biopolymers. The autoxidative behavior of medium chain length poly[(R)-3-hydroxyalkanoate] (mcl-PHA) was therefore investigated. mcl-PHA (co)polymers with amounts of 0, 10, 50, and 75 mol % of olefinic side chains with terminal double bonds were tempered at 60 degrees C in air for 3 months. After 1, 2, 4, 8, and 12 weeks, samples were removed and analyzed for changes in chemical and physical properties by sol-gel analysis (Soxhlet extraction), size exclusion chromatography (SEC), infrared analysis (IR), and gas chromatography/flame ionization detection (GC/FID). It became apparent that the content of double bonds greatly influences the autoxidation of mcl-PHA. A low amount of unsaturated moiety (0 and 10 mol %) resulted in chain scission, whereas samples with 50 and 75 mol % olefinic side chains showed cross-linking and became insoluble after a few weeks. Kinetic data of oxidation behavior were investigated by performing isothermal DSC experiments at elevated temperatures. The kinetic data combined with the experiment enabled the gelation time to be predicted and the shelf-life of mcl-PHA to be estimated. Because of the detected sensitivity of mcl-PHA regarding autoxidation, it is recommended that these biopolymers should be stored cold (at least -5 degrees C) and in an inert gas atmosphere or stabilized by suitable additives (antioxidants).

  18. A comparison of two methods for measuring vessel length in woody plants.

    PubMed

    Pan, Ruihua; Geng, Jing; Cai, Jing; Tyree, Melvin T

    2015-12-01

    Vessel lengths are important to plant hydraulic studies, but are not often reported because of the time required to obtain measurements. This paper compares the fast dynamic method (air injection method) with the slower but traditional static method (rubber injection method). Our hypothesis was that the dynamic method should yield a larger mean vessel length than the static method. Vessel length was measured by both methods in current year stems of Acer, Populus, Vitis and Quercus representing short- to long-vessel species. The hypothesis was verified. The reason for the consistently larger values of vessel length is because the dynamic method measures air flow rates in cut open vessels. The Hagen-Poiseuille law predicts that the air flow rate should depend on the product of number of cut open vessels times the fourth power of vessel diameter. An argument is advanced that the dynamic method is more appropriate because it measures the length of the vessels that contribute most to hydraulic flow. If all vessels had the same vessel length distribution regardless of diameter, then both methods should yield the same average length. This supports the hypothesis that large-diameter vessels might be longer than short-diameter vessels in most species. PMID:26084355

  19. Characteristic lengths affecting evaporative drying of porous media.

    PubMed

    Lehmann, Peter; Assouline, Shmuel; Or, Dani

    2008-05-01

    Evaporation from porous media involves mass and energy transport including phase change, vapor diffusion, and liquid flow, resulting in complex displacement patterns affecting drying rates. Force balance considering media properties yields characteristic lengths affecting the transition in the evaporation rate from a liquid-flow-based first stage limited only by vapor exchange with air to a second stage controlled by vapor diffusion through the medium. The characteristic lengths determine the extent of the hydraulically connected region between the receding drying front and evaporating surface (film region) and the onset of flow rate limitations through this film region. Water is displaced from large pores at the receding drying front to supply evaporation from hydraulically connected finer pores at the surface. Liquid flow is driven by a capillary pressure gradient spanned by the width of the pore size distribution and is sustained as long as the capillary gradient remains larger than gravitational forces and viscous dissipation. The maximum extent of the film region sustaining liquid flow is determined by a characteristic length L_{C} combining the gravity characteristic length L_{G} and viscous dissipation characteristic length L_{V} . We used two sands with particle sizes 0.1-0.5 mm ("fine") and 0.3-0.9 mm ("coarse") to measure the evaporation from columns of different lengths under various atmospheric evaporative demands. The value of L_{G} determined from capillary pressure-saturation relationships was 90 mm for the coarse sand and 140 mm for the fine sand. A significant decrease in drying rate occurred when the drying front reached the predicted L_{G} value (viscous dissipation was negligibly small in sand and L_{C} approximately L_{G} ). The approach enables a prediction of the duration of first-stage evaporation with the highest water losses from soil to the atmosphere. PMID:18643163

  20. Using gaps in N-body tidal streams to probe missing satellites

    SciTech Connect

    Ngan, W. H. W.; Carlberg, R. G.

    2014-06-20

    We use N-body simulations to model the tidal disruption of a star cluster in a Milky-Way-sized dark matter halo, which results in a narrow stream comparable to (but slightly wider than) Pal-5 or GD-1. The mean Galactic dark matter halo is modeled by a spherical Navarro-Frenk-White potential with subhalos predicted by the ΛCDM cosmological model. The distribution and mass function of the subhalos follow the results from the Aquarius simulation. We use a matched filter approach to look for 'gaps' in tidal streams at 12 length scales from 0.1 kpc to 5 kpc, which appear as characteristic dips in the linear densities along the streams. We find that, in addition to the subhalos' perturbations, the epicyclic overdensities (EOs) due to the coherent epicyclic motions of particles in a stream also produce gap-like signals near the progenitor. We measure the gap spectra—the gap formation rates as functions of gap length—due to both subhalo perturbations and EOs, which have not been accounted for together by previous studies. Finally, we project the simulated streams onto the sky to investigate issues when interpreting gap spectra in observations. In particular, we find that gap spectra from low signal-to-noise observations can be biased by the orbital phase of the stream. This indicates that the study of stream gaps will benefit greatly from high-quality data from future missions.

  1. Fabrication of ZnO nanorods and assessment of changes in optical and gas sensing properties by increasing their lengths

    NASA Astrophysics Data System (ADS)

    Mehrabian, Masood; Mirabbaszadeh, Kavoos; Afarideh, Hossein

    2013-12-01

    We report a low-temperature process to synthesize highly oriented arrays of ZnO nanorods, based on the epitaxial growth of the ZnO seed layer at a low temperature of 70 °C. The ZnO seed layer was deposited by sol-gel process under mild conditions on the glass substrates. The morphologies and crystal structures of the film and nanorods were characterized by x-ray diffraction and scanning electron microscopy, respectively. ZnO nanorods were grown on ZnO seed layers by hydrothermal method. The effect of growth period on the morphology and optical characteristics (e.g. optical transmission and band-gap energy), hydrophilicity and gas sensing properties of the grown ZnO seed layer (film) and nanorods were investigated. The long nanorods on the seed layer were observed. The increase in the length of the nanorods resulted in a significant reduction in the optical band-gap energy of the nanorods, which was attributed to the formation of further defects in the nanorods during their fast growth. The surface of the ZnO nanorods grown for 6 h was relatively hydrophilic (with a water contact angle of 18°). The fabricated sensors were used to gauge different concentrations of ethanol vapor in the air at different temperatures and evaluated the surface resistance of the sensors as a function of operating temperature and ethanol concentrations. The results showed that the sensitivity of the nanorods changed from 1.3 to 6 (at 300 °C) by increasing the growth period.

  2. Effects of freezing in and out of water on length and weight of Lake Michigan bloaters

    USGS Publications Warehouse

    Sayers, Richard E.

    1987-01-01

    The purpose of this study was to determine if freezing significantly alters the length or weight of bloaters Coregonus hoyi. Bloaters were collected from southern Lake Michigan and were frozen for periods of 2-200 d. Freezing in water caused a significant decrease in length and a significant increase in weight. These changes did not vary predictably with time. The mean change in weight was greater for adults than for juveniles, but the mean change in length was not significantly different between juveniles and adults. Regressions for weight or length after freezing versus weight or length before freezing were highly significant and can be used as correction equations for estimating the original lengths and weights of fresh specimens after fish have been frozen. Test fish that were subsequently refrozen in air shrank more than those refrozen in water.

  3. The Prevention and Management of Air Leaks Following Pulmonary Resection.

    PubMed

    Burt, Bryan M; Shrager, Joseph B

    2015-11-01

    Alveolar air leaks are a common problem in the daily practice of thoracic surgeons. Prolonged air leak following pulmonary resection is associated with increased morbidity, increased length of hospital stay, and increased costs. This article reviews the evidence for the various intraoperative and postoperative options to prevent and manage postoperative air leak.

  4. Analysis of mixing zone length using methane as fuel

    SciTech Connect

    Brasoveanu, D.; Gupta, A.K.

    1998-07-01

    The distributions of pressure, temperature and velocity, and correlation between radial and axial gradients of fuel mass fraction in an axisymmetric combustor are examined. A model for methane-air mixing in non-flammable mixtures, based on the ideal gas law and the equation of continuity, is described. High axial gradients of fuel mass fraction are required to produce a short mixing zone. Results show that high pressures and temperatures reduce the axial gradients of fuel, while high gradients of pressure and temperature can reduce the length of the mixing zone. High radial gradients of fuel mass fraction in conjunction with a large ratio of radial and axial velocity also shorten the mixing. Mixing is enhanced most by velocity divergence and temperature gradients. Analysis of the length of the mixing zone provides guidelines for the development of compact, high intensity, high efficiency and low emission combustors.

  5. Modeling of an air-backed diaphragm in dynamic pressure sensors: Effects of the air cavity

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Olson, Douglas A.; Yu, Miao

    2014-12-01

    As the key structure of most dynamic pressure sensors, a diaphragm backed by an air cavity plays a critical role in the determination of sensor performance metrics. In this paper, we investigate the influence of air cavity length on the sensitivity and bandwidth. A continuum mechanics model neglecting the air viscous effect is first developed to capture the structural-acoustic coupling between a clamped circular diaphragm and a cylindrical backing air cavity. To facilitate sensor design, close-form approximations are obtained to calculate the static sensitivity and the fundamental natural frequency of the air-backed diaphragm. Parametric studies based on this analytical model show that the air cavity can change both the effective mass and the effective stiffness of the diaphragm. One new finding is that the natural frequency of the air-backed diaphragm behaves differently in three different cavity length ranges. In particular, due to the mass effect of the air cavity being dominant, it is shown for the first time that the natural frequency decreases when the cavity length decreases below a critical value in the short cavity range. Furthermore, a finite element method (FEM) model is developed to validate the continuum mechanics model and to study the damping effect of the air cavity. These results provide important design guidelines for dynamic pressure sensors with air-backed diaphragms.

  6. Tunable transport gap in phosphorene.

    PubMed

    Das, Saptarshi; Zhang, Wei; Demarteau, Marcel; Hoffmann, Axel; Dubey, Madan; Roelofs, Andreas

    2014-10-01

    In this article, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from ∼0.3 to ∼1.0 eV when the flake thickness is scaled down from bulk to a single layer. As a consequence, the ON current, the OFF current, and the current ON/OFF ratios of phosphorene field effect transistors (FETs) were found to be significantly impacted by the layer thickness. The transport gap was determined from the transfer characteristics of phosphorene FETs using a robust technique that has not been reported before. The detailed mathematical model is also provided. By scaling the thickness of the gate oxide, we were also able to demonstrate enhanced ambipolar conduction in monolayer and few layer phosphorene FETs. The asymmetry of the electron and the hole current was found to be dependent on the layer thickness that can be explained by dynamic changes of the metal Fermi level with the energy band of phosphorene depending on the layer number. We also extracted the Schottky barrier heights for both the electron and the hole injection as a function of the layer thickness. Finally, we discuss the dependence of field effect hole mobility of phosphorene on temperature and carrier concentration.

  7. Quantification of gap junction selectivity.

    PubMed

    Ek-Vitorín, Jose F; Burt, Janis M

    2005-12-01

    Gap junctions, which are essential for functional coordination and homeostasis within tissues, permit the direct intercellular exchange of small molecules. The abundance and diversity of this exchange depends on the number and selectivity of the comprising channels and on the transjunctional gradient for and chemical character of the permeant molecules. Limited knowledge of functionally significant permeants and poor detectability of those few that are known have made it difficult to define channel selectivity. Presented herein is a multifaceted approach to the quantification of gap junction selectivity that includes determination of the rate constant for intercellular diffusion of a fluorescent probe (k2-DYE) and junctional conductance (gj) for each junction studied, such that the selective permeability (k2-DYE/gj) for dyes with differing chemical characteristics or junctions with differing connexin (Cx) compositions (or treatment conditions) can be compared. In addition, selective permeability can be correlated using single-channel conductance when this parameter is also measured. Our measurement strategy is capable of detecting 1) rate constants and selective permeabilities that differ across three orders of magnitude and 2) acute changes in that rate constant. Using this strategy, we have shown that 1) the selective permeability of Cx43 junctions to a small cationic dye varied across two orders of magnitude, consistent with the hypothesis that the various channel configurations adopted by Cx43 display different selective permeabilities; and 2) the selective permeability of Cx37 vs. Cx43 junctions was consistently and significantly lower. PMID:16093281

  8. Tunable transport gap in phosphorene.

    PubMed

    Das, Saptarshi; Zhang, Wei; Demarteau, Marcel; Hoffmann, Axel; Dubey, Madan; Roelofs, Andreas

    2014-10-01

    In this article, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from ∼0.3 to ∼1.0 eV when the flake thickness is scaled down from bulk to a single layer. As a consequence, the ON current, the OFF current, and the current ON/OFF ratios of phosphorene field effect transistors (FETs) were found to be significantly impacted by the layer thickness. The transport gap was determined from the transfer characteristics of phosphorene FETs using a robust technique that has not been reported before. The detailed mathematical model is also provided. By scaling the thickness of the gate oxide, we were also able to demonstrate enhanced ambipolar conduction in monolayer and few layer phosphorene FETs. The asymmetry of the electron and the hole current was found to be dependent on the layer thickness that can be explained by dynamic changes of the metal Fermi level with the energy band of phosphorene depending on the layer number. We also extracted the Schottky barrier heights for both the electron and the hole injection as a function of the layer thickness. Finally, we discuss the dependence of field effect hole mobility of phosphorene on temperature and carrier concentration. PMID:25111042

  9. Modulation of adrenal gap junction expression.

    PubMed

    Murray, S A; Shah, U S

    1998-01-01

    To increase our knowledge of the role of peptide hormone stimulation in gap junction protein expression and adrenal cortical cell function, primary rat adrenal cortical cells were treated with adrenocorticotropin, and gap junction proteins were measured. Immunocytochemistry and western blot analysis were used to detect and characterize gap junction type and distribution. The gap junction protein, connexin 43 (alpha 1), was detected. Analysis of six connexin protein types did not reveal gap junction species other than alpha 1. Cells of the inner adrenal cortical zones, zonae fasciculata and reticularis, were demonstrated to have the highest number of gap junctions per cell in the adrenal gland. Adrenal cell cultures enriched for the two inner cortical adrenal zones were established and demonstrated also to express alpha 1 gap junction protein. Adrenocorticotropin (40 mUnits/ml) and dibutyryl cyclic adenosine monophosphate (1 mM) treatments increased alpha 1 gap junction protein levels and decreased cell proliferation rates in the cell cultures. The results are consistent with the hypothesis that gap junction expression can be regulated by adrenocorticotropin acting through the second messenger cyclic adenosine monophosphate. It can be suggested that gap junction expression in the adrenal gland may be under hormonal influence, and that gap junctions serve as passage for movement of molecules involved in control of cell proliferation. PMID:9694574

  10. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest

    NASA Astrophysics Data System (ADS)

    Abd Latif, Zulkiflee; Blackburn, George Alan

    2010-03-01

    The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak ( Quercus petraea), beech ( Fagus sylvatica) and ash ( Fraxinus excelsior) with some representatives of sycamore ( Acer pseudoplatanus). Solar radiation ( I), air temperature ( T A), soil temperature ( T S), relative humidity ( h), wind speed ( v) and soil water content (Ψ) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T A, T S, and Ψ increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for Ψ. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.

  11. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest.

    PubMed

    Abd Latif, Zulkiflee; Blackburn, George Alan

    2010-03-01

    The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T(A)), soil temperature (T(S)), relative humidity (h), wind speed (v) and soil water content (Psi) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T(A), T(S), and Psi increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for Psi. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.

  12. Air-Coupled Vibrometry

    NASA Astrophysics Data System (ADS)

    Döring, D.; Solodov, I.; Busse, G.

    Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.

  13. A national streamflow network gap analysis

    USGS Publications Warehouse

    Kiang, Julie E.; Stewart, David W.; Archfield, Stacey A.; Osborne, Emily B.; Eng, Ken

    2013-01-01

    The U.S. Geological Survey (USGS) conducted a gap analysis to evaluate how well the USGS streamgage network meets a variety of needs, focusing on the ability to calculate various statistics at locations that have streamgages (gaged) and that do not have streamgages (ungaged). This report presents the results of analysis to determine where there are gaps in the network of gaged locations, how accurately desired statistics can be calculated with a given length of record, and whether the current network allows for estimation of these statistics at ungaged locations. The analysis indicated that there is variability across the Nation’s streamflow data-collection network in terms of the spatial and temporal coverage of streamgages. In general, the Eastern United States has better coverage than the Western United States. The arid Southwestern United States, Alaska, and Hawaii were observed to have the poorest spatial coverage, using the dataset assembled for this study. Except in Hawaii, these areas also tended to have short streamflow records. Differences in hydrology lead to differences in the uncertainty of statistics calculated in different regions of the country. Arid and semiarid areas of the Central and Southwestern United States generally exhibited the highest levels of interannual variability in flow, leading to larger uncertainty in flow statistics. At ungaged locations, information can be transferred from nearby streamgages if there is sufficient similarity between the gaged watersheds and the ungaged watersheds of interest. Areas where streamgages exhibit high correlation are most likely to be suitable for this type of information transfer. The areas with the most highly correlated streamgages appear to coincide with mountainous areas of the United States. Lower correlations are found in the Central United States and coastal areas of the Southeastern United States. Information transfer from gaged basins to ungaged basins is also most likely to be successful

  14. Rho/RacGAPs: embarras de richesse?

    PubMed

    Csépányi-Kömi, Roland; Lévay, Magdolna; Ligeti, Erzsébet

    2012-01-01

    Regulatory proteins such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) determine the activity of small GTPases. In the Rho/Rac family, the number of GEFs and GAPs largely exceeds the number of small GTPases, raising the question of specific or overlapping functions. In our recent study we investigated the first time ARHGAP25 at the protein level, determined its activity as RacGAP and showed its involvement in phagocytosis. With the discovery of ARHGAP25, the number of RacGAPs described in phagocytes is increased to six. We provide data that indicate the specific functions of selected Rho/RacGAPs and we show an example of differential regulation of a Rho/Rac family GAP by different kinases. We propose that the abundance of Rho/Rac family GAPs is an important element of the fine spatiotemporal regulation of diverse cellular functions.

  15. NMR parameters in gapped graphene systems

    NASA Astrophysics Data System (ADS)

    Crisan, Mircea; Grosu, Ioan; Ţifrea, Ionel

    2016-06-01

    We calculate the nuclear spin-lattice relaxation time and the Knight shift for the case of gapped graphene systems. Our calculations consider both the massive and massless gap scenarios. Both the spin-lattice relaxation time and the Knight shift depend on temperature, chemical potential, and the value of the electronic energy gap. In particular, at the Dirac point, the electronic energy gap has stronger effects on the system nuclear magnetic resonance parameters in the case of the massless gap scenario. Differently, at large values of the chemical potential, both gap scenarios behave in a similar way and the gapped graphene system approaches a Fermi gas from the nuclear magnetic resonance parameters point of view. Our results are important for nuclear magnetic resonance measurements that target the 13C active nuclei in graphene samples.

  16. Gap Test Calibrations And Their Scalin

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2012-03-01

    Common tests for measuring the threshold for shock initiation are the NOL large scale gap test (LSGT) with a 50.8-mm diameter donor/gap and the expanded large scale gap test (ELSGT) with a 95.3-mm diameter donor/gap. Despite the same specifications for the explosive donor and polymethyl methacrylate (PMMA) gap in both tests, calibration of shock pressure in the gap versus distance from the donor scales by a factor of 1.75, not the 1.875 difference in their sizes. Recently reported model calculations suggest that the scaling discrepancy results from the viscoelastic properties of PMMA in combination with different methods for obtaining shock pressure. This is supported by the consistent scaling of these donors when calibrated in water-filled aquariums. Calibrations and their scaling are compared for other donors with PMMA gaps and for various donors in water.

  17. Closing the Certification Gaps in Adaptive Flight Control Software

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    2008-01-01

    Over the last five decades, extensive research has been performed to design and develop adaptive control systems for aerospace systems and other applications where the capability to change controller behavior at different operating conditions is highly desirable. Although adaptive flight control has been partially implemented through the use of gain-scheduled control, truly adaptive control systems using learning algorithms and on-line system identification methods have not seen commercial deployment. The reason is that the certification process for adaptive flight control software for use in national air space has not yet been decided. The purpose of this paper is to examine the gaps between the state-of-the-art methodologies used to certify conventional (i.e., non-adaptive) flight control system software and what will likely to be needed to satisfy FAA airworthiness requirements. These gaps include the lack of a certification plan or process guide, the need to develop verification and validation tools and methodologies to analyze adaptive controller stability and convergence, as well as the development of metrics to evaluate adaptive controller performance at off-nominal flight conditions. This paper presents the major certification gap areas, a description of the current state of the verification methodologies, and what further research efforts will likely be needed to close the gaps remaining in current certification practices. It is envisioned that closing the gap will require certain advances in simulation methods, comprehensive methods to determine learning algorithm stability and convergence rates, the development of performance metrics for adaptive controllers, the application of formal software assurance methods, the application of on-line software monitoring tools for adaptive controller health assessment, and the development of a certification case for adaptive system safety of flight.

  18. Fabrication and electrical characterizations of SGOI tunnel FETs with gate length down to 50 nm

    NASA Astrophysics Data System (ADS)

    Le Royer, C.; Villalon, A.; Hutin, L.; Martinie, S.; Nguyen, P.; Barraud, S.; Glowacki, F.; Allain, F.; Bernier, N.; Cristoloveanu, S.; Vinet, M.

    2016-01-01

    We report the fabrication and the characterization of tunnel FETs fabricated on SiGe-On-Insulator with a High-κ Metal Gate (HKMG) CMOS process. The beneficial impact of low band gap SiGe channel on ID(VG) characteristics is presented and analyzed: compressive Si0.75Ge0.25 enables to increase by a factor of 25 the saturation currents, even at small gate length (LG = 50 nm). This large gain is due to the threshold voltage shift and to enhanced intrinsic band-to-band tunneling injection (both related to the narrow band gap of SiGe channels).

  19. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  20. Climate change and respiratory health: current evidence and knowledge gaps.

    PubMed

    Takaro, Tim K; Knowlton, Kim; Balmes, John R

    2013-08-01

    Climate change is a key driver of the accelerating environmental change affecting populations around the world. Many of these changes and our response to them can affect respiratory health. This is an expert opinion review of recent peer-reviewed literature, focused on more recent medical journals and climate-health relevant modeling results from non-biomedical journals pertaining to climate interactions with air pollution. Global health impacts in low resource countries and migration precipitated by environmental change are addressed. The major findings are of respiratory health effects related to heat, air pollution, shifts in infectious diseases and allergens, flooding, water, food security and migration. The review concludes with knowledge gaps and research need that will support the evidence-base required to address the challenges ahead.

  1. Air transparent soundproof window

    SciTech Connect

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  2. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  3. Holographic quenches with a gap

    NASA Astrophysics Data System (ADS)

    da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2016-06-01

    In order to holographically model quenches with a gapped final hamiltonian, we consider a gravity-scalar theory in anti-de Sitter space with an infrared hard wall. We allow a time dependent profile for the scalar field at the wall. This induces an energy exchange between bulk and wall and generates an oscillating scalar pulse. We argue that such backgrounds are the counterpart of quantum revivals in the dual field theory. We perform a qualitative comparison with the quench dynamics of the massive Schwinger model, which has been recently analyzed using tensor network techniques. Agreement is found provided the width of the oscillating scalar pulse is inversely linked to the energy density communicated by the quench. We propose this to be a general feature of holographic quenches.

  4. Liquid Phase Miscibility Gap Materials

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Markworth, A. J.

    1985-01-01

    The manner in which the microstructural features of liquid-phase miscibility gap alloys develop was determined. This will allow control of the microstructures and the resultant properties of these alloys. The long-duration low gravity afforded by the shuttle will allow experiments supporting this research to be conducted with minimal interference from buoyancy effects and gravitationally driven convection currents. Ground base studies were conducted on Al-In, Cu-Pb, and Te-Tl alloys to determine the effect of cooling rate, composition, and interfacial energies on the phase separation and solidification processes that influence the development of microstructure in these alloys. Isothermal and directional cooling experiments and simulations are conducted. The ground based activities are used as a technological base from which flight experiments formulated and to which these flight experiments are compared.

  5. Diffusion length and solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Huber, D.; Wahlich, R.; Bachmaier, A.

    The diffusion length of the minority carriers of a solar cell defines the appropriate technology which should be applied for the solar cell fabrication. Back surface techniques only pay off if the diffusion length is long enough. Monocrystalline material with different lifetime killing defects was investigated and an experimental correlation between the diffusion length measured on the unprocessed wafer and the efficiency of the finished cell could be established.

  6. Controlling Arc Length in Plasma Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  7. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  8. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  9. Air Pollution

    PubMed Central

    Clifton, Marjorie

    1964-01-01

    Dr Marjorie Clifton describes the classification of gaseous and nongaseous constituents of air pollution and then outlines the methods of measuring these. The National Survey embraced 150 towns of all sizes throughout England and Wales and provided data on smoke and sulphur dioxide in relation to climate, topography, industrialization, population density, fuel utilization and urban development. Dr W C Turner discusses the relationship between air pollution and mortality from respiratory conditions, and particularly the incidence of chronic bronchitis. He postulates a theory that such respiratory conditions arise as an allergy to the spores of certain moulds, spore formation being encouraged by the air humidity in Greatv Britain and overcrowded and damp living conditions. He describes the results of a twenty-week study undertaken in 1962-3, showing associations between respiratory disease and levels of air pollution. Dr Stuart Carne undertook a survey in general practice to plot the patterns of respiratory illness in London during the winter of 1962-3. There were two peaks of respiratory illnesses coinciding with the fog at the beginning of December and the freeze-up from the end of December until the beginning of March. PMID:14178955

  10. Photonic Band Gap via Quantum Coherence in Vortex Lattices of Bose-Einstein Condensates

    SciTech Connect

    Muestecaplioglu, Oe.E.; Oktel, M.Oe.

    2005-06-10

    We investigate the optical response of an atomic Bose-Einstein condensate with a vortex lattice. We find that it is possible for the vortex lattice to act as a photonic crystal and create photonic band gaps, by enhancing the refractive index of the condensate via a quantum coherent scheme. If high enough index contrast between the vortex core and the atomic sample is achieved, a photonic band gap arises depending on the healing length and the lattice spacing. A wide range of experimentally accessible parameters are examined and band gaps in the visible region of the electromagnetic spectrum are found. We also show how directional band gaps can be used to directly measure the rotation frequency of the condensate.

  11. The vector effective length of slot antennas

    NASA Astrophysics Data System (ADS)

    Wunsch, A. D.

    1991-05-01

    A suitable definition for the vector effective length of an arbitrary slot receiving antenna placed in a large conducting plane is presented, and a general formula is obtained for its derivation. To derive the definition and formula is, the effective length of a general wire antenna is derived, and then an analogous method is applied to the slot problem. The relationship of the slot's effective length to that for a flat strip wire antenna driven by a specified current is obtained. Formulas for the lengths of some specific common slot antennas are derived from the general expression. The current sampling property of a small straight slot is discussed.

  12. Generalizations of Brandl's theorem on Engel length

    NASA Astrophysics Data System (ADS)

    Quek, S. G.; Wong, K. B.; Wong, P. C.

    2013-04-01

    Let n < m be positive integers such that [g,nh] = [g,mh] and assume that n and m are chosen minimal with respect to this property. Let gi = [g,n+ih] where i = 1,2,…,m-n. Then π(g,h) = (g1,…,gm-n) is called the Engel cycle generated by g and h. The length of the Engel cycle is m-n. A group G is said to have Engel length r, if all the length of the Engel cycles in G divides r. In this paper we discuss the Brandl's theorem on Engel length and give some of its generalizations.

  13. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  14. Multiple path length dual polarization interferometry.

    PubMed

    Coffey, Paul D; Swann, Marcus J; Waigh, Thomas A; Schedin, Fred; Lu, Jian R

    2009-06-22

    An optical sensor for quantitative analysis of ultrathin films and adsorbed layers is described. Quantification of both layer thickness and refractive index (density) can be made for in situ and ex-situ coated films. With the use of two polarizations, in situ measurements are made via one path length in a young's interferometer arrangement while ex-situ measurements use multiple path lengths. The multiple path length young's interferometer arrangement is embodied in a solid state waveguide configuration called the multiple path length dual polarization interferometer (MPL-DPI). The technique is demonstrated with ultrathin layers of poly(methylmethacrylate) and human serum albumin.

  15. The relationship between air layers and evaporative resistance of male Chinese ethnic clothing.

    PubMed

    Wang, Faming; Peng, Hui; Shi, Wen

    2016-09-01

    In this study, the air layer distribution and evaporative resistances of 39 sets of male Chinese ethnic clothing were investigated using a sweating thermal manikin and the three-dimensional (3D) body scanning technique. Relationships between the evaporative resistance and air layers (i.e., air gap thickness and air volume) were explored. The results demonstrated that the clothing total evaporative resistance increases with the increasing air gap size/air volume, but the rate of increase gradually decreases as the mean air gap size or the total air volume becomes larger. The clothing total evaporative resistance reaches its maximum when the average air gap size and the total air volume are 41.6 mm and 69.9 dm(3), respectively. Similar general trends were also found between local mean air gap size and clothing local evaporative resistance at different body parts. However, different body parts show varied rates of increase and decrease in the local evaporative resistance. The research findings provide a comprehensive database for predicting overall and local human thermal comfort while wearing male Chinese ethnic clothing.

  16. The relationship between air layers and evaporative resistance of male Chinese ethnic clothing.

    PubMed

    Wang, Faming; Peng, Hui; Shi, Wen

    2016-09-01

    In this study, the air layer distribution and evaporative resistances of 39 sets of male Chinese ethnic clothing were investigated using a sweating thermal manikin and the three-dimensional (3D) body scanning technique. Relationships between the evaporative resistance and air layers (i.e., air gap thickness and air volume) were explored. The results demonstrated that the clothing total evaporative resistance increases with the increasing air gap size/air volume, but the rate of increase gradually decreases as the mean air gap size or the total air volume becomes larger. The clothing total evaporative resistance reaches its maximum when the average air gap size and the total air volume are 41.6 mm and 69.9 dm(3), respectively. Similar general trends were also found between local mean air gap size and clothing local evaporative resistance at different body parts. However, different body parts show varied rates of increase and decrease in the local evaporative resistance. The research findings provide a comprehensive database for predicting overall and local human thermal comfort while wearing male Chinese ethnic clothing. PMID:27184328

  17. Heterotic non-Abelian string of a finite length

    NASA Astrophysics Data System (ADS)

    Monin, S.; Shifman, M.; Yung, A.

    2016-06-01

    We consider non-Abelian strings in N =2 supersymmetric quantum chromodynamics (QCD) with the U (N ) gauge group and Nf=N quark flavors deformed by a mass term for the adjoint matter. This deformation breaks N =2 supersymmetry down to N =1 . Dynamics of orientational zero modes on the string world sheet are described then by C P (N -1 ) model with N =(0 ,2 ) supersymmetry. We study the string of a finite length L assuming compactification on a cylinder (periodic boundary conditions). The world-sheet theory is solved in the large-N approximation. At N =∞ we find a rich phase structure in the (L ,u ) plane where u is a deformation parameter. At large L and intermediate u we find a phase with broken Z2 N symmetry, N vacua and a mass gap. At large values of L and u still larger we have the Z2 N-symmetric phase with a single vacuum and massless fermions. In both phases N =(0 ,2 ) supersymmetry is spontaneously broken. We also observe a phase with would-be broken SU (N ) symmetry at small L (it is broken only for N =∞ ). In the latter phase the mass gap vanishes and the vacuum energy is zero in the leading 1 /N approximation. We expect that at large but finite N corrections O (1 /N ) will break N =(0 ,2 ) supersymmetry. Simultaneously, the phase transitions will become rapid crossovers. Finally we discuss how the observed rich phase structure matches the N =(2 ,2 ) limit in which the world-sheet theory has a single phase with the mass gap independent of L .

  18. GaP betavoltaic cells as a power source

    NASA Technical Reports Server (NTRS)

    Pool, F. S.; Stella, Paul M.; Anspaugh, B.

    1991-01-01

    Maximum power output for the GaP cells of this study was found to be on the order of 1 microW. This resulted from exposure to 200 and 40 KeV electrons at a flux of 2 x 10(exp 9) electrons/sq cm/s, equivalent to a 54 mCurie source. The efficiencies of the cells ranged from 5 to 9 percent for 200 and 40 KeV electrons respectively. The lower efficiency at higher energy is due to a substantial fraction of energy deposition in the substrate, further than a diffusion length from the depletion region of the cell. Radiation damage was clearly observed in GaP after exposure to 200 KeV electrons at a fluence of 2 x 10(exp 12) electrons/sq cm. No discernable damage was observed after exposure to 40 KeV electrons at the same fluence. Analysis indicates that a GaP betavoltaic system would not be practical if limited to low energy beta sources. The power available would be too low even in the ideal case. By utilizing high activity beta sources, such as Sr-90/Y-90, it may be possible to achieve performance that could be suitable for some space power applications. However, to utilize such a source the problem of radiation damage in the beta cell material must be overcome.

  19. Graphene field effect transistor without an energy gap.

    PubMed

    Jang, Min Seok; Kim, Hyungjun; Son, Young-Woo; Atwater, Harry A; Goddard, William A

    2013-05-28

    Graphene is a room temperature ballistic electron conductor and also a very good thermal conductor. Thus, it has been regarded as an ideal material for postsilicon electronic applications. A major complication is that the relativistic massless electrons in pristine graphene exhibit unimpeded Klein tunneling penetration through gate potential barriers. Thus, previous efforts to realize a field effect transistor for logic applications have assumed that introduction of a band gap in graphene is a prerequisite. Unfortunately, extrinsic treatments designed to open a band gap seriously degrade device quality, yielding very low mobility and uncontrolled on/off current ratios. To solve this dilemma, we propose a gating mechanism that leads to a hundredfold enhancement in on/off transmittance ratio for normally incident electrons without any band gap engineering. Thus, our saw-shaped geometry gate potential (in place of the conventional bar-shaped geometry) leads to switching to an off state while retaining the ultrahigh electron mobility in the on state. In particular, we report that an on/off transmittance ratio of 130 is achievable for a sawtooth gate with a gate length of 80 nm. Our switching mechanism demonstrates that intrinsic graphene can be used in designing logic devices without serious alteration of the conventional field effect transistor architecture. This suggests a new variable for the optimization of the graphene-based device--geometry of the gate electrode.

  20. Recombination spot identification Based on gapped k-mers.

    PubMed

    Wang, Rong; Xu, Yong; Liu, Bin

    2016-01-01

    Recombination is crucial for biological evolution, which provides many new combinations of genetic diversity. Accurate identification of recombination spots is useful for DNA function study. To improve the prediction accuracy, researchers have proposed several computational methods for recombination spot identification. The k-mer feature is one of the most useful features for modeling the properties and function of DNA sequences. However, it suffers from the inherent limitation. If the value of word length k is large, the occurrences of k-mers are closed to a binary variable, with a few k-mers present once and most k-mers are absent. This usually causes the sparse problem and reduces the classification accuracy. To solve this problem, we add gaps into k-mer and introduce a new feature called gapped k-mer (GKM) for identification of recombination spots. By using this feature, we present a new predictor called SVM-GKM, which combines the gapped k-mers and Support Vector Machine (SVM) for recombination spot identification. Experimental results on a widely used benchmark dataset show that SVM-GKM outperforms other highly related predictors. Therefore, SVM-GKM would be a powerful predictor for computational genomics. PMID:27030570

  1. Gap junctions in the heart of the adult Protopterus aethiopicus.

    PubMed

    Scheuermann, D W; de Maziere, A

    1984-07-01

    In thin sections and in freeze-fracture replicas small and sparse gap junctions appear to be developed on the longitudinal plasma membrane of Protopterus cardiac cells near a macula or fascia adhaerens. By thin-section electron microscopy, they had septalaminar profiles with a length between 0.042 and 0.260 micron. In freeze-fracture images they appear on the P-fracture face as maculate particle aggregations with complementary pits on the E-fracture face. Particles with a central intercellular channel could be observed. The average center-to-center distance between neighbouring particles or pits is 10.05 +/- 1.87 nm (N = 2429). The diameter of the junctional maculae in replicas lies between 0.037 and 0.229 nm. The particle packing density increases in larger maculate aggregations, while particle-free areas emerge which could be related to the degradation or reformation of gap junctions Atypical configurations of gap junctions observed in the myocardium of lower vertebrates are rarely encountered in this primitive vertebrate. PMID:6485893

  2. Air Sampling System Evaluation Template

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  3. Dynamics of the spatial structure of pulsed discharges in dense gases in point cathode-plane anode gaps and their erosion effect on the plane electrode surface

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Blinova, O. M.; Erofeev, M. V.; Karelin, V. I.; Ripenko, V. S.; Tarasenko, V. F.; Trenkin, A. A.; Shibitov, Yu. M.; Shulepov, M. A.

    2016-09-01

    The dynamics of the spatial structure of the plasma of pulsed discharges in air and nitrogen in a nonuniform electric field and their erosion effect on the plane anode surface were studied experimentally. It is established that, at a nanosecond front of the voltage pulse, a diffuse discharge forms in the point cathode-plane anode gap due to the ionization wave propagating from the cathode. As the gap length decreases, the diffuse discharge transforms into a spark. A bright spot on the anode appears during the diffuse discharge, while the spark channel forms in the later discharge stage. The microstructure of autographs of anode spots and spark channels in discharges with durations of several nanoseconds is revealed. The autographs consist of up to 100 and more microcraters 5-100 μm in diameter. It is shown that, due to the short duration of the voltage pulse, a diffuse discharge can be implemented, several pulses of which do not produce appreciable erosion on the plane anode or the soot coating deposited on it.

  4. Auditory gap-in-noise detection behavior in ferrets and humans.

    PubMed

    Gold, Joshua R; Nodal, Fernando R; Peters, Fabian; King, Andrew J; Bajo, Victoria M

    2015-08-01

    The precise encoding of temporal features of auditory stimuli by the mammalian auditory system is critical to the perception of biologically important sounds, including vocalizations, speech, and music. In this study, auditory gap-detection behavior was evaluated in adult pigmented ferrets (Mustelid putorius furo) using bandpassed stimuli designed to widely sample the ferret's behavioral and physiological audiogram. Animals were tested under positive operant conditioning, with psychometric functions constructed in response to gap-in-noise lengths ranging from 3 to 270 ms. Using a modified version of this gap-detection task, with the same stimulus frequency parameters, we also tested a cohort of normal-hearing human subjects. Gap-detection thresholds were computed from psychometric curves transformed according to signal detection theory, revealing that for both ferrets and humans, detection sensitivity was worse for silent gaps embedded within low-frequency noise compared with high-frequency or broadband stimuli. Additional psychometric function analysis of ferret behavior indicated effects of stimulus spectral content on aspects of behavioral performance related to decision-making processes, with animals displaying improved sensitivity for broadband gap-in-noise detection. Reaction times derived from unconditioned head-orienting data and the time from stimulus onset to reward spout activation varied with the stimulus frequency content and gap length, as well as the approach-to-target choice and reward location. The present study represents a comprehensive evaluation of gap-detection behavior in ferrets, while similarities in performance with our human subjects confirm the use of the ferret as an appropriate model of temporal processing. PMID:26052794

  5. Auditory Gap-in-Noise Detection Behavior in Ferrets and Humans

    PubMed Central

    2015-01-01

    The precise encoding of temporal features of auditory stimuli by the mammalian auditory system is critical to the perception of biologically important sounds, including vocalizations, speech, and music. In this study, auditory gap-detection behavior was evaluated in adult pigmented ferrets (Mustelid putorius furo) using bandpassed stimuli designed to widely sample the ferret’s behavioral and physiological audiogram. Animals were tested under positive operant conditioning, with psychometric functions constructed in response to gap-in-noise lengths ranging from 3 to 270 ms. Using a modified version of this gap-detection task, with the same stimulus frequency parameters, we also tested a cohort of normal-hearing human subjects. Gap-detection thresholds were computed from psychometric curves transformed according to signal detection theory, revealing that for both ferrets and humans, detection sensitivity was worse for silent gaps embedded within low-frequency noise compared with high-frequency or broadband stimuli. Additional psychometric function analysis of ferret behavior indicated effects of stimulus spectral content on aspects of behavioral performance related to decision-making processes, with animals displaying improved sensitivity for broadband gap-in-noise detection. Reaction times derived from unconditioned head-orienting data and the time from stimulus onset to reward spout activation varied with the stimulus frequency content and gap length, as well as the approach-to-target choice and reward location. The present study represents a comprehensive evaluation of gap-detection behavior in ferrets, while similarities in performance with our human subjects confirm the use of the ferret as an appropriate model of temporal processing. PMID:26052794

  6. Auditory gap-in-noise detection behavior in ferrets and humans.

    PubMed

    Gold, Joshua R; Nodal, Fernando R; Peters, Fabian; King, Andrew J; Bajo, Victoria M

    2015-08-01

    The precise encoding of temporal features of auditory stimuli by the mammalian auditory system is critical to the perception of biologically important sounds, including vocalizations, speech, and music. In this study, auditory gap-detection behavior was evaluated in adult pigmented ferrets (Mustelid putorius furo) using bandpassed stimuli designed to widely sample the ferret's behavioral and physiological audiogram. Animals were tested under positive operant conditioning, with psychometric functions constructed in response to gap-in-noise lengths ranging from 3 to 270 ms. Using a modified version of this gap-detection task, with the same stimulus frequency parameters, we also tested a cohort of normal-hearing human subjects. Gap-detection thresholds were computed from psychometric curves transformed according to signal detection theory, revealing that for both ferrets and humans, detection sensitivity was worse for silent gaps embedded within low-frequency noise compared with high-frequency or broadband stimuli. Additional psychometric function analysis of ferret behavior indicated effects of stimulus spectral content on aspects of behavioral performance related to decision-making processes, with animals displaying improved sensitivity for broadband gap-in-noise detection. Reaction times derived from unconditioned head-orienting data and the time from stimulus onset to reward spout activation varied with the stimulus frequency content and gap length, as well as the approach-to-target choice and reward location. The present study represents a comprehensive evaluation of gap-detection behavior in ferrets, while similarities in performance with our human subjects confirm the use of the ferret as an appropriate model of temporal processing.

  7. Relating the defect band gap and the density functional band gap

    NASA Astrophysics Data System (ADS)

    Schultz, Peter; Edwards, Arthur

    2014-03-01

    Density functional theory (DFT) is an important tool to probe the physics of materials. The Kohn-Sham (KS) gap in DFT is typically (much) smaller than the observed band gap for materials in nature, the infamous ``band gap problem.'' Accurate prediction of defect energy levels is often claimed to be a casualty--the band gap defines the energy scale for defect levels. By applying rigorous control of boundary conditions in size-converged supercell calculations, however, we compute defect levels in Si and GaAs with accuracies of ~0.1 eV, across the full gap, unhampered by a band gap problem. Using GaAs as a theoretical laboratory, we show that the defect band gap--the span of computed defect levels--is insensitive to variations in the KS gap (with functional and pseudopotential), these KS gaps ranging from 0.1 to 1.1 eV. The defect gap matches the experimental 1.52 eV gap. The computed defect gaps for several other III-V, II-VI, I-VII, and other compounds also agree with the experimental gap, and show no correlation with the KS gap. Where, then, is the band gap problem? This talk presents these results, discusses why the defect gap and the KS gap are distinct, implying that current understanding of what the ``band gap problem'' means--and how to ``fix'' it--need to be rethought. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  8. The Ontogeny of Gap Crossing Behaviour in Bornean Orangutans (Pongo pygmaeus wurmbii)

    PubMed Central

    Chappell, Jackie; Phillips, Abigail C.; van Noordwijk, Maria A.; Mitra Setia, Tatang; Thorpe, Susannah K. S.

    2015-01-01

    For orangutans, the largest predominantly arboreal primates, discontinuous canopy presents a particular challenge. The shortest gaps between trees lie between thin peripheral branches, which offer the least stability to large animals. The affordances of the forest canopy experienced by orangutans of different ages however, must vary substantially as adult males are an order of magnitude larger in size than infants during the early stages of locomotor independence. Orangutans have developed a diverse range of locomotor behaviour to cross gaps between trees, which vary in their physical and cognitive demands. The aims of this study were to examine the ontogeny of orangutan gap crossing behaviours and to determine which factors influence the distance orangutans crossed. A non-invasive photographic technique was used to quantify forearm length as a measure of body size. We also recorded locomotor behaviour, support use and the distance crossed between trees. Our results suggest that gap crossing varies with both physical and cognitive development. More complex locomotor behaviours, which utilized compliant trunks and lianas, were used to cross the largest gaps, but these peaked in frequency much earlier than expected, between the ages of 4 and 5 years old, which probably reflects play behaviour to perfect locomotor techniques. Smaller individuals also crossed disproportionately large gaps relative to their size, by using support deformation. Our results suggest that orangutans acquire the full repertoire of gap crossing techniques, including the more cognitively demanding ones, before weaning, but adjust the frequency of the use of these techniques to their increasing body size. PMID:26154061

  9. The Ontogeny of Gap Crossing Behaviour in Bornean Orangutans (Pongo pygmaeus wurmbii).

    PubMed

    Chappell, Jackie; Phillips, Abigail C; van Noordwijk, Maria A; Mitra Setia, Tatang; Thorpe, Susannah K S

    2015-01-01

    For orangutans, the largest predominantly arboreal primates, discontinuous canopy presents a particular challenge. The shortest gaps between trees lie between thin peripheral branches, which offer the least stability to large animals. The affordances of the forest canopy experienced by orangutans of different ages however, must vary substantially as adult males are an order of magnitude larger in size than infants during the early stages of locomotor independence. Orangutans have developed a diverse range of locomotor behaviour to cross gaps between trees, which vary in their physical and cognitive demands. The aims of this study were to examine the ontogeny of orangutan gap crossing behaviours and to determine which factors influence the distance orangutans crossed. A non-invasive photographic technique was used to quantify forearm length as a measure of body size. We also recorded locomotor behaviour, support use and the distance crossed between trees. Our results suggest that gap crossing varies with both physical and cognitive development. More complex locomotor behaviours, which utilized compliant trunks and lianas, were used to cross the largest gaps, but these peaked in frequency much earlier than expected, between the ages of 4 and 5 years old, which probably reflects play behaviour to perfect locomotor techniques. Smaller individuals also crossed disproportionately large gaps relative to their size, by using support deformation. Our results suggest that orangutans acquire the full repertoire of gap crossing techniques, including the more cognitively demanding ones, before weaning, but adjust the frequency of the use of these techniques to their increasing body size.

  10. Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap

    NASA Astrophysics Data System (ADS)

    Maxson, Jared; Bazarov, Ivan; Dunham, Bruce; Dobbins, John; Liu, Xianghong; Smolenski, Karl

    2014-09-01

    A new high voltage photoemission gun has been constructed at Cornell University which features a segmented insulator and a movable anode, allowing the cathode-anode gap to be adjusted. In this work, we describe the gun's overall mechanical and high voltage design, the surface preparation of components, as well as the clean construction methods. We present high voltage conditioning data using a 50 mm cathode-anode gap, in which the conditioning voltage exceeds 500 kV, as well as at smaller gaps. Finally, we present simulated emittance results obtained from a genetic optimization scheme using voltage values based on the conditioning data. These results indicate that for charges up to 100 pC, a 30 mm gap at 400 kV has equal or smaller 100% emittance than a 50 mm gap at 450 kV, and also a smaller core emittance, when placed as the source for the Cornell energy recovery linac photoinjector with bunch length constrained to be <3 ps rms. For 100 pC up to 0.5 nC charges, the 50 mm gap has larger core emittance than the 30 mm gap, but conversely smaller 100% emittance.

  11. Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap

    SciTech Connect

    Maxson, Jared; Bazarov, Ivan; Dunham, Bruce; Dobbins, John; Liu, Xianghong; Smolenski, Karl

    2014-09-15

    A new high voltage photoemission gun has been constructed at Cornell University which features a segmented insulator and a movable anode, allowing the cathode-anode gap to be adjusted. In this work, we describe the gun's overall mechanical and high voltage design, the surface preparation of components, as well as the clean construction methods. We present high voltage conditioning data using a 50 mm cathode-anode gap, in which the conditioning voltage exceeds 500 kV, as well as at smaller gaps. Finally, we present simulated emittance results obtained from a genetic optimization scheme using voltage values based on the conditioning data. These results indicate that for charges up to 100 pC, a 30 mm gap at 400 kV has equal or smaller 100% emittance than a 50 mm gap at 450 kV, and also a smaller core emittance, when placed as the source for the Cornell energy recovery linac photoinjector with bunch length constrained to be <3 ps rms. For 100 pC up to 0.5 nC charges, the 50 mm gap has larger core emittance than the 30 mm gap, but conversely smaller 100% emittance.

  12. Practice and Educational Gaps in Abnormal Pigmentation.

    PubMed

    Mohammad, Tasneem F; Hamzavi, Iltefat H

    2016-07-01

    Dyschromia refers to abnormal pigmentation and is one of the most common diagnoses in dermatology. However, there are many educational and practice gaps in this area, specifically in melasma, postinflammatory hyperpigmentation, and vitiligo. This article aims to review the gold standard of care for these conditions as well as highlight common educational and practice gaps in these areas. Finally, possible solutions to these gaps are addressed. PMID:27363886

  13. Multifrequency gap solitons in nonlinear photonic crystals.

    PubMed

    Xie, Ping; Zhang, Zhao-Qing

    2003-11-21

    We predict the existence of multifrequency gap solitons (MFGSs) in both one- and two-dimensional nonlinear photonic crystals. A MFGS is a single intrinsic mode possessing multiple frequencies inside the gap. Its existence is a result of synergic nonlinear coupling among solitons or soliton trains at different frequencies. Its formation can either lower the threshold fields of the respective frequency components or stabilize their excitations. These MFGSs form a new class of stable gap solitons.

  14. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  15. Four-wave-mixing gap solitons

    SciTech Connect

    Zhang Yanpeng; Wang Zhiguo; Zheng Huaibin; Yuan Chenzhi; Li Changbiao; Lu Keqing; Xiao Min

    2010-11-15

    We report an experimental demonstration of generating gap soliton trains in a four-wave-mixing (FWM) signal. Such spatial FWM surfacelike gap soliton trains are induced in a periodically modulated self-defocusing atomic medium by the cross-phase modulation, which can be reshaped under different experimental conditions, such as different atomic densities, nonlinear dispersions, and dressing fields. Controlling spatial gap solitons can have important applications in image memory, processing, and communication.

  16. Megacities, air quality and climate

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Molina, Luisa T.; Gauss, Michael

    2016-02-01

    The rapid urbanization and growing number of megacities and urban complexes requires new types of research and services that make best use of science and available technology. With an increasing number of humans now living in urban sprawls, there are urgent needs of examining what the rising number of megacities means for air pollution, local climate and the effects these changes have on global climate. Such integrated studies and services should assist cities in facing hazards such as storm surge, flooding, heat waves, and air pollution episodes, especially in changing climates. While important advances have been made, new interdisciplinary research studies are needed to increase our understanding of the interactions between emissions, air quality, and regional and global climates. Studies need to address both basic and applied research and bridge the spatial and temporal scales connecting local emissions and air pollution and local weather, global atmospheric chemistry and climate. This paper reviews the current status of studies of the complex interactions between climate, air quality and megacities, and identifies the main gaps in our current knowledge as well as further research needs in this important field of research.

  17. Gap Assessment (FY 13 Update)

    DOE Data Explorer

    Getman, Dan

    2013-09-30

    To help guide its future data collection efforts, The DOE GTO funded a data gap analysis in FY2012 to identify high potential hydrothermal areas where critical data are needed. This analysis was updated in FY2013 and the resulting datasets are represented by this metadata. The original process was published in FY 2012 and is available here: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Esposito.pdf Though there are many types of data that can be used for hydrothermal exploration, five types of exploration data were targeted for this analysis. These data types were selected for their regional reconnaissance potential, and include many of the primary exploration techniques currently used by the geothermal industry. The data types include: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data To determine data coverage, metadata for exploration data (including data type, data status, and coverage information) were collected and catalogued from nodes on the National Geothermal Data System (NGDS). It is the intention of this analysis that the data be updated from this source in a semi-automated fashion as new datasets are added to the NGDS nodes. In addition to this upload, an online tool was developed to allow all geothermal data providers to access this assessment and to directly add metadata themselves and view the results of the analysis via maps of data coverage in Geothermal Prospector (http://maps.nrel.gov/gt_prospector). A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to the five data types. Using these five data coverage maps and the USGS Resource Potential Map, sites were identified for future data collection efforts. These sites signify both that the USGS has indicated high favorability of occurrence of geothermal resources and that data gaps exist. The uploaded data are contained in two data files for

  18. 7 CFR 29.6024 - Length.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Length. 29.6024 Section 29.6024 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6024 Length. The linear measurement of cured tobacco leaves from...

  19. Food-chain length and adaptive foraging.

    PubMed

    Kondoh, Michio; Ninomiya, Kunihiko

    2009-09-01

    Food-chain length, the number of feeding links from the basal species to the top predator, is a key characteristic of biological communities. However, the determinants of food-chain length still remain controversial. While classical theory predicts that food-chain length should increase with increasing resource availability, empirical supports of this prediction are limited to those from simple, artificial microcosms. A positive resource availability-chain length relationship has seldom been observed in natural ecosystems. Here, using a theoretical model, we show that those correlations, or no relationships, may be explained by considering the dynamic food-web reconstruction induced by predator's adaptive foraging. More specifically, with foraging adaptation, the food-chain length becomes relatively invariant, or even decreases with increasing resource availability, in contrast to a non-adaptive counterpart where chain length increases with increasing resource availability; and that maximum chain length more sharply decreases with resource availability either when species richness is higher or potential link number is larger. The interactive effects of resource availability, adaptability and community complexity may explain the contradictory effects of resource availability in simple microcosms and larger ecosystems. The model also explains the recently reported positive effect of habitat size on food-chain length as a result of increased species richness and/or decreased connectance owing to interspecific spatial segregation.

  20. Structural Dynamics of Tropical Moist Forest Gaps.

    PubMed

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6

  1. Structural Dynamics of Tropical Moist Forest Gaps

    PubMed Central

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23

  2. Annular-gap washer including electrode means

    SciTech Connect

    Hegemann, K.; Kautz, J.W.; Weissert, H.

    1982-02-23

    An annular-gap washer especially for scrubbing of industrial gases, comprises a central body which is axially shiftable in a housing defining an all-around clearance with the body. The clearance forms an annular gap through which the gas stream and water droplets from a spray nozzle axially spaced from the gap, are accelerated and brought into intimate contact. According to the invention at least over part of the gap, the mixture is subjected to an electrostatic field having generally radial field lines.

  3. Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer

    SciTech Connect

    Trifonov, T.; Marsal, L.F.; Pallares, J.; Rodriguez, A.; Alcubilla, R.

    2004-11-15

    We investigate different aspects of the absolute photonic band gap (PBG) formation in two-dimensional photonic structures consisting of rods covered with a thin dielectric film. Specifically, triangular and honeycomb lattices in both complementary arrangements, i.e., air rods drilled in silicon matrix and silicon rods in air, are studied. We consider that the rods are formed of a dielectric core (silicon or air) surrounded by a cladding layer of silicon dioxide (SiO{sub 2}), silicon nitride (Si{sub 3}N{sub 4}), or germanium (Ge). Such photonic lattices present absolute photonic band gaps, and we study the evolution of these gaps as functions of the cladding material and thickness. Our results show that in the case of air rods in dielectric media the existence of dielectric cladding reduces the absolute gap width and may cause complete closure of the gap if thick layers are considered. For the case of dielectric rods in air, however, the existence of a cladding layer can be advantageous and larger absolute PBG's can be achieved.

  4. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation

    PubMed Central

    Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.

    2016-01-01

    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614

  5. A wide angle low coherence interferometry based eye length optometer

    NASA Astrophysics Data System (ADS)

    Meadway, Alexander; Siegwart, John; Wildsoet, Christine; Norton, Thomas; Zhang, Yuhua

    2015-03-01

    Interest in eye growth regulation has burgeoned with the rise in myopia prevalence world-wide. Eye length and eye shape are fundamental metrics for related research, but current in vivo measurement techniques are generally limited to the optical axis of the eye. We describe a high resolution, time domain low coherence interferometry based optometer for measuring the eye length of small animals over a wide field of view. The system is based upon a Michelson interferometer using a superluminescent diode as a source, including a sample arm and a reference arm. The sample arm is split into two paths by a polarisation beam splitter; one focuses the light on the cornea and the other focuses the light on the retina. This method has a high efficiency of detection for reflections from both surfaces. The reference arm contains a custom high speed linear motor with 25 mm stroke and equipped with a precision displacement encoder. Light reflected from the cornea and the retina is combined with the reference beam to generate low coherence interferograms. Two galvo scanners are employed to steer the light to different angles so that the eye length over a field of view of 20° × 20° can be measured. The system has an axial resolution of 6.8 μm (in air) and the motor provides accurate movement, allowing for precise and repeatable measurement of coherence peak positions. Example scans from a tree shrew are presented.

  6. Research Report: Intermittent hypobaric hypoxia and hyperbaric oxygen on GAP-43 in the rat carotid body.

    PubMed

    Peng, Zhengwu; Fan, Juan; Liu, Ling; Kuang, Fang; Xue, Fen; Wang, Bairen

    2015-01-01

    Adaptive changes in the carotid body (CB) including the expression of the growth-associated protein-43 (GAP-43) have been studied in response to low, but not high, oxygen exposure. Expression of GAP-43 in the CB of rats under different atmospheric pressures and oxygen partial pressure (PO2) conditions was investigated. Mature male Sprague-Dawley rats were exposed to intermittent hypobaric hypoxia (IHH, 0, 1, 2 and 3 weeks), intermittent hyperbaric oxygen (IHBO2, 0, 1, 5 and 10 days, sacrificed six hours or 24 hours after the last HBO2 exposure), and intermittent hyperbaric normoxia (IHN, same treatment pattern as IHBO2). GAP-43 was highly expressed (mainly in type I cells) in the CB of normal rats. IHH u-regulated GAP-43 expression in the CB with significant differences (immunohistochemical staining [IHC]: F(3,15)=40.64, P < 0.01; western blot [WB]: F(3,16) = 53.52, P < 0.01) across the subgroups. GAP-43 expression in the CB was inhibited by IHBO2 (controls vs. IHBO2 groups, IHC: F(6,30) = 15.85, P < 0.01; WB: F(6,29) = 15.95, P < 0.01). No detectable changes in GAP-43 expression were found for IHN. These findings indicated that different PO2 conditions, but not air pressures, played an important role in the plasticity of the CB, and that GAP-43 might be a viable factor for the plasticity of the CB. PMID:26742253

  7. Research Report: Intermittent hypobaric hypoxia and hyperbaric oxygen on GAP-43 in the rat carotid body.

    PubMed

    Peng, Zhengwu; Fan, Juan; Liu, Ling; Kuang, Fang; Xue, Fen; Wang, Bairen

    2015-01-01

    Adaptive changes in the carotid body (CB) including the expression of the growth-associated protein-43 (GAP-43) have been studied in response to low, but not high, oxygen exposure. Expression of GAP-43 in the CB of rats under different atmospheric pressures and oxygen partial pressure (PO2) conditions was investigated. Mature male Sprague-Dawley rats were exposed to intermittent hypobaric hypoxia (IHH, 0, 1, 2 and 3 weeks), intermittent hyperbaric oxygen (IHBO2, 0, 1, 5 and 10 days, sacrificed six hours or 24 hours after the last HBO2 exposure), and intermittent hyperbaric normoxia (IHN, same treatment pattern as IHBO2). GAP-43 was highly expressed (mainly in type I cells) in the CB of normal rats. IHH u-regulated GAP-43 expression in the CB with significant differences (immunohistochemical staining [IHC]: F(3,15)=40.64, P < 0.01; western blot [WB]: F(3,16) = 53.52, P < 0.01) across the subgroups. GAP-43 expression in the CB was inhibited by IHBO2 (controls vs. IHBO2 groups, IHC: F(6,30) = 15.85, P < 0.01; WB: F(6,29) = 15.95, P < 0.01). No detectable changes in GAP-43 expression were found for IHN. These findings indicated that different PO2 conditions, but not air pressures, played an important role in the plasticity of the CB, and that GAP-43 might be a viable factor for the plasticity of the CB.

  8. The Carboxyl Tail of Connexin32 Regulates Gap Junction Assembly in Human Prostate and Pancreatic Cancer Cells*

    PubMed Central

    Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J.; Wahl, James K.; Johnson, Keith R.; Mehta, Parmender P.

    2015-01-01

    Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. PMID:25548281

  9. Addressing the vaccine confidence gap.

    PubMed

    Larson, Heidi J; Cooper, Louis Z; Eskola, Juhani; Katz, Samuel L; Ratzan, Scott

    2011-08-01

    Vaccines--often lauded as one of the greatest public health interventions--are losing public confidence. Some vaccine experts have referred to this decline in confidence as a crisis. We discuss some of the characteristics of the changing global environment that are contributing to increased public questioning of vaccines, and outline some of the specific determinants of public trust. Public decision making related to vaccine acceptance is neither driven by scientific nor economic evidence alone, but is also driven by a mix of psychological, sociocultural, and political factors, all of which need to be understood and taken into account by policy and other decision makers. Public trust in vaccines is highly variable and building trust depends on understanding perceptions of vaccines and vaccine risks, historical experiences, religious or political affiliations, and socioeconomic status. Although provision of accurate, scientifically based evidence on the risk-benefit ratios of vaccines is crucial, it is not enough to redress the gap between current levels of public confidence in vaccines and levels of trust needed to ensure adequate and sustained vaccine coverage. We call for more research not just on individual determinants of public trust, but on what mix of factors are most likely to sustain public trust. The vaccine community demands rigorous evidence on vaccine efficacy and safety and technical and operational feasibility when introducing a new vaccine, but has been negligent in demanding equally rigorous research to understand the psychological, social, and political factors that affect public trust in vaccines. PMID:21664679

  10. Addressing the vaccine confidence gap.

    PubMed

    Larson, Heidi J; Cooper, Louis Z; Eskola, Juhani; Katz, Samuel L; Ratzan, Scott

    2011-08-01

    Vaccines--often lauded as one of the greatest public health interventions--are losing public confidence. Some vaccine experts have referred to this decline in confidence as a crisis. We discuss some of the characteristics of the changing global environment that are contributing to increased public questioning of vaccines, and outline some of the specific determinants of public trust. Public decision making related to vaccine acceptance is neither driven by scientific nor economic evidence alone, but is also driven by a mix of psychological, sociocultural, and political factors, all of which need to be understood and taken into account by policy and other decision makers. Public trust in vaccines is highly variable and building trust depends on understanding perceptions of vaccines and vaccine risks, historical experiences, religious or political affiliations, and socioeconomic status. Although provision of accurate, scientifically based evidence on the risk-benefit ratios of vaccines is crucial, it is not enough to redress the gap between current levels of public confidence in vaccines and levels of trust needed to ensure adequate and sustained vaccine coverage. We call for more research not just on individual determinants of public trust, but on what mix of factors are most likely to sustain public trust. The vaccine community demands rigorous evidence on vaccine efficacy and safety and technical and operational feasibility when introducing a new vaccine, but has been negligent in demanding equally rigorous research to understand the psychological, social, and political factors that affect public trust in vaccines.

  11. NEN Division Funding Gap Analysis

    SciTech Connect

    Esch, Ernst I.; Goettee, Jeffrey D.; Desimone, David J.; Lakis, Rollin E.; Miko, David K.

    2012-09-05

    The work in NEN Division revolves around proliferation detection. The sponsor funding model seems to have shifted over the last decades. For the past three lustra, sponsors are mainly interested in funding ideas and detection systems that are already at a technical readiness level 6 (TRL 6 -- one step below an industrial prototype) or higher. Once this level is reached, the sponsoring agency is willing to fund the commercialization, implementation, and training for the systems (TRL 8, 9). These sponsors are looking for a fast turnaround (1-2 years) technology development efforts to implement technology. To support the critical national and international needs for nonprolifertion solutions, we have to maintain a fluent stream of subject matter expertise from the fundamental principals of radiation detection through prototype development all the way to the implementation and training of others. NEN Division has large funding gaps in the Valley of Death region. In the current competitive climate for nuclear nonproliferation projects, it is imminent to increase our lead in this field.

  12. Entanglement Spectra of Gapped One-dimensional Field Theories and Symmetry-Protected Topological Phases

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Shiozaki, Ken; Ludwig, Andreas; Ryu, Shinsei

    We discuss the entanglement spectrum(ES) of (1+1)d gapped Lorentz invariant field theories in the vicinity of a conformal field theory (CFT). In particular, for a gapped theory obtained by perturbing a CFT in infinite space by relevant perturbations, we show that the low-lying ES for the half-line is equal to the physical spectrum of the gapless CFT defined on a finite interval of length L = log (ξ / a) , which is the spectrum of a boundary CFT. Here ξ is the correlation length, a a microscopic lattice scale, and our result applies in the ''scaling limit'' where ξ >> a . A similar property has been known to hold for Baxter's Corner Transfer Matrices of a class of very special, namely integrable lattice models, for the entire ES and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying ES. As a consequence, while on a finite interval of length 2 R the physical spectrum of the gapped theory is known to undergo a dramatic reorganization as 2 R crosses ξ, the bipartite ES remains unchanged up to an overall scale. We apply these to (1+1)d symmetry-protected topological phases and symmetry-protected degeneracy of ES.

  13. Signal transmission between gap-junctionally coupled passive cables is most effective at an optimal diameter.

    PubMed

    Nadim, Farzan; Golowasch, Jorge

    2006-06-01

    We analyze simple morphological configurations that represent gap-junctional coupling between neuronal processes or between muscle fibers. Specifically, we use cable theory and simulations to examine the consequences of current flow from one cable to other gap-junctionally coupled passive cables. When the proximal end of the first cable is voltage clamped, the amplitude of the electrical signal in distal portions of the second cable depends on the cable diameter. However, this amplitude does not simply increase if cable diameter is increased, as expected from the larger length constant; instead, an optimal diameter exists. The optimal diameter arises because the dependency of voltage attenuation along the second cable on cable diameter follows two opposing rules. As cable diameter increases, the attenuation decreases because of a larger length constant yet increases because of a reduction in current density arising from the limiting effect of the gap junction on current flow into the second cable. The optimal diameter depends on the gap junction resistance and cable parameters. In branched cables, dependency on diameter is local and thus may serve to functionally compartmentalize branches that are coupled to other cells. Such compartmentalization may be important when periodic signals or action potentials cause the current flow across gap junctions.

  14. Intron Length Coevolution across Mammalian Genomes

    PubMed Central

    Keane, Peter A.; Seoighe, Cathal

    2016-01-01

    Although they do not contribute directly to the proteome, introns frequently contain regulatory elements and can extend the protein coding potential of the genome through alternative splicing. For some genes, the contribution of introns to the time required for transcription can also be functionally significant. We have previously shown that intron length in genes associated with developmental patterning is often highly conserved. In general, sets of genes that require precise coordination in the timing of their expression may be sensitive to changes in transcript length. A prediction of this hypothesis is that evolutionary changes in intron length, when they occur, may be correlated between sets of coordinately expressed genes. To test this hypothesis, we analyzed intron length coevolution in alignments from nine eutherian mammals. Overall, genes that belong to the same protein complex or that are coexpressed were significantly more likely to show evidence of intron length coevolution than matched, randomly sampled genes. Individually, protein complexes involved in the cell cycle showed the strongest evidence of coevolution of intron lengths and clusters of coexpressed genes enriched for cell cycle genes also showed significant evidence of intron length coevolution. Our results reveal a novel aspect of gene coevolution and provide a means to identify genes, protein complexes and biological processes that may be particularly sensitive to changes in transcriptional dynamics. PMID:27550903

  15. Intron Length Coevolution across Mammalian Genomes.

    PubMed

    Keane, Peter A; Seoighe, Cathal

    2016-10-01

    Although they do not contribute directly to the proteome, introns frequently contain regulatory elements and can extend the protein coding potential of the genome through alternative splicing. For some genes, the contribution of introns to the time required for transcription can also be functionally significant. We have previously shown that intron length in genes associated with developmental patterning is often highly conserved. In general, sets of genes that require precise coordination in the timing of their expression may be sensitive to changes in transcript length. A prediction of this hypothesis is that evolutionary changes in intron length, when they occur, may be correlated between sets of coordinately expressed genes. To test this hypothesis, we analyzed intron length coevolution in alignments from nine eutherian mammals. Overall, genes that belong to the same protein complex or that are coexpressed were significantly more likely to show evidence of intron length coevolution than matched, randomly sampled genes. Individually, protein complexes involved in the cell cycle showed the strongest evidence of coevolution of intron lengths and clusters of coexpressed genes enriched for cell cycle genes also showed significant evidence of intron length coevolution. Our results reveal a novel aspect of gene coevolution and provide a means to identify genes, protein complexes and biological processes that may be particularly sensitive to changes in transcriptional dynamics. PMID:27550903

  16. Minimization of dependency length in written English.

    PubMed

    Temperley, David

    2007-11-01

    Gibson's Dependency Locality Theory (DLT) [Gibson, E. 1998. Linguistic complexity: locality of syntactic dependencies. Cognition, 68, 1-76; Gibson, E. 2000. The dependency locality theory: A distance-based theory of linguistic complexity. In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), Image, Language, Brain (pp. 95-126). Cambridge, MA: MIT Press.] proposes that the processing complexity of a sentence is related to the length of its syntactic dependencies: longer dependencies are more difficult to process. The DLT is supported by a variety of phenomena in language comprehension. This raises the question: Does language production reflect a preference for shorter dependencies as well? I examine this question in a corpus study of written English, using the Wall Street Journal portion of the Penn Treebank. The DLT makes a number of predictions regarding the length of constituents in different contexts; these predictions were tested in a series of statistical tests. A number of findings support the theory: the greater length of subject noun phrases in inverted versus uninverted quotation constructions, the greater length of direct-object versus subject NPs, the greater length of postmodifying versus premodifying adverbial clauses, the greater length of relative-clause subjects within direct-object NPs versus subject NPs, the tendency towards "short-long" ordering of postmodifying adjuncts and coordinated conjuncts, and the shorter length of subject NPs (but not direct-object NPs) in clauses with premodifying adjuncts versus those without.

  17. Perceptual Gap Detection is Mediated by Gap Termination Responses in Auditory Cortex

    PubMed Central

    Weible, Aldis P.; Moore, Alexandra K.; Liu, Christine; deBlander, Leah; Wu, Haiyan; Kentros, Clifford; Wehr, Michael

    2014-01-01

    Background Understanding speech in the presence of background noise often becomes increasingly difficult with age. These age-related speech processing deficits reflect impairments in temporal acuity. Gap detection is a model for temporal acuity in speech processing, in which a gap inserted in white noise acts as a cue that attenuates subsequent startle responses. Lesion studies have shown that auditory cortex is necessary for the detection of brief gaps, and auditory cortical neurons respond to the end of the gap with a characteristic burst of spikes called the gap termination response (GTR). However, it remains unknown whether or how the GTR plays a causal role in gap detection. We tested this by optogenetically suppressing the activity of somatostatin- or parvalbumin-expressing inhibitory interneurons, or CaMKII-expressing excitatory neurons, in auditory cortex of behaving mice during specific epochs of a gap detection protocol. Results Suppressing interneuron activity during the post-gap interval enhanced gap detection. Suppressing excitatory cells during this interval attenuated gap detection. Suppressing activity preceding the gap had the opposite behavioral effects, whereas prolonged suppression across both intervals had no effect on gap detection. Conclusions In addition to confirming cortical involvement, here we demonstrate for the first time a causal relationship between post-gap neural activity and perceptual gap detection. Furthermore, our results suggest that gap detection involves an ongoing comparison of pre- and post-gap spiking activity. Finally, we propose a simple, yet biologically plausible neural circuit that reproduces each of these neural and behavioral results. PMID:24980499

  18. Public Perceptions of the Pay Gap

    ERIC Educational Resources Information Center

    Hill, Catherine; Silva, Elena

    2005-01-01

    Women have made gains toward closing the gender pay gap during the past two decades. Much of the progress occurred during the 1980s, with smaller gains in the 1990s (Institute for Women's Policy Research 2004). Women's achievements in higher education are partly responsible for narrowing the pay gap in the 1980s and 1990s. As more women earned…

  19. The "Developing" Achievement Gap: Colombian Voucher Reform

    ERIC Educational Resources Information Center

    Stern, Jonathan M. B.

    2014-01-01

    The achievement gap in many developing countries is defined in terms of rich/poor and public/private. The prevailing explanation for the "developing" achievement gap is an underfunded, inefficient, and/or inadequately supplied public school sector. Via an analysis of a Colombian voucher experiment, this article examines the extent to…

  20. Subgroup Achievement and Gap Trends: Idaho, 2010

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    This paper profiles the student subgroup achievement and gap trends in Idaho for 2010. Idaho showed improvement in reading and math in grade 8 at the basic, proficient, and advanced levels for Latino and white students, low income students, and boys and girls. The state has also made progress in narrowing achievement gaps between Latino and white…

  1. Drop short control of electrode gap

    DOEpatents

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  2. "Mind the Gap" in the Classroom

    ERIC Educational Resources Information Center

    Ginsberg, Sarah M.

    2010-01-01

    This reflective essay describes a teacher's development of a student-centered approach to teaching which bridges the gap between students' knowledge before and after a course. In "mind the gap teaching," students' prior knowledge leads the conversation and, in turn, the teaching, allowing them to integrate new information more…

  3. GAP-43 Gene Expression Regulates Information Storage

    ERIC Educational Resources Information Center

    Holahan, Matthew R.; Honegger, Kyle S.; Tabatadze, Nino; Routtenberg, Aryeh

    2007-01-01

    Previous reports have shown that overexpression of the growth- and plasticity-associated protein GAP-43 improves memory. However, the relation between the levels of this protein to memory enhancement remains unknown. Here, we studied this issue in transgenic mice (G-Phos) overexpressing native, chick GAP-43. These G-Phos mice could be divided at…

  4. High Temperature Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Wang, D. S.

    1983-01-01

    Gaps between ceramic tiles filled with ceramic-coated fabric that withstands temperatures as high as 2,000 degrees F (1,300 degrees C). Reusable high-temperature gap filler is made of fabric coated with ceramic slurry and bonded in place with room-temperature-vulcanized adhesive. Procedure used in kilns and furnaces.

  5. Reusable Thermal Barrier for Insulation Gaps

    NASA Technical Reports Server (NTRS)

    Saladee, C. E.

    1985-01-01

    Filler composed of resilient, heat-resistant materials. Thermal barrier nestles snugly in gap between two tiles with minimal protrusion beyond faces of surrounding tiles. When removed from gap, barrier springs back to nearly original shape. Developed for filling spaces between tiles on Space Shuttle, also used in furnaces and kilns.

  6. Delaying the Academy: A Gap Year Education

    ERIC Educational Resources Information Center

    O'Shea, Joseph

    2011-01-01

    This investigation serves as one of the first empirical analyses to examine the international volunteering gap year from an educational perspective, concluding an in-depth case study of a prominent gap year organisation in the UK. Contrary to widespread industry promotion of international development, the findings suggest that the experience can…

  7. Predicting the optical gap of conjugated systems

    NASA Astrophysics Data System (ADS)

    Botelho, Andre Leitao

    The adapted Su-Schrieffer-Heeger model is developed in this work as a tool for in silico prediction of the optical gap of pi-conjugated systems for photovoltaic applications. Full transferability of the model ensures reliable predictive power - excellent agreement with 180 independent experimental data points covering virtually all existing conjugated system types with an accuracy exceeding the time-dependent density functional theory, one of the most accurate first-principles methods. Insights on the structure-property relation of conjugated systems obtained from the model lead to guiding rules for optical gap design: 1) fusing aromatic rings parallel to the conjugated path does not significantly lower the optical gap, 2) fusing rings perpendicularly lowers the optical gap of the monomer, but has a reduced benefit from polymerization, and 3) copolymers take advantage of the lower optical gap of perpendicular fused rings and benefit from further optical gap reduction through added parallel fused rings as electronic communicators. A copolymer of parallel and perpendicular benzodithiophenes, differing only in sulfur atom locations, is proposed as a candidate to achieve the optimal 1.2 eV donor optical gap for organic photovoltaics. For small-molecule organic photovoltaics, substituting the end pairs of carbon atoms on pentacene with sulfur atoms is predicted to lower the optical gap from 1.8 eV to 1.1 eV. Furthermore, the model offers an improvement of orders of magnitude in the computational efficiency over commonly used first-principles tools.

  8. Closing the Gender Gap: Act Now

    ERIC Educational Resources Information Center

    OECD Publishing (NJ3), 2012

    2012-01-01

    Gender gaps are pervasive in all walks of economic life and imply large losses in terms of foregone productivity and living standards to the individuals concerned and the economy. This new OECD report focuses on how best to close these gender gaps under four broad headings: (1) Gender equality, social norms and public policies; and gender equality…

  9. Caring Closes the Language-Learning Gap

    ERIC Educational Resources Information Center

    Borba, Mary

    2009-01-01

    The gap in academic achievement between English speakers and English learners continues to concern educators, parents, and legislators. Rising expectations for literacy and the increasing number of students from diverse backgrounds contribute to this achievement gap. In this article, the author discusses a variety of strategies for reaching out to…

  10. School Choice and the Achievement Gap

    ERIC Educational Resources Information Center

    Jeynes, William H.

    2014-01-01

    The possibility is examined that school choice programs could be a means to reducing the achievement gap. Data based on meta-analytic research and the examination of nationwide data sets suggest that school choice programs that include private schools could reduce the achievement gap by 25%. The propounding of this possibility is based on research…

  11. Estimating Gender Wage Gaps: A Data Update

    ERIC Educational Resources Information Center

    McDonald, Judith A.; Thornton, Robert J.

    2016-01-01

    In the authors' 2011 "JEE" article, "Estimating Gender Wage Gaps," they described an interesting class project that allowed students to estimate the current gender earnings gap for recent college graduates using data from the National Association of Colleges and Employers (NACE). Unfortunately, since 2012, NACE no longer…

  12. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Hunter, Scott R.

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  13. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  14. Proposed strategy to sort semiconducting nanotubes by band-gap

    NASA Astrophysics Data System (ADS)

    Narayan, V.

    2007-01-01

    We propose a strategy that uses a tunable infra-red source and an alternating non-linear potential defined by an electrode to sort a suspension of assorted semiconducting nanotubes. The band-gap scales with the inverse of the nanotube diameter, hence the infra-red frequency can be tuned to create excitons in some of the nanotubes; these excitons will be polarized by the potential. Since, a polarized exciton is a dipole, the excited nanotubes will experience a net force and may then diffuse towards the electrode, unlike the other nanotubes. We discuss experimental parameters such as IR intensity, electrode design, and potential frequency for a pilot experiment to sort nanotubes with lengths ≈0.5 μm. The basic physics of the system has been illustrated using a Hartree model applied to nanotubes with nanoscale lengths. The calculated exciton binding energy suddenly drops to zero and the force on the nanotube increases dramatically when the exciton disassociates as the nanotube moves towards the electrode. The quantum adiabatic theorem shows that excitons will be adiabatically polarized for potential frequencies typical for experiments ≈1-10 MHz. The analysis indicates that the manipulation of nanotubes with nanometer lengths requires nanoscale electrodes.

  15. Automatic Control Of Length Of Welding Arc

    NASA Technical Reports Server (NTRS)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  16. The effect on the transmission loss of a double wall panel of using helium gas in the gap

    NASA Technical Reports Server (NTRS)

    Atwal, M. S.; Crocker, M. J.

    1985-01-01

    The possibility of increasing the sound-power transmission loss of a double panel by using helium gas in the gap is investigated. The transmission loss of a panel is defined as ten times the common logarithm of the ratio of the sound power incident on the panel to the sound power transmitted to the space on the other side of the panel. The work is associated with extensive research being done to develop new techniques for predicting the interior noise levels on board high-speed advanced turboprop aircraft and reducing the noise levels with a minimum weight penalty. Helium gas was chosen for its inert properties and its low impedance compared with air. With helium in the gap, the impedance mismatch experienced by the sound wave will be greater than that with air in the gap. It is seen that helium gas in the gap increases the transmission loss of the double panel over a wide range of frequencies.

  17. Extended plasma channels created by UV laser in air and their application to control electric discharges

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-01

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×1011-1.5×1013 and 3×106-3×1011 W/cm2, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 109-1017 cm-3, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  18. Extended plasma channels created by UV laser in air and their application to control electric discharges

    SciTech Connect

    Zvorykin, V. D. Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-15

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×10{sup 11}–1.5×10{sup 13} and 3×10{sup 6}–3×10{sup 11} W/cm{sup 2}, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 10{sup 9}–10{sup 17} cm{sup −3}, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  19. The cataclysmic variable period gap: still there

    NASA Astrophysics Data System (ADS)

    Kolb, U.; King, A. R.; Ritter, H.

    1998-08-01

    We consider a recently proposed alternative explanation of the CV period gap in terms of a revised mass-radius relation for the lower main sequence. We show that no such thermal equilibrium relation is likely to produce a true gap. Using population synthesis techniques we calculate a model population that obeys the claimed equilibrium mass-radius relation. A theoretical period histogram obtained from this population shows two prominent period spikes rather than a gap. We consider also recent arguments suggesting that the period gap itself may not be real. We argue that, far from demonstrating a weakness of the interrupted braking picture, the fact that most CV subtypes prefer one side of the gap or the other is actually an expected consequence of this model.

  20. Exciton Hierarchies in Gapped Carbon Nanotubes

    SciTech Connect

    Konik, R.M.

    2011-04-01

    We present evidence that the strong electron-electron (e-e) interactions in gapped carbon nanotubes lead to finite hierarchies of excitons within a given nanotube subband. We study these hierarchies by employing a field theoretic reduction of the gapped carbon nanotube permitting e-e interactions to be treated exactly. We analyze this reduction by employing a Wilsonian-like numerical renormalization group. We are so able to determine the gap ratios of the one-photon excitons as a function of the effective strength of interactions. We also determine within the same subband the gaps of the two-photon excitons, the single particle gaps, as well as a subset of the dark excitons. The strong e-e interactions in addition lead to strongly renormalized dispersion relations where the consequences of spin-charge separation can be readily observed.

  1. Exciton hierarchies in gapped carbon nanotubes.

    PubMed

    Konik, Robert M

    2011-04-01

    We present evidence that the strong electron-electron (e-e) interactions in gapped carbon nanotubes lead to finite hierarchies of excitons within a given nanotube subband. We study these hierarchies by employing a field theoretic reduction of the gapped carbon nanotube permitting e-e interactions to be treated exactly. We analyze this reduction by employing a Wilsonian-like numerical renormalization group. We are so able to determine the gap ratios of the one-photon excitons as a function of the effective strength of interactions. We also determine within the same subband the gaps of the two-photon excitons, the single particle gaps, as well as a subset of the dark excitons. The strong e-e interactions in addition lead to strongly renormalized dispersion relations where the consequences of spin-charge separation can be readily observed.

  2. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  3. Finite Element Analysis of Composite Joint Configurations with Gaps and Overlaps

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2014-01-01

    The goal of the current study is to identify scenarios for which thermal and moisture effects become significant in the loading of a composite structure. In the current work, a simple configuration was defined, and material properties were selected. A Fortran routine was created to automate the mesh generation process. The routine was used to create the models for the initial mesh refinement study. A combination of element length and width suitable for further studies was identified. Also, the effect of the overlap length and gap length on computed shear and through-thickness stresses along the bondline of the joints was studied for the mechanical load case. Further, the influence of neighboring gaps and overlaps on these joint stresses was studied and was found to be negligible. The results suggest that for an initial study it is sufficient to focus on one configuration with fixed overlap and gap lengths to study the effects of mechanical, thermal and moisture loading and combinations thereof on computed joint stresses

  4. Electronic properties of metal-induced gap states formed at alkali-halide/metal interfaces

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2005-04-01

    The spatial distribution and site distribution of metal-induced gap states (MIGS) are studied by thickness-dependent near-edge x-ray absorption fine structure (NEXAFS) and by comparing the cation and anion-edge NEXAFS. The thickness-dependent NEXAFS shows that the decay length of MIGS depends on an alkali-halide rather than a metal, and it is larger for alkali-halides with smaller band gap energies. By comparing the Cl-edge and K-edge NEXAFS for KCl/Cu (001) , MIGS are found to be states localizing at anion sites.

  5. The effect of frequency on atmospheric pressure glow discharge in a pin-to-plate gap sustained by a resonant power supply

    NASA Astrophysics Data System (ADS)

    Wang, Yong Sheng; Ding, Wei Dong; Wang, Ya Nan; Wang, Jia Chen; Li, Fang; Fan, Chuan

    2016-06-01

    More and more researchers have been attracted to the research of atmospheric pressure glow discharge (APGD) because of its great prospect in numerous industrial applications. Nevertheless, almost all of the industrial applications are based on achievement of stable, large-volume, and uniform APGD. In a previous study, stable filamentary APGD was obtained by applying a resonant power supply between pin-to-plate electrodes which could limit the peak value of discharge current to supress the glow-to-arc transition through a series-wound resonance principle. The filamentary APGD is centimeter-level in the length but only several millimeters in diameter. Therefore, in order to obtain large-volume and uniform APGD, it is significant to study how to diffuse filamentary APGD in radial direction. With the increasing resonant frequency of alternating current discharge, excited particles (mainly including energetic electrons and trapped ions left from the previous half-cycle discharge) in the electrodes gap increase, which benefits obtaining stable self-sustaining APGD. In this paper, mechanism and law of the influence of resonant frequency on the diffusion of filamentary APGD in ambient air were studied. By comparing the photos of discharge plasma and waveforms of the discharge voltage and current, it is found that the volume of the glow discharge plasma enlarges as the resonant frequency of the power supply increases. It is very significant and anticipating to study how to obtain stable, large-volume, and uniform APGD in ambient air by the resonant power supply.

  6. The Anion Gap is a Predictive Clinical Marker for Death in Patients with Acute Pesticide Intoxication

    PubMed Central

    2016-01-01

    Pesticide formulation includes solvents (methanol and xylene) and antifreeze (ethylene glycol) whose metabolites are anions such as formic acid, hippuric acid, and oxalate. However, the effect of the anion gap on clinical outcome in acute pesticide intoxication requires clarification. In this prospective study, we compared the anion gap and other parameters between surviving versus deceased patients with acute pesticide intoxication. The following parameters were assessed in 1,058 patients with acute pesticide intoxication: blood chemistry (blood urea nitrogen, creatinine, glucose, lactic acid, liver enzymes, albumin, globulin, and urate), urinalysis (ketone bodies), arterial blood gas analysis, electrolytes (Na+, K+, Cl- HCO3-, Ca++), pesticide field of use, class, and ingestion amount, clinical outcome (death rate, length of hospital stay, length of intensive care unit stay, and seriousness of toxic symptoms), and the calculated anion gap. Among the 481 patients with a high anion gap, 52.2% had a blood pH in the physiologic range, 35.8% had metabolic acidosis, and 12.1% had acidemia. Age, anion gap, pesticide field of use, pesticide class, seriousness of symptoms (all P < 0.001), and time lag after ingestion (P = 0.048) were significant risk factors for death in univariate analyses. Among these, age, anion gap, and pesticide class were significant risk factors for death in a multiple logistic regression analysis (P < 0.001). In conclusions, high anion gap is a significant risk factor for death, regardless of the accompanying acid-base balance status in patients with acute pesticide intoxication. PMID:27366016

  7. The Anion Gap is a Predictive Clinical Marker for Death in Patients with Acute Pesticide Intoxication.

    PubMed

    Lee, Sun-Hyo; Park, Samel; Lee, Jung-Won; Hwang, Il-Woong; Moon, Hyung-Jun; Kim, Ki-Hwan; Park, Su-Yeon; Gil, Hyo-Wook; Hong, Sae-Yong

    2016-07-01

    Pesticide formulation includes solvents (methanol and xylene) and antifreeze (ethylene glycol) whose metabolites are anions such as formic acid, hippuric acid, and oxalate. However, the effect of the anion gap on clinical outcome in acute pesticide intoxication requires clarification. In this prospective study, we compared the anion gap and other parameters between surviving versus deceased patients with acute pesticide intoxication. The following parameters were assessed in 1,058 patients with acute pesticide intoxication: blood chemistry (blood urea nitrogen, creatinine, glucose, lactic acid, liver enzymes, albumin, globulin, and urate), urinalysis (ketone bodies), arterial blood gas analysis, electrolytes (Na(+), K(+), Cl(-) HCO3 (-), Ca(++)), pesticide field of use, class, and ingestion amount, clinical outcome (death rate, length of hospital stay, length of intensive care unit stay, and seriousness of toxic symptoms), and the calculated anion gap. Among the 481 patients with a high anion gap, 52.2% had a blood pH in the physiologic range, 35.8% had metabolic acidosis, and 12.1% had acidemia. Age, anion gap, pesticide field of use, pesticide class, seriousness of symptoms (all P < 0.001), and time lag after ingestion (P = 0.048) were significant risk factors for death in univariate analyses. Among these, age, anion gap, and pesticide class were significant risk factors for death in a multiple logistic regression analysis (P < 0.001). In conclusions, high anion gap is a significant risk factor for death, regardless of the accompanying acid-base balance status in patients with acute pesticide intoxication. PMID:27366016

  8. Method of continuously determining crack length

    NASA Technical Reports Server (NTRS)

    Prabhakaran, Ramamurthy (Inventor); Lopez, Osvaldo F. (Inventor)

    1993-01-01

    The determination of crack lengths in an accurate and straight forward manner is very useful in studying and preventing load created flaws and cracks. A crack length sensor according to the present invention is fabricated in a rectangular or other geometrical form from a conductive powder impregnated polymer material. The long edges of the sensor are silver painted on both sides and the sensor is then bonded to a test specimen via an adhesive having sufficient thickness to also serve as an insulator. A lead wire is connected to each of the two outwardly facing silver painted edges. The resistance across the sensor changes as a function of the crack length in the specimen and sensor. The novel aspect of the present invention includes the use of relatively uncomplicated sensors and instrumentation to effectively measure the length of generated cracks.

  9. Mixing lengths scaling in a gravity flow

    SciTech Connect

    Ecke, Robert E; Rivera, Micheal; Chen, Jun; Ecke, Robert E

    2009-01-01

    We present an experimental study of the mixing processes in a gravity current. The turbulent transport of momentum and buoyancy can be described in a very direct and compact form by a Prandtl mixing length model [1]: the turbulent vertical fluxes of momentum and buoyancy are found to scale quadraticatly with the vertical mean gradients of velocity and density. The scaling coefficient is the square of the mixing length, approximately constant over the mixing zone of the stratified shear layer. We show in this paper how, in different flow configurations, this length can be related to the shear length of the flow {radical}({var_epsilon}/{partial_derivative}{sub z}u{sup 3}).

  10. Carbon Nanotubes: Measuring Dispersion and Length

    SciTech Connect

    Fagan, Jeffrey A.; Bauer, Barry J.; Hobbie, Erik K.; Becker, Matthew L.; Hight-Walker, Angela; Simpson, Jeffrey R.; Chun, Jaehun; Obrzut, Jan; Bajpai, Vardhan; Phelan, Fred R.; Simien, Daneesh; Yeon Huh, Ji; Migler, Kalman B.

    2011-03-01

    Advanced technological uses of single-wall carbon nanotubes (SWCNTs) rely on the production of single length and chirality populations that are currently only available through liquid phase post processing. The foundation of all of these processing steps is the attainment of individualized nanotube dispersion in solution; an understanding of the collodial properties of the dispersed SWCNTs can then be used to designed appropriate conditions for separations. In many instances nanotube size, particularly length, is especially active in determining the achievable properties from a given population, and thus there is a critical need for measurement technologies for both length distribution and effective separation techniques. In this Progress Report, we document the current state of the art for measuring dispersion and length populations, including separations, and use examples to demonstrate the desirability of addressing these parameters.

  11. Electron Effective-Attenuation-Length Database

    National Institute of Standards and Technology Data Gateway

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  12. Segment lengths influence hill walking strategies.

    PubMed

    Sheehan, Riley C; Gottschall, Jinger S

    2014-08-22

    Segment lengths are known to influence walking kinematics and muscle activity patterns. During level walking at the same speed, taller individuals take longer, slower strides than shorter individuals. Based on this, we sought to determine if segment lengths also influenced hill walking strategies. We hypothesized that individuals with longer segments would display more joint flexion going uphill and more extension going downhill as well as greater lateral gastrocnemius and vastus lateralis activity in both directions. Twenty young adults of varying heights (below 155 cm to above 188 cm) walked at 1.25 m/s on a level treadmill as well as 6° and 12° up and downhill slopes while we collected kinematic and muscle activity data. Subsequently, we ran linear regressions for each of the variables with height, leg, thigh, and shank length. Despite our population having twice the anthropometric variability, the level and hill walking patterns matched closely with previous studies. While there were significant differences between level and hill walking, there were few hill walking variables that were correlated with segment length. In support of our hypothesis, taller individuals had greater knee and ankle flexion during uphill walking. However, the majority of the correlations were between tibialis anterior and lateral gastrocnemius activities and shank length. Contrary to our hypothesis, relative step length and muscle activity decreased with segment length, specifically shank length. In summary, it appears that individuals with shorter segments require greater propulsion and toe clearance during uphill walking as well as greater braking and stability during downhill walking. PMID:24968942

  13. Cold bose gases with large scattering lengths.

    PubMed

    Cowell, S; Heiselberg, H; Mazets, I E; Morales, J; Pandharipande, V R; Pethick, C J

    2002-05-27

    We calculate the energy and condensate fraction for a dense system of bosons interacting through an attractive short range interaction with positive s-wave scattering length a. At high densities n>a(-3), the energy per particle, chemical potential, and square of the sound speed are independent of the scattering length and proportional to n(2/3), as in Fermi systems. The condensate is quenched at densities na(3) approximately 1. PMID:12059466

  14. Fragment Length of Circulating Tumor DNA

    PubMed Central

    Underhill, Hunter R.; Kitzman, Jacob O.; Hellwig, Sabine; Welker, Noah C.; Daza, Riza; Gligorich, Keith M.; Rostomily, Robert C.; Shendure, Jay

    2016-01-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134–144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132–145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA. PMID:27428049

  15. Process for fabricating continuous lengths of superconductor

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    1998-01-01

    A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.

  16. Air cell

    NASA Astrophysics Data System (ADS)

    Okamura, Okiyoshi; Wakasa, Masayuki; Tamanoi, Yoshihito

    1991-04-01

    The present invention relates to an air cell. This air cell provides a compact light-weight power source for model aircraft permitting them to fly for an extended period so that they may be used for such practical purposes as crop dusting, surveying, and photographing. The cell is comprised of a current collector so disposed between a magnesium, zinc, or aluminum alloy cathode and a petroleum graphite anode that it is in contact with the anode. The anode is formed by adding polytetrafluoroethylene dispersion liquid in a mixture of active carbon and graphite powder, pouring the mixture into a mold and heating it to form the anode. It is fabricated by a plurality of anode sections and is formed with at least one hole so that it can provide a cell which is compact in size and light in weight yet is capable of generating a high output. The anode, the cathode, and a separator are wetted by an electrolytic liquid. The electrolyte is continuously supplied through the life of the cell.

  17. Dynamical Length-Regulation of Microtubules

    NASA Astrophysics Data System (ADS)

    Melbinger, Anna; Reese, Louis; Frey, Erwin

    2012-02-01

    Microtubules (MTs) are vital constituents of the cytoskeleton. These stiff filaments are not only needed for mechanical support. They also fulfill highly dynamic tasks. For instance MTs build the mitotic spindle, which pulls the doubled set of chromosomes apart during mitosis. Hence, a well-regulated and adjustable MT length is essential for cell division. Extending a recently introduced model [1], we here study length-regulation of MTs. Thereby we account for both spontaneous polymerization and depolymerization triggered by motor proteins. In contrast to the polymerization rate, the effective depolymerization rate depends on the presence of molecular motors at the tip and thereby on crowding effects which in turn depend on the MT length. We show that these antagonistic effects result in a well-defined MT length. Stochastic simulations and analytic calculations reveal the exact regimes where regulation is feasible. Furthermore, the adjusted MT length and the ensuing strength of fluctuations are analyzed. Taken together, we make quantitative predictions which can be tested experimentally. These results should help to obtain deeper insights in the microscopic mechanisms underlying length-regulation. [4pt] [1] L.Reese, A.Melbinger, E.Frey, Biophys. J., 101, 9, 2190 (2011)

  18. Closing the condom KAP gap.

    PubMed

    Roberto, E L

    1977-01-01

    A number of program strategies have been suggested to close the gap between knowledge and awareness of family planning, and its practice. Most focus on the interim between awareness and usage. This article presents data to support the argument that the problem lies in the awareness stage. Its assumption is that the quality of the awareness is important. As opposed to the survey method of determining awareness, the author proposes the "Focus Group Discussion." As illustration, he presents results of a study using this method, on awareness about condoms, undertaken as part of a Population Center Foundation Condom Distribution Project, in 1975. Its purpose was to identify the more important attitudes toward condoms among married couples, the factors which motivate the couples to use or reject them, and the meanings associated with condoms and how these influence the time, manner, and reasons for rejecting or accepting them. 4 group discussions were carried out, with 8 or 10 married male and female respondents, age 18-35, with at least 2 children, of middle and lower class, and all having at least heard of condoms. Discussions were taped and subjected to content analysis. The 7 major findings are: 1) Quality of awareness depends on experience with use. 2) Experience with use does not guarantee positive quality awareness -- some regular users were still ignorant of some aspects of condom use. 3) Respondents perceive positive aspects of condoms, which should be reinforced. 4) Most of the negative qualities perceived by respondents were imaginary, but can be combatted by the positive statements of users. 5) Filipino men respond to their wives' reactions and project an image of sexual prowess, both possibly damaging to the reputation of condoms; communicators and educators must address the wives equally with their husbands. 6) Buying condoms is embarrassing: studies are needed on how this can be overcome at the places of purchase. 7) Brand awareness is low: only 3 or 4 out

  19. Closing the Geoscience Talent Gap

    NASA Astrophysics Data System (ADS)

    Keane, C. M.

    2007-12-01

    The geosciences, like most technical professions, are facing a critical talent gap into the future, with too few new students entering the profession and too many opportunities for that supply. This situation has evolved as a result of multiple forces, including increased commodity prices, greater strain on water resources, development encroachment on hazardous terrain, and the attrition of Baby Boomers from the workforce. Demand is not the only issue at hand, the legacy of lagging supplies of new students and consequently new professionals has enhanced the problem. The supply issue is a result of the fallout from the 1986 oil bust and the unsubstantiated hopes for an environmental boom in the 1990"s, coupled by the lengthening of academic careers, indefinitely delaying the predicted exodus of faculty. All of these issues are evident in the data collected by AGI, its Member Societies, and the federal government. Two new factors are beginning to play an increased role in the success or failure of geosciences programs: namely student attitudes towards careers and the ability for departments to successfully bridge the demands of the incoming student with the requirements for an individual to succeed in the profession. An issue often lost for geosciences departments is that 95% of geoscientists in the United States work in the private sector or for government agencies, and that those employers drive the profession forward in the long term. Departments that manage to balance the student needs with an end source of gainful employment are witnessing great success and growth. Currently, programs with strong roots in mining, petroleum, and groundwater hydrology are booming, as are graduate programs with strong technology components. The challenge is recognizing the booms, busts, and long-term trends and positioning programs to weather the changes yet retain the core of their program. This level of planning coupled with a profession-wide effort to improve initial recruitment

  20. The Knowledge Gap Versus the Belief Gap and Abstinence-Only Sex Education.

    PubMed

    Hindman, Douglas Blanks; Yan, Changmin

    2015-08-01

    The knowledge gap hypothesis predicts widening disparities in knowledge of heavily publicized public affairs issues among socioeconomic status groups. The belief gap hypothesis extends the knowledge gap hypothesis to account for knowledge and beliefs about politically contested issues based on empirically verifiable information. This analysis of 3 national surveys shows belief gaps developed between liberals and conservatives regarding abstinence-only sex education; socioeconomic status-based knowledge gaps did not widen. The findings partially support both belief gap and knowledge gap hypotheses. In addition, the unique contributions of exposure to Fox News, CNN, and MSNBC in this process were investigated. Only exposure to Fox News was linked to beliefs about abstinence-only sex education directly and indirectly through the cultivation of conservative ideology. PMID:25950234