Science.gov

Sample records for air gas concentration

  1. Minanre Gas Concentrators For Air Sampling

    SciTech Connect

    Dr. Seung Ho Hong

    2001-03-01

    The goal of this project was to demonstrate the feasibility of a compact, lightweight, gas-sampling device with rapid-cycle-time characteristics. The highlights of our Phase I work include: (1) Demonstration of a compact gas sampler with integrated heater. This device has an order of magnitude greater adsorption capacity and much faster heating/cooling times than commercial sorbent tubes. (2) Completion of computational fluid dynamics modeling of the gas sampler to determine airflow characteristics for various design options. These modeling efforts guided the development and testing of the Mesochannel Gas Sampler prototype. (3) Testing of the Mesochannel Gas Sampler in parallel with tests of two packed-bed samplers. These tests showed the Mesochannel Gas Sampler represents a substantial improvement compared with the packed-bed approach. Our mesochannel heat-exchanger/adsorber architecture allows very efficient use of adsorbent mass, high adsorbent loadings, and very low pressure drop, which makes possible very high air-sampling rates using a simple, low-power fan. This device is well-suited for collecting samples of trace-level contaminants. The integrated heater, which forms the adsorbent-coated mesochannel walls, allows direct heating of the adsorbent and results in very rapid desorption of the adsorbed species. We believe the Mesochannel Gas Sampler represents a promising technology for the improvement of trace-contaminant detection limits. In our Phase II proposal, we outline several improvements to the gas sampler that will further improve its performance.

  2. Reproducibility of measurements of trace gas concentrations in expired air.

    PubMed

    Strocchi, A; Ellis, C; Levitt, M D

    1991-07-01

    Measurement of the pulmonary excretion of trace gases has been used as a simple means of assessing metabolic reactions. End alveolar trace gas concentration, rather than excretory rate, is usually measured. However, the reproducibility of this measurement has received little attention. In 17 healthy subjects, duplicate collections of alveolar air were obtained within 1 minute of each other using a commercially available alveolar air sampler. The concentrations of hydrogen, methane, carbon monoxide, and carbon dioxide were measured. When the subject received no instruction on how to expire into the device, a difference of 28% +/- 19% (1SD) was found between duplicate determinations of hydrogen. Instructing the subjects to avoid hyperventilation or to inspire maximally and exhale immediately resulted in only minor reduction in variability. However, a maximal inspiration held for 15 seconds before exhalation reduced the difference to a mean of 9.6% +/- 8.0%, less than half that observed with the other expiratory techniques. Percentage difference of methane measurements with the four different expiratory techniques yielded results comparable to those obtained for hydrogen. In contrast, percentage differences for carbon monoxide measurements were similar for all expiratory techniques. When normalized to a PCO2 of 5%, the variability of hydrogen measurements with the breath-holding technique was reduced to 6.8% +/- 4.7%, a value significantly lower than that obtained with the other expiratory methods. This study suggests that attention to the expiratory technique could improve the accuracy of tests using breath hydrogen measurements.

  3. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  4. Air Data - Concentration Map

    EPA Pesticide Factsheets

    Make a map of daily concentrations over several days. The daily air quality can be displayed in terms of the Air Quality Index or in concentration ranges for certain PM species like organic carbon, nitrates, and sulfates.

  5. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    DOE PAGES

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.; ...

    2015-03-17

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX, NO2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX, NO2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher inmore » homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX, NO2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.« less

  6. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: impact of natural gas appliances on air pollutant concentrations.

    PubMed

    Mullen, N A; Li, J; Russell, M L; Spears, M; Less, B D; Singer, B C

    2016-04-01

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX , NO2 , formaldehyde, and acetaldehyde over ~6-day periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX , NO2 , and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX , NO2 , and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.

  7. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    SciTech Connect

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.; Spears, Michael; Less, Brennan D.; Singer, Brett C.

    2015-03-17

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX, NO2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX, NO2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX, NO2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.

  8. Solving widespread low-concentration VOC air pollution problems: Gas-phase photocatalytic oxidation answers the needs of many small businesses

    SciTech Connect

    Lyons, C; Turchi, C; Gratson, D

    1995-04-01

    Many small businesses are facing new regulations under the 1990 Amendments to the Clean Air Act. Regulators, as well as the businesses themselves, face new challenges to control small point-source air pollution emissions. An individual business-such as a dry cleaner, auto repair shop, bakery, coffee roaster, photo print shop, or chemical company-may be an insignificant source of air pollution, but collectively, the industry becomes a noticeable source. Often the businesses are not equipped to respond to new regulatory requirements because of limited resources, experience, and expertise. Also, existing control strategies may be inappropriate for these businesses, having been developed for major industries with high volumes, high pollutant concentrations, and substantial corporate resources. Gas-phase photocatalytic oxidation (PCO) is an option for eliminating low-concentration, low-flow-rate emissions of volatile organic compounds (VOCs) from small business point sources. The advantages PCO has over other treatment techniques are presented in this paper. This paper also describes how PCO can be applied to specific air pollution problems. We present our methodology for identifying pollution problems for which PCO is applicable and for reaching the technology`s potential end users. PCO is compared to other gas-phase VOC control technologies.

  9. Analysis of low concentration reduced sulfur compounds (RSCs) in air: storage issues and measurement by gas chromatography with sulfur chemiluminescence detection.

    PubMed

    Khan, M A H; Whelan, M E; Rhew, R C

    2012-01-15

    Reduced sulfur compounds (RSCs) were measured at low concentrations in small volume air samples using a cryo-trapping inlet system and gas chromatograph outfitted with a sulfur chemiluminescence detector (GC-SCD). The relative sensitivity of the system to the RSCs follows the sequence H(2)Sair sample, which is suitable for measuring reactive RSCs (e.g., H(2)S and CH(3)SH) at ambient or near ambient atmospheric concentrations. The inlet system allows for replicate sampling from a stored air sample (sub-sampling), thereby improving estimates of instrumental precision and demonstrating the reproducibility of the analytical method. Although the SCD theoretically provides linear responses equivalent to the sulfur mass injected, we found that the response properties for each RSC differed. At concentrations below 2ppb, the compounds H(2)S and CH(3)SH have diminished responses, leading to larger measurement uncertainties. Two generations of commercially available SilcoCan canisters were tested to evaluate the relative RSC loss due to storage in the canister and loss of inertness because of coating age. The older generation canister (>6 years from initial coating) saw significant loss of H(2)S and CH(3)SH within 2 days, while the more recent generation canister (<1 year from initial coating) yielded percent recoveries of RSCs in the range of 85% (H(2)S and CH(3)SH) to 95% (OCS, DMS and CS(2)) after 7 days of storage, suggesting that these canisters may be suitable for the short-term storage of low level RSCs. The development of this low concentration, low sample volume method is well suited for measuring RSC gas fluxes from natural soils in laboratory incubations and in field flux chamber studies.

  10. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    NASA Astrophysics Data System (ADS)

    Smolander, S.; He, Q.; Mogensen, D.; Zhou, L.; Bäck, J.; Ruuskanen, T.; Noe, S.; Guenther, A.; Aaltonen, H.; Kulmala, M.; Boy, M.

    2014-10-01

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors, such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain. We applied the boundary-layer-chemistry-transport model SOSA (model to Simulate the concentrations of Organic vapours and Sulphuric Acid) to investigate Scots pine (Pinus sylvestris) monoterpene emissions in a boreal coniferous forest at the SMEAR (Station for Measuring forest Ecosystem-Atmosphere Relations) II site, southern Finland. SOSA was applied to simulate monoterpene emissions with three different emission modules: the semiempirical G95, MEGAN (Model of Emissions of Gases and Aerosols from Nature) 2.04 with improved descriptions of temperature and light responses and including also carbonyl emissions, and a process-based model SIM-BIM (Seasonal Isoprenoid synthase Model - Biochemical Isoprenoid biosynthesis Model). For the first time, the emission models included seasonal and diurnal variations in both quantity and chemical species of emitted monoterpenes, based on parameterizations obtained from field measurements. Results indicate that modelling and observations agreed reasonably well and that the model can be used for investigating regional air chemistry questions related to monoterpenes. The predominant modelled monoterpene concentrations, α-pinene and Δ3-carene

  11. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    NASA Astrophysics Data System (ADS)

    Smolander, S.; He, Q.; Mogensen, D.; Zhou, L.; Bäck, J.; Ruuskanen, T.; Noe, S.; Guenther, A.; Aaltonen, H.; Kulmala, M.; Boy, M.

    2013-11-01

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain. We applied the boundary layer-chemistry-transport model SOSA to investigate Scots pine (Pinus sylvestris) monoterpene emissions in a boreal coniferous forest at the SMEAR II site, Southern Finland. SOSA was applied to simulate monoterpene emissions with three different emission modules: the semi-empirical G95, MEGAN 2.04 with improved descriptions of temperature and light responses and including also carbonyl emissions, and a process-based model SIM-BIM. For the first time, the emission models included seasonal and diurnal variations in both quantity and chemical species of emitted monoterpenes, based on parameterizations obtained from field measurements. Results indicate that modelling and observations agreed reasonably well, and that the model can be used for investigating regional air chemistry questions related to monoterpenes. The predominant modelled monoterpene concentrations, α-pinene and Δ3-carene, are consistent with observations.

  12. Ammonia gas concentrations over the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ayers, G. P.; Gras, J. L.

    1980-04-01

    Measurements of the concentration of ammonia in the atmosphere over the Southern Ocean in the vicinity of Tasmania are reported. Air samples were collected over a period of three or more hours on oxalic acid-impregnated filters using a PTFE prefilter, and ammonia was determined colorimetrically. For air apparently free of influence by land areas for several thousand km, as indicated by low levels of Aitken nuclei and ammonia, a mean ammonia gas concentration of 0.06 microgram/cu m is obtained, which is significantly lower than those determined elsewhere. The value is used to estimate a dissolved ammonia concentration in the ocean of 0.3 micromole/l, assuming equilibrium between the surface water and the air, is in agreement with measurements by other investigators and direct ocean water ammonia determinations.

  13. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  14. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Uria-Tellaetxe, Iratxe; Navazo, Marino; de Blas, Maite; Durana, Nieves; Alonso, Lucio; Iza, Jon

    2016-04-01

    Despite the toxicity of naphthalene and the fact that it is a precursor of atmospheric photooxidants and secondary aerosol, studies on ambient gas-phase naphthalene are generally scarce. Moreover, as far as we are concerned, this is the first published one using long-term hourly ambient gas-phase naphthalene concentrations. In this work, it has been also demonstrated the usefulness of ambient gas-phase naphthalene to identify major sources of volatile organic compounds (VOC) in complex scenarios. Initially, in order to identify main benzene emission sources, hourly ambient measurements of 60 VOC were taken during a complete year together with meteorological data in an urban/industrial area. Later, due to the observed co-linearity of some of the emissions, a procedure was developed to recover naphthalene concentration data from recorded chromatograms to use it as a tracer of the combustion and distillation of petroleum products. The characteristic retention time of this compound was determined comparing previous GC-MS and GC-FID simultaneous analysis by means of relative retention times, and its concentration was calculated by using relative response factors. The obtained naphthalene concentrations correlated fairly well with ethene (r = 0.86) and benzene (r = 0.92). Besides, the analysis of daily time series showed that these compounds followed a similar pattern, very different from that of other VOC, with minimum concentrations at day-time. This, together with the results from the assessment of the meteorological dependence pointed out a coke oven as the major naphthalene and benzene emitting sources in the study area.

  15. INDOOR AIR CONCENTRATION UNIT CONVERSIONS

    EPA Science Inventory

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which can migrate through subsurface soils and may enter the indoor air of overlying buil...

  16. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, R.E.

    1987-06-30

    An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

  17. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, Robert E.

    1987-01-01

    An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

  18. Air concentrations of organochlorine compounds related to wind direction and compared with biota concentration

    SciTech Connect

    Egebaeck, A.L.; Wideqvist, U.; Asplund, L.; Strandell, M.; Alsberg, T.; Litzen, K.; Eriksson, U.; Haeggberg, L.; Zakrisson, S.; Oisson, M.; Bignert, A.

    1995-12-31

    Persistent organic compounds are long-range transported by air. Air samples were collected at two background meteorological stations, one southern at Gotland in the central Baltic and one northern, close to the polar circle. The collection was a part of the Swedish Dioxin Survey Project. Air sampling was carried out from fall 1990 to spring 1991 using a high-volume sampler. Air trajectories suggesting stable weather conditions decided which samples to be analyzed for e.g. PCBs, polychlorinated naphthalenes (PCN), chloroparaffines, HCHs and Toxaphene. The gas-phase concentrations of the seven PCB congeners 28, 52, 101, 118, 138, 153, 180 were in the low pg/m{sup 3} range, while the concentration of the nonortho PCB 77 was about two orders of magnitude lower. High concentrations were usually correlated with SW winds and low concentrations with N to NW winds. Air masses coming from N to both sampling sites, resulted in nearly equal concentrations of the seven PCB congeners. PCNs were found in the gas phase of all samples at the pg/m{sup 3} level (total PCNs). The relative concentrations of the various contaminants were compared between air and four biological matrices collected in the vicinity of the air sampling locations. Cod, Herring and Herring feeding Guillemot from the Baltic and Pike from the northern sampling site were all collected within the Swedish National Monitoring Program.

  19. Trace gas concentrator FY 1995 summary report

    SciTech Connect

    Andriulli, J.B.; Szady, A.J. Jr.

    1996-05-01

    This report summarizes the accomplishments of the Trace Gas Concentrator Technology Demonstration Project during FY 1995 and through February 1996. The purpose of the activity was to demonstrate proof of principle of a system that concentrates airborne substances (e.g., chemical agents, explosives, narcotics and their precursors, and pollutants) to aid in their detection. A comprehensive computer model (initiated in FY 1994) was developed for the theoretical prediction of the fluid dynamics and mass concentration of the trace gas concentrator. The gas test stand has been installed and checked out. An automated computer data acquisition system has been installed and connected to the concentrator test stand. The data acquisition system is needed to record gas and mechanical operations.

  20. Electrets to measure ion concentration in air.

    PubMed

    Kotrappa, P

    2005-08-01

    Positive and negative ions are produced in air, mainly due to radon and terrestrial/cosmic radiation sources. Measuring ion concentration in air indirectly provides a measure of these sources. Electrets (electrically charged pieces of Teflon), when exposed in the environment, collect ions of opposite sign leading to a measurable decrease in charge, depending upon the exposure time and ion concentration. This work describes a method of correlating electret discharge rate to the ion concentration as measured by a calibrated ion density meter. Once calibrated, electrets can then be used to measure ion concentration of either sign. The ion concentration in ambient air was measured to be about 200 ions mL(-1), measured over several hours. Both positive and negative ion concentrations were similar. In a typical room, negative ion concentration was about 3,500 ions mL(-1), and, surprisingly, there were no positive ions at all in that room. Being an integrating passive device, the method provides the unique possibility of measuring low or high concentrations of positive or negative ions over extended periods, which is difficult to do with other ion concentration measuring instruments.

  1. Design and assembly of a catalyst bed gas generator for the catalytic decomposition of high concentration hydrogen peroxide propellants and the catalytic combustion of hydrocarbon/air mixtures

    NASA Technical Reports Server (NTRS)

    Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Sevener, Kathleen M. (Inventor)

    2004-01-01

    A method for designing and assembling a high performance catalyst bed gas generator for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The gas generator utilizes a sectioned catalyst bed system, and incorporates a robust, high temperature mixed metal oxide catalyst. The gas generator requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. The high performance catalyst bed gas generator system has consistently demonstrated high decomposition efficiency, extremely low decomposition roughness, and long operating life on multiple test articles.

  2. The Air Force concentrating photovoltaic array program

    NASA Technical Reports Server (NTRS)

    Geis, Jack W.

    1987-01-01

    A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed.

  3. Gas turbine combustion chamber with air scoops

    SciTech Connect

    Mumford, S.E.; Smed, J.P.

    1989-12-19

    This patent describes a gas turbine combustion chamber. It comprises: means for admission of fuel to the upstream end thereof and discharge of hot gases from the downstream end thereof, and a combustion chamber wall, having an outer surface, with apertures therethrough, and air scoops provided through the apertures to direct air into the combustion chamber.

  4. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  5. Observations on using inside air concentrations as a predictor of outside air concentrations

    SciTech Connect

    Hawkley, Gavin; Whicker, Jeffrey; Harris, Jason

    2015-04-01

    Here, excavations of radiological material were performed within confined structures with known operational parameters, such as a filtered exhaust system with known filtration efficiency. Given the known efficiency, the assumption could be made that the air concentrations of radioactivity measured outside the structure would be proportional to the air concentrations measured inside the structure. To investigate this assumption, the inside concentration data was compared with the outside concentration data. The correlation of the data suggested that the inside concentrations were not a good predictor of the outside concentrations. This poor correlation was deemed to be a result of operational unknowns within the structures.

  6. Observations on using inside air concentrations as a predictor of outside air concentrations

    DOE PAGES

    Hawkley, Gavin; Whicker, Jeffrey; Harris, Jason

    2015-04-01

    Here, excavations of radiological material were performed within confined structures with known operational parameters, such as a filtered exhaust system with known filtration efficiency. Given the known efficiency, the assumption could be made that the air concentrations of radioactivity measured outside the structure would be proportional to the air concentrations measured inside the structure. To investigate this assumption, the inside concentration data was compared with the outside concentration data. The correlation of the data suggested that the inside concentrations were not a good predictor of the outside concentrations. This poor correlation was deemed to be a result of operational unknownsmore » within the structures.« less

  7. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    SciTech Connect

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected

  8. Scavenging ratios based on inflow air concentrations

    SciTech Connect

    Davis, W.E.; Dana, M.T.; Lee, R.N.; Slinn, W.G.N.; Thorp, J.M.

    1991-07-01

    Scavenging ratios were calculated from field measurements made during April 1985. Event precipitation samples were collected at the surface, but air chemistry measurements in the air mass feeding the precipitation were made from an aircraft. In contrast, ratios calculated in previous studies have used air concentration and precipitation chemistry data from only surface measurements. Average scavenging ratios were calculated for SO{sub 4}{sup 2{minus}}, NO{sub 3}{sup {minus}}, NH{sub 4}{sup +}, total sulfate, total nitrate, and total ammonium for 5 events; the geometric mean of these scavenging ratios were 8.5 {times} 10{sup 5}, 5.6 {times} 10{sup 6}, 4.3 {times} 10{sup 5}, 3.4 {times} 10{sup 5}, 2.4 {times} 10{sup 6}, and 9.7 {times} 10{sup 4}, respectively. These means are similar to but less variable than previous ratios formed using only surface data.

  9. Determination of methane in ambient air by multiplex gas chromatography

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.; Carle, G. C.; Phillips, J. B.

    1985-01-01

    A multiplex gas chromatographic technique for the determination of methane in ambient air over extended periods is reported. A modest gas chromatograph which uses air as the carrier gas was modified by adding a silver oxide sample modulator for multiplex operation. The modulator selectively catalyzes the decomposition of methane in air. The resulting analytical system requires no consumables beyond power. A profile of the methane concentration in this laboratory was obtained for an 8-day period. During this period, methane concentration varied with an approximately daily period from a low of 1.53 + or - 0.60 ppm to a high of 4.63 + or - 0.59 ppm over the entire 8 days. Some of the measured concentrations are higher than those reported elsewhere indicating the presence of some local source or sources for methane. This work has demonstrated the utility of a relatively simple multiplex gas chromatograph for the analysis of environmental samples. The technique should be applicable to other trace components in air through use of other selective modulators.

  10. Radon gas distribution in natural gas processing facilities and workplace air environment.

    PubMed

    Al-Masri, M S; Shwiekani, R

    2008-04-01

    Evaluation was made of the distribution of radon gas and radiation exposure rates in the four main natural gas treatment facilities in Syria. The results showed that radiation exposure rates at contact of all equipment were within the natural levels (0.09-0.1 microSvh(-1)) except for the reflex pumps where a dose rate value of 3 microSvh(-1) was recorded. Radon concentrations in Syrian natural gas varied between 15.4 Bq m(-3) and 1141 Bq m(-3); natural gas associated with oil production was found to contain higher concentrations than the non-associated natural gas. In addition, radon concentrations were higher in the central processing facilities than the wellheads; these high levels are due to pressurizing and concentrating processes that enhance radon gas and its decay products. Moreover, the lowest 222Rn concentration was in the natural gas fraction used for producing sulfur; a value of 80 Bq m(-3) was observed. On the other hand, maximum radon gas and its decay product concentrations in workplace air environments were found to be relatively high in the gas analysis laboratories; a value of 458 Bq m(-3) was observed. However, all reported levels in the workplaces in the four main stations were below the action level set by IAEA for chronic exposure situations involving radon, which is 1000 Bq m(-3).

  11. Wide range radioactive gas concentration detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  12. Gas sensor characterization at low concentrations of natural oils

    NASA Astrophysics Data System (ADS)

    Sambemana, H.; Siadat, M.; Lumbreras, M.

    2009-05-01

    Inhalation of essential oils can be used in aromatherapy due to their activating or relaxing effects. The study of these effects requires behavioral measurements on living subjects, by varying the nature and also the quantity of the volatile substances to be present in the atmosphere. So, to permit the evaluation of therapeutic effects of a variety of natural oils, we propose to develop an automatic diffusion/detection system capable to create an ambient air with low stabilized concentration of chosen oil. In this work, we discuss the performance of an array of eight gas sensors to discriminate low and constant concentrations of a chosen natural oil.

  13. Air radon concentration decrease in a waste water treatment plant.

    PubMed

    Juste, B; Ortiz, J; Verdú, G; Martorell, S

    2015-06-01

    (222)Rn is a naturally occurring gas created from the decay of (226)Ra. The long-term health risk of breathing radon is lung cancer. One particular place where indoor radon concentrations can exceed national guidelines is in wastewater treatment plants (WWTPs) where treatment processes may contribute to ambient airborne concentrations. The aim of this paper was to study the radon concentration decrease after the application of corrective measures in a Spanish WWTP. According to first measures, air radon concentration exceeded International Commission Radiologica1 Protection (ICRP) normative (recommends intervention between 400 and 1000 Bq m(-3)). Therefore, the WWTP improved mechanical forced ventilation to lower occupational exposure. This measure allowed to increase the administrative controls, since the limitation of workers access to the plant changed from 2 h d(-1) (considering a maximum permissible dose of 20 mSv y(-1) averaged over 5 y) to 7 h d(-1).

  14. Control of gas contaminants in air streams through biofiltration

    SciTech Connect

    Holt, T.; Lackey, L.

    1996-11-01

    According to the National Institute for Occupational Safety and Health (NIOSH), the maximum styrene concentration allowed in the work place is 50 ppm for up to a 10-hour work day during a 40-hour work week. The US EPA has classified styrene as one of the 189 hazardous air pollutants listed under Title 3 of the Clean Air Act Amendments to be reduced by a factor of 90% by the year 2000. Significant quantities of styrene are emitted to the atmosphere each year by boat manufacturers. A typical fiberglass boat manufacturing facility can emit over 273 metric tons/year of styrene. The concentration of styrene in the industrial exhaust gas ranges from 20 to 100 ppmv. Such dilute, high volume organically tainted air streams can make conventional abatement technologies such as thermal incineration, adsorption, or absorption technically incompetent or prohibitively expensive. An efficient, innovative, and economical means of remediating styrene vapors would be of value to industries and to the environment. Biofilter technology depends on microorganisms that are immobilized on the packing material in a solid phase reactor to remove or degrade environmentally undesirable compounds contaminating gas streams. The technology is especially successful for treating large volumes of air containing low concentrations of contaminants. The objective of this study was to investigate the feasibility of using biofiltration to treat waste gas streams containing styrene and to determine the critical design and operating parameters for such a system.

  15. Range-resolved gas concentration measurements using tunable semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lytkine, A.; Lau, B.; Lim, A.; Jäger, W.; Tulip, J.

    2008-02-01

    A method for range-resolved gas sensing using path-integrated optical systems is presented. The method involves dividing an absorption path into several measurement segments and extracting the gas concentration in each segment from two path-integrated measurements. We implemented the method with tunable lasers (a 1389-nm VCSEL and a 10.9-μm pulsed quantum cascade laser) and a group of retro reflectors (RRs) distributed along absorption paths. Using a rotating mirror with the VCSEL configuration, we could scan a group of seven tape RRs spaced by 10 cm in ˜ 9 ms to extract an H2O concentration profile. Reduced H2O concentrations were recorded in the segments purged with dry air. Hollow corner cube RRs were used in the quantum cascade laser configuration at distances up to 1.1 km from the laser. Two RRs placed at 66 m and 125 m from the laser allowed us to determine H2O concentrations in both segments. The RRs returns were separated due to the different round trip travel time of the 200-ns laser pulse. Novel instruments for range-resolved remote sensing in the atmosphere can be developed for a variety of applications, including monitoring the fluxes of atmospheric pollutants and controlling air quality in populated areas.

  16. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  17. Gas chromatographic method for measuring nitrogen dioxide and peroxyacetyl nitrate in air without compressed gas cylinders

    SciTech Connect

    Burkhardt, M.R.; Maniga, N.I.; Stedman, D.H.; Paur, R.J.

    1988-04-15

    A gas chromatographic technique that measures atmospheric concentrations of peroxyacetyl nitrate (PAN) and NO/sub 2/ has been developed that uses luminol-based chemiluminescence for detection. The carrier gas is air that has been scrubbed by passing it over FeSO/sub 4/, which eliminates the need for any compressed gas cylinders. A novel gas sampling system and time enable variable sample volumes of contaminated air to be injected. Ambient PAN and NO/sub 2/ measurements can be made every 40 s with detection limits of 0.12 ppb for PAN and 0.2 ppb for NO/sub 2/. Seven other atmospheric species, including ozone, gave no interference. Linear response was observed for NO/sub 2/ from 0.2 to 170 ppb and for PAN from 1 to 70 ppb.

  18. Variability of air ion concentrations in urban Paris

    NASA Astrophysics Data System (ADS)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-12-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of

  19. Influence of cycle exercise on acetone in expired air and skin gas.

    PubMed

    Yamai, Kazuaki; Ohkuwa, Tetsuo; Itoh, Hiroshi; Yamazaki, Yoshihiko; Tsuda, Takao

    2009-01-01

    This study investigated the influence of cycle exercise on acetone concentration in expired air and skin gas. The subjects for this experiment were eight healthy males. Subjects performed a continuous graded exercise test on a cycle ergometer. The workloads were 360 (1.0 kg), 720 (2.0 kg), 990 (2.75 kg) kgm/min, and each stage was 5 min in duration. A pedaling frequency of 60 rpm was maintained. Acetone concentration was analyzed by gas chromatography. The acetone concentration in expired air and skin gas during exercise at 990 kgm/min intensity was significantly increased compared with the basal level. The skin-gas acetone concentration at 990 kgm/min significantly increased compared with the 360 kgm/min (P < 0.05). The acetone excretion of expired air at 720 kgm/min and 990 kgm/min significantly increased compared with the basal level (P < 0.05). Acetone concentration in expired air was 4-fold greater than skin gas at rest and 3-fold greater during exercise (P < 0.01). Skin gas acetone concentration significantly related with expired air (r = 0.752; P < 0.01). This study confirmed that the skin-gas acetone concentration reflected that of expired air.

  20. Long-memory property in air pollutant concentrations

    NASA Astrophysics Data System (ADS)

    Chelani, Asha

    2016-05-01

    In the present paper, long-memory in air pollutant concentrations is reviewed and outcome of the past studies is analyzed to provide the possible mechanism behind temporal evolution of air pollutant concentrations. It is observed that almost all the studies show air pollutant concentrations over time possess persistence up to a certain limit. Self-organized criticality of air pollution, multiplicative process of pollutant concentrations, and uniformity in emission sources leading to self-organized criticality are few of the phenomena behind the persistent property of air pollutant concentrations. The self-organized criticality of air pollution is linked to atmosphere's self-cleansing mechanism. This demonstrates that inspite of increasing anthropogenic emissions, self-organized criticality of air pollution is sustained and has low influence of human interventions. In the future, this property may, however, be perturbed due to continuous air pollution emissions, which may influence the accuracy in predictions.

  1. Air quality concerns of unconventional oil and natural gas production.

    PubMed

    Field, R A; Soltis, J; Murphy, S

    2014-05-01

    Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of

  2. Air Monitoring for Hazardous Gas Detection

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Griffin, Timothy P.; Adams, Frederick; Follistein, Duke

    2003-01-01

    The Hazardous Gas Detection Lab is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response and limits of detection. Unfortunately, these systems are large, heavy and expensive. This feature limits the ability to perform gas analysis in certain applications. Smaller and lighter mass spectrometer systems could be used in many more applications primarily due to the portability of the system. Such applications would include air analysis in confined spaces, in-situ environmental analysis and emergency response. In general, system cost is lowered as size is reduced. With a low cost air analysis system, several systems could be utilized for monitoring large areas. These networked systems could be deployed at job-sites for worker safety, throughout a community for pollution warnings, or dispersed in a battlefield for early warning of chemical or biological threats. Presented will be information on the first prototype of this type of system. Included will be field trial data, with this prototype performing air analysis autonomously from an aircraft.

  3. BOREAS TGB-7 Ambient Air Herbicide and Organochlorine Concentration Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-7 team measured the concentration and flux of several agricultural pesticides in air, rainwater, and dry deposition samples in order to determine the associated yearly deposition rates. This data set contains information on the ambient air concentration of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  4. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  5. Compressed air energy storage in depleted natural gas reservoirs: effects of porous media and gas mixing

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Pan, L.

    2015-12-01

    Although large opportunities exist for compressed air energy storage (CAES) in aquifers and depleted natural gas reservoirs, only two grid-scale CAES facilities exist worldwide, both in salt caverns. As such, experience with CAES in porous media, what we call PM-CAES, is lacking and we have relied on modeling to elucidate PM-CAES processes. PM-CAES operates similarly to cavern CAES. Specifically, working gas (air) is injected through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir flows first into a recuperator, then into an expander, and subsequently is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Energy storage in porous media is complicated by the solid matrix grains which provide resistance to flow (via permeability in Darcy's law); in the cap rock, low-permeability matrix provides the seal to the reservoir. The solid grains also provide storage capacity for heat that might arise from compression, viscous flow effects, or chemical reactions. The storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Residual liquid (i.e., formation fluids) affects flow and can cause watering out at the production well(s). PG&E is researching a potential 300 MW (for ten hours) PM-CAES facility in a depleted gas reservoir near Lodi, California. Special considerations exist for depleted natural gas reservoirs because of mixing effects which can lead to undesirable residual methane (CH4) entrainment and reactions of oxygen and CH4. One strategy for avoiding extensive mixing of working gas (air) with reservoir CH4 is to inject an initial cushion gas with reduced oxygen concentration providing a buffer between the working gas (air) and the residual CH4 gas. This reduces the potential mixing of the working air with the residual CH4

  6. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  7. Air-water gas exchange of toxaphene in Lake Superior.

    PubMed

    Jantunen, Liisa M; Bidleman, Terry F

    2003-06-01

    Parallel air and water samples were collected in Lake Superior during August 1996 and May 1997, to determine the levels and air-water exchange direction of toxaphene. Concentration of toxaphene in water did not vary across Lake Superior or between seasons (averaging 918 +/- 218 pg/L) but atmospheric levels were lower in May (12 +/- 4.6 pg/m3) than in August (28 +/- 10 pg/m3). Two recalcitrant congeners, Parlar 26 and 50, also were determined. These congeners were enriched in the air samples, compared to a standard of technical toxaphene, but not in the water. Water-air fugacity ratios varied from 1.4 to 2.6 in August and 1.3 to 4.7 in May, implying volatilization of toxaphene from the lake. Estimated net fluxes ranged from 5.4 to 13 and 1.8 to 6.4 nm/m2d, respectively. The temperature dependence of toxaphene partial pressure (P) in air was log P/Pa = -3.291/T(a) + 1.67, where T(a) is air temperature. By using this relationship, the atmospheric levels of toxaphene, fugacity ratios, and net fluxes were estimated for the entire year. Fugacity ratios were highest in the winter and lowest in the summer; thus toxaphene was predicted to undergo net volatilization from the lake during all months. A net removal of approximately 220 kg/year by gas exchange was estimated.

  8. USING THE AIR QUALITY MODEL TO ANALYZE THE CONCENTRATIONS OF AIR TOXICS OVER THE CONTINENTAL U.S.

    EPA Science Inventory

    The U.S. Environmental Protection Agency is examining the concentrations and deposition of hazardous air pollutants (HAPs), which include a large number of chemicals, ranging from non reactive (i.e. carbon tetrachloride) to reactive (i.e. formaldehyde), exist in gas, aqueous, and...

  9. A method for determination of methyl chloride concentration in air trapped in ice cores.

    PubMed

    Saito, Takuya; Yokouchi, Yoko; Aoki, Shuji; Nakazawa, Takakiyo; Fujii, Yoshiyuki; Watanabe, Okitsugu

    2006-05-01

    A method for measuring the concentration of methyl chloride (CH3Cl) in air trapped in an ice core was developed. The method combines the air extraction by milling the ice core samples under vacuum and the analysis of the extracted air with a cryogenic preconcentration/gas chromatograph/mass spectrometry system. The method was applied to air from Antarctic ice core samples estimated to have been formed in the pre-industrial and/or early industrial periods. The overall precision of the method deduced from duplicate ice core analyses was estimated to be better than +/-20 pptv. The measured CH3Cl concentration of 528+/-26 pptv was similar to the present-day concentration in the remote atmosphere as well as the CH3Cl concentration over the past 300 years obtained from Antarctic firn air and ice core analyses.

  10. Coaxial fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  11. Controlling Air Pollution from the Oil and Natural Gas Industry

    EPA Pesticide Factsheets

    EPA regulations for the oil and natural gas industry help combat climate change and reduce air pollution that harms public health. EPA’s regulations apply to oil production, and the production, process, transmission and storage of natural gas.

  12. View of steam powered air compressor in boiler house. Gas ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of steam powered air compressor in boiler house. Gas engine powered electric generators are visible in far left background. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  13. Validation study of air-sea gas transfer modeling

    SciTech Connect

    Asher, W.E.; Farley, P.J.; Leifer, I.S.

    1995-07-01

    Laboratory results have demonstrated the importance of bubble plumes to air-water gas transfer (Asher et al., 1994). Bubble plumes enhance gas transfer by disrupting surface films, by directly transporting a gas, and by the creation of turbulence. Models of bubble gas transfer have been developed by different authors (Atkinson, 1973; Memery and Merlivat, 1985; Woolf and Thorpe, 1991) to determine the magnitude of gas transfer due to bubbles. Laboratory measurements of both the gas transfer rate k{sub L}, and the bubble distribution {phi} in a whitecap simulation tank (WST) have allowed these models to be validated and deficiencies in the theoretical assumptions to be explored. In the WST, each bucket tip simulates a wave breaking event. Important tests of these models include whether they can explain the experimentally determined solubility and Schmidt number dependency of k{sub L}, predict the time varying bubble concentrations, predict the evasion-invasion asymmetry, and predict the fraction of k{sub L} due to bubble plumes. Four different models were tested, a steady state model (Atkinson, 1973), a non-turbulence model with constant bubble radius (Memery and Merlivat, 1985), a turbulence model with constant bubble radius (Wolf and Thorpe, 1991), and a turbulence model with varying bubble radius. All models simulated multiple bubble tip cycles. The two turbulence models were run for sufficient tip cycles to generate statistically significant number of eddies ({number_sign}{gt}50) for bubbles affected by turbulence (V{sub B}{le}V{sub T}), found to be at least four tip cycles. The models allowed up to nine gases simultaneously and were run under different conditions of trace and major gas concentrations and partial pressures.

  14. Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation

    SciTech Connect

    Reichenbach, H.; Neuwald, P.; Kuhl, A.L.

    1992-11-01

    This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.

  15. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  16. Efficiencies of free-air gas fumigation devices

    SciTech Connect

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.F.; Nagy, J.

    1992-03-01

    One of the key uncertainties relative to future increases in atmospheric CO{sub 2} is the extent to which growth in future emissions will be accommodated by increased uptake by terrestrial vegetation, the so-called fertilization'' effect. Research on this issue is currently pursued by many research groups around the world, using various experimental protocols and devices. These range from leaf cuvettes to various types of enclosures and glass-houses to various types of open-field gas enrichment or fumigation systems. As research priorities move from crops to forests and natural ecosystems, these experimental devices tend to become large and enrichment gas (i.e., CO{sub 2}) requirements and costs become a major factor in experimental design. This paper considers the relative efficiencies of gas usage for different types of systems currently in use. One of these is the Free Air CO{sub 2} Enrichment System (FACE) designed and developed at Brookhaven National Laboratory (BNL). In this paper, we develop some nondimensional groups of parameters for the purpose of characterizing performance, i.e., enrichment gas usage. These nondimensional groups are then used as figures of merit and basically allow the required flow rates of CO{sub 2} to be predicted based on the geometry of the device, wind speed, and the incremental gas concentration desired. The parameters chosen to comprise a useful nondimensional group must not only have the correct dimensions, they must also represent an appropriate physical relationship.

  17. Efficiencies of free-air gas fumigation devices

    SciTech Connect

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.F.; Nagy, J.

    1992-03-01

    One of the key uncertainties relative to future increases in atmospheric CO{sub 2} is the extent to which growth in future emissions will be accommodated by increased uptake by terrestrial vegetation, the so-called ``fertilization`` effect. Research on this issue is currently pursued by many research groups around the world, using various experimental protocols and devices. These range from leaf cuvettes to various types of enclosures and glass-houses to various types of open-field gas enrichment or fumigation systems. As research priorities move from crops to forests and natural ecosystems, these experimental devices tend to become large and enrichment gas (i.e., CO{sub 2}) requirements and costs become a major factor in experimental design. This paper considers the relative efficiencies of gas usage for different types of systems currently in use. One of these is the Free Air CO{sub 2} Enrichment System (FACE) designed and developed at Brookhaven National Laboratory (BNL). In this paper, we develop some nondimensional groups of parameters for the purpose of characterizing performance, i.e., enrichment gas usage. These nondimensional groups are then used as figures of merit and basically allow the required flow rates of CO{sub 2} to be predicted based on the geometry of the device, wind speed, and the incremental gas concentration desired. The parameters chosen to comprise a useful nondimensional group must not only have the correct dimensions, they must also represent an appropriate physical relationship.

  18. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  19. Measuring Concentrations of Particulate 140La in the Air

    DOE PAGES

    Okada, Colin E.; Kernan, Warnick; Keillor, Martin; ...

    2016-01-01

    This article discusses deployment of air-samplers to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device experiments. Positioned 100-600 meters downwind of the release point, the filters were collected immediately and analyzed in a field laboratory. The article discusses quantities for total activity collected on the air filters as well as additional information to compute the average or integrated air concentrations. In the case of a public emergency, this type of information would be important for decision makers and responders.

  20. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    Oxygen concentration and separation is an essential factor for air recycling in a CELSS. Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of O2 from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  1. Performance of the Proposed New Federal Reference Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air, described in EPA regulations at 40 CFR Part 50, Appendix D, is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O

  2. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  3. Analysis of temperature influences on the amplitude-frequency characteristics of Rn gas concentration.

    PubMed

    Finkelstein, Michael; Eppelbaum, Lev V; Price, Colin

    2006-01-01

    The ventilation mechanism of Rn gas in underground environments is considered. Ventilation plays an important role in influencing the variability (harmonics) of Rn gas in the porous space below the earth's surface. We propose a new physical-environmental model of relating Rn gas concentrations to air temperature variations at the earth's surface. Applicability of this model was tested after searching for Rn gas indicators of geodynamic processes in two underground tunnels in central and southern Israel. The theoretical estimation of Rn gas concentrations shows a good agreement with the observed values. We demonstrate the possibility of Rn gas anomalies being caused by atmospheric temperature variations and the necessity to take these effects into account when investigating geodynamic processes.

  4. Concentrations of selected contaminants in cabin air of airbus aircrafts.

    PubMed

    Dechow, M; Sohn, H; Steinhanses, J

    1997-07-01

    The concentrations of selected air quality parameters in aircraft cabins were investigated including particle numbers in cabin air compared to fresh air and recirculation air, the microbiological contamination and the concentration of volatile organic compounds (VOC). The Airbus types A310 of Swissair and A340 of Lufthansa were used for measurements. The particles were found to be mainly emitted by the passengers, especially by smokers. Depending on recirculation filter efficiency the recirculation air contained a lower or equal amount of particles compared to the fresh air, whereas the amount of bacteria exceeded reported concentrations within other indoor spaces. The detected species were mainly non-pathogenic, with droplet infection over short distances identified as the only health risk. The concentration of volatile organic compounds (VOC) were well below threshold values. Ethanol was identified as the compound with the highest amount in cabin air. Further organics were emitted by the passengers--as metabolic products or by smoking--and on ground as engine exhaust (bad airport air quality). Cleaning agents may be the source of further compounds.

  5. Selection of the air heat exchanger operating in a gas turbine air bottoming cycle

    NASA Astrophysics Data System (ADS)

    Chmielniak, Tadeusz; Czaja, Daniel; Lepszy, Sebastian

    2013-12-01

    A gas turbine air bottoming cycle consists of a gas turbine unit and the air turbine part. The air part includes a compressor, air expander and air heat exchanger. The air heat exchanger couples the gas turbine to the air cycle. Due to the low specific heat of air and of the gas turbine exhaust gases, the air heat exchanger features a considerable size. The bigger the air heat exchanger, the higher its effectiveness, which results in the improvement of the efficiency of the gas turbine air bottoming cycle. On the other hand, a device with large dimensions weighs more, which may limit its use in specific locations, such as oil platforms. The thermodynamic calculations of the air heat exchanger and a preliminary selection of the device are presented. The installation used in the calculation process is a plate heat exchanger, which is characterized by a smaller size and lower values of the pressure drop compared to the shell and tube heat exchanger. Structurally, this type of the heat exchanger is quite similar to the gas turbine regenerator. The method on which the calculation procedure may be based for real installations is also presented, which have to satisfy the economic criteria of financial profitability and cost-effectiveness apart from the thermodynamic criteria.

  6. The SOLAS air-sea gas exchange experiment (SAGE) 2004

    NASA Astrophysics Data System (ADS)

    Harvey, Mike J.; Law, Cliff S.; Smith, Murray J.; Hall, Julie A.; Abraham, Edward R.; Stevens, Craig L.; Hadfield, Mark G.; Ho, David T.; Ward, Brian; Archer, Stephen D.; Cainey, Jill M.; Currie, Kim I.; Devries, Dawn; Ellwood, Michael J.; Hill, Peter; Jones, Graham B.; Katz, Dave; Kuparinen, Jorma; Macaskill, Burns; Main, William; Marriner, Andrew; McGregor, John; McNeil, Craig; Minnett, Peter J.; Nodder, Scott D.; Peloquin, Jill; Pickmere, Stuart; Pinkerton, Matthew H.; Safi, Karl A.; Thompson, Rona; Walkington, Matthew; Wright, Simon W.; Ziolkowski, Lori A.

    2011-03-01

    The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive subpolar zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment was conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX's), SAGE was designed as a Lagrangian study, quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO 2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF 6/ 3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at tenths of kilometer scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describe air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties and windspeed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence ( Fv/ Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX's, rates of net primary production and column-integrated chlorophyll a concentrations had

  7. Background concentrations of 18 air toxics for North America.

    PubMed

    McCarthy, Michael C; Hafner, Hilary R; Montzka, Stephen A

    2006-01-01

    The U.S. Clean Air Act identifies 188 hazardous air pollutants (HAPs), or "air toxics," associated with adverse human health effects. Of these air toxics, 18 were targeted as the most important in a 10-City Pilot Study conducted in 2001 and 2002 as part of the National Air Toxics Trend Sites Program. In the present analysis, measurements available from monitoring networks in North America were used to estimate boundary layer background concentrations and trends of these 18 HAPs. The background concentrations reported in this study are as much as 85% lower than those reported in recent studies of HAP concentrations. Background concentrations of some volatile organic compounds were analyzed for trends at the 95% confidence level; only carbon tetrachloride (CCI4) and tetrachloroethylene decreased significantly in recent years. Remote background concentrations were compared with the one-in-a-million (i.e., 10(6)) cancer benchmarks to determine the possible causes of health risk in rural and remote areas; benzene, chloroform, formaldehyde, and chromium (Cr) fine particulate were higher than cancer benchmark values. In addition, remote background concentrations were found to contribute between 5% and 99% of median urban concentrations.

  8. Comparison of observed and predicted Kr-85 air concentrations

    SciTech Connect

    Yildiran, M.; Miller, C.W.

    1984-04-25

    A computer code, ANEMOS has been written to estimate concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operation Sources. This code uses a modified Gaussian plum equation. Output from ANEMOS includes annual-average air concentrations and ground deposition rates of dispersed radionuclides and daughters. To use the environmental transport model properly, some estimate of the models predictive accuracy must be obtained. To validate the ANEMOS model, one year of weekly average Kr-85 concentrations observed at 13 stations located 28 to 144 km distant from continuous point source at the Savannah River Plant (SRP), Aiken, South Carolina, have been used. There was a general tendency for the model to underpredict the observed air concentrations slightly. Pearsons's correlation between pairs of logarithms of observed and predicted annual-average values was r = 0.84. The monthly results tend to show more scatter than do either the seasonal or the annual comparisons. 18 references, 3 figures, 3 tables.

  9. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada

    NASA Astrophysics Data System (ADS)

    Shoeib, Mahiba; Ahrens, Lutz; Jantunen, Liisa; Harner, Tom

    2014-12-01

    Concentrations of organobromine (BFRs), organochlorine (CFRs) and organophosphate esters flame retardants and plasticizers (PFRs) in air were monitored for over one year at an urban site in Toronto, Canada during 2010-2011. The mean value for polybrominated diphenyl ethers (BDEs) (gas + particle phase) was 38 pg/m3 with BDE-47 and BDE-99 as the dominant congeners. The mean concentrations in air for ∑non-BDE (BFRs and CFRs), was 9.6 pg/m3 - about four times lower than the BDEs. The brominated FRs: TBP-AE, BTBPE, EH-TBB, BEH-TEBP and the chlorinated syn- and anti-DP were detected frequently, ranging from 87% to 96%. Highest concentrations in air among all flame retardant classes were observed for the Σ-PFRs. The yearly mean concentration in air for ΣPFRs was 2643 pg/m3 with detection frequency higher than 80%. Except for TBP-AE and b- DBE-DBCH, non-BDEs (BFRs, CFRs and PFRs) were mainly associated with the particle phase. BDE concentrations in air were positively correlated with temperature indicating that volatilization from local sources was an important factor controlling levels in air. This correlation did not hold for most BFRs, CFRs and PFRs which were mainly on particles. For these compounds, air concentrations in Toronto are likely related to emissions from point sources and advective inputs. This study highlights the importance of urban air monitoring for FRs. Urban air can be considered a sentinel for detecting changes in the use and application of FRs in commercial products.

  10. Determination of natural in vivo noble-gas concentrations in human blood.

    PubMed

    Tomonaga, Yama; Brennwald, Matthias S; Livingstone, David M; Tomonaga, Geneviève; Kipfer, Rolf

    2014-01-01

    Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry.

  11. Indoor air VOC concentrations in suburban and rural New Jersey.

    PubMed

    Weisel, Clifford P; Alimokhtari, Shahnaz; Sanders, Paul F

    2008-11-15

    Indoor VOC air concentrations of many compounds are higher than outdoor concentrations due to indoor sources. However, most studies have measured residential indoor air in urban centers so the typical indoor air levels in suburban and rural regions have not been well characterized. Indoor VOC air concentrations were measured in 100 homes in suburban and rural areas in NJ to provide background levels for investigations of the impact from subsurface contamination sources. Of the 57 target compounds, 23 were not detected in any of the homes, and 14 compounds were detected in at least 50% of the homes with detection limits of approximately 1 microg/m3. The common compounds identified included aromatic and aliphatic hydrocarbons from mobile sources, halogenated hydrocarbons commonly used in consumer products or from chlorinated drinking water, acetone and 2-butanone emitted from cosmetic products, and Freons. Typical concentrations were in the low microg/m3 range, though values of tens, hundreds or even thousands of microg/m3 were measured in individual homes in which activities related to specific sources of VOCs were reported. Compounds with known similar sources were highly correlated. The levels observed are consistent with concentrations found in the air of urban homes.

  12. Using an air thermometer to estimate the gas constant

    NASA Astrophysics Data System (ADS)

    Kinchin, John

    2015-03-01

    The air thermometer, widely used in physics laboratories to show the relationship between volume and temperature, can also be used to obtain values for the gas constant and hence Avogadro’s number. Using a very low cost, home-made air thermometer can give surprisingly good results in a very short period of time.

  13. Seasonal variations of air pollutant concentrations within Krasnoyarsk City.

    PubMed

    Mikhailuta, Sergey V; Taseiko, Olga V; Pitt, Anne; Lezhenin, Anatoly A; Zakharov, Yuri V

    2009-02-01

    This paper examines the significant differences in seasonal variations of criteria pollutant concentrations in various parts of a large urban area. These differences are caused by the microclimatic heterogeneity of the city and show the influence of breeze and orographic-type circulations on urban air pollution. The temperature heterogeneity of Krasnoyarsk territory during the winter leads to an increase of 150% in CO air pollution levels in the central part of city. During the summer the orographical heterogeneity of Krasnoyarsk City leads to increases of up to 400% in air pollution for different areas.

  14. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  15. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    NASA Astrophysics Data System (ADS)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  16. Spectra of concentration of air pollution for turbulent convection

    SciTech Connect

    Patel, S.R.

    1996-12-31

    Very recently the study of formation and destruction of photochemical smog is increasing at both small and large scale. Also the transport of chemical species through the Planetary Boundary Layer (PBL) of the atmosphere is a key of the global change problem and will have to be parameterized more reliably than in the past. Further, in the air pollution modeling, the usual practice of neglecting the concentration correlation in the atmospheric photochemical reaction has recently been recognized as a source of serious error. So, it is important to study the various aspects of the concentration fluctuations (of air pollution) with chemical reaction. A model of the spectrum of concentration of air pollution with chemical reaction has been developed using the models of Hill and Hill and Clifford. The results obtained are applicable for arbitrary Schmidt number. Further, for the case of pure mixing (without chemical reaction) and the concentration replaced by temperature, the form of the spectra obtained here reduces to the form obtained by Hill and Clifford. This study also shows that, in the case of pure mixing, the concentration decays in a natural manner, but if the concentration selected is that of the chemical reactant, then the effect is that the dispersion of the concentration is much more rapid.

  17. Air-water gas exchange of organochlorine compounds in Lake Baikal, Russia

    SciTech Connect

    McConnell, L.L.; Kucklick, J.R.; Bidleman, T.F.; Ivanov, G.P.; Chernyak, S.M.

    1996-10-01

    Air and surface water samples were collected at Lake Baikal, Russia, during June 1991 to determine concentrations of organochlorine pesticides and polychlorinated biphenyl (PCB) congeners. These data were combined with Henry`s law constants to estimate the gas flux rate across the air-water interface of each compound class. Air samples were collected at Lake Baikal and from nearby Irkutsk. Water samples were collected from three mid-lake stations and at the mouth of two major tributaries. Average air concentrations of chlorinated bornanes (14 pg m{sup -3}), chlordanes (4.9 pg m{sup -3}), and hexachlorobenzene (HCB) (194 pg m{sup -3}) were similar to global backgound of Arctic levels. However, air concentrations of hexachlorocyclohexanes (HCHs), DDTs, and PCBs were closer to those observed in the Great Lakes region. Significantly higher levels of these three compound classes in air over Irkutsk suggests that regional atmospheric transport and deposition may be an important source of these persistent compounds to Lake Baikal. Air-water gas exchange calculations resulted in net depositional flux values for {alpha}-HCH, {gamma}-HCH, DDTs, and chlorinated bornanes at 112, 23, 3.6, and 2.4 ng m{sup -2} d{sup -1}, respectively. The total net flux of 22 PCB congeners, chlordanes, and HCB was from water to air (volatilization) at 47, 1.8, and 32 ng m{sup -2} d{sup -1}, respectively. 50 refs., 7 figs., 5 tabs.

  18. 222Rn and 220Rn concentrations in soil gas of Karkonosze-Izera Block (Sudetes, Poland).

    PubMed

    Malczewski, Dariusz; Zaba, Jerzy

    2007-01-01

    Soil gas 222Rn and 220Rn concentrations were measured at 18 locations in the Karkonosze-Izera Block area in southwestern Poland. Measurements were carried out in surface air and at sampling depths of 10, 40 and 80 cm. Surface air 222Rn concentrations ranged from 4 to 2160 Bq m(-3) and 220Rn ranged from 4 to 228 Bq m(-3). The concentrations for 10 and 40 cm varied from 142 Bq m(-3) to 801 kBq m(-3) and 102 Bq m(-3) to 64 kBq m(-3) for 222Rn and 220Rn, respectively. At 80 cm 222Rn concentrations ranged from 94 Bq m(-3) to >1 MBq m(-3). The 220Rn concentrations at 80 cm varied from 45 Bq m(-3) to 48 kBq m(-3). The concentration versus depth profiles for 222Rn differed for soils developed on fault zones, uranium deposits or both. Atmospheric air temperature and soil gas 222Rn and 220Rn were negatively correlated. At sampling sites with steep slopes, 220Rn concentrations decreased with depth.

  19. Development of a model for radon concentration in indoor air.

    PubMed

    Jelle, Bjørn Petter

    2012-02-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities.

  20. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations.

    PubMed

    Pennell, Kelly G; Scammell, Madeleine Kangsen; McClean, Michael D; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M; Shen, Rui; Indeglia, Paul A; Heiger-Bernays, Wendy J

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m(3) and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an "Imminent Hazard" condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed.

  1. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations

    PubMed Central

    Pennell, Kelly G.; Scammell, Madeleine Kangsen; McClean, Michael D.; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M.; Shen, Rui; Indeglia, Paul A.; Heiger-Bernays, Wendy J.

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m3 and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an “Imminent Hazard” condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed. PMID:23950637

  2. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  3. Influence of relative humidity on VOC concentrations in indoor air.

    PubMed

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    Volatile organic compounds (VOCs) may be emitted from surfaces indoors leading to compromised air quality. This study scrutinized the influence of relative humidity (RH) on VOC concentrations in a building that had been subjected to water damage. While air samplings in a damp room at low RH (21-22%) only revealed minor amounts of 2-ethylhexanol (3 μg/m(3)) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB, 8 μg/m(3)), measurements performed after a rapid increase of RH (to 58-75%) revealed an increase in VOC concentrations which was 3-fold for 2-ethylhexanol and 2-fold for TXIB. Similar VOC emission patterns were found in laboratory analyses of moisture-affected and laboratory-contaminated building materials. This study demonstrates the importance of monitoring RH when sampling indoor air for VOCs in order to avoid misleading conclusions from the analytical results.

  4. Auditing and assessing air quality in concentrated feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential adverse effects of concentrated animal feeding operations (CAFO) on the environment are a growing concern. The air quality issues of most concerns to CAFO vary, but generally include ammonia, hydrogen sulfide, particulate matter (PM), volatile organic compounds (VOC), green house gase...

  5. Evaluation of Length-of-Stain Gas Indicator Tubes for Measuring Carbon Monoxide in Air.

    ERIC Educational Resources Information Center

    Klaubert, Earl C.; And Others

    Techniques for detection and measurement of carbon monoxide (CO) in air are of interest and utility in many aspects of automotive safety. CO concentrations may range from less than 100 parts per million (ppm), or 0.01 percent, to about 10 percent by volume. Gas indicator tubes have been used for many years primarily as detectors of hazardous gases…

  6. Natural ³⁷Ar concentrations in soil air: implications for monitoring underground nuclear explosions.

    PubMed

    Riedmann, Robin A; Purtschert, Roland

    2011-10-15

    For on-site inspections (OSI) under the Comprehensive Nuclear-Test-Ban Treaty (CTBT) measurement of the noble gas ³⁷Ar is considered an important technique. ³⁷Ar is produced underground by neutron activation of Calcium by the reaction ⁴⁰Ca(n,α)³⁷Ar. The naturally occurring equilibrium ³⁷Ar concentration balance in soil air is a function of an exponentially decreasing production rate from cosmic ray neutrons with increasing soil depth, diffusive transport in the soil air, and radioactive decay (T(1/2): 35 days). In this paper for the first time, measurements of natural ³⁷Ar activities in soil air are presented. The highest activities of ~100 mBq m⁻³ air are 2 orders of magnitude larger than in the atmosphere and are found in 1.5-2.5 m depth. At depths > 8 m ³⁷Ar activities are < 20 mBq m⁻³ air. After identifying the main ³⁷Ar production and gas transport factors the expected global activity range distribution of ³⁷Ar in shallow subsoil (0.7 m below the surface) was estimated. In high altitude soils, with large amounts of Calcium and with low gas permeability, ³⁷Ar activities may reach values up to 1 Bq m⁻³.

  7. Determination of beryllium concentrations in UK ambient air

    NASA Astrophysics Data System (ADS)

    Goddard, Sharon L.; Brown, Richard J. C.; Ghatora, Baljit K.

    2016-12-01

    Air quality monitoring of ambient air is essential to minimise the exposure of the general population to toxic substances such as heavy metals, and thus the health risks associated with them. In the UK, ambient air is already monitored under the UK Heavy Metals Monitoring Network for a number of heavy metals, including nickel (Ni), arsenic (As), cadmium (Cd) and lead (Pb) to ensure compliance with legislative limits. However, the UK Expert Panel on Air Quality Standards (EPAQS) has highlighted a need to limit concentrations of beryllium (Be) in air, which is not currently monitored, because of its toxicity. The aim of this work was to analyse airborne particulate matter (PM) sampled onto filter papers from the UK Heavy Metals Monitoring Network for quantitative, trace level beryllium determination and compare the results to the guideline concentration specified by EPAQS. Samples were prepared by microwave acid digestion in a matrix of 2% sulphuric acid and 14% nitric acid, verified by the use of Certified Reference Materials (CRMs). The digested samples were then analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The filters from the UK Heavy Metals Monitoring Network were tested using this procedure and the average beryllium concentration across the network for the duration of the study period was 7.87 pg m-3. The highest site average concentration was 32.0 pg m-3 at Scunthorpe Low Santon, which is significantly lower than levels that are thought to cause harm. However the highest levels were observed at sites monitoring industrial point sources, indicating that beryllium is being used and emitted, albeit at very low levels, from these point sources. Comparison with other metals concentrations and data from the UK National Atmospheric Emissions Inventory suggests that current emissions of beryllium may be significantly overestimated.

  8. Commercial air travel after intraocular gas injection.

    PubMed

    Houston, Stephen; Graf, Jürgen; Sharkey, James

    2012-08-01

    Passengers with intraocular gas are at risk of profound visual loss when exposed to reduced absolute pressure within the cabin of a typical commercial airliner. Information provided on the websites of the world's 10 largest airlines offer a considerable range of opinion as to when it might be safe to fly after gas injection. Physicians responsible for clearing pseassengers as 'fit to fly' should be aware modern retinal surgical techniques increasingly employ long-acting gases as vitreous substitutes. The kinetics of long-acting intraocular gases must be considered when deciding how long after surgery it is safe to travel. It is standard practice to advise passengers not to fly in aircraft until the gas is fully resorbed. To achieve this, it may be necessary to delay travel for approximately 2 wk after intraocular injection of sulfur hexafluoride (SF6) and for 6 wk after injection of perfluoropropane (C3F8).

  9. Ozone concentration in leaf intercellular air spaces is close to zero

    SciTech Connect

    Laisk, A.; Moldau, H. ); Kull, O. )

    1989-07-01

    Transpiration and ozone uptake rates were measured simultaneously in sunflower leaves at different stomatal openings and various ozone concentrations. Ozone uptake rates were proportional to the ozone concentration up to 1500 nanoliters per liter. The leaf gas phase diffusion resistance (stomatal plus boundary layer) to water vapor was calculated and converted to the resistance to ozone multiplying it by the theoretical ratio of diffusion coefficients for water vapor and ozone in air (1.67). The ozone concentration in intercellular air spaces calculated from the ozone uptake rate and diffusion resistance to ozone scattered around zero. The ozone concentration in intercellular air spaces was measured directly bu supplying ozone to the leaf from one side and measuring the equilibrium concentration above the other side, and it was found to be zero. The total leaf resistance to ozone was proportional to the gas phase resistance to water vapor with a coefficient of 1.68. It is concluded that ozone enters the leaf by diffusion through the stomata, and is rapidly decomposed in cell walls and plasmalemma.

  10. Ozone Concentration in Leaf Intercellular Air Spaces Is Close to Zero 1

    PubMed Central

    Laisk, Agu; Kull, Olevi; Moldau, Heino

    1989-01-01

    Transpiration and ozone uptake rates were measured simultaneously in sunflower leaves at different stomatal openings and various ozone concentrations. Ozone uptake rates were proportional to the ozone concentration up to 1500 nanoliters per liter. The leaf gas phase diffusion resistance (stomatal plus boundary layer) to water vapor was calculated and converted to the resistance to ozone multiplying it by the theoretical ratio of diffusion coefficients for water vapor and ozone in air (1.67). The ozone concentration in intercellular air spaces calculated from the ozone uptake rate and diffusion resistance to ozone scattered around zero. The ozone concentration in intercellular air spaces was measured directly by supplying ozone to the leaf from one side and measuring the equilibrium concentration above the other side, and it was found to be zero. The total leaf resistance to ozone was proportional to the gas phase resistance to water vapor with a coefficient of 1.68. It is concluded that ozone enters the leaf by diffusion through the stomata, and is rapidly decomposed in cell walls and plasmalemma. PMID:16666867

  11. Effective methods of reduction of nitrogen oxides concentration during the natural gas combustion.

    PubMed

    Zajemska, Monika; Musiał, Dorota; Poskart, Anna

    2014-01-01

    This paper contains experimental research of NOx reduction in the combustion process with the primary methods, which were applied separately and in combined systems. In addition, the pulsation disturbance (PD) was applied, that is the gas stream was disturbed to increase the intensity of reagents mixing. An experimental stand was built to determine an influence of the following primary methods: air staging, reburning and flue gas recirculation on a reduction of NOx concentration. Experiments were carried out in three combinations: air staging with reburning, reburning with recirculation and air staging with recirculation. In all these cases, the PD was simultaneously applied. Researches were carried out in a quartz combustion chamber with laboratory equipment enabled to measure all the thermal and the chemical parameters of the process. The simultaneous application of primary methods causes additional increase in NOx reduction in certain systems.

  12. Concentration and composition of gas inclusions in some oxide crystals

    NASA Astrophysics Data System (ADS)

    Arhipov, P.; Tkachenko, S.; Galenin, E.; Gerasymov, Ia.; Sidletskiy, O.; Kudin, K.; Lebbou, K.

    2017-02-01

    A method of concentration of gas impurities contained in a melt into sealed cavities in a crystal has been proposed for the first time. This makes it possible to determine the amount of gases dissolved in the melt during crystallization by the Edge-defined Film-fed Growth (EGF) technique and the gas pressure in cavities inside the crystals. We also measure the composition of gas inclusions in crystallized melts of Al2O3, Y3Al5O12 and Bi4Ge3O12 and discuss it in connection with crystal growth procedure and quality of crystals.

  13. Detection of hydrogen chloride gas in air

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.

    1978-01-01

    Launch vehicle effluent (LVE) monitoring is part of NASA's overall tropospheric and stratospheric environmental program. Following nine techniques are evaluated and developed in report: bubbler method, pH measurements, indicator tubes, microcoulometers, modified condensation nuclei counter, dual-isotope absorption, gas-filter correlation, chemiluminescent nitric oxide detection, chemiluminescent luminol-oxidation detection.

  14. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  15. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Technical Reports Server (NTRS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    1987-01-01

    Oxygen concentration and separation is an essential factor for air recycling in a controlled ecological life support system (CELSS). Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of oxygen from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  16. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality

    NASA Astrophysics Data System (ADS)

    Taylan, Osman

    2017-02-01

    High ozone concentration is an important cause of air pollution mainly due to its role in the greenhouse gas emission. Ozone is produced by photochemical processes which contain nitrogen oxides and volatile organic compounds in the lower atmospheric level. Therefore, monitoring and controlling the quality of air in the urban environment is very important due to the public health care. However, air quality prediction is a highly complex and non-linear process; usually several attributes have to be considered. Artificial intelligent (AI) techniques can be employed to monitor and evaluate the ozone concentration level. The aim of this study is to develop an Adaptive Neuro-Fuzzy inference approach (ANFIS) to determine the influence of peripheral factors on air quality and pollution which is an arising problem due to ozone level in Jeddah city. The concentration of ozone level was considered as a factor to predict the Air Quality (AQ) under the atmospheric conditions. Using Air Quality Standards of Saudi Arabia, ozone concentration level was modelled by employing certain factors such as; nitrogen oxide (NOx), atmospheric pressure, temperature, and relative humidity. Hence, an ANFIS model was developed to observe the ozone concentration level and the model performance was assessed by testing data obtained from the monitoring stations established by the General Authority of Meteorology and Environment Protection of Kingdom of Saudi Arabia. The outcomes of ANFIS model were re-assessed by fuzzy quality charts using quality specification and control limits based on US-EPA air quality standards. The results of present study show that the ANFIS model is a comprehensive approach for the estimation and assessment of ozone level and is a reliable approach to produce more genuine outcomes.

  17. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran

    NASA Astrophysics Data System (ADS)

    Hazrati, Sadegh; Rostami, Roohollah; Farjaminezhad, Manoochehr; Fazlzadeh, Mehdi

    2016-05-01

    BTEX concentrations in indoor and outdoor air of 50 homes were studied in Ardabil city and their influencing parameters including; heating system, using gas stove and samovar, tobacco smoking, the floors in which the monitored homes were located, and kitchen plan were considered in the study. Risk assessment analysis was carried out with the obtained concentrations based on EPA IRIS reference doses. BTEX compounds were sampled by charcoal tubes and the samples were analyzed by a GC-FID. Concentrations of benzene (15.18 μg/m3 vs. 8.65 μg/m3), toluene (69.70 μg/m3 vs. 40.56 μg/m3), ethylbenzene (12.07 μg/m3 vs. 4.92 μg/m3) and xylene (48.08 μg/m3 vs. 7.44 μg/m3) in indoor air were significantly (p < 0.05) higher than the levels quantified for outdoor air. The obtained concentrations of benzene were considerably higher than the recommended value of 5 μg/m3 established by Iran environmental protection organization. Among the BTEX compounds, benzene (HQ = 0.51) and xylene (HQ = 0.47) had notable hazard quotient and were the main pollutants responsible for high hazard index in the monitored homes (HI = 1.003). The results showed considerably high cancer risk for lifetime exposure to the indoor (125 × 10-6) and outdoor (71 × 10-6) benzene. Indoor benzene concentrations in homes were significantly influenced by type of heating system, story, and natural gas appliances.

  18. AMPEL experiments: nitric-oxide concentration measurements in a simulated MHD combustion gas

    SciTech Connect

    Dunn, P. F.; Johnson, T. R.; Reed, C. B.

    1980-12-01

    Results are presented of recent investigations of the effect of secondary combustion on nitric oxide (NO) concentrations in an simulated magnetohydrodynamic (MHD) combustion gas. Forty-one experiments, in which NO concentration measurements were made, were conducted at the Argonne MHD Process Engineering Laboratory (AMPEL). In sixteen of those experiments, secondary air mixed with the primary combustion gas was combusted over two temperature ranges (1500-1800/sup 0/K and 1700-2000/sup 0/K). For all clean-fuel experiments conducted, the measured changes in NO concentration that resulted from secondary combustion were predicted to within 10%, using an Argonne modification of the NASA chemical kinetics code. This predictive code was extended to estimate changes in NO concentrations that would occur during secondary combustion in a larger MHD facility. It is concluded that, in addition to mixing and several other factors, the heat loss from the secondary combustion zone strongly influences the amount of NO formed during secondary combustion.

  19. Measured phenol concentrations in air and rain water samples collected near a wood preserving facility

    SciTech Connect

    Allen, S.K.; Allen, C.W.

    1995-12-31

    Phenol concentrations were determined in air and rain water samples collected downwind from a coal tar creosote wood preserving facility in Terre Haute, IN. Coal tar creosote is known to contain a large number of constituents and is composed chiefly of polycyclic aromatic hydrocarbons (PAH), phenols, and N-, S-, and O-heterocycles. Phenol was chosen as a marker compound for coal tar creosote emissions because it is present at a large mole fraction in coal tar creosote. Phenol was determined by HPLC with UV-Visible detection. Phenol in collected rain water samples was determined directly by HPLC after acidification and filtration. Phenol concentrations in collected air samples ranged from 4.1 to 15.7 {micro}g/m3 while rain water concentrations ranged from 7.9 to 28.2 {micro}g/L. Using a value for the thermodynamic Henry`s law constant of K{sub H} = 4.5 {times} 10{sup {minus}4} L atm/mole at 20 C for phenol and measured gas-phase phenol concentrations, even higher rain water concentrations would be expected if equilibrium was established. This indicates that the amount of phenol present in the air parcels sampled exceeded the amount that could be scavenged by rain drops under the conditions prevailing at the time of sampling. The values for phenol concentrations reported here are roughly two orders of magnitude higher than results from previous studies where phenol concentrations in air and rain water samples collected in urban areas were reported. It is likely that other more toxic constituents of coal tar creosote are also present at high concentrations in air parcels that receive emissions from wood treatment facilities.

  20. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  1. An electronic nose for quantitative determination of gas concentrations

    NASA Astrophysics Data System (ADS)

    Jasinski, Grzegorz; Kalinowski, Paweł; Woźniak, Łukasz

    2016-11-01

    The practical application of human nose for fragrance recognition is severely limited by the fact that our sense of smell is subjective and gets tired easily. Consequently, there is considerable need for an instrument that can be a substitution of the human sense of smell. Electronic nose devices from the mid 1980s are used in growing number of applications. They comprise an array of several electrochemical gas sensors with partial specificity and a pattern recognition algorithms. Most of such systems, however, is only used for qualitative measurements. In this article usage of such system in quantitative determination of gas concentration is demonstrated. Electronic nose consist of a sensor array with eight commercially available Taguchi type gas sensor. Performance of three different pattern recognition algorithms is compared, namely artificial neural network, partial least squares regression and support vector machine regression. The electronic nose is used for ammonia and nitrogen dioxide concentration determination.

  2. Wintertime Air Quality Impacts from Oil and Natural Gas Drilling Operations in the Bakken Formation Region

    NASA Astrophysics Data System (ADS)

    Evanoski-Cole, Ashley; Sive, Barkley; Zhou, Yong; Prenni, Anthony; Schurman, Misha; Day, Derek; Sullivan, Amy; Li, Yi; Hand, Jenny; Gebhart, Kristi; Schichtel, Bret; Collett, Jeffrey

    2016-04-01

    Oil and natural gas extraction has dramatically increased in the last decade in the United States due to the increased use of unconventional drilling techniques which include horizontal drilling and hydraulic fracturing. The impact of these drilling activities on local and regional air quality in oil and gas basins across the country are still relatively unknown, especially in recently developed basins such as the Bakken shale formation. This study is the first to conduct a comprehensive characterization of the regional air quality in the Bakken region. The Bakken shale formation, part of the Williston basin, is located in North Dakota and Montana in the United States and Saskatchewan and Manitoba in Canada. Oil and gas drilling operations can impact air quality in a variety of ways, including the generation of atmospheric particulate matter (PM), hazardous air pollutants, ozone, and greenhouse gas emissions. During the winter especially, PM formation can be enhanced and meteorological conditions can favor increased concentrations of PM and other pollutants. In this study, ground-based measurements throughout the Bakken region in North Dakota and Montana were collected over two consecutive winters to gain regional trends of air quality impacts from the oil and gas drilling activities. Additionally, one field site had a comprehensive suite of instrumentation operating at high time resolution to gain detailed characterization of the atmospheric composition. Measurements included organic carbon and black carbon concentrations in PM, the characterization of inorganic PM, inorganic gases, volatile organic compounds (VOCs), precipitation and meteorology. These elevated PM episodes were further investigated using the local meteorological conditions and regional transport patterns. Episodes of elevated concentrations of nitrogen oxides and sulfur dioxide were also detected. The VOC concentrations were analyzed and specific VOCs that are known oil and gas tracers were used

  3. Predicting indoor pollutant concentrations, and applications to air quality management

    SciTech Connect

    Lorenzetti, David M.

    2002-10-01

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptoms such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.

  4. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide

    PubMed Central

    Kang, Hyery; Koh, Dong-Yeun; Lee, Huen

    2014-01-01

    Current technologies for production of natural gas hydrates (NGH), which include thermal stimulation, depressurization and inhibitor injection, have raised concerns over unintended consequences. The possibility of catastrophic slope failure and marine ecosystem damage remain serious challenges to safe NGH production. As a potential approach, this paper presents air-driven NGH recovery from permeable marine sediments induced by simultaneous mechanisms for methane liberation (NGH decomposition) and CH4-air or CH4-CO2/air replacement. Air is diffused into and penetrates NGH and, on its surface, forms a boundary between the gas and solid phases. Then spontaneous melting proceeds until the chemical potentials become equal in both phases as NGH depletion continues and self-regulated CH4-air replacement occurs over an arbitrary point. We observed the existence of critical methane concentration forming the boundary between decomposition and replacement mechanisms in the NGH reservoirs. Furthermore, when CO2 was added, we observed a very strong, stable, self-regulating process of exchange (CH4 replaced by CO2/air; hereafter CH4-CO2/air) occurring in the NGH. The proposed process will work well for most global gas hydrate reservoirs, regardless of the injection conditions or geothermal gradient. PMID:25311102

  5. Estimating the radon concentration in water and indoor air.

    PubMed

    Maged, A F

    2009-05-01

    The paper presents the results of radon concentration measurements in the vicinity of water, indoor air and in contact to building walls. The investigations were carried out using CR-39 track detectors. Samples of ground water flowing out of many springs mostly in Arabian Gulf area except one from Germany have been studied. The results are compared with international recommendations and the values are found to be lower than the recommended value. Measuring the mean indoor radon concentrations in air and in contact to building walls in the dwellings of Kuwait University Campus were found 24.2 +/- 7.7, and 462 +/- 422 Bq m(-3) respectively. These values lead to average effective dose equivalent rates of 1.3 +/- 0.4 and 23 +/- 21 mSv year(-1), respectively.

  6. Air Monitoring for Hazardous Gas Detection

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Griffin, Timothy P.; Adams, Frederick W.; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Follistein, Duke W.

    2004-01-01

    The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response times and detection limits. A Table lists common gases monitored for aerospace applications. The first five gases, hydrogen, helium, nitrogen, oxygen, and argon are historically the focus of the HGDL.

  7. Methods, fluxes and sources of gas phase alkyl nitrates in the coastal air.

    PubMed

    Dirtu, Alin C; Buczyńska, Anna J; Godoi, Ana F L; Favoreto, Rodrigo; Bencs, László; Potgieter-Vermaak, Sanja S; Godoi, Ricardo H M; Van Grieken, René; Van Vaeck, Luc

    2014-10-01

    The daily and seasonal atmospheric concentrations, deposition fluxes and emission sources of a few C3-C9 gaseous alkyl nitrates (ANs) at the Belgian coast (De Haan) on the Southern North Sea were determined. An adapted sampler design for low- and high-volume air-sampling, optimized sample extraction and clean-up, as well as identification and quantification of ANs in air samples by means of gas chromatography mass spectrometry, are reported. The total concentrations of ANs ranged from 0.03 to 85 pptv and consisted primarily of the nitro-butane and nitro-pentane isomers. Air mass backward trajectories were calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to determine the influence of main air masses on AN levels in the air. The shorter chain ANs have been the most abundant in the Atlantic/Channel/UK air masses, while longer chain ANs prevailed in continental air. The overall mean N fluxes of the ANs were slightly higher for summer than those for winter-spring, although their contributions to the total nitrogen flux were low. High correlations between AN and HNO₂ levels were observed during winter/spring. During summer, the shorter chain ANs correlated well with precipitation. Source apportionment by means of principal component analysis indicated that most of the gas phase ANs could be attributed to traffic/combustion, secondary photochemical formation and biomass burning, although marine sources may also have been present and a contributing factor.

  8. Hydrogen-air energy storage gas-turbine system

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  9. Wide-range radioactive-gas-concentration detector

    DOEpatents

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  10. Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination

    SciTech Connect

    Fischer, M.L.; Bentley, A.J.; Dunkin, K.A.; Hodgson, A.T.; Nazaroff, W.W.; Sextro, R.G.; Daisey, J.M.

    1995-11-01

    We report a field study of soil gas transport of volatile organic compounds (VOCs) into a slab-on-grade building found at a site contaminated with gasoline. Although the high VOC concentrations (30-60 g m{sup -3}) measured in the soil gas at depths of 0.7 m below the building suggest a potential for high levels of indoor VOC, the measured indoor air concentrations were lower than those in the soil gas by approximately six orders of magnitude ({approx} 0.03 mg m{sup -3}). This large ratio is explained by (1) the expected dilution of soil gas entering the building via ambient building ventilation (a factor of {approx}1000), and (2) an unexpectedly sharp gradient in soil gas VOC concentration between the depths of 0.1 and 0.7 m (a factor of {approx}1000). Measurements of the soil physical and biological characteristics indicate that a partial physical barrier to vertical transport in combination with microbial degradation provides a likely explanation for this gradient. These factors are likely to be important to varying degrees at other sites.

  11. Vertical profile of tritium concentration in air during a chronic atmospheric HT release.

    PubMed

    Noguchi, Hiroshi; Yokoyama, Sumi

    2003-03-01

    The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.

  12. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements.

    PubMed

    Bjerg, Bjarne; Zhang, Guoqiang; Madsen, Jørgen; Rom, Hans B

    2012-10-01

    Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat production and the carbon dioxide production from the animals have in several cases been utilized for estimation of the ventilation air exchange rate for the estimation of ammonia and greenhouse gas emissions. Using this method, the problem of the complicated air velocity and concentration distribution in the openings is avoided; however, there are still some important issues remained unanswered: (1) the precision of the estimations, (2) the requirement for the length of measuring periods, and (3) the required measuring point number and location. The purpose of this work was to investigate how estimated average gas emission and the precision of the estimation are influenced by different calculation procedures, measuring period length, measure point locations, measure point numbers, and criteria for excluding measuring data. The analyses were based on existing data from a 6-day measuring period in a naturally ventilated, 150 milking cow building. The results showed that the methane emission can be determined with much higher precision than ammonia or laughing gas emissions, and, for methane, relatively precise estimations can be based on measure periods as short as 3 h. This result makes it feasible to investigate the influence of feed composition on methane emission in a relative large number of operating cattle buildings and consequently it can support a development towards reduced greenhouse gas emission from cattle production.

  13. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  14. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  15. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  16. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  17. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  18. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    NASA Astrophysics Data System (ADS)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  19. An Air Noble Gas Component in the Mantle

    NASA Astrophysics Data System (ADS)

    Sarda, P.

    2005-12-01

    Noble gas geochemistry has for long attempted to recover isotopic signatures of mantle components through analyses of basalt glass or xenoliths, but this quest has been plagued by the occurrence of a conspicuous air component, which appears to have both the isotopic and elemental composition of air (except for helium). It is classically considered to be air added to samples close to the surface, in a poorly understood process called "contamination", due to the interaction of rocks and melts with air or water on emplacement. Focusing on Mid-Ocean Ridge Basalts (and Ocean Island Basalts), gases are mostly borne by vesicles and a number of puzzling observations can be made: - vesicles appear to be heterogeneous at the scale of a centimeter, as shown by stepwise crushing experiments, some vesicles having air, some having mantle gases, some having mixtures of both, - vesicles appear over-pressured (P > 1 bar) in fresh samples, as shown by highly vesiculous samples such as Popping Rocks, - the air component appears to be borne by the largest vesicles, as it is recovered in the first steps of stepwise crushing analyses, - larger samples seem to have more of the air component than smaller ones, - in Popping Rocks, the air component borne by the largest vesicles is overwhelming, - the isotopic composition of Pb-Sr-Nd in Popping Rocks was interpreted as indicating a recycled component (related to the HIMU and EM1 mantle end-members). The air noble gas component was suggested recently to be not seawater, but modern air located in fractures of the glass, which should have opened on cooling and resealed immediately [1]. This model faces some difficulties, such as keeping pressure high in the vesicles. I suggest another interpretation, namely that a large part of the air noble gases in oceanic basalts is recycled in origin [2]. It would have been carried down into the mantle at subduction zones, even if most (typically 90%) of the air noble gases in the slab returns to the

  20. Dry deposition, concentration and gas/particle partitioning of atmospheric carbazole

    NASA Astrophysics Data System (ADS)

    Esen, Fatma; Tasdemir, Yücel; Cindoruk, S. Sıddık

    2010-03-01

    The atmospheric concentrations and dry deposition of carbazole were measured to present the temporal changes, gas/particle partitioning and magnitude of fluxes. Atmospheric samples were collected from July 2004 to May 2005 at four different sites in Bursa, Turkey. The average total (gas and particulate) carbazole concentrations were 7.6 ± 9.9 ng m - 3 in Gulbahce (Residential), 1.1 ± 1.2 ng m - 3 in BUTAL (Traffic), 3.3 ± 5.0 ng m - 3 in BOID (Industrial), and 1.2 ± 0.7 ng m - 3 in the Uludag University Campus (UU) (Suburban). Experimental gas/particle partition coefficient ( Kp) was determined using the study results and compared with Kp values calculated from octanol-air and soot-air + octanol partitioning models. Total dry deposition fluxes of carbazole were 290 ± 484 ng m - 2 d - 1 in BUTAL and 72 ± 67 ng m - 2 d - 1 in the UU Campus. Particulate phase dry deposition velocities were 0.81 ± 0.78 cm s - 1 and 0.90 ± 1.53 cm s - 1 for BUTAL and the UU Campus, respectively. On the other hand, gas-phase mass transfer coefficients were calculated to be 0.34 ± 0.29 cm s - 1 and 0.26 ± 0.17 cm s - 1 for BUTAL and the UU Campus, respectively.

  1. Radon concentrations in Algerian oil and gas industry.

    PubMed

    Hamlat, M S; Kadi, H; Djeffal, S; Brahimi, H

    2003-01-01

    Concentrations of 222Rn in produced water, crude oil, natural gas (NG) and natural gas liquids (NGL) in on-shore Algeria were measured using scintillation cell techniques (Lucas cells) and electret ion chamber (EIC). The first method, active, is based on the use of a Lucas-type scintillation chamber in conjunction with a portable monitor (model Pylon AB-5); the second method, passive, using an EIC with a 4 l glass analysis bottle. The activities of 222Rn were in the range of 0.98-18.50 Bq/l for produced water, 0.02-0.3 Bq/g for crude oil, 40-1000 Bq/m(3) for NG and 300-2500 Bq/m(3) for NGL, respectively. These values are compared with concentrations reported for other countries.

  2. Generation of local concentration gradients by gas-liquid contacting.

    PubMed

    de Jong, Jorrit; Verheijden, Pascal W; Lammertink, Rob G H; Wessling, Matthias

    2008-05-01

    We present a generic concept to create local concentration gradients, based on the absorption of gases or vapors in a liquid. A multilayer microfluidic device with crossing gas and liquid channels is fabricated by micromilling and used to generate multiple gas-liquid contacting regions, separated by a hydrophobic membrane. Each crossing can acts as both a microdosing and microstripping region. Furthermore, the liquid and gas flow rate can be controlled independently of each other. The focus of this conceptual article is on the generation of pH gradients, by locally supplying acidic or basic gases/vapors, such as carbon dioxide, hydrochloric acid, and ammonia, visualized by pH-sensitive dyes. Stationary and moving gradients are presented in devices with 500-microm channel width, depths of 200-400 microm, and lengths of multiple centimeters. It is shown that the method allows for multiple consecutive switching gradients in a single microchannel. Absorption measurements in a microcontactor with the model system CO2/water are presented to indicate the dependence of gas absorption rate on channel depth and residence time. Achievable concentration ranges are ultimately limited by the solubility of used components. The reported devices are easy to fabricate, and their application is not limited to pH gradients. Two proof of principles are demonstrated to indicate new opportunities: (i) local crystallization of NaCl using HCl vapor and (ii) consecutive reactions of ammonia with copper(II) ions in solution.

  3. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  4. A PRINCIPAL COMPONENT ANALYSIS OF THE CLEAN AIR STATUS AND TRENDS NETWORK (CASTNET) AIR CONCENTRATION DATA

    EPA Science Inventory

    The spatial and temporal variability of ambient air concentrations of SO2, SO42-, NO3, HNO3, and NH4+ obtained from EPA's CASTNet was examined using an objective, statistically based technique...

  5. Biomimetic air sampling for detection of low concentrations of molecules and bioagents : LDRD 52744 final report.

    SciTech Connect

    Hughes, Robert Clark

    2003-12-01

    Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph) phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.

  6. Concentration-dependence of the explosion characteristics of chlorine dioxide gas.

    PubMed

    Jin, Ri-ya; Hu, Shuang-qi; Zhang, Yin-ghao; Bo, Tao

    2009-07-30

    The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 20 L. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO(2)]/[air]), whereas there is no corresponding upper concentration limit. Under the experimental conditions, and within the explosion limits, the pressure of explosion increases with increasing concentration of chlorine dioxide gas; the maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO(2) and 0.641 MPa at 90% ClO(2). The induction time (the time from the moment of sparking to explosion) has also been found to depend on the concentration of chlorine dioxide gas; thus, at 10% ClO(2) the induction time was 2195 ms, but at 90% ClO(2) the induction time was just 8 ms. The explosion reaction mechanism of ClO(2) is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl(2)O(3)), from which the chain-branching occurs. Chain initiation takes place at the point of ignition and termination takes place at the inner walls of the exploder.

  7. Mitigation of elevated indoor radon gas resulting from underground air return usage.

    PubMed

    Kearfott, K J; Metzger, R L; Kraft, K R; Holbert, K E

    1992-12-01

    Underground air returns have been found to be active transportation pathways for radon gas entry into homes. Several homes for which underground air returns were contributing to elevated indoor 222Rn concentrations were evaluated for possible mitigation. Two houses with such problems were successfully mitigated by inserting flexible ducts into the returns. In one of these houses, the initial mitigation attempt resulted in an exacerbation of the problem due to leakage of the ducting. This was solved by re-sleeving the returns using a stronger material. Mitigation of elevated indoor radon gas caused by use of underground air returns by inserting flexible ducts is not possible for all situations, especially those for which the returns are small, filled with debris, misaligned, or inaccessible.

  8. Characterization of gas diffusion electrodes for metal-air batteries

    NASA Astrophysics Data System (ADS)

    Danner, Timo; Eswara, Santhana; Schulz, Volker P.; Latz, Arnulf

    2016-08-01

    Gas diffusion electrodes are commonly used in high energy density metal-air batteries for the supply of oxygen. Hydrophobic binder materials ensure the coexistence of gas and liquid phase in the pore network. The phase distribution has a strong influence on transport processes and electrochemical reactions. In this article we present 2D and 3D Rothman-Keller type multiphase Lattice-Boltzmann models which take into account the heterogeneous wetting behavior of gas diffusion electrodes. The simulations are performed on FIB-SEM 3D reconstructions of an Ag model electrode for predefined saturation of the pore space with the liquid phase. The resulting pressure-saturation characteristics and transport correlations are important input parameters for modeling approaches on the continuum scale and allow for an efficient development of improved gas diffusion electrodes.

  9. Inactivation of Airborne Bacteria and Viruses Using Extremely Low Concentrations of Chlorine Dioxide Gas.

    PubMed

    Ogata, Norio; Sakasegawa, Miyusse; Miura, Takanori; Shibata, Takashi; Takigawa, Yasuhiro; Taura, Kouichi; Taguchi, Kazuhiko; Matsubara, Kazuki; Nakahara, Kouichi; Kato, Daisuke; Sogawa, Koushirou; Oka, Hiroshi

    2016-01-01

    Infectious airborne microbes, including many pathological microbes that cause respiratory infections, are commonly found in medical facilities and constitute a serious threat to human health. Thus, an effective method for reducing the number of microbes floating in the air will aid in the minimization of the incidence of respiratory infectious diseases. Here, we demonstrate that chlorine dioxide (ClO2) gas at extremely low concentrations, which has no detrimental effects on human health, elicits a strong effect to inactivate bacteria and viruses and significantly reduces the number of viable airborne microbes in a hospital operating room. In one set of experiments, a suspension of Staphylococcus aureus, bacteriophage MS2, and bacteriophage ΦX174 were released into an exposure chamber. When ClO2 gas at 0.01 or 0.02 parts per million (ppm, volume/volume) was present in the chamber, the numbers of surviving microbes in the air were markedly reduced after 120 min. The reductions were markedly greater than the natural reductions of the microbes in the chamber. In another experiment, the numbers of viable airborne bacteria in the operating room of a hospital collected over a 24-hour period in the presence or absence of 0.03 ppm ClO2 gas were found to be 10.9 ± 6.7 and 66.8 ± 31.2 colony-forming units/m3 (n = 9, p < 0.001), respectively. Taken together, we conclude that ClO2 gas at extremely low concentrations (≤0.03 ppm) can reduce the number of viable microbes floating in the air in a room. These results strongly support the potential use of ClO2 gas at a non-toxic level to reduce infections caused by the inhalation of pathogenic microbes in nursing homes and medical facilities.

  10. [Fire disaster due to deflagration of a propane gas-air mixture].

    PubMed

    Nadjem, Hadi; Vogt, Susanne; Simon, Karl-Heinz; Pollak, Stefan; Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Perdekampl, Markus Große; Thierauf-Emberger, Annette

    2015-01-01

    On 26 Nov 2012, a serious fire occurred at Neustadt/Black Forest in which 14 persons in a sheltered workshop died and 10 other individuals were injured. The fire was caused by the unbridled escape of propane gas due to accidental disconnection of the screw fixing between a gas bottle and a catalytic heater. Deflagration of the propane gas-air mixture set the workshop facilities on fire. In spite of partly extensive burns the fatally injured victims could be rapidly identified. The results of the fire investigations at the scene and the autopsy findings are presented. Carboxyhemoglobin concentrations ranged between 8 and 56 % and signs of fire fume inhalation were present in all cases. Three victims had eardrum ruptures due to the sudden increase in air pressure during the deflagration.

  11. Evaluation of air quality zone classification methods based on ambient air concentration exposure.

    PubMed

    Freeman, Brian; McBean, Ed; Gharabaghi, Bahram; Thé, Jesse

    2017-05-01

    Air quality zones are used by regulatory authorities to implement ambient air standards in order to protect human health. Air quality measurements at discrete air monitoring stations are critical tools to determine whether an air quality zone complies with local air quality standards or is noncompliant. This study presents a novel approach for evaluation of air quality zone classification methods by breaking the concentration distribution of a pollutant measured at an air monitoring station into compliance and exceedance probability density functions (PDFs) and then using Monte Carlo analysis with the Central Limit Theorem to estimate long-term exposure. The purpose of this paper is to compare the risk associated with selecting one ambient air classification approach over another by testing the possible exposure an individual living within a zone may face. The chronic daily intake (CDI) is utilized to compare different pollutant exposures over the classification duration of 3 years between two classification methods. Historical data collected from air monitoring stations in Kuwait are used to build representative models of 1-hr NO2 and 8-hr O3 within a zone that meets the compliance requirements of each method. The first method, the "3 Strike" method, is a conservative approach based on a winner-take-all approach common with most compliance classification methods, while the second, the 99% Rule method, allows for more robust analyses and incorporates long-term trends. A Monte Carlo analysis is used to model the CDI for each pollutant and each method with the zone at a single station and with multiple stations. The model assumes that the zone is already in compliance with air quality standards over the 3 years under the different classification methodologies. The model shows that while the CDI of the two methods differs by 2.7% over the exposure period for the single station case, the large number of samples taken over the duration period impacts the sensitivity of

  12. Parameterization of air sea gas fluxes at extreme wind speeds

    NASA Astrophysics Data System (ADS)

    McNeil, Craig; D'Asaro, Eric

    2007-06-01

    Air-sea flux measurements of O 2 and N 2 obtained during Hurricane Frances in September 2004 [D'Asaro, E. A. and McNeil, C. L., 2006. Measurements of air-sea gas exchange at extreme wind speeds. Journal Marine Systems, this edition.] using air-deployed neutrally buoyant floats reveal the first evidence of a new regime of air-sea gas transfer occurring at wind speeds in excess of 35 m s - 1 . In this regime, plumes of bubbles 1 mm and smaller in size are transported down from near the surface of the ocean to greater depths by vertical turbulent currents with speeds up to 20-30 cm s - 1 . These bubble plumes mostly dissolve before reaching a depth of approximately 20 m as a result of hydrostatic compression. Injection of air into the ocean by this mechanism results in the invasion of gases in proportion to their tropospheric molar gas ratios, and further supersaturation of less soluble gases. A new formulation for air-sea fluxes of weakly soluble gases as a function of wind speed is proposed to extend existing formulations [Woolf, D.K, 1997. Bubbles and their role in gas exchange. In: Liss, P.S., and Duce, R.A., (Eds.), The Sea Surface and Global Change. Cambridge University Press, Cambridge, UK, pp. 173-205.] to span the entire natural range of wind speeds over the open ocean, which includes hurricanes. The new formulation has separate contributions to air-sea gas flux from: 1) non-supersaturating near-surface equilibration processes, which include direct transfer associated with the air-sea interface and ventilation associated with surface wave breaking; 2) partial dissolution of bubbles smaller than 1 mm that mix into the ocean via turbulence; and 3) complete dissolution of bubbles of up to 1 mm in size via subduction of bubble plumes. The model can be simplified by combining "surface equilibration" terms that allow exchange of gases into and out of the ocean, and "gas injection" terms that only allow gas to enter the ocean. The model was tested against the

  13. Effect of Outside Combustion Air on Gas Furnace Efficiency.

    DTIC Science & Technology

    1981-10-15

    Support Agency REPORT FESA-TS-2104 EFFECT OF OUTSIDE COMBUSTION AIR ON GAS FURNACE EFFICIENCY THOMAS E. BRISBANE Q KATHLEEN L. HANCOCK u JOHNS - MANVILLE SALES...and Dilution Air With No Furnace Setback. 93 AO-A113 4~84 . JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND OEV--ETC F/6 13/ 1 EFFECT OF OUTSIDE...NUMBER(S) Thomas E. Brisbane, Kathleen L. Hancock DAAK 70-78-D-0002 9. PERFORMING ORGANIZATION NAME AND ADDRESS 1O. PROGRAM ELEMENT. PR.;ECT, TASK Johns

  14. New challenges to air/gas cleaning systems

    SciTech Connect

    Kovach, J.L.

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  15. Air and gas pockets in sewerage pressure mains.

    PubMed

    Lubbers, C L; Clemens, F

    2005-01-01

    In The Netherlands, wastewater is collected in municipal areas and transported to large centralised WWTPs by means of an extensive system of pressure mains. Over the past decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. For that reason, in practice their state of functioning is often not known. Failure of operation is only noticed when the capacity of the system proves to be insufficient to fulfil the minimum design capacity demand. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. Many causes may account for the reduction of the system's nominal capacity like an increased wall roughness, scaling or occurrence of free gas in the pipeline. The occurrence of free gas may be caused by degassing of dissolved (bio) gas or by air entrained at the pumps' inlet or at air valves. A research study is started that will focus on three main issues: The description of the gas-water phenomena in wastewater pressure mains with respect to transportation and dynamic hydraulic behaviour, A method to diagnose gas problems, and To overcome future problems by either applying remedial measures or improving the design of wastewater pressure systems. For this study, two experimental facilities are constructed, a small circuit for the study of multi-phase flow and a second, larger one for the research into diagnostic methods. This paper describes the preliminary results of the experiments in the multi-phase circuit.

  16. Concentrations of mobile source air pollutants in urban microenvironments.

    PubMed

    Fujita, Eric M; Campbell, David E; Arnott, W Patrick; Johnson, Ted; Ollison, Will

    2014-07-01

    Human exposures to criteria and hazardous air pollutants (HAPs) in urban areas vary greatly due to temporal-spatial variations in emissions, changing meteorology, varying proximity to sources, as well as due to building, vehicle, and other environmental characteristics that influence the amounts of ambient pollutants that penetrate or infiltrate into these microenvironments. Consequently, the exposure estimates derived from central-site ambient measurements are uncertain and tend to underestimate actual exposures. The Exposure Classification Project (ECP) was conducted to measure pollutant concentrations for common urban microenvironments (MEs) for use in evaluating the results of regulatory human exposure models. Nearly 500 sets of measurements were made in three Los Angeles County communities during fall 2008, winter 2009, and summer 2009. MEs included in-vehicle, near-road, outdoor and indoor locations accessible to the general public. Contemporaneous 1- to 15-min average personal breathing zone concentrations of carbon monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), nitric oxide (NO), nitrogen oxides (NO(x)), particulate matter (< 2.5 microm diameter; PM2.5) mass, ultrafine particle (UFP; < 100 nm diameter) number black carbon (BC), speciated HAPs (e.g, benzene, toluene, ethylbenzene, xylenes [BTEX], 1,3-butadiene), and ozone (O3) were measured continuously. In-vehicle and inside/outside measurements were made in various passenger vehicle types and in public buildings to estimate penetration or infiltration factors. A large fraction of the observed pollutant concentrations for on-road MEs, especially near diesel trucks, was unrelated to ambient measurements at nearby monitors. Comparisons of ME concentrations estimated using the median ME/ambient ratio versus regression slopes and intercepts indicate that the regression approach may be more accurate for on-road MEs. Ranges in the ME/ambient ratios among ME categories were generally

  17. Air Pollution in China: Mapping of Concentrations and Sources

    PubMed Central

    Rohde, Robert A.; Muller, Richard A.

    2015-01-01

    China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China’s population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7–2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China. PMID:26291610

  18. Air Pollution in China: Mapping of Concentrations and Sources.

    PubMed

    Rohde, Robert A; Muller, Richard A

    2015-01-01

    China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China's population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7-2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China.

  19. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward.

  20. Curved centerline air intake for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Ruehr, W. C.; Younghans, J. L.; Smith, E. B. (Inventor)

    1980-01-01

    An inlet for a gas turbine engine was disposed about a curved centerline for the purpose of accepting intake air that is flowing at an angle to engine centerline and progressively turning that intake airflow along a curved path into alignment with the engine. This curved inlet is intended for use in under the wing locations and similar regions where airflow direction is altered by aerodynamic characteristics of the airplane. By curving the inlet, aerodynamic loss and acoustic generation and emission are decreased.

  1. Evaluation of septum-capped vials for storage of gas samples during air transport.

    PubMed

    Glatzel, Stephan; Well, Reinhard

    2008-01-01

    In order to provide information on the suitability of commonly used gas storage vials for air transport, we tested two vial types on their ability to preserve defined nitrous oxide concentrations and excess pressure when exposed to low pressure, low temperature and puncture by needles. Unlike in Crimp Cap vials, in Exetainers no nitrous oxide loss following low pressure storage was detectable. Tightness of Exetainers following multiple puncture was best using a small needle diameter. Pressure loss following 5, 10, or 25 punctures was lowest in the Exetainers. We conclude that Exetainers are suitable for storing gas samples for an extended period of time during aircraft transport.

  2. Chapter 4: Assessing the Air Pollution, Greenhouse Gas, Air Quality, and Health Benefits of Clean Energy Initiatives

    EPA Pesticide Factsheets

    Chapter 4 of “Assessing the Multiple Benefits of Clean Energy” helps state energy, environmental, and economic policy makers assess the air quality, greenhouse gas, air pollution, and health benefits of clean energy initiatives.

  3. Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers.

    PubMed

    Röwer, Inga Ute; Geck, Christoph; Gebert, Julia; Pfeiffer, Eva-Maria

    2011-05-01

    In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH(4)m(-2)h(-1)(.) Considering the current gas production rate of 0.03 g CH(4)m(-2)h(-1), the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.

  4. Annual sea ice. An air-sea gas exchange moderator

    SciTech Connect

    Gosink, T.A.; Kelley, J.J.

    1982-01-01

    Arctic annual sea ice, particularly when it is relatively warm (> -15/sup 0/C) permits significant gas exchange between the sea and air throughout the entire year. Sea ice, particularly annual sea ice, differs from freshwater ice with respect to its permeability to gases. The presence of brine allows for significant air-sea-ice exchange of CO/sub 2/ throughout the winter, which may significantly affect the global carbon dioxide balance. Other trace gases are also noted to be enriched in sea ice, but less is known about their importance to air-sea-interactions at this time. Both physical and biological factors cause and modify evolution of gases from the surface of sea ice. Quantitative and qualitative descriptions of the nature and physical behavior of sea ice with respect to brine and gases are discussed.

  5. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  6. Confirmation of the sterilization effect using a high concentration of ozone gas for the bio-clean room.

    PubMed

    Iwamura, Takuji; Nagano, Katsunori; Nogami, Toshihiro; Matsuki, Noritomo; Kosaka, Noriyoshi; Shintani, Hideharu; Katoh, Miyoshi

    2013-01-01

    A high-level aseptic environment must be maintained in bio-cleanrooms used for the manufacture of sterile products. In the past, formaldehyde gas was most commonly used to sterilize bio-cleanrooms, but due to strict residual limitations there has been a need to develop a less toxic alternative choice. The authors have developed a revolutionary new sterilization system using a high concentration of ozone gas and used this system to sterilize an actual bio-cleanroom. This system integrates the ozone gas generator with the air conditioning system by proper control. The design specifications for the system included an ozone gas concentration of 200 ppm or more, relative humidity of 80% or more, and a sterilizing time of 120 min. Blow vents and suction ports were placed to ensure a uniform airflow which would extend through the entire room during ozone gas sterilization. Tests regarding long-term material exposure to ozone gas were conducted when the system was introduced to distinguish usable and unusable materials. In an actually constructed cleanroom, simulations were used to predict the evenness of the diffusion of ozone gas concentration and relative humidity during ozone gas sterilization, and measurements of the actual indoor ozone gas concentration, temperature and relative humidity during sterilization revealed that the ozone concentration and relative humidity needed for sterilization had been achieved generally throughout the entire environment. In addition, the CT value (mg/m(3) (=ppm) × min) , derived by multiplying the ozone gas concentration during ozone gas sterilization by the sterilization time, was equal to or greater than the target value of 24 × 10(3) (ppm·min) . When the results of sterilization in a cleanroom were confirmed using a biological indicator (BI) , negative results were obtained at all measurement points, demonstrating that sterilization was being performed effectively in the actual factory at which the ozone gas sterilization system

  7. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air concentration (DAC) values given in appendices A and C of this part shall be used in the control of...

  8. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air concentration (DAC) values given in appendices A and C of this part shall be used in the control of...

  9. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air concentration (DAC) values given in appendices A and C of this part shall be used in the control of...

  10. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air concentration (DAC) values given in appendices A and C of this part shall be used in the control of...

  11. Gas bubbles in fossil amber as possible indicators of the major gas composition of ancient air

    USGS Publications Warehouse

    Berner, R.A.; Landis, G.P.

    1988-01-01

    Gases trapped in Miocene to Upper Cretaceous amber were released by gently crushing the amber under vacuum and were analyzed by quadrupole mass spectrometry. After discounting the possibility that the major gases N2, O2, and CO2 underwent appreciable diffusion and diagenetic exchange with their surroundings or reaction with the amber, it has been concluded that in primary bubbles (gas released during initial breakage) these gases represent mainly original ancient air modified by the aerobic respiration of microorganisms. Values of N2/(CO2+O2) for each time period give consistent results despite varying O2/CO2 ratios that presumably were due to varying degrees of respiration. This allows calculation of original oxygen concentrations, which, on the basis of these preliminary results, appear to have changed from greater than 30 percent O2 during one part ofthe Late Cretaceous (between 75 and 95 million years ago) to 21 percent during the Eocene-Oligocene and for present-day samples, with possibly lower values during the Oligocene-Early Miocene. Variable O2 levels over time in general confirm theoretical isotope-mass balance calculations and suggest that the atmosphere has evolved over Phanerozoic time.

  12. Elevated concentrations of endotoxin in indoor air due to cigarette smoking.

    PubMed

    Sebastian, Aleksandra; Pehrson, Christina; Larsson, Lennart

    2006-05-01

    Exposure to environmental tobacco smoke (ETS) is an important worldwide public health issue. The present study demonstrates that cigarette smoke can be a major source of endotoxin (lipopolysaccharide, LPS) in indoor environments. Gas-chromatography/mass-spectrometry was used to determine 3-hydroxy fatty acids as markers of endotoxin in air-borne house dust in homes of smokers and non-smokers. Air concentrations of endotoxin were 4-63 times higher in rooms of smoking students than in identical rooms of non-smoking students. The fact that cigarette smoke contains large amounts of endotoxin may partly explain the high prevalence of respiratory disorders among smokers and may also draw attention to a hitherto neglected risk factor of ETS.

  13. Catalytic wet air oxidation of high concentration pharmaceutical wastewater.

    PubMed

    Zhan, Wei; Wang, Xiaocong; Li, Daosheng; Ren, Yongzheng; Liu, Dongqi; Kang, Jianxiong

    2013-01-01

    In this study, we investigated the pretreatment of a high concentration pharmaceutical wastewater by catalytic wet air oxidation (CWAO) process. Different experiments were conducted to investigate the effects of the catalyst type, operating temperature, initial system pH, and oxygen partial pressure on the oxidation of the wastewater. Results show that the catalysts prepared by the co-precipitation method have better catalytic activity compared to others. Chemical oxygen demand (COD) conversion increased with the increase in temperature from 160 to 220 °C and decreased with the increase in pH. Moreover, the effect of the oxygen partial pressure on the COD conversion was significant only during the first 20 min of the reaction. Furthermore, the biodegradability of the wastewater improved greatly after CWAO, the ratio of BOD5/COD increased less than 0.1-0.75 when treated at 220 °C (BOD: biochemical oxygen demand).

  14. Variable air temperature response of gas-phase atmospheric polychlorinated biphenyls near a former manufacturing facility.

    PubMed

    Hermanson, Mark H; Scholten, Cheryl A; Compher, Kevin

    2003-09-15

    Many investigations of gas-phase atmospheric PCB show a strong relationship between concentration and air temperature, especially near PCB sources. Comparative gas-phase atmospheric PCB trends during an annual temperature regime at two sites near a former PCB manufacturing plant and nearby PCB landfills in Anniston, AL, indicate a departure from this trend. The Mars Hill sampling site, located closest to the plant and landfills, shows an annual average sigmaPCB concentration of 27 ng m(-3) (ranging from 8.7 to 82 ng m(-3)) three times the average at Carter, 1.5 km away (9 ng m(-3), ranging from 1.1 to 39). However, total PCB and congener concentrations vary more with air temperature at Carter where PCB are evaporating from surfaces during warmer weather. The slopes of the Clausius-Clapeyron plots of 18 of the most concentrated congeners representing dichloro- through heptachlorobiphenyl homologues are significantly higher at the Carter site. While some of the atmospheric PCB at Mars Hill is derived from ground surface evaporation, the source of much of it apparently is the material buried in the landfills, which has different thermal properties than surface materials and is not in equilibrium with air temperature.

  15. [Working ability between air and trimix breathing gas under 8 ATA air condition].

    PubMed

    Shibayama, M; Kosugi, S; Mohri, M; Yamamura, I; Oda, S; Kimura, A; Takeuchi, J; Mano, Y

    1990-04-01

    Pneumatic caisson work in Japan has come into operation since 1924. Afterward, this technique of compressed air work has been widely utilized in the construction of foundation basements, shafts of the bottom tunnel shields for subway and so forth. While using this technique of compressed air work means that workers have to be exposed to hyperbaric environment, this technique has risks of not only decompression sickness (DCS) but also toxicity of poisonous gas and/or oxygen deficiency. However, this technique is independent of city construction work and the operation of compressed air work higher than 5ATA (4.0 kg/cm2G) is actually been planning recently. Accordingly unmanned caisson work is considered as a better technique for such higher pressurized work, even though workers must enter into hyperbaric working fields for maintenance or repair of unmanned operated machinery and materials. This research is to establish the safe work under hyperbaric air environment at 8ATA.

  16. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  17. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, S.; Prévôt, A. S. H.; Baltensperger, U.

    2015-11-01

    Emissions from the marine transport sector are one of the least regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in the EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5 and the dry and wet deposition of nitrogen and sulfur compounds in Europe. Our results suggest that emissions from international shipping affect the air quality in northern and southern Europe differently and their contributions to the air concentrations vary seasonally. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Increased concentrations of the primary particle mass were found only along the shipping routes whereas concentrations of the secondary pollutants were affected over a larger area. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), in the English Channel and the North Sea (30-35 %) while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %) where there were high NH3 land-based emissions. Our model results showed that not only the atmospheric concentrations of pollutants are affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas-phase to the

  18. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  19. Air drilling for gas sands: Marianne Field, Sweetwater County, Wyoming

    SciTech Connect

    Wellborn, R.

    1983-08-01

    Marianne field is on the northeast flank of the Rock Springs uplift in Sweetwater County, Wyoming, just south of the town of Superior. The field is located where regional east dip averages 300 ft/mi (57 m/km). Numerous east-northeast-trending normal faults are present across the field with displacements ranging from 20 to 400 ft (6 to 120 m). Updip stratigraphic pinch-outs are responsible for gas accumulations in two separate Second Frontier sandstones with entrapment apparently not related to faulting. There are similar traps in various thin sandstone stringers in the Third Frontier and Muddy sandstones. In addition, a combination stratigraphic-fault trap for hydrocarbons appears to have been found in the Dakota and Lakota sandstones in one well; these horizons were abandoned for mechanical reasons before conclusive testing could be completed. All but one of the wells at Marianne field have been drilled either partially or completely with air. Consequently the potential to produce from various pay zones in nearly every well was determined prior to running production casing. This information generally cannot be obtained through drill stem testing in this area due to the formation damage from the drilling mud on the Cretaceous sandstone reservoirs. If an air-drilled gas reservoir was damaged later by drilling mud or cement, the potential was already known and it could be brought back through fracturing. The field consists of 6 gas wells and 5 dry holes.

  20. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  1. On the different regimes of gas heating in air plasmas

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2015-10-01

    Simulations of the gas temperature in air (N2-20%O2) plasma discharges are presented for different values of the reduced electric field, E/N g, electron density n e, pressure and tube radius. This study is based on the solutions to the time-dependent gas thermal balance in a cylindrical geometry coupled to the electron, vibrational and chemical kinetics, for E/{{N}\\text{g}}=50 and 100 Td (1 Td = 10-17 V cm2), 109  ⩽  n e  ⩽  1011 cm-3, pressure in the range 1-20 Torr, and also considering different tube radius, 0.5, 1 and 1.5 cm. The competing role of different gas heating mechanisms is discussed in detail within the time range 0.01-100 ms. For times below 1 ms, gas heating occurs from O2 dissociation by electron impact through pre-dissociative excited states, e + O2  →  e + \\text{O}2*   →  e + 2O(3P) and …  →  e + O(3P) + O(1D), as well as through the quenching of N2 electronically excited states by O2. For longer times, simulation results show that gas heating comes from processes N(4S) + NO(X)  →  N2(X, v ~ 3) + O, N2(A) + O  →  NO(X) + N(2D), V-T N2-O collisions and the recombination of oxygen atoms at the wall. Depending on the given E/N g and n e values, each one of these processes can be an important gas-heating channel. The contribution of V-T N2-O exchanges to gas heating is important in the analysis of the gas temperature for different pressures and values of the tube radius. A global picture of these effects is given by the study of the fraction of the discharge power spent on gas heating, which is always ~15%. The values for the fractional power transferred to gas heating from vibrational and electronic excitation are also presented and discussed.

  2. Modeling to Evaluate Contribution of Oil and Gas Emissions to Air Pollution.

    PubMed

    Thompson, Tammy M; Shepherd, Donald; Stacy, Andrea; Barna, Michael G; Schichtel, Bret A

    2017-04-01

    Oil and gas production in the Western United States has increased considerably over the past 10 years. While many of the still limited oil and gas impact assessments have focused on potential human health impacts, the typically remote locations of production in the Intermountain West suggests that the impacts of oil and gas production on national parks and wilderness areas (Class I and II areas) could also be important. To evaluate this, we utilize the Comprehensive Air quality Model with Extensions (CAMx) with a year-long modeling episode representing the best available representation of 2011 meteorology and emissions for the Western United States. The model inputs for the 2011 episodes were generated as part of the Three State Air Quality Study (3SAQS). The study includes a detailed assessment of oil and gas (O&G) emissions in Western States. The year-long modeling episode was run both with and without emissions from O&G production. The difference between these two runs provides an estimate of the contribution of the O&G production to air quality. These data were used to assess the contribution of O&G to the 8 hour average ozone concentrations, daily and annual fine particulate concentrations, annual nitrogen deposition totals and visibility in the modeling domain. We present the results for the Class I and II areas in the Western United States. Modeling results suggest that emissions from O&G activity are having a negative impact on air quality and ecosystem health in our National Parks and Class I areas.

  3. Ammonia concentration modeling based on retained gas sampler data

    SciTech Connect

    Terrones, G.; Palmer, B.J.; Cuta, J.M.

    1997-09-01

    The vertical ammonia concentration distributions determined by the retained gas sampler (RGS) apparatus were modeled for double-shell tanks (DSTs) AW-101, AN-103, AN-104, and AN-105 and single-shell tanks (SSTs) A-101, S-106, and U-103. One the vertical transport of ammonia in the tanks were used for the modeling. Transport in the non-convective settled solids and floating solids layers is assumed to occur primarily via some type of diffusion process, while transport in the convective liquid layers is incorporated into the model via mass transfer coefficients based on empirical correlations. Mass transfer between the top of the waste and the tank headspace and the effects of ventilation of the headspace are also included in the models. The resulting models contain a large number of parameters, but many of them can be determined from known properties of the waste configuration or can be estimated within reasonable bounds from data on the waste samples themselves. The models are used to extract effective diffusion coefficients for transport in the nonconvective layers based on the measured values of ammonia from the RGS apparatus. The modeling indicates that the higher concentrations of ammonia seen in bubbles trapped inside the waste relative to the ammonia concentrations in the tank headspace can be explained by a combination of slow transport of ammonia via diffusion in the nonconvective layers and ventilation of the tank headspace by either passive or active means. Slow transport by diffusion causes a higher concentration of ammonia to build up deep within the waste until the concentration gradients between the interior and top of the waste are sufficient to allow ammonia to escape at the same rate at which it is being generated in the waste.

  4. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Qi, Nan; LeVan, M. Douglas; Finn, Cory K.; Finn, John E.; Luna, Bernadette (Technical Monitor)

    2000-01-01

    A regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an. adsorbent column into a closed oxidation loop is under development through cooperative R&D between Vanderbilt University and NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. Recent work has focused on fabrication and operation of a RAPS breadboard at NASA Ames, and on measurement of adsorption isotherm data for several important organic compounds at Vanderbilt. These activities support the use and validation of RAPS modeling software also under development at Vanderbilt, which will in turn be used to construct a prototype system later in the project.

  5. Gas Concentration Mapping of Arenal Volcano Using AVEMS

    NASA Technical Reports Server (NTRS)

    Diaz, J. Andres; Arkin, C. Richard; Griffin, Timothy P.; Conejo, Elian; Heinrich, Kristel; Soto, Carlomagno

    2005-01-01

    The Airborne Volcanic Emissions Mass Spectrometer (AVEMS) System developed by NASA-Kennedy Space Center and deployed in collaboration with the National Center for Advanced Technology (CENAT) and the University of Costa Rica was used for mapping the volcanic plume of Arenal Volcano, the most active volcano in Costa Rica. The measurements were conducted as part of the second CARTA (Costa Rica Airborne Research and Technology Application) mission conducted in March 2005. The CARTA 2005 mission, involving multiple sensors and agencies, consisted of three different planes collecting data over all of Costa Rica. The WB-57F from NASA collected ground data with a digital camera, an analog photogrametric camera (RC-30), a multispectral scanner (MASTER) and a hyperspectral sensor (HYMAP). The second aircraft, a King Air 200 from DoE, mounted with a LIDAR based instrument, targeted topography mapping and forest density measurements. A smaller third aircraft, a Navajo from Costa Rica, integrated with the AVEMS instrument and designed for real-time measurements of air pollutants from both natural and anthropogenic sources, was flown over the volcanoes. The improved AVEMS system is designed for deployment via aircraft, car or hand-transport. The 85 pound system employs a 200 Da quadrupole mass analyzer, has a volume of 92,000 cubic cm, requires 350 W of power at steady state, can operate up to an altitude of 41,000 feet above sea level (-65 C; 50 torr). The system uses on-board gas bottles on-site calibration and is capable of monitoring and quantifying up to 16 gases simultaneously. The in-situ gas data in this work, consisting of helium, carbon dioxide, sulfur dioxide and acetone, was acquired in conjunction of GPS data which was plotted with the ground imagery, topography and remote sensing data collected by the other instruments, allowing the 3 dimensional visualization of the volcanic plume at Arenal Volcano. The modeling of possible scenarios of Arenal s activity and its

  6. Gas-phase photolytic production of hydroxyl radicals in an ultraviolet purifier for air and surfaces.

    PubMed

    Crosley, David R; Araps, Connie J; Doyle-Eisele, Melanie; McDonald, Jacob D

    2017-02-01

    We have measured the concentration of hydroxyl radicals (OH) produced in the gas phase by a commercially available purifier for air and surfaces, using the time rate of decay of n-heptane added to an environmental chamber. The hydroxyl generator, an Odorox® BOSS™ model, produces the OH through 185-nm photolysis of ambient water vapor. The steady-state concentration of OH produced in the 120 m(3) chamber is, with 2σ error bars, (3.25 ± 0.80) × 10(6) cm(-3). The properties of the hydroxyl generator, in particular the output of the ultraviolet lamps and the air throughput, together with an estimation of the water concentration, were used to predict the amount of OH produced by the device, with no fitted parameters. To relate this calculation to a steady-state concentration, we must estimate the OH loss rate within the chamber owing to reaction with the n-heptane and the 7 ppb of background hydrocarbons that are present. The result is a predicted steady-state concentration in excellent agreement with the measured value. This shows we understand well the processes occurring in the gas phase during operation of this hydroxyl radical purifier.

  7. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    PubMed

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-04

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  8. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    EPA Science Inventory

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  9. A stability dependent theory for air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Erickson, David J.

    1993-05-01

    The influence of thermal stability at the air-sea interface on computed values of the transfer velocities of trace gases is examined. The novel "whitecap" model for air-sea gas exchange of Monahan and Spillane (1984), extended here to include thermal stability effects, is linked with an atmospheric general circulation model to compute global transfer velocity patterns of a climate reactive gas, CO2. The important terms in the model equations such as the whitecap coverage, friction velocity, neutral and local drag coefficients and the stability parameter ψm(Z/L) are discussed and analyzed. The atmospheric surface level air temperature, relative humidity, wind speed and sea surface temperature, obtained from the National Center for Atmospheric Research Community Climate Model 1 (CCM1) are used to drive algorithms describing the air-sea transfer velocity of trace gases. The transfer velocity for CO2 (kCO2) is then computed for each 2.8° × 2.8° latitudinal-longitudinal area every 24 hours for 5 years of the seasonal-hydro runs of the CCM1. The new model results are compared to previously proposed formulations using the identical CCM1 forcing terms. Air-sea thermal stability effects on the transfer velocity for CO2 are most important at mid-high wind speeds. Where cold air from continental interiors is transported over relatively warm oceanic waters, the transfer velocities are enhanced over neutral stability values. The depression of computed kCO2 values when warm air resides over cold water is especially important, due to asymmetry in the stability dependence of the drag coefficient. The stability influence is 20% to 50% of kCO2 for modest air-sea temperature differences and up to 100% for extreme cases of stability or instability. The stability dependent "whitecap" model, using the transfer velocity coefficients for whitecap and nonwhitecap areas suggested by Monahan and Spillane (1984), produces CO2 transfer velocities that range from 13 to 50 cm h-1 for a

  10. Mixing layer height measurements determines influence of meteorology on air pollutant concentrations in urban area

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Blumenstock, Thomas; Bonn, Boris; Gerwig, Holger; Hase, Frank; Münkel, Christoph; Nothard, Rainer; von Schneidemesser, Erika

    2015-10-01

    Mixing layer height (MLH) is a key parameter to determine the influence of meteorological parameters upon air pollutants such as trace gas species and particulate concentrations near the surface. Meteorology, and MLH as a key parameter, affect the budget of emission source strengths, deposition, and accumulation. However, greater possibilities for the application of MLH data have been identified in recent years. Here, the results of measurements in Berlin in 2014 are shown and discussed. The concentrations of NO, NO2, O3, CO, PM1, PM2.5, PM10 and about 70 volatile organic compounds (anthropogenic and biogenic of origin) as well as particle size distributions and contributions of SOA and soot species to PM were measured at the urban background station of the Berlin air quality network (BLUME) in Nansenstr./Framstr., Berlin-Neukölln. A Vaisala ceilometer CL51, which is a commercial mini-lidar system, was applied at that site to detect the layers of the lower atmosphere in real time. Special software for these ceilometers with MATLAB provided routine retrievals of MLH from vertical profiles of laser backscatter data. Five portable Bruker EM27/SUN FTIR spectrometers were set up around Berlin to detect column averaged abundances of CO2 and CH4 by solar absorption spectrometry. Correlation analyses were used to show the coupling of temporal variations of trace gas compounds and PM with MLH. Significant influences of MLH upon NO, NO2, PM10, PM2.5, PM1 and toluene (marker for traffic emissions) concentrations as well as particle number concentrations in the size modes 70 - 100 nm, 100 - 200 nm and 200 - 500 nm on the basis of averaged diurnal courses were found. Further, MLH was taken as important auxiliary information about the development of the boundary layer during each day of observations, which was required for the proper estimation of CO2 and CH4 source strengths from Berlin on the basis of atmospheric column density measurements.

  11. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  12. Final Environmental Impact Statement. Potential Exploration, Development, and Production of Oil and Gas Resources, Vandenberg Air Force Base, CA

    DTIC Science & Technology

    1987-12-18

    without application of additional control measures. The short- and ’ong-term effect of alternative 4 on air quality will be a decrease in backgro,’ I...and community services would be most sensitive to the effects of oil and gas development. Environmental Consequences. Because neither the proposed...alternative I primarily exclude launch-related coastal areas and could have the effect of concentrating oil and gas development in the high

  13. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  14. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    PubMed

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (< C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near

  15. An advanced passive diffusion sampler for the determination of dissolved gas concentrations

    NASA Astrophysics Data System (ADS)

    Gardner, P.; Solomon, D. K.

    2009-06-01

    We have designed and tested a passive headspace sampler for the collection of noble gases that allows for the precise calculation of dissolved gas concentrations from measured gas mixing ratios. Gas permeable silicon tubing allows for gas exchange between the headspace in the sampler volume and the dissolved gases in the adjacent water. After reaching equilibrium, the aqueous-phase concentration is related to the headspace concentration by Henry's law. Gas exchange between the water and headspace can be shut off in situ, preserving the total dissolved gas pressure upon retrieval. Gas samples are then sealed in an all metal container, retaining even highly mobile helium. Dissolved noble gas concentrations measured in these diffusion samplers are in good agreement with traditional copper tube aqueous-phase samples. These significantly reduce the laboratory labor in extracting the gases from a water sample and provide a simple and robust method for collecting dissolved gas concentrations in a variety of aqueous environments.

  16. A METHOD OF ASSESSING AIR TOXICS CONCENTRATIONS IN URBAN AREAS USING MOBILE PLATFORM MEASUREMENTS

    EPA Science Inventory

    The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxic assessments in Environmental Justice applications, epidemiological studies...

  17. Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; O'Neill, B. C.

    2014-12-01

    Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S

  18. Regional Air Quality Impacts of Hydraulic Fracturing and Natural Gas Activity: Evidence from Ambient VOC Observations

    NASA Astrophysics Data System (ADS)

    Vinciguerra, T.; Ehrman, S.; Yao, S.; Dadzie, J.; Chittams, A.; Dickerson, R. R.

    2014-12-01

    Over the past decade, many anthropogenic pollutants have been successfully reduced, providing improved air quality. However, a new influx of emissions associated with hydraulic fracturing and natural gas operations could be counteracting some of these benefits. Using hourly measurements from Photochemical Assessment Monitoring Stations (PAMS) in the Baltimore, MD and Washington, D.C. areas, we observed that following a period of decline, daytime ethane concentrations have increased significantly since 2010. This trend appears to be linked with the rapid natural gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Furthermore, ethane concentrations failed to display this trend at a PAMS site outside of Atlanta, GA, a region without widespread natural gas operations. Year-to-year changes in VOCs were further evaluated by using Positive Matrix Factorization (PMF) to perform source apportionment on hourly observations in Essex, MD from 2005-2013. This process takes ambient measurements and attributes them to sources such as biogenic, natural gas, industrial, gasoline, and vehicle exhaust by using tracer species as identifiers. Preliminary PMF results also indicate an increasing influence of natural gas sources for this area.

  19. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    NASA Astrophysics Data System (ADS)

    Guangul, F. M.; Sulaiman, S. A.; Ramli, A.

    2013-06-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  20. [Confrontation of knowledge on alcohol concentration in blood and in exhaled air].

    PubMed

    Bauer, Miroslav; Bauerová, Jiřina; Šikuta, Ján; Šidlo, Jozef

    2015-01-01

    The authors of the paper give a brief historical overview of the development of experimental alcohology in the former Czechoslovakia. Enhanced attention is paid to tests of work quality control of toxicological laboratories. Information on results of control tests of blood samples using the method of gas chromatography in Slovakia and within a world-wide study "Eurotox 1990" is presented. There are pointed out the pitfalls related to objective evaluation of the analysis results interpreting alcohol concentration in biological materials and the associated need to eliminate a negative influence of the human factor. The authors recommend performing analyses of alcohol in biological materials only at accredited workplaces and in the case of samples storage to secure a mandatory inhibition of phosphorylation process. There are analysed the reasons of numerical differences of analyses while taking evidence of alcohol in blood and in exhaled air. The authors confirm analysis accuracy using the method of gas chromatography along with breath analysers of exhaled air. They highlight the need for making the analysis results more objective also through confrontation with the results of clinical examination and with examined circumstances. The authors suggest a method of elimination of the human factor, the most frequently responsible for inaccuracy, to a tolerable level (safety factor) and the need of sample analysis by two methods independent of each other or the need of analysis of two biological materials.

  1. The impact of air-fuel mixture composition on SI engine performance during natural gas and producer gas combustion

    NASA Astrophysics Data System (ADS)

    Przybyła, G.; Postrzednik, S.; Żmudka, Z.

    2016-09-01

    The paper summarizers results of experimental tests of SI engine fuelled with gaseous fuels such as, natural gas and three mixtures of producer gas substitute that simulated real producer gas composition. The engine was operated under full open throttle and charged with different air-fuel mixture composition (changed value of air excess ratio). The spark timing was adjusted to obtain maximum brake torque (MBT) for each fuel and air-fuel mixture. This paper reports engine indicated performance based on in-cylinder, cycle resolved pressure measurements. The engine performance utilizing producer gas in terms of indicated efficiency is increased by about 2 percentage points when compared to fuelling with natural gas. The engine power de-rating when producer gas is utilized instead the natural gas, varies from 24% to 28,6% under stoichiometric combustion conditions. For lean burn (λ=1.5) the difference are lower and varies from 22% to 24.5%.

  2. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.

    PubMed

    Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen

    2008-12-01

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.

  3. The potential role of sea spray droplets in facilitating air-sea gas transfer

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  4. Determination of volatile organic compounds in ambient air with gas chromatograph-flame ionization and ion trap detection

    SciTech Connect

    Liu, S.; Carley, R.J.; Kang, J.; Chen, J.; Stuart, J.D.

    1994-12-31

    Two new techniques are utilized to integrate the following three equipments: an Entech 2000 automated air concentrator, a Hewlett Packard gas chromatograph (GC) with flame ionization detector (FID) and an ion trap mass spectrometer detector (ITD). This combined analytical system is used to determine low ppb level volatile organic compounds (VOC) in ambient air. The first technique is to configure the inlet system of the GC, so that the pressure regulated flow control system of the GC injection port is used to control the flow of both the desorb gas of the automated air concentrator and the carrier gas of the GC column. The injection port still can be used to inject gas and liquid samples directly. The second technique is to split the effluent of GC column at a 1:1 ratio to the ITD and the FID. In this way, both FID and ITD data can be obtained for each analysis. For ambient air non-methane hydrocarbons monitoring, the FID detector is widely used. Oxygen containing and halogenated organic compounds cannot be differentiated by FID detector and would be quantified as coeluting hydrocarbons. However, volatile organic compounds other than target hydrocarbons can be identified by ITD. This analytical system is very valuable research tool for non-methane hydrocarbons and urban air toxic monitoring. The performances of this developed system have been presented.

  5. Spatial Air Quality Impacts of Increased Natural Gas Development and Use in Texas

    NASA Astrophysics Data System (ADS)

    Allen, D.; Pacsi, A. P.

    2013-12-01

    Compared to coal-fired power plants on a per MWh basis, natural-gas electricity generators in the grid of the Electricity Reliability Council of Texas (ERCOT) emit substantially less nitrogen oxides (NOx) and sulfur dioxide (SO2), which are precursors for the formation of ozone (O3) and fine particulate matter (PM2.5). In addition, several life-cycle assessments have concluded that the development and use of shale gas resources will likely lead to air quality benefits, despite emissions associated with natural gas production, due to changes in fuel utilization in the electricity generation sector. The formation of ozone and PM2.5 is non-linear, however, and depends on spatial and temporal patterns associated with the precursor emissions. This study used Texas as a case-study for the changes in regional ozone and PM2.5 concentrations associated with natural gas production and use in electricity generation in the state. Texas makes a compelling case study since it was among the first states with large-scale shale gas production with horizontal drilling and hydraulic fracturing technologies, since it has a self-contained electric grid (ERCOT), and since it includes several regions which do not currently meet Federal standards for ozone. This study utilized an optimal power flow model for electricity generation in ERCOT, coupled with a regional photochemical model to estimate the ozone and PM2.5 impacts of changes to natural gas production and use in the state. The utilization of natural gas is highly dependent on the relative price of natural gas compared to coal. Thus, the amount of natural gas consumed in power generation in ERCOT was estimated for a range of prices from 1.89-7.74, which have occurred in Texas since 2006. Sensitivity scenarios in which natural gas production emissions in the Barnett Shale were raised or lowered depending on demand for the fuel in the electricity generation sector were also examined. Overall results indicate that regional ozone and

  6. [Observation on the air-borne bacteria and ammonia (NS3) gas in laboratory animal facility with rotary heat exchanger].

    PubMed

    Obara, T; Matsuyama, M; Fujita, S; Yamauchi, C

    1979-01-01

    The number of air-borne bacteria in air ducts and barrierred laboratory animal rooms with the so-called econovent rotary heat exchanger, were checked monthly during a year by the pin-hole sumpler method for air ducts and Koch method for animal rooms. Also, concentration of ammonia was checked with the same samples by gas impinger. No significantly difference in number of air-borne bacteria was seen between before and after passing the econovent. Those passing through HEPA filter was not detected. There were more air-borne bacteria in animal rooms, outside locker room and shower room than in the corridor, utensil storage, inside locker room and pass box. No ammonia were detected in the outdoor, but exhaust air duct after passing the econovent contained very small amount of ammonia. On the other hand, high concentration of ammonia were preserved in the supplying air duct, exhaust air duct and mice and rats rooms, about 86% of ammonia in exhaust air duct returned back into the supplying air duct. No influences on reproduction in mice and rats were recognized.

  7. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    SciTech Connect

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu

    2009-07-15

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  8. Clean air program: Liquefied natural gas safety in transit operations. Final report

    SciTech Connect

    Friedman, D.M.; Malcosky, N.D.

    1996-03-01

    The report examines the safety issues relating to the use of Liquefied natural Gas (LNG) in transit service. The surveys consisted of: (1) extensive interviews; (2) review of recrods, procedures, and plans relating to safety; (3) examination of facilities and equipment; (4) observations of operations including fueling, maintenance, morning start-up, and revenue service; (5) measurement of methane concentrations in the air where the buses are being fueled or stored. Interviews included all job categories associated with management, operations, safety, maintenance, acquisition, and support. The surveys also included an examination of the occupational hygiene aspects of LNG use.

  9. Using long-term air monitoring of semi-volatile organic compounds to evaluate the uncertainty in polyurethane-disk passive sampler-derived air concentrations.

    PubMed

    Holt, Eva; Bohlin-Nizzetto, Pernilla; Borůvková, Jana; Harner, Tom; Kalina, Jiří; Melymuk, Lisa; Klánová, Jana

    2017-01-01

    Much effort has been made to standardise sampling procedures, laboratory analysis, data analysis, etc. for semi volatile organic contaminants (SVOCs). Yet there are some unresolved issues in regards to comparing measurements from one of the most commonly used passive samplers (PAS), the polyurethane foam (PUF) disk PAS (PUF-PAS), between monitoring networks or different studies. One such issue is that there is no universal means to derive a sampling rate (Rs) or to calculate air concentrations (Cair) from PUF-PAS measurements for SVOCs. Cair was calculated from PUF-PAS measurements from a long-term monitoring program at a site in central Europe applying current understanding of passive sampling theory coupled with a consideration for the sampling of particle associated compounds. Cair were assessed against concurrent active air sampler (AAS) measurements. Use of "site-based/sampler-specific" variables: Rs, calculated using a site calibration, provided similar results for most gas-phase SVOCs to air concentrations derived using "default" values (commonly accepted Rs). Individual monthly PUF-PAS-derived air concentrations for the majority of the target compounds were significantly different (Wilcoxon signed-rank (WSR) test; p < 0.05) to AAS regardless of the input values (site/sampler based or default) used to calculate them. However, annual average PUF-PAS-derived air concentrations were within the same order of magnitude as AAS measurements except for the particle-phase polycyclic aromatic hydrocarbons (PAHs). Underestimation of PUF-derived air concentrations for particle-phase PAHs was attributed to a potential overestimation of the particle infiltration into the PUF-PAS chamber and underestimation of the particle bound fraction of PAHs.

  10. Reduction of CO 2 concentration in a zinc/air battery by absorption in a rotating packed bed

    NASA Astrophysics Data System (ADS)

    Cheng, Hsu-Hsiang; Tan, Chung-Sung

    The reduction of CO 2 concentration in a gas stream containing 500 ppm of CO 2 by a technique combining chemical absorption with Higee (high gravity) was investigated in this study. Using a 2.0 L aqueous amine-based solution to treat the feed gas with a flow rate which varied from 12.9 to 20.6 L min -1, piperazine (PZ) was found to be more effective than 2-(2-aminoethylamino) ethanol (AEEA) and monoethanolamine (MEA) for reducing the CO 2 concentration to a level below 20 ppm. The effects of temperature, rotating speed, amine solution flow rate, and gas flow rate on the removal efficiency of CO 2 were systematically examined. The results indicated that the proposed compact device could effectively reduce CO 2 to a level below 20 ppm, as required by a zinc/air battery, for a long period of time using PZ and its mixture with AEEA and MEA as the absorbents.

  11. Volcanic gas emissions and their effect on ambient air character

    SciTech Connect

    Sutton, A.J.; Elias, T.

    1994-01-01

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  12. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  13. Ambient nitrogen dioxide and sulfur dioxide concentrations over a region of natural gas production, Northeastern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Islam, S. M. Nazrul; Jackson, Peter L.; Aherne, Julian

    2016-10-01

    The Peace River district of Northeastern British Columbia, Canada is a region of natural gas production that has undergone rapid expansion since 2005. In order to assess air quality implications, Willems badge passive diffusive samplers were deployed for six two-week exposure periods between August and November 2013, at 24 sites across the region to assess the ambient concentration of nitrogen dioxide (NO2) and sulfur dioxide (SO2). The highest concentrations of both species (NO2: 9.1 ppb, SO2: 1.91 ppb) during the whole study period (except the 1st exposure period), were observed in Taylor (Site 14), which is consistent with its location near major industrial sources. Emissions from industrial activities, and their interaction with meteorology and topography, result in variations in atmospheric dispersion that can increase air pollution concentrations in Taylor. However, relatively high concentrations of NO2 were also observed near the center of Chetwynd (site F20), indicating the importance of urban emissions sources in the region as well. Observations of both species from the other study sites document the spatial variability and show relatively high concentrations near Fort St. John and Dawson Creek, where unconventional oil and gas development activities are quite high. Although a few sites in Northeastern British Columbia recorded elevated concentrations of NO2 and SO2 during this investigation, the concentrations over the three-month period were well below provincial annual ambient air quality objectives. Nonetheless, given the limited observations in the region, and the accelerated importance of unconventional oil and gas extraction in meeting energy demands, it is imperative that monitoring networks are established to further assess the potential for elevated ambient concentrations associated with industrial emissions sources in the Peace River region.

  14. Air Impacts of Unconventional Natural Gas Development: A Barnett Shale Case Study

    NASA Astrophysics Data System (ADS)

    Moore, C. W.; Zielinska, B.; Campbell, D.; Fujita, E.

    2013-12-01

    Radiello samplers. In addition, weekly PM2.5 samples were collected on Teflon and quartz filters that were analyzed for mass and elements (Teflon filters), for organic and elemental carbon (OC and EC) by thermal/optical reflectance (TOR) method and for polycyclic aromatic hydrocarbons (PAH) using a gas chromatography/mass spectrometry (GC/MS) technique (quartz filters).VOC emissions from condensate tanks were largely low molecular weight hydrocarbons, however these tanks were enhancing local benzene concentrations mostly through malfunctioning valves. PAH concentrations were low (in pg m-3 range) but the average PAH concentration profiles (higher fraction of methylated PAHs) indicated an influence of compressor engine exhausts and increased diesel transportation traffic. These measurements, however, only represent a small 'snap-shot' of the overall emissions picture from this area. For instance during this one month study, the compressor station was predominantly downwind of the community and this may not be the case in other times of the year. Long-term study of these systems, especially in areas that have yet to experience this type of exploration, but will in the future, is needed to truly evaluate the air impacts of unconventional natural gas development.

  15. Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air/gas supply approach.

    PubMed

    Jaojaruek, Kitipong; Jarungthammachote, Sompop; Gratuito, Maria Kathrina B; Wongsuwan, Hataitep; Homhual, Suwan

    2011-04-01

    This study conducted experiments on three different downdraft gasification approaches: single stage, conventional two-stage, and an innovative two-stage air and premixed air/gas supply approach. The innovative two-stage approach has two nozzle locations, one for air supply at combustion zone and the other located at the pyrolysis zone for supplying the premixed gas (air and producer gas). The producer gas is partially bypassed to mix with air and supplied to burn at the pyrolysis zone. The result shows that producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. The higher heating value (HHV) increased from 5.4 to 6.5 MJ/Nm(3). Tar content in producer gas reduced to less than 45 mg/Nm(3). With this approach, gas can be fed directly to an internal combustion engine. Furthermore, the gasification thermal efficiency also improved by approximately 14%. The approach gave double benefits on gas qualities and energy savings.

  16. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability.

  17. Evaluation of background soil and air polychlorinated biphenyl (PCB) concentrations on a hill at the outskirts of a metropolitan city.

    PubMed

    Kuzu, S Levent; Saral, Arslan; Güneş, Gülten; Karadeniz, Aykut

    2016-07-01

    Air and soil sampling was conducted inside a forested area for 22 months. The sampling location is situated to the north of a metropolitan city. Average atmospheric gas and particle concentrations were found to be 180 and 28 pg m(-3) respectively, while that of soil phase was detected to be 3.2 ng g(-1) on dry matter, The congener pairs of PCB#4-10 had the highest contribution to each medium. TEQ concentration was 0.10 pg m(-3), 0.07 pg m(-3), 21.92 pg g(-1), for gas, particle and soil phases, respectively. PCB#126 and PCB#169 contributed to over 99% of the entire TEQ concentrations for each medium. Local sources were investigated by conditional probability function (CPF) and soil/air fugacity. Landfilling area and medical waste incinerator, located to the 8 km northeast, contributed to ambient concentrations, especially in terms of dioxin-like congeners. The industrial settlement (called Dilovasi being to the east southeast of 60 km distant) contributed from southeast direction. Further sources were identified by potential source contribution function (PSCF). Sources at close proximity had high contribution. Air mass transportation from Aliaga industrial region (being to the southwest of 300 km distant) moderately contributed to ambient concentrations. Low molecular weight congeners were released from soil body. 5-CBs and 6-CBs were close to equilibrium state between soil/air interfaces. PCB#171 was close to equilibrium and PCB#180 was likely to evaporate from soil, which constitute 7-CBs. PCB#199, representing 8-CBs deposited to soil. 9-CB (PCB#207) was in equilibrium between soil and air phases.

  18. New SI-traceable reference gas mixtures for fluorinated gases at atmospheric concentration

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Wyss, Simon A.; Pascale, Céline; Vollmer, Martin K.; Niederhauser, Bernhard; Reimann, Stefan

    2016-04-01

    In order to better support the monitoring of greenhouse gases in the atmosphere, we develop a method to produce reference gas mixtures for fluorinated gases (F-gases, i.e. gases containing fluorine atoms) in a SI-traceable way, meaning that the amount of substance fraction in mole per mole is traceable to SI-units. These research activities are conducted in the framework of the HIGHGAS and AtmoChem-ECV projects. First, single-component mixtures in synthetic air at ~85 nmol/mol (ppb) are generated for HFC-125 (pentafluoroethane, a widely used HFC) and HFC-1234yf (2,3,3,3-tetrafluoropropene, a car air conditioner fluid of growing importance). These mixtures are first dynamically produced by permeation: a permeator containing the pure substance loses mass linearly over time under a constant gas flow, in the permeation chamber of a magnetic suspension balance, which is regularly calibrated. This primary mixture is then pressurised into Silconert2000-coated stainless steel cylinders by cryo-filling. In a second step these mixtures are dynamically diluted using 2 subsequent dilution steps piloted by mass flow controllers (MFC) and pressure controllers. The assigned mixture concentration is calculated mostly based on the permeator mass loss, on the carrier gas purity and on the MFCs flows. An uncertainty budget is presented, resulting in an expanded uncertainty of 2% for the HFC-125 reference mixture and of 2.5% for the HFC-1234yf mixture (95% confidence interval). The final gas, with near-atmospheric concentration (17.11 pmol/mol for HFC-125, 2.14 pmol/mol for HFC-1234yf) is then measured with Medusa-GC/MS technology against standards calibrated on existing reference scales. The assigned values of the dynamic standards are in excellent agreement with measurements vs the existing reference scales, SIO-14 from the Scripps Institution of Oceanography for HFC-125 and Empa-2013 for HFC-1234yf. Moreover, the Medusa-GC/MS measurements show the excellent purity of the SI

  19. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, Sebnem; Baltensperger, Urs; Prévôt, André S. H.

    2016-02-01

    Emissions from the marine transport sector are one of the least-regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx (Comprehensive Air Quality Model with Extensions) with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5, and the dry and wet deposition of nitrogen and sulfur compounds in Europe. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), the English Channel and the North Sea (30-35 %), while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %), where there were high NH3 land-based emissions. Our model results showed that not only are the atmospheric concentrations of pollutants affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships, especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas phase to the particle phase which then contributes to an increase in the wet deposition at coastal areas with higher precipitation. In the western Mediterranean region, on the other hand, model results show an increase in the deposition of oxidized nitrogen (mostly HNO3) due to the ship traffic. Dry deposition of SO2 seems to be significant along

  20. Ozone production in parallel multichannel dielectric barrier discharge from oxygen and air: the influence of gas pressure

    NASA Astrophysics Data System (ADS)

    Yuan, Dingkun; Wang, Zhihua; Ding, Can; He, Yong; Whiddon, Ronald; Cen, Kefa

    2016-11-01

    This research aims to investigate the influence of gas pressure (0.1 Mpa-0.2 Mpa) on ozone generation in a parallel multichannel dielectric barrier discharge (DBD) reactor with a narrow gap (0.2 mm). In addition to determining ozone concentration and ozone yield characteristics with gas pressure variation, this paper examines the possible reasons leading to the inconsistency with previous reported results. All the experimental results are plotted on the basis of specific input energy (SIE) in order to conduct the comparison within identical power density. By reviewing the experimental results, the possible cause leading to the inconsistency concerning gas pressure dependences of ozone generation was found using different comparison bases. Results show that ozone generation is slightly suppressed with an increase of gas pressure with an initial increase in SIE. The results of the ozone yield show that an increase of gas pressure would have a favorable effect on ozone production efficiency with an SIE larger than 400 J l-1 in oxygen while ozone yield reaches the maximum at 0.14 Mpa with an SIE larger than 150 J l-1 in air. Increasing gas pressure would lead to a higher critical SIE value at which ozone yield firstly decreases with an increase of SIE both in oxygen and air. The results of nitrogen oxide byproducts show that both NO x byproducts emission and the discharge poisoning effect are suppressed by increasing gas pressure in air plasmas.

  1. Monitoring of air pollution in the atmosphere around Oman Liquid Natural Gas (OLNG) plant.

    PubMed

    Abdul-Wahab, Sabah A

    2005-01-01

    This study was basically designed to assess the potential environmental air quality impacts arising from the existing two operational trains at the Oman Liquid Natural Gas (OLNG) plant. The results of the paper contain a baseline survey of the existing environment. The pollutants studied included methane (CH4), non-methane hydrocarbons (NMHC), carbon monoxide (CO), nitrogen oxides (NOx), and suspended particulate matters (dust PM 10). Meteorological parameters monitored simultaneously include wind speed and direction, air temperature, and relative humidity. The air quality data were used to determine the diurnal and monthly variations in the pollutants. Description levels of the pollutants with respect to meteorological data were also used in analysis. Moreover, a statistical analysis of the collected data was presented. Generally, the results indicated that the mean concentrations of pollutants were low to cause any significant impact in air quality. The area had no problem in meeting the air quality standards for CO and NO2. It was also found that there was a random relationship between CO and NMHC, and between NO and NOx (no apparent correlation). The diurnal peaks of NOx, NO2, THC, and NMHC over a 24-h period were observed at around 9:00-10:00 AM (morning peak). For NO, NO2, and NOx, another peak was seen at around 5:00 PM (evening peak). Furthermore, the measured concentrations for NO2, NOx, and CO were found higher in winter than in summer. The study would help to gain a better understanding of local background levels of air pollutants at the area prior to the construction of new industrial projects, and to prepare action plans for controlling pollution in the area.

  2. Gas and drop behavior in reacting and non-reacting air-blast atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mcdonell, Vincent G.; Samuelsen, Scott

    1991-01-01

    A detailed study of the two-phase flow produced by a gas-turbine air-blast atomizer is performed with the goal of identifying the interaction between the two phases for both nonreacting and reacting conditions. A two-component phase Doppler interferometry is utilized to characterize three flowfields produced by the atomizer: (1) the single-phase flow, (2) the two-phase nonreacting spray, and (3) the two-phase reacting spray. Measurements of the mean and fluctuating axial and azimuthal velocities for each phase are obtained. In addition, the droplet size distribution, volume flux, and concentration are measured. The results reveal the strong influence of the dispersed phase on the gas, and the influence of reaction on both the gas and the droplet field. The presence of the spray significantly alters the inlet condition of the atomizer. With this alteration quantified, it is possible to deduce that the inertia associated with the dispersed phase damps the fluctuating velocities of the gas. Reaction reduces the volume flux of the droplets, broadens the local volume distribution of the droplets in the region of the reaction zone, increases the axial velocities and radial spread of the gas, and increases the anisotropy in the region of the reaction zone.

  3. Gas and drop behavior in reacting and non-reacting air-blast atomizer sprays

    NASA Astrophysics Data System (ADS)

    McDonell, Vincent G.; Samuelsen, Scott

    1991-10-01

    A detailed study of the two-phase flow produced by a gas-turbine air-blast atomizer is performed with the goal of identifying the interaction between the two phases for both nonreacting and reacting conditions. A two-component phase Doppler interferometry is utilized to characterize three flowfields produced by the atomizer: (1) the single-phase flow, (2) the two-phase nonreacting spray, and (3) the two-phase reacting spray. Measurements of the mean and fluctuating axial and azimuthal velocities for each phase are obtained. In addition, the droplet size distribution, volume flux, and concentration are measured. The results reveal the strong influence of the dispersed phase on the gas, and the influence of reaction on both the gas and the droplet field. The presence of the spray significantly alters the inlet condition of the atomizer. With this alteration quantified, it is possible to deduce that the inertia associated with the dispersed phase damps the fluctuating velocities of the gas. Reaction reduces the volume flux of the droplets, broadens the local volume distribution of the droplets in the region of the reaction zone, increases the axial velocities and radial spread of the gas, and increases the anisotropy in the region of the reaction zone.

  4. Air pollutant concentrations near three Texas roadways, Part I: Ultrafine particles

    NASA Astrophysics Data System (ADS)

    Zhu, Yifang; Pudota, Jayanth; Collins, Donald; Allen, David; Clements, Andrea; DenBleyker, Allison; Fraser, Matt; Jia, Yuling; McDonald-Buller, Elena; Michel, Edward

    Vehicular emitted air pollutant concentrations were studied near three types of roadways in Austin, Texas: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway dominated by truck traffic. Air pollutants examined include carbon monoxide (CO), oxides of nitrogen (NO x), and carbonyl species in the gas-phase. In the particle phase, ultrafine particle (UFP) concentrations (diameter < 100 nm), fine particulate matter (PM 2.5, diameter < 2.5 μm) mass and carbon content and several particle-bound organics were examined. All roadways had an upwind stationary sampling location, one or two fixed downwind sample locations and a mobile monitoring platform that characterized pollutant concentrations fall-off with increased distance from the roadways. Data reported in this paper focus on UFP while other pollutants and near-roadway chemical processes are examined in a companion paper. Traffic volume, especially heavy-duty traffic, wind speed, and proximity to the road were found to be the most important factors determining UFP concentrations near the roadways. Since wind directions were not consistent during the sampling periods, distances along wind trajectories from the roadway to the sampling points were used to study the decay characteristics of UFPs. Under perpendicular wind conditions, for all studied roadway types, particle number concentrations increased dramatically moving from the upwind side to the downwind side. The elevated particle number concentrations decay exponentially with increasing distances from the roadway with sharp concentration gradients observed within 100-150 m, similar to previously reported studies. A single exponential decay curve was found to fit the data collected from all three roadways very well under perpendicular wind conditions. No

  5. Soil air CO2 concentration as an integrative parameter of soil structure

    NASA Astrophysics Data System (ADS)

    Ebeling, Corinna; Gaertig, Thorsten; Fründ, Heinz-Christian

    2015-04-01

    The assessment of soil structure is an important but difficult issue and normally takes place in the laboratory. Typical parameters are soil bulk density, porosity, water or air conductivity or gas diffusivity. All methods are time-consuming. The integrative parameter soil air CO2 concentration ([CO2]) can be used to assess soil structure in situ and in a short time. Several studies highlighted that independent of soil respiration, [CO2] in the soil air increases with decreasing soil aeration. Therefore, [CO2] is a useful indicator of soil aeration. Embedded in the German research project RÜWOLA, which focus on soil protection at forest sites, we investigated soil compaction and recovery of soil structure after harvesting. Therefore, we measured soil air CO2 concentrations continuously and in single measurements and compared the results with the measurements of bulk density, porosity and gas diffusivity. Two test areas were investigated: At test area 1 with high natural regeneration potential (clay content approx. 25 % and soil-pH between 5 and 7), solid-state CO2-sensors using NDIR technology were installed in the wheel track of different aged skidding tracks in 5 and 10 cm soil depths. At area 2 (acidic silty loam, soil-pH between 3.5 and 4), CO2-sensors and water-tension sensors (WatermarkR) were installed in 6 cm soil depth. The results show a low variance of [CO2] in the undisturbed soil with a long term mean from May to June 2014 between 0.2 and 0.5 % [CO2] in both areas. In the wheel tracks [CO2] was consistently higher. The long term mean [CO2] in the 8-year-old-wheel track in test area 1 is 5 times higher than in the reference soil and shows a high variation (mean=2.0 %). The 18-year-old wheel track shows a long-term mean of 1.2 % [CO2]. Furthermore, there were strong fluctuations of [CO2] in the wheel tracks corresponding to precipitation and humidity. Similar results were yielded with single measurements during the vegetation period using a portable

  6. Global Ammonia Concentrations Seen by the 13-years AIRS Measurements

    NASA Astrophysics Data System (ADS)

    Warner, Juying; Wei, Zigang; Larrabee Strow, L.; Dickerson, Russell; Nowak, John; Wang, Yuxuan

    2016-04-01

    Ammonia is an integral part of the nitrogen cycle and is projected to be the largest single contributor to each of acidification, eutrophication and secondary particulate matter in Europe by 2020 (Sutton et al., 2008). The impacts of NH3 also include: aerosol production affecting global radiative forcing, increases in emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4), and modification of the transport and deposition patterns of SO2 and NOx. Therefore, monitoring NH3 global distribution of sources is vitally important to human health with respect to both air and water quality and climate change. We have developed new daily and global ammonia (NH3) products from AIRS hyperspectral measurements. These products add value to AIRS's existing products that have made significant contributions to weather forecasts, climate studies, and air quality monitoring. With longer than 13 years of data records, these measurements have been used not only for daily monitoring purposes but also for inter-annual variability and short-term trend studies. We will discuss the global NH3 emission sources from biogenic and anthropogenic activities over many emission regions captured by AIRS. We will focus their variability in the last 13 years.

  7. Air sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric; McNeil, Craig

    2007-06-01

    Measurements of the air-sea fluxes of N 2 and O 2 were made in winds of 15-57 m s - 1 beneath Hurricane Frances using two types of air-deployed neutrally buoyant and profiling underwater floats. Two "Lagrangian floats" measured O 2 and total gas tension (GT) in pre-storm and post-storm profiles and in the actively turbulent mixed layer during the storm. A single "EM-APEX float" profiled continuously from 30 to 200 m before, during and after the storm. All floats measured temperature and salinity. N 2 concentrations were computed from GT and O 2 after correcting for instrumental effects. Gas fluxes were computed by three methods. First, a one-dimensional mixed layer budget diagnosed the changes in mixed layer concentrations given the pre-storm profile and a time varying mixed layer depth. This model was calibrated using temperature and salinity data. The difference between the predicted mixed layer concentrations of O 2 and N 2 and those measured was attributed to air-sea gas fluxes FBO and FBN. Second, the covariance flux FCO( z) = < wO 2'>( z) was computed, where w is the vertical motion of the water-following Lagrangian floats, O 2' is a high-pass filtered O 2 concentration and <>( z) is an average over covariance pairs as a function of depth. The profile FCO( z) was extrapolated to the surface to yield the surface O 2 flux FCO(0). Third, a deficit of O 2 was found in the upper few meters of the ocean at the height of the storm. A flux FSO, moving O 2 out of the ocean, was calculated by dividing this deficit by the residence time of the water in this layer, inferred from the Lagrangian floats. The three methods gave generally consistent results. At the highest winds, gas transfer is dominated by bubbles created by surface wave breaking, injected into the ocean by large-scale turbulent eddies and dissolving near 10-m depth. This conclusion is supported by observations of fluxes into the ocean despite its supersaturation; by the molar flux ratio FBO/ FBN, which is

  8. Air sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric; McNeil, Craig

    2008-11-01

    Measurements of the air-sea fluxes of N 2 and O 2 were made in winds of 15-57 m s - 1 beneath Hurricane Frances using two types of air-deployed neutrally buoyant and profiling underwater floats. Two "Lagrangian floats" measured O 2 and total gas tension (GT) in pre-storm and post-storm profiles and in the actively turbulent mixed layer during the storm. A single "EM-APEX float" profiled continuously from 30 to 200 m before, during and after the storm. All floats measured temperature and salinity. N 2 concentrations were computed from GT and O 2 after correcting for instrumental effects. Gas fluxes were computed by three methods. First, a one-dimensional mixed layer budget diagnosed the changes in mixed layer concentrations given the pre-storm profile and a time varying mixed layer depth. This model was calibrated using temperature and salinity data. The difference between the predicted mixed layer concentrations of O 2 and N 2 and those measured was attributed to air-sea gas fluxes FBO and FBN. Second, the covariance flux FCO( z) = < wO 2'>( z) was computed, where w is the vertical motion of the water-following Lagrangian floats, O 2' is a high-pass filtered O 2 concentration and <>( z) is an average over covariance pairs as a function of depth. The profile FCO( z) was extrapolated to the surface to yield the surface O 2 flux FCO(0). Third, a deficit of O 2 was found in the upper few meters of the ocean at the height of the storm. A flux FSO, moving O 2 out of the ocean, was calculated by dividing this deficit by the residence time of the water in this layer, inferred from the Lagrangian floats. The three methods gave generally consistent results. At the highest winds, gas transfer is dominated by bubbles created by surface wave breaking, injected into the ocean by large-scale turbulent eddies and dissolving near 10-m depth. This conclusion is supported by observations of fluxes into the ocean despite its supersaturation; by the molar flux ratio FBO/ FBN, which is

  9. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Day, D. E.; Evanoski-Cole, A. R.; Sive, B. C.; Hecobian, A.; Zhou, Y.; Gebhart, K. A.; Hand, J. L.; Sullivan, A. P.; Li, Y.; Schurman, M. I.; Desyaterik, Y.; Malm, W. C.; Schichtel, B. A.; Collett, J. L., Jr.

    2015-10-01

    The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013-2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than four months.

  10. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Day, D. E.; Evanoski-Cole, A. R.; Sive, B. C.; Hecobian, A.; Zhou, Y.; Gebhart, K. A.; Hand, J. L.; Sullivan, A. P.; Li, Y.; Schurman, M. I.; Desyaterik, Y.; Malm, W. C.; Collett, J. L., Jr.; Schichtel, B. A.

    2016-02-01

    The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013-2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long-term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than 4 months.

  11. Time variations of 222Rn concentration and air exchange rates in a Hungarian cave.

    PubMed

    Nagy, Hedvig Éva; Szabó, Zsuzsanna; Jordán, Gyozo; Szabó, Csaba; Horváth, Akos; Kiss, Attila

    2012-09-01

    A long-term radon concentration monitoring was carried out in the Pál-völgy cave, Budapest, Hungary, for 1.5 years. Our major goal was to determine the time dependence of the radon concentration in the cave to characterise the air exchange and define the most important environmental parameters that influence the radon concentration inside the cave. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were collected simultaneously. The air's radon concentration in the cave varied between 104 and 7776 Bq m(-3), the annual average value was 1884±85 Bq m(-3). The summer to winter radon concentration ratio was as high as 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, the correlation coefficient (R) was 0.76.

  12. Real-Time Optical Fuel-to-Air Ratio Sensor for Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Mongia, Rajiv K.; Dibble, Robert W.

    1999-01-01

    The measurement of the temporal distribution of fuel in gas turbine combustors is important in considering pollution, combustion efficiency and combustor dynamics and acoustics. Much of the previous work in measuring fuel distributions in gas turbine combustors has focused on the spatial aspect of the distribution. The temporal aspect however, has often been overlooked, even though it is just as important. In part, this is due to the challenges of applying real-time diagnostic techniques in a high pressure and high temperature environment. A simple and low-cost instrument that non-intrusively measures the real-time fuel-to-air ratio (FAR) in a gas turbine combustor has been developed. The device uses a dual wavelength laser absorption technique to measure the concentration of most hydrocarbon fuels such as jet fuel, methane, propane, etc. The device can be configured to use fiber optics to measure the local FAR inside a high pressure test rig without the need for windows. Alternatively, the device can readily be used in test rigs that have existing windows without modifications. An initial application of this instrument was to obtain time-resolved measurements of the FAR in the premixer of a lean premixed prevaporized (LPP) combustor at inlet air pressures and temperatures as high as 17 atm at 800 K, with liquid JP-8 as the fuel. Results will be presented that quantitatively show the transient nature of the local FAR inside a LPP gas turbine combustor at actual operating conditions. The high speed (kHz) time resolution of this device, combined with a rugged fiber optic delivery system, should enable the realization of a flight capable active-feedback and control system for the abatement of noise and pollutant emissions in the future. Other applications that require an in-situ and time-resolved measurement of fuel vapor concentrations should also find this device to be of use.

  13. Review of Singapore's air quality and greenhouse gas emissions: current situation and opportunities.

    PubMed

    Velasco, Erik; Roth, Matthias

    2012-06-01

    Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.

  14. Analysis of indoor concentrations of benzene using an air-quality model.

    PubMed

    Bouhamra, W S; Elkilani, A S; Raheem, M Y

    2000-01-01

    We performed measurements to determine indoor benzene levels in 26 residential houses in Kuwait, located in zones of different activity levels. Pumped (or active) sampling was conducted via use of 12 sampling tubes over a period of 24 hr for both indoor and outdoor concentrations simultaneously. Time-average indoor concentration varied linearly with time-average outdoor concentration in accordance with a mass-balance-based indoor air-quality model in which source and sink terms were incorporated. We used regression analysis to determine benzene adsorption rates, which appear in the removal and source terms of the model. The removal rate parameter varied between 0.12/hr and 2.16/hr, whereas source term parameter varied between 0.60 mg/hr and 76.07 mg/hr. Houses were then divided into three groups according to their benzene source strengths (i.e., < 1.0 mg/hr, 1-10 mg/hr, and 10-50 mg/hr). Qualitatively, these levels depended on the characteristics of occupants (e.g., smoking and gas cooker use, number of cars, and parking area) and location of the building.

  15. Dissolved greenhouse gas concentrations and fluxes from Wetlands P7 and P8 of the Cottonwood Lake Study area, Stutsman County, North Dakota, 2015

    USGS Publications Warehouse

    Bansal, Sheel; Tangen, Brian

    2016-01-01

    A study was conducted to assess the relationships among carbon mineralization, sulfate reduction and greenhouse gas emissions in prairie pothole wetlands. These data are for dissolved methane and carbon dioxide concentrations and fluxes. Dissolved gas concentrations in the water column and fluxes to the atmosphere were estimated from April through November, 2015 for wetlands P7 and P8 of the Cottonwood Lake Study area, Stutsman County, North Dakota. Dissolved gases in the water column were collected every two weeks using a pumping-induced ebullition device. Gas flux samples were collected concurrently at the water-atmosphere interface using the vented static-chamber method. Gas concentrations of the gas samples were determined using gas chromatography. Air and water temperature and water depth also were collected concurrently. These data directly support the associated publication “Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands” which is referenced within the Metadata.

  16. 76 FR 50164 - Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... of the Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing... AGENCY 40 CFR Parts 72 and 75 RIN 2060-AQ06 Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing; Corrections AGENCY: Environmental Protection Agency (EPA)....

  17. “Modeling Trends in Air Pollutant Concentrations over the ...

    EPA Pesticide Factsheets

    Regional model calculations over annual cycles have pointed to the need for accurately representing impacts of long-range transport. Linking regional and global scale models have met with mixed success as biases in the global model can propagate and influence regional calculations and often confound interpretation of model results. Since transport is efficient in the free-troposphere and since simulations over Continental scales and annual cycles provide sufficient opportunity for “atmospheric turn-over”, i.e., exchange between the free-troposphere and the boundary-layer, a conceptual framework is needed wherein interactions between processes occurring at various spatial and temporal scales can be consistently examined. The coupled WRF-CMAQ model is expanded to hemispheric scales and model simulations over period spanning 1990-current are analyzed to examine changes in hemispheric air pollution resulting from changes in emissions over this period. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for pr

  18. Model-predicted concentrations of toxic air pollutants in the Minneapolis/St. Paul Metropolitan Area

    SciTech Connect

    McCourtney, M.; Pratt, G.; Wu, C.Y.

    1998-12-31

    The availability of sophisticated emission inventory methods, air dispersion models and personal computers has opened the door to developing more comprehensive studies of air concentrations of various pollutants. As part of a grant from the US Environmental Protection Agency, a current emission inventory and the Industrial Source Complex short-term dispersion model, version 3 (ISCST3) were used to estimate the ambient concentrations of several toxic compounds throughout the Minneapolis/St. Paul Metropolitan Area. A detailed emission inventory was developed of point, area and mobile sources in seven contiguous metropolitan counties that account for approximately half the population of Minnesota. Of specific interest were those sources that emit at least one of the eight Volatile Organic Compounds (VOCs): benzene, 1,3-butadiene, carbon tetrachloride, chloroform, methyl chloride, styrene, tetrachloroethylene and toluene. Emission rates were calculated for 69 industrial point sources; mobile sources, including on-road vehicles and non-road vehicles (such as aircraft, locomotives, commercial marine, agricultural, recreational, and lawn and garden equipment); and area sources, which consisted of dry cleaners, architectural surface coatings, commercial/consumer solvent products, residential fossil fuel combustion, automobile refinishing, residential wood burning, public-owned treatment works, landfills and gas stations. The ISCST3 model was used to estimate the 24-hour and annual average concentrations of the selected pollutants throughout the Minneapolis/St. Paul Metropolitan Area. Three sets of receptors were developed: a fine receptor grid with 500 meter spacing in the urban core, a coarse receptor grid with 5000 meter spacing covering the metropolitan area, and discrete receptors located 100 meters in each of four directions around each point source.

  19. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    SciTech Connect

    Chang H. Oh

    2011-03-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air

  20. ``Pre-Vostok'' Greenhouse Gas Concentrations Reconstructed From the EPICA Dome C Ice Core

    NASA Astrophysics Data System (ADS)

    Stocker, T. F.; Siegenthaler, U.; Spahni, R.; Chappellaz, J.; Fischer, H.

    2004-12-01

    The new deep ice core recovered from Dome Concordia in the framework of EPICA, the European Project of Ice Coring in Antarctica, contains a continuous climate history of the past 740,000 years [EPICA Community Members, 2004]. We present the current status of measurements of CO2, CH4 and N2O on air trapped in the bubbles of the Dome C ice core. CO2 is measured using laser absorption spectroscopy on samples of less than 10 g of ice which are mechanically crushed or milled. CH4 and N2O are extracted using a melt-refreeze technique and then measured by gas chromatography. The ice core contains an uncontaminated climate record down to Marine Isotope Stage 14 (MIS 14) as verified by a consistent gas age/ice age difference determined at terminations V and VI. CO2 and CH4 results from MIS 11 show that the normal levels of greenhouse gases prevailed during this exceptionally long interglacial. This demonstrates that the length of the interglacial was not due to exceptionally high greenhouse gas levels. MIS 13 and earlier interglacials, however, show significantly colder interglacials. In addition, the glacials are shorter which results in a more balanced sequence of cold and warm phases. Measurements of the greenhouse gas concentrations are central in understanding the mechanisms in the climate system which cause the significant change of character of the ice age cycles at around 400 kyr BP. We will present greenhouse gas measurements covering the first of the "pre-Vostok" interglacials from MIS 11 to MIS 14 (410 to 550 kyr BP) for CO2, and from MIS 11 to MIS 16 (410 to 620 kyr BP) for CH4. These measurements will resolve the "EPICA Challenge" [Wolff et al., 2004] put out to modelers to predict the expected greenhouse gas levels prior to 400 kyr BP based on the knowledge of the orbital parameters, and known paleoclimatic proxies (sea level from marine sediment records, dust load and isotopic concentration of precipitation in Antarctica from the EPICA Dome C ice core

  1. Background concentrations of individual and total volatile organic compounds in residential indoor air of Schleswig-Holstein, Germany.

    PubMed

    Hippelein, Martin

    2004-09-01

    During a monitoring campaign concentrations of volatile organic compounds (VOCs) were measured in indoor air of 79 dwellings where occupants had not complained about health problems or unpleasant odour. Parameters monitored were the individual concentration of 68 VOCs and the total concentration of all VOCs inside the room. VOCs adsorbed by Tenax TA were then analysed by means of thermal desorption, gas chromatography and mass spectrometry. The analytical procedure and quantification was done according to the recommendation of the ECA-IAQ Working Group 13 which gave a definition of the total volatile organic compound (TVOC) concentration. Using this recommendation TVOC-concentrations ranged between 33 and 1600 microg m(-3) with a median of 289 microg m(-3). Compounds found in every sample and with the highest concentrations were 2-propanol, alpha-pinene and toluene. Save for a few samples, all concentrations measured have been a factor 2 to 10 lower, compared to data from similar studies. Only a few terpenes and aldehydes were found exceeding published reference data or odour threshold concentrations. However, it has been found that sampling and analysing methods do have a considerable impact on the results, making direct comparisons of studies somewhat questionable. 47% of all samples revealed concentrations exceeding the threshold value of 300 microg TVOC m(-3) set by the German Federal Environmental Agency as a target for indoor air quality. Using the TVOC concentration as defined in the ECA-IAQ methodology is instrumental in assessing exposure to VOCs and identifying sources of VOCs. The background concentrations determined in this study can be used to discuss and interpret target values for individual and total volatile organic compounds in indoor air.

  2. Air impacts of increased natural gas acquisition, processing, and use: a critical review.

    PubMed

    Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B

    2014-01-01

    During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource.

  3. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    PubMed

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  4. Estimation of the dominant degrees of freedom for air pollutant concentration data: Applications to ozone measurements

    NASA Astrophysics Data System (ADS)

    Li, I.-Fen; Biswas, Pratim; Islam, Shafiqul

    A nonlinear dynamic analysis of air quality data has been performed and applied to a time series of ozone concentration data from the Cincinnati air shed. The analysis helped to identify the nature of the dynamics of the ozone concentrations and determine the number of degrees of freedom or dimensionality of the system. Results indicated that the dimensionality of the system was 3, indicating that there are three dominant variables affecting ozone concentration levels in the Cincinnati air shed. Statistical analysis was performed to infer that NO was correlated to ozone concentration levels.

  5. The concentrations of culturable microorganisms in relation to particulate matter in urban air

    NASA Astrophysics Data System (ADS)

    Haas, D.; Galler, H.; Luxner, J.; Zarfel, G.; Buzina, W.; Friedl, H.; Marth, E.; Habib, J.; Reinthaler, F. F.

    2013-02-01

    The ambient air consists not only of gases but also of bioaerosols and particulate matter. The concentrations of particulate matter in relation to the culturable microorganisms in the urban ambient air and their dependence on air temperature and relative humidity were investigated. The seasonal distribution of particles sizes, the concentrations of aerobic mesophilic bacteria and xerophilic fungi in the air were evaluated. Moreover, the identification of the fungal genera Cladosporium, Aspergillus and Penicillium were conducted. Within one year at 177 days particle and microorganism concentrations in the ambient air were recorded in the city centre of Graz/Austria. The results show that the concentrations of fine particles and coarse particles were the highest in winter and decreased continuously to a minimum in the summer months depending on temperature and air humidity. The concentrations of xerophilic fungi showed no correlation to the different particle concentrations. The spore concentrations of Cladosporium spp. showed the same results of xerophilic fungi whereas the genera Penicillium and Aspergillus increased with the increase of fine particles. The concentrations of mesophilic bacteria were positively correlated with all particle counts. The maximum mesophilic bacteria concentrations were found in the winter months. Further studies are required to evaluate the concentrations of specific microorganisms in the natural environment in relation to the particulate matter.

  6. Concentration, temperature, and density in a hydrogen-air flame by excimer-induced Raman scattering

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Bowling, John M.; Pitz, Robert W.

    1988-01-01

    Single-pulse, vibrational Raman scattering (VRS) is an attractive laser diagnostic for the study of supersonic hydrogen-air combustion. The VRS technique gives a complete thermodynamic description of the gas mixture at a point in the reacting flow. Single-pulse, vibrational Raman scattering can simultaneously provide independent measurements of density, temperature, and concentration of each major species (H2, H2O, O2 and N2) in a hydrogen/air turbulent combustor. Also the pressure can be calculated using the ideal gas law. However, single-pulse VRS systems in current use for measurement of turbulent combustion have a number of shortcomings when applied to supersonic flows: (1) slow repetition rate (1 to 5 Hz), (2) poor spatial resolution (0.5x0.3x0.3 cu mm), and (3) marginal time resolution. Most of these shortcomings are due to the use of visible wavelength flash-lamp pumped dye lasers. The advent of UV excimer laser allows the possibility of dramatic improvements in the single-pulse, vibrational Raman scattering. The excimer based VRS probe will greatly improve repetition rate (100 to 500 Hz), spatial resolution (0.1x0.1x0.1 cu mm) and time resolution (30ns). These improvements result from the lower divergence of the UV excimer, higher repetition rate, and the increased Raman cross-sections (15 to 20 times higher) at ultra-violet (UV) wavelengths. With this increased capability, single-pulse vibrational Raman scattering promises to be an ideal non-intrusive probe for the study of hypersonic propulsion flows.

  7. Harvesting hydrogen gas from air pollutants with an un-biased gas phase photo-electrochemical cell.

    PubMed

    Verbruggen, Sammy W; Van Hal, Myrthe; Bosserez, Tom; Rongé, Jan; Hauchecorne, Birger; Martens, Johan A; Lenaerts, Silvia

    2017-02-08

    The concept of an all-gas-phase photo-electrochemical cell (PEC) producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen gas, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward photo-electrochemical remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement.

  8. Regional air quality impacts of hydraulic fracturing and shale natural gas activity: Evidence from ambient VOC observations

    NASA Astrophysics Data System (ADS)

    Vinciguerra, Timothy; Yao, Simon; Dadzie, Joseph; Chittams, Alexa; Deskins, Thomas; Ehrman, Sheryl; Dickerson, Russell R.

    2015-06-01

    Over the past decade, concentrations of many anthropogenic pollutants have been successfully reduced, improving air quality. However, a new influx of emissions associated with hydraulic fracturing and shale natural gas operations could be counteracting some of these benefits. Using hourly measurements from Photochemical Assessment Monitoring Stations (PAMS) in the Baltimore, MD and Washington, DC areas, we observed that following a period of decline, daytime ethane concentrations have increased significantly since 2010, growing from ∼7% of total measured nonmethane organic carbon to ∼15% in 2013. This trend appears to be linked with the rapidly increasing natural gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Ethane concentrations failed to display this trend at a PAMS site outside of Atlanta, GA, a region without new widespread natural gas operations.

  9. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  10. Indirect determination of O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate in air at low concentrations.

    PubMed

    Fowler, W K; Smith, J E

    1989-09-08

    This paper describes an indirect method for the quantification of the toxic military agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate (VX) in the vapor state in air or other similar gases at ng/m3 levels. The method begins with the passage of a gaseous sample through a filter impregnated with silver fluoride to convert the VX vapor to ethyl methylphosphonofluoridate. The latter compound is then trapped on a bed of Chromosorb 106, transferred to a smaller bed of the same sorbent, and desorbed thermally into a gas chromatograph equipped with a flame-photometric detector. The method is comparable in sensitivity to the principal alternative method, which is based on cholinesterase inhibition, and it is less subject to interference from common organic solvents and other cholinesterase inhibitors. The detection limit was found to be limited by, and therefore dependent on, the nature and extent of any background substances that produced a significant chromatographic signal or response at the retention time of the analyte. In the absence of such substances, the instrument provided a response to 0.19 ng of VX that was thirty times larger than the peak-to-peak noise amplitude on the chromatographic base line. Moreover, the method bias (i.e., 100% minus the percent VX recovery) was found to depend on VX concentration, with estimates of agent recovery ranging from 83% at a VX concentration of 0.67 ng/m3 to 104% at a concentration of 0.084 ng/m3. The relative standard deviation varied with VX concentration and with the nature of the test that was performed to estimate it. It ranged from 2.1% in one VX vapor-challenge test to 17% in an experiment involving spiked sampling tubes, and it was generally lower at the higher VX test concentrations.

  11. A Gas Sensor Array For Environmental Air Monitoring: A Study Case Of Application Of Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Penza, Michele; Suriano, Domenico; Cassano, Gennaro; Rossi, Riccardo; Alvisi, Marco; Pfister, Valerio; Trizio, Livia; Brattoli, Magda; De Gennaro, Gianluigi

    2011-09-01

    An array of commercial gas sensors and nanotechnology sensors has been integrated to quantify gas concentration of air-pollutants. A variety of chemoresistive gas sensors, commercial (Figaro and Fis) and developed at ENEA laboratories (metal-modified carbon nanotubes) were tested to implement a database useful for applied artificial neural networks (ANNs). The ANN algorithm used is the common perceptron multi-layer feed-forward network based on error back-propagation. Electronic Noses based on various sensor arrays related to mammalian olfactory systems have been largely reported [1,2]. Here, we reported on the perceptron-based ANNs applied to a large database of 3875 datapoints for environmental air monitoring. The ANNs performance has been individually assessed for any targeted gas. The response of the classifier has been measured for NO2, CO, CO2, SO2, and H2S gas. The NO2 characteristics exhibit that real concentrations and predicted concentrations are very close with a normalized mean square error (NMSE) in the test set as low as 6%.

  12. AN INDOOR PESTICIDE AIR AND SURFACE CONCENTRATION MODEL

    EPA Science Inventory

    A thorough assessment of human exposure to environmental chemicals requires consideration of all processes in the sequence from source to dose. For assessment of exposure to pesticides following their use indoors, data and models are needed to estimate pesticide concentrations...

  13. Measuring Concentrations of Particulate 140La in the Air

    SciTech Connect

    Okada, Colin E.; Kernan, Warnick; Keillor, Martin; Kirkham, Randy; Sorom, Rich D.; Van Etten, Don M.

    2016-01-01

    This article discusses deployment of air-samplers to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device experiments. Positioned 100-600 meters downwind of the release point, the filters were collected immediately and analyzed in a field laboratory. The article discusses quantities for total activity collected on the air filters as well as additional information to compute the average or integrated air concentrations. In the case of a public emergency, this type of information would be important for decision makers and responders.

  14. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China, 2001-2003

    NASA Astrophysics Data System (ADS)

    Aas, Wenche; Shao, Min; Jin, Lei; Larssen, Thorjørn; Zhao, Dawei; Xiang, Renjun; Zhang, Jinhong; Xiao, Jinsong; Duan, Lei

    Air and precipitation measurements at five sites were undertaken from 2001 to 2003 in four different provinces in China, as part of the acid rain monitoring program IMPACTS. The sites were located in Tie Shan Ping (TSP) in Chongqing, Cai Jia Tang (CJT) in Hunan, Lei Gong Shan (LGS) and Liu Chong Guan (LCG) in Guizhou and Li Xi He (LXH) in Guangdong. The site characteristics are quite varied with TSP and LCG located relatively near big cites while the three others are situated in more regionally representative areas. The distances to urban centres are reflected in the air pollution concentrations, with annual average concentrations of SO 2 ranging from 0.5 to above 40 μg S m -3. The main components in the airborne particles are (NH 4) 2SO 4 and CaSO 4. Reduced nitrogen has a considerably higher concentration level than oxidised nitrogen, reflecting the high ammonia emissions from agriculture. The gas/particle ratio for the nitrogen compounds is about 1:1 at all the three intensive measurement sites, while for sulphur it varies from 2.5 to 0.5 depending on the distance to the emission sources. As in air, the predominant ions in precipitation are sulphate, calcium and ammonium. The volume weighted annual concentration of sulphate ranges from about 70 μeq l -1 at the most rural site (LGS) to about 200 μeq l -1 at TSP and LCG. The calcium concentration ranges from 25 to 250 μeq l -1, while the total nitrogen concentration is between 30 and 150 μeq l -1; ammonium is generally twice as high as nitrate. China's acid rain research has traditionally been focused on urban sites, but these measurements show a significant influence of long range transported air pollutants to rural areas in China. The concentration levels are significantly higher than seen in most other parts of the world.

  15. Analysis of concentration fluctuations in gas dispersion around high-rise building for different incident wind directions.

    PubMed

    Liu, X P; Niu, J L; Kwok, K C S

    2011-09-15

    This article presents experimental results that illustrate the unsteady characteristics of gas dispersion around a complex-shaped high-rise building for different incident wind directions. A series of wind tunnel experiments were conducted using a 1:30 scale model that represented the real structures under study. The objective of this paper is to study the behaviour of concentration fluctuations through transient analysis. Tracer gas was continuously released from a point source located at different positions, and a time series of fluctuating concentrations were recorded at a large number of points using fast flame ionization detectors. The experimental data were analysed to provide a comprehensive data set including variances and associated statistical quantities. Both the unsteady characteristics of the system and their potential practical impact are presented and discussed. Under crowd living conditions, the air pollutant exhausted from one household could probably re-enter into the neighbouring households, traveling with ambient airflow. Such pollutant dispersion process is defined as air cross-contamination in this study. The results indicate that the wind-induced cross-contamination around the studied type of high-rise building should not be overlooked, and the fluctuating concentrations should be paid attention to particularly during the evaluation of a potential contamination risk. This study can help deepen our understanding of the mechanisms of air cross-contamination, and will be useful for implementing optimization strategies to improve the built environments in metropolitan cities such as Hong Kong.

  16. Volcanic gas emissions and their impact on ambient air character at Kilauea Volcano, Hawaii

    SciTech Connect

    Sutton, A.J.; Elias, T.; Navarrete, R.

    1994-12-31

    Gas emissions from Kilauea occur from the summit caldera, along the middle East Rift Zone (ERZ), and where lava enters the ocean. We estimate that the current ERZ eruption of Kilauea releases between 400 metric tonnes of SO{sub 2} per day, during eruptive pauses, to as much as 1850 metric tonnes per day during actively erupting periods, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl and HF. In order to characterize gas emissions from Kilauea in a meaningful way for assessing environmental impact, we made a series of replicate grab-sample measurements of ambient air and precipitation at the summit of Kilauea, along its ERZ, and at coastal sites where lava enters the ocean. The grab-sampling data combined with SO{sub 2} emission rates, and continuous air quality and meteorological monitoring at the summit of Kilauea show that the effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Prevailing tradewinds typically carry the gases and aerosols released to the southwest, where they are further distributed by the regional wind regime. Episodes of kona, or low speed variable winds sometimes disrupt this pattern, however, and allow the gases and their oxidation products to collect at the summit and eastern side of the island. Summit solfatara areas of Kilauea are distinguished by moderate to high ambient SO{sub 2}, high H{sub 2}S at one location, and low H{sub 2}S at all others, and negligible HCl concentrations, as measured 1 m from degassing point-sources. Summit solfatara rain water has high sulfate and low chloride ion concentrations, and low pH.

  17. Brominated flame retardants in the urban atmosphere of Northeast China: concentrations, temperature dependence and gas-particle partitioning.

    PubMed

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li; Li, Yi-Fan

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m(3) and 180 pg/m(3), respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas-particle partitioning coefficients (logKp) for most low molecular weight BFRs were highly temperature dependent as well. Gas-particle partitioning coefficients (logKp) also correlated with the sub-cooled liquid vapor pressure (logPL(o)). Our results indicated that absorption into organic matter is the main control mechanism for the gas-particle partitioning of atmospheric PBDEs.

  18. Daily and seasonal variations in radon activity concentration in the soil air.

    PubMed

    Műllerová, Monika; Holý, Karol; Bulko, Martin

    2014-07-01

    Radon activity concentration in the soil air in the area of Faculty of Mathematics, Physics and Informatics (FMPI) in Bratislava, Slovak Republic, has been continuously monitored since 1994. Long-term measurements at a depth of 0.8 m and short-term measurements at a depth of 0.4 m show a high variability in radon activity concentrations in the soil. The analysis of the data confirms that regular daily changes in radon activity concentration in the soil air depend on the daily changes in atmospheric pressure. It was also found that the typical annual courses of the radon activity concentration in the soil air (with summer minima and winter maxima) were disturbed by mild winter and heavy summer precipitation. Influence of precipitation on the increase in the radon activity concentration in the soil air was observed at a depth of 0.4 m and subsequently at a depth of 0.8 m.

  19. Concentration of tetrachloroethylene in indoor air at a former dry cleaner facility as a function of subsurface contamination: a case study.

    PubMed

    Eklund, Bart M; Simon, Michelle A

    2007-06-01

    A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 yr old and once housed a dry cleaning operation. Results from an initial site characterization were used to select sampling locations for the VI study. The general approach for evaluating VI was to collect time-integrated canister samples for off-site U.S. Environmental Protection Agency Method TO-15 analyses. PCE and other chlorinated solvents were measured in shallow soil gas, subslab soil-gas, indoor air, and ambient air. The subslab soil gas exhibited relatively high values: PCE < or =2,600,000 parts per billion by volume (ppbv) and trichloroethylene < or =170 ppbv. The attenuation factor, the ratio of indoor air and subslab soil-gas concentrations, was unusually low: approximately 5 x 10(-6) based on the maximum subslab soil-gas concentration of PCE and 1.4 x 10(-5) based on average values.

  20. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  1. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  2. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  3. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  4. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  5. Estimating gas concentration using a microcantilever-based electronic

    SciTech Connect

    Leis, J. W.; Zhao, Weichang; Pinnaduwage, Lal A; Gehl, Anthony C; Allman, Steve L; Shepp, A.; Mahmud, K.

    2010-01-01

    This paper investigates the determination of the concentration of a chemical vapor as a function of several nonspecific microcantilever array sensors. The nerve agent dimethyl methyl phosphonate (DMMP) in parts-per-billion concentrations in binary and ternary mixtures is able to be resolved when present in a mixture containing parts-per-million concentrations of water and ethanol. The goal is to not only detect the presence of DMMP, but additionally to map the nonspecific output of the sensor array onto a concentration scale. We investigate both linear and nonlinear approaches the linear approach uses a separate least-squares model for each component, and a nonlinear approach which estimates the component concentrations in parallel. Application of both models to experimental data indicate that both models are able to produce bounded estimates of concentration, but that the outlier performance favors the linear model. The linear model is better suited to portable handheld analyzer, where processing and memory resources are constrained.

  6. Gas-Phase Ambient Air Contaminants Exhibit Significant Dioxin-like and Estrogen-like Activity in Vitro

    PubMed Central

    Klein, Gail P.; Hodge, Erin M.; Diamond, Miriam L.; Yip, Amelia; Dann, Tom; Stern, Gary; Denison, Michael S.; Harper, Patricia A.

    2006-01-01

    Several adverse health effects, such as respiratory and cardiovascular morbidity, have been linked to exposure to particulate matter in ambient air; however, the biologic activity of gas-phase ambient organic air contaminants has not been examined as thoroughly. Using aryl hydrocarbon receptor (AHR)–based and estrogen receptor (ER)–based cell bioassay systems, we assessed the dioxin-like and estrogenic activities of gas-phase organic ambient air contaminants compared with those of particulate-phase contaminants using samples collected between seasons over 2 years from an urban and a rural location in the Greater Toronto Area, Canada. The concentration of the sum (∑) of polycyclic aromatic hydrocarbons, which was highest in the gas phase, was 10–100 times more abundant than that of ∑polychlorinated biphenyls, ∑nitro-polycyclic aromatic hydrocarbons, and ∑organochlorine pesticides, and 103 to 104 times more abundant than ∑polychlorinated dibenzo-p-dioxins/dibenzofurans. Gas-phase samples induced significant AHR- and ER-dependent gene expression. The activity of the gas-phase samples was greater than that of the particulate-phase samples in the estrogen assay and, in one case, in the AHR assay. We found no strong associations between either summer or winter seasons or urban or rural locations in the relative efficacy of the extracts in either the ER or AHR assay despite differences in chemical composition, concentrations, and abundance. Our results suggest that mechanistic studies of the health effects of ambient air must consider gas and particulate phases because chemicals present in both phases can affect AHR and ER signaling pathways. PMID:16675423

  7. A multiyear assessment of air quality benefits from China's emerging shale gas revolution: Urumqi as a case study.

    PubMed

    Song, Wei; Chang, Yunhua; Liu, Xuejun; Li, Kaihui; Gong, Yanming; He, Guixiang; Wang, Xiaoli; Christie, Peter; Zheng, Mei; Dore, Anthony J; Tian, Changyan

    2015-02-17

    China is seeking to unlock its shale gas in order to curb its notorious urban air pollution, but robust assessment of the impact on PM2.5 pollution of replacing coal with natural gas for winter heating is lacking. Here, using a whole-city heating energy shift opportunity offered by substantial reductions in coal combustion during the heating periods in Urumqi, northwest China, we conducted a four-year study to reveal the impact of replacing coal with natural gas on the mass concentrations and chemical components of PM2.5. We found a significant decline in PM2.5, major soluble ions and metal elements in PM2.5 in January of 2013 and 2014 compared with the same periods in 2012 and 2011, reflecting the positive effects on air quality of using natural gas as a heating fuel throughout the city. This occurred following complete replacement with natural gas for heating energy in October 2012. The weather conditions during winter did not show any significant variation over the four years of the study. Our results indicate that China and other developing nations will benefit greatly from a change in energy source, that is, increasing the contribution of either natural gas or shale gas to total energy consumption with a concomitant reduction in coal consumption.

  8. Impact of Salinity on the Air-Water Partition Coefficient of Gas Tracers

    SciTech Connect

    Zhong, Lirong; Pope, Gary A.; Evans, John C.; Cameron, Richard J.

    2005-09-01

    The use of a gas partitioning interwell tracer test (PITT) has been proposed as a standard approach to the measurement of field-scale vadose zone water saturation fractions. The accuracy of the saturation measurement is largely dependent on the determination of the air-water partitioning coefficient, K, of the tracers; however, in practice, K is also strongly influenced by the physical and chemical properties of the water. In this study, column tests were conducted to investigate the impact of salinity on tracer partitioning coefficients for two promising gas phase candidate tracers, dibromomethane and dimethylether. Sodium thiosulfate was used as a salinity surrogate. The dynamic K values of the two partitioning tracers were measured for sodium thiosulfate concentrations between 0% and 36% by weight. Methane was used as the non-partitioning tracer for all experiments. K values were found to decrease significantly with increasing sodium thiosulfate concentration. Similar correlations between K values and sodium thiosulfate concentration were found for both of the partitioning tracers tested.

  9. Estimation of mean annual effective dose through radon concentration in the water and indoor air of Islamabad and Murree.

    PubMed

    Ali, N; Khan, E U; Akhter, P; Khan, F; Waheed, A

    2010-09-01

    Different samples of water, indoor air and soil gas have been collected from Islamabad (33 degrees 38'N, 73 degrees 09'E, altitude of 1760 ft.), the capital of Pakistan and Murree (33 degrees 53'N, 73 degrees 23'E, altitude of 7323 ft.), lying on a geological fault line and are analysed for the estimation of mean effective dose through radon concentrations by using RAD-7, a solid state alpha-detector. The variation of radon concentration in water, indoor air and soil gas in Islamabad region ranges from 25.90-158.40 kBq m(-3), 43.26-97.04 Bq m(-3) and 17.34-72.52 kBq m(-3), having mean values 88.63 kBq m(-3), 70.67 Bq m(-3) and 45.08 kBq m(-3)(,) respectively. It ranges from 1.64-10.20 kBq m(-3), 18.48-42.08 Bq m(-3) and 0.61-3.89 kBq m(-3) with mean values 4.38 kBq m(-3), 28.63 Bq m(-3) and 1.70 kBq m(-3)(,) respectively in Murree and its surroundings. The total mean annual effective doses from water and indoor air of Islamabad and Murree regions are 2.023 and 0.733 mSv a(-1), respectively. These doses are within the recommended limits of the world organisations.

  10. Estimation of background gas concentration from differential absorption lidar measurements

    NASA Astrophysics Data System (ADS)

    Harris, Peter; Smith, Nadia; Livina, Valerie; Gardiner, Tom; Robinson, Rod; Innocenti, Fabrizio

    2016-10-01

    Approaches are considered to estimate the background concentration level of a target species in the atmosphere from an analysis of the measured data provided by the National Physical Laboratory's differential absorption lidar (DIAL) system. The estimation of the background concentration level is necessary for an accurate quantification of the concentration level of the target species within a plume, which is the quantity of interest. The focus of the paper is on methodologies for estimating the background concentration level and, in particular, contrasting the assumptions about the functional and statistical models that underpin those methodologies. An approach is described to characterise the noise in the recorded signals, which is necessary for a reliable estimate of the background concentration level. Results for measured data provided by a field measurement are presented, and ideas for future work are discussed.

  11. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  12. Reprint of: A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-08-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  13. A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-01-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  14. Passive-sampler derived air concentrations of persistent organic pollutants on a north-south transect in Chile.

    PubMed

    Pozo, Karla; Harner, Tom; Shoeib, Mahiba; Urrutia, Roberto; Barra, Ricardo; Parra, Oscar; Focardi, Silvano

    2004-12-15

    Passive air samplers consisting of polyurethane foam (PUF) disks, were deployed in six locations in Chile along a north-south transect to investigate gas-phase concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). The study provides new information on air concentrations of these persistent organic pollutants (POPs) which is lacking in this region. It also provides insight into potential sources and long-range transport (LRT). The samplers were deployed for a 2-month period in five remote sites and one site in the city of Concepción. Mean concentrations (pg m(-3)) for sigmaPCB were 4.7 +/- 2.7 at remote sites and 53 +/- 13 in Concepción. PCB levels at remote sites were related to proximity to urban source regions and/or air back trajectories. With the exception of endosulfan I, mean concentrations (pg m(-3)) of OCPs at background sites were consistently low: 5.4 +/- 1.4 for alpha-HCH, 7.0 +/- 1.1 for gamma-HCH, 2.5 +/- 0.5 for TC, 2.5 +/- 0.6 for CC, 1.9 +/- 1.2 for dieldrin, and less than 3.5 for toxaphene. Endosulfan I showed a decreasing concentration gradient from 99 to 3.5 pg m(-3) from the north to south of Chile. Concentrations of OCPs in the Concepción City were generally 10-20 times higher than at the background sites suggesting continued usage and/or re-emission from past use. For instance, at remote sites, the alpha/gamma ratio (0.76) was typical of background air, while the ratio in Concepción (0.12) was consistent with fresh use of gamma-HCH. Levels of sigmaPBDEs were below the detection limit of 6 pg m(-3) at all sites.

  15. Secondary acidification: Changes in gas-aerosol partitioning of semivolatile nitric acid and enhancement of its deposition due to increased emission and concentration of SOx

    NASA Astrophysics Data System (ADS)

    Kajino, Mizuo; Ueda, Hiromasa; Nakayama, Shinji

    2008-02-01

    Secondary acidification, or the indirect enhancement of semivolatile air pollutant deposition associated with increased SO42- concentrations, is shown to occur in general air pollution using data collected from six stations of the Acid Deposition Monitoring Network in East Asia (EANET) in Japan. This effect was first detected as a result of volcanic SO2 plumes in our previous studies. Results indicate that as SO42- concentration increases, gas-aerosol partitioning of nitric acid shifts to the gas phase, increasing the HNO3 gas concentration. Since the dry and wet deposition rates of HNO3 gas are very high, deposition can be enhanced even when the emission of NOx remains unchanged. In western Japan, the indirect effect for wet deposition is most apparent from spring to autumn, when the Asian continental outflow carries sulfate-rich contaminated air masses. However, it is not pronounced in air masses containing abundant sea-salt particles and related cation components in aerosols. In areas such as forests or farmlands with low surface resistance, dry deposition of nitric acid is more pronounced than wet deposition as the dry deposition velocity of HNO3 gas is high. Increased dry deposition of t-NO3 due to the indirect effect and consequent vegetation damage is thus of considerable concern in such regions. The deposition of other semivolatile components, such as hydrochloric acid and ammonia, can be altered and can also induce secondary acidification.

  16. Optimal integration condition between the gas turbine air compressor and the air separation unit of IGCC power plant

    SciTech Connect

    Lee, C.; Kim, H.T.; Yun, Y.

    1997-12-31

    Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle (IGCC) power plant. The ASU is assumed as low pressure double-distillation column process which is integrated at the interstage location of the compressor, and integration design criteria of air extraction and reversing heat exchanger are defined and mathematically formulated. With the performance prediction of compressor by through-flow analysis, the effects of pinch-point temperature difference (PTD) in the reversing heat exchanger, the amount and the pressure of extracted air are quantitatively examined. As the extraction air amount or the PTD is increased, the power consumption is increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure while improving at lower pressure air extraction. Furthermore, optimal integration condition for compressor efficiency maximization is found by generating the compressor characteristic curve.

  17. Selective Concentration of Ultra-trace Acetone in the Air by Cryogenic Temperature Programmed Desorption (cryo-TPD).

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    A gas analytical technique with compact size, low cost, sufficient sensitivity, and excellent reproducibility is required in many fields including exhaled breath analysis for medical monitoring. In the present study, we examined selective acetone concentration by quench condensation at cryogenic temperature followed by temperature programmed desorption (cryogenic temperature programmed desorption (cryo-TPD)) for possible applications to breath analysis for medical monitoring. The essence of cryo-TPD is rough mass selection by thermal desorption followed by quantification of certain species using mass spectrometry. The performance of cryo-TPD was investigated in the acetone concentration range below 1 × 10(-6) volume fraction (1 ppmv). It was found that acetone is selectively quench-condensed on a tungsten substrate at 50 K without the major components of air, such as N2 and O2. The concentrated acetone gas was obtained by the following thermal desorption at around 151 K. Under conditions of condensation for 1 min and pressure of 1 × 10(-2) Pa, the lowest limit of detection reached well below 10 × 10(-9) volume fraction (10 ppbv). The relationship between the cetone intensity of cryo-TPD and the acetone concentration in the gas was almost linear in the ppbv range. The separation of acetone and propanal using the fragmentation pattern, which have almost the identical molecular mass, was also demonstrated in the present study.

  18. EFFECTS OF METAL COMPONENTS IN CONCENTRATED AMBIENT AIR PARTICLES ON PULMONARY INJURY

    EPA Science Inventory

    EFFECTS OF METAL COMPONENTS IN CONCENTRATED AMBIENT AIR PARTICLES ON PULMONARY INJURY. Yuh-Chin Huang, Jackie Stonehuerner, Jackie Carter, Andrew J. Ghio, Robert B. Devlin. NHEERL, US EPA, RTP, NC.
    The mechanisms for cardiopulmonary morbidity associated with exposure to air po...

  19. Analysis of Mobile Source Air Toxics (MSATS)–Near-Road VOC and CarbonylConcentrations

    EPA Science Inventory

    This presentation examines data from a year-long study of measured near-road mobile source air toxic (MSAT) concentrations and compares these data with modeled 2005 National Air Toxic Assessment (NATA) results. Field study measurements were collected during a field campaign in ...

  20. Air quality model evaluation data for organics. 1. Bulk chemical composition and gas/particle distribution factors

    SciTech Connect

    Fraser, M.P.; Cass, G.R.; Grosjean, D.; Grosjean, E.; Rasmussen, R.A.

    1996-05-01

    During the period of September 8-9, 1993, the South Coast Air Basin that surrounds Los Angeles experienced the worst photochemical smog episode in recent years; ozone concentrations exceeded 0.29 ppm 1-h average, and NO{sub 2} concentrations peaked at 0.21 ppm 1-h average. Field measurements were conducted at a five-station air monitoring network to obtain comprehensive data on the identity and concentration of the individual organic compounds present in both the gas and particle phases during that episode. The data will also serve to support future tests of air quality models designed to study organic air pollutant transport and reaction. Air samples taken in stainless steel canisters were analyzed for 141 volatile organic compounds by GC/ECD, GC/FID, and GC/MS; PAN and PPN were measured by GC/ECD; particulate organics collected by filtration were analyzed for total organics and elemental carbon by thermal evolution and combustion and for individual organic compounds by GC/ MS; semivolatile organics were analyzed by GC/MS after collection on polyurethane foam cartridges. The present paper describes this experiment and present the concentrations of major organic compound classes and their relationship to the inorganic pollutants present. 104 refs., 9 figs.

  1. AGE AND STRAIN INFLUENCES ON LUNG RESPONSES TO CONCENTRATED AIR PARTICULATES (CAPS) IN RODENTS

    EPA Science Inventory

    Asthma, an inflammatory airways disease, is an urgent health problem. Recent epidemiologic studies have demonstrated positive associations between ambient air particulate matter concentrations and daily respiratory morbidity ? including exacerbations of asthma. Of note, elderly i...

  2. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin with Intensive Oil and Gas Production

    NASA Astrophysics Data System (ADS)

    Matichuk, R.; Tonnesen, G.; Luecken, D.; Roselle, S. J.; Napelenok, S. L.; Baker, K. R.; Gilliam, R. C.; Misenis, C.; Murphy, B.; Schwede, D. B.

    2015-12-01

    The western United States is an important source of domestic energy resources. One of the primary environmental impacts associated with oil and natural gas production is related to air emission releases of a number of air pollutants. Some of these pollutants are important precursors to the formation of ground-level ozone. To better understand ozone impacts and other air quality issues, photochemical air quality models are used to simulate the changes in pollutant concentrations in the atmosphere on local, regional, and national spatial scales. These models are important for air quality management because they assist in identifying source contributions to air quality problems and designing effective strategies to reduce harmful air pollutants. The success of predicting oil and natural gas air quality impacts depends on the accuracy of the input information, including emissions inventories, meteorological information, and boundary conditions. The treatment of chemical and physical processes within these models is equally important. However, given the limited amount of data collected for oil and natural gas production emissions in the past and the complex terrain and meteorological conditions in western states, the ability of these models to accurately predict pollution concentrations from these sources is uncertain. Therefore, this presentation will focus on understanding the Community Multiscale Air Quality (CMAQ) model's ability to predict air quality impacts associated with oil and natural gas production and its sensitivity to input uncertainties. The results will focus on winter ozone issues in the Uinta Basin, Utah and identify the factors contributing to model performance issues. The results of this study will help support future air quality model development, policy and regulatory decisions for the oil and gas sector.

  3. Optical and probe determination of soot concentrations in a model gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Eckerle, W. A.; Rosfjord, T. J.

    1986-01-01

    An experimental program was conducted to track the variation in soot loading in a generic gas turbine combustor. The burner is a 12.7-cm dia cylindrical device consisting of six sheet-metal louvers. Determination of soot loading along the burner length is achieved by measurement at the exit of the combustor and then at upstream stations by sequential removal of liner louvers to shorten burner length. Alteration of the flow field approaching and within the shortened burners is minimized by bypassing flow in order to maintain a constant linear pressure drop. The burner exhaust flow is sampled at the burner centerline to determine soot mass concentration and smoke number. Characteristic particle size and number density, transmissivity of the exhaust flow, and local radiation from luminous soot particles in the exhaust are determined by optical techniques. Four test fuels are burned at three fuel-air ratios to determine fuel chemical property and flow temperature influences. Particulate concentration data indicate a strong oxidation mechanism in the combustor secondary zone, though the oxidation is significantly affected by flow temperature. Soot production is directly related to fuel smoke point.

  4. Co-benefits of Global Greenhouse Gas Mitigation for Future Air Quality and Human Health via Two Mechanisms

    NASA Astrophysics Data System (ADS)

    West, J.; Smith, S. J.; Silva, R.; Naik, V.; Adelman, Z.; Fry, M. M.; Anenberg, S.; Zhang, Y.; Horowitz, L. W.; Lamarque, J.; Emmons, L. K.

    2012-12-01

    Global actions to reduce greenhouse gas (GHG) emissions will also reduce co-emitted air pollutants, with immediate air quality benefits. Climate change itself affects air quality (e.g., via meteorology and biogenic emissions); therefore, actions to reduce GHG emissions will also influence air quality by slowing global climate change. These two mechanisms of air quality co-benefits - reducing co-emitted air pollutants and slowing climate change - have not previously been quantified in a self-consistent way. Here we simulate the co-benefits of global GHG emission reductions on air quality and human health via these two mechanisms in scenarios to 2100. Future emissions scenarios were developed by the GCAM global energy-economics model as part of the Representative Concentration Pathways (RCP) process. We simulate global air quality for a reference case scenario and a scenario with aggressive GHG controls internationally (RCP4.5). Future meteorology is from the Geophysical Fluid Dynamics Laboratory general circulation model (AM3) simulations of the RCP8.5 and RCP4.5 scenarios. Using the global chemical transport model MOZART-4, we simulate global changes in surface concentrations of ozone and fine particulate matter (PM2.5) for RCP4.5 relative to the reference case. The two co-benefit mechanisms are isolated by simulating reference case emissions with meteorology from RCP4.5 and RCP8.5. Co-benefits for future human mortality will be assessed using epidemiological concentration-response functions, and projections of future population and baseline mortality rates. Preliminary results indicate that the co-benefits of global GHG mitigation for ozone and PM2.5 are substantial globally and regionally, and that the direct co-benefits from reductions in emissions of co-emitted air pollutants exceed the co-benefits via slowing climate change. We aim to monetize the avoided mortalities as a basis for comparison with the costs of GHG mitigation.

  5. Specific features of SRS-CARS monitoring of low impurity concentrations of hydrogen in dense gas mixtures

    NASA Astrophysics Data System (ADS)

    Mikheev, Gennady M.; Mogileva, Tatyana N.; Popov, Aleksey Yu.

    2006-09-01

    The possibility of measuring the hydrogen impurity concentration in dense gas mixtures by coherent anti-Stokes Raman scattering (CARS) is studied. In this technique, biharmonic laser pumping based on stimulated Raman scattering (SRS) in compressed hydrogen is used. Because of the interference between the coherent scattering components from buffer gas molecules and molecules of the impurity to be detected, the signal recorded may depend on the hydrogen concentration by a parabolic law, which has a minimum and makes the results uncertain. It is shown that this uncertainty can be removed if the frequency of the biharmonic laser pump, which is produced by the SRS oscillator, somewhat differs from the frequency of molecular oscillations of hydrogen in the test mixture. A sensitivity of 5 ppm is obtained as applied to the hydrogen-air mixture under normal pressure. The description of a set-up for the determination of the coefficient of the hydrogen diffusion in gas mixtures is given. The main assembly units are a diffusion chamber and an automated laser system for the selective hydrogen diagnostics in gas mixtures by the SRS-CARS method. The determination of the diffusion coefficient is based on the approximation of the experimental data describing the hydrogen concentration varying with time at a specified point in the diffusion chamber and the accurate solution of the diffusion equation for the selected one-dimensional geometry of the experiment.

  6. Air/fuel supply system for use in a gas turbine engine

    DOEpatents

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  7. Reformulated and alternative fuels: modeled impacts on regional air quality with special emphasis on surface ozone concentration.

    PubMed

    Schell, Benedikt; Ackermann, Ingmar J; Hass, Heinz

    2002-07-15

    The comprehensive European Air Pollution and Dispersion model system was used to estimate the impacts of the usage of reformulated and alternative fuels on regional air quality with special emphasis on surface ozone concentrations. A severe western European summer smog episode in July 1994 has been used as a reference, and the model predictions have been evaluated for this episode. A forecast simulation for the year 2005 (TREND) has been performed, including the future emission development based on the current legislation and technologies available. The results of the scenario TREND are used as a baseline for the other 2005 fuel scenarios, including fuel reformulation, fuel sulfur content, and compressed natural gas (CNG) as an alternative fuel. Compared to the year 1994, significant reductions in episode peak ozone concentrations and ozone grid hours are predicted for the TREND scenario. These reductions are even more pronounced within the investigated alternative and reformulated fuel scenarios. Especially, low sulfur fuels are appropriate for an immediate improvement in air quality, because they effect the emissions of the whole fleet. Furthermore, the simulation results indicate that the introduction of CNG vehicles would also enhance air quality with respect to ozone.

  8. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    SciTech Connect

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  9. Petition for EPA action to protect communities from oil and gas wells toxic air pollution

    EPA Pesticide Factsheets

    Petition submitted by Earthjustice urging EPA to list oil and gas wells and associated equipment as an area sourcecategory and set national air toxics standards to protect public health from these sources.

  10. TRACE GAS CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    Seventeen headwater watersheds within the SFBR watershed ranging from 0.5 to 3.4 km2 were selected. We have been monitoring concentrations of the trace gases nitrous oxide, methane, and carbon dioxide, and other parameters (T, conductivity, dissolved oxygen, pH, nutrients, flow r...

  11. Trend and climate signals in seasonal air concentration of organochlorine pesticides over the Great Lakes

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Ma, Jianmin; Cao, Zuohao; Dove, Alice; Zhang, Lisheng

    2010-08-01

    Following worldwide bans or restrictions, the atmospheric level of many organochlorine pesticides (OCPs) over the Great Lakes exhibited a decreasing trend since the 1980s in various environmental compartments. Atmospheric conditions also influence variation and trend of OCPs. In the present study a nonparametric Mann-Kendall test with an additional process to remove the effect of temporal (serial) correlation was used to detect the temporal trend of OCPs in the atmosphere over the Great Lakes region and to examine the statistical significance of the trends. Using extended time series of measured air concentrations over the Great Lakes region from the Integrated Atmospheric Deposition Network, this study also revisits relationships between seasonal mean air concentration of OCPs and major climate variabilities in the Northern Hemisphere. To effectively extract climate signals from the temporal trend of air concentrations, we detrended air concentrations through removing their linear trend, which is driven largely by their respective half-lives in the atmosphere. The interannual variations of the extended time series show a good association with interannual climate variability, notably, the North Atlantic Oscillation (NAO) and the El Niño-Southern Oscillation. This study demonstrates that the stronger climate signals can be extracted from the detrended time series of air concentrations of some legacy OCPs. The detrended concentration time series also help to interpret, in addition to the connection with interannual variation of the NAO, the links between atmospheric concentrations of OCPs and decadal or interdecadal climate change.

  12. Clean air program: Compressed natural gas safety in transit operations. Final report

    SciTech Connect

    Friedman, D.M.; Malcosky, N.D.

    1995-10-01

    This report examines the safety issues relating to the use of Compressed Natural Gas (CNG) in transit service. The safety issues were determined by on-site surveys performed by Battelle of Columbus, Ohio and Science Applications International Corporation (SAIC) of McLean, Virginia of seven transit agencies using CNG. The survey consisted of: (1) extensive interviews; (2) review of records, procedures, and plans relating to safety; (3) examination of facilities and equipment; (4) observation of operations including fueling, maintenance, morning start-up, and revenue service; and (5) measurements of methane concentrations in the air where the buses are being fueled or stored. Interviews included all job categories associated with management, operations, safety, maintenance, acquisition, and support.

  13. Compilation of atmospheric gas concentration profiles from 0 to 50 km

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.

    1982-01-01

    A set of 52 atmospheric gas concentration profiles between 0 and 50 km was compiled as a convenient reference data set for calculation of atmospheric infrared absorption or emission signals and for initialization of iterative procedures for retrieval of gas concentrations from measured data. The distributions of volume mixing ratio as a function of altitude generally correspond to typical diurnally averaged, seasonally averaged Northern Hemisphere midlatitude gas concentration profiles. Profiles are given for all gases included in current infrared atmospheric absorption line parameter compilations, and for a number of additional important trace gases.

  14. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  15. Predictors of Indoor Air Concentrations in Smoking and Non-Smoking Residences

    PubMed Central

    Héroux, Marie-Eve; Clark, Nina; Van Ryswyk, Keith; Mallick, Ranjeeta; Gilbert, Nicolas L.; Harrison, Ian; Rispler, Kathleen; Wang, Daniel; Anastassopoulos, Angelos; Guay, Mireille; MacNeill, Morgan; Wheeler, Amanda J.

    2010-01-01

    Indoor concentrations of air pollutants (benzene, toluene, formaldehyde, acetaldehyde, acrolein, nitrogen dioxide, particulate matter, elemental carbon and ozone) were measured in residences in Regina, Saskatchewan, Canada. Data were collected in 106 homes in winter and 111 homes in summer of 2007, with 71 homes participating in both seasons. In addition, data for relative humidity, temperature, air exchange rates, housing characteristics and occupants’ activities during sampling were collected. Multiple linear regression analysis was used to construct season-specific models for the air pollutants. Where smoking was a major contributor to indoor concentrations, separate models were constructed for all homes and for those homes with no cigarette smoke exposure. The housing characteristics and occupants’ activities investigated in this study explained between 11% and 53% of the variability in indoor air pollutant concentrations, with ventilation, age of home and attached garage being important predictors for many pollutants. PMID:20948949

  16. Evolution of HTO concentrations in soil, vegetation and air during an experimental chronic HT release

    SciTech Connect

    Davis, P.A.; Galeriu, D.C.; Spencer, F.S.; Amiro, B.D.

    1995-10-01

    A small experimental plot was continuously exposed to elevated levels of HT in air over a 12-day period to study the build up and steady-state concentrations of HTO in the environment. HTO concentrations in soil, vegetation and air all showed similar dynamics, increasing gradually over time with temporary decreases during and following rainfall. The relative magnitudes of the soil, vegetation and air concentrations depended on the height at which the air and vegetation were sampled, the depth at which the soil sample was taken and the soil depth over which the plants drew their transpiration water. The system was at or near steady-state in the last two or three days of the release. When averaged over an eight day interval that included periods of rain, the ratios of HTO concentration in soil, foliage and air moisture to HT concentration in air (measured 20 cm above the ground) were typically 0.0014, 0.0010 and 0.0011 (Bq/mL)/(Bq/m{sup 3}) for a cultivated field. 10 refs., 7 figs.

  17. An assessment of ozone concentrations within and near the Lake Tahoe Air Basin

    NASA Astrophysics Data System (ADS)

    Dolislager, Leon J.; VanCuren, Richard; Pederson, James R.; Lashgari, Ash; McCauley, Eileen

    2012-01-01

    The Lake Tahoe Atmospheric Deposition Study (LTADS) was conducted by the Air Resources Board of the State of California (CARB) primarily to generate refined estimates of the atmospheric deposition of nitrogen, phosphorous, and particulate matter directly to Lake Tahoe, which straddles the border between the states of California and Nevada near Reno, Nevada. The enhanced air quality monitoring during LTADS also included ozone measurements, which yielded additional insights into atmospheric processes and the role of transport in determining ozone concentrations within the Lake Tahoe Air Basin. The Lake Tahoe Air Basin is located generally downwind of air basins with major emissions of ozone precursors (e.g., VOCs, NOx), capable of generating significant ozone concentrations. Furthermore, vegetation on the western slope of the Sierra Nevada contribute biogenic organic compounds to the air mass. Ozone concentrations within the Tahoe Basin infrequently exceed the local 1-h threshold set to protect forest health (0.08 ppm) and the California 8-h ambient air quality standard (0.070 ppm). A concern then is the potential contribution of regional emission sources to the ozone concentrations observed in the Tahoe Basin. The ozone data collected during LTADS helped to better characterize the relative contribution of local and regional pollution sources to ozone air quality within the Tahoe Basin. The data indicate potential 1- or 2-day intact transport on rare occasions but generally the mixing of the atmosphere over the Sierra Nevada disperses the anthropogenic ozone throughout the boundary layer, which is generally more than a kilometer or two deep during the day. The data analysis indicates that emissions from upwind air basins add to the atmospheric burden of ozone concentrations, raising the regional concentrations in the Sierra Nevada. Given the large background and upwind enhancements relative to the ambient air quality standards, the local contribution does not need to

  18. The impact of liquefied petroleum gas usage on air quality in Mexico City

    NASA Astrophysics Data System (ADS)

    Gasca, J.; Ortiz, E.; Castillo, H.; Jaimes, J. L.; González, U.

    Liquefied petroleum gas (LPG) is the main fuel used in the residential sector of the Metropolitan Zone in the Valley of Mexico (MZVM). LPG represents 16% of the total fuel consumption in the MZVM and its demand increased 14% from 1986 to 1999. Propane and butanes, the main compounds of LPG, constituted 29% of all non-methane hydrocarbons found in the air of Mexico City. Some researchers have reported that LPG losses are a significant cause of high ozone concentration in MZVM. Three analyses are carried out in this work to estimate LPG's share of responsibility for MZVM pollution problems. First, the correlation between LPG consumption and three ozone pollution indicators was calculated for the period of 1986-1999. The non-significant correlation of these indicators with LPG consumption in a monthly basis suggests that LPG associated emissions are not the foremost cause of ozone formation. Second, a simulation model is applied to three LPG related emission control strategies to estimate the reduction in the maximum ozone concentration. The most noticeable effect was obtained when both hydrocarbon (HC) and oxides of nitrogen (NO x) emissions associated with LPG use were totally reduced. The other two strategies, that only reduce HC emissions, had a minimum effect on the ozone concentration. Third, organic compounds consumption in air samples captured and irradiated in outdoor smog chambers is used to determine the chemical loss rate of LPG associated species and aromatics in the MZVM. The smog chamber results showed that 70% of propane and n-butane remain at the end of a 1-day irradiation, therefore they remain in the MZVM atmosphere for several days being the reason for the high concentration of these compounds. LPG associated compounds only account for 18% of ozone formed but aromatics contribute 35% to ozone in smog chamber.

  19. Radon ((222)Rn) concentration in indoor air near the coal mining area of Nui Beo, North of Vietnam.

    PubMed

    Nhan, Dang Duc; Fernando, Carvalho P; Thu Ha, Nguyen Thi; Long, Nguyen Quang; Thuan, Dao Dinh; Fonseca, Heloisa

    2012-08-01

    Concentrations of radioactive radon gas ((222)Rn) were measured using passive monitors based on LR115 solid state track detectors during June-July 2010 in indoor air of dwellings in the Nui Beo coal mining area, mostly in Cam Pha and Ha Long coastal towns, Quang Ninh province, in the North of Vietnam. Global results of (222)Rn concentrations indoors varied from ≤6 to 145 Bq m(-3) averaging 46 ± 26 Bq m(-3) (n = 37), with a median value of 47 Bq m(-3). This was similar to outdoor (222)Rn concentrations in the region, averaging 43 ± 19 Bq m(-3) (n = 10), with a median value of 44 Bq m(-3). Indoor (222)Rn concentrations in the coastal town dwellings only were in average lower although not significantly different from indoor (222)Rn concentrations measured at the coal storage field near the harbor, 67 ± 4 Bq m(-3) (n = 3). Furthermore, there was no significant difference in the average (222)Rn concentration in indoor air measured in the coastal towns region and those at the touristic Tuan Chau Island located about 45 km south of the coal mine, in the Ha Long Bay. The indoor (222)Rn concentration in a floating house at the Bai Tu Long Bay, and assumed as the best estimate of the baseline (222)Rn in surface air, was 27 ± 3 Bq m(-3) (n = 3). Indoor average concentration of (222)Rn in dwellings at the Ha Noi city, inland and outside the coal mining area, was determined at 30 Bq m(-3). These results suggest that (222)Rn exhalation from the ground at the Nui Beo coal mining area may have contributed to generally increase (222)Rn concentration in the surface air of that region up to 1.7 times above the baseline value measured at the Bai Tu Long Bay and Ha Noi. The average indoor concentration of (222)Rn in Cam Pha-Ha Long area is about one-third of the value of the so-called Action Level set up by the US EPA of 148 Bq m(-3). Results suggest that there is no significant public health risk from (222)Rn exposure in the study region.

  20. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples.

  1. CONCENTRATED AMBIENT AIR PARTICLES INDUCE PULMONARY INFLAMMATION IN HEALTHY HUMAN VOLUNTEERS

    EPA Science Inventory


    We tested the hypothesis that exposure of healthy volunteers to concentrated ambient particles (CAPS) is associated with an influx of inflammatory cells into the lower respiratory tract. Thirty-eight volunteers were exposed to either filtered air or particles concentrated fro...

  2. COMPARISON OF MOLD CONCENTRATIONS IN INDOOR AND OUTDOOR AIR SAMPLED SIMULTANEOUSLY AND THEN QUANTIFIED BY MSQPCR

    EPA Science Inventory

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of the 36 mold species in indoor and outdoor air samples that were taken simultaneously for 48 hours in and around 17 homes in Cincinnati, Ohio. The total spore concentrations of 353 per m3...

  3. Cooling air recycling for gas turbine transition duct end frame and related method

    DOEpatents

    Cromer, Robert Harold; Bechtel, William Theodore; Sutcu, Maz

    2002-01-01

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  4. The Use of an Air-Natural Gas Flame in Atomic Absorption.

    ERIC Educational Resources Information Center

    Melucci, Robert C.

    1983-01-01

    Points out that excellent results are obtained using an air-natural gas flame in atomic absorption experiments rather than using an air-acetylene flame. Good results are obtained for alkali metals, copper, cadmium, and zinc but not for the alkaline earths since they form refractory oxides. (Author/JN)

  5. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air.

    PubMed

    Lyng, Nadja Lynge; Clausen, Per Axel; Lundsgaard, Claus; Andersen, Helle Vibeke

    2016-02-01

    Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six temperature levels between 20 and 30 C, i.e. within the normal fluctuation of indoor temperatures, while the air exchange rate was constant. The steady-state air concentrations of seven PCBs were determined at each temperature level. A model based on Clausius-Clapeyron equation, ln(P) = -ΔH/RT + a(0), where changes in steady-state air concentrations in relation to temperature, was tested. The model was valid for PCB-28, PCB-52 and PCB-101; the four other congeners were sporadic or non-detected. For each congener, the model described a large proportion (R(2)>94%) of the variation in indoor air PCB levels. The results showed that one measured concentration of PCB at a known steady-state temperature can be used to predict the steady-state concentrations at other temperatures under circumstances where e.g. direct sunlight does not influence temperatures and the air exchange rate is constant. The model was also tested on field data from a PCB remediation case in an apartment in another contaminated building complex where PCB concentrations and temperature were measured simultaneously and regularly throughout one year. The model fitted relatively well with the regression of measured PCB air concentrations, ln(P) vs. 1/T, at varying temperature between 16.3 and 28.2 °C, even though the measurements were carried out under uncontrolled environmental condition.

  6. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    PubMed

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  7. Effects of Carrier Gas Conditions on Concentration of Alcohol Aqueous Solution by Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Yasuda, Keiji; Tanaka, Naofumi; Rong, Lei; Nakamura, Masaaki; Li, Li; Oda, Akiyoshi; Kawase, Yasuhito

    2003-05-01

    The effects of carrier gas conditions on the concentration of ethanol by ultrasonic atomization are examined. With increasing height from vessel bottom to gas inlet and outlet, the ethanol content in the accompanied liquid increases and the flow rate of alcohol decreases. The ethanol content in the accompanied liquid becomes lower as the gas velocity becomes higher. The attachment of a demister is effective for the increase of the content in the accompanied liquid.

  8. Some possibilities of using gas mixtures other than air in aerodynamic research

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R

    1956-01-01

    A study is made of the advantages that can be realized in compressible-flow research by employing a substitute heavy gas in place of air. The present report is based on the idea that by properly mixing a heavy monatomic gas with a suitable heavy polyatomic gas, it is possible to obtain a heavy gas mixture which has the correct ratio of specific heats and which is nontoxic, nonflammable, thermally stable, chemically inert, and comprised of commercially available components. Calculations were made of wind-tunnel characteristics for 63 gas pairs comprising 21 different polyatomic gases properly mixed with each of three monatomic gases (argon, krypton, and zenon).

  9. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  10. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    EPA Science Inventory

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  11. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  12. Gas phase dispersion in compost as a function of different water contents and air flow rates.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2009-07-21

    Gas phase dispersion in a natural porous medium (yard waste compost) was investigated as a function of gas flow velocity and compost volumetric water content using oxygen and nitrogen as tracer gases. The compost was chosen because it has a very wide water content range and because it represents a wide range of porous media, including soils and biofilter media. Column breakthrough curves for oxygen and nitrogen were measured at relatively low pore gas velocities, corresponding to those observed in for instance soil vapor extraction systems or biofilters for air cleaning at biogas plants or composting facilities. Total gas mechanical dispersion-molecular diffusion coefficients were fitted from the breakthrough curves using a one-dimensional numerical solution to the advection-dispersion equation and used to determine gas dispersivities at different volumetric gas contents. The results showed that gas mechanical dispersion dominated over molecular diffusion with mechanical dispersion for all water contents and pore gas velocities investigated. Importance of mechanical dispersion increased with increasing pore gas velocity and compost water content. The results further showed that gas dispersivity was relatively constant at high values of compost gas-filled porosity but increased with decreasing gas-filled porosity at lower values of gas-filled porosity. Results finally showed that measurement uncertainty in gas dispersivity is generally highest at low values of pore gas velocity.

  13. Atmospheric dispersion of a heavier-than-air gas near a two-dimensional obstacle

    NASA Astrophysics Data System (ADS)

    Sutton, S. B.; Brandt, H.; White, B. R.

    1986-04-01

    Flow over a two-dimensional obstacle and dispersion of a heavier-than-air gas near the obstacle were studied. Two species, one representing air and the other representing the heavier-than-air gas were treated. Equations for mass and momentum were cast in mass-averaged form, with turbulent Reynolds stresses and mass fluxes modeled using eddy-viscosity and diffusivity hypotheses. A two-equation k-ɛ turbulence model was used to determine the effective turbulent viscosity. Streamline curvature and buoyancy corrections were added to the basic turbulence formulation. The model equations were solved using finite difference techniques. An alternating-direction-implicit (ADI) technique was used to solve the parabolic transport equations and a direct matrix solver was used to solve the elliptic pressure equation. Mesh sensitivities were investigated to determine the optimum mesh requirements for the final calculations. It was concluded that at least 10 grid spaces were required across the obstacle width and 15 across the obstacle height to obtain valid solutions. A non-uniform mesh was used to concentrate the grid points at the top of the obstacle. Experimental measurements were made with air flow over a 7.6 by 7.6 cm obstacle in a boundary-layer wind tunnel. Smoke visualization revealed a low-frequency oscillation of the bubble downstream of the obstacle. Hot-wire anemometer data are presented for the mean velocity and turbulent kinetic energy at the mid-plane of the obstacle and the mid-plane of the downstream recirculation bubble. A single hot-wire probe was found to be suitable for determining mean streamwise velocities with an accuracy of 11 %. The downstream recirculation bubble was unsteady and had a length range from 3 to 8 obstacle lengths. The experimental results for flow over the obstacle were compared with numerical calculations to validate the numerical solution procedure. A sensitivity study on the effect of curvature correction and variation of turbulence

  14. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong

    PubMed Central

    Zhang, Jiangshe; Ding, Weifu

    2017-01-01

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R2 increased and root mean square error values decreased respectively. PMID:28125034

  15. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong.

    PubMed

    Zhang, Jiangshe; Ding, Weifu

    2017-01-24

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R 2 increased and root mean square error values decreased respectively.

  16. System for detecting and estimating concentrations of gas or liquid analytes

    NASA Technical Reports Server (NTRS)

    Homer, Margie L. (Inventor); Jan, Darrell L. (Inventor); Jewell, April D. (Inventor); Kisor, Adam (Inventor); Manatt, Kenneth S. (Inventor); Manfreda, Allison M. (Inventor); Ryan, Margaret A. (Inventor); Shevade, Abhijit V. (Inventor); Taylor, Charles (Inventor); Tran, Tuan A. (Inventor)

    2011-01-01

    A sensor system for detecting and estimating concentrations of various gas or liquid analytes. In an embodiment, the resistances of a set of sensors are measured to provide a set of responses over time where the resistances are indicative of gas or liquid sorption, depending upon the sensors. A concentration vector for the analytes is estimated by satisfying a criterion of goodness using the set of responses. Other embodiments are described and claimed.

  17. Derivation and implementation of an annual limit on intake and a derived air concentration value for uranium mill tailings.

    PubMed

    Reif, R H; Andrews, D W

    1995-06-01

    Monitoring workers and work areas at the Department of Energy Uranium Mill Tailings Remedial Action Project sites is complex because all radionuclides in the 238U and 235U decay chains may be present in an airborne uranium mill tailings matrix. Previous monitoring practices involved isotopic analysis of the air filter to determine the activity of each radionuclide of concern and comparing the results to the specified derived air concentration. The annual limit on intake and derived air concentration values have been derived here for the uranium mill tailings matrix to simplify the procedure for evaluation of air monitoring results and assessment of the need for individual monitoring. Implementation of the derived air concentration for uranium mill tailings involves analyzing air samples for long-lived gross alpha activity and comparing the activity concentration to the derived air concentration. Health physics decisions regarding assessment of airborne concentrations is more cost-effective because isotopic analysis of air samples is not necessary.

  18. Methods to reduce the CO(2) concentration of educational buildings utilizing internal ventilation by transferred air.

    PubMed

    Kalema, T; Viot, M

    2014-02-01

    The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration.

  19. Historical Occupational Trichloroethylene Air Concentrations Based on Inspection Measurements From Shanghai, China

    PubMed Central

    Friesen, Melissa C.; Locke, Sarah J.; Chen, Yu-Cheng; Coble, Joseph B.; Stewart, Patricia A.; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P.; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Purpose: Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China’s growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Methods: Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Results: Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5–10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150–190mg m−3). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11mg m−3 in ‘other metal products/repair’ industries to 390mg m–3 in ‘ships/aircrafts’ industries. Conclusions: TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. PMID:25180291

  20. Indoor air polychlorinated biphenyl concentrations in three communities along the Upper Hudson River, New York.

    PubMed

    Wilson, Lloyd R; Palmer, Patrick M; Belanger, Erin E; Cayo, Michael R; Durocher, Lorie A; Hwang, Syni-An A; Fitzgerald, Edward F

    2011-10-01

    Indoor air polychlorinated biphenyl (PCB) concentrations were measured in upstate New York as part of a nonoccupational exposure investigation. The adjacent study communities contain numerous sites of current and former PCB contamination, including two capacitor-manufacturing facilities. Indoor air PCB concentrations in the study area homes were not significantly different than in the comparison area homes. Total PCB concentrations in the study area homes ranged from 0.3 to 114.3 ng/m(3) (median 7.9). For the comparison area homes, concentrations ranged from 0.3 to 233.3 ng/m(3) (median 6.8). No correlations were found between PCB concentrations in indoor and outdoor air, with indoor concentrations generally 20 times higher than outdoor concentrations. Of the home characteristics cataloged, the presence of fluorescent lights was significantly associated with total PCB concentration in the study area only. The indoor PCB concentrations measured in this study are similar to those in other communities with known PCB-contaminated sites and similar to levels reported in other locations from the northeastern United States.

  1. Design and development test of a gas turbine combustor for air-blow Lurgi coal gas fuel

    SciTech Connect

    Beebe, K.W.; Ye, L.J.

    1985-01-01

    A heavy-duty industrial gas turbine combustion system has been designed and laboratory tested for use with low heating value coal gas produced by an air-blown Lurgi coal gasifier. The design fuel has a nominal lower heating value of 4.21 MJ/Nm/sup 3/ (107 BTU/SCF). The combustor design utilizes high-swirl fuel and air injection to provide rapid fuel/air mixing and a stable flame front, and is physically interchangeable with the conventional fuel combustion system for the General Electric Model MS5001 gas turbine. Full-pressure, full-scale tests of the new combustion system have been conducted at the General Electric Gas Turbine Development Laboratory in Schenectady, New York, USA, for the Shanghai Power Plant Equipment Research Institute (SPPERI) of the Peoples Republic of China. Simulated clean low heating value coal gas fuel with a composition specified by SPPERI was used for these tests. Laboratory test reults are presented for important combustor operating parameters, including exhaust emissions, combustion efficiency, exhaust temperature profile, dynamic pressure, and metal temperature distribution.

  2. Volatile methyl siloxanes (VMS) concentrations in outdoor air of several Catalan urban areas

    NASA Astrophysics Data System (ADS)

    Gallego, E.; Perales, J. F.; Roca, F. J.; Guardino, X.; Gadea, E.

    2017-04-01

    Volatile methyl siloxanes (VMS) were evaluated in ten Catalan urban areas with different industrial impacts, such as petrochemical industry, electrical and mechanical equipment, metallurgical and chemical industries, municipal solid waste treatment plant and cement and food industries, during 2013-2015. 24 h samples were taken with LCMA-UPC pump samplers specially designed in our laboratory, with a flow range of 70 ml min-1. A sorbent-based sampling method, successfully developed to collect a wide-range of VOC, was used. The analysis was performed by automatic thermal desorption coupled with capillary gas chromatography/mass spectrometry detector. The presented methodology allows the evaluation of VMS together with a wide range of other VOC, increasing the number of compounds that can be determined in outdoor air quality assessment of urban areas. This aspect is especially relevant as a restriction of several VMS (D4 and D5) in consumer products has been made by the European Chemicals Agency and US EPA is evaluating to include D4 in the Toxic Substances Control Act, regarding the concern of the possible effects of these compounds in human health and the environment. ΣVMS concentrations (L2-L5, D3-D6 and trimethylsilanol) varied between 0.3 ± 0.2 μg m-3 and 18 ± 12 μg m-3, determined in a hotspot area. Observed VMS concentrations were generally of the same order of magnitude than the previously determined in Barcelona, Chicago and Zurich urban areas, but higher than the published from suburban sites and Arctic locations. Cyclic siloxanes concentrations were up to two-three orders of magnitude higher than those of linear siloxanes, accounting for average contributions to the total concentrations of 97 ± 6% for all samples except for the hotspot area, where cyclic VMS accounted for 99.9 ± 0.1%. D5 was the most abundant siloxane in 5 sampling points; however, differing from the generally observed in previous studies, D3 was the most abundant compound in the

  3. Screening for sarin in air and water by solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Schneider, J F; Boparai, A S; Reed, L L

    2001-10-01

    A method of screening air and water samples for the chemical-warfare agent Sarin is developed using solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS). The SPME field kit sampler is ideal for collecting air and water samples in the field and transporting samples safely to the laboratory. The sampler also allows the sample to be introduced into the GC-MS system without further sample preparation. Results of the tests with Sarin using the SPME technique indicate that a sample collection time of 5 min is sufficient to detect 100 ng/L of Sarin in air. For water samples, Sarin is detected at a concentration of 12 microg/mL or higher. This method is ideal for screening samples for quick response situations.

  4. Screening for sarin in air and water by solid-phase microextraction-gas chromatography/mass spectrometry.

    SciTech Connect

    Schneider, J. F.; Boparai, A. S.; Reed, L. L.

    2001-10-01

    A method of screening air and water samples for the chemical-warfare agent Sarin is developed using solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS). The SPME field kit sampler is ideal for collecting air and water samples in the field and transporting samples safely to the laboratory. The sampler also allows the sample to be introduced into the GC-MS system without further sample preparation. Results of the tests with Sarin using the SPME technique indicate that a sample collection time of 5 min is sufficient to detect 100 ng/L of Sarin in air. For water samples, Sarin is detected at a concentration of 12 {mu}g/mL or higher. This method is ideal for screening samples for quick response situations.

  5. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    PubMed

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.

  6. Short-term variation in ambient concentrations and gas/particle partitioning of organochlorine pesticides in Izmir, Turkey

    NASA Astrophysics Data System (ADS)

    Sofuoglu, Aysun; Cetin, Eylem; Bozacioglu, Sevde Seza; Sener, Gaye Devrim; Odabasi, Mustafa

    Twenty successive daytime and nighttime air samples were collected and analyzed for 23 currently used and/banned organochlorine pesticides (OCPs) between 14 and 23 May 2003 in Izmir, Turkey. Average individual OCP concentrations ranged from 5±4 pg m -3 (p,p'-dichlorodiphenyldichloroethane) to 391±306 pg m -3 (chlorpyrifos) and they were within the ranges previously measured at different sites. Most of the OCPs did not exhibit strong diurnal cycling. The temperature dependence of gas-phase atmospheric concentrations of OCPs investigated using Clausius-Clapeyron plots was statistically significant for β-HCH and endosulfan sulfate ( p<0.1) and was not significant for other compounds (0-21% of the variability in their gas-phase concentrations). In addition to temperature, the effect of wind speed and direction was also investigated using multiple linear regression analysis and these three parameters together explained the 2% (aldrin) to 72% (endosulfan II) of the variability in gas-phase OCP concentrations. Results of the multiple regression analysis indicated that wind speed was a statistically significant factor for most of the OCPs and wind direction was important for some compounds. The temperature-dependent diurnal cycling of most OCPs was probably masked by the higher wind speeds observed during daytime periods with high temperatures, different source sectors and ongoing sources. The lack of correlation for heptachlor, aldrin, p,p'-dichlorodiphenyldichloroethylene (p-p'-DDE), and p,p'-dichlorodiphenyltrichloroethane (p-p'-DDT) with temperature, wind speed and direction suggested that their concentrations were affected by long-range transport. The partitioning of OCPs between particle and gas phases was investigated and compared to KOA (octanol/air partition coefficient) absorption model. The overall agreement between experimental and modeled log K p (gas/particle partition coefficient) values was good ( p<0.01, slope=0.94). Prediction of absorption model for

  7. Combatting urban air pollution through Natural Gas Vehicle (NGV) analysis, testing, and demonstration

    SciTech Connect

    1995-03-01

    Deteriorating urban air quality ranks as a top concern worldwide, since air pollution adversely affects both public health and the environment. The outlook for improving air quality in the world`s megacities need not be bleak, however, The use of natural gas as a transportation fuel can measurably reduce urban pollution levels, mitigating chronic threats to health and the environment. Besides being clean burning, natural gas vehicles (NGVs) are economical to operate and maintain. The current cost of natural gas is lower than that of gasoline. Natural gas also reduces the vehicle`s engine wear and noise level, extends engine life, and decreases engine maintenance. Today, about 700,000 NGVs operate worldwide, the majority of them converted from gasoline or diesel fuel. This article discusses the economic, regulatory and technological issues of concern to the NGV industry.

  8. Effect of Varying Inert Gas and Acetylene Concentration on the Synthesis of Carbon Nanotubes.

    PubMed

    Afrin, Rahat; Abbas, Syed Mustansar; Shah, Nazar Abbas; Mustafa, Muhammad Farooq; Ali, Zulfiqar; Ahmad, Nisar

    2016-03-01

    The multiwalled carbon nanotubes (MWCNTs) with small diameter and high purity were achieved by chemical vapor deposition technique using silicon substrate. The introduction of specific concentration of inert gas with hydrocarbon played a key role in controlling morphology and diameter of MWCNTs. Nickel mixed ferrite nanoparticles were used as a catalyst for the growth of MWCNTs. Growth parameters like concentration of hydrocarbon source and inert gas flow, composition of catalyst particles and growth temperature were studied. In this work smaller diameter and twisted MWCNTs were formed by dilution of acetylene with argon gas. Electrical properties suggest a semimetallic behavior of synthesized MWCNTs.

  9. Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada.

    PubMed

    Bari, Md Aynul; Kindzierski, Warren B

    2017-04-01

    With concern about levels of air pollutants in recent years in the Capital Region of Alberta, an investigation of ambient concentrations, sources and potential human health risk of hazardous air pollutants (HAPs) or air toxics was undertaken in the City of Edmonton over a 5-year period (2009-2013). Mean concentrations of individual HAPs in ambient air including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and trace metals ranged from 0.04 to 1.73 μg/m(3), 0.01-0.54 ng/m(3), and 0.05-3.58 ng/m(3), respectively. Concentrations of benzene, naphthalene, benzo(a)pyrene (BaP), arsenic, manganese and nickel were far below respective annual Alberta Ambient Air Quality Objectives. Carcinogenic and non-carcinogenic risk of air toxics were also compared with risk levels recommended by regulatory agencies. Positive matrix factorization identified six air toxics sources with traffic as the dominant contributor to total HAPs (4.33 μg/m(3), 42%), followed by background/secondary organic aerosol (SOA) (1.92 μg/m(3), 25%), fossil fuel combustion (0.92 μg/m(3), 11%). On high particulate air pollution event days, local traffic was identified as the major contributor to total HAPs compared to background/SOA and fossil fuel combustion. Carcinogenic risk values of traffic, background/SOA and metals industry emissions were above the USEPA acceptable level (1 × 10(-6)), but below a tolerable risk (1 × 10(-4)) and Alberta benchmark (1 × 10(-5)). These findings offer useful preliminary information about current ambient air toxics levels, dominant sources and their potential risk to public health; and this information can support policy makers in the development of appropriate control strategies if required.

  10. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Krakauer, Nir Y.; Randerson, James T.; Primeau, François W.; Gruber, Nicolas; Menemenlis, Dimitris

    2006-11-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO2, between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14C and 13C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14CO2 and 13CO2. While the atmosphere and ocean inventories of 14CO2 and 13CO2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14C and 13C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14C in atmospheric CO2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 +/- 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 +/- 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed.

  11. Photoacoustic spectroscopy-based detector for measuring benzene and toluene concentration in gas and liquid samples

    NASA Astrophysics Data System (ADS)

    Hanyecz, Veronika; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád; Szabó, Gábor

    2011-12-01

    Here we present a novel instrument for on-line, automatic measurement of benzene and toluene concentration in gas and liquid samples produced in the natural gas industry. Operation of the instrument is based on the collection of analytes on an adsorbent, separation using a chromatographic column and detection by near-infrared diode laser-based photoacoustic spectroscopy. Sample handling, measurement and data evaluation are carried out fully automatically, using an integrated, programmable electronic unit. The instrument was calibrated in the laboratory for natural gas, nitrogen and liquid glycol samples, and tested under field conditions at a natural gas dehydration unit of the MOL Hungarian Oil and Gas Company. Minimum detectable concentrations (3σm-1) were found to be 2.5 µg l-1 for benzene and 4 µg l-1 for toluene in gas samples, while 1.5 mg l-1 for benzene and 3 mg l-1 for toluene in liquid samples, which is suitable for measuring benzene and toluene concentration in natural gas and glycol samples occurring at natural gas dehydration plants.

  12. [Diurnal variations of greenhouse gas fluxes at the water-air interface of aquaculture ponds in the Min River estuary].

    PubMed

    Yang, Ping; Tong, Chuan; He, Qing-Hua; Huang, Jia-Fang

    2012-12-01

    Wetland reclamation and aquaculture is one of the main disturbance types in coastal wetlands. Diurnal variations of CO2, CH4 and N2O fluxes at the water-air interface were determined using a floating chambers + gas chromatography method in a shrimp pond, and a mixed culture pond of fish and shrimp in October in the Shanyutan Wetland of the Min River estuary, southeast China. Meanwhile, the meteorological indicators in ground surface and physical, chemical and biological indicators of surface water were also measured. CO2, CH4 and N2O fluxes at the water-air interface all demonstrated distinct diurnal variations. Both shrimp pond and mixed culture pond of fish and shrimp functioned as a sink of CO2 [the diurnal averaged CO2 fluxes were -48.79 and -105.25 mg x (m2 x h)(-1), respectively], and a source of CH4 [the diurnal averaged CH4 fluxes were 1.00 and 5.74 mg x (m2 x h)(-1), respectively]; the diurnal averaged CO2 and CH4 fluxes at the water-air interface of the mixed culture of fish and shrimp pond were higher than that of the shrimp pond. Greenhouse gas fluxes at the water-air interface from the aquaculture ponds were influenced by many factors. Multiple stepwise regression analysis showed that the concentration of Chlorophyll was the major factor affecting the CO2 fluxes, and the concentrations of SO4(2-) and PO4(3-) were the major factors affecting the CH4 fluxes at the water-air interface of the shrimp pond; whereas water temperature and Chlorophyll were the major factors affecting the CO2 fluxes, and dissolved oxygen, PO4(3-) and pH were the major factors affecting the CH4 fluxes at the water-air interface of the mixed culture pond of fish and shrimp.

  13. Modeling the Concentrations of On-Road Air Pollutants in Southern California

    PubMed Central

    Li, Lianfa; Wu, Jun; Hudda, Neelakshi; Sioutas, Constantinos; Fruin, Scott A.; Delfino, Ralph J.

    2014-01-01

    High concentrations of air pollutants on roadways, relative to ambient concentrations, contribute significantly to total personal exposure. Estimation of these exposures requires measurements or prediction of roadway concentrations. Our study develops, compares and evaluates linear regression and non-linear generalized additive models (GAMs) to estimate on-road concentrations of four key air pollutants, particle-bound polycyclic aromatic hydrocarbons (PB-PAH), particle number count (PNC), nitrogen oxides (NOx), and particulate matter with diameter <2.5 μm (PM2.5) using traffic, meteorology, and elevation variables. Critical predictors included wind speed and direction for all the pollutants, traffic-related variables for PB-PAH, PNC, and NOx, and air temperatures and relative humidity for PM2.5. GAMs explained 50%, 55%, 46%, and 71% of the variance for log or square-root transformed concentrations of PB-PAH, PNC, NOx, and PM2.5 respectively, an improvement of 5 to over 15% over the linear models. Accounting for temporal autocorrelation in the GAMs further improved the prediction, explaining 57-89% of the variance. We concluded that traffic and meteorological data are good predictors in estimating on-road traffic-related air pollutant concentrations and GAMs perform better for non-linear variables, such as meteorological parameters. PMID:23859442

  14. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOEpatents

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2002-01-01

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  15. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOEpatents

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2003-04-08

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  16. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    SciTech Connect

    Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.; DiBartolomeo, D.L.; Russell, M.L.; Fisk, W.J.

    2002-01-01

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.

  17. Effects of the Deregulation on the Concentration of the Brazilian Air Transportation Industry

    NASA Technical Reports Server (NTRS)

    Guterres, Marcelo Xavier; Muller, Carlos

    2003-01-01

    This paper addresses the effects of the deregulation of the Brazilian air transportation industry in terms of the concentration of the market. We will show some metrics that are commonly used to study the concentration of the industry. This paper uses the Herfindhal- Hirschman Index. This index tends to zero in the competitive scenario, with a large number of small firms, and to one in case of a monopolistic scenario. The paper analyses the dynamics of the concentration of the Brazilian domestic air transportation market, in order to evaluate the effects of deregulation. We conclude that the Brazilian market presents oligopoly characteristics and aspects in its current structure that maintain the market concentrated in spite of the Deregulation measures adopted by the aeronautical authority. Keywords: Herfindhal-Hirschman Index, concentration, Deregulation

  18. Influence of indoor air conditions on radon concentration in a detached house.

    PubMed

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%.

  19. An automatic flux chamber for investigating gas flux at water - air interfaces

    NASA Astrophysics Data System (ADS)

    Duc, N. T.; Silverstein, S.; Lundmark, L.; Reyier, H.; Crill, P. M.; Bastviken, D.

    2011-12-01

    Aquatic ecosystems are major sources of greenhouse gases (GHG) and representative measurements of GHG fluxes from aquatic ecosystems to the atmosphere are vital in climate related biogeochemistry. One of the most important fluxes, ebullition (bubble flux) of methane (CH4) is episodic, with large fluxes during short time periods. To properly capture such fluxes long term measurement approaches are necessary which is labor intensive for manual flux chamber based methods, or require expensive equipment with e.g. eddy correlation methods. An inexpensive and easily mobile automatic flux chamber for long-term measurements has been designed to approach these drawbacks. This device includes a flux chamber, with a controller/datalogger, valves, a pump, a 12 V battery and a solar cell. Sensors used so far record CH4 concentration in the chamber headspace, temperature in water and air, barometric pressure. Other sensors for e.g. CO2 and weather variables can be attached. The unit can be programmed to measure in situ accumulation of gas in the chamber and also to collect gas samples in an array of sample bottles for subsequent analysis in the laboratory. Simultaneous deployment of many such units represent a cost efficient and easily managed solution for local long term flux monitoring.

  20. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions

    NASA Technical Reports Server (NTRS)

    Zupanc, Frank J. (Inventor); Yankowich, Paul R. (Inventor)

    2006-01-01

    A fuel-air mixer for use in a combustion chamber of a gas turbine engine is provided. The fuel air mixing apparatus comprises an annular fuel injector having a plurality of discrete plain jet orifices, a first swirler wherein the first swirler is located upstream from the fuel injector and a second swirler wherein the second swirler is located downstream from the fuel injector. The plurality of discrete plain jet orifices are situated between the highly swirling airstreams generated by the two radial swirlers. The distributed injection of the fuel between two highly swirling airstreams results in rapid and effective mixing to the desired fuel-air ratio and prevents the formation of local hot spots in the combustor primary zone. A combustor and a gas turbine engine comprising the fuel-air mixer of the present invention are also provided as well as a method using the fuel-air mixer of the present invention.

  1. A gravimetric approach to providing SI traceability for concentration measurement results of mercury vapor at ambient air levels

    NASA Astrophysics Data System (ADS)

    Ent, Hugo; van Andel, Inge; Heemskerk, Maurice; van Otterloo, Peter; Bavius, Wijnand; Baldan, Annarita; Horvat, Milena; Brown, Richard J. C.; Quétel, Christophe R.

    2014-11-01

    Current measurement and calibration capabilities for mercury vapor in air are maintained at levels of 0.2-40 μg Hg m-3. In this work, a mercury vapor generator has been developed to establish metrological traceability to the international system of units (SI) for mercury vapor measurement results ≤15 ng Hg m-3, i.e. closer to realistic ambient air concentrations (1-2 ng Hg m-3) [1]. Innovations developed included a modified type of diffusion cell, a new measurement method to weigh the loss in (mercury) mass of these diffusion cells during use (ca. 6-8 μg mass difference between successive weighings), and a new housing for the diffusion cells to maximize flow characteristics and to minimize temperature variations and adsorption effects. The newly developed mercury vapor generator system was tested by using diffusion cells generating 0.8 and 16 ng Hg min-1. The results also show that the filter system, to produce mercury free air, is working properly. Furthermore, and most importantly, the system is producing a flow with a stable mercury vapor content. Some additional improvements are still required to allow the developed mercury vapor generator to produce SI traceable mercury vapor concentrations, based upon gravimetry, at much lower concentration levels and reduced measurement uncertainties than have been achieved previously. The challenges to be met are especially related to developing more robust diffusion cells and better mass measurement conditions. The developed mercury vapor generator will contribute to more reliable measurement results of mercury vapor at ambient and background air levels, and also to better safety standards and cost reductions in industrial processes, such as the liquefied natural gas field, where aluminum main cryogenic heat exchangers are used which are particularly prone to corrosion caused by mercury.

  2. Relationship between acetaldehyde concentration in mouth air and tongue coating volume

    PubMed Central

    YOKOI, Aya; MARUYAMA, Takayuki; YAMANAKA, Reiko; EKUNI, Daisuke; TOMOFUJI, Takaaki; KASHIWAZAKI, Haruhiko; YAMAZAKI, Yutaka; MORITA, Manabu

    2015-01-01

    Objective Acetaldehyde is the first metabolite of ethanol and is produced in the epithelium by mucosal ALDH, while higher levels are derived from microbial oxidation of ethanol by oral microflora such as Candida species. However, it is uncertain whether acetaldehyde concentration in human breath is related to oral condition or local production of acetaldehyde by oral microflora. The aim of this pilot study was to investigate the relationship between physiological acetaldehyde concentration and oral condition in healthy volunteers. Material and Methods Sixty-five volunteers (51 males and 14 females, aged from 20 to 87 years old) participated in the present study. Acetaldehyde concentration in mouth air was measured using a portable monitor. Oral examination, detection of oral Candida species and assessment of alcohol sensitivity were performed. Results Acetaldehyde concentration [median (25%, 75%)] in mouth air was 170.7 (73.5, 306.3) ppb. Acetaldehyde concentration in participants with a tongue coating status score of 3 was significantly higher than in those with a score of 1 (p<0.017). After removing tongue coating, acetaldehyde concentration decreased significantly (p<0.05). Acetaldehyde concentration was not correlated with other clinical parameters, presence of Candida species, smoking status or alcohol sensitivity. Conclusion Physiological acetaldehyde concentration in mouth air was associated with tongue coating volume. PMID:25760268

  3. Application of nonparametric regression and statistical testing to identify the impact of oil and natural gas development on local air quality

    NASA Astrophysics Data System (ADS)

    Cheng, Hanqi; Small, Mitchell J.; Pekney, Natalie J.

    2015-10-01

    The objective of the current work was to develop a statistical method and associated tool to evaluate the impact of oil and natural gas exploration and production activities on local air quality. Nonparametric regression of pollutant concentrations on wind direction was combined with bootstrap hypothesis testing to provide statistical inference regarding the existence of a local/regional air quality impact. The block bootstrap method was employed to address the effect of autocorrelation on test significance. The method was applied to short-term air monitoring data collected at three sites within Pennsylvania's Allegheny National Forest. All of the measured pollutant concentrations were well below the National Ambient Air Quality Standards, so the usual criteria and methods for data analysis were not sufficient. Using advanced directional analysis methods, test results were first applied to verify the existence of a regional impact at a background site. Next the impact of an oil field on local NOx and SO2 concentrations at a second monitoring site was identified after removal of the regional effect. Analysis of a third site also revealed air quality impacts from nearby areas with a high density of oil and gas wells. All results and conclusions were quantified in terms of statistical significance level for the associated inferences. The proposed method can be used to formulate hypotheses and verify conclusions regarding oil and gas well impacts on air quality and support better-informed decisions for their management and regulation.

  4. Lead-210 concentration in the air at Mt. Zeppelin, Ny-Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Paatero, Jussi; Hatakka, Juha; Holmén, Kim; Eneroth, Kristina; Viisanen, Yrjö

    High-volume aerosol particle samples have been collected onto glass fibre filters at Ny-Ålesund, Svalbard. The filters have been assayed for 210Pb by measuring the alpha particles of its in-grown daughter nuclide 210Po. The observed 210Pb activity concentrations at Mt. Zeppelin, Ny-Ålesund, Svalbard vary between 11 and 620 μBq/m 3 in 2001. The 25%, 50%, and 75% percentiles of the 210Pb activity concentrations at Mt. Zeppelin are 42, 83, and 220 μBq/m 3. The values are clearly lower than at Sodankylä, northern Finland with corresponding values of 100, 170, and 270 μBq/m 3. The arithmetic mean concentrations in 2001 were 144 and 245 μBq/m 3 at Ny-Ålesund and Sodankylä, respectively. The lowest 210Pb activity concentrations are found during summer both at Svalbard and in Finland. The highest concentrations occur in March-April at Svalbard. This differs from the seasonal behaviour of 210Pb in Finland, where the highest concentrations are usually observed in February-March. This 1-month difference between Svalbard and Finland may be related to the strength of solar radiation and its capability to cause vertical mixing of the air. Air mass back trajectory analysis shows that the lowest concentrations found at Svalbard are associated with air masses coming from the North Atlantic Ocean, Greenland and the Canadian Arctic. The highest concentrations are associated with air masses originating from northern Europe and Siberia, and during winter also in air masses coming from the central Arctic Ocean.

  5. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    NASA Astrophysics Data System (ADS)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  6. Tracking Dissolved Methane Concentrations near Active Seeps and Gas Hydrates: Sea of Japan.

    NASA Astrophysics Data System (ADS)

    Snyder, G. T.; Aoki, S.; Matsumoto, R.; Tomaru, H.; Owari, S.; Nakajima, R.; Doolittle, D. F.; Brant, B.

    2015-12-01

    A number of regions in the Sea of Japan are known for active gas venting and for gas hydrate exposures on the sea floor. In this investigation we employed several gas sensors mounted on a ROV in order to determine the concentrations of dissolved methane in the water near these sites. Methane concentrations were determined during two-second intervals throughout each ROV deployment during the cruise. The methane sensor deployments were coupled with seawater sampling using Niskin bottles. Dissolved gas concentrations were later measured using gas chromatography in order to compare with the sensor results taken at the same time. The observed maximum dissolved methane concentrations were much lower than saturation values, even when the ROV manipulators were in contact with gas hydrate. Nonetheless, dissolved concentrations did reach several thousands of nmol/L near gas hydrate exposures and gas bubbles, more than two orders of magnitude over the instrumental detection limits. Most of the sensors tested were able to detect dissolved methane concentrations as low as 10 nmol/L which permitted detection when the ROV approached methane plume sites, even from several tens of meters above the sea floor. Despite the low detection limits, the methane sensors showed variable response times when returning to low-background seawater (~5nM). For some of the sensors, the response time necessary to return to background values occurred in a matter of minutes, while for others it took several hours. Response time, as well as detection limit, should be an important consideration when selecting methane sensors for ROV or AUV investigations. This research was made possible, in part, through funding provided by the Japanese Ministry of Economy, Trade and Industry (METI).

  7. Atmospheric hydrocarbon emissions and concentrations in the barnett shale natural gas production region.

    PubMed

    Zavala-Araiza, Daniel; Sullivan, David W; Allen, David T

    2014-05-06

    Hourly ambient hydrocarbon concentration data were collected, in the Barnett Shale Natural Gas Production Region, using automated gas chromatography (auto-GC), for the period from April 2010 to December 2011. Data for three sites were compared: a site in the geographical center of the natural gas production region (Eagle Mountain Lake (EML)); a rural/suburban site at the periphery of the production region (Flower Mound Shiloh), and an urban site (Hinton). The dominant hydrocarbon species observed in the Barnett Shale region were light alkanes. Analyses of daily, monthly, and hourly patterns showed little variation in relative composition. Observed concentrations were compared to concentrations predicted using a dispersion model (AERMOD) and a spatially resolved inventory of volatile organic compounds (VOC) emissions from natural gas production (Barnett Shale Special Emissions Inventory) prepared by the Texas Commission on Environmental Quality (TCEQ), and other emissions information. The predicted concentrations of VOC due to natural gas production were 0-40% lower than background corrected measurements, after accounting for potential under-estimation of certain emission categories. Hourly and daily variations in observed, background corrected concentrations were primarily explained by variability in meteorology, suggesting that episodic emission events had little impact on hourly averaged concentrations. Total emissions for VOC from natural gas production sources are estimated to be approximately 25,300 tons/yr, when accounting for potential under-estimation of certain emission categories. This region produced, in 2011, approximately 5 bcf/d of natural gas (100 Gg/d) for a VOC to natural gas production ratio (mass basis) of 0.0006.

  8. Mitigating factors on air concentrations of radon emanating from different granite samples

    SciTech Connect

    Qari, T.M.; Mamoon, A.M.; Abdul-Fattah, A.F. )

    1991-11-01

    Continuous exposure to increased air concentrations of radon in living areas is to be avoided according to the Environmental Protection Agency (EPA) and several published reports. Radon concentrations in ambient air are influenced by several factors related to the nature of the radon source itself, environmental conditions, and the presence of mitigating factors, if any. In this study, crushed granite samples of different types, particle diameters, and moisture contents were compared in simplified test systems with regard to radon emanation from the samples. The effects of selected mitigating factors, namely, ventilation and different barriers to diffusion of emanated radon were determined.

  9. High Concentrations of Ozone Air Pollution on Mount Everest: Health Implications for Sherpa Communities and Mountaineers.

    PubMed

    Semple, John L; Moore, G W Kent; Koutrakis, Petros; Wolfson, Jack M; Cristofanelli, Paolo; Bonasoni, Paolo

    2016-12-01

    Semple, John L., G.W. Kent Moore, Petros Koutrakis, Jack M. Wolfson, Paolo Cristofanelli, and Paolo Bonasoni. High concentrations of ozone air pollution on Mount Everest: health implications for Sherpa communities and mountaineers. High Alt Med Biol. 17:365-369, 2016.-Introduction: Populations in remote mountain regions are increasingly vulnerable to multiple climate mechanisms that influence levels of air pollution. Few studies have reported on climate-sensitive health outcomes unique to high altitude ecosystems. In this study, we report on the discovery of high-surface ozone concentrations and the potential impact on health outcomes on Mount Everest and the high Himalaya.

  10. Modeling CO2 air dispersion from gas driven lake eruptions

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Costa, Antonio; Rouwet, Dmitri; Tassi, Franco

    2016-04-01

    The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a theoretical point of view, gas dispersion can be fully studied by solving the complete equations system for mass, momentum and energy transport, in actual practice, different simplified models able to describe only specific phases or aspects have to be used. In order to simulate dispersion of a heavy gas and to assess the consequent hazard we used a model based on a shallow layer approach (TWODEE2). This technique which uses depth-averaged variables to describe the flow behavior of dense gas over complex topography represents a good compromise between the complexity of computational fluid dynamic models and the simpler integral models. Recently the model has been applied for simulating CO2 dispersion from natural gas emissions in Central Italy. The results have shown how the dispersion pattern is strongly affected by the intensity of gas release, the topography and the ambient wind speed. Here for the first time we applied TWODEE2 code to simulate the dispersion of the large CO2 clouds released by limnic eruptions. An application concerns the case of the 1986 event at lake Nyos. Some difficulties for the simulations were related to the lack of quantitative information: gas flux estimations are not well constrained, meteorological conditions are only qualitatively known, the digital model of the terrain is of poor quality. Different scenarios were taken into account in order to reproduce the qualitative observations available for such episode. The observations regard mainly the effects of gas on

  11. Estimates of in situ gas hydrate concentration from resistivity monitoring of gas hydrate bearing sediments during temperature equilibration

    USGS Publications Warehouse

    Riedel, M.; Long, P.E.; Collett, T.S.

    2006-01-01

    As part of Ocean Drilling Program Leg 204 at southern Hydrate Ridge off Oregon we have monitored changes in sediment electrical resistivity during controlled gas hydrate dissociation experiments. Two cores were used, each filled with gas hydrate bearing sediments (predominantly mud/silty mud). One core was from Site 1249 (1249F-9H3), 42.1 m below seafloor (mbsf) and the other from Site 1248 (1248C-4X1), 28.8 mbsf. At Site 1247, a third experiment was conducted on a core without gas hydrate (1247B-2H1, 3.6 mbsf). First, the cores were imaged using an infra-red (IR) camera upon recovery to map the gas hydrate occurrence through dissociation cooling. Over a period of several hours, successive runs on the multi-sensor track (includes sensors for P-wave velocity, resistivity, magnetic susceptibility and gamma-ray density) were carried out complemented by X-ray imaging on core 1249F-9H3. After complete equilibration to room temperature (17-18??C) and complete gas hydrate dissociation, the final measurement of electrical resistivity was used to calculate pore-water resistivity and salinities. The calculated pore-water freshening after dissociation is equivalent to a gas hydrate concentration in situ of 35-70% along core 1249F-9H3 and 20-35% for core 1248C-4X1 assuming seawater salinity of in situ pore fluid. Detailed analysis of the IR scan, X-ray images and split-core photographs showed the hydrate mainly occurred disseminated throughout the core. Additionally, in core 1249F-9H3, a single hydrate filled vein, approximately 10 cm long and dipping at about 65??, was identified. Analyses of the logging-while-drilling (LWD) resistivity data revealed a structural dip of 40-80?? in the interval between 40 and 44 mbsf. We further analyzed all resistivity data measured on the recovered core during Leg 204. Generally poor data quality due to gas cracks allowed analyses to be carried out only at selected intervals at Sites 1244, 1245, 1246, 1247, 1248, 1249, and 1252. With a few

  12. Sensory and chemical characterization of VOC emissions from building products: impact of concentration and air velocity

    NASA Astrophysics Data System (ADS)

    Knudsen, H. N.; Kjaer, U. D.; Nielsen, P. A.; Wolkoff, P.

    The emissions from five commonly used building products were studied in small-scale test chambers over a period of 50 days. The odor intensity was assessed by a sensory panel and the concentrations of selected volatile organic compounds (VOCs) of concern for the indoor air quality were measured. The building products were three floor coverings: PVC, floor varnish on beechwood parquet and nylon carpet on a latex foam backing; an acrylic sealant, and a waterborne wall paint on gypsum board. The impacts of the VOC concentration in the air and the air velocity over the building products on the odor intensity and on the emission rate of VOCs were studied. The emission from each building product was studied under two or three different area-specific ventilation rates, i.e. different ratios of ventilation rate of the test chamber and building product area in the test chamber. The air velocity over the building product samples was adjusted to different levels between 0.1 and 0.3 m s -1. The origin of the emitted VOCs was assessed in order to distinguish between primary and secondary emissions. The results show that it is reasonable after an initial period of up to 14 days to consider the emission rate of VOCs of primary origin from most building products as being independent of the concentration and of the air velocity. However, if the building product surface is sensitive to oxidative degradation, increased air velocity may result in increased secondary emissions. The odor intensity of the emissions from the building products only decayed modestly over time. Consequently, it is recommended to use building products which have a low impact on the perceived air quality from the moment they are applied. The odor indices (i.e. concentration divided by odor threshold) of primary VOCs decayed markedly faster than the corresponding odor intensities. This indicates that the secondary emissions rather than the primary emissions, are likely to affect the perceived air quality in the

  13. Methane gas concentration in soils and ground water, Carbon and Emery Counties, Utah, 1995-2003

    USGS Publications Warehouse

    Stolp, B.J.; Burr, A.L.; Johnson, K.K.

    2006-01-01

    The release of methane gas from coal beds creates the potential for it to move into near-surface environments through natural and human-made pathways. To help ensure the safety of communities and determine the potential effects of development of coal-bed resources, methane gas concentrations in soils and ground water in Carbon and Emery Counties, Utah, were monitored from 1995 to 2003. A total of 420 samples were collected, which contained an average methane concentration of 2,740 parts per million by volume (ppmv) and a median concentration of less than 10 ppmv. On the basis of spatial and temporal methane concentration data collected during the monitoring period, there does not appear to be an obvious, widespread, or consistent migration of methane gas to the near-surface environment.

  14. Photoinduced nucleation: a novel tool for detecting molecules in air at ultra-low concentrations

    DOEpatents

    Katz, Joseph L.; Lihavainen, Heikki; Rudek, Markus M.; Salter, Brian C.

    2002-01-01

    A method and apparatus for determining the presence of molecules in a gas at concentrations of less than about 100 ppb. Light having wavelengths in the range from about 200 nm to about 350 nm is used to illuminate a flowing sample of the gas causing the molecules if present to form clusters. A mixture of the illuminated gas and a vapor is cooled until the vapor is supersaturated so that there is a small rate of homogeneous nucleation. The supersaturated vapor condenses on the clusters thus causing the clusters to grow to a size sufficient to be counted by light scattering and then the clusters are counted.

  15. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  16. Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously

    SciTech Connect

    Meklin, Teija; Reponen, Tina; McKinstry, Craig A.; Cho, Seung H.; Grinshpun, Sergey A.; Nevalainen, Aino; Vepsalainen, Asko; Haugland, Richard A.; Lemasters, Grace; Vesper, Sephen J.

    2007-08-15

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of 36 mold species in dust and in indoor and in outdoor air samples that were taken simultaneously in 17 homes in Cincinnati with no-known water damage. The total spore concentrations in the indoor (I) and outdoor (O) air samples were statistically significantly different and the concentrations in the three sample types of many of the individual species were significantly different (p < 0.05 based on the Wilcoxon Signed Rank Test). The I/O ratios of the averages or geometric means of the individual species were generally less than 1; but these I/O ratios were quite variable ranging from 0.03 for A. sydowii to 1.2 for Acremonium strictum. There were no significant correlations for the 36 specific mold concentrations between the dust samples and the indoor or outdoor air samples (based on the Spearman’s Rho test). The indoor and outdoor air concentrations of 32 of the species were not correlated. Only Aspergillus penicillioides, C. cladosporioides types 1 and 2 and C. herbarum had sufficient data to estimate a correlation at rho > 0.5 with signicance (p < 0.05) In six of these homes, a previous dust sample had been collected and analyzed 2 years earlier. The ERMI© values for the dust samples taken in the same home two years apart were not significantly different (p=0.22) based on Wilcoxon Signed Rank Test.

  17. An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lerner, Brian M.; Gilman, Jessica B.; Aikin, Kenneth C.; Atlas, Elliot L.; Goldan, Paul D.; Graus, Martin; Hendershot, Roger; Isaacman-VanWertz, Gabriel A.; Koss, Abigail; Kuster, William C.; Lueb, Richard A.; McLaughlin, Richard J.; Peischl, Jeff; Sueper, Donna; Ryerson, Thomas B.; Tokarek, Travis W.; Warneke, Carsten; Yuan, Bin; de Gouw, Joost A.

    2017-01-01

    Volatile organic compounds were quantified during two aircraft-based field campaigns using highly automated, whole air samplers with expedited post-flight analysis via a new custom-built, field-deployable gas chromatography-mass spectrometry instrument. During flight, air samples were pressurized with a stainless steel bellows compressor into electropolished stainless steel canisters. The air samples were analyzed using a novel gas chromatograph system designed specifically for field use which eliminates the need for liquid nitrogen. Instead, a Stirling cooler is used for cryogenic sample pre-concentration at temperatures as low as -165 °C. The analysis system was fully automated on a 20 min cycle to allow for unattended processing of an entire flight of 72 sample canisters within 30 h, thereby reducing typical sample residence times in the canisters to less than 3 days. The new analytical system is capable of quantifying a wide suite of C2 to C10 organic compounds at part-per-trillion sensitivity. This paper describes the sampling and analysis systems, along with the data analysis procedures which include a new peak-fitting software package for rapid chromatographic data reduction. Instrument sensitivities, uncertainties and system artifacts are presented for 35 trace gas species in canister samples. Comparisons of reported mixing ratios from each field campaign with measurements from other instruments are also presented.

  18. Daily variation of radon gas and its short-lived progeny concentration near ground level and estimation of aerosol residence time

    NASA Astrophysics Data System (ADS)

    M, Mohery; A, M. Abdallah; A, Ali; S, S. Baz

    2016-05-01

    Atmospheric concentrations of radon (222Rn) gas and its short-lived progenies 218Po, 214Pb, and 214Po were continuously monitored every four hours at the ground level in Jeddah city, Kingdom of Saudi Arabia. The measurements were performed three times every week, starting from November 2014 to October 2015. A method of electrostatic precipitation of positively charged 218Po and 214Po by a positive voltage was applied for determining 222Rn gas concentration. The short-lived 222Rn progeny concentration was determined by using a filter holder connected with the alpha-spectrometric technique. The meteorological parameters (relative air humidity, air temperature, and wind speed) were determined during the measurements of 222Rn and its progeny concentrations. 222Rn gas as well as its short-lived progeny concentration display a daily and seasonal variation with high values in the night and early morning hours as compared to low values at noon and in the afternoon. The observed monthly atmospheric concentrations showed a seasonal trend with the highest values in the autumn/winter season and the lowest values in the spring/summer season. Moreover, and in parallel with alpha-spectrometric measurements, a single filter-holder was used to collect air samples. The deposited activities of 214Pb and the long-lived 222Rn daughter 210Pb on the filter were measured with the gamma spectrometric technique. The measured activity concentrations of 214Pb by both techniques were found to be relatively equal largely. The highest mean seasonally activity concentrations of 210Pb were observed in the autumn/winter season while the lowest mean were observed in the spring/summer season. The mean residence time (MRT) of aerosol particles in the atmospheric air could be estimated from the activity ratios of 210Pb/214Pb. Project supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (Grant No. 291/965/1434).

  19. [Spatiotemporal distribution of negative air ion concentration in urban area and related affecting factors: a review].

    PubMed

    Huang, Xiang-Hua; Wang, Jian; Zeng, Hong-Da; Chen, Guang-Shui; Zhong, Xian-Fang

    2013-06-01

    Negative air ion (NAI) concentration is an important indicator comprehensively reflecting air quality, and has significance to human beings living environment. This paper summarized the spatiotemporal distribution features of urban NAI concentration, and discussed the causes of these features based on the characteristics of the environmental factors in urban area and their effects on the physical and chemical processes of NAI. The temporal distribution of NAI concentration is mainly controlled by the periodic variation of solar radiation, while the spatial distribution of NAI concentration along the urban-rural gradient is mainly affected by the urban aerosol distribution, underlying surface characters, and urban heat island effect. The high NAI concentration in urban green area is related to the vegetation life activities and soil radiation, while the higher NAI concentration near the water environment is attributed to the water molecules that participate in the generation of NAI through a variety of ways. The other environmental factors can also affect the generation, life span, component, translocation, and distribution of NAI to some extent. To increase the urban green space and atmospheric humidity and to maintain the soil natural attributes of underlying surface could be the effective ways to increase the urban NAI concentration and improve the urban air quality.

  20. Radon daughters' concentration in air and exposure of joggers at the university campus of Bangalore, India.

    PubMed

    Ashok, G V; Nagaiah, N; Shiva Prasad, N G

    2008-09-01

    The concentration of radon daughters in outdoor air was measured continuously from January 2006 to December 2006 near the Department of Physics, Bangalore University campus, Bangalore. The concentration was measured by collecting air samples at a height of 1 m above the ground level on a glass micro fibre filter paper with a known air flow rate. The results show that the radon progeny concentration exhibits distinct seasonal and diurnal variations that are predominantly caused by changes in the temperature gradient at the soil-atmosphere interface. The concentration was found to be high from 20.00 to 8.00 hrs, when the turbulence mixing was minimum and low during the rest of the time. In terms of the monthly concentration, January was found to be the highest with September/August being the lowest. The diurnal variations in the concentrations of radon progeny were found to exhibit positive correlation with the relative humidity and anti-correlation with the atmospheric temperature. From the measured concentration, an attempt was made to establish the annual effective dose to the general public of the region and was found to be 0.085 mSv/a. In addition, an attempt was also made for the first time to study the variation of inhalation dose with respect to the physical activity levels. Results show that in the light of both the effect of chemical pollutants and radiation dose due to inhalation of radon daughters, evening jogging is advisable.

  1. Ambient air concentration of sulfur dioxide affects flight activity in bees

    SciTech Connect

    Ginevan, M.E.; Lane, D.D.; Greenberg, L.

    1980-10-01

    Three long-term (16 to 29 days) low-level (0.14 to 0.28 ppM) sulfur dioxide fumigations showed that exposure tothis gas has deleterious effects on male sweat bees (Lasioglossum zephrum). Although effects on mortality were equivocal, flight activity was definitely reduced. Because flight is necessary for successful mating behavior, the results suggest that sulfur dioxide air pollution could adversely affect this and doubtless other terrestrial insects.

  2. Electronic Excitation in Air and Carbon Dioxide Gas

    DTIC Science & Technology

    2009-09-01

    processes in nonequilibrium low-temperature plasma of chemical compositions (air and carbon dioxide mixtures) frequently occurring in different aerospace...presents the problem of data processing automation. This problem is considered on the example of prediction of oscillator strengths of atomic species...elementary processes including into RC models .................................... 8 3.1 Ionization at collision of atoms and molecules with electrons

  3. Locating and quantifying gas emission sources using remotely obtained concentration data

    NASA Astrophysics Data System (ADS)

    Hirst, Bill; Jonathan, Philip; González del Cueto, Fernando; Randell, David; Kosut, Oliver

    2013-08-01

    We describe a method for detecting, locating and quantifying sources of gas emissions to the atmosphere using remotely obtained gas concentration data; the method is applicable to gases of environmental concern. We demonstrate its performance using methane data collected from aircraft. Atmospheric point concentration measurements are modelled as the sum of a spatially and temporally smooth atmospheric background concentration, augmented by concentrations due to local sources. We model source emission rates with a Gaussian mixture model and use a Markov random field to represent the atmospheric background concentration component of the measurements. A Gaussian plume atmospheric eddy dispersion model represents gas dispersion between sources and measurement locations. Initial point estimates of background concentrations and source emission rates are obtained using mixed ℓ2 - ℓ1 optimisation over a discretised grid of potential source locations. Subsequent reversible jump Markov chain Monte Carlo inference provides estimated values and uncertainties for the number, emission rates and locations of sources unconstrained by a grid. Source area, atmospheric background concentrations and other model parameters, including plume model spreading and Lagrangian turbulence time scale, are also estimated. We investigate the performance of the approach first using a synthetic problem, then apply the method to real airborne data from a 1600 km2 area containing two landfills, then a 225 km2 area containing a gas flare stack.

  4. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  5. Soil gas 222Rn concentration in northern Germany and its relationship with geological subsurface structures.

    PubMed

    Künze, N; Koroleva, M; Reuther, C-D

    2013-01-01

    (222)Rn in soil gas activity was measured across the margins of two active salt diapirs in Schleswig-Holstein, northern Germany, in order to reveal the impact of halokinetic processes on the soil gas signal. Soil gas and soil sampling were carried out in springtime and summer 2011. The occurrence of elevated (222)Rn in soil gas concentrations in Schleswig-Holstein has been ascribed to radionuclide rich moraine boulder material deposits, but the contribution of subsurface structures has not been investigated so far. Reference samples were taken from a region known for its granitic moraine boulder deposits, resulting in (222)Rn in soil gas activity of 40 kBq/m(3). The values resulting from profile sampling across salt dome margins are of the order of twice the moraine boulder material reference values and exceed 100 kBq/m(3). The zones of elevated concentrations are consistent throughout time despite variations in magnitude. One soil gas profile recorded in this work expands parallel to a seismic profile and reveals multiple zones of elevated (222)Rn activities above a rising salt intrusion. The physical and chemical properties of salt have an impact on the processes influencing gas migration and surface near radionuclide accumulations. The rise of salt supports the breakup of rock components thus leading to enhanced emanation. This work provides a first approach regarding the halokinetic contribution to the (222)Rn in soil gas occurrence and a possible theoretical model which summarizes the relevant processes was developed.

  6. A new method for the rapid determination of volatile organic compound breakthrough times for a sorbent at concentrations relevant to indoor air quality.

    PubMed

    Scahill, John; Wolfrum, Edward J; Michener, William E; Bergmann, Michael; Blake, Daniel M; Watt, Andrew S

    2004-01-01

    The use of sorbents has been proposed to remove volatile organic compounds (VOCs) present in ambient air at concentrations in the parts-per-billion (ppb) range, which is typical of indoor air quality applications. Sorbent materials, such as granular activated carbon and molecular sieves, are used to remove VOCs from gas streams in industrial applications, where VOC concentrations are typically in the parts-per-million range. A method for evaluating the VOC removal performance of sorbent materials using toluene concentrations in the ppb range is described. Breakthrough times for toluene at concentrations from 2 to 7500 ppb are presented for a hydrophobic molecular sieve at 25%) relative humidity. By increasing the ratio of challenge gas flow rate to the mass of the sorbent bed and decreasing both the mass of sorbent in the bed and the sorbent particle size, this method reduces the required experimental times by a factor of up to several hundred compared with the proposed American Society of Heating, Refrigerating, and Air-Conditioning Engineers method, ASHRAE 145P, making sorbent performance evaluation for ppb-range VOC removal more convenient. The method can be applied to screen sorbent materials for application in the removal of VOCs from indoor air.

  7. Rapid air titration method for determining SO/sub 2/ concentration in inhalation chambers

    SciTech Connect

    Snyder, E.A.; Palmes, E.D.

    1985-06-01

    A rapid air titration method for determining SO/sub 2/ concentration in inhalation chambers has been validated using the pararosaniline-formaldehyde (PRA) method of West and Gaeke. This air-titration (iodate) method is an adaptation of iodometric methods using a starch indicator. Potassium iodate and an excess of potassium iodide are used in the reaction. Sampling is completed in ten minutes or less and concentration is calculated by use of a simple formula. Linear equations were derived over the range of concentrations from 0.5 to 100 ppm SO/sub 2/ for uncorrected iodate bubbler results, data corrected for tandem bubbler concentrations and data corrected for mean iodate bubbler efficiency. Linear correlation with the PRA method over this range was 0.999 for all three sets of data.

  8. Particle-phase dry deposition and air-soil gas-exchange of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey.

    PubMed

    Cetin, Banu; Odabasi, Mustafa

    2007-07-15

    The particle-phase dry deposition and soil-air gas-exchange of polybrominated diphenyl ethers (PBDEs) were measured in Izmir, Turkey. Relative contributions of different deposition mechanisms (dry particle, dry gas, and wet deposition) were also determined. BDE-209 was the dominating congener in all types of samples (air, deposition, and soil). Average dry deposition fluxes of total PBDEs (sigma7PBDE) for suburban and urban sites were 67.6 and 128.8 ng m(-2) day(-1), respectively. Particulate dry deposition velocities ranged from 11.5 (BDE-28) to 3.9 cm s(-1) (BDE-209) for suburban sites and 7.8 (BDE-28) to 2.8 cm s(-1) (BDE-154) for urban sites with an overall average of 5.8 +/- 3.7 cm s(-1). The highest sigma7PBDE concentration (2.84 x 10(6) ng kg(-1) dry wt) was found around an electronic factory among the 13 soil samples collected from different sites. The concentration in a bag filter dust from a steel plant was also high (2.05 x 10(5) ng kg(-1)), indicating that these industries are significant PBDE sources. Calculated net soil-air gas exchange flux of sigma7PBDE ranged from 11.8 (urban) to 23.4 (industrial) ng m(-2) day(-1) in summer, while in winter it ranged from 3.2 (urban) to 11.6 (suburban) ng m(-2) day(-1). All congeners were deposited at all three sites in winter and summer. It was estimated that the wet deposition also contributes significantly to the total PBDE deposition to soil. Dry particle, wet, and gas deposition contribute 60, 32, and 8%, respectively, to annual PBDE flux to the suburban soil.

  9. Theoretical model for diffusive greenhouse gas fluxes estimation across water-air interfaces measured with the static floating chamber method

    NASA Astrophysics Data System (ADS)

    Xiao, Shangbin; Wang, Chenghao; Wilkinson, Richard Jeremy; Liu, Defu; Zhang, Cheng; Xu, Wennian; Yang, Zhengjian; Wang, Yuchun; Lei, Dan

    2016-07-01

    Aquatic systems are sources of greenhouse gases on different scales, however the uncertainty of gas fluxes estimated using popular methods are not well defined. Here we show that greenhouse gas fluxes across the air-water interface of seas and inland waters are significantly underestimated by the currently used static floating chamber (SFC) method. We found that the SFC CH4 flux calculated with the popular linear regression (LR) on changes of gas concentration over time only accounts for 54.75% and 35.77% of the corresponding real gas flux when the monitoring periods are 30 and 60 min respectively based on the theoretical model and experimental measurements. Our results do manifest that nonlinear regression models can improve gas flux estimations, while the exponential regression (ER) model can give the best estimations which are close to true values when compared to LR. However, the quadratic regression model is proved to be inappropriate for long time measurements and those aquatic systems with high gas emission rate. The greenhouse gases effluxes emitted from aquatic systems may be much more than those reported previously, and models on future scenarios of global climate changes should be adjusted accordingly.

  10. A Comparison of Statistical Techniques for Combining Modeled and Observed Concentrations to Create High-Resolution Ozone Air Quality Surfaces

    EPA Science Inventory

    Air quality surfaces representing pollutant concentrations across space and time are needed for many applications, including tracking trends and relating air quality to human and ecosystem health. The spatial and temporal characteristics of these surfaces may reveal new informat...

  11. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  12. Evaluation of anthropogenic influence on thermodynamics, gas and aerosol composition of city air

    NASA Astrophysics Data System (ADS)

    Uzhegova, Nina; Belan, Boris; Antokhin, Pavel; Zhidovkhin, Evgenii; Ivlev, Georgii; Kozlov, Artem; Fofonov, Aleksandr

    2010-05-01

    In the last 40-50 years there is a global tendency of urbanisation, which is a consequence of most countries' economical development. Concurrently, the issue of environment's ecological state has become critical. Urban air pollution is among the most important ecological problems nowadays. World Health Organization (WHO) points out certain "classical" polluting agents: carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2), troposphere ozone (O3) (studied here), as well as lead, carbon dioxide (CO2), aldehydes, soot, benzpyrene and dredges (including dust, haze and smoke) [1]. An evaluation of antropogenic component's weight in the thermodynamical conditions and gas and aerosol composition of a city's atmosphere (by the example of Tomsk) is given in this paper. Tomsk is located at the South of West Siberia and is the administrative center of Tomsk region. The city's area is equal to 294,6 km2. Its population is 512.6 thousands of people. The overall number of registered motor vehicles in the city in 2008 was 131 700. That is, every fourth city inhabitant has a personal car. From 2002 to 2008 the number of motor vehicles in Tomsk has increased by 25 thousands units [2]. This increase consists mostly of passenger cars. There is also a positive trend in fuel consumtion by the city's industries and motor vehicles - from 2004 to 2007 it has increased by 10%. Such a quick rate of transport quantity's increase in the city provides reason to suggest an unfavorable ecological situation in Tomsk. For this study we have used the AKV-2 mobile station designed by the SB RAS Institute of Atmospheric Optics. The station's equipment provides the following measurements [3]: air temperature and humidity; aerosol disperse composition in 15 channels with a particle size range of 0.3-20 µm by use of the Grimm-1.108 aerosol spectrometer; NO, NO2, O3, SO2, CO, CO2 concentration. This paper describes a single experiment conducted in Tomsk. Date of

  13. Microtrap assembly for greenhouse gas and air pollution monitoring

    DOEpatents

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  14. Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery.

    PubMed

    Jin, Zhengyu; Gong, Hui; Wang, Kaijun

    2015-01-01

    The idea of sewage concentration is gradually being accepted as a promising and sustainable way of wastewater resource recovery. In this study, Hybrid coagulation microfiltration (HCM) with air backflushing (AB) was investigated to effectively concentrate organic matter. Compared to direct sewage microfiltration, the addition of coagulation process improved the filtration performance with less fouling trends and better concentration efficiency. The use of AB exhibited even better performance within the same 7-h preliminary concentration period by reducing to one tenth of the resistance and collecting around four times as much organic matter into the product concentrate as in direct sewage microfiltration. During 93-h lab-scale continuous concentration by HCM with AB, a product concentrate with the COD concentration over 15,000 mg/L was achieved and around 70% of total influent organic matter could be recovered. Compared to Direct Membrane Filtration (DMF) with Chemically Enhanced Backwash (CEB), HCM with AB achieved better concentration efficiency with higher concentration extent and concentration velocity along with less organic matter mineralization and the more concentrated product despite with lower organic matter retention. HCM with AB could be a promising effective sewage organic matter concentration for resource recovery under optimization.

  15. Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production

    NASA Astrophysics Data System (ADS)

    Popov, N. A.

    2016-08-01

    The results of a numerical study on kinetic processes initiated by a pulsed nanosecond discharge in air at high specific deposited energy, when the dissociation degree of oxygen molecules is high, are presented. The calculations of the temporal dynamics of the electron concentration, density of atomic oxygen, vibrational distribution function of nitrogen molecules, and gas temperature agree with the experimental data. It is shown that quenching of electronically excited states of nitrogen N2(B3Πg), N2(C3Πu), N2(a‧1 Σ \\text{u}- ) by oxygen molecules leads to the dissociation of O2. This conclusion is based on the comparison of calculated dynamics of atomic oxygen in air, excited by a pulsed nanosecond discharge, with experimental data. In air plasma at a high dissociation degree of oxygen molecules ([O]/[O2] > 10%), relaxation of the electronic energy of atoms and molecules in reactions with O atoms becomes extremely important. Active production of NO molecules and fast gas heating in the discharge plasma due to the quenching of electronically excited N2(B3Πg, C3Πu, a‧1 Σ \\text{u}- ) molecules by oxygen atoms is notable. Owing to the high O atom density, electrons are effectively detached from negative ions in the discharge afterglow. As a result, the decay of plasma in the afterglow is determined by electron-ion recombination, and the electron density remains relatively high between the pulses. An increase in the vibrational temperature of nitrogen molecules at the periphery of the plasma channel at time delay t = 1-30 μs after the discharge is obtained. This is due to intense gas heating and, as a result, gas-dynamic expansion of a hot gas channel. Vibrationally excited N2(v) molecules produced near the discharge axis move from the axial region to the periphery. Consequently, at the periphery the vibrational temperature of nitrogen molecules is increased.

  16. Temperature measurements behind reflected shock waves in air. [radiometric measurement of gas temperature in self-absorbing gas flow

    NASA Technical Reports Server (NTRS)

    Bader, J. B.; Nerem, R. M.; Dann, J. B.; Culp, M. A.

    1972-01-01

    A radiometric method for the measurement of gas temperature in self-absorbing gases has been applied in the study of shock tube generated flows. This method involves making two absolute intensity measurements at identical wavelengths, but for two different pathlengths in the same gas sample. Experimental results are presented for reflected shock waves in air at conditions corresponding to incident shock velocities from 7 to 10 km/s and an initial driven tube pressure of 1 torr. These results indicate that, with this technique, temperature measurements with an accuracy of + or - 5 percent can be carried out. The results also suggest certain facility related problems.

  17. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOEpatents

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  18. Air-Water Gas Transfer in Coastal Waters

    DTIC Science & Technology

    2016-06-07

    water currents and turbulence, air and water temperatures , visible and infrared (IR) radiative fluxes, the visco-elastic properties of surface films, and...turbulence at the ocean interface. Measuring the spatiotemporal temperature distribution on top of the aqueous mass boundary layer, heat patterns can be...interface is obtained through quantitative analysis of infrared image sequences of the water surface temperature . Our main focus during the last year

  19. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  20. Modeling and Impacts of Traffic Emissions on Air Toxics Concentrations near Roadways

    EPA Science Inventory

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency’s AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwin...

  1. Gas carburizing of steel with furnace atmospheres formed in situ from methane and air and from butane and air

    NASA Astrophysics Data System (ADS)

    Stickels, C. A.; Mack, C. M.; Pieprzak, J. A.

    1992-01-01

    Carburizing experiments were conducted at 927 °C (1700 °F) and 843 °C (1550 °F) using furnace atmospheres formed from methane and air and from butane and air introduced directly into the carburizing furnace. Gas flow rates were low to promote equilibration of the reaction products within the furnace. The air flow rate was held constant while the methane or butane flow was automatically regulated to maintain a constant oxygen potential, as measured by a zirconia oxygen sensor, within the furnace. In comparing the results of these experiments with earlier results obtained using propane and air, several differences were noted: (a) The methane content of the furnace atmosphere, measured by infrared analysis, was about twice as great when methane was the feed gas rather than propane or butane. This was true despite the fact that the mean residence time of the gas within the furnace was greater in the methane experiments. Methane appears to be less effective than propane or butane in reducing the CO2 and H2O contents to the levels required for carburizing. (b) There was a greater tendency for the CO content of the furnace atmosphere to decrease at high carbon potentials when methane is used instead of propane or butane. The decrease in CO content is due to hydrogen dilution caused by sooting in the furnace vestibule. These differences in behavior make propane or butane better suited than methane for in situ generation of carburizing atmospheres. However, there is no difference in the amount of carburizing occurring at a specified carbon potential when methane, propane, or butane are used as the feed gas in this process.

  2. Simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters by gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Akyüz, Mehmet

    2008-05-01

    A gas chromatography-mass spectrometry (GC-MS) method has been proposed for the simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters (PMs). The method includes collection of the particulate matters (PM2.5 and PM10) using dichotomous Partisol 2025 sampler followed by extraction of the compounds into acidic solution, and pre-concentration of the compounds by percolating the air samples through the acidic solution, then ion-pair extraction of amines with bis-2-ethylhexylphosphate and derivatisation with isobutyl chloroformate prior to their GC-MS analysis in both electron impact and positive and negative ion chemical ionisation mode as their isobutyloxycarbonyl (isoBOC) derivatives. In the present study, ambient air and airborne particulate samples collected in Zonguldak province during summer and winter times of 2006-2007 were analysed for aliphatic and aromatic amines by the proposed method and the method was shown to be suitable for the simultaneous determination of these compounds at the levels of pg m-3 in air and airborne particulate samples. The seasonal distributions of bioactive amines in concentrations in ambient air and airborne PMs were evaluated as they are significant for the estimation of their effects on the environment and human health. The concentration levels of water soluble amines fluctuate significantly within a year with higher means and peak concentrations, probably due to the increased emissions from coal-fired domestic and central heating, in the winter times compared to the summer times. The results indicated that the relative amine content in particulates modulates with molecular mass and time of the year and the relative amine content especially in fine fractions of inhalable airborne particulates increases with the molecular mass of species but decreases with temperature.

  3. Features of an underexpanded pulsed impact gas-dispersed jet with a high particle concentration

    NASA Astrophysics Data System (ADS)

    Sadin, D. V.; Lyubarskii, S. D.; Gravchenko, Yu. A.

    2017-01-01

    We have reported on the results of a numerical simulation of the inflow of an underexpanded pulsed gas-dispersed jet with a high particle concentration onto a rigid obstacle unbounded in the transverse direction. The characteristic features of such interaction, in particular, the anomalous formation of the shock-wave structure of the two-phase flow at the subsonic velocity of the carrier gas and the evolution of self-sustained oscillations, have been investigated.

  4. A spherical-structure based fiber sensor for simultaneous measurement of ammonia gas concentration and temperature

    NASA Astrophysics Data System (ADS)

    Han, Wei; Liu, Dejun; Lian, Xiaokang; Mallik, Arun Kumar; Wei, Fangfang; Sun, Lei; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2016-11-01

    A novel fiber sensor for simultaneous measurement of ammonia gas concentration and temperature is proposed. The sensor is fabricated from two sections of single-mode fiber which are cleaved and then a fusion splicer and which is then used to fabricate spherically shaped structures at the end facets. The fusion arc is used to soften the glass which naturally assumes a spherical shape due to surface tension. A short section of multimode fiber is then fusion spliced with the two spherical-shaped ends of the single mode fibers so both the core modes and the cladding modes of the multimode fiber are excited to create two kinds of interference dips: One is created by core modes only which is not sensitive to ammonia gas since the core is isolated by the cladding so the effective refractive index of the core does not change when the refractive index of the environment changes, The other dip is created by the coupling of the core mode and cladding mod, which with a suitable coating is sensitive to ammonia gas. Silica sol-gel was prepared and coated on the fiber surface as a sensing layer for detecting ammonia gas concentration. The experimental results show that the two dips have linear wavelength shift responses but with different sensitivities to ammonia gas concentration (5.03×10-4nm/ppm for dip1 and -2.5×10- 5nm/ppm for dip2) and temperature (0.0067 nm/ºC for dip1 and 0.0149 nm/ºC for dip2. By constructing a wavelength shifts matrix for the two dips vs. ammonia gas concentration and temperature, both the ammonia gas concentration and temperature can be measured simultaneously.

  5. Preparation of accurate, low-concentration gas cylinder standards by cryogenic trapping of a permeation tube gas stream.

    PubMed

    Gameson, Lyn; Rhoderick, George C; Guenther, Franklin R

    2012-03-20

    National and international measurements are underpinned by accurate, low concentration standards. These standards are typically produced gravimetrically, or volumetrically, by a series of dilutions of the pure material by the balance gas. This blend technique is time-consuming and may involve the handling of pure, hazardous material. These problems have been overcome by developing a novel blend technique whereby the process gas stream, from an appropriate permeation tube, was cryogenically trapped in an aluminum cylinder. The permeation rate of the component is monitored by real time mass determinations using a magnetic suspension balance system. With the combination of the real-time calculated permeation rate, plus the use of a dilution system, a one step production of a very low concentration of the minor component in nitrogen gas can be achieved. This method was used to prepare low μmol/mol standards of propane, a known stable compound. Analysis of a conventional gravimetrically prepared 10 μmol/mol propane standard and a cryogenically prepared standard via a permeation gas stream resulted in agreement between the two of <0.1% at 10 μmol/mol, confirming the accuracy of the permeation method. After confirmation of the validity of the permeation/cryogenic trapping system, the propane permeation tube was replaced with a methyl mercaptan tube (a toxic, reactive compound) in balance nitrogen. After cryogenically trapping the methyl mercaptan output stream from the permeation system into a cylinder, the output stream and the cylinder gas mixture were analyzed. The results showed agreement of <0.6% for methyl mercaptan at 5, 10, 15, and 20 μmol/mol to the expected blend concentration, thereby demonstrating the validity of the method.

  6. Near-surface physics during convection affecting air-water gas transfer

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  7. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures

    SciTech Connect

    Huang, Zuohua; Zhang, Yong; Zeng, Ke; Liu, Bing; Wang, Qian; Jiang, Deming

    2006-07-15

    Laminar flame characteristics of natural gas-hydrogen-air flames were studied in a constant-volume bomb at normal temperature and pressure. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to natural gas (volume fraction from 0 to 100%) and equivalence ratios (f from 0.6 to 1.4). The influence of stretch rate on flame was also analyzed. The results show that, for lean mixture combustion, the flame radius increases with time but the increasing rate decreases with flame expansion for natural gas and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for natural gas and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for natural gas-air, hydrogen-air, and natural gas-hydrogen-air flames. Laminar burning velocities increase exponentially with the increase of hydrogen fraction in mixtures, while the Markstein length decreases and flame instability increases with the increase of hydrogen fractions in mixture. For a fixed hydrogen fraction, the Markstein number shows an increase and flame stability increases with the increase of equivalence ratios. Based on the experimental data, a formula for calculating the laminar burning velocities of natural gas-hydrogen-air flames is proposed. (author)

  8. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic.

    PubMed

    Dickerson, Aisha S; Rahbar, Mohammad H; Bakian, Amanda V; Bilder, Deborah A; Harrington, Rebecca A; Pettygrove, Sydney; Kirby, Russell S; Durkin, Maureen S; Han, Inkyu; Moyé, Lemuel A; Pearson, Deborah A; Wingate, Martha Slay; Zahorodny, Walter M

    2016-07-01

    Lead, mercury, and arsenic are neurotoxicants with known effects on neurodevelopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder apparent by early childhood. Using data on 4486 children with ASD residing in 2489 census tracts in five sites of the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring (ADDM) Network, we used multi-level negative binomial models to investigate if ambient lead, mercury, and arsenic concentrations, as measured by the US Environmental Protection Agency National-Scale Air Toxics Assessment (EPA-NATA), were associated with ASD prevalence. In unadjusted analyses, ambient metal concentrations were negatively associated with ASD prevalence. After adjusting for confounding factors, tracts with air concentrations of lead in the highest quartile had significantly higher ASD prevalence than tracts with lead concentrations in the lowest quartile (prevalence ratio (PR) = 1.36; 95 '% CI: 1.18, 1.57). In addition, tracts with mercury concentrations above the 75th percentile (>1.7 ng/m(3)) and arsenic concentrations below the 75th percentile (≤0.13 ng/m(3)) had a significantly higher ASD prevalence (adjusted RR = 1.20; 95 % CI: 1.03, 1.40) compared to tracts with arsenic, lead, and mercury concentrations below the 75th percentile. Our results suggest a possible association between ambient lead concentrations and ASD prevalence and demonstrate that exposure to multiple metals may have synergistic effects on ASD prevalence.

  9. Determining the long-term effects of H₂S concentration, relative humidity and air temperature on concrete sewer corrosion.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L

    2014-11-15

    Many studies of sewer corrosion are performed in accelerated conditions that are not representing the actual corrosion processes. This study investigated the effects of various factors over 3.5 years under controlled conditions simulating the sewer environment. Concrete coupons prepared from precorroded sewers were exposed, both in the gas phase and partially submerged in wastewater, in laboratory controlled corrosion chambers. Over the 45 month exposure period, three environmental factors of H2S concentration, relative humidity and air temperature were controlled at different levels in the corrosion chambers. A total of 36 exposure conditions were investigated to determine the long term effects of these factors by regular retrieval of concrete coupons for detailed analysis of surface pH, corrosion layer sulfate levels and concrete loss. Corrosion rates were also determined for different exposure periods. It was found that the corrosion rate of both gas-phase and partially-submerged coupons was positively correlated with the H2S concentration in the gas phase. Relative humidity played also a role for the corrosion activity of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as the surfaces of these coupons were saturated due to capillary suction of sewage on the coupon surface. The effect of temperature on corrosion activity varied and possibly the acclimation of corrosion-inducing microbes to temperature mitigated effects of that factor. It was apparent that biological sulfide oxidation was not the limiting step of the overall corrosion process. These findings provide real insights into the long-term effects of these key environmental factors on the sewer corrosion processes.

  10. Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers.

    PubMed

    Xie, Peng; Lin, Huichuan; Liu, Yong; Li, Baojun

    2014-10-20

    We present a waveguide coupling approach for planar waveguide solar concentrator. In this approach, total internal reflection (TIR)-based symmetric air prisms are used as couplers to increase the coupler reflectivity and to maximize the optical efficiency. The proposed concentrator consists of a line focusing cylindrical lens array over a planar waveguide. The TIR-based couplers are located at the focal line of each lens to couple the focused sunlight into the waveguide. The optical system was modeled and simulated with a commercial ray tracing software (Zemax). Results show that the system used with optimized TIR-based couplers can achieve 70% optical efficiency at 50 × geometrical concentration ratio, resulting in a flux concentration ratio of 35 without additional secondary concentrator. An acceptance angle of ± 7.5° is achieved in the x-z plane due to the use of cylindrical lens array as the primary concentrator.

  11. CACD (Complex Air Cleaning Devices) of the GTE (Gas turbine electrostation)-110: Problems and solutions

    NASA Astrophysics Data System (ADS)

    Budakov, I. V.; Neuimin, V. M.

    2015-12-01

    The paper considers CACD of the compressor of the GTE-110 gas turbine. The CACD efficiency has been tested under different conditions of the GTE-325 of the Ivanovo combined cycle plant (CCP) JSC INTER RAO-Electrogeneration Exploitation. It sets out the requirements for the dust collector, de-icing system, and air intake tract CACD. De-icing and air preparation methods are shown.

  12. Comparative evaluation of outcomes of phacoemulsification in vitrectomized eyes: silicone oil versus air/gas group.

    PubMed

    Titiyal, Jeewan S; Agarwal, Esha; Angmo, Dewang; Sharma, Namrata; Kumar, Atul

    2016-08-02

    The purpose of this study is to comparatively evaluate the morphology of cataract, intraoperative and postoperative complications (IPC), and surgical outcomes of phacoemulsification in post 23G vitrectomized eyes in silicone oil versus air/gas group. This prospective interventional clinical study took place in the Dr. RP Centre for Ophthalmic Sciences, AIIMS, New Delhi, India. Eighty-nine eyes of 89 consecutive vitrectomized patients with cataract were included. All underwent phacoemulsification and evaluated for cataract morphology, surgical difficulties, IPC, visual acuity, and specular count. Mean age of patients was 50.24 ± 15.19 years. There were 65 males and 24 females and 48 eyes in silicone oil group and 41 in air/gas group. Combination type was the commonest morphology seen in both silicone oil (52.08 %) and air/gas group (70.33 %) followed by posterior subcapsular cataract (PSC) in 31.25 % silicone group and 12.2 % air/gas group. Posterior capsular plaque (PCP) was seen in 41.67 % of silicone oil versus 7.32 % air/gas group; p < 0.005. Pupillary abnormalities were significantly more in oil (31.25 %) than in air/gas group (9.76 %); p = 0.014. Mean duration between vitrectomy and phacoemulsification in oil group versus air/gas group was 8.39 ± 4.7 months and 10.9 ± 5.22 months, respectively; p < 0.005. Mean postoperative logMAR visual acuity was better in air/gas (0.43 ± 0.25) than in oil (0.66 ± 0.29) group, p < 0.005. There was no significant difference in mean endothelial cell loss postoperatively in either groups (p = 0.25). Morphology of cataract differs in the two groups with PSC being more common in oil group. The mean time of cataract onset was significantly less in patients with oil group, and poor visual outcome in oil group may be attributable to the increased PCP noted.

  13. Size distribution and concentration of soot generated in oil and gas-fired residential boilers under different combustion conditions

    NASA Astrophysics Data System (ADS)

    Jiménez, Santiago; Barroso, Jorge; Pina, Antonio; Ballester, Javier

    2016-05-01

    In spite of the relevance of residential heating burners in the global emission of soot particles to the atmosphere, relatively little information on their properties (concentration, size distribution) is available in the literature, and even less regarding the dependence of those properties on the operating conditions. Instead, the usual procedure to characterize those emissions is to measure the smoke opacity by several methods, among which the blackening of a paper after filtering a fixed amount of gas (Bacharach test) is predominant. In this work, the size distributions of the particles generated in the combustion of a variety of gaseous and liquid fuels in a laboratory facility equipped with commercial burners have been measured with a size classifier coupled to a particle counter in a broad range of operating conditions (air excesses), with simultaneous determination of the Bacharach index. The shape and evolution of the distribution with progressively smaller oxygen concentrations depends essentially on the state of the fuel: whereas the combustion of the gases results in monomodal distributions that 'shift' towards larger diameters, in the case of the gas-oils an ultrafine mode is always observed, and a secondary mode of coarse particle grows in relevance. In both cases, there is a strong, exponential correlation between the total mass concentration and the Bacharach opacity index, quite similar for both groups of fuels. The empirical expressions proposed may allow other researchers to at least estimate the emissions of numerous combustion facilities routinely characterized by their smoke opacities.

  14. Novel method for online monitoring of dissolved N2O concentrations through a gas stripping device.

    PubMed

    Mampaey, Kris E; van Dongen, Udo G J M; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2015-01-01

    Nitrous oxide emissions from wastewater treatment plants are currently measured by online gas phase analysis or grab sampling from the liquid phase. In this study, a novel method is presented to monitor the liquid phase N2O concentration for aerated as well as non-aerated conditions/reactors, following variations both in time and in space. The monitoring method consists of a gas stripping device, of which the measurement principle is based on a continuous flow of reactor liquid through a stripping flask and subsequent analysis of the N2O concentration in the stripped gas phase. The method was theoretically and experimentally evaluated for its fit for use in the wastewater treatment context. Besides, the influence of design and operating variables on the performance of the gas stripping device was addressed. This method can easily be integrated with online off-gas measurements and allows to better investigate the origin of the gas emissions from the treatment plant. Liquid phase measurements of N2O are of use in mitigation of these emissions. The method can also be applied to measure other dissolved gasses, such as methane, being another important greenhouse gas.

  15. Particle-phase concentrations of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in southern Germany

    PubMed Central

    Baumbach, Günter; Kuch, Bertram; Scheffknecht, Günter

    2010-01-01

    An important source of polycyclic aromatic hydrocarbons (PAHs) in residential areas, particularly in the winter season, is the burning process when wood is used for domestic heating. The target of this study was to investigate the particle-phase PAH composition of ambient samples in order to assess the influence of wood combustion on air quality in residential areas. PM10 samples (particulate matter <10 μm) were collected during two winter seasons at two rural residential areas near Stuttgart in Germany. Samples were extracted using toluene in an ultrasonic bath and subsequently analysed by gas chromatography–mass spectrometry. Twenty-one PAH compounds were detected and quantified. The PAH fingerprints of different wood combustion emissions were found in significant amounts in ambient samples and high correlations between total PAHs and other wood smoke tracers were found, indicating the dominant influence of wood combustion on air quality in residential areas. Carcinogenic PAHs were detected in high concentrations and contributed 49% of the total PAHs in the ambient air. To assess the health risk, we investigated the exposure profile of individual PAHs. The findings suggest that attention should be focused on using the best combustion technology available to reduce emissions from wood-fired heating during the winter in residential areas. PMID:20495599

  16. Oxidative Nitration of Styrenes for the Recycling of Low-Concentrated Nitrogen Dioxide in Air.

    PubMed

    Hofmann, Dagmar; de Salas, Cristina; Heinrich, Markus R

    2015-09-21

    The oxidative nitration of styrenes in ethyl acetate represents a metal-free, environmentally friendly, and sustainable technique to recover even low concentrations of NO2 in air. Favorable features are that the product mixture comprising nitroalcohols, nitroketones, and nitro nitrates simplifies at lower concentrations of NO2 . Experiments in a miniplant-type 10 L wet scrubber demonstrated that the recycling technique is well applicable on larger scales at which initial NO2 concentrations of >10 000 ppm were reliably reduced to less than 40 ppm.

  17. Forecasting 7BE concentrations in surface air using time series analysis

    NASA Astrophysics Data System (ADS)

    Bas, María del Carmen; Ortiz, Josefina; Ballesteros, Luisa; Martorell, Sebastián

    2017-04-01

    7Be is a cosmogenic radionuclide widely used as an atmospheric tracer, whose evaluation and forecasting can provide valuable information on changes in the atmospheric behavior. In this study, measurements of 7Be concentrations were made each month during the period 2007-2015 from samples of atmospheric aerosols filtered from the air. The aim was to propose a Seasonal Autoregressive Integrated Moving Average (SARIMA) model to develop an explanatory and predictive model of 7Be air concentrations. The Root Mean Square Error (RMSE) and the Adapted Mean Absolute Percentage Error (AMAPE) were selected to measure forecasting accuracy in identifying the best historical data time window to explain 7Be concentrations. A measure based on the variance of forecast errors was calculated to determine the impact of the model uncertainty on forecasts. We concluded that the SARIMA method is a powerful explanatory and predictive technique for explaining 7Be air concentrations in a longterm series of at least eight years of historical data to forecast 7Be concentration trends up to one year in advance.

  18. Ambient Air for Offshore Liquified Natural Gas Broadwater Project

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  19. Short-term concentration of CO2 in the ambient air of Nagpur city.

    PubMed

    Manuel, Jovita A; Gajghate, D G; Hasan, M Z; Singh, R N

    2002-07-01

    Carbon dioxide concentration is an index of total amount of combustion and natural ventilation in an urban environment and therefore required more careful attention for assessment of CO2 level in air environment. First time, an attempt was made to monitor CO2 levels in Ambient Air of Nagpur during August 2001-December 2001 at Industrial, Commercial and Residential sites. The largest amount of CO2 occurred at night due to darkness which depresses the photosynthesis to its lowest level. The lowest concentration of CO2 was showed in afternoon hours when photosynthesis is at its maximum. The average concentration of CO2 was found to be 361, 366 and 339 ppm at Industrial, Commercial and Industrial sites respectively. This generation of database of ambient CO2 will help to formulate the strategy for prevention of global warming phenomenon.

  20. Relevance of air conditioning for 222Radon concentration in shops of the Savona Province, Italy.

    PubMed

    Panatto, Donatella; Ferrari, Paola; Lai, Piero; Gallelli, Giovanni

    2006-02-15

    Radon (222Rn) concentration was evaluated in shops of the Savona Province, Italy, between summer 2002 and winter 2002-2003. The main characteristics of each shops were recorded through a questionnaire investigating the ventilation rate and factors related to 222Rn precursors in the soil and the construction materials. The main variables that were related to radon concentration were the following: age of the building, level of the shop above ground, season of the year, wind exposure, active windows, and type of heating system. Shops equipped with individual air heating/conditioning systems exhibited radon concentrations that were three times higher than those of shops heated by centralized furnaces. Our data indicate that the level of pollution in the shops was of medium level, with an expected low impact on the salespersons' health. Only in wintertime, the action level of 200 Bq m(-3) for the confined environment was reached in 10 shops equipped with individual air heating/conditioning systems.

  1. Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry.

    PubMed

    Companioni-Damas, E Y; Santos, F J; Galceran, M T

    2014-01-01

    In the present work, a simple and fast method for the analysis of linear and cyclic methylsiloxanes in ambient air based on active sampling combined with gas chromatography - mass spectrometry (GC-MS) was developed. The retention efficiency of five sampling sorbents (activated coconut charcoal, Carbopack B, Cromosorb 102, Cromosorb 106 and Isolute ENV+) was evaluated and Isolute ENV+ was found to be the most effective. A volume of 2700 L of air can be sampled without significant losses of the most volatile methylsiloxanes. To improve the sensitivity of the GC-MS method, concurrent solvent recondensation - large volume injection (CSR-LVI), using volumes up to 30 µl of sample extract, is proposed and limits of quantification down to 0.03-0.45 ng m(-3), good linearity (r>0.999) and precision (RSD %<9%) were obtained. The developed method was applied to the analysis of ambient air. Concentrations of linear and cyclic methylsiloxanes in indoor air ranging from 3.9 to 319 ng m(-3) and between 48 and 292668 ng m(-3), were obtained, respectively, while levels from 6 to 22 ng m(-3) for linear and between 2.2 and 439 ng m(-3) for cyclic methylsiloxanes in outdoor air from Barcelona (Spain), were found.

  2. Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems.

    PubMed

    Brun, C P; Miron, D; Silla, L M R; Pasqualotto, A C

    2013-04-01

    Invasive fungal diseases have emerged as important causes of morbidity and mortality in haematological patients. In this study air samples were collected in two haematopoietic stem cell transplantation (HSCT) units, in which distinct air-control systems were in place. In hospital 1 no high-efficiency particulate air (HEPA) filter was available whereas in hospital 2 HSCT rooms were equipped with HEPA filters, with positive air pressure in relation to the corridor. A total of 117 samples from rooms, toilets and corridors were obtained during December 2009 to January 2011, using a six-stage Andersen sampler. In both hospitals, the concentration of potentially pathogenic fungi in the air was reduced in patients' rooms compared to corridors (P < 0·0001). Despite the presence of a HEPA filter in hospital 2, rooms in both hospitals showed similar concentrations of potentially pathogenic fungi (P = 0·714). These findings may be explained by the implementation of additional protective measures in hospital 1, emphasizing the importance of such measures in protected environments.

  3. Concentrations and decay rates of ozone in indoor air in dependence on building and surface materials.

    PubMed

    Moriske, H J; Ebert, G; Konieczny, L; Menk, G; Schöndube, M

    1998-08-01

    The decay of ozone in indoor air was measured in a closed chamber after contact with different building materials and residential surfaces. The tested materials were: vinyl wall paper, woodchip paper, plywood, latex paint, fitted carpet, and plaster. In the summer of 1996, the entry of ozone from ambient air into indoor air during ventilation and the ozone decay in indoor air, after windows had been closed again, were studied. Measurements were done in a residential house on the outskirts of Berlin. The following results were gained: the chamber measurements showed a decay of ozone after contact with most of the materials put inside the chamber. Higher decay rates have been obtained for wall papers, plywood, fitted carpet and plaster. As described in the literature, ozone is able to react with olefines inside the materials and is able to form formaldehyde and other components. This formation of formaldehyde could also be confirmed in our investigations. Thus, in most cases, the formaldehyde concentrations were lower than the German guideline value of 0.1 ppm. The formation of formaldehyde could be prevented when a special wall paper that was coated with activated carbon was used. In the house, a complete ozone diffusion into indoor air took place during ventilation within 30 min. After closing the windows, the ozone concentrations decreased to the basic level before ventilation within 60-90 min.

  4. Atmospheric concentrations and gas/particle partitioning of neutral poly- and perfluoroalkyl substances in northern German coast

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xie, Zhiyong; Möller, Axel; Mi, Wenying; Wolschke, Hendrik; Ebinghaus, Ralf

    2014-10-01

    Total 58 high volume air samples were collected in Büsum, Germany, from August 2011 to October 2012 to investigate air concentrations of 12 per- and polyfluoroalkyl substances (PFASs) and their gas/particle partitioning. The total concentration (vapor plus particle phases) of the 12 PFASs (ΣPFASs) ranged from 8.6 to 155 pg/m3 (mean: 41 pg/m3) while fluorotelomer alcohols 8:2 (8:2 FTOH) dominated all samples accounting for 61.9% of ΣPFASs and the next most species were 10:2 FTOH (12.7%). Air mass back trajectory analysis showed that atmospheric PFASs in most samples were from long range atmospheric transport processes and had higher ratios of 8:2 to 6:2 FTOH compared to the data obtained from urban/industrial sources. Small portion of particle PFASs in the atmosphere was observed and the average percent to ΣPFASs was 2.0%. The particle-associated fractions of different PFASs decreased from perfluorooctane sulfonamidoethanols (FOSEs) (15.5%) to fluorotelomer acrylates (FTAs) (7.6%) to perfluorooctane sulfonamides (FOSAs) (3.1%) and FTOHs (1.8%), indicating the functional group obviously influenced their gas/particle partitioning. For neutral compounds with acid dissociation constant (pKa) > 7.0 (i.e., FTOHs, FOSEs and FOSAs), a significant log-linear relationship was observed between their gas/particle partition coefficients (KSP) and vapor pressures (pºL), suggesting the gas/particle partitioning of neutral PFASs agreed with the classical logKSP-logpºL relation. Due to the pKa values of 6:2 and 8:2 FTA below the typical environmental pH conditions, they mainly exist as ionic form in aerosols, and the corrected logKSP (neutral form) were considerably lower than those of FTOHs, FOSEs and FOSAs with similar vapor pressures. Considering the strong partitioning potential to aqueous phases for ionic PFASs at higher pH values, a need exists to develop a model taking account of the ad/absorption mechanism to the condensed phase of aerosols for ionizable PFASs (e

  5. Internally coated air-cooled gas turbine blading

    NASA Technical Reports Server (NTRS)

    Hsu, L.; Stevens, W. G.; Stetson, A. R.

    1979-01-01

    Ten candidate modified nickel-aluminide coatings were developed using the slip pack process. These coatings contain additives such as silicon, chromium and columbium in a nickel-aluminum coating matrix with directionally solidified MAR-M200 + Hf as the substrate alloy. Following a series of screening tests which included strain tolerance, dynamic oxidation and hot corrosion testing, the Ni-19A1-1Cb (nominal composition) coating was selected for application to the internal passages of four first-stage turbine blades. Process development results indicate that a dry pack process is suitable for internal coating application resulting in 18 percent or less reduction in air flow. Coating uniformity, based on coated air-cooled blades, was within + or - 20 percent. Test results show that the presence of additives (silicon, chromium or columbium) appeared to improve significantly the ductility of the NiA1 matrix. However, the environmental resistance of these modified nickel-aluminides were generally inferior to the simple aluminides.

  6. Low-CCN concentration air masses over the eastern North Atlantic: Seasonality, meteorology, and drivers

    NASA Astrophysics Data System (ADS)

    Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne

    2017-01-01

    A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.

  7. Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Singh, O.

    2012-10-01

    Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better blade cooling technology in topping cycle and enhanced heat recovery in bottoming cycle. The scope of improvement is possible through turbines having higher turbine inlet temperatures (TITs) of both gas turbine and steam turbine. Literature review shows that a combined cycle with transpiration cooled gas turbine has not been analyzed with varying gas/steam TITs. In view of above the present study has been undertaken for thermodynamic study of gas/steam combined cycle with respect to variation in TIT in both topping and bottoming cycles, for air transpiration cooled gas turbine. The performance of combined cycle with dual pressure heat recovery steam generator has been evaluated for different cycle pressure ratios (CPRs) varying from 11 to 23 and the selection diagrams presented for TIT varying from 1,600 to 1,900 K. Both the cycle efficiency and specific work increase with TIT for each pressure ratio. For each TIT there exists an optimum pressure ratio for cycle efficiency and specific work. For the CPR of 23 the best cycle performance is seen at a TIT of 1,900 K for maximum steam temperature of 570 °C, which gives the cycle efficiency of 60.9 % with net specific work of 909 kJ/kg.

  8. Effect of gas velocity and influent concentration on biofiltration of gasoline off-gas from soil vapor extraction.

    PubMed

    Namkoong, Wan; Park, Joon-Seok; VanderGheynst, Jean S

    2004-11-01

    This study was conducted to evaluate the effects of gas inlet concentration and velocity on the biofiltration of gasoline vapor. Gasoline vapor was treated using a compost biofilter operated in an upflow mode for about 3 months. The inlet concentration of gasoline total petroleum hydrocarbon (TPH) ranged from about 300 to 7000 mgm(-3) and gas was injected at velocities of 6 and 15 mh(-1) (empty bed residence time (EBRT)=10 and 4 min, respectively). The maximum elimination capacities of TPH at 6 and 15 mh(-1) found in this research were over 24 and 19 gm(-3) of filling material h(-1), respectively. TPH removal data was fit using a first-order kinetic relationship. In the low concentration range of 300-3000 mg m(-3), the first-order kinetic constants varied between about 0.10 and 0.29 min(-1) regardless of gas velocities. At TPH concentrations greater than 3000 mgm(-3), the first-order kinetic constants were about 0.09 and 0.07 min(-1) at gas velocities of 6 mh(-1) and 15 mh(-1), respectively. To evaluate microbial dynamics, dehydrogenase activity, CO2 generation and microbial species diversity were analyzed. Dehydrogenase activity could be used as an indicator of microbial activity. TPH removal corresponded well with CO2 evolution. The average CO2 recovery efficiency for the entire biofilter ranged between 60% and 70%. When the gas velocity was 6 mh(-1), most of the microbial activity and TPH removal occurred in the first quarter of the biofilter. However, when the gas velocity was 15 mh(-1), the entire column contributed to removal. Spatial and temporal variations in the biofilter microbial population were also observed. Nearly 60% of the colonies isolated from the compost media prior to biofiltration were Bacillus. After 90 days of biofiltration, the predominant species in the lower portion (0-50 cm) of the filter were Rhodococcus, while Pseudomonas and Acinetobacter dominated the upper portion (75-100 cm).

  9. Impact of traffic flows and wind directions on air pollution concentrations in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Youngkook; Guldmann, Jean-Michel

    2011-05-01

    Vehicle emissions are responsible for a substantial share of urban air pollution concentrations. Various integrated air quality modeling systems have been developed to analyze the consequences of air pollution caused by traffic flows. However, the quantitative relationship between vehicle-kilometers-traveled (VKT) and pollution concentrations while considering wind direction effects has rarely been explored in the context of land-use regression models (LUR). In this research, VKTs occurring within circular buffers around air pollution monitoring stations are simulated, using a traffic assignment model, and weighted by eight wind directions frequencies. The relationships between monitored pollution concentrations and weighted VKTs are estimated using regression analysis. In general, the wind direction weighted VKT variable increases the explanatory power of the models, particularly for nitrogen dioxide and carbon monoxide. The case of ozone is more complex, due to the effects of solar radiation, which appears to overwhelm the effects of wind direction in the afternoon hours. The statistical significance of the weighted VKT variable is high, which makes the models appropriate for impact analysis of traffic flow growth.

  10. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs.

  11. [Raman Characterization of Hydrate Crystal Structure Influenced by Mine Gas Concentration].

    PubMed

    Zhang, Bao-yong; Zhou, Hong-ji; Wu, Qiang; Gao, Xia

    2016-01-01

    CH4 /C2H6/N2 mixed hydrate formation experiments were performed at 2 degrees C and 5 MPa for three different mine gas concentrations (CH4/C2H6/N2, G1 = 54 : 36 : 10, G2 = 67.5 : 22.5 : 10, G3 = 81 : 9 : 10). Raman spectra for hydration products were obtained by using Microscopic Raman Spectrometer. Hydrate structure is determined by the Raman shift of symmetric C-C stretching vibration mode of C2H6 in the hydrate phase. This work is focused on the cage occupancies and hydration numbers, calculated by the fitting methods of Raman peaks. The results show that structure I (s I) hydrate forms in the G1 and G2 gas systems, while structure II (s II) hydrate forms in the G3 gas system, concentration variation of C2H6 in the gas samples leads to a change in hydrate structure from s I to s II; the percentages of CH4 and C2H6 in s I hydrate phase are less affected by the concentration of gas samples, the percentages of CH4 are respectively 34.4% and 35.7%, C2H6 are respectively 64.6% and 63.9% for gas systems of G1 and G2, the percentages of CH4 and 2 H6 are respectively 73.5% and 22.8% for gas systems of G3, the proportions of object molecules largely depend on the hydrate structure; CH4 and C2H6 molecules occupy 98%, 98% and 92% of the large cages and CH4 molecules occupy 80%, 60% and 84% of the small cages for gas systems of G1, G2 and G3, respectively; additionally, N2 molecules occupy less than 5% of the small cages is due to its weak adsorption ability and the lower partial pressure.

  12. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    NASA Astrophysics Data System (ADS)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  13. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion

    PubMed Central

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    Abstract Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The “open field” soil gas vapor concentration profile is observed to be sensitive to the soil moisture distribution. The van Genuchten relations can be used for describing the soil moisture retention curve, and give results consistent with the results from a previous experimental study. Other modeling methods that account for soil moisture are evaluated. These modeling results are also compared with the measured subsurface concentration profiles in the U.S. EPA vapor intrusion database. PMID:24170970

  14. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion.

    PubMed

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2013-10-01

    Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The "open field" soil gas vapor concentration profile is observed to be sensitive to the soil moisture distribution. The van Genuchten relations can be used for describing the soil moisture retention curve, and give results consistent with the results from a previous experimental study. Other modeling methods that account for soil moisture are evaluated. These modeling results are also compared with the measured subsurface concentration profiles in the U.S. EPA vapor intrusion database.

  15. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOEpatents

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  16. Flue gas treatability studies: a tool for techno-economic control of industrial air pollution.

    PubMed

    Rao, B Padma S; Rao, B Shrinivas; Manthapurwar, N S; Hasan, M Z

    2003-02-01

    Air pollution problems in developing countries have gained larger fraction in the last decade especially due to non functioning and non implementation of effective air pollution control devices in industries. In industrial wastewater management, adequate treatability studies are conducted to arrive at a techno-economic treatment option. However no such studies were done for reducing air pollution or emission from industries until now in India. Little information was available about such studies in other countries. This article provides information about a novel technique known as flue gas treatability studies and to undertake such studies, a pilot scale system is installed in Air Pollution Control Division of M/s National Environmental Engineering research Institute, NEERI, Nagpur-20, India. This study is a tool for techno-economic selection of air pollution control systems specially for small/medium scale industrial emissions.

  17. Air toxics concentrations, source identification, and health risks: An air pollution hot spot in southwest Memphis, TN

    NASA Astrophysics Data System (ADS)

    Jia, Chunrong; Foran, Jeffery

    2013-12-01

    Southwest Memphis is a residential region surrounded by fossil fuel burning, steel, refining, and food processing industries, and considerable mobile sources whose emissions may pose adverse health risks to local residents. This study characterizes cancer and non-cancer risks resulting from exposure to ambient air toxics in southwest Memphis. Air toxics samples were collected at a central location every 6 days from June 5, 2008 to January 8, 2010. Volatile organic compounds (VOCs) were collected in evacuated stainless-steel canisters and aldehydes by DNPH cartridges, and samples were analyzed for 73 target compounds. A total of 60 compounds were detected and 39 were found in over 86% of the samples. Mean concentrations of many compounds were higher than those measured in many industrial communities throughout the U.S. The cumulative cancer risk associated with exposure to 13 carcinogens found in southwest Memphis air was 2.3 × 10-4, four times higher than the national average of 5.0 × 10-5. Three risk drivers were identified: benzene, formaldehyde, and acrylonitrile, which contributed 43%, 19%, and 14% to the cumulative risk, respectively. This is the first field study to confirm acrylonitrile as a potential risk driver. Mobile, secondary, industrial, and background sources contributed 57%, 24%, 14%, and 5% of the risk, respectively. The results of this study indicate that southwest Memphis, a region of significant income, racial, and social disparities, is also a region under significant environmental stress compared with surrounding areas and communities.

  18. Hydrogen sulfide removal from hot gas and concentration of sulfur using electrochemistry. Annual report, August 1983-August 1984

    SciTech Connect

    Winnick, J.

    1985-01-01

    The virtual omnipresence of sulfur in fossil fuels raises concern regarding the increased use of coal for high-temperature fuel utilization and conversion processes. A typical raw gas composition from burning Illinois No. 6 coal (3.9% sulfur) in an air-blown gasifier is 19.6% CO, 8.1% CO/sub 2/, 10%H/sub 2/, 3.4%H/sub 2/O, 3% CH/sub 4/, 0.6% H/sub 2/S with the balance being inerts. This gas has several potential uses. Of most interest is its conversion to high-BTU SNG which requires passage over a methanation catalyst at 300-400C. The methanation catalysts, however, are sensitive to even small (5ppm) concentrations of H/sub 2/S. Thus, in the absence of a very effective high-temperature sulfur clean-up process, the gas must be cooled to the temperatures of operation of commercially available processes (e.g., Selexol or Rectisol). The use of high-temperature clean-up is estimated to allow savings of up to 7% of the energy value of the gas. Since a high-temperature sulfur-removal process is desirable several have undergone examination. Most are based on reaction of a metal oxide with the H/sub 2/S, with subsequent regeneration to the fresh sorbent and a concentrated stream of H/sub 2/S. This H/sub 2/S is then sent to a Claus Plant to be oxidized to elemental sulfur (and water). Difficulties of various kinds have not permitted any of these processes to as yet reach commercialization.

  19. Transport of semivolatile organic compounds to the Tibetan Plateau: Monthly resolved air concentrations at Nam Co

    NASA Astrophysics Data System (ADS)

    Xiao, Hang; Kang, Shichang; Zhang, Qianggong; Han, Wenwu; Loewen, Mark; Wong, Fiona; Hung, Hayley; Lei, Ying D.; Wania, Frank

    2010-08-01

    A flow-through sampler was deployed to record the seasonal variability of the atmospheric concentrations of semivolatile organic compounds (SOCs) at a remote research station located close to Nam Co Lake on the Tibetan plateau. Between October 2006 and February 2008, fifteen consecutive one month-long samples, with air volumes ranging from 4,500 to 16,000 m3, were taken and analyzed for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs). Separate analysis of three polyurethane plugs in series in combination with frontal chromatographic theory allows for the correction of the break-through observed for the most volatile SOCs. The concentrations of Σ56PCB in air range from 0.10 to 2.6 pg·m-3 and are among the lowest values ever reported. Levels of OCPs at Nam Co are generally also very low, particularly during wintertime. The concentrations of hexachlorocyclohexanes (HCHs), endosulfans, and various dichlorodiphenyltrichloroethane (DDT) related substances display a distinct seasonal variability consistent with the monsoon. Back-trajectory analysis reveals that higher OCP levels during summer correlate with air mass origin south of the Himalayas. A high α/γ-HCH ratio and a non-racemic composition of α-HCH during July/August suggest that evaporation from Nam Co Lake contributes to the relatively high concentrations of α-HCH (averaging ca. 91 pg·m-3) recorded in the summertime atmosphere.

  20. Assessment of regional air quality by a concentration-dependent Pollution Permeation Index

    NASA Astrophysics Data System (ADS)

    Liang, Chun-Sheng; Liu, Huan; He, Ke-Bin; Ma, Yong-Liang

    2016-10-01

    Although air quality monitoring networks have been greatly improved, interpreting their expanding data in both simple and efficient ways remains challenging. Therefore, needed are new analytical methods. We developed such a method based on the comparison of pollutant concentrations between target and circum areas (circum comparison for short), and tested its applications by assessing the air pollution in Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta and Cheng-Yu, China during 2015. We found the circum comparison can instantly judge whether a city is a pollution permeation donor or a pollution permeation receptor by a Pollution Permeation Index (PPI). Furthermore, a PPI-related estimated concentration (original concentration plus halved average concentration difference) can be used to identify some overestimations and underestimations. Besides, it can help explain pollution process (e.g., Beijing’s PM2.5 maybe largely promoted by non-local SO2) though not aiming at it. Moreover, it is applicable to any region, easy-to-handle, and able to boost more new analytical methods. These advantages, despite its disadvantages in considering the whole process jointly influenced by complex physical and chemical factors, demonstrate that the PPI based circum comparison can be efficiently used in assessing air pollution by yielding instructive results, without the absolute need for complex operations.

  1. Assessment of regional air quality by a concentration-dependent Pollution Permeation Index

    PubMed Central

    Liang, Chun-Sheng; Liu, Huan; He, Ke-Bin; Ma, Yong-Liang

    2016-01-01

    Although air quality monitoring networks have been greatly improved, interpreting their expanding data in both simple and efficient ways remains challenging. Therefore, needed are new analytical methods. We developed such a method based on the comparison of pollutant concentrations between target and circum areas (circum comparison for short), and tested its applications by assessing the air pollution in Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta and Cheng-Yu, China during 2015. We found the circum comparison can instantly judge whether a city is a pollution permeation donor or a pollution permeation receptor by a Pollution Permeation Index (PPI). Furthermore, a PPI-related estimated concentration (original concentration plus halved average concentration difference) can be used to identify some overestimations and underestimations. Besides, it can help explain pollution process (e.g., Beijing’s PM2.5 maybe largely promoted by non-local SO2) though not aiming at it. Moreover, it is applicable to any region, easy-to-handle, and able to boost more new analytical methods. These advantages, despite its disadvantages in considering the whole process jointly influenced by complex physical and chemical factors, demonstrate that the PPI based circum comparison can be efficiently used in assessing air pollution by yielding instructive results, without the absolute need for complex operations. PMID:27731344

  2. Air Sparging Versus Gas Saturated Water Injection for Remediation of Volatile LNAPL in the Borden Aquifer

    NASA Astrophysics Data System (ADS)

    Barker, J.; Nelson, L.; Doughty, C.; Thomson, N.; Lambert, J.

    2009-05-01

    In the shallow, rather homogeneous, unconfined Borden sand aquifer, field trials of air sparging (Tomlinson et al., 2003) and pulsed air sparging (Lambert et al., 2009) have been conducted, the latter to remediate a residual gasoline source emplaced below the water table. As well, a supersaturated (with CO2) water injection (SWI) technology, using the inVentures inFusion system, has been trialed in two phases: 1. in the uncontaminated sand aquifer to evaluate the radius of influence, extent of lateral gas movement and gas saturation below the water table, and 2. in a sheet pile cell in the Borden aquifer to evaluate the recovery of volatile hydrocarbon components (pentane and hexane) of an LNAPL emplaced below the water table (Nelson et al., 2008). The SWI injects water supersaturated with CO2. The supersaturated injected water moves laterally away from the sparge point, releasing CO2 over a wider area than does gas sparging from a single well screen. This presentation compares these two techniques in terms of their potential for remediating volatile NAPL components occurring below the water table in a rather homogeneous sand aquifer. Air sparging created a significantly greater air saturation in the vicinity of the sparge well than did the CO2 system (60 percent versus 16 percent) in the uncontaminated Borden aquifer. However, SWI pushed water, still supersaturated with CO2, up to about 2.5 m from the injection well. This would seem to provide a considerable advantage over air sparging from a point, in that gas bubbles are generated at a much larger radius from the point of injection with SWI and so should involve additional gas pathways through a residual NAPL. Overall, air sparging created a greater area of influence, defined by measurable air saturation in the aquifer, but air sparging also injected about 12 times more gas than was injected in the SWI trials. The pulsed air sparging at Borden (Lambert et al.) removed about 20 percent (4.6 kg) of gasoline

  3. Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.

    PubMed

    Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf

    2013-07-02

    The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.

  4. Gas hydrate concentration estimated from P- and S-wave velocities

    NASA Astrophysics Data System (ADS)

    Carcione, J. M.; Gei, D.

    2003-04-01

    We estimate the concentration of gas hydrate at the Mallik 2L-38 research site, Mackenzie Delta, Canada, using P- and S-wave velocities obtained from well logging and vertical seismic profiles (VSP). The theoretical velocities are obtained from a poro-viscoelastic model based on a Biot-type approach. It considers the existence of two solids (grains and gas hydrate) and a fluid mixture and is based on the assumption that hydrate fills the pore space and shows interconnection. The moduli of the matrix formed by gas hydrate are obtained from the percolation model described by Leclaire et al., (1994). An empirical mixing law introduced by Brie et al., (1995) provides the effective bulk modulus of the fluid phase, giving Wood's modulus at low frequency and Voigt's modulus at high frequencies. The dry-rock moduli are estimated from the VSP profile where the rock is assumed to be fully saturated with water, and the quality factors are obtained from the velocity dispersion observed between the sonic and VSP velocities. Attenuation is described by using a constant-Q model for the dry rock moduli. The amount of dissipation is estimated from the difference between the seismic velocities and the sonic-log velocities. We estimate the amount of gas hydrate by fitting the sonic-log and seismic velocities to the theoretical velocities, using the concentration of gas hydrate as fitting parameter. We obtain hydrate concentrations up to 75 %, average values of 43 and 47 % from the VSP P- and S-wave velocities, respectively, and 47 and 42 % from the sonic-log P- and S-wave velocities, respectively. These averages are computed from 897 to 1110 m, excluding the zones where there is no gas hydrate. We found that modeling attenuation is important to obtain reliable results. largeReferences} begin{description} Brie, A., Pampuri, F., Marsala A.F., Meazza O., 1995, Shear Sonic Interpretation in Gas-Bearing Sands, SPE Annual Technical Conference and Exhibition, Dallas, 1995. Carcione, J

  5. Air-based coal gasification in a two-chamber gas reactor with circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Dubinin, A. M.; Tuponogov, V. G.; Kagramanov, Y. A.

    2017-01-01

    During the bed gasification of solid fuels, the process temperature in the reaction zone is not high enough for reaching the maximum rate of the chemical efficiency factor of the gasification process. In order to increase the chemical efficiency factor, it is necessary to supply extra heat to the reaction zone to increase the reaction temperature. In this article, coal gasification in a chamber with forced fluidized bed is considered and it is proposed to supply extra heat with a circulating flow of an inert particulate heat transfer agent. Circulating inert particulate material is successively heated by coal combustion in a cone chamber with bubbling fluidized bed and in a combustion chamber with a spherical nozzle that inhibits the forced fluidized bed. After that, the heat transfer agent heated to 930-950°C enters first in a gasification chamber with bubbling bed and then in a chamber with forced fluidized bed, where it transfers the physical heat to the air fuel mixture. The experiments conducted with crushed Borodinsky coal and inert particulate heat transfer agent (electrocorundum) showed the temperature rise in a gasification chamber with from 760 to 870°C and the increase in the combustible component (CO) concentration in the gasification products by 5.5%. Based on the kinetic equations of the fuel combustion reactions and the CO2 reduction to CO and on the thermal balance equations of combustion and gasification chambers, the simulation model for the gas composition and the temperature rate calculated by the height of reaction chambers was developed. The experimental temperature rates and product gas compositions are in good agreement with the simulation results based on the proposed kinetic gasification model.

  6. Outdoor air PCB concentrations in three communities along the Upper Hudson River, New York.

    PubMed

    Palmer, Patrick M; Belanger, Erin E; Wilson, Lloyd R; Hwang, Syni-An A; Narang, Rajinder S; Gomez, Marta I; Cayo, Michael R; Durocher, Lorie A; Fitzgerald, Edward F

    2008-04-01

    Outdoor air polychlorinated biphenyl (PCB) concentrations were measured in upstate New York as part of a nonoccupational exposure investigation. The adjacent study communities of Hudson Falls and Fort Edward contain numerous sites of current and former PCB contamination, including two capacitor-manufacturing facilities. Outdoor air PCB concentrations in the study municipalities were significantly higher than in the comparison municipality of Glens Falls. Total PCB concentrations in the study area ranged from 0.102 to 4.011 ng/m(3) (median: 0.711 ng/m(3)). For the comparison area, concentrations ranged from 0.080 to 2.366 ng/m(3) (median: 0.431 ng/m(3)). Although our sampling was not designed to identify point sources, the presence of PCB-contaminated sites in the study area likely contributed to this observed difference in concentration. While elevated relative to the comparison area, total PCB concentrations in the study area are lower than those in other communities with known PCB-contaminated sites, and similar to levels reported in other locations from the northeastern United States.

  7. Unit for combustion of process exhaust gas and production of hot air

    SciTech Connect

    Andersson, J.O.; Eriksson, T.L.; Nystrom, O.

    1982-12-07

    Unit for thermal incineration of non-explosive gases with minor amounts of organic pollutants and for production of hot air, and which can be adapted to various types of supplementary fuel. There is a combustion chamber which consists of a flame pipe inside an outer jacket. Through the space therebetween, incoming process gas is led as coolant. At its front end, the combustion chamber has a burner for supplementary fuel and a mixing-in zone for process gas. The process gas rapidly mixes with the hot combustion gases in the flame, the gas reaching its reaction temperature directly. Powerful turbulence in the mixing-in zone gas, film-layer cooling, convective cooling and even flow give highly efficient and pure combustion while keeping the flame pipe temperature low enough to prevent corrosion.

  8. Air Pollutant Emissions from Oil and Gas Production pads (Investigating Low Cost Passive Samplers)

    EPA Science Inventory

    To help achieve the goal of sustainable, environmentally responsible development of oil and gas resources, it isnecessary to understand the potential for air pollutant emissions from various extraction and production (E&P)processes at the upstream, wellpad level. Upstream oil and...

  9. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    NASA Astrophysics Data System (ADS)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  10. 76 FR 20536 - Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 75 RIN 2060-AQ06 Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing Correction In rule document 2011-6216 appearing on pages 17288-17325 in...

  11. Effects of Temperature and Gas Composition on Reduction and Swelling of Magnetite Concentrates

    NASA Astrophysics Data System (ADS)

    Kapelyushin, Yury; Sasaki, Yasushi; Zhang, Jianqiang; Jeong, Sunkwang; Ostrovski, Oleg

    2016-08-01

    The gaseous reduction of magnetite ore concentrates was studied using CO-CO2 and CO-CO2-H2 gas mixtures at different temperatures and gas compositions. The reduction of magnetite ore by CO-CO2 gas mixture was examined at temperatures 973 K to 1173 K (700 °C to 900 °C) at CO/CO2 ratio 80/20, and at varied CO/CO2 ratio from 60/40 to 85/15 at 1023 K (750 °C). In the reduction of magnetite ore by CO-CO2-H2 gas mixture, temperature was 1173 K (800 °C) and hydrogen content changed from 5 to 25 vol pct at constant CO/CO2 ratio of 80/20. Reduction of magnetite ore did not go to completion in both CO-CO2 and CO-CO2-H2 gas mixtures. Addition of H2 to the CO-CO2 gas mixture accelerated the reduction in the first 10 to 30 minutes of reaction. However, the degree of reduction by gas containing 5 to 25 vol pct H2 after 60 to 120 minutes of reaction was in the range 60 to 65 pct, while the degree of reduction by CO-CO2 gas (80 vol pct CO) after 120 minutes of reaction was close to 70 pct. Significant swelling of magnetite ore pellets was observed in the reduction by CO-CO2 gas mixture. Addition of H2 to the CO-CO2 gas mixture decreased swelling. Swelling of magnetite ore during the reduction was attributed to the breakout of iron layer caused by the increase of the inner pressure in the voids at the wüstite/iron phase boundary.

  12. Single ZnO Nanowire-Based Gas Sensors to Detect Low Concentrations of Hydrogen

    PubMed Central

    Cardoza-Contreras, Marlene N.; Romo-Herrera, José M.; Ríos, Luis A.; García-Gutiérrez, R.; Zepeda, T. A.; Contreras, Oscar E.

    2015-01-01

    Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H2 pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H2. PMID:26690158

  13. Single ZnO Nanowire-Based Gas Sensors to Detect Low Concentrations of Hydrogen.

    PubMed

    Cardoza-Contreras, Marlene N; Romo-Herrera, José M; Ríos, Luis A; García-Gutiérrez, R; Zepeda, T A; Contreras, Oscar E

    2015-12-04

    Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H₂ pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H₂.

  14. [Determination of cyclohexanone concentration in the plasma separator by gas chromatography].

    PubMed

    Huang, Min-Ju; Yan, Lin; He, Yan-Ying; Lin, Wei-Cong

    2009-09-01

    This essay is to determine the cyclohexanone concentration of the plasma separator. The compound was introduced into the GC analytical system by the carrier gas. The determination was performed by the measurement of their peak area and by the external standard method.

  15. Mapping soil gas radon concentration: a comparative study of geostatistical methods.

    PubMed

    Buttafuoco, Gabriele; Tallarico, Adalisa; Falcone, Giovanni

    2007-08-01

    Understanding soil gas radon spatial variations can allow the constructor of a new house to prevent radon gas flowing from the ground. Indoor radon concentration distribution depends on many parameters and it is difficult to use its spatial variation to assess radon potential. Many scientists use to measure outdoor soil gas radon concentrations to assess the radon potential. Geostatistical methods provide us a valuable tool to study spatial structure of radon concentration and mapping. To explore the structure of soil gas radon concentration within an area in south Italy and choice a kriging algorithm, we compared the prediction performances of four different kriging algorithms: ordinary kriging, lognormal kriging, ordinary multi-Gaussian kriging, and ordinary indicator cokriging. Their results were compared using an independent validation data set. The comparison of predictions was based on three measures of accuracy: (1) the mean absolute error, (2) the mean-squared error of prediction; (3) the mean relative error, and a measure of effectiveness: the goodness-of-prediction estimate. The results obtained in this case study showed that the multi-Gaussian kriging was the most accurate approach among those considered. Comparing radon anomalies with lithology and fault locations, no evidence of a strict correlation between type of outcropping terrain and radon anomalies was found, except in the western sector where there were granitic and gneissic terrain. Moreover, there was a clear correlation between radon anomalies and fault systems.

  16. Pedologic and climatic controls on Rn-222 concentrations in soil gas, Denver, Colorado

    SciTech Connect

    Asher-Bolinder, S.; Owen, D.E.; Schumann, R.R. )

    1990-05-01

    Soil-gas radon concentrations are controlled seasonally by factors of climate and pedology. In a swelling soil of the semiarid Western United States, soil-gas radon concentrations at 100 cm depth increase in winter and spring due to increased emanation with higher soil moisture and the capping effect of surface water or ice. Increased soil moisture results from a combination of higher winter and spring precipitation and decreased insolation in fall and winter, lowering soil temperatures so that water infiltrates deeper and evaporates more slowly. Radon concentrations in soil drop markedly through the summer and fall. The increased insolation of spring and summer warms and dries the soil, limiting the amount of water that reaches 100 cm. As the soil dries, radon emanation decreases, and deep soil cracks develop. These cracks aid convective transport of soil gas, increase radon's flux into the atmosphere, and lower its concentration in soil gas. Probable controls on the distribution of uranium within the soil column include its downward leaching, its precipitation or adsorption onto B-horizon clays, concretions, or cement, and the uranium content and mineralogy of the soil's granitic and gneissic precursors.

  17. MODELING AIR TOXICS AND PM 2.5 CONCENTRATION FIELDS AS A MEANS FOR FACILITATING HUMAN EXPOSURE ASSESSMENTS

    EPA Science Inventory

    The capability of the US EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system is extended to provide gridded ambient air quality concentration fields at fine scales. These fields will drive human exposure to air toxics and fine particulate matter (PM2.5) models...

  18. Decline of hexachlorocyclohexane in the Arctic atmosphere and reversal of air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Falconer, R. L.; Barrie, L. A.; Fellin, P.

    1995-02-01

    Hexachlorocyclohexanes (HCHs) are the most abundant organochlorine pesticides in the arctic atmosphere and ocean surface water. A compilation of measurements made between 1979-93 from stations in the Canadian and Norwegian Arctic and from cruises in the Bering and Chukchi seas indicates that atmospheric concentrations of α-HCH have declined significantly (p < 0.01), with a time for 50% decrease of about 4 y in summer-fall and 6 y in winter-spring. The 1992-93 levels of about 100 pg m-3 are 2-4 fold lower than values in the mid-1980s. The trend in γ-HCH is less pronounced, but a decrease is also suggested from measurements in the Canadian Arctic and the Bering-Chukchi seas. HCHs in ocean surface water have remained relatively constant since the early 1980s. The decline in atmospheric α-HCH has reversed the net direction of air-sea gas exchange to the point where some northern waters are now sources of the pesticide to the atmosphere instead of sinks.

  19. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    DOEpatents

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  20. Regional Influences of Marcellus Shale Natural Gas Activity: Back-trajectory Analysis of Baltimore/Washington Ethane Concentrations

    NASA Astrophysics Data System (ADS)

    Vinciguerra, T.; Chittams, A.; Dadzie, J.; Deskins, T.; Goncalves, V.; M'Bagui Matsanga, C.; Zakaria, R.; Ehrman, S.; Dickerson, R. R.

    2015-12-01

    Over the past several years, the combined utilization of hydraulic fracturing and horizontal drilling has led to a rapid increase in natural gas production, especially from the Marcellus Shale. To explore the impact of this activity downwind on regions with no natural gas production, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model was used to generate 48-hour back-trajectories for summer, daytime hours from the years 2007-2014 in the Baltimore, MD and Washington, D.C. areas where hourly ethane measurements are available from Photochemical Assessment Monitoring Stations (PAMS). For each of the years investigated, unconventional well counts were obtained for counties in the surrounding states of Pennsylvania, Ohio, West Virginia, and Virginia, and counties exceeding a threshold of 0.05 wells/km2 were designated as counties with a high density of wells. The back-trajectories for each year were separated into two groups: those which passed through counties containing a high density of wells, and those which did not. Back-trajectories passing through high-density counties were further screened by applying a height criterion where trajectories beyond 10% above the mixing layer were excluded. Preliminary results indicate that air parcels with back-trajectories passing within the boundary layer of counties with a high density of unconventional natural gas wells correspond to significantly greater concentrations of observed ethane at these downwind monitors.

  1. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  2. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  3. Effect of outside air ventilation rate on volatile organic compound concentrations in a call center

    NASA Astrophysics Data System (ADS)

    Hodgson, A. T.; Faulkner, D.; Sullivan, D. P.; DiBartolomeo, D. L.; Russell, M. L.; Fisk, W. J.

    A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a total floor area of 4600 m 2, is located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC and CO 2 concentrations in the AHU returns were measured on 7 days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature. The per occupant CO 2 generation rates were 0.0068-0.0092 l s -1. The per occupant isoprene generation rates of 0.2-0.3 mg h -1 were consistent with the value predicted by mass balance from breath concentration and exhalation rate. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which likely were associated with material sources, and decamethylcyclopentasiloxane, associated with personal care products, exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, a clear inverse relationship between VOC concentrations and ventilation was not observed. The net concentration of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate isomers, examples of low-volatility compounds, changed very little with ventilation likely due to sorption and re-emission effects. These results illustrate that the efficacy of ventilation for controlling VOC concentrations can vary considerably depending upon the operation of the building, the pollutant sources and the physical and chemical processes affecting the pollutants. Thus, source

  4. Gas chromatograph analysis on closed air and nitrogen oxide storage atmospheres of recalcitrant seeds of Quercus Alba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage of recalcitrant seeds remains an unsolved problem. This study investigated the quantitative gas analysis of nitrous oxide (N2O) and air atmospheres on the recalcitrant seeds of Quercus alba by using gas chromatograph. Ten seeds were placed in each sealed atmospheric system of air and 98/2% N...

  5. Internal coating of air-cooled gas turbine blades

    NASA Technical Reports Server (NTRS)

    Hsu, L. L.; Stetson, A. R.

    1980-01-01

    Four modified aluminide coatings were developed for IN-792 + Hf alloy using a powder pack method applicable to internal surfaces of air-cooled blades. The coating compositions are Ni-19Al-1Cb, Ni-19Al-3Cb, Ni-17Al-20Cr, and Ni-12Al-20Cr. Cyclic burner rig hot corrosion (900 C) and oxidation (1050 C) tests indicated that Ni-Al-Cb coatings provided better overall resistance than Ni-Al-Cr coatings. Tensile properties of Ni-19Al-1Cb and Ni-12Al-20Cr coated test bars were fully retained at room temperature and 649 C. Stress rupture results exhibited wide scatter around uncoated IN-792 baseline, especially at high stress levels. High cycle fatigue lives of Ni-19Al-1Cb and Ni-12Al-20Cr coated bars (as well as RT-22B coated IN-792) suffered approximately 30 percent decrease at 649 C. Since all test bars were fully heat treated after coating, the effects of coating/processing on IN-792 alloy were not recoverable. Internally coated Ni-19Al-1Cb, Ni-19Al-3Cb, and Ni-12Al-20Cr blades were included in 500-hour endurance engine test and the results were similar to those obtained in burner rig oxidation testing.

  6. Concentrations in ambient air and emissions of cyclic volatile methylsiloxanes in Zurich, Switzerland.

    PubMed

    Buser, Andreas M; Kierkegaard, Amelie; Bogdal, Christian; MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2013-07-02

    Tens of thousands of tonnes of cyclic volatile methylsiloxanes (cVMS) are used each year globally, which leads to high and continuous cVMS emissions to air. However, field measurements of cVMS in air and empirical information about emission rates to air are still limited. Here we present measurements of decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) in air for Zurich, Switzerland. The measurements were performed in January and February 2011 over a period of eight days and at two sites (city center and background) with a temporal resolution of 6-12 h. Concentrations of D5 and D6 are higher in the center of Zurich and range from 100 to 650 ng m(-3) and from 10 to 79 ng m(-3), respectively. These values are among the highest levels of D5 and D6 reported in the literature. In a second step, we used a multimedia environmental fate model parametrized for the region of Zurich to interpret the levels and time trends in the cVMS concentrations and to back-calculate the emission rates of D5 and D6 from the city of Zurich. The average emission rates obtained for D5 and D6 are 120 kg d(-1) and 14 kg d(-1), respectively, which corresponds to per-capita emissions of 310 mg capita(-1) d(-1) for D5 and 36 mg capita(-1) d(-1) for D6.

  7. Flue gas treatment for SO2 removal with air-sparged hydrocyclone technology.

    PubMed

    Bokotko, Romuald P; Hupka, Jan; Miller, Jan D

    2005-02-15

    Laboratory results from an initial study on the removal of SO2 from gas mixtures are reported using air-sparged hydrocyclone (ASH) technology. Tap water and alkaline solutions were used for absorption, and the influence of gas flow rate, water flow rate, and length of the ASH unit were investigated. The research results indicate thatthe air-sparged hydrocyclone can be used as a highly efficient absorber for SO2 emissions. The ASH allows for 97% SO2 removal using water alone for sulfur dioxide content in the gas phase of 5 g/m3. All SO2 is removed in weakly alkaline solution (0.01 mol NaOH/dm3).

  8. Mercury in soil gas and air--A potential tool in mineral exploration

    USGS Publications Warehouse

    McCarthy, Joseph Howard; Vaughn, W.W.; Learned, R.E.; Meuschke, J.L.

    1969-01-01

    The mercury content in soil gas and in the atmosphere was measured in several mining districts to test the possibility that the mercury content in the atmosphere is higher over ore deposits than over barren ground. At Cortez, Nev., the distribution of anorhalous amounts of mercury in the air collected at ground level (soil gas) correlates well with the distribution of gold-bearing rocks that are covered by as much as 100 feet of gravel. The mercury content in the atmosphere collected at an altitude of 200 feet by an aircraft was 20 times background over a mercury posit and 10 times background over two porphyry copper deposits. Measurement of mercury in soil gas and air may prove to be a valuable exploration tool.

  9. Ozone and Trace Gas Trends in the UK and Links to Changing Air Mass Pathways

    NASA Astrophysics Data System (ADS)

    Fleming, Z.; Monks, P. S.; Reeves, C.; Bohnenstengel, S.

    2014-12-01

    Trace gas measurements from UK measurement sites on the North Sea coast and in central London reveal a complicated relationship between NO2, CO, hydrocarbons and ozone. Due to the location of the sites, they receive air masses from the UK, Europe, the North sea, Scandinavia and the Arctic and Atlantic Seas and any seasonality is hard to discern. The transport pathway of air masses that can change on an hourly timescale clearly influences the trace gas levels. Investigations into how the transport pathways have changed over the years, using the NAME dispersion model try to elucidate whether it is the 'where' (transport pathway) or the 'what' (trace gas emissions) that is leading to the ozone trends recorded over the past few years.

  10. Simultaneous measurement of CO2 concentration and isotopic ratios in gas samples using IRMS

    NASA Astrophysics Data System (ADS)

    Yu, Eun-Ji; Lee, Dongho; Bong, Yeon-Sik; Lee, Kwang-Sik

    2014-05-01

    Isotopic methods are indispensable tools for studies on atmosphere-biosphere exchanges of CO2 and environmental monitoring such as CO2 leakage detection from subsurface carbon storages. CO2 concentration is an important variable in interpreting isotopic composition of CO2 especially in atmospheric applications (e.g., 'Keeling plot'). Optical methods such as CRDS (Cavity Ring Down Spectroscopy) are gaining attention recently because of its capability to simultaneously measure CO2 concentration and isotopic ratios with a short measurement interval (up to 1 sec.). On the other hand, IRMS (Isotope Ratio Mass Spectrometer) has been used only for isotopic measurements. In this study, we propose a method to measure CO2 concentration from gas samples along with isotopic ratios using conventional IRMS system. The system consists of Delta V Plus IRMS interfaced with GasBench II (Thermo Scientific, Germany). 12-mL vials with open top screw cap and rubber septum were used for both gas sampling and analysis. For isotopic analysis, gases in the vials were transferred into GasBench II by He carrier flow and CO2 was trapped by a single cryotrap (-180 ºC) after passing a water trap (Mg(ClO4)2). Upon release of the cryotrap, liberated CO2 was separated from N2O using gas chromatography column inside the GasBench II and introduced online into the IRMS. Isotopic ratios were measured for the masses of 44, 45 and 46, and the peak intensity (mV of mass 44 and peak area) was recorded for the concentration calculation. For the determination of CO2 concentration, a calibration curve relating the peak intensity with molar concentration of CO2 was constructed. By dissolving NaHCO3 in de-ionized water, solutions containing 0.05, 0.1, 0.25 and 0.5 µmol of inorganic carbon were prepared in 12 mL vials. Phosphoric acid was injected through rubber septum of the vials to acidify the solution and released CO2 was analyzed for the isotopic ratios and the corresponding peak intensity was recorded

  11. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  12. Comparing air dispersion model predictions with measured concentrations of VOCs in urban communities.

    PubMed

    Pratt, Gregory C; Wu, Chun Yi; Bock, Don; Adgate, John L; Ramachandran, Gurumurthy; Stock, Thomas H; Morandi, Maria; Sexton, Ken

    2004-04-01

    Air concentrations of nine volatile organic compounds were measured over 48-h periods at 23 locations in three communities in the Minneapolis-St. Paul metropolitan area. Concentrations at the same times and locations were modeled using a standard regulatory air dispersion model (ISCST3). The goal of the study was to evaluate model performance by comparing predictions with measurements using linear regression and estimates of bias. The modeling, done with mobile and area source emissions resolved to the census tract level and characterized as model area sources, represents an improvement over large-scale airtoxics modeling analyses done to date. Despite the resolved spatial scale, the model did not fully capture the spatial resolution in concentrations in an area with a sharp gradient in emissions. In a census tract with a major highway at one end of the tract (i.e., uneven distribution of emissions within the tract), model predictions atthe opposite end of the tract overestimated measured concentrations. This shortcoming was seen for pollutants emitted mainly by mobile sources (benzene, ethylbenzene, toluene, and xylenes). We suggest that major highways would be better characterized as line sources. The model also failed to fully capture the temporal variability in concentrations, which was expected since the emissions inventory comprised annual average values. Based on our evaluation metrics, model performance was best for pollutants emitted mainly from mobile sources and poorest for pollutants emitted mainlyfrom area sources. Important sources of error appeared to be the source characterization (especially location) and emissions quantification. We expect that enhancements in the emissions inventory would give the greatest improvement in results. As anticipated for a Gaussian plume model, performance was dramatically better when compared to measurements that were not matched in space or time. Despite the limitations of our analysis, we found thatthe regulatory

  13. Efficacy of Vitrectomy Combined with Subretinal rtPA Injection with Gas or Air Tamponade.

    PubMed

    Waizel, M; Todorova, M G; Rickmann, A; Blanke, B R; Szurman, P

    2017-01-31

    Background Functional and anatomical outcome after vitrectomy with rtPA combined with gas or air tamponade. Patients and methods Retrospective analysis of pseudophakic patients treated with subretinal rtPA and gas or air tamponade. The primary endpoint was displacement of haemorrhage six months after surgery. The secondary endpoints were visual acuity (BCVA), haemorrhage diameter (MHD) and central macular thickness (CMT), as measured by SD-OCT. Results 53 of 85 eyes were pseudophakic. 27 of these eyes were treated with air tamponade and 26 with gas tamponade. For patients with air tamponade, the mean BCVA improved from 20/530 to 20/355 (p = 0.01). MHD and CMT decreased from 6386 ± 2281 µm to 3805 ± 2397 µm (p < 0.001) and 895 ± 592 µm to 532 ± 386 µm (p < 0.001), respectively. For patients with gas tamponade, the mean BCVA improved only slightly, from 20/471 to 20/394 (p = 0.17). MHD and CMT exhibited statistically significant decreases from 6759 ± 1773 µm to 3525 ± 1548 µm (p < 0.001) and 1089 ± 587 µm to 537 ± 251 µm (p < 0.001), respectively. Conclusions Vitrectomy with subretinal rtPA injection has strong functional and anatomical effects on submacular haemorrhages with both gas and air tamponade.

  14. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1981-01-01

    Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.

  15. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners

    PubMed Central

    Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.-Y.; O'Toole, A.; Robins, T.; Rowe, Z.; Lewis, T.

    2014-01-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84 ± 27%, but dropped to 63 ± 33% in subsequent seasons. In months when households were not visited, use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. PMID:22145709

  16. Determination of radionuclide concentrations in ground level air using the ASS-500 high volume sampler

    SciTech Connect

    Frenzel, E.; Arnold, D.; Wershofen, H.

    1996-06-01

    A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling period 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).

  17. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    PubMed

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.

  18. Influence of air-staging on the concentration profiles of NH{sub 3} and HCN in the combustion chamber of a CFB boiler burning coal

    SciTech Connect

    Kassman, H.; Karlsson, M.; Aamand, L.E.

    1999-07-01

    The characterization of the concentration profiles of NH{sub 3} and HCN are of great importance for increasing the knowledge of the formation and destruction pathways of NO and N{sub 2}O in a fluidized bed boiler. Further improvements of the sampling methods for the determination of both NH{sub 3} and HCN in the combustion chamber in full-scale CFB boilers are also needed. A gas-sampling probe connected to a Fourier Transform Infrared (FTIR) instrument and a gas-quenching (GQ) probe in which the sample is quenched directly in the probe tip by a circulating trapper solution were used. The FTIR technique is based on analysis of hot combustion gases, whereas the trapper solutions from the GQ probe were analyzed by means of wet chemistry. The tests were performed during coal combustion in a 12 MW CFB boiler, which was operated at three air-staging cases with the addition of limestone for sulfur capture. The concentration profiles of NH{sub 3} and HCN in the combustion chamber showed a different pattern concerning the influence of air-staging. The highest levels of NH{sub 3} were observed during reducing condition (severe air-staging), and the lowest were found under oxidizing conditions (no air-staging). The levels of HCN were much lower than those measured for NH{sub 3}. The highest levels of HCN were observed for reversed air-staging and severe air-staging showed almost no HCN. The potential reactors involving NH{sub 3} and HCN in the combustion chamber as well as the potential measurement errors in each sampling technique are discussed for the three air-staging cases.

  19. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health

    NASA Astrophysics Data System (ADS)

    West, J. Jason; Smith, Steven J.; Silva, Raquel A.; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zachariah; Fry, Meridith M.; Anenberg, Susan; Horowitz, Larry W.; Lamarque, Jean-Francois

    2013-10-01

    Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants, long-term demographic changes, and the influence of climate change on air quality. Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: reducing co-emitted air pollutants, and slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter and ozone, global modelling methods and new future scenarios. Relative to a reference scenario, global GHG mitigation avoids 0.5+/-0.2, 1.3+/-0.5 and 2.2+/-0.8 million premature deaths in 2030, 2050 and 2100. Global average marginal co-benefits of avoided mortality are US$50-380 per tonne of CO2, which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.

  20. Pedologic and climatic controls on Rn-222 concentrations in soil gas, Denver, Colorado

    USGS Publications Warehouse

    Asher-Bolinder, S.; Owen, D.E.; Schumann, R.R.

    1990-01-01

    Soil-gas radon concentrations are controlled seasonally by factors of climate and pedology. In a swelling soil of the semiarid Western United States, soil-gas radon concentrations at 100 cm depth increase in winter and spring due to increased emanation with higher soil moisture and the capping effect of surface water or ice. Radon concentrations in soil drop markedly through the summer and fall. The increased insolation of spring and summer warms and dries the soil, limiting the amount of water that reaches 100 cm. Probable controls on the distribution of uranium within the soil column include its downward leaching, its precipitation or adsorption onto B-horizon clays, concretions, or cement, and the uranium content and mineralogy of the soil's granitic and gneissic precursors. -from Authors

  1. Groundwater level and nitrate concentration trends on Mountain Home Air Force Base, southwestern Idaho

    USGS Publications Warehouse

    Williams, Marshall L.

    2014-01-01

    Mountain Home Air Force Base in southwestern Idaho draws most of its drinking water from the regional aquifer. The base is located within the State of Idaho's Mountain Home Groundwater Management Area and is adjacent to the State's Cinder Cone Butte Critical Groundwater Area. Both areas were established by the Idaho Department of Water Resources in the early 1980s because of declining water levels in the regional aquifer. The base also is listed by the Idaho Department of Environmental Quality as a nitrate priority area. The U.S. Geological Survey, in cooperation with the U.S. Air Force, began monitoring wells on the base in 1985, and currently monitors 25 wells for water levels and 17 wells for water quality, primarily nutrients. This report provides a summary of water-level and nitrate concentration data collected primarily between 2001 and 2013 and examines trends in those data. A Regional Kendall Test was run to combine results from all wells to determine an overall regional trend in water level. Groundwater levels declined at an average rate of about 1.08 feet per year. Nitrate concentration trends show that 3 wells (18 percent) are increasing in nitrate concentration trend, 3 wells (18 percent) show a decreasing nitrate concentration trend, and 11 wells (64 percent) show no nitrate concentration trend. Six wells (35 percent) currently exceed the U.S. Environmental Protection Agency's maximum contaminant limit of 10 milligrams per liter for nitrate (nitrite plus nitrate, measured as nitrogen).

  2. Impacts of Marcellus Shale Natural Gas Production on Regional Air Quality

    NASA Astrophysics Data System (ADS)

    Swarthout, R.; Russo, R. S.; Zhou, Y.; Mitchell, B.; Miller, B.; Lipsky, E. M.; Sive, B. C.

    2012-12-01

    Natural gas is a clean burning alternative to other fossil fuels, producing lower carbon dioxide (CO2) emissions during combustion. Gas deposits located within shale rock or tight sand formations are difficult to access using conventional drilling techniques. However, horizontal drilling coupled with hydraulic fracturing is now widely used to enhance natural gas extraction. Potential environmental impacts of these practices are currently being assessed because of the rapid expansion of natural gas production in the U.S. Natural gas production has contributed to the deterioration of air quality in several regions, such as in Wyoming and Utah, that were near or downwind of natural gas basins. We conducted a field campaign in southwestern Pennsylvania on 16-18 June 2012 to investigate the impact of gas production operations in the Marcellus Shale on regional air quality. A total of 235 whole air samples were collected in 2-liter electropolished stainless- steel canisters throughout southwestern Pennsylvania in a regular grid pattern that covered an area of approximately 8500 square km. Day and night samples were collected at each grid point and additional samples were collected near active wells, flaring wells, fluid retention reservoirs, transmission pipelines, and a processing plant to assess the influence of different stages of the gas production operation on emissions. The samples were analyzed at Appalachian State University for methane (CH4), CO2, C2-C10 nonmethane hydrocarbons (NMHCs), C1-C2 halocarbons, C1-C5 alkyl nitrates and selected reduced sulfur compounds. In-situ measurements of ozone (O3), CH4, CO2, nitric oxide (NO), total reactive nitrogen (NOy), formaldehyde (HCHO), and a range of volatile organic compounds (VOCs) were carried out at an upwind site and a site near active gas wells using a mobile lab. Emissions associated with gas production were observed throughout the study region. Elevated mixing ratios of CH4 and CO2 were observed in the

  3. Gas flaring and resultant air pollution: A review focusing on black carbon.

    PubMed

    Fawole, Olusegun G; Cai, X-M; MacKenzie, A R

    2016-09-01

    Gas flaring is a prominent source of VOCs, CO, CO2, SO2, PAH, NOX and soot (black carbon), all of which are important pollutants which interact, directly and indirectly, in the Earth's climatic processes. Globally, over 130 billion cubic metres of gas are flared annually. We review the contribution of gas flaring to air pollution on local, regional and global scales, with special emphasis on black carbon (BC, "soot"). The temporal and spatial characteristics of gas flaring distinguishes it from mobile combustion sources (transport), while the open-flame nature of gas flaring distinguishes it from industrial point-sources; the high temperature, flame control, and spatial compactness distinguishes gas flaring from both biomass burning and domestic fuel-use. All of these distinguishing factors influence the quantity and characteristics of BC production from gas flaring, so that it is important to consider this source separately in emissions inventories and environmental field studies. Estimate of the yield of pollutants from gas flaring have, to date, paid little or no attention to the emission of BC with the assumption often being made that flaring produces a smokeless flame. In gas flares, soot yield is known to depend on a number of factors, and there is a need to develop emission estimates and modelling frameworks that take these factors into consideration. Hence, emission inventories, especially of the soot yield from gas flaring should give adequate consideration to the variation of fuel gas composition, and to combustion characteristics, which are strong determinants of the nature and quantity of pollutants emitted. The buoyant nature of gas flaring plume, often at temperatures in the range of 2000 K, coupled with the height of the stack enables some of the pollutants to escape further into the free troposphere aiding their long-range transport, which is often not well-captured by model studies.

  4. Measured concentrations of radioactive particles in air in the vicinity of the Anaconda Uranium Mill

    SciTech Connect

    Momeni, M H; Kisieleski, W E

    1980-02-01

    Concentrations of radioactive particles (U-238, Th-230, Ra-226, and Pb-210) in air were measured in the vicinity of the Anaconda Uranium Mill, Bluewater, New Mexico. Airborne particles were collected at three stations for about two-thirds of a year using a continuous collection method at a sampling rate of 10 L/min, and also were measured in monthly composites collected periodically at four stations using high volume air samplers at a sampling rate of 1400 L/min. The ratios of concentrations of each radionuclide to the concentrations of U-238 indicate that the concentrations of the radionuclides are influenced principally by the proximity of the major sources of emission and the direction of the wind. In all cases, the concentration of Pb-210 exceeded that of U-238. The ratio of Pb-210/U-238 was 12.3 and 13.3 for stations dominated by the emissions from the tailings and ore pads, but was only 1.6 for the station dominated by the yellowcake stack emission. The ratio of the radionuclide concentrations measured by the two methods of sample collection was between 0.8 and 1.2 for uranium, radium, and lead at station 104, but was 0.28 to 1.7 for thorium, radium, and lead at stations 101 and 102. The average concentrations calculated from the measurements made in this study suggest that releases from the Anaconda mill were made well within the existing limits of the maximum permissible concentrations for inhalation exposure of the general public.

  5. A coal mine multi-point fiber ethylene gas concentration sensor

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Chang, Jun; Lian, Jie; Liu, Tongyu

    2015-03-01

    Spontaneous combustion of the coal mine goaf is one of the main disasters in the coal mine. The detection technology based on symbolic gas is the main means to realize the spontaneous combustion prediction of the coal mine goaf, and ethylene gas is an important symbol gas of spontaneous combustion in the coal accelerated oxidation stage. In order to overcome the problem of current coal ethylene detection, the paper presents a mine optical fiber multi-point ethylene concentration sensor based on the tunable diode laser absorption spectroscopy. Based on the experiments and analysis of the near-infrared spectrum of ethylene, the system employed the 1.62 μm (DFB) wavelength fiber coupled distributed feedback laser as the light source. By using the wavelength scanning technique and developing a stable fiber coupled Herriot type long path gas absorption cell, a ppm-level high sensitivity detecting system for the concentration of ethylene gas was realized, which could meet the needs of coal mine fire prevention goaf prediction.

  6. Effects of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy under an artificial lighting condition.

    PubMed

    Kitaya, Y; Shibuya, T; Kozai, T; Kubota, C

    1998-01-01

    In order to characterize environmental variables inside a plant canopy under artificial lighting in the CELSS, we investigated the effects of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy. Under a PPF of 500 micromoles m-2 s-1, air temperature was 2-3 degrees C higher, water vapor pressure was 0.6 kPa higher, and CO2 concentration was 25-35 micromoles mol-1 lower at heights ranging from 0 to 30 mm below the canopy than at a height 60 mm above the canopy. Increasing the PPF increased air temperature and water vapor pressure and decreased CO2 concentration inside the canopy. The air temperature was lower and the CO2 concentration was higher inside the canopy at an air velocity of 0.3 m s-1 than at an air velocity of 0.1 m s-1. The environmental variables inside the canopy under a high light intensity were characterized by higher air temperature, higher vapor pressure, and lower CO2 concentration than those outside the canopy.

  7. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  8. Air-water gas exchange of mercury in the Bay Saint François wetlands: Observation and model parameterization

    NASA Astrophysics Data System (ADS)

    Zhang, Hong H.; Poissant, Laurier; Xu, Xiaohong; Pilote, Martin; Beauvais, Conrad; Amyot, Marc; Garcia, Edenise; Laroulandie, Jerome

    2006-09-01

    Total gaseous mercury (TGM) air-water flux measurements were taken using a dynamic flux chamber (DFC) coupled with a gaseous mercury (Hg) analyzer at the Bay St. François (BSF) wetlands (Quebec, Canada) in summer 2003. The measured TGM fluxes over water exhibited a consistent diurnal pattern, with maximum emissions during daytime and minimum fluxes occurring at night. Pearson correlation analysis showed that solar radiation was the most influential environmental parameter in TGM air-water exchange. Significant correlations were also found between TGM fluxes and 1 hour time-lagged water temperature, indicating the enhancement of fluxes by bacterial activities or chemical reactions. The concentrations of dissolved gaseous mercury (DGM) in water were measured during the 2003 sampling period and indicated that DGM was always supersaturated, which implied that the water body acted primarily as a source of mercury to the atmosphere. Several empirical models of mercury air-water gas exchange were developed and evaluated. Compared to the published models, these proposed models were capable of producing good results, leading to a better agreement between the measured and modeled fluxes (improvements by 48-98%). Among these empirical models, the ones linking TGM fluxes with net radiation were superior because of their strong predictive capability. Two preferred models were selected for air-water TGM flux estimation from Lake St. Pierre's surrounding wetlands. These two models yield a mean emission of 0.19-0.24 kg mercury during May-September each year from 1999 to 2003.

  9. Marine bacterioplankton can increase evaporation and gas transfer bymetabolizing insoluble surfactants from the air-seawater interface.

    PubMed

    Salter, Ian; Zubkov, Mikhail V; Warwick, Phil E; Burkill, Peter H

    2009-05-01

    Hydrophobic surfactants at the air-sea interface can retard evaporative and gaseous exchange between the atmosphere and the ocean.While numerous studies have examined the metabolic role of bacterioneuston at the air-sea interface, the interactions between hydrophobic surfactants and bacterioplankton are not well constrained. A novel experimental design was developed, using Vibrio natriegens and (3)H-labelled hexadecanoic acid tracer, to determine how the bacterial metabolism of fatty acids affects evaporative fluxes. In abiotic systems, >92% of the added hexadecanoic acid remained at the air-water interface. In contrast, the presence of V. natriegens cells draws down insoluble hexadecanoic acid from the air-water interface as an exponential function of time. The exponents characterizing the removal of hexadecanoic acid from the interface co-vary with the concentration of V. natriegens cells in the underlying water, with the largest exponent corresponding to the highest cell abundance. Radiochemical budgets show that evaporative fluxes from the system are linearly proportional to the quantity of hexadecanoic acid at the interface. Thus, bacterioplankton could influence the rate of evaporation and gas transfer in the ocean through the metabolism of otherwise insoluble surfactants.

  10. Air intake contamination by building exhausts: tracer gas investigation of atmospheric dispersion models in the urban environment.

    PubMed

    Lazure, Louis; Saathoff, Pat; Stathopoulos, Ted

    2002-02-01

    The establishment of a safe distance between sources of pollution and air intakes is based on a complex exercise that should take into account several wind, physical, and topographical factors. To estimate the maximum concentrations of the pollutants as a function of the distance from the emission source, some heating, ventilation, and air conditioning (HVAC) system designers use the atmospheric dispersion models suggested by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Two of these models, the Halitsky and Wilson-Chui-Lamb models, have been developed and evaluated mainly with laboratory data. There have been relatively few evaluations with full-scale field data. The objective of this study, carried out on a building in downtown Montreal, Quebec, Canada, was to compare the measured concentrations of a tracer gas emitted by an exhaust stack with those predicted by these models. The results indicate that the Halitsky model gives lower than actual dilution, while the Wilson-Chui-Lamb model generally gives acceptable estimates, with occasional over-estimations of the dilution.

  11. Seasonal variations in atmospheric concentrations and gas-particle partitioning of PCDD/Fs and dioxin-like PCBs around industrial sites in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Die, Qingqi; Nie, Zhiqiang; Liu, Feng; Tian, Yajun; Fang, Yanyan; Gao, Hefeng; Tian, Shulei; He, Jie; Huang, Qifei

    2015-10-01

    Gas and particle phase air samples were collected in summer and winter around industrial sites in Shanghai, China, to allow the concentrations, profiles, and gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) to be determined. The total 2,3,7,8-substituted PCDD/F and dl-PCB toxic equivalent (TEQ) concentrations were 14.2-182 fg TEQ/m3 (mean 56.8 fg TEQ/m3) in summer and 21.9-479 fg TEQ/m3 (mean 145 fg TEQ/m3) in winter. The PCDD/Fs tended to be predominantly in the particulate phase, while the dl-PCBs were predominantly found in the gas phase, and the proportions of all of the PCDD/F and dl-PCB congeners in the particle phase increased as the temperature decreased. The logarithms of the gas-particle partition coefficients correlated well with the subcooled liquid vapor pressures of the PCDD/Fs and dl-PCBs for most of the samples. Gas-particle partitioning of the PCDD/Fs deviated from equilibrium either in summer or winter close to local sources, and the Junge-Pankow model and predictions made using a model based on the octanol-air partition coefficient fitted the measured particulate PCDD/F fractions well, indicating that absorption and adsorption mechanism both contributed to the partitioning process. However, gas-particle equilibrium of the dl-PCBs was reached more easily in winter than in summer. The Junge-Pankow model predictions fitted the dl-PCB data better than did the predictions made using the model based on the octanol-air partition coefficient, indicating that adsorption mechanism made dominated contribution to the partitioning process.

  12. Air quality in postunification Erfurt, East Germany: associating changes in pollutant concentrations with changes in emissions.

    PubMed

    Ebelt, S; Brauer, M; Cyrys, J; Tuch, T; Kreyling, W G; Wichmann, H E; Heinrich, J

    2001-04-01

    The unification of East and West Germany in 1990 resulted in sharp decreases in emissions of major air pollutants. This change in air quality has provided an opportunity for a natural experiment to evaluate the health impacts of air pollution. We evaluated airborne particle size distribution and gaseous co-pollutant data collected in Erfurt, Germany, throughout the 1990s and assessed the extent to which the observed changes are associated with changes in the two major emission sources: coal burning for power production and residential heating, and motor vehicles. Continuous data for sulfur dioxide, total suspended particulates (TSP), nitric oxide, carbon monoxide, and meteorologic parameters were available for 1990-1999, and size-selective particle number and mass concentration measurements were made during winters of 1991 and 1998. We used hourly profiles of pollutants and linear regression analyses, stratified by year, weekday/weekend, and hour, using NO and SO(2) as markers of traffic- and heating-related combustion sources, respectively, to study the patterns of various particle size fractions. Supplementary data on traffic and heating-related sources were gathered to support hypotheses linking these sources with observed changes in ambient air pollution levels. Substantially decreased (19-91%) concentrations were observed for all pollutants, with the exception of particles in the 0.01-0.03 microm size range (representing the smallest ultrafine particles that were measured). The number concentration for these particles increased by 115% between 1991 and 1998. The ratio of these ultrafine particles to TSP also increased by more than 500%, indicating a dramatic change in the size distribution of airborne particles. Analysis of hourly concentration patterns indicated that in 1991, concentrations of SO(2) and larger particle sizes were related to residential heating with coal. These peaks were no longer evident in 1998 due to decreases in coal consumption and

  13. Air quality in postunification Erfurt, East Germany: associating changes in pollutant concentrations with changes in emissions.

    PubMed Central

    Ebelt, S; Brauer, M; Cyrys, J; Tuch, T; Kreyling, W G; Wichmann, H E; Heinrich, J

    2001-01-01

    The unification of East and West Germany in 1990 resulted in sharp decreases in emissions of major air pollutants. This change in air quality has provided an opportunity for a natural experiment to evaluate the health impacts of air pollution. We evaluated airborne particle size distribution and gaseous co-pollutant data collected in Erfurt, Germany, throughout the 1990s and assessed the extent to which the observed changes are associated with changes in the two major emission sources: coal burning for power production and residential heating, and motor vehicles. Continuous data for sulfur dioxide, total suspended particulates (TSP), nitric oxide, carbon monoxide, and meteorologic parameters were available for 1990-1999, and size-selective particle number and mass concentration measurements were made during winters of 1991 and 1998. We used hourly profiles of pollutants and linear regression analyses, stratified by year, weekday/weekend, and hour, using NO and SO(2) as markers of traffic- and heating-related combustion sources, respectively, to study the patterns of various particle size fractions. Supplementary data on traffic and heating-related sources were gathered to support hypotheses linking these sources with observed changes in ambient air pollution levels. Substantially decreased (19-91%) concentrations were observed for all pollutants, with the exception of particles in the 0.01-0.03 microm size range (representing the smallest ultrafine particles that were measured). The number concentration for these particles increased by 115% between 1991 and 1998. The ratio of these ultrafine particles to TSP also increased by more than 500%, indicating a dramatic change in the size distribution of airborne particles. Analysis of hourly concentration patterns indicated that in 1991, concentrations of SO(2) and larger particle sizes were related to residential heating with coal. These peaks were no longer evident in 1998 due to decreases in coal consumption and

  14. Spatial and temporal distribution of pesticide air concentrations in Canadian agricultural regions

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Tuduri, Ludovic; Harner, Tom; Blanchard, Pierrette; Waite, Don; Poissant, Laurier; Murphy, Clair; Belzer, Wayne; Aulagnier, Fabien; Li, Yi-Fan; Sverko, Ed

    The Canadian Pesticide Air Sampling Campaign was initiated in 2003 to assess atmospheric levels of pesticides, especially currently used pesticides (CUPs) in agricultural regions across Canada. In the first campaign during the spring to summer of 2003, over 40 pesticides were detected. The spatial and temporal distribution of pesticides in the Canadian atmosphere was shown to reflect the pesticide usage in each region. Several herbicides including triallate, bromoxynil, MCPA, 2,4-D, dicamba, trifluralin and ethalfluralin were detected at highest levels at Bratt's Lake, SK in the prairie region. Strong relationships between air concentrations and dry depositions were observed at this site. Although no application occurred in the Canadian Prairies in 2003, high air concentrations of lindane ( γ-hexachlorocyclohexane) were still observed at Bratt's Lake and Hafford, SK. Two fungicides (chlorothalonil and metalaxyl) and two insecticides (endosulfan and carbofuran) were measured at highest levels at Kensington, PEI. Maximum concentrations of chlorpyrifos and metolachlor were found at St. Anicet, QC. The southern Ontario site, Egbert showed highest concentration of alachlor. Malathion was detected at the highest level at the west coast site, Abbotsford, BC. In case of legacy chlorinated insecticides, high concentrations of DDT, DDE and dieldrin were detected in British Columbia while α-HCH and HCB were found to be fairly uniform across the country. Chlordane was detected in Ontario, Québec and Prince Edward Island. This study demonstrates that the sources for the observed atmospheric occurrence of pesticides include local current pesticide application, volatilization of pesticide residues from soil and atmospheric transport. In many instances, these data represent the first measurements for certain pesticides in a given part of Canada.

  15. Modeling of air pollutant concentrations in an industrial region of Turkey.

    PubMed

    Tuygun, Gizem Tuna; Altuğ, Hicran; Elbir, Tolga; Gaga, Eftade E

    2017-02-03

    The hourly SO2 and PM10 concentrations in ambient air of the Kutahya city located at the western part of Turkey have exceeded the air quality limits in winter months since several years. The region has major industrial plants including lignite-fired power plants and open-cast mining activities, residential areas, and traffic sources. To obtain and quantify the sector-wise anthropogenic emissions and spatial distribution of the major pollutants including SO2, NO x , PM10, and CO, a comprehensive emission inventory with 1-km spatial resolution was prepared for the year of 2014, and the AERMOD dispersion model was used to predict ambient air concentrations in a domain of 140 km by 110 km. Validation of the model results was also done referring to in situ routine measurements at two monitoring stations located in the study area. Total emissions of SO2, PM10, NO x , and CO in the study area were calculated as 64,399, 9770, 24,627, and 29,198 tons/year, respectively. The results showed that industrial plants were the largest sources of SO2, NO x , and PM10 emissions, while residential heating and road traffic were the most contributing sectors for CO emissions. Three major power plants in the region with total annual lignite consumption of 10 million tons per year were main sources of high SO2 concentrations, while high PM10 concentrations mainly originated from two major open-cast lignite mines. Major contributors of high NO x and CO concentrations were traffic including highways and urban streets, and residential heating with high lignite consumption in urban areas. Results of the dispersion model run with the emission inventory resulted in partially high index of agreement (0.75) with SO2 measured in the urban station within the modeled area.

  16. Air classification: Potential treatment method for optimized recycling or utilization of fine-grained air pollution control residues obtained from dry off-gas cleaning high-temperature processing systems.

    PubMed

    Lanzerstorfer, Christof

    2015-11-01

    In the dust collected from the off-gas of high-temperature processes, usually components that are volatile at the process temperature are enriched. In the recycling of the dust, the concentration of these volatile components is frequently limited to avoid operation problems. Also, for external utilization the concentration of such volatile components, especially heavy metals, is often restricted. The concentration of the volatile components is usually higher in the fine fractions of the collected dust. Therefore, air classification is a potential treatment method to deplete the coarse material from these volatile components by splitting off a fines fraction with an increased concentration of those volatile components. In this work, the procedure of a sequential classification using a laboratory air classifier and the calculations required for the evaluation of air classification for a certain application were demonstrated by taking the example of a fly ash sample from a biomass combustion plant. In the investigated example, the Pb content in the coarse fraction could be reduced to 60% by separation of 20% fines. For the non-volatile Mg the content was almost constant. It can be concluded that air classification is an appropriate method for the treatment of off-gas cleaning residues.

  17. Simultaneous determination of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine in air by derivatization/gas chromatography

    SciTech Connect

    Holtzclaw, J.R.; Rose, S.L.; Wyatt, J.R.; Rounbehler, D.P.; Fine, D.H.

    1984-12-01

    A rapid and simple procedure has been developed for the simultaneous determination of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine in air at the parts per billion (ppb) concentration level. This procedure utilizes a chilled acetone collection medium which quantitatively traps the hydrazines and converts them to stable derivatives in a single step. The acetone solution is then assayed directly for the derivatives by using a gas chromatography with a nitrogen specific detector. The results obtained from this procedure are in excellent agreement with results obtained by independent analytical techniques, and the overall precision of the methodology is better than 5% (relative standard deviation) for 90 ppb hydrazine. The minimum detectable concentration is estimated to be approximately 4 ppb.

  18. Determination of chlorine concentration using single temperature modulated semiconductor gas sensor

    NASA Astrophysics Data System (ADS)

    Woźniak, Ł.; Kalinowski, P.; Jasiński, G.; Jasiński, P.

    2016-11-01

    A periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neuron Network (ANN). Determination of the concentration of chlorine was performed. Moreover, this work evaluates the sensor performance upon sinusoidal temperature modulation.

  19. Characterization of Sea-Air Methane Fluxes Around a Seafloor Gas Seep in the Central Laptev Sea

    NASA Astrophysics Data System (ADS)

    Geibel, M. C.; Thornton, B. F.; Prytherch, J.; Brooks, I. M.; Salisbury, D. J.; Tjernstrom, M. K. H.; Semiletov, I. P.; Mörth, C. M.; Humborg, C.; Crill, P. M.

    2015-12-01

    The fate of CH4 released from thawing subsea permafrost on the East Siberian Arctic Shelf (ESAS) is unclear. In recent years, interest has focused on the possibility of large emissions of CH4 directly to the atmosphere from this remote area. It is uncertain how high those emissions are and whether they are primarily of biogenic or thermogenic nature, or some combination of sources. The SWERUS-C3 expedition onboard the Swedish icebreaker Oden during July-August 2014 sought to document possible CH4 release from subsea permafrost, and to understand mechanisms and magnitudes of such CH4 being released to the atmosphere. During the first leg of the expedition continuous high-resolution measurements were made to determine the in situ concentrations of CH4 in both the atmosphere and surface water. During SWERUS-C3, several underwater gas flares were found within the ESAS region showing elevated CH4 concentrations collocated in the surface waters. Here we focus on one seep area, a so-called "mega-flare" site, in the central Laptev Sea. Over individual gas flares of this site the surface water concentration of CH4 reached as high as 200ppm. The atmospheric concentrations of CH4 briefly (< 1 s) reached a maximum of ~3.2 ppm. More typical atmospheric values around the seeps were between 1.9-2.0 ppm (background values were approximately 1.88 ppm). However, such peak concentrations in both air and water were highly localized, returning to background levels within a few hundred meters of the source seeps. Together with continuous high-precision eddy-covariance measurements that were made during the SWERUS-C3 expedition, the combined dataset allows an intensive analysis these highly inhomogeneous gas flares. This gives the opportunity to calculate accurate high-resolution CH4 fluxes and thus give a better insight into the current rates of subsea CH4 outgassing reaching the atmosphere.

  20. Predicting soil fumigant air concentrations under regional and diverse agronomic conditions.

    PubMed

    Cryer, Steven A

    2005-01-01

    SOFEA (SOil Fumigant Exposure Assessment system; Dow AgroSciences, Indianapolis, IN) is a new stochastic numerical modeling tool for evaluating and managing human inhalation exposure potential associated with the use of soil fumigants. SOFEA calculates fumigant concentrations in air arising from volatility losses from treated fields for large agricultural regions using multiple transient source terms (treated fields), geographical information systems (GIS) information, agronomic specific variables, user-specified buffer zones, and field reentry intervals. A modified version of the USEPA Industrial Source Complex Short Term model (ISCST3) is used for air dispersion calculations. Weather information, field size, application date, application rate, application type, soil incorporation depth, pesticide degradation rates in air, tarp presence, field retreatment, and other sensitive parameters are varied stochastically using Monte Carlo techniques to mimic region and crop specific agronomic practices. Regional land cover, elevation, and population information can be used to refine source placement (treated fields), dispersion calculations, and risk assessments. This paper describes the technical algorithms of SOFEA and offers comparisons of simulation predictions for the soil fumigant 1,3-dichloropropene (1,3-D) to actual regional air monitoring measurements from Kern, California. Comparison of simulation results to daily air monitoring observations is remarkable over the entire concentration distribution (average percent deviation of 44% and model efficiency of 0.98), especially considering numerous inputs such as meteorological conditions for SOFEA were unavailable and approximated by neighboring regions. Both current and anticipated and/or forecasted fumigant scenarios can be simulated using SOFEA to provide risk managers and product stewards the necessary information to make sound regulatory decisions regarding the use of soil fumigants in agriculture.

  1. Membrane processes for gas separations: Part I. Removal of carbon dioxide and hydrogen sulfide from low-quality natural gas. Part II. Enrichment of krypton in air

    NASA Astrophysics Data System (ADS)

    Hao, Jibin

    1998-12-01

    I. The objective of this study was to determine the process design characteristics and economics of membrane separation processes for reducing the concentrations of H2S and CO2 in low-quality natural gas containing substantial amounts of the two acid gases to pipeline specifications ( ≤ 2 mole-% CO2 and ≤ 4 ppm H2S). The new processes considered the simultaneous use of two different types of polymer membranes for the above application, namely, one with higher CO2/CH4 selectivity and the other with higher H2S/CH4 selectivity. The performance and economics of membrane process configurations comprising one, two, and three permeation stages, with and without recycle streams, were examined and optimized via extensive computer simulations. Most computations assumed as a "base-case", the processing of a medium-size natural gas stream of 35 MMSCFD at 800 psia. The natural gas was taken to contain ≤ 10 mole-% H2S and ≤ 40 mole-% CO2. The most economical process configuration was two permeation stages in series, with H2S-selective membranes in the first stage and CO2-selective membranes in the second stage. The most economical process configurations for upgrading natural gas containing either only substantial amounts of H2S or of CO2 were also determined. The sensitivity of the process economics to feed flow rate, feed pressure, membrane module cost, and wellhead cost of natural gas was studied. A comparison of the processing cost of membrane processes with that of conventional gas absorption processes utilizing diethanolamine as solvent was also investigated. II. A membrane process for enrichment of Kr in air was studied experimentally as a technique of improving the accuracy of Kr analysis. "Asymmetric" silicone rubber membranes were found to be most suitable for this application. The study was investigated with a feed gas mixture containing 0.99 mole-% Kr, 20.70 mole-% O2, and 78.30 mole-% N2. The Kr concentration could be increased from 0.99 to 2.23 mole-% in a

  2. Gas-bubbled nano zero-valent iron process for high concentration arsenate removal.

    PubMed

    Tanboonchuy, Visanu; Hsu, Jia-Chin; Grisdanurak, Nurak; Liao, Chih-Hsiang

    2011-02-28

    In this study, batch experiments were performed to investigate a novel process for high concentration arsenate removal in the presence of air and/or CO(2) bubbling. The pretreatment step, CO(2) bubbling at 300 mL/min for 5 min, was taken to adjust the solution pH to an acidic environment, followed by air bubbling at 300 mL/min for 10 min to increase dissolved oxygen in the solution. In the treatment period, the nano-scale zero-valent iron was applied to remove aqueous arsenate of 3000 μg/L, while the treatment system was continuously bubbled by 300 mL/min of air. Such a process resulted in outstanding performance in arsenate removal. Furthermore, in the field groundwater application, the arsenate removal rate for the proposed process was 5 times faster than the rate measured when the system was pretreated by acidic chemical species only.

  3. Determination of density and concentration from fluorescent images of a gas flow

    NASA Astrophysics Data System (ADS)

    Belan, Marco; de Ponte, Sergio; Tordella, Daniela

    2008-09-01

    A fluorescence image analysis procedure to determine the distribution of species concentration and density in a gas flow is proposed. The fluorescent emission is due to the excitation of atoms/molecules of a gas that is intercepted by an electron sheet. The intensity of the fluorescent light is proportional to the local number density of the gas. When the gas flow is a mixture of different species, this proportionality can be used to extract the contribution associated with the species from the spectral superposition acquired by a digital camera. In particular, the fact is exploited such that the ratio between a pair of color intensities takes different values for different gases and that different linear superpositions of different color intensities yield a ratio that varies with the species concentration. This leads to a method that simultaneously reveals species concentrations and mass density of the mixture. For the proper working of a continuous electron gun in a gas, the procedure can be applied to gas flow where the pressure is below the thresholds of 200˜300 Pa and the number density is no greater than 1023 m-3. To maintain the constancy of the emission coefficients, the temperature variation in the flow should be inside the range 75-900 K (above the temperature where the probability to meet disequilibrium phenomena due to rarefaction is low, below the temperature where visible thermal emission is present). The overall accuracy of the measurement method is approximately 10%. The uncertainty can vary locally in the range from 5 to 15% for the concentration and from 5 to 20% for the density depending on the local signal-to-noise ratio. The procedure is applied to two under-expanded sonic jets discharged into a different gas ambient—Helium into Argon and Argon into Helium—to measure the concentration and density distribution along the jet axis and across it. A comparison with experimental and numerical results obtained by other authors when observing

  4. Benzo(a)pyrene in Europe: Ambient air concentrations, population exposure and health effects.

    PubMed

    Guerreiro, C B B; Horálek, J; de Leeuw, F; Couvidat, F

    2016-07-01

    This study estimated current benzo(a)pyrene (BaP) concentration levels, population exposure and potential health impacts of exposure to ambient air BaP in Europe. These estimates were done by combining the best available information from observations and chemical transport models through the use of spatial interpolation methods. Results show large exceedances of the European target value for BaP in 2012 over large areas, particularly in central-eastern Europe. Results also show large uncertainties in the concentration estimates in regions with a few or no measurement stations. The estimation of the population exposure to BaP concentrations and its health impacts was limited to 60% of the European population, covering only the modelled areas which met the data quality requirement for modelling of BaP concentrations set by the European directive 2004/107/EC. The population exposure estimate shows that 20% of the European population is exposed to BaP background ambient concentrations above the EU target value and only 7% live in areas with concentrations under the estimated acceptable risk level of 0.12 ng m(-3). This exposure leads to an estimated 370 lung cancer incidences per year, for the 60% of the European population included in the estimation. Emissions of BaP have increased in the last decade with the increase in emissions from household combustion of biomass. At the same time, climate mitigation policies are promoting the use of biomass burning for domestic heating. The current study shows that there is a need for more BaP measurements in areas of low measurement density, particularly where high concentrations are expected, e.g. in Romania, Bulgaria, and other Balkan states. Furthermore, this study shows that the health risk posed by PAH exposure calls for better coordination between air quality and climate mitigation policies in Europe.

  5. Criteria and methods for establishing maximum permissible concentrations of air pollution

    PubMed Central

    Rjazanov, V. A.

    1965-01-01

    The article describes experience in the USSR in establishing standards for air pollution control. The author emphasizes that health considerations must be the main criterion in deciding permissible concentrations, which constitute the “hygienic” standards ultimately to be achieved. Economic and technological reasons may dictate temporary “sanitary” standards, which modify the requirements for a limited period. “Technological” standards relate to the economic and technological consequences of air pollution and do not concern health. The maximum permissible concentrations of toxic substances used in toxicology and industrial hygiene are not sufficiently stringent for general use, and control standards are therefore based on the results of tests carried out on animals and human subjects. Tests on animals show that certain concentrations of toxic substances cause functional changes (e.g., in higher nervous activity, cholinesterase activity, and excretion of coproporphyrin) as well as a number of protective adaptational reactions. The results are used to establish maximum permissible concentrations of pollutants within a 24-hour period. Tests on human volunteers provide a basis for determining the maximum average concentrations at a given time. Reactions to odorous substances give the olfactory threshold and the level of concentration causing respiratory and visual reflexes, as well as subsensory effects such as changes in light sensitivity and in the activity of the cerebral cortex. Morbidity statistics also provide evidence of harmful pollution, but cannot serve as a basis for establishing maximum permissible concentrations, which should aim not only at preventing illness but also at avoiding pathological and adaptational reactions. PMID:14315711

  6. A new method for measurement of gas-phase ammonia and amines in air

    NASA Astrophysics Data System (ADS)

    Dawson, M. L.; Gomez, A.; Arquero, K. D.; Perraud, V. M.; Finlayson-Pitts, B. J.

    2013-12-01

    Accurately predicting particle formation and growth from gas phase precursors is an essential component of modeling the impact of particulate matter on human health, visibility and climate. While the reactions of ammonia with nitric and sulfuric acids to form particulate nitrate and sulfate particles is well known, it has been recently recognized that gas-phase amines, even at low ppb levels, significantly enhance particle formation from common atmospheric acids. As a result, accurate data on the sources, sinks and typical background concentrations of gas-phase amines, are crucial to predicting new particle formation in the atmosphere. However, gas-phase amines are notoriously difficult to measure, as they have a tendency to stick to surfaces, including sampling lines and inlets. In addition, background amine concentrations in the atmosphere are typically a few ppb or lower, requiring low detection limits for ambient sampling techniques. Here we report the development of a simple, reliable method for detection of gas-phase amines at atmospherically relevant concentrations using collection on a cation exchange sorbent followed by in-line extraction and ion chromatography. Gas-phase standards of several amines and ammonia are used to characterize the technique and results from ambient samples in an agricultural area are presented. The application of this technique to field measurements as well as to laboratory measurements of new particle formation from gas-phase ammonia and amines are discussed.

  7. Assessment of workplace air concentrations of formaldehyde during and before working hours in medical facilities

    PubMed Central

    HIGASHIKUBO, Ichiro; MIYAUCHI, Hiroyuki; YOSHIDA, Satoru; TANAKA, Shinsuke; MATSUOKA, Mitsunori; ARITO, Heihachiro; ARAKI, Akihiro; SHIMIZU, Hidesuke; SAKURAI, Haruhiko

    2017-01-01

    Workplace air concentrations of formaldehyde (FA) in medical facilities where FA and FA-treated organs were stored and handled were measured before and during working hours and assessed by the official method specified by Work Environment Measurement Law. Sixty-percent of the total facilities examined were judged as inappropriately controlled work environment. The concentrations of FA before working hours by spot sampling were found to exceed 0.1 ppm in some facilities, and tended to increase with increasing volume of containers storing FA and FA-treated materials. Regression analysis revealed that logarithmic concentrations of FA during working hours by the Law-specified analytical method were highly correlated with those before working hours by spot sampling, suggesting the importance for appropriate storing methods of FA and FA-treated materials. The concentrations of FA during working hours are considered to be lowered by effective ventilation of FA-contaminated workplace air and appropriate storage of FA and FA-treated materials in plastic containers in the medical facilities. In particular, such improvement by a local exhaust ventilation system and tightly-sealed containment of FA-treated material were urgently needed for the dissecting room where FA-treated cadavers were prepared and handled for a gross anatomy course in a medical school. PMID:28090065

  8. Isoflurane waste anesthetic gas concentrations associated with the open-drop method.

    PubMed

    Taylor, Douglas K; Mook, Deborah M

    2009-01-01

    The open-drop technique is used frequently for anesthetic delivery to small rodents. Operator exposure to waste anesthetic gas (WAG) is a potential occupational hazard if this method is used without WAG scavenging. This study was conducted to determine whether administration of isoflu