Science.gov

Sample records for air gas concentration

  1. Minanre Gas Concentrators For Air Sampling

    SciTech Connect

    Dr. Seung Ho Hong

    2001-03-01

    The goal of this project was to demonstrate the feasibility of a compact, lightweight, gas-sampling device with rapid-cycle-time characteristics. The highlights of our Phase I work include: (1) Demonstration of a compact gas sampler with integrated heater. This device has an order of magnitude greater adsorption capacity and much faster heating/cooling times than commercial sorbent tubes. (2) Completion of computational fluid dynamics modeling of the gas sampler to determine airflow characteristics for various design options. These modeling efforts guided the development and testing of the Mesochannel Gas Sampler prototype. (3) Testing of the Mesochannel Gas Sampler in parallel with tests of two packed-bed samplers. These tests showed the Mesochannel Gas Sampler represents a substantial improvement compared with the packed-bed approach. Our mesochannel heat-exchanger/adsorber architecture allows very efficient use of adsorbent mass, high adsorbent loadings, and very low pressure drop, which makes possible very high air-sampling rates using a simple, low-power fan. This device is well-suited for collecting samples of trace-level contaminants. The integrated heater, which forms the adsorbent-coated mesochannel walls, allows direct heating of the adsorbent and results in very rapid desorption of the adsorbed species. We believe the Mesochannel Gas Sampler represents a promising technology for the improvement of trace-contaminant detection limits. In our Phase II proposal, we outline several improvements to the gas sampler that will further improve its performance.

  2. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  3. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD. PMID:27063719

  4. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    DOE PAGES

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.; Spears, Michael; Less, Brennan D.; Singer, Brett C.

    2015-03-17

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX, NO2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX, NO2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher inmore » homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX, NO2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.« less

  5. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: impact of natural gas appliances on air pollutant concentrations.

    PubMed

    Mullen, N A; Li, J; Russell, M L; Spears, M; Less, B D; Singer, B C

    2016-04-01

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX , NO2 , formaldehyde, and acetaldehyde over ~6-day periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX , NO2 , and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX , NO2 , and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.

  6. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    SciTech Connect

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.; Spears, Michael; Less, Brennan D.; Singer, Brett C.

    2015-03-17

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX, NO2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX, NO2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX, NO2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.

  7. Solving widespread low-concentration VOC air pollution problems: Gas-phase photocatalytic oxidation answers the needs of many small businesses

    SciTech Connect

    Lyons, C; Turchi, C; Gratson, D

    1995-04-01

    Many small businesses are facing new regulations under the 1990 Amendments to the Clean Air Act. Regulators, as well as the businesses themselves, face new challenges to control small point-source air pollution emissions. An individual business-such as a dry cleaner, auto repair shop, bakery, coffee roaster, photo print shop, or chemical company-may be an insignificant source of air pollution, but collectively, the industry becomes a noticeable source. Often the businesses are not equipped to respond to new regulatory requirements because of limited resources, experience, and expertise. Also, existing control strategies may be inappropriate for these businesses, having been developed for major industries with high volumes, high pollutant concentrations, and substantial corporate resources. Gas-phase photocatalytic oxidation (PCO) is an option for eliminating low-concentration, low-flow-rate emissions of volatile organic compounds (VOCs) from small business point sources. The advantages PCO has over other treatment techniques are presented in this paper. This paper also describes how PCO can be applied to specific air pollution problems. We present our methodology for identifying pollution problems for which PCO is applicable and for reaching the technology`s potential end users. PCO is compared to other gas-phase VOC control technologies.

  8. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    NASA Astrophysics Data System (ADS)

    Smolander, S.; He, Q.; Mogensen, D.; Zhou, L.; Bäck, J.; Ruuskanen, T.; Noe, S.; Guenther, A.; Aaltonen, H.; Kulmala, M.; Boy, M.

    2014-10-01

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors, such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain. We applied the boundary-layer-chemistry-transport model SOSA (model to Simulate the concentrations of Organic vapours and Sulphuric Acid) to investigate Scots pine (Pinus sylvestris) monoterpene emissions in a boreal coniferous forest at the SMEAR (Station for Measuring forest Ecosystem-Atmosphere Relations) II site, southern Finland. SOSA was applied to simulate monoterpene emissions with three different emission modules: the semiempirical G95, MEGAN (Model of Emissions of Gases and Aerosols from Nature) 2.04 with improved descriptions of temperature and light responses and including also carbonyl emissions, and a process-based model SIM-BIM (Seasonal Isoprenoid synthase Model - Biochemical Isoprenoid biosynthesis Model). For the first time, the emission models included seasonal and diurnal variations in both quantity and chemical species of emitted monoterpenes, based on parameterizations obtained from field measurements. Results indicate that modelling and observations agreed reasonably well and that the model can be used for investigating regional air chemistry questions related to monoterpenes. The predominant modelled monoterpene concentrations, α-pinene and Δ3-carene

  9. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    NASA Astrophysics Data System (ADS)

    Smolander, S.; He, Q.; Mogensen, D.; Zhou, L.; Bäck, J.; Ruuskanen, T.; Noe, S.; Guenther, A.; Aaltonen, H.; Kulmala, M.; Boy, M.

    2013-11-01

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain. We applied the boundary layer-chemistry-transport model SOSA to investigate Scots pine (Pinus sylvestris) monoterpene emissions in a boreal coniferous forest at the SMEAR II site, Southern Finland. SOSA was applied to simulate monoterpene emissions with three different emission modules: the semi-empirical G95, MEGAN 2.04 with improved descriptions of temperature and light responses and including also carbonyl emissions, and a process-based model SIM-BIM. For the first time, the emission models included seasonal and diurnal variations in both quantity and chemical species of emitted monoterpenes, based on parameterizations obtained from field measurements. Results indicate that modelling and observations agreed reasonably well, and that the model can be used for investigating regional air chemistry questions related to monoterpenes. The predominant modelled monoterpene concentrations, α-pinene and Δ3-carene, are consistent with observations.

  10. Reducing indoor air formaldehyde concentrations

    SciTech Connect

    Meyer, B.; Hermanns, K.

    1985-08-01

    Urea-formaldehyde resin bonded particle board, medium density fiberboard and plywood paneling are used as flooring, wall paneling, for cabinet work and in furniture, and are present in almost every office, home and public building. If large quantities of these products are used in poorly ventilated spaces, high manufacturing quality control is necessary to avoid problems of latent formaldehyde release. Indoor air formaldehyde concentrations depend on the nature of the product, the product surface to air volume (loading) factor, temperature, humidity, age and product emission rates. Standard test methods are now available for measuring product emission rates that make it possible to predict the performance of UF-bonded pressed wood materials if use conditions and environmental parameters are known. Recent modifications in adhesive and board manufacturing parameters have made it possible to reduce formaldehyde emission significantly, and UF-bonded wood products are now capable of meeting indoor air quality standard levels of 0.1 ppm under almost all customary loading conditions.

  11. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  12. INDOOR AIR CONCENTRATION UNIT CONVERSIONS

    EPA Science Inventory

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which can migrate through subsurface soils and may enter the indoor air of overlying buil...

  13. Daily variations of indoor air-ion and radon concentrations.

    PubMed

    Kolarz, P M; Filipović, D M; Marinković, B P

    2009-11-01

    Air-ions and radon are two atmospheric trace constituents which have two opposite effects on human health: the ions are beneficial, and radon gas is potentially lethal as it increases the risk of lung cancer. In the lower troposphere, radon is the most important generator of the air-ions. Ionization by cosmic rays and radioactive minerals is almost constant in daily cycles, and variation of air-ion concentrations is attributed to changes of the radon activity. Air-ion and radon concentrations in outdoor and indoor space and their vertical gradients in residential buildings were measured. Gerdien type air-ion detector "CDI-06" made in our laboratory and radon monitor "RAD7" were utilized for these measurements. Correlation coefficient between positive air-ion and Rn indoor concentrations was approximately 0.7. Outdoor and indoor peak values were simultaneous while vertical gradient of concentrations in indoor measurements was evident. The indoor experiments showed that positive air-ion concentration could be an alternative method of radon activity concentration evaluation. PMID:19700332

  14. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Uria-Tellaetxe, Iratxe; Navazo, Marino; de Blas, Maite; Durana, Nieves; Alonso, Lucio; Iza, Jon

    2016-04-01

    Despite the toxicity of naphthalene and the fact that it is a precursor of atmospheric photooxidants and secondary aerosol, studies on ambient gas-phase naphthalene are generally scarce. Moreover, as far as we are concerned, this is the first published one using long-term hourly ambient gas-phase naphthalene concentrations. In this work, it has been also demonstrated the usefulness of ambient gas-phase naphthalene to identify major sources of volatile organic compounds (VOC) in complex scenarios. Initially, in order to identify main benzene emission sources, hourly ambient measurements of 60 VOC were taken during a complete year together with meteorological data in an urban/industrial area. Later, due to the observed co-linearity of some of the emissions, a procedure was developed to recover naphthalene concentration data from recorded chromatograms to use it as a tracer of the combustion and distillation of petroleum products. The characteristic retention time of this compound was determined comparing previous GC-MS and GC-FID simultaneous analysis by means of relative retention times, and its concentration was calculated by using relative response factors. The obtained naphthalene concentrations correlated fairly well with ethene (r = 0.86) and benzene (r = 0.92). Besides, the analysis of daily time series showed that these compounds followed a similar pattern, very different from that of other VOC, with minimum concentrations at day-time. This, together with the results from the assessment of the meteorological dependence pointed out a coke oven as the major naphthalene and benzene emitting sources in the study area.

  15. Observations on using inside air concentrations as a predictor of outside air concentrations

    SciTech Connect

    Hawkley, Gavin; Whicker, Jeffrey; Harris, Jason

    2015-04-01

    Here, excavations of radiological material were performed within confined structures with known operational parameters, such as a filtered exhaust system with known filtration efficiency. Given the known efficiency, the assumption could be made that the air concentrations of radioactivity measured outside the structure would be proportional to the air concentrations measured inside the structure. To investigate this assumption, the inside concentration data was compared with the outside concentration data. The correlation of the data suggested that the inside concentrations were not a good predictor of the outside concentrations. This poor correlation was deemed to be a result of operational unknowns within the structures.

  16. Observations on using inside air concentrations as a predictor of outside air concentrations

    DOE PAGES

    Hawkley, Gavin; Whicker, Jeffrey; Harris, Jason

    2015-04-01

    Here, excavations of radiological material were performed within confined structures with known operational parameters, such as a filtered exhaust system with known filtration efficiency. Given the known efficiency, the assumption could be made that the air concentrations of radioactivity measured outside the structure would be proportional to the air concentrations measured inside the structure. To investigate this assumption, the inside concentration data was compared with the outside concentration data. The correlation of the data suggested that the inside concentrations were not a good predictor of the outside concentrations. This poor correlation was deemed to be a result of operational unknownsmore » within the structures.« less

  17. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, Robert E.

    1987-01-01

    An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

  18. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, R.E.

    1987-06-30

    An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

  19. Scavenging ratios based on inflow air concentrations

    SciTech Connect

    Davis, W.E.; Dana, M.T.; Lee, R.N.; Slinn, W.G.N.; Thorp, J.M.

    1991-07-01

    Scavenging ratios were calculated from field measurements made during April 1985. Event precipitation samples were collected at the surface, but air chemistry measurements in the air mass feeding the precipitation were made from an aircraft. In contrast, ratios calculated in previous studies have used air concentration and precipitation chemistry data from only surface measurements. Average scavenging ratios were calculated for SO{sub 4}{sup 2{minus}}, NO{sub 3}{sup {minus}}, NH{sub 4}{sup +}, total sulfate, total nitrate, and total ammonium for 5 events; the geometric mean of these scavenging ratios were 8.5 {times} 10{sup 5}, 5.6 {times} 10{sup 6}, 4.3 {times} 10{sup 5}, 3.4 {times} 10{sup 5}, 2.4 {times} 10{sup 6}, and 9.7 {times} 10{sup 4}, respectively. These means are similar to but less variable than previous ratios formed using only surface data.

  20. Design and assembly of a catalyst bed gas generator for the catalytic decomposition of high concentration hydrogen peroxide propellants and the catalytic combustion of hydrocarbon/air mixtures

    NASA Technical Reports Server (NTRS)

    Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Sevener, Kathleen M. (Inventor)

    2004-01-01

    A method for designing and assembling a high performance catalyst bed gas generator for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The gas generator utilizes a sectioned catalyst bed system, and incorporates a robust, high temperature mixed metal oxide catalyst. The gas generator requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. The high performance catalyst bed gas generator system has consistently demonstrated high decomposition efficiency, extremely low decomposition roughness, and long operating life on multiple test articles.

  1. Low cost electrochemical sensor module for measurement of gas concentration

    NASA Astrophysics Data System (ADS)

    Jasinski, Grzegorz; Strzelczyk, Anna; Koscinski, Piotr

    2016-01-01

    This paper describes a low cost electrochemical sensor module for gas concentration measurement. A module is universal and can be used for many types of electrochemical gas sensors. Device is based on AVR ATmega8 microcontroller. As signal processing circuit a specialized integrated circuit LMP91000 is used. The proposed equipment will be used as a component of electronic nose system employed for classifying and distinguishing different levels of air contamination.

  2. Trace gas concentrator FY 1995 summary report

    SciTech Connect

    Andriulli, J.B.; Szady, A.J. Jr.

    1996-05-01

    This report summarizes the accomplishments of the Trace Gas Concentrator Technology Demonstration Project during FY 1995 and through February 1996. The purpose of the activity was to demonstrate proof of principle of a system that concentrates airborne substances (e.g., chemical agents, explosives, narcotics and their precursors, and pollutants) to aid in their detection. A comprehensive computer model (initiated in FY 1994) was developed for the theoretical prediction of the fluid dynamics and mass concentration of the trace gas concentrator. The gas test stand has been installed and checked out. An automated computer data acquisition system has been installed and connected to the concentrator test stand. The data acquisition system is needed to record gas and mechanical operations.

  3. Air radon concentration decrease in a waste water treatment plant.

    PubMed

    Juste, B; Ortiz, J; Verdú, G; Martorell, S

    2015-06-01

    (222)Rn is a naturally occurring gas created from the decay of (226)Ra. The long-term health risk of breathing radon is lung cancer. One particular place where indoor radon concentrations can exceed national guidelines is in wastewater treatment plants (WWTPs) where treatment processes may contribute to ambient airborne concentrations. The aim of this paper was to study the radon concentration decrease after the application of corrective measures in a Spanish WWTP. According to first measures, air radon concentration exceeded International Commission Radiologica1 Protection (ICRP) normative (recommends intervention between 400 and 1000 Bq m(-3)). Therefore, the WWTP improved mechanical forced ventilation to lower occupational exposure. This measure allowed to increase the administrative controls, since the limitation of workers access to the plant changed from 2 h d(-1) (considering a maximum permissible dose of 20 mSv y(-1) averaged over 5 y) to 7 h d(-1).

  4. Air radon concentration decrease in a waste water treatment plant.

    PubMed

    Juste, B; Ortiz, J; Verdú, G; Martorell, S

    2015-06-01

    (222)Rn is a naturally occurring gas created from the decay of (226)Ra. The long-term health risk of breathing radon is lung cancer. One particular place where indoor radon concentrations can exceed national guidelines is in wastewater treatment plants (WWTPs) where treatment processes may contribute to ambient airborne concentrations. The aim of this paper was to study the radon concentration decrease after the application of corrective measures in a Spanish WWTP. According to first measures, air radon concentration exceeded International Commission Radiologica1 Protection (ICRP) normative (recommends intervention between 400 and 1000 Bq m(-3)). Therefore, the WWTP improved mechanical forced ventilation to lower occupational exposure. This measure allowed to increase the administrative controls, since the limitation of workers access to the plant changed from 2 h d(-1) (considering a maximum permissible dose of 20 mSv y(-1) averaged over 5 y) to 7 h d(-1). PMID:25971342

  5. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    SciTech Connect

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected

  6. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  7. Determination of methane in ambient air by multiplex gas chromatography

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.; Carle, G. C.; Phillips, J. B.

    1985-01-01

    A multiplex gas chromatographic technique for the determination of methane in ambient air over extended periods is reported. A modest gas chromatograph which uses air as the carrier gas was modified by adding a silver oxide sample modulator for multiplex operation. The modulator selectively catalyzes the decomposition of methane in air. The resulting analytical system requires no consumables beyond power. A profile of the methane concentration in this laboratory was obtained for an 8-day period. During this period, methane concentration varied with an approximately daily period from a low of 1.53 + or - 0.60 ppm to a high of 4.63 + or - 0.59 ppm over the entire 8 days. Some of the measured concentrations are higher than those reported elsewhere indicating the presence of some local source or sources for methane. This work has demonstrated the utility of a relatively simple multiplex gas chromatograph for the analysis of environmental samples. The technique should be applicable to other trace components in air through use of other selective modulators.

  8. Determination of methane in ambient air by multiplex gas chromatography.

    PubMed

    Valentin, J R; Carle, G C; Phillips, J B

    1985-05-01

    A multiplex gas chromatographic technique for the determination of methane in ambient air over extended periods is reported. A modest gas chromatograph which uses air as the carrier gas was modified by adding a silver oxide sample modulator for multiplex operation. The modulator selectively catalyzes the decomposition of methane in air. The resulting analytical systems requires no consumables beyond power. A profile of the methane concentration in this laboratory was obtained for an 8-day period. During this period, methane concentration varied with an approximately daily period from a low of 1.53 +/- 0.60 ppm to a high of 4.63 +/- 0.59 ppm over the entire 8 days. Some of the measured concentrations are higher than those reported elsewhere indicating the presence of some local source or sources for methane. This work has demonstrated the utility of a relatively simple multiplex gas chromatograph for the analysis of environmental samples. The technique should be applicable to other trace components in air through use of other selective modulators. PMID:11536559

  9. Variability of air ion concentrations in urban Paris

    NASA Astrophysics Data System (ADS)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-12-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of

  10. Air extraction in gas turbines burning coal-derived gas

    SciTech Connect

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  11. Long-memory property in air pollutant concentrations

    NASA Astrophysics Data System (ADS)

    Chelani, Asha

    2016-05-01

    In the present paper, long-memory in air pollutant concentrations is reviewed and outcome of the past studies is analyzed to provide the possible mechanism behind temporal evolution of air pollutant concentrations. It is observed that almost all the studies show air pollutant concentrations over time possess persistence up to a certain limit. Self-organized criticality of air pollution, multiplicative process of pollutant concentrations, and uniformity in emission sources leading to self-organized criticality are few of the phenomena behind the persistent property of air pollutant concentrations. The self-organized criticality of air pollution is linked to atmosphere's self-cleansing mechanism. This demonstrates that inspite of increasing anthropogenic emissions, self-organized criticality of air pollution is sustained and has low influence of human interventions. In the future, this property may, however, be perturbed due to continuous air pollution emissions, which may influence the accuracy in predictions.

  12. Indoor air-assessment: Indoor concentrations of environmental carcinogens

    SciTech Connect

    Gold, K.W.; Naugle, D.F.; Berry, M.A.

    1991-01-01

    In the report, indoor concentration data are presented for the following general categories of air pollutants: radon-222, environmental tobacco smoke (ETS), asbestos, gas phase organic compounds, formaldehyde, polycyclic aromatic hydrocarbons (PAH), pesticides, and inorganic compounds. These pollutants are either known or suspect carcinogens (i.e., radon-222, asbestos) or more complex mixtures or classes of compounds which contain known or suspect carcinogens. Concentration data for individual carcinogenic compounds in complex mixtures are usually far from complete. The data presented for complex mixtures often include compounds which are not carcinogenic or for which data are insufficient to evaluate carcinogenicity. Their inclusion is justified, however, by the possibility that further work may show them to be carcinogens, cocarcinogens, initiators or promotors, or that they may be employed as markers (e.g., nicotine, acrolein) for the estimation of exposure to complex mixtures.

  13. Radon gas distribution in natural gas processing facilities and workplace air environment.

    PubMed

    Al-Masri, M S; Shwiekani, R

    2008-04-01

    Evaluation was made of the distribution of radon gas and radiation exposure rates in the four main natural gas treatment facilities in Syria. The results showed that radiation exposure rates at contact of all equipment were within the natural levels (0.09-0.1 microSvh(-1)) except for the reflex pumps where a dose rate value of 3 microSvh(-1) was recorded. Radon concentrations in Syrian natural gas varied between 15.4 Bq m(-3) and 1141 Bq m(-3); natural gas associated with oil production was found to contain higher concentrations than the non-associated natural gas. In addition, radon concentrations were higher in the central processing facilities than the wellheads; these high levels are due to pressurizing and concentrating processes that enhance radon gas and its decay products. Moreover, the lowest 222Rn concentration was in the natural gas fraction used for producing sulfur; a value of 80 Bq m(-3) was observed. On the other hand, maximum radon gas and its decay product concentrations in workplace air environments were found to be relatively high in the gas analysis laboratories; a value of 458 Bq m(-3) was observed. However, all reported levels in the workplaces in the four main stations were below the action level set by IAEA for chronic exposure situations involving radon, which is 1000 Bq m(-3). PMID:17905489

  14. Radon gas distribution in natural gas processing facilities and workplace air environment.

    PubMed

    Al-Masri, M S; Shwiekani, R

    2008-04-01

    Evaluation was made of the distribution of radon gas and radiation exposure rates in the four main natural gas treatment facilities in Syria. The results showed that radiation exposure rates at contact of all equipment were within the natural levels (0.09-0.1 microSvh(-1)) except for the reflex pumps where a dose rate value of 3 microSvh(-1) was recorded. Radon concentrations in Syrian natural gas varied between 15.4 Bq m(-3) and 1141 Bq m(-3); natural gas associated with oil production was found to contain higher concentrations than the non-associated natural gas. In addition, radon concentrations were higher in the central processing facilities than the wellheads; these high levels are due to pressurizing and concentrating processes that enhance radon gas and its decay products. Moreover, the lowest 222Rn concentration was in the natural gas fraction used for producing sulfur; a value of 80 Bq m(-3) was observed. On the other hand, maximum radon gas and its decay product concentrations in workplace air environments were found to be relatively high in the gas analysis laboratories; a value of 458 Bq m(-3) was observed. However, all reported levels in the workplaces in the four main stations were below the action level set by IAEA for chronic exposure situations involving radon, which is 1000 Bq m(-3).

  15. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  16. BOREAS TGB-7 Ambient Air Herbicide and Organochlorine Concentration Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-7 team measured the concentration and flux of several agricultural pesticides in air, rainwater, and dry deposition samples in order to determine the associated yearly deposition rates. This data set contains information on the ambient air concentration of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  17. Control of gas contaminants in air streams through biofiltration

    SciTech Connect

    Holt, T.; Lackey, L.

    1996-11-01

    According to the National Institute for Occupational Safety and Health (NIOSH), the maximum styrene concentration allowed in the work place is 50 ppm for up to a 10-hour work day during a 40-hour work week. The US EPA has classified styrene as one of the 189 hazardous air pollutants listed under Title 3 of the Clean Air Act Amendments to be reduced by a factor of 90% by the year 2000. Significant quantities of styrene are emitted to the atmosphere each year by boat manufacturers. A typical fiberglass boat manufacturing facility can emit over 273 metric tons/year of styrene. The concentration of styrene in the industrial exhaust gas ranges from 20 to 100 ppmv. Such dilute, high volume organically tainted air streams can make conventional abatement technologies such as thermal incineration, adsorption, or absorption technically incompetent or prohibitively expensive. An efficient, innovative, and economical means of remediating styrene vapors would be of value to industries and to the environment. Biofilter technology depends on microorganisms that are immobilized on the packing material in a solid phase reactor to remove or degrade environmentally undesirable compounds contaminating gas streams. The technology is especially successful for treating large volumes of air containing low concentrations of contaminants. The objective of this study was to investigate the feasibility of using biofiltration to treat waste gas streams containing styrene and to determine the critical design and operating parameters for such a system.

  18. Wide range radioactive gas concentration detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  19. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  20. Gas sensor characterization at low concentrations of natural oils

    NASA Astrophysics Data System (ADS)

    Sambemana, H.; Siadat, M.; Lumbreras, M.

    2009-05-01

    Inhalation of essential oils can be used in aromatherapy due to their activating or relaxing effects. The study of these effects requires behavioral measurements on living subjects, by varying the nature and also the quantity of the volatile substances to be present in the atmosphere. So, to permit the evaluation of therapeutic effects of a variety of natural oils, we propose to develop an automatic diffusion/detection system capable to create an ambient air with low stabilized concentration of chosen oil. In this work, we discuss the performance of an array of eight gas sensors to discriminate low and constant concentrations of a chosen natural oil.

  1. USING THE AIR QUALITY MODEL TO ANALYZE THE CONCENTRATIONS OF AIR TOXICS OVER THE CONTINENTAL U.S.

    EPA Science Inventory

    The U.S. Environmental Protection Agency is examining the concentrations and deposition of hazardous air pollutants (HAPs), which include a large number of chemicals, ranging from non reactive (i.e. carbon tetrachloride) to reactive (i.e. formaldehyde), exist in gas, aqueous, and...

  2. 40 CFR Appendix IV to Part 266 - Reference Air Concentrations*

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent...

  3. Algorithm for Rapid Tomography of Gas Concentrations

    SciTech Connect

    Price, P.N.; Fischer, M.L.; Gadgil, A.J.; Sextro, R.G.

    2000-06-27

    We present a new computed tomography method, the low third derivative (LTD) method, that is particularly suited for reconstructing the spatial distribution of gas concentrations from path-integral data for a small number of optical paths. The method finds a spatial distribution of gas concentrations that (1) has path integrals that agree with measured path integrals, and (2) has a low third spatial derivative in each direction, at every point. The trade-off between (1) and (2) is controlled by an adjustable parameter, which can be set based on analysis of the path-integral data. The method produces a set of linear equations, which can be solved with a single matrix multiplication if the constraint that all concentrations must be positive is ignored; the method is therefore extremely rapid. Analysis of experimental data from thousands of concentration distributions shows that the method works nearly as well as Smooth Basis Function Minimization (the best method previously available), yet is 100 times faster.

  4. In calm seas, precipitation drives air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-05-01

    In a series of experiments run in what resembles a heavily instrumented fish tank, Harrison et al. investigated the interwoven roles of wind and rain on air-sea gas exchange rates. Working with a 42-meterlong, 1-meter-wide, and 1.25-meter-tall experimental pool, the authors were able to control the wind speed, rainfall rate, water circulation speed, and other parameters, which they used to assess the effect of 24 different wind speed-rainfall rate combinations on the gas exchange rate of sulfur hexafuoride, a greenhouse gas. In trials that lasted up to 3 hours, the authors collected water samples from the tank at regular intervals, tracking the concentration of the dissolved gas.

  5. Gas chromatographic method for measuring nitrogen dioxide and peroxyacetyl nitrate in air without compressed gas cylinders

    SciTech Connect

    Burkhardt, M.R.; Maniga, N.I.; Stedman, D.H.; Paur, R.J.

    1988-04-15

    A gas chromatographic technique that measures atmospheric concentrations of peroxyacetyl nitrate (PAN) and NO/sub 2/ has been developed that uses luminol-based chemiluminescence for detection. The carrier gas is air that has been scrubbed by passing it over FeSO/sub 4/, which eliminates the need for any compressed gas cylinders. A novel gas sampling system and time enable variable sample volumes of contaminated air to be injected. Ambient PAN and NO/sub 2/ measurements can be made every 40 s with detection limits of 0.12 ppb for PAN and 0.2 ppb for NO/sub 2/. Seven other atmospheric species, including ozone, gave no interference. Linear response was observed for NO/sub 2/ from 0.2 to 170 ppb and for PAN from 1 to 70 ppb.

  6. Air quality concerns of unconventional oil and natural gas production.

    PubMed

    Field, R A; Soltis, J; Murphy, S

    2014-05-01

    Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of

  7. Air quality concerns of unconventional oil and natural gas production.

    PubMed

    Field, R A; Soltis, J; Murphy, S

    2014-05-01

    Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of

  8. [Using Fourier transform to calculate gas concentration in DOAS].

    PubMed

    Liu, Qian-lin; Wang, Li-shi; Huang, Xin-jian; Wu, Yan-dan; Xiao, Ming-wei

    2008-12-01

    Being an analysis tool of high sensitivity, high resolution, multicomponents, real-time and fast monitoring, the differential optical absorption spectrometry (DOAS) is becoming a new method in atmosphere pollution monitoring. In the DOAS technique, many gases spectra have periodicity evidently, such as those from SO2, NO, NH3 and NO2. Aiming at three kinds of main air-polluted gases, i.e., SO2, NO and NO2 in atmosphere, the DOAS technique is used to monitor them, and Fourier transform is used to analyse the above-mentioned absorption spectra. Under the condition of Hanning Windows, Fourier transforma is used to process various gases spectra which have periodicity. In the process, the value of the characteristic frequency has a linearity relation to the gas concentration. So a new analysis method of DOAS is proposed, which is utilizing the relation between the value of the characteristic frequency and the gas concentration to deduce a linearity formula to calculate the gas concentration. So the value of the characteristic frequency can be used to get the gas concentration. For the gases with evident spectrum periodicity, such as SO2 and NO, this method is good. But for some gases with periodicity not evident, the error in the calculated concentration is beyond the allowable value. So in this method, the important process is frequency separation. It is also the main part in the future study. In a word, this method frees itself from the basic theory in the DOAS technique, cuts down on the process of the concentration calculation and the spectral analysis, and deserves further study. PMID:19248493

  9. Air Monitoring for Hazardous Gas Detection

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Griffin, Timothy P.; Adams, Frederick; Follistein, Duke

    2003-01-01

    The Hazardous Gas Detection Lab is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response and limits of detection. Unfortunately, these systems are large, heavy and expensive. This feature limits the ability to perform gas analysis in certain applications. Smaller and lighter mass spectrometer systems could be used in many more applications primarily due to the portability of the system. Such applications would include air analysis in confined spaces, in-situ environmental analysis and emergency response. In general, system cost is lowered as size is reduced. With a low cost air analysis system, several systems could be utilized for monitoring large areas. These networked systems could be deployed at job-sites for worker safety, throughout a community for pollution warnings, or dispersed in a battlefield for early warning of chemical or biological threats. Presented will be information on the first prototype of this type of system. Included will be field trial data, with this prototype performing air analysis autonomously from an aircraft.

  10. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  11. Dimethylsulfide air/sea gas transfer in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    De Bruyn, W. J.; Bell, T. G.; Marandino, C.; Saltzman, E. S.; Miller, S. D.; Law, C. S.; Smith, M. J.

    2012-12-01

    Air/sea dimethylsulfide (DMS) fluxes were measured by eddy correlation over the Southern Ocean (Feb/March 2012) aboard the R/V Tangaroa during the Surface Ocean Aerosol Production (SOAP) study. Atmospheric and seawater DMS were measured by atmospheric pressure chemical ionization mass spectrometry (API-CIMS). Seawater DMS was measured continuously from the ship underway system using a porous membrane equilibrator. The study included measurements inside and outside a dinoflagellate bloom of large areal extent, with seawater DMS levels ranging up to 20 nM. Horizontal wind speeds of up to 20 m/sec were encountered. Gas transfer coefficients were calculated from eddy covariance DMS flux measurements and the air-sea concentration gradient. This study represents a significant addition to the limited database of direct gas transfer measurements in the Southern Ocean.

  12. Concentrations of selected contaminants in cabin air of airbus aircrafts.

    PubMed

    Dechow, M; Sohn, H; Steinhanses, J

    1997-07-01

    The concentrations of selected air quality parameters in aircraft cabins were investigated including particle numbers in cabin air compared to fresh air and recirculation air, the microbiological contamination and the concentration of volatile organic compounds (VOC). The Airbus types A310 of Swissair and A340 of Lufthansa were used for measurements. The particles were found to be mainly emitted by the passengers, especially by smokers. Depending on recirculation filter efficiency the recirculation air contained a lower or equal amount of particles compared to the fresh air, whereas the amount of bacteria exceeded reported concentrations within other indoor spaces. The detected species were mainly non-pathogenic, with droplet infection over short distances identified as the only health risk. The concentration of volatile organic compounds (VOC) were well below threshold values. Ethanol was identified as the compound with the highest amount in cabin air. Further organics were emitted by the passengers--as metabolic products or by smoking--and on ground as engine exhaust (bad airport air quality). Cleaning agents may be the source of further compounds.

  13. Compressed air energy storage in depleted natural gas reservoirs: effects of porous media and gas mixing

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Pan, L.

    2015-12-01

    Although large opportunities exist for compressed air energy storage (CAES) in aquifers and depleted natural gas reservoirs, only two grid-scale CAES facilities exist worldwide, both in salt caverns. As such, experience with CAES in porous media, what we call PM-CAES, is lacking and we have relied on modeling to elucidate PM-CAES processes. PM-CAES operates similarly to cavern CAES. Specifically, working gas (air) is injected through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir flows first into a recuperator, then into an expander, and subsequently is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Energy storage in porous media is complicated by the solid matrix grains which provide resistance to flow (via permeability in Darcy's law); in the cap rock, low-permeability matrix provides the seal to the reservoir. The solid grains also provide storage capacity for heat that might arise from compression, viscous flow effects, or chemical reactions. The storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Residual liquid (i.e., formation fluids) affects flow and can cause watering out at the production well(s). PG&E is researching a potential 300 MW (for ten hours) PM-CAES facility in a depleted gas reservoir near Lodi, California. Special considerations exist for depleted natural gas reservoirs because of mixing effects which can lead to undesirable residual methane (CH4) entrainment and reactions of oxygen and CH4. One strategy for avoiding extensive mixing of working gas (air) with reservoir CH4 is to inject an initial cushion gas with reduced oxygen concentration providing a buffer between the working gas (air) and the residual CH4 gas. This reduces the potential mixing of the working air with the residual CH4

  14. LIF measurements of oxygen concentration gradients along flat and wavy air-water interfaces

    NASA Astrophysics Data System (ADS)

    Woodrow, Philip T., Jr.; Duke, Steve R.

    Instantaneous spatially-varying measurements of concentration gradients occurring during aeration for flat, stagnant air-water interfaces and for interfaces with mechanically-generated waves are presented. Measurements were obtained in a laboratory wave tank using a laser-induced fluorescence (LIF) technique that images planar oxygen concentration fields near air-water interfaces. Pulsed nitrogen laser light focused to a thin sheet induces the fluorescence of pyrene butyric acid (in micromolar concentration) in deoxygenated water. The PBA fluorescence is quenched by dissolved oxygen. A high-resolution CCD camera images in two dimensions the intensities of the fluorescence field, providing spatial measurements of oxygen concentration with magnification of 7 μm per pixel. The concentration fields, gradients, and boundary layer thicknesses along the flat and wavy air-water interfaces are quantified and compared to previous measurements associated with sheared gas-liquid interfaces and with wind-generated waves.

  15. Performance of the Proposed New Federal Reference Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air, described in EPA regulations at 40 CFR Part 50, Appendix D, is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O

  16. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  17. Ambient air concentrations of particulate matter from passenger cars.

    PubMed

    Schürmann, D

    1989-01-01

    Using our measurement results on particulate emissions from passenger cars we have calculated ambient air concentrations for various US and European scenarios. This was carried out with the help of mathematical dispersion models for different traffic situations including street canyons and motorways. We have been very conservative in our choice of the scenarios, i.e. we have always used situations in which there are very high stress levels (e.g. constantly high traffic flow instead of average traffic flow). Finally, the thus determined air concentrations are compared with the corresponding air quality standard available from the literature.

  18. Ambient air concentrations of particulate matter from passenger cars.

    PubMed

    Schürmann, D

    1989-01-01

    Using our measurement results on particulate emissions from passenger cars we have calculated ambient air concentrations for various US and European scenarios. This was carried out with the help of mathematical dispersion models for different traffic situations including street canyons and motorways. We have been very conservative in our choice of the scenarios, i.e. we have always used situations in which there are very high stress levels (e.g. constantly high traffic flow instead of average traffic flow). Finally, the thus determined air concentrations are compared with the corresponding air quality standard available from the literature. PMID:2484034

  19. Coaxial fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  20. Effect of air preheat temperature and oxygen concentration on flame structure and emission

    SciTech Connect

    Bolz, S.; Gupta, A.K.

    1998-07-01

    The structure of turbulent diffusion flames with highly preheated combustion air (air preheat temperature in excess of 1,150 C) has been obtained using a specially designed regenerative combustion furnace. Propane gas was used as the fuel. Data have been obtained on the global flame features, spectral emission characteristics, spatial distribution of OH, CH and C{sub 2} species, and pollutants emission from the flames. The results have been obtained for various degrees of air preheat temperatures and O{sub 2} concentration in the air. The color of the flame was found to change from yellow to blue to bluish-green to green over the range of conditions examined. In some cases a hybrid color flame was also observed. The recorded images of the flame photographs were analyzed using color-analyzing software. The results show that thermal and chemical flame behavior strongly depends on the air preheat temperature and oxygen content in the air. The flame color was found to be bluish-green or green at very high air preheat temperatures and low-oxygen concentration. However, at high oxygen concentration the flame color was yellow. The flame volume was found to increase with increase in air-preheat temperature and decrease in oxygen concentration. The flame length showed a similar behavior. The concentrations of OH, CH and C{sub 2} increased with an increase in air preheat temperatures. These species exhibited a two-stage combustion behavior at low oxygen concentration and single stage combustion behavior at high oxygen concentration in the air. Stable flames were obtained for remarkably low equivalence ratios, which would not be possible with normal combustion air. Pollutants emission, including CO{sub 2} and NO{sub x} , was much lower with highly preheated combustion air at low O{sub 2} concentration than the normal air. The results also suggest uniform flow and flame thermal characteristics with conditioned highly preheated air. Highly preheated air combustion provides much

  1. View of steam powered air compressor in boiler house. Gas ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of steam powered air compressor in boiler house. Gas engine powered electric generators are visible in far left background. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  2. Indoor Air VOC Concentrations in Suburban and Rural New Jersey

    PubMed Central

    WEISEL, CLIFFORD P.; ALIMOKHTARI, SHAHNAZ; SANDERS, PAUL F.

    2014-01-01

    Indoor VOC air concentrations of many compounds are higher than outdoor concentrations due to indoor sources. However, most studies have measured residential indoor air in urban centers so the typical indoor air levels in suburban and rural regions have not been well characterized. Indoor VOC air concentrations were measured in 100 homes in suburban and rural areas in NJ to provide background levels for investigations of the impact from subsurface contamination sources. Of the 57 target compounds, 23 were not detected in any of the homes, and 14 compounds were detected in at least 50% of the homes with detection limits of ~1 μg/m3. The common compounds identified included aromatic and aliphatic hydrocarbons from mobile sources, halogenated hydrocarbons commonly used in consumer products or from chlorinated drinking water, acetone and 2-butanone emitted from cosmetic products, and Freons. Typical concentrations were in the low μg/m3 range, though values of tens, hundreds or even thousands of μg/m3 were measured in individual homes in which activities related to specific sources of VOCs were reported. Compounds with known similar sources were highly correlated. The levels observed are consistent with concentrations found in the air of urban homes. PMID:19068799

  3. Indoor air VOC concentrations in suburban and rural New Jersey.

    PubMed

    Weisel, Clifford P; Alimokhtari, Shahnaz; Sanders, Paul F

    2008-11-15

    Indoor VOC air concentrations of many compounds are higher than outdoor concentrations due to indoor sources. However, most studies have measured residential indoor air in urban centers so the typical indoor air levels in suburban and rural regions have not been well characterized. Indoor VOC air concentrations were measured in 100 homes in suburban and rural areas in NJ to provide background levels for investigations of the impact from subsurface contamination sources. Of the 57 target compounds, 23 were not detected in any of the homes, and 14 compounds were detected in at least 50% of the homes with detection limits of approximately 1 microg/m3. The common compounds identified included aromatic and aliphatic hydrocarbons from mobile sources, halogenated hydrocarbons commonly used in consumer products or from chlorinated drinking water, acetone and 2-butanone emitted from cosmetic products, and Freons. Typical concentrations were in the low microg/m3 range, though values of tens, hundreds or even thousands of microg/m3 were measured in individual homes in which activities related to specific sources of VOCs were reported. Compounds with known similar sources were highly correlated. The levels observed are consistent with concentrations found in the air of urban homes. PMID:19068799

  4. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  5. Ultralow Concentration Mercury Treatment Using Chemical Reduction and Air Stripping

    SciTech Connect

    Looney, B.B.

    2001-05-21

    Field, laboratory and engineering data confirmed the efficacy of chemical reduction and air stripping as an ultralow concentration mercury treatment concept for water containing Hg(II). The simple process consists of dosing the water with low levels of stannous chloride (Sn(II)) to cover the mercury to Hg degrees. This mercury species can easily be removed from the water by air stripping or sparging.

  6. Concentrations of propoxur in air following repeated indoor applications.

    PubMed

    Miller, C W; Shafik, T M

    1974-01-01

    The insecticide propoxur was applied as 2 non-overlapping bands approximately 1 m wide to the interior of houses in El Salvador once every 35 days for a period of 9 months. Air samples were collected from the interior of the houses once every seventh day during the entire period. In the study area, air temperatures remain relatively constant, while rainfall varies seasonally. It was found that volatilization of propoxur, as determined by the amounts detectable in air, represented release of the chemical from the treated surface and that the volatilization process was most influenced by the amount of moisture present in the air. Higher air concentrations of propoxur occurred during periods of high relative humidity than in periods of low relative humidity. The principles involved in this process and its bearing on the value of propoxur in malaria control programmes are discussed.

  7. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  8. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada

    NASA Astrophysics Data System (ADS)

    Shoeib, Mahiba; Ahrens, Lutz; Jantunen, Liisa; Harner, Tom

    2014-12-01

    Concentrations of organobromine (BFRs), organochlorine (CFRs) and organophosphate esters flame retardants and plasticizers (PFRs) in air were monitored for over one year at an urban site in Toronto, Canada during 2010-2011. The mean value for polybrominated diphenyl ethers (BDEs) (gas + particle phase) was 38 pg/m3 with BDE-47 and BDE-99 as the dominant congeners. The mean concentrations in air for ∑non-BDE (BFRs and CFRs), was 9.6 pg/m3 - about four times lower than the BDEs. The brominated FRs: TBP-AE, BTBPE, EH-TBB, BEH-TEBP and the chlorinated syn- and anti-DP were detected frequently, ranging from 87% to 96%. Highest concentrations in air among all flame retardant classes were observed for the Σ-PFRs. The yearly mean concentration in air for ΣPFRs was 2643 pg/m3 with detection frequency higher than 80%. Except for TBP-AE and b- DBE-DBCH, non-BDEs (BFRs, CFRs and PFRs) were mainly associated with the particle phase. BDE concentrations in air were positively correlated with temperature indicating that volatilization from local sources was an important factor controlling levels in air. This correlation did not hold for most BFRs, CFRs and PFRs which were mainly on particles. For these compounds, air concentrations in Toronto are likely related to emissions from point sources and advective inputs. This study highlights the importance of urban air monitoring for FRs. Urban air can be considered a sentinel for detecting changes in the use and application of FRs in commercial products.

  9. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    SciTech Connect

    Kamal, M.M.

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  10. Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation

    SciTech Connect

    Reichenbach, H.; Neuwald, P.; Kuhl, A.L.

    1992-11-01

    This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.

  11. Spectra of concentration of air pollution for turbulent convection

    SciTech Connect

    Patel, S.R.

    1996-12-31

    Very recently the study of formation and destruction of photochemical smog is increasing at both small and large scale. Also the transport of chemical species through the Planetary Boundary Layer (PBL) of the atmosphere is a key of the global change problem and will have to be parameterized more reliably than in the past. Further, in the air pollution modeling, the usual practice of neglecting the concentration correlation in the atmospheric photochemical reaction has recently been recognized as a source of serious error. So, it is important to study the various aspects of the concentration fluctuations (of air pollution) with chemical reaction. A model of the spectrum of concentration of air pollution with chemical reaction has been developed using the models of Hill and Hill and Clifford. The results obtained are applicable for arbitrary Schmidt number. Further, for the case of pure mixing (without chemical reaction) and the concentration replaced by temperature, the form of the spectra obtained here reduces to the form obtained by Hill and Clifford. This study also shows that, in the case of pure mixing, the concentration decays in a natural manner, but if the concentration selected is that of the chemical reactant, then the effect is that the dispersion of the concentration is much more rapid.

  12. Temperature and concentration transients in the aluminum-air battery

    SciTech Connect

    Homsy, R.V.

    1981-08-26

    Coupled conservation equations of heat and mass transfer are solved, that predict temperature and concentration of the electrolyte of an aluminum-air battery system upon start-up and shutdown. Results of recent laboratory studies investigating the crystallization kinetics and solubility of the caustic-aluminate electrolyte system are used in the predictions. Temperature and concentration start-up transients are short, while during standby conditions, temperature increases to a maximum and decreases slowly.

  13. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  14. Measuring radon concentration in air using a diffusion cloud chamber

    NASA Astrophysics Data System (ADS)

    Cases, R.; Ros, E.; Zúñiga, J.

    2011-09-01

    Radon concentration in air is a major concern in lung cancer studies. A traditional technique used to measure radon abundance is the charcoal canister method. We propose a novel technique using a diffusion cloud chamber. This technique is simpler and can easily be used for physics demonstrations for high school and university students.

  15. Auditing and assessing air quality in concentrated feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential adverse effects of concentrated animal feeding operations (CAFO) on the environment are a growing concern. The air quality issues of most concerns to CAFO vary, but generally include ammonia, hydrogen sulfide, particulate matter (PM), volatile organic compounds (VOC), green house gase...

  16. Modeling indoor air concentrations near emission sources in imperfectly mixed rooms.

    PubMed

    Furtaw, E J; Pandian, M D; Nelson, D R; Behar, J V

    1996-09-01

    Assessments of exposure to indoor air pollutants usually employ spatially well-mixed models which assume homogeneous concentrations throughout a building or room. However, practical experience and experimental data indicate that concentrations are not uniform in rooms containing point sources of emissions; concentrations tend to be greater in close proximity to the source than they are further from it. This phenomenon could account for the observation that "personal air" monitors frequently yield higher concentrations than nearby microenvironmental monitors (i.e., the so-called "personal cloud" effect). In this project, we systematically studied the concentrations of a tracer gas at various distances from its emission source in a controlled-environment, room-size chamber under a variety of ventilation conditions. Measured concentrations in the proximity of the source deviated significantly above the predictions of a conventional well-mixed single-compartment mass balance model. The deviation was found to be a function of distance from the source and total room air flow rate. At typical air flow rates, the average concentration at arm's length (approximately 0.4 meters) from the source exceeds the theoretical well-mixed concentration by a ratio of about 2:1. However, this ratio is not constant; the monitored concentration appears to vary randomly from near the theoretical value to several times above it. Concentration data were fitted to a two-compartment model with the source located in a small virtual compartment within the room compartment. These two compartments were linked with a stochastic air transfer rate parameter. The resulting model provides a more realistic simulation of exposure concentrations than does the well-mixed model for assessing exposure to emissions from active sources. Parameter values are presented for using the enhanced model in a variety of typical situations. PMID:8925388

  17. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    Oxygen concentration and separation is an essential factor for air recycling in a CELSS. Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of O2 from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  18. Quantifying air-sea gas exchange using noble gases in a coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Manning, C. C.; Stanley, R. H. R.; Nicholson, D. P.; Squibb, M. E.

    2016-05-01

    The diffusive and bubble-mediated components of air-sea gas exchange can be quantified separately using time-series measurements of a suite of dissolved inert gases. We have evaluated the performance of four published air-sea gas exchange parameterizations using a five-day time-series of dissolved He, Ne, Ar, Kr, and Xe concentration in Monterey Bay, CA. We constructed a vertical model including surface air-sea gas exchange and vertical diffusion. Diffusivity was measured throughout the cruise from profiles of turbulent microstructure. We corrected the mixed layer gas concentrations for an upwelling event that occurred partway through the cruise. All tested parameterizations gave similar results for Ar, Kr, and Xe; their air-sea fluxes were dominated by diffusive gas exchange during our study. For He and Ne, which are less soluble, and therefore more sensitive to differences in the treatment of bubble-mediated exchange, the parameterizations gave widely different results with respect to the net gas exchange flux and the bubble flux. This study demonstrates the value of using a suite of inert gases, especially the lower solubility ones, to parameterize air-sea gas exchange.

  19. Ozone concentration in leaf intercellular air spaces is close to zero

    SciTech Connect

    Laisk, A.; Moldau, H. ); Kull, O. )

    1989-07-01

    Transpiration and ozone uptake rates were measured simultaneously in sunflower leaves at different stomatal openings and various ozone concentrations. Ozone uptake rates were proportional to the ozone concentration up to 1500 nanoliters per liter. The leaf gas phase diffusion resistance (stomatal plus boundary layer) to water vapor was calculated and converted to the resistance to ozone multiplying it by the theoretical ratio of diffusion coefficients for water vapor and ozone in air (1.67). The ozone concentration in intercellular air spaces calculated from the ozone uptake rate and diffusion resistance to ozone scattered around zero. The ozone concentration in intercellular air spaces was measured directly bu supplying ozone to the leaf from one side and measuring the equilibrium concentration above the other side, and it was found to be zero. The total leaf resistance to ozone was proportional to the gas phase resistance to water vapor with a coefficient of 1.68. It is concluded that ozone enters the leaf by diffusion through the stomata, and is rapidly decomposed in cell walls and plasmalemma.

  20. Ozone concentration in leaf intercellular air spaces is close to zero.

    PubMed

    Laisk, A; Kull, O; Moldau, H

    1989-07-01

    Transpiration and ozone uptake rates were measured simultaneously in sunflower leaves at different stomatal openings and various ozone concentrations. Ozone uptake rates were proportional to the ozone concentration up to 1500 nanoliters per liter. The leaf gas phase diffusion resistance (stomatal plus boundary layer) to water vapor was calculated and converted to the resistance to ozone multiplying it by the theoretical ratio of diffusion coefficients for water vapor and ozone in air (1.67). The ozone concentration in intercellular air spaces calculated from the ozone uptake rate and diffusion resistance to ozone scattered around zero. The ozone concentration in intercellular air spaces was measured directly by supplying ozone to the leaf from one side and measuring the equilibrium concentration above the other side, and it was found to be zero. The total leaf resistance to ozone was proportional to the gas phase resistance to water vapor with a coefficient of 1.68. It is concluded that ozone enters the leaf by diffusion through the stomata, and is rapidly decomposed in cell walls and plasmalemma.

  1. Natural ³⁷Ar concentrations in soil air: implications for monitoring underground nuclear explosions.

    PubMed

    Riedmann, Robin A; Purtschert, Roland

    2011-10-15

    For on-site inspections (OSI) under the Comprehensive Nuclear-Test-Ban Treaty (CTBT) measurement of the noble gas ³⁷Ar is considered an important technique. ³⁷Ar is produced underground by neutron activation of Calcium by the reaction ⁴⁰Ca(n,α)³⁷Ar. The naturally occurring equilibrium ³⁷Ar concentration balance in soil air is a function of an exponentially decreasing production rate from cosmic ray neutrons with increasing soil depth, diffusive transport in the soil air, and radioactive decay (T(1/2): 35 days). In this paper for the first time, measurements of natural ³⁷Ar activities in soil air are presented. The highest activities of ~100 mBq m⁻³ air are 2 orders of magnitude larger than in the atmosphere and are found in 1.5-2.5 m depth. At depths > 8 m ³⁷Ar activities are < 20 mBq m⁻³ air. After identifying the main ³⁷Ar production and gas transport factors the expected global activity range distribution of ³⁷Ar in shallow subsoil (0.7 m below the surface) was estimated. In high altitude soils, with large amounts of Calcium and with low gas permeability, ³⁷Ar activities may reach values up to 1 Bq m⁻³.

  2. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran

    NASA Astrophysics Data System (ADS)

    Hazrati, Sadegh; Rostami, Roohollah; Farjaminezhad, Manoochehr; Fazlzadeh, Mehdi

    2016-05-01

    BTEX concentrations in indoor and outdoor air of 50 homes were studied in Ardabil city and their influencing parameters including; heating system, using gas stove and samovar, tobacco smoking, the floors in which the monitored homes were located, and kitchen plan were considered in the study. Risk assessment analysis was carried out with the obtained concentrations based on EPA IRIS reference doses. BTEX compounds were sampled by charcoal tubes and the samples were analyzed by a GC-FID. Concentrations of benzene (15.18 μg/m3 vs. 8.65 μg/m3), toluene (69.70 μg/m3 vs. 40.56 μg/m3), ethylbenzene (12.07 μg/m3 vs. 4.92 μg/m3) and xylene (48.08 μg/m3 vs. 7.44 μg/m3) in indoor air were significantly (p < 0.05) higher than the levels quantified for outdoor air. The obtained concentrations of benzene were considerably higher than the recommended value of 5 μg/m3 established by Iran environmental protection organization. Among the BTEX compounds, benzene (HQ = 0.51) and xylene (HQ = 0.47) had notable hazard quotient and were the main pollutants responsible for high hazard index in the monitored homes (HI = 1.003). The results showed considerably high cancer risk for lifetime exposure to the indoor (125 × 10-6) and outdoor (71 × 10-6) benzene. Indoor benzene concentrations in homes were significantly influenced by type of heating system, story, and natural gas appliances.

  3. Predicting indoor pollutant concentrations, and applications to air quality management

    SciTech Connect

    Lorenzetti, David M.

    2002-10-01

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptoms such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.

  4. Estimating the radon concentration in water and indoor air.

    PubMed

    Maged, A F

    2009-05-01

    The paper presents the results of radon concentration measurements in the vicinity of water, indoor air and in contact to building walls. The investigations were carried out using CR-39 track detectors. Samples of ground water flowing out of many springs mostly in Arabian Gulf area except one from Germany have been studied. The results are compared with international recommendations and the values are found to be lower than the recommended value. Measuring the mean indoor radon concentrations in air and in contact to building walls in the dwellings of Kuwait University Campus were found 24.2 +/- 7.7, and 462 +/- 422 Bq m(-3) respectively. These values lead to average effective dose equivalent rates of 1.3 +/- 0.4 and 23 +/- 21 mSv year(-1), respectively.

  5. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  6. [Concentrations and influencing factors of gaseous polycyclic aromatic hydrocarbons in residential air in Beijing].

    PubMed

    Wei, Zhi-cheng; Chang, Biao; Qiu, Wei-xun; Wang, Yi; Wu, Shi-min; Xing, Bao-shan; Liu, Wen-xin; Tao, Shu

    2007-09-01

    7 gas phase PAHs components in indoor air collected from 38 families were investigated by modified passive air samplers in Beijing areas during the local heating and non-heating seasons, and the influencing factors were discussed as well. The analytical results indicate that the gasous PAHs in local indoor air are dominated by 2 and 3 rings compounds, the mean concentrations for the 7 individual gaseous components range from 1 to 40 ng/m3, and the average concentration of total gaseous PAHs is about 100 ng/m3. There is no significant difference in total gaseous PAHs concentrations between the heating and the non-heating seasons, while some apparent seasonal changes occur in ACY and FLA concentrations. Compared with heating season, contribution of 2 rings compounds decreases while the proportions of 3 and 4 rings species increase during the non-heating season. Based on household activity questionnaires and actual analytical concentrations, the main influencing factors accounted for gaseous PAHs in indoor air, identified by multifactor analysis of variance, include cigarette smoking, use of moth ball, intensity of draft, cuisine frequency and built age.

  7. Using an air thermometer to estimate the gas constant

    NASA Astrophysics Data System (ADS)

    Kinchin, John

    2015-03-01

    The air thermometer, widely used in physics laboratories to show the relationship between volume and temperature, can also be used to obtain values for the gas constant and hence Avogadro’s number. Using a very low cost, home-made air thermometer can give surprisingly good results in a very short period of time.

  8. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    NASA Astrophysics Data System (ADS)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  9. Determination of Natural In Vivo Noble-Gas Concentrations in Human Blood

    PubMed Central

    Tomonaga, Yama; Brennwald, Matthias S.; Livingstone, David M.; Tomonaga, Geneviève; Kipfer, Rolf

    2014-01-01

    Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry. PMID:24811123

  10. A PRINCIPAL COMPONENT ANALYSIS OF THE CLEAN AIR STATUS AND TRENDS NETWORK (CASTNET) AIR CONCENTRATION DATA

    EPA Science Inventory

    The spatial and temporal variability of ambient air concentrations of SO2, SO42-, NO3, HNO3, and NH4+ obtained from EPA's CASTNet was examined using an objective, statistically based technique...

  11. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations

    PubMed Central

    Pennell, Kelly G.; Scammell, Madeleine Kangsen; McClean, Michael D.; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M.; Shen, Rui; Indeglia, Paul A.; Heiger-Bernays, Wendy J.

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m3 and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an “Imminent Hazard” condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed. PMID:23950637

  12. Effect of backyard burning on dioxin deposition and air concentrations.

    PubMed

    Wevers, M; De Fré, R; Desmedt, M

    2004-03-01

    The influence from open burning of garden and household waste on locally measured dioxin deposition and air concentrations was evaluated in three sets of experiments: the combustion of garden waste in barrels and in open fires, and the incineration of household waste in an empty oil drum. Each set was composed of eight individual experiments over 4 h. Deposition gauges were located 20 m NE, SE, SW and NW with respect to the source and on a background location at 400 m SW. Air samples were taken in the plume with a medium volume sampler equipped with a quartz filter and a polyurethane plug. The results illustrate deposition increments in the wind direction at a distance of 20 m from the source of 0.8 pg TEQ/m2 day for garden waste and 2.5 pg TEQ/m2 day for household waste. Concentrations in the plume were increased by 160-580 fg TEQ/m3 over a period of 12 and 31 h respectively. Expressed at a reference CO2 concentration of 9% this corresponds with a range from 0.8 to 3.6 ng TEQ/m3, which is comparable with a poorly controlled MSWI. Emission factors in the order of magnitude of 4.5 ng TEQ/kg combusted garden waste and 35 ng TEQ/kg burned municipal waste were determined.

  13. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  14. Evaluation of Length-of-Stain Gas Indicator Tubes for Measuring Carbon Monoxide in Air.

    ERIC Educational Resources Information Center

    Klaubert, Earl C.; And Others

    Techniques for detection and measurement of carbon monoxide (CO) in air are of interest and utility in many aspects of automotive safety. CO concentrations may range from less than 100 parts per million (ppm), or 0.01 percent, to about 10 percent by volume. Gas indicator tubes have been used for many years primarily as detectors of hazardous gases…

  15. Combustion gas properties. Part 3: Hydrogen gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Mcbride, B. J.; Beyerle, R. A.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for hydrogen gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only sample tables and figures are provided in this report.

  16. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    NASA Astrophysics Data System (ADS)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  17. Chlorinated paraffins in indoor air and dust: concentrations, congener patterns, and human exposure.

    PubMed

    Fridén, Ulrika E; McLachlan, Michael S; Berger, Urs

    2011-10-01

    Chlorinated paraffins (CPs) are large production volume chemicals used in a wide variety of commercial applications. They are ubiquitous in the environment and humans. Human exposure via the indoor environment has, however, been barely investigated. In the present study 44 indoor air and six dust samples from apartments in Stockholm, Sweden, were analyzed for CPs, and indoor air concentrations are reported for the first time. The sumCP concentration (short chain CPs (SCCPs) and medium chain CPs (MCCPs)) in air ranged from <5-210 ng m(-3) as quantified by gas chromatography coupled to electron ionization tandem mass spectrometry (GC/EI-MS/MS). Congener group patterns were studied using GC with electron capture negative ionization MS (GC/ECNI-MS). The air samples were dominated by the more volatile SCCPs compared to MCCPs. SumCPs were quantified by GC/EI-MS/MS in the dust samples at low μg g(-1) levels, with a chromatographic pattern suggesting the prevalence of longer chain CPs compared to air. The median exposure to sumCPs via the indoor environment was estimated to be ~1 μg day(-1) for both adults and toddlers. Adult exposure was dominated by inhalation, while dust ingestion was suggested to be more important for toddlers. Comparing these results to literature data on dietary intake indicates that human exposure to CPs from the indoor environment is not negligible. PMID:21612825

  18. Commercial air travel after intraocular gas injection.

    PubMed

    Houston, Stephen; Graf, Jürgen; Sharkey, James

    2012-08-01

    Passengers with intraocular gas are at risk of profound visual loss when exposed to reduced absolute pressure within the cabin of a typical commercial airliner. Information provided on the websites of the world's 10 largest airlines offer a considerable range of opinion as to when it might be safe to fly after gas injection. Physicians responsible for clearing pseassengers as 'fit to fly' should be aware modern retinal surgical techniques increasingly employ long-acting gases as vitreous substitutes. The kinetics of long-acting intraocular gases must be considered when deciding how long after surgery it is safe to travel. It is standard practice to advise passengers not to fly in aircraft until the gas is fully resorbed. To achieve this, it may be necessary to delay travel for approximately 2 wk after intraocular injection of sulfur hexafluoride (SF6) and for 6 wk after injection of perfluoropropane (C3F8).

  19. Commercial air travel after intraocular gas injection.

    PubMed

    Houston, Stephen; Graf, Jürgen; Sharkey, James

    2012-08-01

    Passengers with intraocular gas are at risk of profound visual loss when exposed to reduced absolute pressure within the cabin of a typical commercial airliner. Information provided on the websites of the world's 10 largest airlines offer a considerable range of opinion as to when it might be safe to fly after gas injection. Physicians responsible for clearing pseassengers as 'fit to fly' should be aware modern retinal surgical techniques increasingly employ long-acting gases as vitreous substitutes. The kinetics of long-acting intraocular gases must be considered when deciding how long after surgery it is safe to travel. It is standard practice to advise passengers not to fly in aircraft until the gas is fully resorbed. To achieve this, it may be necessary to delay travel for approximately 2 wk after intraocular injection of sulfur hexafluoride (SF6) and for 6 wk after injection of perfluoropropane (C3F8). PMID:22872998

  20. Air Pollution in China: Mapping of Concentrations and Sources

    PubMed Central

    Rohde, Robert A.; Muller, Richard A.

    2015-01-01

    China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China’s population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7–2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China. PMID:26291610

  1. Air Pollution in China: Mapping of Concentrations and Sources.

    PubMed

    Rohde, Robert A; Muller, Richard A

    2015-01-01

    China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China's population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7-2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China. PMID:26291610

  2. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  3. Concentrations of air toxics in motor vehicle-dominated environments.

    PubMed

    Fujita, Eric M; Campbell, David E; Zielinska, Barbara; Arnott, William P; Chow, Judith C

    2011-02-01

    We at the Desert Research Institute (DRI*) measured volatile organic compounds (VOCs), including several mobile-source air toxics (MSATs), particulate matter with a mass mean aerodynamic diameter < or = 2.5 pm (PM2.5), black carbon (BC), nitrogen oxides (NOx), particulate matter (PM), and carbon monoxide (CO) on highways in Los Angeles County during summer and fall 2004, to characterize the diurnal and seasonal variations in measured concentrations related to volume and mix of traffic. Concentrations of on-road pollutants were then compared to corresponding measurements at fixed monitoring sites. The on-road concentrations of CO and MSATs were higher in the morning under stable atmospheric conditions and during periods of higher traffic volumes. In contrast, BC concentrations, measured as particulate light absorption, were higher on truck routes during the midday sampling periods despite more unstable atmospheric conditions. Compared to the measurements at the three near-road sites, the 1-hour averages of on-road BC concentrations were as much as an order of magnitude higher. The peak 1-minute average concentrations were two orders of magnitude higher for BC and were between two and six times higher for PM2.5 mass. The on-road concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) during the summer were 3.5 +/- 0.7 and 1.2 +/- 0.6 times higher during morning and afternoon commuting periods, respectively, compared to annual average 24-hour concentrations measured at air toxic monitoring network sites. These ratios were higher during the fall, with smaller diurnal differences (4.8 +/- 0.7 and 3.9 +/- 0.6 for morning and afternoon commuting periods, respectively). Ratios similar to those for BTEX were obtained for 1,3-butadiene (BD) and styrene. On-road concentrations of formaldehyde and acetaldehyde were up to two times higher than at air toxics monitoring sites, with fall ratios slightly higher than summer ratios. Chemical mass balance (CMB) receptor

  4. Biomimetic air sampling for detection of low concentrations of molecules and bioagents : LDRD 52744 final report.

    SciTech Connect

    Hughes, Robert Clark

    2003-12-01

    Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph) phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.

  5. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments

    NASA Astrophysics Data System (ADS)

    Pei, X. Q.; Song, M.; Guo, M.; Mo, F. F.; Shen, X. Y.

    2013-04-01

    Phthalate esters (PAEs) are ubiquitous in the indoor environment, owing to their use in consumer products. People spend a considerable amount of time indoors. As a result, human exposure to indoor contaminants is of great concern. People are exposed to phthalates through inhalation and dermal absorption of indoor air. In this study, the concentrations, characteristics and carcinogenic risks of gas-phase and particle-phase phthalates in indoor air from bedroom, living room and study room of 10 newly decorated apartments in Hangzhou, China were first investigated. The mean concentration of phthalates (gas-phase and particle-phase) present in household air was 12 096.4 ng m-3, of which diethyl phthalate (DEP), butylbenzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) were the most abundant compounds with concentrations of 2290 ng m-3, 3975 ng m-3 and 2437 ng m-3, respectively, totally accounting for 72.0% of ∑6PAEs. Contamination levels of phthalates varied in different compartments. The concentration of phthalates was the highest 17 363.7 ng m-3 in living room, followed with 11 389.5 ng m-3 in study room, and the lowest 9739.1 ng m-3 in bedroom. It was also found that phthalates mainly accumulated in gaseous form in household air. DEHP posed the greatest health risk to children aged 1-2. Carcinogenic risk of DEHP was evaluated to be 3.912 × 10-5, and was 39 times higher than the limit set by the U.S. EPA.

  6. Detection of hydrogen chloride gas in air

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.

    1978-01-01

    Launch vehicle effluent (LVE) monitoring is part of NASA's overall tropospheric and stratospheric environmental program. Following nine techniques are evaluated and developed in report: bubbler method, pH measurements, indicator tubes, microcoulometers, modified condensation nuclei counter, dual-isotope absorption, gas-filter correlation, chemiluminescent nitric oxide detection, chemiluminescent luminol-oxidation detection.

  7. Concentration distribution around a growing gas bubble in tissue.

    PubMed

    Mohammadein, S A; Mohamed, K G

    2010-05-01

    This paper presents the concentration distribution around a growing nitrogen gas bubble in the blood and other tissues of divers who surface too quickly, when the ambient pressure through the decompression process is variable and constant. This effort is a modification of Sirinivasan et al. model (1999) [9]. The mathematical model is solved analytically to find the growth rate of a gas bubble in a tissue after decompression in the ambient pressure. Moreover, the concentration distribution around the growing bubble is introduced. The growth process is affected by ascent rate alpha (t), tissue diffusivity D(T), initial concentration difference DeltaC(0), surface tension sigma and void fraction varphi(0).

  8. Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Tsai-Yin; Sree, Usha; Tseng, Sen-Hong; Chiu, Kong Hwa; Wu, Chien-Hou; Lo, Jiunn-Guang

    The air quality assessment for volatile organic compounds (VOC) was conducted in and around Chinese petroleum corporation (CPC) refinery at Kaohsiung, located in southern Taiwan, during 2001 by collecting air samples at 26 sites. Benzene and toluene were detected as the most abundant VOC by both gas chromatography and ultra-violet differential optical absorption spectroscopy (UV-DOAS) techniques. BTXE concentrations showed day and night variations at some of the sampling site. The highest among the 26 sites for total concentration of VOC at CPC was 2506 ppbv near waste burning stack. High concentrations of VOC were also detected at the wastewater management area and the east gate of the plant. The values were 10-18 times higher than those probed in Kaohsiung city. The meteorological parameters such as wind speed and direction played vital roles in the distribution of ambient air VOC concentrations and affected the petrochemical complex emissions. The application of UV-DOAS for online monitoring of criteria pollutants appears feasible though the accuracy of the technique is not fully controlled.

  9. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  10. Soil air carbon dioxide and nitrous oxide concentrations in profiles under tallgrass prairie and cultivation

    SciTech Connect

    Sotomayor, D.; Rice, C.W.

    1999-05-01

    Assessing the dynamics of gaseous production in soils is of interest because they are important sources and sinks of greenhouse gases. Changes in soil air carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) concentrations were studied in a Reading silt loam under prairie and cultivation. Concentrations were measured in situ over a 17-mo period to a depth of 3 m. Multilevel samples permitted collection of gases with subsequent measurement by gas chromatography in the laboratory. Soil air N{sub 2}O concentrations were near atmospheric levels for a majority of the study period in the prairie site but were significantly higher in the cultivated site. Annual mean N{sub 2}O concentrations were 0.403 and 1.09 {micro}L L{sup {minus}1} in the prairie and cultivated sites, respectively. Soil air CO{sub 2} annual mean concentrations were 1.56 {times} 10{sup 4} and 1.10 {times} 10{sup 4} {micro}L L{sup {minus}1} and ranged from 0.096 {times} 10{sup 4} to 6.45 {times} 10{sup 4} {micro}L L{sup {minus}1} and 0.087 {times} 10{sup 4} to 3.59 {times} 10{sup 4} {micro}L L{sup {minus}1} in the prairie and cultivated sites, respectively. Concentrations generally increased with depth, with maximum soil air N{sub 2}O and CO{sub 2} concentrations at 1.0 m in the prairie site and 0.5 m in the cultivated site. Nitrous oxide in the cultivated site and CO{sub 2} at both sites did not change markedly over winter months, but CO{sub 2} and N{sub 2}O concentrations reached maximums during the summer months and decreased as the year progressed. Although soil air concentrations peaked and decreased faster at shallower depths, deeper depths exhibited relative maximum concentrations for longer time periods.

  11. Industrial sources influence air concentrations of hydrogen sulfide and sulfur dioxide in rural areas of western Canada.

    PubMed

    Burstyn, Igor; Senthilselvan, Ambikaipakan; Kim, Hyang-Mi; Cherry, Nicola M; Pietroniro, Elise; Waldner, Cheryl

    2007-10-01

    A survey of monthly average concentrations of sulfur dioxide (SO2) and hydrogen sulfide (H2S) at rural locations in western Canada (provinces of Alberta, British Columbia, and Saskatchewan) was conducted in 2001-2002, as part of an epidemiological study of the effects of oil and gas industry emissions on the health of cattle. Repeated measurements were obtained at some months and locations. We aimed to develop statistical models of the effect of oil and gas infrastructure on air concentrations. The regulatory authorities supplied the information on location of the different oil and gas facilities during the study period and, for Alberta, provided data on H2S content of wells and flaring volumes. Linear mixed effects models were used to relate observed concentrations to proximity and type of oil and gas infrastructure. Low concentrations were recorded; the monthly geometric mean was 0.1-0.2 ppb for H2S, and 0.3-1.3 ppb for SO2. Substantial variability between repeated measurements was observed. The precision of the measurement method was 0.005 ppb for both contaminants. There were seasonal trends in the concentrations, but the spatial variability was greater. This was explained, in part, by proximity to oil/gas/bitumen wells and (for SO2) gas plants. Wells within 2 km of monitoring stations had the greatest impact on measured concentrations. For H2S, 8% of between-location variability was explained by proximity to industrial sources of emissions; for SO2 this proportion was 18%. In Alberta, proximity to sour gas wells and flares was associated with elevated H2S concentrations; however, the estimate of the effect of sour gas wells in the immediate vicinity of monitoring stations was unstable. Our study was unable to control for all possible sources of the contaminants. However, the results suggest that oil and gas extraction activities contribute to air pollution in rural areas of western Canada. PMID:17972769

  12. Comparison of observed and predicted short-term tracer gas concentrations in the atmosphere

    SciTech Connect

    Cotter, S.J.; Miller, C.W.; Lin, W.C.T.

    1985-01-01

    The Savannah River Laboratory is in the process of conducting a series of atmospheric tracer studies. The inert gas sulfurhexafluoride is released from a height of 62 m for 15 min and concentrations in air are measured on sampling arcs up to 30 km downwind of the release point. Maximum 15 min. air concentrations from 14 of these tracer tests have been compared with the ground-level, centerline air concentration predicted with a Gaussian plume atmospheric transport model using eight different sets of atmospheric dispersion parameters. Preliminary analysis of the results from these comparisons indicates that the dispersion parameters developed at Juelich, West Germany, based on tracers released from a height of 50 m, give the best overall agreement between the predicted and observed values. The median value of the ratio of predicted to observed air concentrations for this set of parameters is 1.3, and the correlation coefficient between the log of the predictions and the log of the observations is 0.72. For the commonly used Pasquill-Gifford dispersion parameters, the values of these same statistics are 4.4 and 0.68, respectively. The Gaussian plume model is widely used to predict air concentrations resulting from short-term radionuclide release to the atmosphere. The results of comparisons such as these must be considered whenever the Gaussian model is used for such purposes. 22 references, 3 tables.

  13. Horizontal air drilling increases gas recovery in depleted zone

    SciTech Connect

    Elrod, J.P.

    1997-06-30

    Increased gas recoveries in depleted gas zones can be achieved through horizontal air drilling. In December 1995, OXY USA Inc. drilled the Pirkle 2, the first air-drilled horizontal well in the Carthage field of Texas. Targeting the Cretaceous Frost ``A`` zone of the lower Pettit limestone at 6,000 ft true vertical depth, the well established production in a 1,400 ft lateral section with a bottom hole pressure (BHP) of 185 psi. The initial BHP for the zone was 3,280 psi in 1942. As of April 27, 1997, the Pirkle 2 had produced 530 MMcf of gas at a rate of 1.1 MMcfd. Total cumulative gas production for the lower Pettit limestone in the Carthage field was 3.83 tcf as of January 1997. The paper discusses reservoir properties, abandonment pressure, minimizing well bore damage, drilling fluid selection, special equipment and modifications, compressors, BOPs, steering tools, drilling, completion, and production.

  14. Effective methods of reduction of nitrogen oxides concentration during the natural gas combustion.

    PubMed

    Zajemska, Monika; Musiał, Dorota; Poskart, Anna

    2014-01-01

    This paper contains experimental research of NOx reduction in the combustion process with the primary methods, which were applied separately and in combined systems. In addition, the pulsation disturbance (PD) was applied, that is the gas stream was disturbed to increase the intensity of reagents mixing. An experimental stand was built to determine an influence of the following primary methods: air staging, reburning and flue gas recirculation on a reduction of NOx concentration. Experiments were carried out in three combinations: air staging with reburning, reburning with recirculation and air staging with recirculation. In all these cases, the PD was simultaneously applied. Researches were carried out in a quartz combustion chamber with laboratory equipment enabled to measure all the thermal and the chemical parameters of the process. The simultaneous application of primary methods causes additional increase in NOx reduction in certain systems.

  15. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kang, Hyery; Koh, Dong-Yeun; Lee, Huen

    2014-10-01

    Current technologies for production of natural gas hydrates (NGH), which include thermal stimulation, depressurization and inhibitor injection, have raised concerns over unintended consequences. The possibility of catastrophic slope failure and marine ecosystem damage remain serious challenges to safe NGH production. As a potential approach, this paper presents air-driven NGH recovery from permeable marine sediments induced by simultaneous mechanisms for methane liberation (NGH decomposition) and CH4-air or CH4-CO2/air replacement. Air is diffused into and penetrates NGH and, on its surface, forms a boundary between the gas and solid phases. Then spontaneous melting proceeds until the chemical potentials become equal in both phases as NGH depletion continues and self-regulated CH4-air replacement occurs over an arbitrary point. We observed the existence of critical methane concentration forming the boundary between decomposition and replacement mechanisms in the NGH reservoirs. Furthermore, when CO2 was added, we observed a very strong, stable, self-regulating process of exchange (CH4 replaced by CO2/air; hereafter CH4-CO2/air) occurring in the NGH. The proposed process will work well for most global gas hydrate reservoirs, regardless of the injection conditions or geothermal gradient.

  16. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide

    PubMed Central

    Kang, Hyery; Koh, Dong-Yeun; Lee, Huen

    2014-01-01

    Current technologies for production of natural gas hydrates (NGH), which include thermal stimulation, depressurization and inhibitor injection, have raised concerns over unintended consequences. The possibility of catastrophic slope failure and marine ecosystem damage remain serious challenges to safe NGH production. As a potential approach, this paper presents air-driven NGH recovery from permeable marine sediments induced by simultaneous mechanisms for methane liberation (NGH decomposition) and CH4-air or CH4-CO2/air replacement. Air is diffused into and penetrates NGH and, on its surface, forms a boundary between the gas and solid phases. Then spontaneous melting proceeds until the chemical potentials become equal in both phases as NGH depletion continues and self-regulated CH4-air replacement occurs over an arbitrary point. We observed the existence of critical methane concentration forming the boundary between decomposition and replacement mechanisms in the NGH reservoirs. Furthermore, when CO2 was added, we observed a very strong, stable, self-regulating process of exchange (CH4 replaced by CO2/air; hereafter CH4-CO2/air) occurring in the NGH. The proposed process will work well for most global gas hydrate reservoirs, regardless of the injection conditions or geothermal gradient. PMID:25311102

  17. Wintertime Air Quality Impacts from Oil and Natural Gas Drilling Operations in the Bakken Formation Region

    NASA Astrophysics Data System (ADS)

    Evanoski-Cole, Ashley; Sive, Barkley; Zhou, Yong; Prenni, Anthony; Schurman, Misha; Day, Derek; Sullivan, Amy; Li, Yi; Hand, Jenny; Gebhart, Kristi; Schichtel, Bret; Collett, Jeffrey

    2016-04-01

    Oil and natural gas extraction has dramatically increased in the last decade in the United States due to the increased use of unconventional drilling techniques which include horizontal drilling and hydraulic fracturing. The impact of these drilling activities on local and regional air quality in oil and gas basins across the country are still relatively unknown, especially in recently developed basins such as the Bakken shale formation. This study is the first to conduct a comprehensive characterization of the regional air quality in the Bakken region. The Bakken shale formation, part of the Williston basin, is located in North Dakota and Montana in the United States and Saskatchewan and Manitoba in Canada. Oil and gas drilling operations can impact air quality in a variety of ways, including the generation of atmospheric particulate matter (PM), hazardous air pollutants, ozone, and greenhouse gas emissions. During the winter especially, PM formation can be enhanced and meteorological conditions can favor increased concentrations of PM and other pollutants. In this study, ground-based measurements throughout the Bakken region in North Dakota and Montana were collected over two consecutive winters to gain regional trends of air quality impacts from the oil and gas drilling activities. Additionally, one field site had a comprehensive suite of instrumentation operating at high time resolution to gain detailed characterization of the atmospheric composition. Measurements included organic carbon and black carbon concentrations in PM, the characterization of inorganic PM, inorganic gases, volatile organic compounds (VOCs), precipitation and meteorology. These elevated PM episodes were further investigated using the local meteorological conditions and regional transport patterns. Episodes of elevated concentrations of nitrogen oxides and sulfur dioxide were also detected. The VOC concentrations were analyzed and specific VOCs that are known oil and gas tracers were used

  18. Air Monitoring for Hazardous Gas Detection

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Griffin, Timothy P.; Adams, Frederick W.; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Follistein, Duke W.

    2004-01-01

    The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response times and detection limits. A Table lists common gases monitored for aerospace applications. The first five gases, hydrogen, helium, nitrogen, oxygen, and argon are historically the focus of the HGDL.

  19. Methods, fluxes and sources of gas phase alkyl nitrates in the coastal air.

    PubMed

    Dirtu, Alin C; Buczyńska, Anna J; Godoi, Ana F L; Favoreto, Rodrigo; Bencs, László; Potgieter-Vermaak, Sanja S; Godoi, Ricardo H M; Van Grieken, René; Van Vaeck, Luc

    2014-10-01

    The daily and seasonal atmospheric concentrations, deposition fluxes and emission sources of a few C3-C9 gaseous alkyl nitrates (ANs) at the Belgian coast (De Haan) on the Southern North Sea were determined. An adapted sampler design for low- and high-volume air-sampling, optimized sample extraction and clean-up, as well as identification and quantification of ANs in air samples by means of gas chromatography mass spectrometry, are reported. The total concentrations of ANs ranged from 0.03 to 85 pptv and consisted primarily of the nitro-butane and nitro-pentane isomers. Air mass backward trajectories were calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to determine the influence of main air masses on AN levels in the air. The shorter chain ANs have been the most abundant in the Atlantic/Channel/UK air masses, while longer chain ANs prevailed in continental air. The overall mean N fluxes of the ANs were slightly higher for summer than those for winter-spring, although their contributions to the total nitrogen flux were low. High correlations between AN and HNO₂ levels were observed during winter/spring. During summer, the shorter chain ANs correlated well with precipitation. Source apportionment by means of principal component analysis indicated that most of the gas phase ANs could be attributed to traffic/combustion, secondary photochemical formation and biomass burning, although marine sources may also have been present and a contributing factor. PMID:24952420

  20. Methods, fluxes and sources of gas phase alkyl nitrates in the coastal air.

    PubMed

    Dirtu, Alin C; Buczyńska, Anna J; Godoi, Ana F L; Favoreto, Rodrigo; Bencs, László; Potgieter-Vermaak, Sanja S; Godoi, Ricardo H M; Van Grieken, René; Van Vaeck, Luc

    2014-10-01

    The daily and seasonal atmospheric concentrations, deposition fluxes and emission sources of a few C3-C9 gaseous alkyl nitrates (ANs) at the Belgian coast (De Haan) on the Southern North Sea were determined. An adapted sampler design for low- and high-volume air-sampling, optimized sample extraction and clean-up, as well as identification and quantification of ANs in air samples by means of gas chromatography mass spectrometry, are reported. The total concentrations of ANs ranged from 0.03 to 85 pptv and consisted primarily of the nitro-butane and nitro-pentane isomers. Air mass backward trajectories were calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to determine the influence of main air masses on AN levels in the air. The shorter chain ANs have been the most abundant in the Atlantic/Channel/UK air masses, while longer chain ANs prevailed in continental air. The overall mean N fluxes of the ANs were slightly higher for summer than those for winter-spring, although their contributions to the total nitrogen flux were low. High correlations between AN and HNO₂ levels were observed during winter/spring. During summer, the shorter chain ANs correlated well with precipitation. Source apportionment by means of principal component analysis indicated that most of the gas phase ANs could be attributed to traffic/combustion, secondary photochemical formation and biomass burning, although marine sources may also have been present and a contributing factor.

  1. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Technical Reports Server (NTRS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    1987-01-01

    Oxygen concentration and separation is an essential factor for air recycling in a controlled ecological life support system (CELSS). Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of oxygen from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  2. Gas-concentration measurements and analysis for gas-loaded thermosyphons

    SciTech Connect

    Peterson, P.F.; Tien, C.L. )

    1988-08-01

    Using a miniature wet-bulb/dry-bulb probe, detailed measurements of noncondensable-gas concentration profiles were made in a gas-loaded two-phase relfux thermosyphon to investigate the effects of orientation and gas/vapor molecular weight combination. Natural convection andd radial diffusion were found to have a large influence on the noncondensable-gas distribution, even when the gas and vapor molecular weights are equal. An axisymmeteric two-dimensional diffusion model is presented to allow evaluation of the relative effects of natural convection versus diffusion. Gas recirculation, axial stratification, regions of unstable flow, and their effects on performance are discussed.

  3. Catalytic wet air oxidation of high concentration pharmaceutical wastewater.

    PubMed

    Zhan, Wei; Wang, Xiaocong; Li, Daosheng; Ren, Yongzheng; Liu, Dongqi; Kang, Jianxiong

    2013-01-01

    In this study, we investigated the pretreatment of a high concentration pharmaceutical wastewater by catalytic wet air oxidation (CWAO) process. Different experiments were conducted to investigate the effects of the catalyst type, operating temperature, initial system pH, and oxygen partial pressure on the oxidation of the wastewater. Results show that the catalysts prepared by the co-precipitation method have better catalytic activity compared to others. Chemical oxygen demand (COD) conversion increased with the increase in temperature from 160 to 220 °C and decreased with the increase in pH. Moreover, the effect of the oxygen partial pressure on the COD conversion was significant only during the first 20 min of the reaction. Furthermore, the biodegradability of the wastewater improved greatly after CWAO, the ratio of BOD5/COD increased less than 0.1-0.75 when treated at 220 °C (BOD: biochemical oxygen demand). PMID:23676399

  4. Catalytic wet air oxidation of high concentration pharmaceutical wastewater.

    PubMed

    Zhan, Wei; Wang, Xiaocong; Li, Daosheng; Ren, Yongzheng; Liu, Dongqi; Kang, Jianxiong

    2013-01-01

    In this study, we investigated the pretreatment of a high concentration pharmaceutical wastewater by catalytic wet air oxidation (CWAO) process. Different experiments were conducted to investigate the effects of the catalyst type, operating temperature, initial system pH, and oxygen partial pressure on the oxidation of the wastewater. Results show that the catalysts prepared by the co-precipitation method have better catalytic activity compared to others. Chemical oxygen demand (COD) conversion increased with the increase in temperature from 160 to 220 °C and decreased with the increase in pH. Moreover, the effect of the oxygen partial pressure on the COD conversion was significant only during the first 20 min of the reaction. Furthermore, the biodegradability of the wastewater improved greatly after CWAO, the ratio of BOD5/COD increased less than 0.1-0.75 when treated at 220 °C (BOD: biochemical oxygen demand).

  5. Hydrogen-air energy storage gas-turbine system

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  6. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  7. Ozone Air Quality Impacts of Shale Gas Development in South Texas Urban Areas

    NASA Astrophysics Data System (ADS)

    Chang, C.; Liao, K.

    2013-12-01

    Recent technological advances, mainly horizontal drilling and hydraulic fracturing, and continued drilling in shale, have increased domestic production of oil and gas in the United State (U.S.). However, shale gas developments could also affect the environment and human health, particularly in areas where oil and gas developments are new activities. This study is focused on the impacts of shale gas developing activities on summertime ozone air quality in South Texas urban areas since many of them are already ozone nonattainment areas. We use an integrated approach to investigate the ozone air quality impact of the shale gas development in South Texas urban areas. They are: (1) satellite measurement of precursors, (2) observations of ground-level ozone concentrations, and (3) air mass trajectory modeling. Nitrogen dioxide (NO2) is an important precursor to ozone formation, and summertime average tropospheric nitrogen dioxide (NO2) column densities measured by the National Aeronautics and Space Administration's Ozone Monitoring Instrument increased in the South Texas shale area (i.e., the Eagle Ford Shale area) in 2011 and 2012 as compared to 2008-2010. The U.S. Environmental Protection Agency's ground-level observations showed summertime average and peak ozone (i.e., the 4th highest daily maximum 8-hour average ozone) concentrations slightly increased from 2010 to 2012 in Austin and San Antonio. However, the frequencies of peak ozone concentrations above the 75ppb ozone standard have been significantly increasing since 2011 in Austin and San Antonio. It is expected to increase the possibilities of violating the ozone National Ambient Air Quality Standard (NAAQS) for South Texas urban areas in the future. The results of trajectory modeling showed air masses transported from the southeastern Texas could reach Austin and San Antonio and confirmed that emissions from the Eagle Ford Shale area could affect ozone air quality in South Texas urban areas in 2011 and 2012

  8. The ICOS Ecosystem protocol for gas concentration measurements

    NASA Astrophysics Data System (ADS)

    Aubinet, Marc; Papale, Dario

    2014-05-01

    This research was initiated in the frame of the ICOS Ecosystem Thematic Center. The aim of ICOS is to provide long term high precision observations required to understand the present state and to predict future behavior of the global carbon cycle and greenhouse gas emissions. Observations will be made through high precision network of stations measuring greenhouse gas fluxes from ecosystems and oceans and greenhouse gas concentrations in the atmosphere. In a long term monitoring infrastructure like the ICOS Ecosystem network, it is crucial to ensure maximum comparability between sites and, for this reason, it is strongly suggested to highly standardize methods and sensors where the knowledge about systematic and random differences between different approaches is not yet fully known, in particular in the medium-long term time range. Long term measurements of trace gas fluxes exchanged by ecosystem require the use of the eddy covariance technique for which gas analyzers are, similarly to sonic anemometers, key elements. However, neither an international standard nor a list of requisites for sensors does exist yet. This presentation focuses thus on the protocol for high frequency gas concentration using infrared gas analyzers. It results from discussions that were brought among the Working group on Eddy covariance fluxes and Storage measurements established by the ICOS Ecosystem Thematic Center and implied about 70 scientists and field workers. The protocol includes a definition of the variable and of the measurement method (infrared gas analyzer), instructions concerning the system conditioning (gas sampling system description including pump, tube, filter dimensioning), sensor calibration and maintenance and finally required data format.

  9. [A Detection Technique for Gas Concentration Based on the Spectral Line Shape Function].

    PubMed

    Zhou, Mo; Yang, Bing-chu; Tao, Shao-hua

    2015-04-01

    The methods that can rapidly and precisely measure concentrations of various gases have extensive applications in the fields such as air quality analysis, environmental pollution detection, and so on. The gas detection method based on the tunable laser absorption spectroscopy is considered a promising technique. For the infrared spectrum detection techniques, the line shape function of an absorption spectrum of a gas is an important parameter in qualitative and quantitative analysis of a gas. Specifically, how to obtain the line shape function of an absorption spectrum of a gas quickly and accurately is a key problem in the gas detection fields. In this paper we analyzed several existing line shape functions and proposed a method to calculate precisely the line shape function of a gas, and investigated the relation between the gas concentration and the peak value of a line shape function. Then we experimentally measured the absorption spectra of an acetylene gas in the wavelength range of 1,515-1,545 nm with a tunable laser source and a built-in spectrometer. With Lambert-Beer law we calculated the peak values of the line shape function of the gas at the given frequencies, and obtained a fitting curve for the line shape function in the whole waveband by using a computer program. Comparing the measured results with the calculated results of the Voigt function, we found that there was a deviation-between the experimental results and the calculated results. And we found that the measured concentration of the acetylene gas by using the fitting curve of the line shape function was more accurate and compatible with the actual situation. Hence, the empirical formula for the line shape function obtained from the experimental results would be more suitable for the concentration measurement of a gas. As the fitting curve for the line shape function of the acetylene gas has been deduced from the experiment, the corresponding peak values of the spectral lines can be

  10. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, S.; Prévôt, A. S. H.; Baltensperger, U.

    2015-11-01

    Emissions from the marine transport sector are one of the least regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in the EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5 and the dry and wet deposition of nitrogen and sulfur compounds in Europe. Our results suggest that emissions from international shipping affect the air quality in northern and southern Europe differently and their contributions to the air concentrations vary seasonally. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Increased concentrations of the primary particle mass were found only along the shipping routes whereas concentrations of the secondary pollutants were affected over a larger area. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), in the English Channel and the North Sea (30-35 %) while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %) where there were high NH3 land-based emissions. Our model results showed that not only the atmospheric concentrations of pollutants are affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas-phase to the

  11. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  12. Oxygen Smelting of Copper Concentrate With Exhaust SO2 Gas Recycling

    NASA Astrophysics Data System (ADS)

    Yazawa, Akira; Tozawa, Kazuteru

    1982-03-01

    In the conventional copper smelting process, the concentrate is usually oxidized by air, and heat is supplied by the combustion of fuel. Considerable dust and heat losses, due to the large quantity of exhaust gas, are inevitable. The use of oxygen greatly decreases such losses, but the copper matte grade is limited to around 50% to keep the furnace temperature at an optimum level. An oxygen smelting process, with exhaust SO2 recycling, is proposed based upon material and heat balance calculations. When 60% Cu matte is produced, the participating amounts of heat and gas are around 62% and 28% (14% if final gas is considered) of those of the conventional process. A considerable decrease in capital and operating costs can be expected when considering a new smelter. Because a small volume of high-strength SO2 exhaust gas is produced, this process has large flexibility with respect to sulfur by-products and offers a major advantage in environmentally sensitive locations.

  13. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    EPA Science Inventory

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  14. High concentrated gas hydrate zone imaged in seismic data

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Saeki, T.; Oikawa, N.; Inamori, T.; Fujii, T.; Takayama, T.; Hayashi, M.; Nakamizu, M.

    2006-12-01

    Japan Oil, Gas and Metals National Corporation (JOGMEC), as a member of MH21 Research Consortium, takes charge of a study of the Research for Resources Assessment, and is pursuing a possibility that gas hydrate, which is presumed to be distributed around ocean area of Japan, will be energy resources. As part of the study, 3D seismic survey was conducted from Tokai-oki to Kumano-nada in the eastern Nankai Trough by METI (Ministry of Economy, Trade and Industry) in 2002 under the national program of assessment for gas hydrates as energy resources. As well as 3D seismic survey, drilling program was conducted in this area and information of physical property was acquired. Additionally, velocity analysis and seismic attribute analysis were conducted. It is revealed that gas hydrate zone is correlated with high resistivity and high velocity, and a lot of gas hydrates are found in turbidite sand with much porosity. JOGMEC is conducting analysis of seismic data and is doing resources assessment of gas hydrate compiling information of physical property which was acquired by drilling, result of velocity analysis, and result of seismic attribute analysis. This time, we introduce some seismic images of high concentrated gas hydrate zone appears in Tokai-oki area.

  15. Gas-phase exposure history derived from material-phase concentration profiles

    NASA Astrophysics Data System (ADS)

    Morrison, G. C.; Little, J. C.; Xu, Y.; Rao, M.; Enke, D.

    Non-reactive gas-phase pollutants such as benzene diffuse into indoor furnishings and leave behind a unique material-phase concentration profile that serves as a record of the past gas-phase indoor concentrations. The inverse problem to be solved is the diffusion equation in a slab such as vinyl flooring. Using knowledge of the present material-phase concentration profile in the slab, we seek to determine the historical material-phase concentration at the surface exposed to indoor air, and hence the historical gas-phase concentration, which can be used directly to determine exposure. The problem as posed has a unique solution that may be solved using a variety of approaches. We use a trained artificial neural network (ANN) to derive solutions for hypothetical exposure scenarios. The ANN results show that it is possible to estimate the intensity and timing of past exposures from the material-phase concentration profile in a building material. The overall method is limited by (1) the resolution of techniques for measuring spatial material-phase concentration profiles, (2) how far back in time we seek to determine exposure and (3) the representational power of the ANN solution. For example, we estimate that this technique can estimate exposure to phenol up to 0.5 y in the past from analyses of vinyl flooring.

  16. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward.

  17. Wide-range radioactive-gas-concentration detector

    DOEpatents

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  18. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements.

    PubMed

    Bjerg, Bjarne; Zhang, Guoqiang; Madsen, Jørgen; Rom, Hans B

    2012-10-01

    Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat production and the carbon dioxide production from the animals have in several cases been utilized for estimation of the ventilation air exchange rate for the estimation of ammonia and greenhouse gas emissions. Using this method, the problem of the complicated air velocity and concentration distribution in the openings is avoided; however, there are still some important issues remained unanswered: (1) the precision of the estimations, (2) the requirement for the length of measuring periods, and (3) the required measuring point number and location. The purpose of this work was to investigate how estimated average gas emission and the precision of the estimation are influenced by different calculation procedures, measuring period length, measure point locations, measure point numbers, and criteria for excluding measuring data. The analyses were based on existing data from a 6-day measuring period in a naturally ventilated, 150 milking cow building. The results showed that the methane emission can be determined with much higher precision than ammonia or laughing gas emissions, and, for methane, relatively precise estimations can be based on measure periods as short as 3 h. This result makes it feasible to investigate the influence of feed composition on methane emission in a relative large number of operating cattle buildings and consequently it can support a development towards reduced greenhouse gas emission from cattle production. PMID:22020391

  19. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  20. [Fire disaster due to deflagration of a propane gas-air mixture].

    PubMed

    Nadjem, Hadi; Vogt, Susanne; Simon, Karl-Heinz; Pollak, Stefan; Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Perdekampl, Markus Große; Thierauf-Emberger, Annette

    2015-01-01

    On 26 Nov 2012, a serious fire occurred at Neustadt/Black Forest in which 14 persons in a sheltered workshop died and 10 other individuals were injured. The fire was caused by the unbridled escape of propane gas due to accidental disconnection of the screw fixing between a gas bottle and a catalytic heater. Deflagration of the propane gas-air mixture set the workshop facilities on fire. In spite of partly extensive burns the fatally injured victims could be rapidly identified. The results of the fire investigations at the scene and the autopsy findings are presented. Carboxyhemoglobin concentrations ranged between 8 and 56 % and signs of fire fume inhalation were present in all cases. Three victims had eardrum ruptures due to the sudden increase in air pressure during the deflagration. PMID:26548032

  1. [Fire disaster due to deflagration of a propane gas-air mixture].

    PubMed

    Nadjem, Hadi; Vogt, Susanne; Simon, Karl-Heinz; Pollak, Stefan; Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Perdekampl, Markus Große; Thierauf-Emberger, Annette

    2015-01-01

    On 26 Nov 2012, a serious fire occurred at Neustadt/Black Forest in which 14 persons in a sheltered workshop died and 10 other individuals were injured. The fire was caused by the unbridled escape of propane gas due to accidental disconnection of the screw fixing between a gas bottle and a catalytic heater. Deflagration of the propane gas-air mixture set the workshop facilities on fire. In spite of partly extensive burns the fatally injured victims could be rapidly identified. The results of the fire investigations at the scene and the autopsy findings are presented. Carboxyhemoglobin concentrations ranged between 8 and 56 % and signs of fire fume inhalation were present in all cases. Three victims had eardrum ruptures due to the sudden increase in air pressure during the deflagration.

  2. Characterization of gas diffusion electrodes for metal-air batteries

    NASA Astrophysics Data System (ADS)

    Danner, Timo; Eswara, Santhana; Schulz, Volker P.; Latz, Arnulf

    2016-08-01

    Gas diffusion electrodes are commonly used in high energy density metal-air batteries for the supply of oxygen. Hydrophobic binder materials ensure the coexistence of gas and liquid phase in the pore network. The phase distribution has a strong influence on transport processes and electrochemical reactions. In this article we present 2D and 3D Rothman-Keller type multiphase Lattice-Boltzmann models which take into account the heterogeneous wetting behavior of gas diffusion electrodes. The simulations are performed on FIB-SEM 3D reconstructions of an Ag model electrode for predefined saturation of the pore space with the liquid phase. The resulting pressure-saturation characteristics and transport correlations are important input parameters for modeling approaches on the continuum scale and allow for an efficient development of improved gas diffusion electrodes.

  3. Measurement of Relative Dissolved Gas Concentrations Using Underwater Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bell, R. J.; Toler, S.; van Amerom, F. H.; Wenner, P.; Hall, M.; Edkins, J.; Gassig, S.; Short, R.; Byrne, R.

    2004-12-01

    The deployment of underwater mass spectrometer (UMS) systems in marine and lacustrine environments has provided chemical data of exceptional temporal and spatial resolution. UMS instruments operate moored, tethered, remotely, or autonomously, allowing users to customize deployments to suit a wide variety of situations. The ability to collect and analyze real-time data enables prompt, intelligent sampling decisions based on observed analyte distributions. UMS systems can simultaneously detect a wide variety of analytes generated by biological, chemical, physical, geothermal and anthropogenic activities. A polydimethylsiloxane (PDMS) membrane separates the sample-stream from the spectrometer's vacuum chamber. This membrane is selective against water and charged species, yet highly permeable to volatile organic compounds (VOC) and simple gases. Current detection limits for dissolved gases and VOCs are on the order of ppm and ppb respectively. Semi-quantitative proof-of-concept applications have included horizontal mapping of gas gradients, characterization of geothermal vent water, and observation of dissolved gas profiles. Horizontal gradients in dissolved gas concentrations were determined in Lake Maggiore, St Petersburg, Florida. The UMS was positioned on a remotely-guided surface vehicle, and real-time gas concentration data were transmitted to shore via wireless ethernet. Real-time observations allowed intensive sampling of areas with strong gas gradients. Oxygen and CO2 exhibited patchy distributions and their concentrations varied inversely, presumably in response to biological activity. The UMS signal for methane depended on the instrument's proximity to organic rich sediments. Geothermal vent water was characterized while the UMS was deployed in Yellowstone Lake, Wyoming, on a tethered Eastern Oceanics remotely operated vehicle (ROV). Observations of dissolved vent-gas compositions were obtained to depths of 30m. Distinct differences in dissolved vent-gas

  4. New challenges to air/gas cleaning systems

    SciTech Connect

    Kovach, J.L.

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  5. Mixing layer height measurements determines influence of meteorology on air pollutant concentrations in urban area

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Blumenstock, Thomas; Bonn, Boris; Gerwig, Holger; Hase, Frank; Münkel, Christoph; Nothard, Rainer; von Schneidemesser, Erika

    2015-10-01

    Mixing layer height (MLH) is a key parameter to determine the influence of meteorological parameters upon air pollutants such as trace gas species and particulate concentrations near the surface. Meteorology, and MLH as a key parameter, affect the budget of emission source strengths, deposition, and accumulation. However, greater possibilities for the application of MLH data have been identified in recent years. Here, the results of measurements in Berlin in 2014 are shown and discussed. The concentrations of NO, NO2, O3, CO, PM1, PM2.5, PM10 and about 70 volatile organic compounds (anthropogenic and biogenic of origin) as well as particle size distributions and contributions of SOA and soot species to PM were measured at the urban background station of the Berlin air quality network (BLUME) in Nansenstr./Framstr., Berlin-Neukölln. A Vaisala ceilometer CL51, which is a commercial mini-lidar system, was applied at that site to detect the layers of the lower atmosphere in real time. Special software for these ceilometers with MATLAB provided routine retrievals of MLH from vertical profiles of laser backscatter data. Five portable Bruker EM27/SUN FTIR spectrometers were set up around Berlin to detect column averaged abundances of CO2 and CH4 by solar absorption spectrometry. Correlation analyses were used to show the coupling of temporal variations of trace gas compounds and PM with MLH. Significant influences of MLH upon NO, NO2, PM10, PM2.5, PM1 and toluene (marker for traffic emissions) concentrations as well as particle number concentrations in the size modes 70 - 100 nm, 100 - 200 nm and 200 - 500 nm on the basis of averaged diurnal courses were found. Further, MLH was taken as important auxiliary information about the development of the boundary layer during each day of observations, which was required for the proper estimation of CO2 and CH4 source strengths from Berlin on the basis of atmospheric column density measurements.

  6. Air and gas pockets in sewerage pressure mains.

    PubMed

    Lubbers, C L; Clemens, F

    2005-01-01

    In The Netherlands, wastewater is collected in municipal areas and transported to large centralised WWTPs by means of an extensive system of pressure mains. Over the past decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. For that reason, in practice their state of functioning is often not known. Failure of operation is only noticed when the capacity of the system proves to be insufficient to fulfil the minimum design capacity demand. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. Many causes may account for the reduction of the system's nominal capacity like an increased wall roughness, scaling or occurrence of free gas in the pipeline. The occurrence of free gas may be caused by degassing of dissolved (bio) gas or by air entrained at the pumps' inlet or at air valves. A research study is started that will focus on three main issues: The description of the gas-water phenomena in wastewater pressure mains with respect to transportation and dynamic hydraulic behaviour, A method to diagnose gas problems, and To overcome future problems by either applying remedial measures or improving the design of wastewater pressure systems. For this study, two experimental facilities are constructed, a small circuit for the study of multi-phase flow and a second, larger one for the research into diagnostic methods. This paper describes the preliminary results of the experiments in the multi-phase circuit.

  7. Dry deposition, concentration and gas/particle partitioning of atmospheric carbazole

    NASA Astrophysics Data System (ADS)

    Esen, Fatma; Tasdemir, Yücel; Cindoruk, S. Sıddık

    2010-03-01

    The atmospheric concentrations and dry deposition of carbazole were measured to present the temporal changes, gas/particle partitioning and magnitude of fluxes. Atmospheric samples were collected from July 2004 to May 2005 at four different sites in Bursa, Turkey. The average total (gas and particulate) carbazole concentrations were 7.6 ± 9.9 ng m - 3 in Gulbahce (Residential), 1.1 ± 1.2 ng m - 3 in BUTAL (Traffic), 3.3 ± 5.0 ng m - 3 in BOID (Industrial), and 1.2 ± 0.7 ng m - 3 in the Uludag University Campus (UU) (Suburban). Experimental gas/particle partition coefficient ( Kp) was determined using the study results and compared with Kp values calculated from octanol-air and soot-air + octanol partitioning models. Total dry deposition fluxes of carbazole were 290 ± 484 ng m - 2 d - 1 in BUTAL and 72 ± 67 ng m - 2 d - 1 in the UU Campus. Particulate phase dry deposition velocities were 0.81 ± 0.78 cm s - 1 and 0.90 ± 1.53 cm s - 1 for BUTAL and the UU Campus, respectively. On the other hand, gas-phase mass transfer coefficients were calculated to be 0.34 ± 0.29 cm s - 1 and 0.26 ± 0.17 cm s - 1 for BUTAL and the UU Campus, respectively.

  8. Seasonal variation of indoor and outdoor air quality of nitrogen dioxide in homes with gas and electric stoves.

    PubMed

    Dėdelė, Audrius; Miškinytė, Auksė

    2016-09-01

    Indoor air pollution significantly influences personal exposure to air pollution and increases health risks. Nitrogen dioxide (NO2) is one of the major air pollutants, and therefore it is important to properly determine indoor concentration of this pollutant considering the fact that people spend most of their time inside. The aim of this study was to assess indoor and outdoor concentration of NO2 during each season; for this purpose, passive sampling was applied. We analyzed homes with gas and electric stoves to determine and compare the concentrations of NO2 in kitchen, living room, and bedroom microenvironments (MEs). The accuracy of passive sampling was evaluated by comparing the sampling results with the data from air quality monitoring stations. The highest indoor concentration of NO2 was observed in kitchen ME during the winter period, the median concentration being 28.4 μg m(-3). Indoor NO2 levels in homes with gas stoves were higher than outdoor levels during all seasons. The concentration of NO2 was by 2.5 times higher in kitchen MEs with gas stoves than with electric stoves. This study showed that the concentration of NO2 in indoor MEs mainly depended on the stove type used in the kitchen. Homes with gas stoves had significantly higher levels of NO2 in all indoor MEs compared with homes where electric stoves were used. PMID:27250086

  9. Seasonal variation of indoor and outdoor air quality of nitrogen dioxide in homes with gas and electric stoves.

    PubMed

    Dėdelė, Audrius; Miškinytė, Auksė

    2016-09-01

    Indoor air pollution significantly influences personal exposure to air pollution and increases health risks. Nitrogen dioxide (NO2) is one of the major air pollutants, and therefore it is important to properly determine indoor concentration of this pollutant considering the fact that people spend most of their time inside. The aim of this study was to assess indoor and outdoor concentration of NO2 during each season; for this purpose, passive sampling was applied. We analyzed homes with gas and electric stoves to determine and compare the concentrations of NO2 in kitchen, living room, and bedroom microenvironments (MEs). The accuracy of passive sampling was evaluated by comparing the sampling results with the data from air quality monitoring stations. The highest indoor concentration of NO2 was observed in kitchen ME during the winter period, the median concentration being 28.4 μg m(-3). Indoor NO2 levels in homes with gas stoves were higher than outdoor levels during all seasons. The concentration of NO2 was by 2.5 times higher in kitchen MEs with gas stoves than with electric stoves. This study showed that the concentration of NO2 in indoor MEs mainly depended on the stove type used in the kitchen. Homes with gas stoves had significantly higher levels of NO2 in all indoor MEs compared with homes where electric stoves were used.

  10. Curved centerline air intake for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Ruehr, W. C.; Younghans, J. L.; Smith, E. B. (Inventor)

    1980-01-01

    An inlet for a gas turbine engine was disposed about a curved centerline for the purpose of accepting intake air that is flowing at an angle to engine centerline and progressively turning that intake airflow along a curved path into alignment with the engine. This curved inlet is intended for use in under the wing locations and similar regions where airflow direction is altered by aerodynamic characteristics of the airplane. By curving the inlet, aerodynamic loss and acoustic generation and emission are decreased.

  11. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  12. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  13. [Working ability between air and trimix breathing gas under 8 ATA air condition].

    PubMed

    Shibayama, M; Kosugi, S; Mohri, M; Yamamura, I; Oda, S; Kimura, A; Takeuchi, J; Mano, Y

    1990-04-01

    Pneumatic caisson work in Japan has come into operation since 1924. Afterward, this technique of compressed air work has been widely utilized in the construction of foundation basements, shafts of the bottom tunnel shields for subway and so forth. While using this technique of compressed air work means that workers have to be exposed to hyperbaric environment, this technique has risks of not only decompression sickness (DCS) but also toxicity of poisonous gas and/or oxygen deficiency. However, this technique is independent of city construction work and the operation of compressed air work higher than 5ATA (4.0 kg/cm2G) is actually been planning recently. Accordingly unmanned caisson work is considered as a better technique for such higher pressurized work, even though workers must enter into hyperbaric working fields for maintenance or repair of unmanned operated machinery and materials. This research is to establish the safe work under hyperbaric air environment at 8ATA. PMID:2400467

  14. Observational Studies of Parameters Influencing Air-sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.

    A physically-based modeling of the air-sea gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange process at the air/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the air/sea interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.

  15. Calculation of CO concentration for liquid fueled gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Patil, P. B.; Sichel, M.; Nicholls, J. A.

    1978-01-01

    The extensive computation time required for the numerical integration of the differential equations obtained in studies of the concentrations of pollutants emitted by gas turbine combustors, can be reduced significantly by assuming the heat releasing hydrocarbon reactions to be in local equilibrium. In determining the CO and NO concentrations produced in spray combustion, it is, therefore, tempting to use the same local equilibrium assumption in order to simplify the kinetic calculations. An investigation of the validity of the local equilibrium assumption is conducted by using a simple analytical model, and then by actually carrying out the kinetic and local equilibrium calculations for typical case.

  16. Inactivation of Airborne Bacteria and Viruses Using Extremely Low Concentrations of Chlorine Dioxide Gas.

    PubMed

    Ogata, Norio; Sakasegawa, Miyusse; Miura, Takanori; Shibata, Takashi; Takigawa, Yasuhiro; Taura, Kouichi; Taguchi, Kazuhiko; Matsubara, Kazuki; Nakahara, Kouichi; Kato, Daisuke; Sogawa, Koushirou; Oka, Hiroshi

    2016-01-01

    Infectious airborne microbes, including many pathological microbes that cause respiratory infections, are commonly found in medical facilities and constitute a serious threat to human health. Thus, an effective method for reducing the number of microbes floating in the air will aid in the minimization of the incidence of respiratory infectious diseases. Here, we demonstrate that chlorine dioxide (ClO2) gas at extremely low concentrations, which has no detrimental effects on human health, elicits a strong effect to inactivate bacteria and viruses and significantly reduces the number of viable airborne microbes in a hospital operating room. In one set of experiments, a suspension of Staphylococcus aureus, bacteriophage MS2, and bacteriophage ΦX174 were released into an exposure chamber. When ClO2 gas at 0.01 or 0.02 parts per million (ppm, volume/volume) was present in the chamber, the numbers of surviving microbes in the air were markedly reduced after 120 min. The reductions were markedly greater than the natural reductions of the microbes in the chamber. In another experiment, the numbers of viable airborne bacteria in the operating room of a hospital collected over a 24-hour period in the presence or absence of 0.03 ppm ClO2 gas were found to be 10.9 ± 6.7 and 66.8 ± 31.2 colony-forming units/m3 (n = 9, p < 0.001), respectively. Taken together, we conclude that ClO2 gas at extremely low concentrations (≤0.03 ppm) can reduce the number of viable microbes floating in the air in a room. These results strongly support the potential use of ClO2 gas at a non-toxic level to reduce infections caused by the inhalation of pathogenic microbes in nursing homes and medical facilities. PMID:26926704

  17. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  18. Atmospheric light air ion concentrations and related meteorologic factors in Rezekne city, Latvia.

    PubMed

    Skromulis, Andris; Noviks, Gotfrids

    2012-04-01

    The well-minded impact of light negative air ions on human organism is still under discussion. The measurements of air ions are not widespread in Latvia yet. The paper presents new results of air pollution evaluation in Rezekne city. Measurements of positive and negative air ion concentrations in Rezekne city were taken during the spring, summer and autumn 2009 and during the winter 2010. Measurements were taken by portative air ions counter "Sapfir-3M" in eight different points of Rezekne city thrice a day. The concentrations of positive and negative air ions with mobility factor k > or = 0.4 cm2 V(-1) s(-1) were measured. Temperature, relative humidity, wind velocity, direction, etc., were also taken into account. The approximate interconnection between ionization and chemical and mechanical air pollution in relation with meteorological conditions was analyzed. The highest level of air ion concentration was observed in mornings, whereas in afternoons this concentration level decreased due to the growth of anthropogenic air pollution in the city, as light air ions, because of their charge, promoted the coagulation and the settlement of pollution particles. This regularity is typical for summer, whereas in spring, autumn and winter it is not characteristic. The unipolarity factor was usually less than 1 in mornings, but usually larger than 1 in afternoons especially in the most polluted city areas where minor concentration of air ions was detected. The ionization level is an original indicator of energetic saturation and aerosol pollution of atmospheric air.

  19. Effects of air current speed, light intensity and co2 concentration on photosynthesis and transpiration of plant leaves

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Tsuruyama, J.; Shibuya, T.; Kiyota, M.

    To obtain basic data for adequate air circulation to promote gas exchange and growth of plants in closed plant culture modules in bioregenerative life support systems in space, the effects of air current speeds less than 0.8 m s-1 on transpiration (Tr) and net photosynthetic rates (Pn) of sweetpotato and barley leaves were determined using a leaf chamber method under different photosynthetic photon flux densities (PPFDs) and CO_2 concentrations. The air current speed inside the leaf chamber was controlled by controlling the input voltages for an air circulation fan. The leaf surface boundary layer resistance was determined by the evaporation rate of wet paper and the water vapor pressure difference between the paper and surrounding air in the leaf chamber. The Tr and Pn of leaves rapidly increased as the air current speed increased from 0.01 to 0.1 m s-1 and gradually increased from 0.1 to 0.8 m s-1. These changes are correspondent to the change of the leaf surface boundary layer resistance. The depression of Tr by low air current speeds was greater than that of Pn. Tr and Pn decreased by 0.5 and 0.7 times, respectively, as the air current speed decreased from 0.8 to 0.01 m s-1. The depressions of Tr and Pn by low air current speeds were most notable at PPFDs of 500 and 250 μmol m-2 s-1, respectively. The air current speeds affected Tr and Pn at a CO_2 concentration of 700 μmol mol-1 as well as at 400 μmol mol-1. The results confirmed the importance of controlling air movement for enhancing Tr and Pn under the relatively high PPFD and elevated CO_2 levels likely in plant culture systems in space.

  20. Electron beam treatment of exhaust gas with high NOx concentration

    NASA Astrophysics Data System (ADS)

    Licki, Janusz; Chmielewski, Andrzej G.; Pawelec, Andrzej; Zimek, Zbigniew; Witman, Sylwia

    2014-05-01

    Simulated exhaust gases with a high NOx concentration, ranging from 200 to 1700 ppmv, were irradiated by an electron beam from an accelerator. In the first part of this study, only exhaust gases were treated. Low NOx removal efficiencies were obtained for high NOx concentrations, even with high irradiation doses applied. In the second part of study, gaseous ammonia or/and vapor ethanol were added to the exhaust gas before its inlet to the plasma reactor. These additions significantly enhanced the NOx removal efficiency. The synergistic effect of high SO2 concentration on NOx removal was observed. The combination of electron beam treatment with the introduction of the above additions and with the performance of irradiation under optimal parameters ensured high NOx removal efficiency without the application of a solid-state catalyst.

  1. Conversion of air mixture with ethanol and water vapors in nonequilibrium gas-discharge plasma

    NASA Astrophysics Data System (ADS)

    Shchedrin, A. I.; Levko, D. S.; Chernyak, V. Ya.; Yukhimenko, V. V.; Naumov, V. V.

    2009-05-01

    In search for an alternative fuel for internal combustion engines, we have studied the possibility of obtaining molecular hydrogen via the conversion of air mixture with ethanol and water vapors in a new plasma reactor. It is shown that, in agreement with experimental data, the H2 concentration is a linear function of the discharge current and decreases with increasing gas flow rate in the interelectrode gap. It is established that the proposed approach provides higher molecular hydrogen concentrations as compared to those achieved with other methods.

  2. Gas bubbles in fossil amber as possible indicators of the major gas composition of ancient air

    USGS Publications Warehouse

    Berner, R.A.; Landis, G.P.

    1988-01-01

    Gases trapped in Miocene to Upper Cretaceous amber were released by gently crushing the amber under vacuum and were analyzed by quadrupole mass spectrometry. After discounting the possibility that the major gases N2, O2, and CO2 underwent appreciable diffusion and diagenetic exchange with their surroundings or reaction with the amber, it has been concluded that in primary bubbles (gas released during initial breakage) these gases represent mainly original ancient air modified by the aerobic respiration of microorganisms. Values of N2/(CO2+O2) for each time period give consistent results despite varying O2/CO2 ratios that presumably were due to varying degrees of respiration. This allows calculation of original oxygen concentrations, which, on the basis of these preliminary results, appear to have changed from greater than 30 percent O2 during one part ofthe Late Cretaceous (between 75 and 95 million years ago) to 21 percent during the Eocene-Oligocene and for present-day samples, with possibly lower values during the Oligocene-Early Miocene. Variable O2 levels over time in general confirm theoretical isotope-mass balance calculations and suggest that the atmosphere has evolved over Phanerozoic time.

  3. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  4. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  5. Global Ammonia Concentrations Seen by the 13-years AIRS Measurements

    NASA Astrophysics Data System (ADS)

    Warner, Juying; Wei, Zigang; Larrabee Strow, L.; Dickerson, Russell; Nowak, John; Wang, Yuxuan

    2016-04-01

    Ammonia is an integral part of the nitrogen cycle and is projected to be the largest single contributor to each of acidification, eutrophication and secondary particulate matter in Europe by 2020 (Sutton et al., 2008). The impacts of NH3 also include: aerosol production affecting global radiative forcing, increases in emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4), and modification of the transport and deposition patterns of SO2 and NOx. Therefore, monitoring NH3 global distribution of sources is vitally important to human health with respect to both air and water quality and climate change. We have developed new daily and global ammonia (NH3) products from AIRS hyperspectral measurements. These products add value to AIRS's existing products that have made significant contributions to weather forecasts, climate studies, and air quality monitoring. With longer than 13 years of data records, these measurements have been used not only for daily monitoring purposes but also for inter-annual variability and short-term trend studies. We will discuss the global NH3 emission sources from biogenic and anthropogenic activities over many emission regions captured by AIRS. We will focus their variability in the last 13 years.

  6. LARGE-SCALE PREDICTIONS OF MOBILE SOURCE CONTRIBUTIONS TO CONCENTRATIONS OF TOXIC AIR POLLUTANTS

    EPA Science Inventory

    This presentation shows concentrations and deposition of toxic air pollutants predicted by a 3-D air quality model, the Community Multi Scale Air Quality (CMAQ) modeling system. Contributions from both on-road and non-road mobile sources are analyzed.

  7. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  8. Confirmation of the sterilization effect using a high concentration of ozone gas for the bio-clean room.

    PubMed

    Iwamura, Takuji; Nagano, Katsunori; Nogami, Toshihiro; Matsuki, Noritomo; Kosaka, Noriyoshi; Shintani, Hideharu; Katoh, Miyoshi

    2013-01-01

    A high-level aseptic environment must be maintained in bio-cleanrooms used for the manufacture of sterile products. In the past, formaldehyde gas was most commonly used to sterilize bio-cleanrooms, but due to strict residual limitations there has been a need to develop a less toxic alternative choice. The authors have developed a revolutionary new sterilization system using a high concentration of ozone gas and used this system to sterilize an actual bio-cleanroom. This system integrates the ozone gas generator with the air conditioning system by proper control. The design specifications for the system included an ozone gas concentration of 200 ppm or more, relative humidity of 80% or more, and a sterilizing time of 120 min. Blow vents and suction ports were placed to ensure a uniform airflow which would extend through the entire room during ozone gas sterilization. Tests regarding long-term material exposure to ozone gas were conducted when the system was introduced to distinguish usable and unusable materials. In an actually constructed cleanroom, simulations were used to predict the evenness of the diffusion of ozone gas concentration and relative humidity during ozone gas sterilization, and measurements of the actual indoor ozone gas concentration, temperature and relative humidity during sterilization revealed that the ozone concentration and relative humidity needed for sterilization had been achieved generally throughout the entire environment. In addition, the CT value (mg/m(3) (=ppm) × min) , derived by multiplying the ozone gas concentration during ozone gas sterilization by the sterilization time, was equal to or greater than the target value of 24 × 10(3) (ppm·min) . When the results of sterilization in a cleanroom were confirmed using a biological indicator (BI) , negative results were obtained at all measurement points, demonstrating that sterilization was being performed effectively in the actual factory at which the ozone gas sterilization system

  9. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, Sebnem; Baltensperger, Urs; Prévôt, André S. H.

    2016-02-01

    Emissions from the marine transport sector are one of the least-regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx (Comprehensive Air Quality Model with Extensions) with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5, and the dry and wet deposition of nitrogen and sulfur compounds in Europe. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), the English Channel and the North Sea (30-35 %), while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %), where there were high NH3 land-based emissions. Our model results showed that not only are the atmospheric concentrations of pollutants affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships, especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas phase to the particle phase which then contributes to an increase in the wet deposition at coastal areas with higher precipitation. In the western Mediterranean region, on the other hand, model results show an increase in the deposition of oxidized nitrogen (mostly HNO3) due to the ship traffic. Dry deposition of SO2 seems to be significant along

  10. Reduction of CO 2 concentration in a zinc/air battery by absorption in a rotating packed bed

    NASA Astrophysics Data System (ADS)

    Cheng, Hsu-Hsiang; Tan, Chung-Sung

    The reduction of CO 2 concentration in a gas stream containing 500 ppm of CO 2 by a technique combining chemical absorption with Higee (high gravity) was investigated in this study. Using a 2.0 L aqueous amine-based solution to treat the feed gas with a flow rate which varied from 12.9 to 20.6 L min -1, piperazine (PZ) was found to be more effective than 2-(2-aminoethylamino) ethanol (AEEA) and monoethanolamine (MEA) for reducing the CO 2 concentration to a level below 20 ppm. The effects of temperature, rotating speed, amine solution flow rate, and gas flow rate on the removal efficiency of CO 2 were systematically examined. The results indicated that the proposed compact device could effectively reduce CO 2 to a level below 20 ppm, as required by a zinc/air battery, for a long period of time using PZ and its mixture with AEEA and MEA as the absorbents.

  11. Chemical kinetics with electrical and gas dynamics modelization for NOx removal in an air corona discharge

    NASA Astrophysics Data System (ADS)

    Eichwald, O.; Guntoro, N. A.; Yousfi, M.; Benhenni, M.

    2002-03-01

    A non-stationary reactive gas dynamics model in a mono-dimensional geometry, including radial mass diffusion, gas temperature variation and chemical kinetics, is developed in this paper. The aim is to analyse the spatio-temporal evolution of the main neutral species involved in a corona discharge used for NO pollution control in polluted air at atmospheric pressure and ambient temperature. The present reactive gas dynamics model takes into account 16 neutral chemical species (including certain metastable species) reacting following 110 selected chemical reactions. The initial concentration of each neutral species is obtained from a 1.5D electrical discharge model. The gas temperature variations are due to direct Joule heating during the discharge phase, and also result from the delayed heating due to the relaxation of the vibrational energy into a random thermal energy during the post-discharge phase. The simulation conditions are those of an existing experimental setup (anode voltage of 10 kV in the case of a point to plane geometry with an interelectrode distance of 10 mm). The obtained results show that the diffusion phenomena and the gas temperature rise affect quite well the gas reactivity and the neutral species evolution. This allows us to better understand the different reaction processes and transport phenomena affecting the NO concentration magnitude inside the discharge channel.

  12. Dissolved gas concentrations of the geothermal fluids in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  13. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Qi, Nan; LeVan, M. Douglas; Finn, Cory K.; Finn, John E.; Luna, Bernadette (Technical Monitor)

    2000-01-01

    A regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an. adsorbent column into a closed oxidation loop is under development through cooperative R&D between Vanderbilt University and NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. Recent work has focused on fabrication and operation of a RAPS breadboard at NASA Ames, and on measurement of adsorption isotherm data for several important organic compounds at Vanderbilt. These activities support the use and validation of RAPS modeling software also under development at Vanderbilt, which will in turn be used to construct a prototype system later in the project.

  14. Evaluation of background soil and air polychlorinated biphenyl (PCB) concentrations on a hill at the outskirts of a metropolitan city.

    PubMed

    Kuzu, S Levent; Saral, Arslan; Güneş, Gülten; Karadeniz, Aykut

    2016-07-01

    Air and soil sampling was conducted inside a forested area for 22 months. The sampling location is situated to the north of a metropolitan city. Average atmospheric gas and particle concentrations were found to be 180 and 28 pg m(-3) respectively, while that of soil phase was detected to be 3.2 ng g(-1) on dry matter, The congener pairs of PCB#4-10 had the highest contribution to each medium. TEQ concentration was 0.10 pg m(-3), 0.07 pg m(-3), 21.92 pg g(-1), for gas, particle and soil phases, respectively. PCB#126 and PCB#169 contributed to over 99% of the entire TEQ concentrations for each medium. Local sources were investigated by conditional probability function (CPF) and soil/air fugacity. Landfilling area and medical waste incinerator, located to the 8 km northeast, contributed to ambient concentrations, especially in terms of dioxin-like congeners. The industrial settlement (called Dilovasi being to the east southeast of 60 km distant) contributed from southeast direction. Further sources were identified by potential source contribution function (PSCF). Sources at close proximity had high contribution. Air mass transportation from Aliaga industrial region (being to the southwest of 300 km distant) moderately contributed to ambient concentrations. Low molecular weight congeners were released from soil body. 5-CBs and 6-CBs were close to equilibrium state between soil/air interfaces. PCB#171 was close to equilibrium and PCB#180 was likely to evaporate from soil, which constitute 7-CBs. PCB#199, representing 8-CBs deposited to soil. 9-CB (PCB#207) was in equilibrium between soil and air phases. PMID:27038903

  15. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    PubMed

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-01

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  16. Effect of an ozone-generating air-purifying device on reducing concentrations of formaldehyde in air

    SciTech Connect

    Esswein, E.J.; Boeniger, M.F.

    1994-02-01

    Formaldehyde, an air contaminant found in many indoor air investigations, poses distinct occupational exposure hazards in certain job categories (e.g., mortuary science) but is also of concern when found or suspected in office buildings and homes. A variety of air-purifying devices (APDs) are currently available or marketed for application to reduce or remove concentrations of a variety of indoor air pollutants through the use of ozone as a chemical oxidant. An investigation was conducted to determine if concentrations of formaldehyde similar to those found in industrial hygiene evaluations of funeral homes could be reduced with the use of an ozone-generating APD. An ozone-generating APD was placed in an exposure chamber and formaldehyde-containing embalming solution was allowed to evaporate naturally, creating peak and mean chamber concentrations of 2.5 and 1.3 ppm, respectively. Continuous-reading instruments were used to sample for formaldehyde and ozone. Active sampling methods were also used to sample simultaneously for formaldehyde and a possible reactant product, formic acid. Triplicate measurements were made in each of three evaluations: formaldehyde alone, ozone alone, and formaldehyde and ozone combined. Concentrations of formaldehyde were virtually identical with and without 0.5 ppm ozone. No reduction in formaldehyde concentration was found during a 90-minute evaluation using ozone at this concentration with peak and average concentrations of approximately 2.5 and 1.3 ppm formaldehyde, respectively. The results of this investigation suggest that the use of ozone is ineffective in reducing concentrations of formaldehyde. Because ozone has demonstrated health hazards, and is a regulated air contaminant in both the occupational and ambient environment, the use of ozone as an air purification agent in indoor air does not seem warranted. 25 refs., 5 figs., 4 tabs.

  17. Quantifying the impact of nitric oxide calibration gas mixture oxidation on reported nitrogen dioxide concentrations

    NASA Astrophysics Data System (ADS)

    Sweeney, Bryan P.; Quincey, Paul G.; Green, David; Fuller, Gary W.

    2015-03-01

    Chemiluminescent analysers for measuring nitric oxide (NO) and nitrogen dioxide (NO2) in ambient air are generally calibrated with certified gas standard cylinders of NO in nitrogen. Verification of the NOx and NO amount fractions has been carried out on many such 'on-site' calibration cylinders at air quality monitoring stations. These measurements indicate that significant numbers of these gas mixtures have become somewhat degraded, with several percent of the NO oxidised to NO2. The effect of not compensating for this degradation on reported concentrations is discussed. If such degradation is not quantified and corrected for, there will be a systematic under-reporting of NO2 concentrations, which, due to the non-linearity of the effect, could reduce high reported NO2 concentrations at kerbside sites by around 20%. This could significantly reduce the number of reported exceedances of the NO2 limit value at such sites, compared to results obtained where there is no degradation of the NO cylinder.

  18. Time variations of 222Rn concentration and air exchange rates in a Hungarian cave.

    PubMed

    Nagy, Hedvig Éva; Szabó, Zsuzsanna; Jordán, Gyozo; Szabó, Csaba; Horváth, Akos; Kiss, Attila

    2012-09-01

    A long-term radon concentration monitoring was carried out in the Pál-völgy cave, Budapest, Hungary, for 1.5 years. Our major goal was to determine the time dependence of the radon concentration in the cave to characterise the air exchange and define the most important environmental parameters that influence the radon concentration inside the cave. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were collected simultaneously. The air's radon concentration in the cave varied between 104 and 7776 Bq m(-3), the annual average value was 1884±85 Bq m(-3). The summer to winter radon concentration ratio was as high as 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, the correlation coefficient (R) was 0.76. PMID:22462600

  19. ASGAMAGE, the Air-Sea Gas Exchange/MAGE experiment

    NASA Astrophysics Data System (ADS)

    Oost, Wiebe; Jacobs, Cor; Kohsiek, Wim; Goossens, Guus; van der Horn, Jaap; Sprung, Detlev; Rapsomanikis, Spyros; Kenntner, Thomas; Reiner, Thomas; Bowyer, Peter; Larsen, Søren; de Leeuw, Gerrit; Kunz, Gerard; Hall, Alan; Liss, Peter; Malin, Gill; Upstill-Goddard, Rob; Woolf, David; Graham, Angus; Nightingale, Phil; Fairall, Chris; Hare, Jeff; Dissly, Richard; Tans, Pieter; Anderson, Bob; Smith, Stu

    The ASGAMAGE project addressed the problem of the large discrepancy between the chemistry based and micrometeorological methods and aimed to determine any geophysical parameters apart from the wind speed that affect air-sea gas exchange in an effort to reduce the uncertainty in the global carbon balance. Experiments were performed in the spring and fall of 1996 at and near a research platform off the Dutch coast and two surface layer models were developed for the gas exchange process. The results gave a reduction of the difference between the two types of methods from an order of magnitude to a factor of two as well as indications for the causes of the remaining difference.

  20. Air toxics emissions from gas-fired engines

    SciTech Connect

    Meeks, H.N. Jr. )

    1992-07-01

    In 1190, 14 natural-gas-fired internal combustion engines (ICE's) in oilfield service were tested in Santa Barbara County, CA, to satisfy California air toxics legislation. The combustion exhaust was tested for formaldehyde, acetaldehyde, acrolein, benzene, toluene, xylences, naphthalene, and polycyclic aromatic hydrocarbons. The fuel was tested for aromatics to enable calculation of destruction efficiencies. Two-stroke and four-stroke engines were tested. Four-stroke engines ranging from 39 to 208 hp were used in pumping unit and constant load service. Emissions from four-stroke engines were unrelated to size and service. The two-stroke engines produced considerably higher emissions than the four-stroke engines. This paper reports that test results indicate natural-gas-fired ICE's produce toxic substances in small amounts. Formaldehyde and benzene dominated the toxic emission profile.

  1. Soil air CO2 concentration as an integrative parameter of soil structure

    NASA Astrophysics Data System (ADS)

    Ebeling, Corinna; Gaertig, Thorsten; Fründ, Heinz-Christian

    2015-04-01

    The assessment of soil structure is an important but difficult issue and normally takes place in the laboratory. Typical parameters are soil bulk density, porosity, water or air conductivity or gas diffusivity. All methods are time-consuming. The integrative parameter soil air CO2 concentration ([CO2]) can be used to assess soil structure in situ and in a short time. Several studies highlighted that independent of soil respiration, [CO2] in the soil air increases with decreasing soil aeration. Therefore, [CO2] is a useful indicator of soil aeration. Embedded in the German research project RÜWOLA, which focus on soil protection at forest sites, we investigated soil compaction and recovery of soil structure after harvesting. Therefore, we measured soil air CO2 concentrations continuously and in single measurements and compared the results with the measurements of bulk density, porosity and gas diffusivity. Two test areas were investigated: At test area 1 with high natural regeneration potential (clay content approx. 25 % and soil-pH between 5 and 7), solid-state CO2-sensors using NDIR technology were installed in the wheel track of different aged skidding tracks in 5 and 10 cm soil depths. At area 2 (acidic silty loam, soil-pH between 3.5 and 4), CO2-sensors and water-tension sensors (WatermarkR) were installed in 6 cm soil depth. The results show a low variance of [CO2] in the undisturbed soil with a long term mean from May to June 2014 between 0.2 and 0.5 % [CO2] in both areas. In the wheel tracks [CO2] was consistently higher. The long term mean [CO2] in the 8-year-old-wheel track in test area 1 is 5 times higher than in the reference soil and shows a high variation (mean=2.0 %). The 18-year-old wheel track shows a long-term mean of 1.2 % [CO2]. Furthermore, there were strong fluctuations of [CO2] in the wheel tracks corresponding to precipitation and humidity. Similar results were yielded with single measurements during the vegetation period using a portable

  2. Future atmospheric methane concentrations in the context of the stabilization of greenhouse gas concentrations

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.; Jain, Atul K.; Kotamarthi, V. R.; Wuebbles, Donald J.

    1999-08-01

    Tropospheric CH4 concentration depends, according to modeled tropospheric processes, on many factors, including emissions of CH4 as well as NOx and CO. Illustrative analyses of the relation between emissions and CH4 concentration give some guidance on the role of CH4 in the stabilization of greenhouse gas concentrations. The contribution of CH4 to radiative forcing at the time of stabilization is expected to be modest, provided CH4 and CO emissions do not go far beyond current rates. However, in cases leading to stabilization the potential mitigation of increases in radiative forcing by methane control could be comparable to that of CO2 control over the next century. Whether or not this potential is realized will depend partially on the cost of deep reductions of CH4, NOx, CO, or CO2 emissions over the next century, which is not known.

  3. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  4. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1995-08-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  5. The concentrations of culturable microorganisms in relation to particulate matter in urban air

    NASA Astrophysics Data System (ADS)

    Haas, D.; Galler, H.; Luxner, J.; Zarfel, G.; Buzina, W.; Friedl, H.; Marth, E.; Habib, J.; Reinthaler, F. F.

    2013-02-01

    The ambient air consists not only of gases but also of bioaerosols and particulate matter. The concentrations of particulate matter in relation to the culturable microorganisms in the urban ambient air and their dependence on air temperature and relative humidity were investigated. The seasonal distribution of particles sizes, the concentrations of aerobic mesophilic bacteria and xerophilic fungi in the air were evaluated. Moreover, the identification of the fungal genera Cladosporium, Aspergillus and Penicillium were conducted. Within one year at 177 days particle and microorganism concentrations in the ambient air were recorded in the city centre of Graz/Austria. The results show that the concentrations of fine particles and coarse particles were the highest in winter and decreased continuously to a minimum in the summer months depending on temperature and air humidity. The concentrations of xerophilic fungi showed no correlation to the different particle concentrations. The spore concentrations of Cladosporium spp. showed the same results of xerophilic fungi whereas the genera Penicillium and Aspergillus increased with the increase of fine particles. The concentrations of mesophilic bacteria were positively correlated with all particle counts. The maximum mesophilic bacteria concentrations were found in the winter months. Further studies are required to evaluate the concentrations of specific microorganisms in the natural environment in relation to the particulate matter.

  6. AN INDOOR PESTICIDE AIR AND SURFACE CONCENTRATION MODEL

    EPA Science Inventory

    A thorough assessment of human exposure to environmental chemicals requires consideration of all processes in the sequence from source to dose. For assessment of exposure to pesticides following their use indoors, data and models are needed to estimate pesticide concentrations...

  7. Determination of the concentration of SF 6 in an accelerator gas mixture by measuring the velocity of sound

    NASA Astrophysics Data System (ADS)

    Wilburn, W. S.; Gould, C. R.; Haase, D. G.; Hoffenberg, R. S.; Mioduszewski, S.; Roberson, N. R.

    1995-02-01

    A simple and reliable method for determining the concentration of SF 6 in an accelerator gas mixture with N 2 and CO 2 is described. The technique makes use of the low velocity of sound in SF 6 (approximately {1}/{3} that of air). The sound velocity of the mixture is determined by measuring the spacing of acoustic resonances in a tube filled with the gas. Data from standard gas mixtures containing 0-10% SF 6 are presented, showing that the technique is accurate to approximately 0.5% absolute.

  8. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    PubMed

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (< C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near

  9. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  10. Background concentrations of individual and total volatile organic compounds in residential indoor air of Schleswig-Holstein, Germany.

    PubMed

    Hippelein, Martin

    2004-09-01

    During a monitoring campaign concentrations of volatile organic compounds (VOCs) were measured in indoor air of 79 dwellings where occupants had not complained about health problems or unpleasant odour. Parameters monitored were the individual concentration of 68 VOCs and the total concentration of all VOCs inside the room. VOCs adsorbed by Tenax TA were then analysed by means of thermal desorption, gas chromatography and mass spectrometry. The analytical procedure and quantification was done according to the recommendation of the ECA-IAQ Working Group 13 which gave a definition of the total volatile organic compound (TVOC) concentration. Using this recommendation TVOC-concentrations ranged between 33 and 1600 microg m(-3) with a median of 289 microg m(-3). Compounds found in every sample and with the highest concentrations were 2-propanol, alpha-pinene and toluene. Save for a few samples, all concentrations measured have been a factor 2 to 10 lower, compared to data from similar studies. Only a few terpenes and aldehydes were found exceeding published reference data or odour threshold concentrations. However, it has been found that sampling and analysing methods do have a considerable impact on the results, making direct comparisons of studies somewhat questionable. 47% of all samples revealed concentrations exceeding the threshold value of 300 microg TVOC m(-3) set by the German Federal Environmental Agency as a target for indoor air quality. Using the TVOC concentration as defined in the ECA-IAQ methodology is instrumental in assessing exposure to VOCs and identifying sources of VOCs. The background concentrations determined in this study can be used to discuss and interpret target values for individual and total volatile organic compounds in indoor air.

  11. Experimental Study on In-situ Concentration Monitoring of Flue Gas from the Fixed Pollution Source Based on DOAS

    NASA Astrophysics Data System (ADS)

    Tang, Guanghua; Xu, Chuanlong; Wang, Shimin

    2007-06-01

    The air pollution is mainly derived from the flue gas from fixed pollution source and there has been no appropriate method to measure the concentration of flue gas in bad conditions for a long time. Based on the differential optical absorption spectroscopy (DAOS), an improved inversion algorithm, which is applied to the measurement of flue gas concentration at normal temperature and pressure, is put forward according to the characteristics of the flue gas from fixed pollution source and the experimental study of gas concentration measurement is performed combining the continuous transmittance spectrum from ultraviolet to visible region presented by avantes-2048 spectrometer with the absorption cross sections of sulfur dioxide and nitrogen dioxide derived form the experiment. Research results are shown the algorithm can not only be utilized to measure the concentration of sulfur dioxide with the interference of nitrogen dioxide but also be applied to simultaneously measure the concentration of sulfur dioxide and nitrogen dioxide in flue gas containing dust particles of high concentration.

  12. Regional Air Quality Impacts of Hydraulic Fracturing and Natural Gas Activity: Evidence from Ambient VOC Observations

    NASA Astrophysics Data System (ADS)

    Vinciguerra, T.; Ehrman, S.; Yao, S.; Dadzie, J.; Chittams, A.; Dickerson, R. R.

    2014-12-01

    Over the past decade, many anthropogenic pollutants have been successfully reduced, providing improved air quality. However, a new influx of emissions associated with hydraulic fracturing and natural gas operations could be counteracting some of these benefits. Using hourly measurements from Photochemical Assessment Monitoring Stations (PAMS) in the Baltimore, MD and Washington, D.C. areas, we observed that following a period of decline, daytime ethane concentrations have increased significantly since 2010. This trend appears to be linked with the rapid natural gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Furthermore, ethane concentrations failed to display this trend at a PAMS site outside of Atlanta, GA, a region without widespread natural gas operations. Year-to-year changes in VOCs were further evaluated by using Positive Matrix Factorization (PMF) to perform source apportionment on hourly observations in Essex, MD from 2005-2013. This process takes ambient measurements and attributes them to sources such as biogenic, natural gas, industrial, gasoline, and vehicle exhaust by using tracer species as identifiers. Preliminary PMF results also indicate an increasing influence of natural gas sources for this area.

  13. Ammonia concentration modeling based on retained gas sampler data

    SciTech Connect

    Terrones, G.; Palmer, B.J.; Cuta, J.M.

    1997-09-01

    The vertical ammonia concentration distributions determined by the retained gas sampler (RGS) apparatus were modeled for double-shell tanks (DSTs) AW-101, AN-103, AN-104, and AN-105 and single-shell tanks (SSTs) A-101, S-106, and U-103. One the vertical transport of ammonia in the tanks were used for the modeling. Transport in the non-convective settled solids and floating solids layers is assumed to occur primarily via some type of diffusion process, while transport in the convective liquid layers is incorporated into the model via mass transfer coefficients based on empirical correlations. Mass transfer between the top of the waste and the tank headspace and the effects of ventilation of the headspace are also included in the models. The resulting models contain a large number of parameters, but many of them can be determined from known properties of the waste configuration or can be estimated within reasonable bounds from data on the waste samples themselves. The models are used to extract effective diffusion coefficients for transport in the nonconvective layers based on the measured values of ammonia from the RGS apparatus. The modeling indicates that the higher concentrations of ammonia seen in bubbles trapped inside the waste relative to the ammonia concentrations in the tank headspace can be explained by a combination of slow transport of ammonia via diffusion in the nonconvective layers and ventilation of the tank headspace by either passive or active means. Slow transport by diffusion causes a higher concentration of ammonia to build up deep within the waste until the concentration gradients between the interior and top of the waste are sufficient to allow ammonia to escape at the same rate at which it is being generated in the waste.

  14. Effect of air pollution and environmental tobacco smoke on serum hyaluronate concentrations in school children

    PubMed Central

    Fuji, Y; Shima, M; Ando, M; Adachi, M; Tsunetoshi, Y

    2002-01-01

    Objectives: To evaluate serum hyaluronate concentrations relative to air pollution, environmental tobacco smoke (ETS), and respiratory health in Japanese school children. Methods: Respiratory symptoms and serum IgE concentrations were examined in 1037 school children living in four communities in Japan with differing levels of air pollution. Serum hyaluronate concentrations were assayed in 230 children, consisting of all the children who had symptoms of either asthma or wheeze (65 and 50 subjects, respectively) and normal controls adjusted for sex, school grade, and school without these symptoms (115 subjects). Results: Although serum hyaluronate concentrations did not differ for either asthma or wheeze, the concentrations were significantly higher in children living in communities with higher levels of air pollution. Children with asthma or wheeze and those with serum IgE concentrations of 250 IU/ml or above showed differences in hyaluronate concentrations that related to the degree of air pollution in the communities. In children with higher serum IgE concentrations, the hyaluronate concentrations among subjects exposed to ETS were significantly higher than among those without exposure to ETS. Conclusions: The present results suggest that serum hyaluronate concentration is related to the degree of air pollution and exposure to ETS. Children with asthma or wheeze and children with higher IgE concentrations are considered to be more susceptible to environmental factors. PMID:11850556

  15. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.

    PubMed

    Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen

    2008-12-01

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.

  16. Concentration, temperature, and density in a hydrogen-air flame by excimer-induced Raman scattering

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Bowling, John M.; Pitz, Robert W.

    1988-01-01

    Single-pulse, vibrational Raman scattering (VRS) is an attractive laser diagnostic for the study of supersonic hydrogen-air combustion. The VRS technique gives a complete thermodynamic description of the gas mixture at a point in the reacting flow. Single-pulse, vibrational Raman scattering can simultaneously provide independent measurements of density, temperature, and concentration of each major species (H2, H2O, O2 and N2) in a hydrogen/air turbulent combustor. Also the pressure can be calculated using the ideal gas law. However, single-pulse VRS systems in current use for measurement of turbulent combustion have a number of shortcomings when applied to supersonic flows: (1) slow repetition rate (1 to 5 Hz), (2) poor spatial resolution (0.5x0.3x0.3 cu mm), and (3) marginal time resolution. Most of these shortcomings are due to the use of visible wavelength flash-lamp pumped dye lasers. The advent of UV excimer laser allows the possibility of dramatic improvements in the single-pulse, vibrational Raman scattering. The excimer based VRS probe will greatly improve repetition rate (100 to 500 Hz), spatial resolution (0.1x0.1x0.1 cu mm) and time resolution (30ns). These improvements result from the lower divergence of the UV excimer, higher repetition rate, and the increased Raman cross-sections (15 to 20 times higher) at ultra-violet (UV) wavelengths. With this increased capability, single-pulse vibrational Raman scattering promises to be an ideal non-intrusive probe for the study of hypersonic propulsion flows.

  17. Gas Concentration Mapping of Arenal Volcano Using AVEMS

    NASA Technical Reports Server (NTRS)

    Diaz, J. Andres; Arkin, C. Richard; Griffin, Timothy P.; Conejo, Elian; Heinrich, Kristel; Soto, Carlomagno

    2005-01-01

    The Airborne Volcanic Emissions Mass Spectrometer (AVEMS) System developed by NASA-Kennedy Space Center and deployed in collaboration with the National Center for Advanced Technology (CENAT) and the University of Costa Rica was used for mapping the volcanic plume of Arenal Volcano, the most active volcano in Costa Rica. The measurements were conducted as part of the second CARTA (Costa Rica Airborne Research and Technology Application) mission conducted in March 2005. The CARTA 2005 mission, involving multiple sensors and agencies, consisted of three different planes collecting data over all of Costa Rica. The WB-57F from NASA collected ground data with a digital camera, an analog photogrametric camera (RC-30), a multispectral scanner (MASTER) and a hyperspectral sensor (HYMAP). The second aircraft, a King Air 200 from DoE, mounted with a LIDAR based instrument, targeted topography mapping and forest density measurements. A smaller third aircraft, a Navajo from Costa Rica, integrated with the AVEMS instrument and designed for real-time measurements of air pollutants from both natural and anthropogenic sources, was flown over the volcanoes. The improved AVEMS system is designed for deployment via aircraft, car or hand-transport. The 85 pound system employs a 200 Da quadrupole mass analyzer, has a volume of 92,000 cubic cm, requires 350 W of power at steady state, can operate up to an altitude of 41,000 feet above sea level (-65 C; 50 torr). The system uses on-board gas bottles on-site calibration and is capable of monitoring and quantifying up to 16 gases simultaneously. The in-situ gas data in this work, consisting of helium, carbon dioxide, sulfur dioxide and acetone, was acquired in conjunction of GPS data which was plotted with the ground imagery, topography and remote sensing data collected by the other instruments, allowing the 3 dimensional visualization of the volcanic plume at Arenal Volcano. The modeling of possible scenarios of Arenal s activity and its

  18. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    PubMed

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

  19. The potential role of sea spray droplets in facilitating air-sea gas transfer

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  20. Daily and seasonal variations in radon activity concentration in the soil air.

    PubMed

    Műllerová, Monika; Holý, Karol; Bulko, Martin

    2014-07-01

    Radon activity concentration in the soil air in the area of Faculty of Mathematics, Physics and Informatics (FMPI) in Bratislava, Slovak Republic, has been continuously monitored since 1994. Long-term measurements at a depth of 0.8 m and short-term measurements at a depth of 0.4 m show a high variability in radon activity concentrations in the soil. The analysis of the data confirms that regular daily changes in radon activity concentration in the soil air depend on the daily changes in atmospheric pressure. It was also found that the typical annual courses of the radon activity concentration in the soil air (with summer minima and winter maxima) were disturbed by mild winter and heavy summer precipitation. Influence of precipitation on the increase in the radon activity concentration in the soil air was observed at a depth of 0.4 m and subsequently at a depth of 0.8 m.

  1. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    SciTech Connect

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu

    2009-07-15

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  2. MTBE concentrations in ambient air in the vicinity of service stations

    NASA Astrophysics Data System (ADS)

    Vainiotalo, Sinikka; Peltonen, Yrjö; Pfäffli, Pirkko

    Ambient air concentrations of methyl tertiary-butyl ether (MTBE) were monitored in the vicinity of two self-service stations in May-June and October, 1995. These stations (one urban and one roadside) were located in southwestern Finland and were equipped with "stage I" vapour recovery systems. All the gasoline blends dispensed during the study (95, 98 and 99 RON) contained 11% MTBE. The measurements were carried out 24 h day -1 at stationary sampling points located at the four main compass points on the service station perimeter (about 50 m from the centre of the forecourt). The air samples were collected in charcoal tubes and analysed in laboratory by gas chromatography using mass-selective detection. The concentrations in individual samples ranged from 0.5 to 121 μg m -3, and the highest daily concentrations were usually obtained at the downwind sampling points. The arithmetic mean concentrations for each of the four-day sampling periods were: 7.5 μg m -3 (station 1/May-June), 4.1 μg/m 3 (station 1/October), 12.4 μg m -3 (station 2/June) and 14.1 μg m -3 (station 2/October). The mean concentrations measured in the centre of the pump island (only daytime sampling) ranged from 247 to 1347 μg m -3. The levels of MTBE are station-specific and dependent on many factors, such as volumes of gasolines sold, wind speed, exhaust emissions from passing traffic, and deliveries of gasoline to the station. The mean wind speeds were between 0.7 and 1.5 m s -1, and the temperatures were above 22°C in summer and about 10°C in October. The volume of gasoline sold at the urban service station, station 2, was twice that at the roadside service station, station 1. There was one road with high traffic density adjacent to station 1 and two such roads at station 2. Gasoline was delivered twice to station 1 and 3 times to station 2 during the study.

  3. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China, 2001-2003

    NASA Astrophysics Data System (ADS)

    Aas, Wenche; Shao, Min; Jin, Lei; Larssen, Thorjørn; Zhao, Dawei; Xiang, Renjun; Zhang, Jinhong; Xiao, Jinsong; Duan, Lei

    Air and precipitation measurements at five sites were undertaken from 2001 to 2003 in four different provinces in China, as part of the acid rain monitoring program IMPACTS. The sites were located in Tie Shan Ping (TSP) in Chongqing, Cai Jia Tang (CJT) in Hunan, Lei Gong Shan (LGS) and Liu Chong Guan (LCG) in Guizhou and Li Xi He (LXH) in Guangdong. The site characteristics are quite varied with TSP and LCG located relatively near big cites while the three others are situated in more regionally representative areas. The distances to urban centres are reflected in the air pollution concentrations, with annual average concentrations of SO 2 ranging from 0.5 to above 40 μg S m -3. The main components in the airborne particles are (NH 4) 2SO 4 and CaSO 4. Reduced nitrogen has a considerably higher concentration level than oxidised nitrogen, reflecting the high ammonia emissions from agriculture. The gas/particle ratio for the nitrogen compounds is about 1:1 at all the three intensive measurement sites, while for sulphur it varies from 2.5 to 0.5 depending on the distance to the emission sources. As in air, the predominant ions in precipitation are sulphate, calcium and ammonium. The volume weighted annual concentration of sulphate ranges from about 70 μeq l -1 at the most rural site (LGS) to about 200 μeq l -1 at TSP and LCG. The calcium concentration ranges from 25 to 250 μeq l -1, while the total nitrogen concentration is between 30 and 150 μeq l -1; ammonium is generally twice as high as nitrate. China's acid rain research has traditionally been focused on urban sites, but these measurements show a significant influence of long range transported air pollutants to rural areas in China. The concentration levels are significantly higher than seen in most other parts of the world.

  4. Emission Measurements from Natural Gas Development and Regional Background Characterization of Ambient Air Quality in the Marcellus Shale Region

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Goetz, J.; Shaw, S. L.; Knipping, E. M.; Fortner, E.; Wormhoudt, J.; Massoli, P.; Floerchinger, C.; Brooks, B.; Herndon, S. C.; Kolb, C. E.; Knighton, W. B.

    2012-12-01

    Production of natural gas in the Marcellus shale formation is increasing rapidly due to the vast quantities of natural gas in the formation. Natural gas is liberated from the Marcellus Shale using horizontal drilling techniques, followed by hydraulic fracturing. Activities associated with preparation of a well pad, drilling of a well pad, fracturing of a well, and transport of materials (e.g. water, drilling equipment) to and from a well site, all have associated air emissions. Steady state gas production at well sites may also have additional contribution to air emissions of methane and NOx from gas transport infrastructure. A joint study with the Drexel University, Aerodyne Research and the Electric Power Research institute was conducted in the summer of 2012 to measure both the emissions from various stages of well development and to characterize current levels of air pollutants in the Marcellus Region. To achieve this, the Aerodyne mobile laboratory was deployed and measured in situ concentrations of a multitude of gas-phase and aerosol chemical components with state of the art instrumentation including quantum cascade laser systems, proton transfer mass spectrometry, tunable diode lasers and a soot particle aerosol mass spectrometer. Species quantified include CH4, C2H6, NO, NO2, CO, CO2, SO2, HONO, HOCO, HCOOH and many volatile organic compounds, and aerosol size and chemical composition. Real-time characterization of the air emissions from hydraulic fracturing and other shale gas operations allow for the estimation of emission factors that can be used in predictive air quality modeling for the region. Within the Marcellus Shale both areas of dry gas (>95% methane) and wet gas (contains higher levels of ethane and propane) are found. Measurements were conducted in two regions of Pennsylvania: the NE region that is predominantly dry gas, and the SW region where wet gas is found. A comparison of these two regions and associated impacts will be discussed

  5. Evaluation of alkali concentration in conditions relevant to oxygen/natural gas glass furnaces by laser-induced breakdown spectroscopy.

    SciTech Connect

    Walsh, Peter M.; Molina, Alejandro; Shaddix, Christopher R.; Blevins, Linda Gail; Sickafoose, Shane M.

    2005-01-01

    A number of industrial combustion systems are adopting oxygen-enhanced firing to improve heat transfer characteristics and reduce emissions. The exhaust gas from these systems is dominated by H2O and CO2 and therefore has substantially different gas properties from traditional combustion exhaust. In the past, laser-induced breakdown spectroscopy (LIBS) has been successfully used for the evaluation of alkali aerosol concentrations in air-based combustion systems. This paper presents results of LIBS measurements of alkali concentrations in a laboratory calibration setup and in an oxygen/natural gas container glass furnace. It shows how both gas conditions (composition and temperature) and the molecular form of the alkali species affect the LIBS signals. The paper proposes strategies for mitigating these effects in future applications of LIBS in oxygen-enhanced combustion systems.

  6. Application of gas chromatographic method in simultaneous measurements of helium, argon and neon concentration in groundwaters

    NASA Astrophysics Data System (ADS)

    Najman, J.; Bielewski, J.; Sliwka, I.

    2012-04-01

    Helium concentration in groundwater is a fine indicator in water dating in a range from a hundred to tens of thousands of years. Gas chromatography (GC) measurements of helium can be used as an alternative to mass spectrometry (MS) determinations of 4He for groundwater dating [1]. Argon and neon concentrations mainly serve for determining the temperature of recharge and the air excess which is needed to correct measured values of helium concentration [2] . A chromatographic measurement system of helium, argon and neon concentration in groundwater is presented [3]. Water samples are taken from groundwater with a precise procedure without contamination with air in a special stainless steel vessels of volume equal to 2900 cm3. Helium is extracted from water samples using the head-space method. After enrichment by cryotrap method helium is analyzed in the gas chromatograph equipped with the thermal conductivity detector (TCD) with detection limit of about 2.8 ng He. The helium limit of detection of presented method is 1,2·10-8 cm3STP/gH2O [4]. We are currently working on adapting the method of cryogenic enrichment of helium concentration for simultaneous measurements of the concentration of helium, argon and neon using single sample of groundwater. Neon will be measured with the thermal conductivity detector and capillary column filled with molecular sieve 5A. Argon will be analyzed also with the thermal conductivity detector and packed column filled with molecular sieve 5A. This work was supported by grant No. N N525 3488 38 from the polish National Science Centre. [1] A. Zuber, W. Ciężkowski, K. Różański (red.), Tracer methods in hydrogeological studies - a methodological guide. Wroclaw University of Technology Publishing House, Wroclaw, 2007 (in polish). [2] P. Mochalski, Chromatographic method for the determination of Ar, Ne and N2 in water, Ph.D. thesis, Institute of Nuclear Physics Polish Academy of Sciences in Krakow, 2003 (in polish). [3] A. Żurek, P

  7. Spatial Air Quality Impacts of Increased Natural Gas Development and Use in Texas

    NASA Astrophysics Data System (ADS)

    Allen, D.; Pacsi, A. P.

    2013-12-01

    Compared to coal-fired power plants on a per MWh basis, natural-gas electricity generators in the grid of the Electricity Reliability Council of Texas (ERCOT) emit substantially less nitrogen oxides (NOx) and sulfur dioxide (SO2), which are precursors for the formation of ozone (O3) and fine particulate matter (PM2.5). In addition, several life-cycle assessments have concluded that the development and use of shale gas resources will likely lead to air quality benefits, despite emissions associated with natural gas production, due to changes in fuel utilization in the electricity generation sector. The formation of ozone and PM2.5 is non-linear, however, and depends on spatial and temporal patterns associated with the precursor emissions. This study used Texas as a case-study for the changes in regional ozone and PM2.5 concentrations associated with natural gas production and use in electricity generation in the state. Texas makes a compelling case study since it was among the first states with large-scale shale gas production with horizontal drilling and hydraulic fracturing technologies, since it has a self-contained electric grid (ERCOT), and since it includes several regions which do not currently meet Federal standards for ozone. This study utilized an optimal power flow model for electricity generation in ERCOT, coupled with a regional photochemical model to estimate the ozone and PM2.5 impacts of changes to natural gas production and use in the state. The utilization of natural gas is highly dependent on the relative price of natural gas compared to coal. Thus, the amount of natural gas consumed in power generation in ERCOT was estimated for a range of prices from 1.89-7.74, which have occurred in Texas since 2006. Sensitivity scenarios in which natural gas production emissions in the Barnett Shale were raised or lowered depending on demand for the fuel in the electricity generation sector were also examined. Overall results indicate that regional ozone and

  8. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A. Spangler, L.R.

    1995-12-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. The EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is unnecessary. A test program was conducted to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative.

  9. The impact of air-fuel mixture composition on SI engine performance during natural gas and producer gas combustion

    NASA Astrophysics Data System (ADS)

    Przybyła, G.; Postrzednik, S.; Żmudka, Z.

    2016-09-01

    The paper summarizers results of experimental tests of SI engine fuelled with gaseous fuels such as, natural gas and three mixtures of producer gas substitute that simulated real producer gas composition. The engine was operated under full open throttle and charged with different air-fuel mixture composition (changed value of air excess ratio). The spark timing was adjusted to obtain maximum brake torque (MBT) for each fuel and air-fuel mixture. This paper reports engine indicated performance based on in-cylinder, cycle resolved pressure measurements. The engine performance utilizing producer gas in terms of indicated efficiency is increased by about 2 percentage points when compared to fuelling with natural gas. The engine power de-rating when producer gas is utilized instead the natural gas, varies from 24% to 28,6% under stoichiometric combustion conditions. For lean burn (λ=1.5) the difference are lower and varies from 22% to 24.5%.

  10. Tropospheric gas at potentially toxic levels in air

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-08-01

    Forest fires and emission of air pollutants, such as fumes from vehicles running on diesel and slow burning of coal and charcoal, release isocyanic acid in the troposphere. In 2011, scientists first detected isocyanic acid in the ambient atmosphere at levels toxic to human populations; at concentrations exceeding 1 part per billion by volume (ppbv), human beings could experience tissue decay when exposed to the toxin. For the first time, using a chemical transport model designed to estimate the distribution and budget of isocyanic acid in the troposphere, Young et al. showed that in several parts of the world, local emissions may increase the concentration of isocyanic acid in the ambient atmosphere, thereby exposing large populations to potentially toxic levels of the acid.

  11. Amelioration of the reactive nitrogen flux calculation by a day/night separation in weekly mean air concentration measurements

    NASA Astrophysics Data System (ADS)

    Hayashi, Kentaro; Matsuda, Kazuhide; Ono, Keisuke; Tokida, Takeshi; Hasegawa, Toshihiro

    2013-11-01

    The low time resolution of air concentration data of atmospheric deposition in regional monitoring networks makes it difficult to estimate fluxes between the land and the atmosphere. The present study was an evaluation of the effects of day/night separation for a low time resolution of air concentration measurements (i.e., weekly mean) for the estimation of reactive nitrogen fluxes. The target chemical species included reactive nitrogen primarily ammonia (NH3) and nitric acid gas (HNO3) and secondarily nitrous acid gas, particulate ammonium, and particulate nitrate in addition to sulfur dioxide (SO2) as a reference. Monitoring was conducted for one year at a single-crop rice paddy field in central Japan. The study period was divided into the cropping and fallow seasons, which were characterized by rice plants or a drained bare soil surface, respectively. The filter-pack method was applied to measure the weekly mean air concentrations with day/night separation for the target species at two heights (6 and 2 m above the ground surface). Both an inferential and a gradient method were applied to calculate the deposition and exchange fluxes, respectively. The day/night separation in a weekly sampling protocol, on average, reduced the underestimation of HNO3 fluxes for the inferential method by 15.2% ± 6.8% and 8.2% ± 6.1% in the cropping and fallow seasons, respectively, and reduced the overestimation of NH3 fluxes for the gradient method by 121% ± 128% in the cropping season. The fluxes calculated using the inferential method agreed relatively well with those calculated using the gradient method for HNO3 and SO2. The use of single-height measurements for air concentrations with day/night separation and flux calculations using the inferential method are recommended as an appropriate way to enhance the quality in calculated fluxes while simultaneously suppress the increase in labor cost.

  12. The role of bubbles during air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  13. Volcanic gas emissions and their effect on ambient air character

    SciTech Connect

    Sutton, A.J.; Elias, T.

    1994-01-01

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  14. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  15. Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; O'Neill, B. C.

    2014-12-01

    Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S

  16. An advanced passive diffusion sampler for the determination of dissolved gas concentrations

    NASA Astrophysics Data System (ADS)

    Gardner, P.; Solomon, D. K.

    2009-06-01

    We have designed and tested a passive headspace sampler for the collection of noble gases that allows for the precise calculation of dissolved gas concentrations from measured gas mixing ratios. Gas permeable silicon tubing allows for gas exchange between the headspace in the sampler volume and the dissolved gases in the adjacent water. After reaching equilibrium, the aqueous-phase concentration is related to the headspace concentration by Henry's law. Gas exchange between the water and headspace can be shut off in situ, preserving the total dissolved gas pressure upon retrieval. Gas samples are then sealed in an all metal container, retaining even highly mobile helium. Dissolved noble gas concentrations measured in these diffusion samplers are in good agreement with traditional copper tube aqueous-phase samples. These significantly reduce the laboratory labor in extracting the gases from a water sample and provide a simple and robust method for collecting dissolved gas concentrations in a variety of aqueous environments.

  17. Analysis of Mobile Source Air Toxics (MSATS)–Near-Road VOC and CarbonylConcentrations

    EPA Science Inventory

    This presentation examines data from a year-long study of measured near-road mobile source air toxic (MSAT) concentrations and compares these data with modeled 2005 National Air Toxic Assessment (NATA) results. Field study measurements were collected during a field campaign in ...

  18. EFFECTS OF METAL COMPONENTS IN CONCENTRATED AMBIENT AIR PARTICLES ON PULMONARY INJURY

    EPA Science Inventory

    EFFECTS OF METAL COMPONENTS IN CONCENTRATED AMBIENT AIR PARTICLES ON PULMONARY INJURY. Yuh-Chin Huang, Jackie Stonehuerner, Jackie Carter, Andrew J. Ghio, Robert B. Devlin. NHEERL, US EPA, RTP, NC.
    The mechanisms for cardiopulmonary morbidity associated with exposure to air po...

  19. Concentration measurement systems with stable solutions for binary gas mixtures using two flowmeters

    NASA Astrophysics Data System (ADS)

    Youn, Chongho; Kawashima, Kenji; Kagawa, Toshiharu

    2011-06-01

    The previously proposed gas concentration measurement system (Yamazaki et al 2007 Meas. Sci. Technol. 18 2762-8) shows a considerable error for some combinations of gases. The error increases when the system of equations determining mole fractions becomes a mathematically ill-conditioned system. Because the parameters of the equations reflect the material properties of the gases, the current paper considers flowmeters whose flow rate indication does not involve any gas property. This paper firstly illustrates the ill condition for the combination of venturi meter and laminar flowmeters. The paper then discusses the simultaneous measurement of flow rate and mole fractions by flowmeter combinations: an ultrasonic flowmeter and a venturi meter, an ultrasonic flowmeter and a laminar flowmeter. Experiments are conducted for a mixture of argon and air. When a venturi meter and a laminar flowmeter are used, the equations to evaluate the gas mixture ratio become an ill-conditioned system, and hence the evaluated mixture ratio shows a considerable error. On the other hand, the combination of an ultrasonic flowmeter and a laminar flowmeter detects the gas mixture ratio with proper accuracy.

  20. An air bearing system for small high speed gas turbines

    NASA Astrophysics Data System (ADS)

    Turner, A. B.; Davies, S. J.; Nimir, Y. L.

    1994-03-01

    This paper describes the second phase of an experimental program concerning the application of air bearings to small turbomachinery test rigs and small gas turbines. The first phase examined externally pressurized (EP) journal bearings, with a novel EP thrust bearing, for application to 'warm air' test rigs, and was entirely successful at rotational speeds in excess of 100,000 rpm. This second phase examined several designs of tilting pad-spiring journal bearings, one with a novel form of externally pressurized pad, but all using the original EP thrust bearing. The designs tested are described, including some oscillogram traces, for tests up to a maximum of 70,000 rpm; the most successful using a carbon pad-titanium beam spring arrangement. The thrust bearing which gave trouble-free operation throughout, is also described. The results of an original experiment to measure the 'runway speed' of a radial inflow turbine are also presented, which show that overspeeds of 58 percent above the design speed can result from free-power turbine coupling failure.

  1. Air Impacts of Unconventional Natural Gas Development: A Barnett Shale Case Study

    NASA Astrophysics Data System (ADS)

    Moore, C. W.; Zielinska, B.; Campbell, D.; Fujita, E.

    2013-12-01

    Radiello samplers. In addition, weekly PM2.5 samples were collected on Teflon and quartz filters that were analyzed for mass and elements (Teflon filters), for organic and elemental carbon (OC and EC) by thermal/optical reflectance (TOR) method and for polycyclic aromatic hydrocarbons (PAH) using a gas chromatography/mass spectrometry (GC/MS) technique (quartz filters).VOC emissions from condensate tanks were largely low molecular weight hydrocarbons, however these tanks were enhancing local benzene concentrations mostly through malfunctioning valves. PAH concentrations were low (in pg m-3 range) but the average PAH concentration profiles (higher fraction of methylated PAHs) indicated an influence of compressor engine exhausts and increased diesel transportation traffic. These measurements, however, only represent a small 'snap-shot' of the overall emissions picture from this area. For instance during this one month study, the compressor station was predominantly downwind of the community and this may not be the case in other times of the year. Long-term study of these systems, especially in areas that have yet to experience this type of exploration, but will in the future, is needed to truly evaluate the air impacts of unconventional natural gas development.

  2. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Day, D. E.; Evanoski-Cole, A. R.; Sive, B. C.; Hecobian, A.; Zhou, Y.; Gebhart, K. A.; Hand, J. L.; Sullivan, A. P.; Li, Y.; Schurman, M. I.; Desyaterik, Y.; Malm, W. C.; Collett, J. L., Jr.; Schichtel, B. A.

    2016-02-01

    The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013-2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long-term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than 4 months.

  3. Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air/gas supply approach.

    PubMed

    Jaojaruek, Kitipong; Jarungthammachote, Sompop; Gratuito, Maria Kathrina B; Wongsuwan, Hataitep; Homhual, Suwan

    2011-04-01

    This study conducted experiments on three different downdraft gasification approaches: single stage, conventional two-stage, and an innovative two-stage air and premixed air/gas supply approach. The innovative two-stage approach has two nozzle locations, one for air supply at combustion zone and the other located at the pyrolysis zone for supplying the premixed gas (air and producer gas). The producer gas is partially bypassed to mix with air and supplied to burn at the pyrolysis zone. The result shows that producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. The higher heating value (HHV) increased from 5.4 to 6.5 MJ/Nm(3). Tar content in producer gas reduced to less than 45 mg/Nm(3). With this approach, gas can be fed directly to an internal combustion engine. Furthermore, the gasification thermal efficiency also improved by approximately 14%. The approach gave double benefits on gas qualities and energy savings. PMID:21292477

  4. Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air/gas supply approach.

    PubMed

    Jaojaruek, Kitipong; Jarungthammachote, Sompop; Gratuito, Maria Kathrina B; Wongsuwan, Hataitep; Homhual, Suwan

    2011-04-01

    This study conducted experiments on three different downdraft gasification approaches: single stage, conventional two-stage, and an innovative two-stage air and premixed air/gas supply approach. The innovative two-stage approach has two nozzle locations, one for air supply at combustion zone and the other located at the pyrolysis zone for supplying the premixed gas (air and producer gas). The producer gas is partially bypassed to mix with air and supplied to burn at the pyrolysis zone. The result shows that producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. The higher heating value (HHV) increased from 5.4 to 6.5 MJ/Nm(3). Tar content in producer gas reduced to less than 45 mg/Nm(3). With this approach, gas can be fed directly to an internal combustion engine. Furthermore, the gasification thermal efficiency also improved by approximately 14%. The approach gave double benefits on gas qualities and energy savings.

  5. Air-water gas exchange by waving vegetation stems

    NASA Astrophysics Data System (ADS)

    Foster-Martinez, M. R.; Variano, E. A.

    2016-07-01

    Exchange between wetland surface water and the atmosphere is driven by a variety of motions, ranging from rainfall impact to thermal convection and animal locomotion. Here we examine the effect of wind-driven vegetation movement. Wind causes the stems of emergent vegetation to wave back and forth, stirring the water column and facilitating air-water exchange. To understand the magnitude of this effect, a gas transfer velocity (k600 value) was measured via laboratory experiments. Vegetation waving was studied in isolation by mechanically forcing a model canopy to oscillate at a range of frequencies and amplitudes matching those found in the field. The results show that stirring due to vegetation waving produces k600 values from 0.55 cm/h to 1.60 cm/h. The dependence of k600 on waving amplitude and frequency are evident from the laboratory data. These results indicate that vegetation waving has a nonnegligible effect on gas transport; thus, it can contribute to a mechanistic understanding of the fluxes underpinning biogeochemical processes.

  6. Atmospheric concentrations and air–soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing–Tianjin region, North China

    PubMed Central

    Wang, Wentao; Simonich, Staci; Giri, Basant; Chang, Ying; Zhang, Yuguang; Jia, Yuling; Tao, Shu; Wang, Rong; Wang, Bin; Li, Wei; Cao, Jun; Lu, Xiaoxia

    2013-01-01

    Forty passive air samplers were deployed to study the occurrence of gas and particulate phase PAHs in remote, rural village and urban areas of Beijing–Tianjin region, North China for four seasons (spring, summer, fall and winter) from 2007 to 2008. The influence of emissions on the spatial distribution pattern of air PAH concentrations was addressed. In addition, the air–soil gas exchange of PAHs was studied using fugacity calculations. The median gaseous and particulate phase PAH concentrations were 222 ng/m3 and 114 ng/m3, respectively, with a median total PAH concentration of 349 ng/m3. Higher PAH concentrations were measured in winter than in other seasons. Air PAH concentrations measured at the rural villages and urban sites in the northern mountain region were significantly lower than those measured at sites in the southern plain during all seasons. However, there was no significant difference in PAH concentrations between the rural villages and urban sites in the northern and southern areas. This urban–rural PAH distribution pattern was related to the location of PAH emission sources and the population distribution. The location of PAH emission sources explained 56%–77% of the spatial variation in ambient air PAH concentrations. The annual median air–soil gas exchange flux of PAHs was 42.2 ng/m2/day from soil to air. Among the 15 PAHs measured, acenaphthylene (ACY) and acenaphthene (ACE) contributed to more than half of the total exchange flux. Furthermore, the air–soil gas exchange fluxes of PAHs at the urban sites were higher than those at the remote and rural sites. In summer, more gaseous PAHs volatilized from soil to air because of higher temperatures and increased rainfall. However, in winter, more gaseous PAHs deposited from air to soil due to higher PAH emissions and lower temperatures. The soil TOC concentration had no significant influence on the air–soil gas exchange of PAHs. PMID:21669328

  7. Reference values for indoor air pollutant concentrations in new, residential buildings in Finland

    NASA Astrophysics Data System (ADS)

    Järnström, H.; Saarela, K.; Kalliokoski, P.; Pasanen, A.-L.

    Eight buildings, representing the present construction practice in Finland, were investigated to create numeric reference data for indoor air quality (IAQ) in new residential buildings. Low-emitting materials according to the "Finnish Classification of Building Materials" were used in all the buildings. The airborne volatile organic compounds (VOCs), formaldehyde, and ammonia concentrations as well as temperature, relative humidity, and the air exchange rate were determined in the newly finished buildings and after 6 and 12 months. Target values for the indoor air concentrations were not generally reached in newly finished buildings. The lowest concentration levels were measured in buildings with mechanical supply and exhaust air systems. Formaldehyde concentrations fulfilled best the target values. The TVOC concentration usually reached the S2/S3-class values within 6 months. However, the ammonia concentration remained above the S3 limit during the whole first year. The concentrations of ammonia and formaldehyde showed seasonal variations, i.e., higher concentrations were measured in summer. The concentrations of individual VOCs generally decreased most strongly during the first 6 months and the final mean concentration levels were generally less than 15 μg m -3. As the occupancy period got longer, the VOCs originating from the construction phase were increasingly replaced by new ones. Reference values based on means and on 95 percentiles are presented to facilitate interpretation of the results of measurements done to ensure that proper construction practices have been applied or to investigate IAQ problems.

  8. Geothermal ground gas emissions and indoor air pollution in Rotorua, New Zealand.

    PubMed

    Durand, Michael; Scott, Bradley J

    2005-06-01

    The emission of toxic gases from the soil is a hazard in geothermal regions that are also urbanized because buildings constructed on geothermal ground may be subject to the ingress of gases from the soil directly into the structure. The Rotorua geothermal field, New Zealand, is extensively urbanized but to date no studies have evaluated the extent of the ground gas hazard. The main gases emitted are hydrogen sulphide (H2S) and carbon dioxide (CO2), both of which are highly toxic and denser than air. This paper reports preliminary findings from a study of selected buildings constructed in the gas anomaly area. Properties were investigated for evidence of ingress by H2S, CO2, and 222Rn, with a view to determine the means and rates of gas entry and the nature of any consequent hazard. H2S and CO2 were investigated using infrared active gas analysers and passive detector tubes left in place for 10-48 h. 222Rn was measured over a period of 3 months by poly-allyl diglycol carbonate sensors. Eight of the nine buildings studied were found to suffer problems with soil gases entering the indoor air through the structure. The primary means of gas entry was directly from the ground through the floors, walls, and subsurface pipes. Indoor vents were located and found emitting up to approximately 200 ppm H2S and approximately 15% CO2, concentrations high enough to present an acute respiratory hazard to persons close to the vent (e.g., children playing at floor level). In some properties, gas problems occurred despite preventative measures having been made during construction or during later renovations. Typically, these measures include the under-laying of concrete floors with a gas-proof butanol seal, under-floor ventilation systems or the installation of positive-pressure air conditioning. Recently constructed buildings (<10 years) with butanol seals were nevertheless affected by ground gas emissions, and we conclude that such measures are not always effective in the long term

  9. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability.

  10. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability. PMID:24498952

  11. Concentration of tetrachloroethylene in indoor air at a former dry cleaner facility as a function of subsurface contamination: a case study.

    PubMed

    Eklund, Bart M; Simon, Michelle A

    2007-06-01

    A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 yr old and once housed a dry cleaning operation. Results from an initial site characterization were used to select sampling locations for the VI study. The general approach for evaluating VI was to collect time-integrated canister samples for off-site U.S. Environmental Protection Agency Method TO-15 analyses. PCE and other chlorinated solvents were measured in shallow soil gas, subslab soil-gas, indoor air, and ambient air. The subslab soil gas exhibited relatively high values: PCE < or =2,600,000 parts per billion by volume (ppbv) and trichloroethylene < or =170 ppbv. The attenuation factor, the ratio of indoor air and subslab soil-gas concentrations, was unusually low: approximately 5 x 10(-6) based on the maximum subslab soil-gas concentration of PCE and 1.4 x 10(-5) based on average values.

  12. Gas and drop behavior in reacting and non-reacting air-blast atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mcdonell, Vincent G.; Samuelsen, Scott

    1991-01-01

    A detailed study of the two-phase flow produced by a gas-turbine air-blast atomizer is performed with the goal of identifying the interaction between the two phases for both nonreacting and reacting conditions. A two-component phase Doppler interferometry is utilized to characterize three flowfields produced by the atomizer: (1) the single-phase flow, (2) the two-phase nonreacting spray, and (3) the two-phase reacting spray. Measurements of the mean and fluctuating axial and azimuthal velocities for each phase are obtained. In addition, the droplet size distribution, volume flux, and concentration are measured. The results reveal the strong influence of the dispersed phase on the gas, and the influence of reaction on both the gas and the droplet field. The presence of the spray significantly alters the inlet condition of the atomizer. With this alteration quantified, it is possible to deduce that the inertia associated with the dispersed phase damps the fluctuating velocities of the gas. Reaction reduces the volume flux of the droplets, broadens the local volume distribution of the droplets in the region of the reaction zone, increases the axial velocities and radial spread of the gas, and increases the anisotropy in the region of the reaction zone.

  13. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  14. Ambient nitrogen dioxide and sulfur dioxide concentrations over a region of natural gas production, Northeastern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Islam, S. M. Nazrul; Jackson, Peter L.; Aherne, Julian

    2016-10-01

    The Peace River district of Northeastern British Columbia, Canada is a region of natural gas production that has undergone rapid expansion since 2005. In order to assess air quality implications, Willems badge passive diffusive samplers were deployed for six two-week exposure periods between August and November 2013, at 24 sites across the region to assess the ambient concentration of nitrogen dioxide (NO2) and sulfur dioxide (SO2). The highest concentrations of both species (NO2: 9.1 ppb, SO2: 1.91 ppb) during the whole study period (except the 1st exposure period), were observed in Taylor (Site 14), which is consistent with its location near major industrial sources. Emissions from industrial activities, and their interaction with meteorology and topography, result in variations in atmospheric dispersion that can increase air pollution concentrations in Taylor. However, relatively high concentrations of NO2 were also observed near the center of Chetwynd (site F20), indicating the importance of urban emissions sources in the region as well. Observations of both species from the other study sites document the spatial variability and show relatively high concentrations near Fort St. John and Dawson Creek, where unconventional oil and gas development activities are quite high. Although a few sites in Northeastern British Columbia recorded elevated concentrations of NO2 and SO2 during this investigation, the concentrations over the three-month period were well below provincial annual ambient air quality objectives. Nonetheless, given the limited observations in the region, and the accelerated importance of unconventional oil and gas extraction in meeting energy demands, it is imperative that monitoring networks are established to further assess the potential for elevated ambient concentrations associated with industrial emissions sources in the Peace River region.

  15. A STUDY OF THE CONCENTRATIONS OF POLYCYCLIC AROMATIC HYDROCARBONS IN GAS WORKS RETORT HOUSES

    PubMed Central

    Lawther, P. J.; Commins, B. T.; Waller, R. E.

    1965-01-01

    Measurements of the concentration of 3:4-benzpyrene and other polycyclic aromatic hydrocarbons have been made in gas works retort houses of several types. The tarry fumes which escaped from retorts contained extremely high concentrations of polycyclic hydrocarbons, but in general men were only exposed to these very briefly. The mean concentration of 3:4-benzpyrene determined from long-period samples at sites representative of normal working conditions in three works was 3 μg./m.3, over 100 times the normal level in the City of London. Above the retorts in an old horizontal retort house the concentration was over 200 μg./m.3, about 10,000 times that in the City, and the `top-man' working there could be exposed to this in the normal course of his duty. We found no working areas in the vertical retort houses where men could be exposed to such massive concentrations of polycyclic hydrocarbons. Apart from defining these special conditions above horizontal retorts our results did not reveal any gross differences in pollution of the general air in horizontal and continuous vertical retort houses. Images PMID:14261701

  16. Selective Concentration of Ultra-trace Acetone in the Air by Cryogenic Temperature Programmed Desorption (cryo-TPD).

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    A gas analytical technique with compact size, low cost, sufficient sensitivity, and excellent reproducibility is required in many fields including exhaled breath analysis for medical monitoring. In the present study, we examined selective acetone concentration by quench condensation at cryogenic temperature followed by temperature programmed desorption (cryogenic temperature programmed desorption (cryo-TPD)) for possible applications to breath analysis for medical monitoring. The essence of cryo-TPD is rough mass selection by thermal desorption followed by quantification of certain species using mass spectrometry. The performance of cryo-TPD was investigated in the acetone concentration range below 1 × 10(-6) volume fraction (1 ppmv). It was found that acetone is selectively quench-condensed on a tungsten substrate at 50 K without the major components of air, such as N2 and O2. The concentrated acetone gas was obtained by the following thermal desorption at around 151 K. Under conditions of condensation for 1 min and pressure of 1 × 10(-2) Pa, the lowest limit of detection reached well below 10 × 10(-9) volume fraction (10 ppbv). The relationship between the cetone intensity of cryo-TPD and the acetone concentration in the gas was almost linear in the ppbv range. The separation of acetone and propanal using the fragmentation pattern, which have almost the identical molecular mass, was also demonstrated in the present study. PMID:27682397

  17. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    SciTech Connect

    Chang H. Oh

    2011-03-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air

  18. Trend and climate signals in seasonal air concentration of organochlorine pesticides over the Great Lakes

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Ma, Jianmin; Cao, Zuohao; Dove, Alice; Zhang, Lisheng

    2010-08-01

    Following worldwide bans or restrictions, the atmospheric level of many organochlorine pesticides (OCPs) over the Great Lakes exhibited a decreasing trend since the 1980s in various environmental compartments. Atmospheric conditions also influence variation and trend of OCPs. In the present study a nonparametric Mann-Kendall test with an additional process to remove the effect of temporal (serial) correlation was used to detect the temporal trend of OCPs in the atmosphere over the Great Lakes region and to examine the statistical significance of the trends. Using extended time series of measured air concentrations over the Great Lakes region from the Integrated Atmospheric Deposition Network, this study also revisits relationships between seasonal mean air concentration of OCPs and major climate variabilities in the Northern Hemisphere. To effectively extract climate signals from the temporal trend of air concentrations, we detrended air concentrations through removing their linear trend, which is driven largely by their respective half-lives in the atmosphere. The interannual variations of the extended time series show a good association with interannual climate variability, notably, the North Atlantic Oscillation (NAO) and the El Niño-Southern Oscillation. This study demonstrates that the stronger climate signals can be extracted from the detrended time series of air concentrations of some legacy OCPs. The detrended concentration time series also help to interpret, in addition to the connection with interannual variation of the NAO, the links between atmospheric concentrations of OCPs and decadal or interdecadal climate change.

  19. Variability of concentrations of polybrominated diphenyl ethers and polychlorinated biphenyls in air: implications for monitoring, modeling and control

    NASA Astrophysics Data System (ADS)

    Gouin, T.; Harner, T.; Daly, G. L.; Wania, F.; Mackay, D.; Jones, K. C.

    Monitoring data indicate that organic compounds with high octanol-air partition coefficients ( KOA), such as polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) exhibit seasonally variable air concentrations, especially during early spring, shortly after snow melt and before bud-burst when levels are elevated. This variability can complicate the interpretation of monitoring data designed to assess year-to-year changes. It is suggested that relatively simple dynamic multimedia mass balance models can assist interpretation by "factoring out" variability attributable to temperature and other seasonal effects as well as identifying likely contaminant sources. To illustrate this approach, high-volume air samples were collected from January to June, 2002 at a rural location in southern Ontario. Gas-phase concentrations for both ΣPBDE and ΣPCB rose from below the detection limit during the winter to 19 and 110 pg m -3, respectively, in early spring, only to decrease again following bud-burst. Passive air samples (PAS), deployed at seven urban, rural and remote sites for two one-month periods prior and following bud-burst, indicate a strong urban-rural gradient for both the PBDEs and PCBs. Calculated air concentrations from the PAS are shown to agree favorably with the high-volume air sampling data, with concentrations ranging 6-85 pg m -3 and 6-360 pg m -3 for ΣPBDE and ΣPCB, respectively. Concentrations in urban areas are typically 5 times greater than in rural locations. These data were interpreted using simulation results from a fate model including a seasonally variable forest canopy and snow pack, suggesting that the primary source is urban and that the "spring pulse" is the result of several interacting factors. Such contaminants are believed to be efficiently deposited in winter, accumulate in the snow pack and are released to terrestrial surfaces upon snow melt in spring. Warmer temperatures cause volatilization and a rise in air

  20. Real-Time Optical Fuel-to-Air Ratio Sensor for Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Mongia, Rajiv K.; Dibble, Robert W.

    1999-01-01

    The measurement of the temporal distribution of fuel in gas turbine combustors is important in considering pollution, combustion efficiency and combustor dynamics and acoustics. Much of the previous work in measuring fuel distributions in gas turbine combustors has focused on the spatial aspect of the distribution. The temporal aspect however, has often been overlooked, even though it is just as important. In part, this is due to the challenges of applying real-time diagnostic techniques in a high pressure and high temperature environment. A simple and low-cost instrument that non-intrusively measures the real-time fuel-to-air ratio (FAR) in a gas turbine combustor has been developed. The device uses a dual wavelength laser absorption technique to measure the concentration of most hydrocarbon fuels such as jet fuel, methane, propane, etc. The device can be configured to use fiber optics to measure the local FAR inside a high pressure test rig without the need for windows. Alternatively, the device can readily be used in test rigs that have existing windows without modifications. An initial application of this instrument was to obtain time-resolved measurements of the FAR in the premixer of a lean premixed prevaporized (LPP) combustor at inlet air pressures and temperatures as high as 17 atm at 800 K, with liquid JP-8 as the fuel. Results will be presented that quantitatively show the transient nature of the local FAR inside a LPP gas turbine combustor at actual operating conditions. The high speed (kHz) time resolution of this device, combined with a rugged fiber optic delivery system, should enable the realization of a flight capable active-feedback and control system for the abatement of noise and pollutant emissions in the future. Other applications that require an in-situ and time-resolved measurement of fuel vapor concentrations should also find this device to be of use.

  1. An assessment of ozone concentrations within and near the Lake Tahoe Air Basin

    NASA Astrophysics Data System (ADS)

    Dolislager, Leon J.; VanCuren, Richard; Pederson, James R.; Lashgari, Ash; McCauley, Eileen

    2012-01-01

    The Lake Tahoe Atmospheric Deposition Study (LTADS) was conducted by the Air Resources Board of the State of California (CARB) primarily to generate refined estimates of the atmospheric deposition of nitrogen, phosphorous, and particulate matter directly to Lake Tahoe, which straddles the border between the states of California and Nevada near Reno, Nevada. The enhanced air quality monitoring during LTADS also included ozone measurements, which yielded additional insights into atmospheric processes and the role of transport in determining ozone concentrations within the Lake Tahoe Air Basin. The Lake Tahoe Air Basin is located generally downwind of air basins with major emissions of ozone precursors (e.g., VOCs, NOx), capable of generating significant ozone concentrations. Furthermore, vegetation on the western slope of the Sierra Nevada contribute biogenic organic compounds to the air mass. Ozone concentrations within the Tahoe Basin infrequently exceed the local 1-h threshold set to protect forest health (0.08 ppm) and the California 8-h ambient air quality standard (0.070 ppm). A concern then is the potential contribution of regional emission sources to the ozone concentrations observed in the Tahoe Basin. The ozone data collected during LTADS helped to better characterize the relative contribution of local and regional pollution sources to ozone air quality within the Tahoe Basin. The data indicate potential 1- or 2-day intact transport on rare occasions but generally the mixing of the atmosphere over the Sierra Nevada disperses the anthropogenic ozone throughout the boundary layer, which is generally more than a kilometer or two deep during the day. The data analysis indicates that emissions from upwind air basins add to the atmospheric burden of ozone concentrations, raising the regional concentrations in the Sierra Nevada. Given the large background and upwind enhancements relative to the ambient air quality standards, the local contribution does not need to

  2. Profiles of Trace Gas Concentrations in Undisturbed Forest in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Carmo, J.; Crill, P.; Dias, J.; Camargo, P.; Keller, M.

    2004-12-01

    Globally, upland tropical forests are the largest natural source of nitrous oxide (N2O). Soils of upland tropical forests generally consume methane (CH4) although this process has only a minor effect on the atmospheric CH4 budget. In this study, we investigate the concentrations of N2O, CH4, and carbon dioxide (CO2) measured in profiles on towers in undisturbed forest at three Amazon forest sites located in the municipalities of Manaus, Amazonas, Melgaço, Para (Caxiuana), and Sinop, Mato Grosso. We measured gas concentration profiles at six heights above the ground on during both wet and dry seasons in 2003 and 2004. Nylon tubes (0.95 cm OD) were installed on towers used for meteorological and flux measurements in LBA. Gas samples were drawn through teflon filters (1μ m pore size) to a manifold and directed either to an infra-red gas analyzer (LiCor IRGA Model 6262), to sampling canisters, or to exhaust. During sampling periods, we maintained a continuous flow of at least 1 L min-1 through all sampling tubes. CO2 concentration data from the IRGA were recorded continuously using a Datastick analog to digital converter and a palm top computer. We removed air samples in electro-polished stainless steel canisters for off-site analysis of N2O and CH4 by ECD and FID gas chromatography respectively. Sampling times were selected based upon real-time measurements of CO2 concentration. Relatively stable meteorological conditions at night led to consistent increases in CO2 concentrations. At times we also observed increases in the concentrations of CH4 and N2O concentrations correlated with increasing CO2. The source of the increasing CO2 is most likely respiration by soil and above-ground organisms. Correlated increases in CH4 and N2O concentrations also likely result from biological activity in the soil and the canopy layer of the studied forests. Concentrations of these gases increase at night because the rate of gas emission in the canopy layer exceeds the rates of

  3. Modeling of Air Pollution Systems with Chemical Reactions: Application to Gas Flares in Nigeria

    NASA Astrophysics Data System (ADS)

    Susu, Alfred A.; Abhulimen, Kingsley E.; Adereti, Adedayo B.

    2005-09-01

    The Eulerian model was used for the prediction of air pollutants in some gas flare locations in the Niger Delta region of Nigeria. A continuity equation (mass balance) that incorporates second order reaction schemes for the generation of pollutants at source or in the ensuing atmosphere was used to characterize the n species in the fluid element and the finite difference method (the Crank-Nicholson formulation) was applied for the numerical scheme. Thus, the spatial and transient concentration profiles of key contaminants were obtained for the meteorological conditions under consideration. The first series of simulations were carried out at ground level and at altitudes of 30 and 90 m, for a simulation time of 10 min. The second series of simulations were identical to the first, except that the simulation time was 20 min. The third series of simulations were carried out for 50 min at ground level and at an altitude of 30 m. The concentration profiles were parabolic for at least one of the pollutants at the ground level for 10, 20 and 50 min simulation times, and additionally at an altitude of 30 m for a simulation time of 50 min. Other concentration profiles are exponential in nature. The deterministic Eulerian model provided a satisfactory prediction of the spatial and transient concentration profiles for the pollutants in the gas flares.

  4. Hexachlorocyclohexanes (HCHs) in the Canadian Archipelago. 2. Air-water gas exchange of alpha- and gamma-HCH.

    PubMed

    Jantunen, Liisa M; Helm, Paul A; Kylin, Henrik; Bidleman, Terry F

    2008-01-15

    Air and water were sampled in the Canadian Archipelago during summer on the Tundra Northwest 1999 (TNW-99) expedition and air was sampled at Resolute Bay (RB), Nunavut, to determine the gas exchange of alpha- and gamma-hexachlorocyclohexanes (HCHs) and the enantiomers of alpha-HCH. Air concentrations of sigmaHCH during TNW-99 and at RB were similar, averaging 55 and 53 pg m(-3), respectively. The net gas exchange direction was volatilization for alpha-HCH and near equilibrium or deposition for gamma-HCH, whereas actual fluxes depended on the fraction of open water. Enantiomer fractions, EF = (+)/[(+) + (-)] of alpha-HCH in air sampled from shipboard were significantly correlated to those in surface water for events with >90% open water, but were closer to racemic and not correlated to EFs in water for events with 0-50% open water. Levels of alpha-HCH in air at RB averaged 37 +/- 9 pg m(-3) from June to early July, and EFs were close to racemic (0.496 +/- 0.004). In mid-July the ice pack broke up around RB. From this point through August, air concentrations increased significantly to 53 +/- 5 pg m(-3), and the mean EF decreased significantly to 0.483 +/- 0.009. Air concentrations of gamma-HCH at RB did not differ significantly before (8.0 +/- 3.7 pg m(-3)) and after (6.6 +/- 0.76 pg m(-3)) ice breakup. Results show that alpha-HCH enantiomers are sensitive tracers for following the impact of ice cover loss on gas exchange in the Arctic.

  5. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... concentration (DAC) values given in appendices A and C of this part shall be used in the control of occupational... 10 Energy 4 2012-01-01 2012-01-01 false Concentrations of radioactive material in air. 835.209 Section 835.209 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal...

  6. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... concentration (DAC) values given in appendices A and C of this part shall be used in the control of occupational... 10 Energy 4 2011-01-01 2011-01-01 false Concentrations of radioactive material in air. 835.209 Section 835.209 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal...

  7. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... concentration (DAC) values given in appendices A and C of this part shall be used in the control of occupational... 10 Energy 4 2013-01-01 2013-01-01 false Concentrations of radioactive material in air. 835.209 Section 835.209 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal...

  8. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... concentration (DAC) values given in appendices A and C of this part shall be used in the control of occupational... 10 Energy 4 2014-01-01 2014-01-01 false Concentrations of radioactive material in air. 835.209 Section 835.209 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal...

  9. COMPARISON OF MOLD CONCENTRATIONS IN INDOOR AND OUTDOOR AIR SAMPLED SIMULTANEOUSLY AND THEN QUANTIFIED BY MSQPCR

    EPA Science Inventory

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of the 36 mold species in indoor and outdoor air samples that were taken simultaneously for 48 hours in and around 17 homes in Cincinnati, Ohio. The total spore concentrations of 353 per m3...

  10. New SI-traceable reference gas mixtures for fluorinated gases at atmospheric concentration

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Wyss, Simon A.; Pascale, Céline; Vollmer, Martin K.; Niederhauser, Bernhard; Reimann, Stefan

    2016-04-01

    In order to better support the monitoring of greenhouse gases in the atmosphere, we develop a method to produce reference gas mixtures for fluorinated gases (F-gases, i.e. gases containing fluorine atoms) in a SI-traceable way, meaning that the amount of substance fraction in mole per mole is traceable to SI-units. These research activities are conducted in the framework of the HIGHGAS and AtmoChem-ECV projects. First, single-component mixtures in synthetic air at ~85 nmol/mol (ppb) are generated for HFC-125 (pentafluoroethane, a widely used HFC) and HFC-1234yf (2,3,3,3-tetrafluoropropene, a car air conditioner fluid of growing importance). These mixtures are first dynamically produced by permeation: a permeator containing the pure substance loses mass linearly over time under a constant gas flow, in the permeation chamber of a magnetic suspension balance, which is regularly calibrated. This primary mixture is then pressurised into Silconert2000-coated stainless steel cylinders by cryo-filling. In a second step these mixtures are dynamically diluted using 2 subsequent dilution steps piloted by mass flow controllers (MFC) and pressure controllers. The assigned mixture concentration is calculated mostly based on the permeator mass loss, on the carrier gas purity and on the MFCs flows. An uncertainty budget is presented, resulting in an expanded uncertainty of 2% for the HFC-125 reference mixture and of 2.5% for the HFC-1234yf mixture (95% confidence interval). The final gas, with near-atmospheric concentration (17.11 pmol/mol for HFC-125, 2.14 pmol/mol for HFC-1234yf) is then measured with Medusa-GC/MS technology against standards calibrated on existing reference scales. The assigned values of the dynamic standards are in excellent agreement with measurements vs the existing reference scales, SIO-14 from the Scripps Institution of Oceanography for HFC-125 and Empa-2013 for HFC-1234yf. Moreover, the Medusa-GC/MS measurements show the excellent purity of the SI

  11. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario

  12. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  13. Air impacts of increased natural gas acquisition, processing, and use: a critical review.

    PubMed

    Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B

    2014-01-01

    During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource. PMID:24588259

  14. Air impacts of increased natural gas acquisition, processing, and use: a critical review.

    PubMed

    Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B

    2014-01-01

    During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource.

  15. Regional air quality impacts of hydraulic fracturing and shale natural gas activity: Evidence from ambient VOC observations

    NASA Astrophysics Data System (ADS)

    Vinciguerra, Timothy; Yao, Simon; Dadzie, Joseph; Chittams, Alexa; Deskins, Thomas; Ehrman, Sheryl; Dickerson, Russell R.

    2015-06-01

    Over the past decade, concentrations of many anthropogenic pollutants have been successfully reduced, improving air quality. However, a new influx of emissions associated with hydraulic fracturing and shale natural gas operations could be counteracting some of these benefits. Using hourly measurements from Photochemical Assessment Monitoring Stations (PAMS) in the Baltimore, MD and Washington, DC areas, we observed that following a period of decline, daytime ethane concentrations have increased significantly since 2010, growing from ∼7% of total measured nonmethane organic carbon to ∼15% in 2013. This trend appears to be linked with the rapidly increasing natural gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Ethane concentrations failed to display this trend at a PAMS site outside of Atlanta, GA, a region without new widespread natural gas operations.

  16. On Site Generation Of Low Level Odorous Standards For Validation Of FTICR-MS Gas Detector In Ambient Air

    SciTech Connect

    Mestdagh, Helene; Lemaire, Joeel; Heninger, Michel; Leprovost, Julien; Cardella, Carine; Courthaudon, Laurent; Bouton, Nicolas

    2009-05-23

    Gas sensors and analyzers can be externally calibrated with standard gases. These gas cylinders are usually difficult to obtain when it comes to low concentration standards, and their lifetime may be questionable. Starting from high concentration and diluting on site to desired lower concentrations allows to set up multi-point calibrations of the analytical device, such as an electronic nose. Volatile Organic Compounds (VOCs), including odorous chemicals, have been analyzed using Gas Chromatography (GC) often coupled with Mass Spectrometry (GC-MS), or specific olfactometric sensors. Proton Transfer Reaction (PTR) coupled with Fourier Transorm Ion Cyclotron Resonance (FTICR) MS is proposed to analyse low level of VOCs in air. FTICR MS is the most accurate and has the highest mass resolution of the MS techniques. B-Trap is a miniaturized FTICR instrument meant for real time VOCs analysis.

  17. Variations of 210Pb concentrations in surface air at Thessaloniki, Greece (40°N)

    NASA Astrophysics Data System (ADS)

    Ioannidou, A.; Kotsopoulou, E.; Karanatsiou, A.; Papastefanou, C.

    2012-04-01

    Atmospheric concentrations of 210Pb were measured over the year 2009 in ground level air at Thessaloniki, Northern Greece (40°62' N, 22°95'E). The mean activity concentrations of 210Pb in surface air have been found to be 671 ± 213 μBq m-3. The highest values of monthly atmospheric concentrations of 210Pb were observed in the autumn and the lowest in the spring period. The higher values of 210Pb during autumn were attributed to frequent inversion conditions of the surface layers, resulting in an enrichment of radon and its decay products in surface air. The lower values during the winter months might be due to the low emanation of radon from the frozen or snow-covered soil. The minima of 210Pb concentrations during spring might reflect on higher washout during this period, which results in less emanation of radon from saturated with water soil, resulting in less production of 210Pb near ground-level air. The relative high values during summer are probably due to the higher 222Rn exhalation from the ground and due to the higher air mixing within the troposphere, which has as a result to carry down to the surface layer 210Pb whose origin is older air masses which entered into the free troposphere.

  18. Radon ((222)Rn) concentration in indoor air near the coal mining area of Nui Beo, North of Vietnam.

    PubMed

    Nhan, Dang Duc; Fernando, Carvalho P; Thu Ha, Nguyen Thi; Long, Nguyen Quang; Thuan, Dao Dinh; Fonseca, Heloisa

    2012-08-01

    Concentrations of radioactive radon gas ((222)Rn) were measured using passive monitors based on LR115 solid state track detectors during June-July 2010 in indoor air of dwellings in the Nui Beo coal mining area, mostly in Cam Pha and Ha Long coastal towns, Quang Ninh province, in the North of Vietnam. Global results of (222)Rn concentrations indoors varied from ≤6 to 145 Bq m(-3) averaging 46 ± 26 Bq m(-3) (n = 37), with a median value of 47 Bq m(-3). This was similar to outdoor (222)Rn concentrations in the region, averaging 43 ± 19 Bq m(-3) (n = 10), with a median value of 44 Bq m(-3). Indoor (222)Rn concentrations in the coastal town dwellings only were in average lower although not significantly different from indoor (222)Rn concentrations measured at the coal storage field near the harbor, 67 ± 4 Bq m(-3) (n = 3). Furthermore, there was no significant difference in the average (222)Rn concentration in indoor air measured in the coastal towns region and those at the touristic Tuan Chau Island located about 45 km south of the coal mine, in the Ha Long Bay. The indoor (222)Rn concentration in a floating house at the Bai Tu Long Bay, and assumed as the best estimate of the baseline (222)Rn in surface air, was 27 ± 3 Bq m(-3) (n = 3). Indoor average concentration of (222)Rn in dwellings at the Ha Noi city, inland and outside the coal mining area, was determined at 30 Bq m(-3). These results suggest that (222)Rn exhalation from the ground at the Nui Beo coal mining area may have contributed to generally increase (222)Rn concentration in the surface air of that region up to 1.7 times above the baseline value measured at the Bai Tu Long Bay and Ha Noi. The average indoor concentration of (222)Rn in Cam Pha-Ha Long area is about one-third of the value of the so-called Action Level set up by the US EPA of 148 Bq m(-3). Results suggest that there is no significant public health risk from (222)Rn exposure in the study region.

  19. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    PubMed

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  20. Gas dynamics of an air-blown electric are

    SciTech Connect

    Borodin, N.S.; Belousov, G.E.; Burmistrov, M.P.; Khitrov, V.G.; Suvorova, S.N.

    1986-05-01

    The authors obtained the basic evidence on the gas dynamics of an air-blown arc by modification of the track method, which involves photographing the tracks of incandescent particles and determining the lengths of the individual tracks and their positions in the arc. To photograph the tracks, the camera was placed so that the shutter blind moved in the opposite direction of the particles or perpendicular to that direction, while the plane of the film (FOTO-250) was 300-400mm from the electrodes. In the model for the blowing method, it is shown that there are differing factors rather than identical ones controlling the residence times for particles and vapor in the discharge zone, so it may be possible to control them seperately. This is particularly important for using chemical isoformation in conjunction with spectral analysis; it is not necessary for the collector particles to evaporate completely, and their higher transport speed in the discharge tends to reduce the intensity of the incoherent background, while the thin films of relevance on the particles, which may be refractory, enter the discharge fully. The emission time remains sufficient for the vapors.

  1. A Gas Sensor Array For Environmental Air Monitoring: A Study Case Of Application Of Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Penza, Michele; Suriano, Domenico; Cassano, Gennaro; Rossi, Riccardo; Alvisi, Marco; Pfister, Valerio; Trizio, Livia; Brattoli, Magda; De Gennaro, Gianluigi

    2011-09-01

    An array of commercial gas sensors and nanotechnology sensors has been integrated to quantify gas concentration of air-pollutants. A variety of chemoresistive gas sensors, commercial (Figaro and Fis) and developed at ENEA laboratories (metal-modified carbon nanotubes) were tested to implement a database useful for applied artificial neural networks (ANNs). The ANN algorithm used is the common perceptron multi-layer feed-forward network based on error back-propagation. Electronic Noses based on various sensor arrays related to mammalian olfactory systems have been largely reported [1,2]. Here, we reported on the perceptron-based ANNs applied to a large database of 3875 datapoints for environmental air monitoring. The ANNs performance has been individually assessed for any targeted gas. The response of the classifier has been measured for NO2, CO, CO2, SO2, and H2S gas. The NO2 characteristics exhibit that real concentrations and predicted concentrations are very close with a normalized mean square error (NMSE) in the test set as low as 6%.

  2. Historical Occupational Trichloroethylene Air Concentrations Based on Inspection Measurements From Shanghai, China

    PubMed Central

    Friesen, Melissa C.; Locke, Sarah J.; Chen, Yu-Cheng; Coble, Joseph B.; Stewart, Patricia A.; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P.; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Purpose: Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China’s growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Methods: Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Results: Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5–10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150–190mg m−3). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11mg m−3 in ‘other metal products/repair’ industries to 390mg m–3 in ‘ships/aircrafts’ industries. Conclusions: TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. PMID:25180291

  3. Joint inversion of acoustic and resistivity data for the estimation of gas hydrate concentration

    USGS Publications Warehouse

    Lee, Myung W.

    2002-01-01

    Downhole log measurements, such as acoustic or electrical resistivity logs, are frequently used to estimate in situ gas hydrate concentrations in the pore space of sedimentary rocks. Usually the gas hydrate concentration is estimated separately based on each log measurement. However, measurements are related to each other through the gas hydrate concentration, so the gas hydrate concentrations can be estimated by jointly inverting available logs. Because the magnitude of slowness of acoustic and resistivity values differs by more than an order of magnitude, a least-squares method, weighted by the inverse of the observed values, is attempted. Estimating the resistivity of connate water and gas hydrate concentration simultaneously is problematic, because the resistivity of connate water is independent of acoustics. In order to overcome this problem, a coupling constant is introduced in the Jacobian matrix. In the use of different logs to estimate gas hydrate concentration, a joint inversion of different measurements is preferred to the averaging of each inversion result.

  4. Indoor air polychlorinated biphenyl concentrations in three communities along the Upper Hudson River, New York.

    PubMed

    Wilson, Lloyd R; Palmer, Patrick M; Belanger, Erin E; Cayo, Michael R; Durocher, Lorie A; Hwang, Syni-An A; Fitzgerald, Edward F

    2011-10-01

    Indoor air polychlorinated biphenyl (PCB) concentrations were measured in upstate New York as part of a nonoccupational exposure investigation. The adjacent study communities contain numerous sites of current and former PCB contamination, including two capacitor-manufacturing facilities. Indoor air PCB concentrations in the study area homes were not significantly different than in the comparison area homes. Total PCB concentrations in the study area homes ranged from 0.3 to 114.3 ng/m(3) (median 7.9). For the comparison area homes, concentrations ranged from 0.3 to 233.3 ng/m(3) (median 6.8). No correlations were found between PCB concentrations in indoor and outdoor air, with indoor concentrations generally 20 times higher than outdoor concentrations. Of the home characteristics cataloged, the presence of fluorescent lights was significantly associated with total PCB concentration in the study area only. The indoor PCB concentrations measured in this study are similar to those in other communities with known PCB-contaminated sites and similar to levels reported in other locations from the northeastern United States. PMID:21136249

  5. Volcanic gas emissions and their impact on ambient air character at Kilauea Volcano, Hawaii

    SciTech Connect

    Sutton, A.J.; Elias, T.; Navarrete, R.

    1994-12-31

    Gas emissions from Kilauea occur from the summit caldera, along the middle East Rift Zone (ERZ), and where lava enters the ocean. We estimate that the current ERZ eruption of Kilauea releases between 400 metric tonnes of SO{sub 2} per day, during eruptive pauses, to as much as 1850 metric tonnes per day during actively erupting periods, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl and HF. In order to characterize gas emissions from Kilauea in a meaningful way for assessing environmental impact, we made a series of replicate grab-sample measurements of ambient air and precipitation at the summit of Kilauea, along its ERZ, and at coastal sites where lava enters the ocean. The grab-sampling data combined with SO{sub 2} emission rates, and continuous air quality and meteorological monitoring at the summit of Kilauea show that the effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Prevailing tradewinds typically carry the gases and aerosols released to the southwest, where they are further distributed by the regional wind regime. Episodes of kona, or low speed variable winds sometimes disrupt this pattern, however, and allow the gases and their oxidation products to collect at the summit and eastern side of the island. Summit solfatara areas of Kilauea are distinguished by moderate to high ambient SO{sub 2}, high H{sub 2}S at one location, and low H{sub 2}S at all others, and negligible HCl concentrations, as measured 1 m from degassing point-sources. Summit solfatara rain water has high sulfate and low chloride ion concentrations, and low pH.

  6. [Analysis of polycyclic aromatic hydrocarbons in air samples by gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Zhao, Bo; Li, Yuqing; Zhang, Sukun; Han, Jinglei; Xu, Zhencheng; Fang, Jiande

    2014-09-01

    A method of gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS) has been optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in air samples. In the analysis step, isotope dilution was introduced to the quantification of PAHs. The GC-MS/MS method was applied to the analysis of the real air samples around a big petrochemical power plant in South China. The results were compared with those obtained by gas chromatography coupled to mass spectrometry (GC-MS). The results showed that better selectivity and sensitivity were obtained by GC-MS/MS. It was found that the external standard of deuterated-PAHs and internal standard of hexamethyl benzene were disturbed seriously with GC-MS, and the problems were both solved effectively by GC-MS/MS. Therefore more accurate quantification results of PAHs were obtained with GC-MS/MS. For the analysis of real samples, the RSDs of relative response factors ranged from 2.60% to 15.6% in standard curves; the recoveries of deuterated-PAHs ranged from 55.2% to 82.3%; the recoveries of spiked samples ranged from 98.9% to 111%; the RSDs of parallel specimens ranged from 6.50% to 18.4%; the concentrations of field blank samples ranged from not detected to 44.3 pg/m3; and the concentrations of library blank samples ranged from not detected to 36.5 pg/m3. The study indicated that the application of GC-MS/MS on the analysis of PAHs in air samples was recommended. PMID:25752088

  7. Air-vegetation exchange of SOCs as a control of atmospheric concentrations and residence times

    SciTech Connect

    Hornbuckle, K.C.; Eisenreich, S.J.

    1994-12-31

    Semi-volatile organic compounds (SOCs) such as the polychlorinated biphenyls exhibit seasonal maxima in atmospheric concentrations with highest values in the warm summer. This generally believed to result from the effect of temperature on SOC vapor pressure with direct and important implications to global transport. The authors have conducted a series of field experiments whereby air samples were collected above an ombrotrophic, forested bog in northern MN at a frequency of 6 day{sup {minus}1} during the fall, winter, spring and summer. Samples of Sphagnum moss and other vegetation were also collected on each occasion. All samples were analyzed for PCBs, low MW PAHs, gaseous hydrocarbons and selected pesticides. Meteorological and soils data were collected during all experiments (air and soil temperature, wind direction and velocity, RH). Diurnal concentration data, air-plant and air-soil partition coefficients and probable mechanisms and kinetics of SOC-plant interactions will be presented.

  8. A pilot study to assess ground-level ambient air concentrations of fine particles and carbon monoxide in urban Guatemala.

    PubMed

    Shendell, Derek G; Naeher, Luke P

    2002-11-01

    Ambient concentrations and the elemental composition of particles less than 2.5 microm in diameter (PM2.5), as well as carbon monoxide (CO) concentrations, were measured at ground-level in three Guatemalan cities in summer 1997: Guatemala City, Quetzaltenango, and Antigua. This pilot study also included quantitative and qualitative characterizations of microenvironment conditions, e.g., local meteorology, reported elsewhere. The nondestructive X-ray fluorescence elemental analysis (XRF) of Teflon filters was conducted. The highest integrated average PM2.5. concentrations in an area (zona) of Guatemala City and Quetzaltenango were 150 microg m(-3) (zona 12) and 120 microg m(-3) (zona 2), respectively. The reported integrated average PM2.5 concentration for Antigua was 5 microg m(-3). The highest observed half-hour and monitoring period average CO concentrations in Guatemala City were 10.9 ppm (zona 8) and 7.2 ppm (zonas 8 and 10), respectively. The average monitoring period CO concentration in Antigua was 2.6 ppm. Lead and bromine concentrations were negligible, indicative of the transition to unleaded fuel use in cars and motorcycles. The XRF results suggested sources of air pollution in Guatemala, where relative rankings varied by city and by zonas within each city, were fossil fuel combustion emitting hydrocarbons, combustion of sulfurous conventional fuels, soil/roadway dust, farm/agricultural dust, and vehicles (evaportion of gas, parts' wear).

  9. Modeling the Concentrations of On-Road Air Pollutants in Southern California

    PubMed Central

    Li, Lianfa; Wu, Jun; Hudda, Neelakshi; Sioutas, Constantinos; Fruin, Scott A.; Delfino, Ralph J.

    2014-01-01

    High concentrations of air pollutants on roadways, relative to ambient concentrations, contribute significantly to total personal exposure. Estimation of these exposures requires measurements or prediction of roadway concentrations. Our study develops, compares and evaluates linear regression and non-linear generalized additive models (GAMs) to estimate on-road concentrations of four key air pollutants, particle-bound polycyclic aromatic hydrocarbons (PB-PAH), particle number count (PNC), nitrogen oxides (NOx), and particulate matter with diameter <2.5 μm (PM2.5) using traffic, meteorology, and elevation variables. Critical predictors included wind speed and direction for all the pollutants, traffic-related variables for PB-PAH, PNC, and NOx, and air temperatures and relative humidity for PM2.5. GAMs explained 50%, 55%, 46%, and 71% of the variance for log or square-root transformed concentrations of PB-PAH, PNC, NOx, and PM2.5 respectively, an improvement of 5 to over 15% over the linear models. Accounting for temporal autocorrelation in the GAMs further improved the prediction, explaining 57-89% of the variance. We concluded that traffic and meteorological data are good predictors in estimating on-road traffic-related air pollutant concentrations and GAMs perform better for non-linear variables, such as meteorological parameters. PMID:23859442

  10. Gas-Phase Ambient Air Contaminants Exhibit Significant Dioxin-like and Estrogen-like Activity in Vitro

    PubMed Central

    Klein, Gail P.; Hodge, Erin M.; Diamond, Miriam L.; Yip, Amelia; Dann, Tom; Stern, Gary; Denison, Michael S.; Harper, Patricia A.

    2006-01-01

    Several adverse health effects, such as respiratory and cardiovascular morbidity, have been linked to exposure to particulate matter in ambient air; however, the biologic activity of gas-phase ambient organic air contaminants has not been examined as thoroughly. Using aryl hydrocarbon receptor (AHR)–based and estrogen receptor (ER)–based cell bioassay systems, we assessed the dioxin-like and estrogenic activities of gas-phase organic ambient air contaminants compared with those of particulate-phase contaminants using samples collected between seasons over 2 years from an urban and a rural location in the Greater Toronto Area, Canada. The concentration of the sum (∑) of polycyclic aromatic hydrocarbons, which was highest in the gas phase, was 10–100 times more abundant than that of ∑polychlorinated biphenyls, ∑nitro-polycyclic aromatic hydrocarbons, and ∑organochlorine pesticides, and 103 to 104 times more abundant than ∑polychlorinated dibenzo-p-dioxins/dibenzofurans. Gas-phase samples induced significant AHR- and ER-dependent gene expression. The activity of the gas-phase samples was greater than that of the particulate-phase samples in the estrogen assay and, in one case, in the AHR assay. We found no strong associations between either summer or winter seasons or urban or rural locations in the relative efficacy of the extracts in either the ER or AHR assay despite differences in chemical composition, concentrations, and abundance. Our results suggest that mechanistic studies of the health effects of ambient air must consider gas and particulate phases because chemicals present in both phases can affect AHR and ER signaling pathways. PMID:16675423

  11. Effects of the Deregulation on the Concentration of the Brazilian Air Transportation Industry

    NASA Technical Reports Server (NTRS)

    Guterres, Marcelo Xavier; Muller, Carlos

    2003-01-01

    This paper addresses the effects of the deregulation of the Brazilian air transportation industry in terms of the concentration of the market. We will show some metrics that are commonly used to study the concentration of the industry. This paper uses the Herfindhal- Hirschman Index. This index tends to zero in the competitive scenario, with a large number of small firms, and to one in case of a monopolistic scenario. The paper analyses the dynamics of the concentration of the Brazilian domestic air transportation market, in order to evaluate the effects of deregulation. We conclude that the Brazilian market presents oligopoly characteristics and aspects in its current structure that maintain the market concentrated in spite of the Deregulation measures adopted by the aeronautical authority. Keywords: Herfindhal-Hirschman Index, concentration, Deregulation

  12. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    SciTech Connect

    Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.; DiBartolomeo, D.L.; Russell, M.L.; Fisk, W.J.

    2002-01-01

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.

  13. Influence of indoor air conditions on radon concentration in a detached house.

    PubMed

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%.

  14. Influence of indoor air conditions on radon concentration in a detached house.

    PubMed

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%. PMID:23159846

  15. The effects of forced air flow and oxygen concentration on flammability, smoke density, and pyrolytic toxicity

    NASA Technical Reports Server (NTRS)

    Sauers, D. G.

    1976-01-01

    The question is posed whether forced air flow should be incorporated into flammability tests as a relevant variable. A test apparatus is described which permits tests to be conducted on small test specimens in a forced flow which is (continuously) variable over flow velocities from zero to 300 feet per minute (1.52 m/s). The effects of air-flow rate and oxygen concentration on flame propagation rate, maximum smoke density, and pyrolytic product toxicity were measured for a single material and were statistically evaluated. Regression analysis was used to graph the resulting relationships. It is concluded that air velocity is an important variable for laboratory flammability testing.

  16. A multiyear assessment of air quality benefits from China's emerging shale gas revolution: Urumqi as a case study.

    PubMed

    Song, Wei; Chang, Yunhua; Liu, Xuejun; Li, Kaihui; Gong, Yanming; He, Guixiang; Wang, Xiaoli; Christie, Peter; Zheng, Mei; Dore, Anthony J; Tian, Changyan

    2015-02-17

    China is seeking to unlock its shale gas in order to curb its notorious urban air pollution, but robust assessment of the impact on PM2.5 pollution of replacing coal with natural gas for winter heating is lacking. Here, using a whole-city heating energy shift opportunity offered by substantial reductions in coal combustion during the heating periods in Urumqi, northwest China, we conducted a four-year study to reveal the impact of replacing coal with natural gas on the mass concentrations and chemical components of PM2.5. We found a significant decline in PM2.5, major soluble ions and metal elements in PM2.5 in January of 2013 and 2014 compared with the same periods in 2012 and 2011, reflecting the positive effects on air quality of using natural gas as a heating fuel throughout the city. This occurred following complete replacement with natural gas for heating energy in October 2012. The weather conditions during winter did not show any significant variation over the four years of the study. Our results indicate that China and other developing nations will benefit greatly from a change in energy source, that is, increasing the contribution of either natural gas or shale gas to total energy consumption with a concomitant reduction in coal consumption.

  17. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  18. [Calibration of a room air gas monitor with certified reference gases].

    PubMed

    Krueger, W A; Trick, M; Schroeder, T H; Unertl, K E

    2003-12-01

    Photo-acoustic infrared spectrometry is considered to be the gold standard for on-line measurement of anesthetic waste gas in room air. For maintenance of the precision of the measurements, the manufacturer recommends calibration of the gas monitor monitor every 3-12 months. We investigated whether the use of reference gases with analysis certificate could serve as a feasible alternative to commercial recalibration. We connected a multi-gas monitor type1302 (Bruel & Kjaer, Naerum, Denmark) to compressed air bottles containing reference gases with analysis certificate. Using a T-piece with a flow-meter, we avoided the entry of room air during the calibration phase. Highly purified nitrogen was used for zero calibration. The reference concentrations for desflurane, enflurane, halothane, isoflurane, and sevoflurane ranged from 41.6-51.1 ml/m(3) (ppm) in synthetic air. Since there is an overlap of the infrared absorption spectra of volatile anesthetics with alcohol used in operating rooms, we performed a cross-compensation with iso-propanol (107.0 ppm). A two-point calibration was performed for N(2)O (96.2 and 979.0 ppm), followed by cross-compensation with CO(2). Nafion tubes were used in order to avoid erroneous measurements due to molecular relaxation phenomena. The deviation of the measurement values ranged initially from 0-2.0% and increased to up to 4.9% after 18 months. For N(2)O, the corresponding values were 4.2% and 2.7%, respectively. Thus, our calibration procedure using certified reference gases yielded precise measurements with low deterioration over 18 months. It seems to be advantageous that the precision can be determined whenever deemed necessary. This allows for an individual decision, when the gas monitor needs to be calibrated again. The costs for reference gases and working time as well as logistic aspects such as storage and expiration dates must be individually balanced against the costs for commercial recalibration. PMID:14691626

  19. Analysis of sampling strategies for estimating annual average indoor NO2 concentrations in residences with gas ranges.

    PubMed

    Wilkes, C R; Koontz, M D; Billick, I H

    1996-09-01

    Range gas consumption in households tends to follow an annual cycle resembling a sinusoid, with peak consumption during the winter. When outdoor NO2 concentrations have a constant or small impact, the resulting indoor NO2 concentrations also tend to resemble an annual sinusoid. Optimal monitoring strategies can be designed to take advantage of this knowledge to obtain a better estimate of the true annual average gas consumption or indoor NO2 concentration. Gas consumption data, together with measured outdoor concentrations, house volumes, sampled emission rates, air exchange rates, and NO2 decay rates, are used to model weekly indoor NO2 concentrations throughout the year. Based on the modeling results, various monitoring strategies are evaluated for their accuracy in estimating the annual mean. Analysis of the results indicates that greater accuracy is attained using samples equally spaced throughout the year. In addition, the expected error for various monitoring strategies and various numbers of equally spaced samples is quantified, and their ability to classify homes into correct concentration categories is assessed.

  20. Reprint of: A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-08-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  1. A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-01-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  2. A gravimetric approach to providing SI traceability for concentration measurement results of mercury vapor at ambient air levels

    NASA Astrophysics Data System (ADS)

    Ent, Hugo; van Andel, Inge; Heemskerk, Maurice; van Otterloo, Peter; Bavius, Wijnand; Baldan, Annarita; Horvat, Milena; Brown, Richard J. C.; Quétel, Christophe R.

    2014-11-01

    Current measurement and calibration capabilities for mercury vapor in air are maintained at levels of 0.2-40 μg Hg m-3. In this work, a mercury vapor generator has been developed to establish metrological traceability to the international system of units (SI) for mercury vapor measurement results ≤15 ng Hg m-3, i.e. closer to realistic ambient air concentrations (1-2 ng Hg m-3) [1]. Innovations developed included a modified type of diffusion cell, a new measurement method to weigh the loss in (mercury) mass of these diffusion cells during use (ca. 6-8 μg mass difference between successive weighings), and a new housing for the diffusion cells to maximize flow characteristics and to minimize temperature variations and adsorption effects. The newly developed mercury vapor generator system was tested by using diffusion cells generating 0.8 and 16 ng Hg min-1. The results also show that the filter system, to produce mercury free air, is working properly. Furthermore, and most importantly, the system is producing a flow with a stable mercury vapor content. Some additional improvements are still required to allow the developed mercury vapor generator to produce SI traceable mercury vapor concentrations, based upon gravimetry, at much lower concentration levels and reduced measurement uncertainties than have been achieved previously. The challenges to be met are especially related to developing more robust diffusion cells and better mass measurement conditions. The developed mercury vapor generator will contribute to more reliable measurement results of mercury vapor at ambient and background air levels, and also to better safety standards and cost reductions in industrial processes, such as the liquefied natural gas field, where aluminum main cryogenic heat exchangers are used which are particularly prone to corrosion caused by mercury.

  3. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  4. Laser induced fluorescence measurements of dissolved oxygen concentration fields near air bubble surfaces

    NASA Astrophysics Data System (ADS)

    Roy, Sabita; Duke, Steve R.

    2000-09-01

    This article describes a laser-induced fluorescence (LIF) technique for measuring dissolved oxygen concentration gradients in water near the surface of an air bubble. Air bubbles are created at the tip of a needle in a rectangular bubble column filled with water that contains pyrenebutyric acid (PBA). The fluorescence of the PBA is induced by a planar pulse of nitrogen laser light. Oxygen transferring from the air bubble to the deoxygenated water quenches the fluorescence of the PBA. Images of the instantaneous and two-dimensional fluorescence field are obtained by a UV-intensified charge-coupled device (CCD) camera. Quenching of fluorescence intensity is determined at each pixel in the CCD image to measure dissolved oxygen concentration. Two-dimensional concentration fields are presented for a series of measurements of oxygen transfer from 1.6 mm bubbles suspended on the tip of a needle in a quiescent fluid. The images show the spatially varying concentration profiles, gradients, and boundary layer thicknesses at positions around the bubble surfaces. These direct and local measurements of concentration behavior within the mass transfer boundary layer show the potential of this LIF technique for the development of general and mechanistic models for oxygen transport across the air-water interface.

  5. Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously

    SciTech Connect

    Meklin, Teija; Reponen, Tina; McKinstry, Craig A.; Cho, Seung H.; Grinshpun, Sergey A.; Nevalainen, Aino; Vepsalainen, Asko; Haugland, Richard A.; Lemasters, Grace; Vesper, Sephen J.

    2007-08-15

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of 36 mold species in dust and in indoor and in outdoor air samples that were taken simultaneously in 17 homes in Cincinnati with no-known water damage. The total spore concentrations in the indoor (I) and outdoor (O) air samples were statistically significantly different and the concentrations in the three sample types of many of the individual species were significantly different (p < 0.05 based on the Wilcoxon Signed Rank Test). The I/O ratios of the averages or geometric means of the individual species were generally less than 1; but these I/O ratios were quite variable ranging from 0.03 for A. sydowii to 1.2 for Acremonium strictum. There were no significant correlations for the 36 specific mold concentrations between the dust samples and the indoor or outdoor air samples (based on the Spearman’s Rho test). The indoor and outdoor air concentrations of 32 of the species were not correlated. Only Aspergillus penicillioides, C. cladosporioides types 1 and 2 and C. herbarum had sufficient data to estimate a correlation at rho > 0.5 with signicance (p < 0.05) In six of these homes, a previous dust sample had been collected and analyzed 2 years earlier. The ERMI© values for the dust samples taken in the same home two years apart were not significantly different (p=0.22) based on Wilcoxon Signed Rank Test.

  6. Co-benefits of Global Greenhouse Gas Mitigation for Future Air Quality and Human Health via Two Mechanisms

    NASA Astrophysics Data System (ADS)

    West, J.; Smith, S. J.; Silva, R.; Naik, V.; Adelman, Z.; Fry, M. M.; Anenberg, S.; Zhang, Y.; Horowitz, L. W.; Lamarque, J.; Emmons, L. K.

    2012-12-01

    Global actions to reduce greenhouse gas (GHG) emissions will also reduce co-emitted air pollutants, with immediate air quality benefits. Climate change itself affects air quality (e.g., via meteorology and biogenic emissions); therefore, actions to reduce GHG emissions will also influence air quality by slowing global climate change. These two mechanisms of air quality co-benefits - reducing co-emitted air pollutants and slowing climate change - have not previously been quantified in a self-consistent way. Here we simulate the co-benefits of global GHG emission reductions on air quality and human health via these two mechanisms in scenarios to 2100. Future emissions scenarios were developed by the GCAM global energy-economics model as part of the Representative Concentration Pathways (RCP) process. We simulate global air quality for a reference case scenario and a scenario with aggressive GHG controls internationally (RCP4.5). Future meteorology is from the Geophysical Fluid Dynamics Laboratory general circulation model (AM3) simulations of the RCP8.5 and RCP4.5 scenarios. Using the global chemical transport model MOZART-4, we simulate global changes in surface concentrations of ozone and fine particulate matter (PM2.5) for RCP4.5 relative to the reference case. The two co-benefit mechanisms are isolated by simulating reference case emissions with meteorology from RCP4.5 and RCP8.5. Co-benefits for future human mortality will be assessed using epidemiological concentration-response functions, and projections of future population and baseline mortality rates. Preliminary results indicate that the co-benefits of global GHG mitigation for ozone and PM2.5 are substantial globally and regionally, and that the direct co-benefits from reductions in emissions of co-emitted air pollutants exceed the co-benefits via slowing climate change. We aim to monetize the avoided mortalities as a basis for comparison with the costs of GHG mitigation.

  7. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin with Intensive Oil and Gas Production

    NASA Astrophysics Data System (ADS)

    Matichuk, R.; Tonnesen, G.; Luecken, D.; Roselle, S. J.; Napelenok, S. L.; Baker, K. R.; Gilliam, R. C.; Misenis, C.; Murphy, B.; Schwede, D. B.

    2015-12-01

    The western United States is an important source of domestic energy resources. One of the primary environmental impacts associated with oil and natural gas production is related to air emission releases of a number of air pollutants. Some of these pollutants are important precursors to the formation of ground-level ozone. To better understand ozone impacts and other air quality issues, photochemical air quality models are used to simulate the changes in pollutant concentrations in the atmosphere on local, regional, and national spatial scales. These models are important for air quality management because they assist in identifying source contributions to air quality problems and designing effective strategies to reduce harmful air pollutants. The success of predicting oil and natural gas air quality impacts depends on the accuracy of the input information, including emissions inventories, meteorological information, and boundary conditions. The treatment of chemical and physical processes within these models is equally important. However, given the limited amount of data collected for oil and natural gas production emissions in the past and the complex terrain and meteorological conditions in western states, the ability of these models to accurately predict pollution concentrations from these sources is uncertain. Therefore, this presentation will focus on understanding the Community Multiscale Air Quality (CMAQ) model's ability to predict air quality impacts associated with oil and natural gas production and its sensitivity to input uncertainties. The results will focus on winter ozone issues in the Uinta Basin, Utah and identify the factors contributing to model performance issues. The results of this study will help support future air quality model development, policy and regulatory decisions for the oil and gas sector.

  8. Gas sampling method for determining pollutant concentrations in the flame zone of two swirl-can combustor modules

    NASA Technical Reports Server (NTRS)

    Duerr, R. A.

    1975-01-01

    A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.

  9. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    PubMed

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  10. Simulating gas and aerosol concentrations in the Paris area using different land surface models

    NASA Astrophysics Data System (ADS)

    Khvorostyanov, Dmitry; Menut, Laurent; Dupont, Jean-Charles; Morille, Yoann; Haeffelin, Martial

    2010-05-01

    Regional air quality forecasting depends on the performance of weather forecast models used to drive chemistry-transport models. The widely used Weather Research and Forecasting (WRF) model provides a few land surface schemes (LSMs) to compute heat and moisture fluxes over land surface. The LSMs differ in complexity and approaches used. We performed WRF simulations for 15 and 5 km resolution nested domains over the North of France and Paris, respectively, for summer 2008. We used the four LSMs provided with WRF: 6-layer Rapid Update Cycle (RUC), 5-layer thermal diffusion, 2-layer Pleim-Xiu scheme (together with the Pleim-Xiu surface layer and the ACM boundary layer models), and 4-layer Noah scheme. The SIRTA atmospheric observatory located in Paris area provides in situ data of measurements for a number of meteorological parameters, as well as vertical profiles measured by a lidar. The simulation results were compared to the SIRTA measurement data. In order to quantify possible impacts of the LSMs to simulated gas and aerosol concentrations in the Paris region, we use a chemistry-transport model CHIMERE forced by the corresponding WRF meteorological fields. Implications for the regional air quality forecasting will be discussed.

  11. Air/fuel supply system for use in a gas turbine engine

    DOEpatents

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  12. Brominated flame retardants in the urban atmosphere of Northeast China: concentrations, temperature dependence and gas-particle partitioning.

    PubMed

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li; Li, Yi-Fan

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m(3) and 180 pg/m(3), respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas-particle partitioning coefficients (logKp) for most low molecular weight BFRs were highly temperature dependent as well. Gas-particle partitioning coefficients (logKp) also correlated with the sub-cooled liquid vapor pressure (logPL(o)). Our results indicated that absorption into organic matter is the main control mechanism for the gas-particle partitioning of atmospheric PBDEs.

  13. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  14. Modeled occupational exposures to gas-phase medical laser-generated air contaminants.

    PubMed

    Lippert, Julia F; Lacey, Steven E; Jones, Rachael M

    2014-01-01

    Exposure monitoring data indicate the potential for substantive exposure to laser-generated air contaminants (LGAC); however the diversity of medical lasers and their applications limit generalization from direct workplace monitoring. Emission rates of seven previously reported gas-phase constituents of medical laser-generated air contaminants (LGAC) were determined experimentally and used in a semi-empirical two-zone model to estimate a range of plausible occupational exposures to health care staff. Single-source emission rates were generated in an emission chamber as a one-compartment mass balance model at steady-state. Clinical facility parameters such as room size and ventilation rate were based on standard ventilation and environmental conditions required for a laser surgical facility in compliance with regulatory agencies. All input variables in the model including point source emission rates were varied over an appropriate distribution in a Monte Carlo simulation to generate a range of time-weighted average (TWA) concentrations in the near and far field zones of the room in a conservative approach inclusive of all contributing factors to inform future predictive models. The concentrations were assessed for risk and the highest values were shown to be at least three orders of magnitude lower than the relevant occupational exposure limits (OELs). Estimated values do not appear to present a significant exposure hazard within the conditions of our emission rate estimates. PMID:24762065

  15. Using eddy covariance to estimate air-sea gas transfer velocity for oxygen

    NASA Astrophysics Data System (ADS)

    Andersson, Andreas; Rutgersson, Anna; Sahlée, Erik

    2016-07-01

    Air-sea gas transfer velocity for O2 is calculated using directly measured fluxes with the eddy covariance technique. It is a direct method and is frequently used to determine fluxes of heat, humidity, and CO2, but has not previously been used to estimate transfer velocities for O2, using atmospheric eddy covariance data. The measured O2 fluxes are upward directed, in agreement with the measured air-sea gradient of the O2 concentration, and opposite to the direction of the simultaneously measured CO2 fluxes. The transfer velocities estimated from measurements are compared with prominent wind speed parameterizations of the transfer velocity for CO2 and O2, previously established from various measurement techniques. Our result indicates stronger wind speed dependence for the transfer velocity of O2 compared to CO2 starting at intermediate wind speeds. This stronger wind speed dependence appears to coincide with the onset of whitecap formation in the flux footprint and the strong curvature of a cubic wind-dependent function for the transfer velocity provides the best fit to the data. Additional data using the measured O2 flux and an indirect method (based on the Photosynthetic Quotient) to estimate oxygen concentration in water, support the stronger wind dependence for the transfer velocity of O2 compared to CO2.

  16. Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery.

    PubMed

    Jin, Zhengyu; Gong, Hui; Wang, Kaijun

    2015-01-01

    The idea of sewage concentration is gradually being accepted as a promising and sustainable way of wastewater resource recovery. In this study, Hybrid coagulation microfiltration (HCM) with air backflushing (AB) was investigated to effectively concentrate organic matter. Compared to direct sewage microfiltration, the addition of coagulation process improved the filtration performance with less fouling trends and better concentration efficiency. The use of AB exhibited even better performance within the same 7-h preliminary concentration period by reducing to one tenth of the resistance and collecting around four times as much organic matter into the product concentrate as in direct sewage microfiltration. During 93-h lab-scale continuous concentration by HCM with AB, a product concentrate with the COD concentration over 15,000 mg/L was achieved and around 70% of total influent organic matter could be recovered. Compared to Direct Membrane Filtration (DMF) with Chemically Enhanced Backwash (CEB), HCM with AB achieved better concentration efficiency with higher concentration extent and concentration velocity along with less organic matter mineralization and the more concentrated product despite with lower organic matter retention. HCM with AB could be a promising effective sewage organic matter concentration for resource recovery under optimization.

  17. Ambient air concentration of sulfur dioxide affects flight activity in bees

    SciTech Connect

    Ginevan, M.E.; Lane, D.D.; Greenberg, L.

    1980-10-01

    Three long-term (16 to 29 days) low-level (0.14 to 0.28 ppM) sulfur dioxide fumigations showed that exposure tothis gas has deleterious effects on male sweat bees (Lasioglossum zephrum). Although effects on mortality were equivocal, flight activity was definitely reduced. Because flight is necessary for successful mating behavior, the results suggest that sulfur dioxide air pollution could adversely affect this and doubtless other terrestrial insects.

  18. Estimating gas concentration using a microcantilever-based electronic

    SciTech Connect

    Leis, J. W.; Zhao, Weichang; Pinnaduwage, Lal A; Gehl, Anthony C; Allman, Steve L; Shepp, A.; Mahmud, K.

    2010-01-01

    This paper investigates the determination of the concentration of a chemical vapor as a function of several nonspecific microcantilever array sensors. The nerve agent dimethyl methyl phosphonate (DMMP) in parts-per-billion concentrations in binary and ternary mixtures is able to be resolved when present in a mixture containing parts-per-million concentrations of water and ethanol. The goal is to not only detect the presence of DMMP, but additionally to map the nonspecific output of the sensor array onto a concentration scale. We investigate both linear and nonlinear approaches the linear approach uses a separate least-squares model for each component, and a nonlinear approach which estimates the component concentrations in parallel. Application of both models to experimental data indicate that both models are able to produce bounded estimates of concentration, but that the outlier performance favors the linear model. The linear model is better suited to portable handheld analyzer, where processing and memory resources are constrained.

  19. A Comparison of Statistical Techniques for Combining Modeled and Observed Concentrations to Create High-Resolution Ozone Air Quality Surfaces

    EPA Science Inventory

    Air quality surfaces representing pollutant concentrations across space and time are needed for many applications, including tracking trends and relating air quality to human and ecosystem health. The spatial and temporal characteristics of these surfaces may reveal new informat...

  20. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  1. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  2. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  3. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  4. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  5. Photoinduced nucleation: a novel tool for detecting molecules in air at ultra-low concentrations

    DOEpatents

    Katz, Joseph L.; Lihavainen, Heikki; Rudek, Markus M.; Salter, Brian C.

    2002-01-01

    A method and apparatus for determining the presence of molecules in a gas at concentrations of less than about 100 ppb. Light having wavelengths in the range from about 200 nm to about 350 nm is used to illuminate a flowing sample of the gas causing the molecules if present to form clusters. A mixture of the illuminated gas and a vapor is cooled until the vapor is supersaturated so that there is a small rate of homogeneous nucleation. The supersaturated vapor condenses on the clusters thus causing the clusters to grow to a size sufficient to be counted by light scattering and then the clusters are counted.

  6. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  7. Modeling and Impacts of Traffic Emissions on Air Toxics Concentrations near Roadways

    EPA Science Inventory

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency’s AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwin...

  8. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    SciTech Connect

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  9. Removing a small quantity of THT from gas storage groundwater through air stripping and gas-phase carbon adsorption

    SciTech Connect

    Girod, J.F.; Leclerc, J.P.; Muhr, H.

    1996-12-31

    This paper deals with the response to a case of contaminated groundwater located in France. The natural gas is stored during summer in porous underground rocks. When energy requirements increase (particularly in winter), gas is drawn off, but water is also pumped during this operation. The water has a strong characteristic odour of the TetraHydroThiophene (THT), which has been used by Gaz de France as an additive in order to detect gas leakages because of its strong odour. Unfortunately, the presence of THT in medium other than natural gas can be responsible for safety problems. Gas stripping combined with adsorption on granular activated carbon was chosen to obtain removal of THT from the groundwater. The gas to water ratio for stripping column is higher than usual and the gas used for stripping was recycled in order to prevent air pollution. Carbon consumption is approximately 3 tons a year. 8 refs., 5 figs., 2 tabs.

  10. Measurements of alkali concentrations in an oxygen-natural gas-fired soda-lime-silica glass furnace

    SciTech Connect

    S. G. Buckley; P. M. Walsh; D. w. Hahn; R. J. Gallagher; M. K. Misra; J. T. Brown; F. Quan; K. Bhatia; V. I. Henry; R. D. Moore

    1999-10-18

    Sodium species vaporized from melting batch and molten glass in tank furnaces are the principal agents of corrosion of superstructure refractory and main contributors to emissions of particulate matter from glass melting. The use of oxygen in place of air for combustion of natural gas reduces particulate emissions, but is thought to accelerate corrosion in some melting tanks. Methods for measuring sodium are under investigation as means for identifying the volatilization, transport, and deposition mechanisms and developing strategies for control. Three separate methods were used to measure the concentrations of sodium species at various locations in an oxygen-natural gas-fired soda-lime-silica glass melting tank. Measurements were made inside the furnace using the absorption of visible light and in the flue duct using Laser-Induced Breakdown Spectroscopy (LIBS). Measurements in both the furnace and flue were also made by withdrawing and analyzing samples of the furnace gas.

  11. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic.

    PubMed

    Dickerson, Aisha S; Rahbar, Mohammad H; Bakian, Amanda V; Bilder, Deborah A; Harrington, Rebecca A; Pettygrove, Sydney; Kirby, Russell S; Durkin, Maureen S; Han, Inkyu; Moyé, Lemuel A; Pearson, Deborah A; Wingate, Martha Slay; Zahorodny, Walter M

    2016-07-01

    Lead, mercury, and arsenic are neurotoxicants with known effects on neurodevelopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder apparent by early childhood. Using data on 4486 children with ASD residing in 2489 census tracts in five sites of the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring (ADDM) Network, we used multi-level negative binomial models to investigate if ambient lead, mercury, and arsenic concentrations, as measured by the US Environmental Protection Agency National-Scale Air Toxics Assessment (EPA-NATA), were associated with ASD prevalence. In unadjusted analyses, ambient metal concentrations were negatively associated with ASD prevalence. After adjusting for confounding factors, tracts with air concentrations of lead in the highest quartile had significantly higher ASD prevalence than tracts with lead concentrations in the lowest quartile (prevalence ratio (PR) = 1.36; 95 '% CI: 1.18, 1.57). In addition, tracts with mercury concentrations above the 75th percentile (>1.7 ng/m(3)) and arsenic concentrations below the 75th percentile (≤0.13 ng/m(3)) had a significantly higher ASD prevalence (adjusted RR = 1.20; 95 % CI: 1.03, 1.40) compared to tracts with arsenic, lead, and mercury concentrations below the 75th percentile. Our results suggest a possible association between ambient lead concentrations and ASD prevalence and demonstrate that exposure to multiple metals may have synergistic effects on ASD prevalence.

  12. Spatial concentration distribution model for short-range continuous gas leakage of small amount

    NASA Astrophysics Data System (ADS)

    Wang, Meirong; Wang, Lingxue; Li, Jiakun; Long, Yunting; Gao, Yue

    2012-06-01

    Passive infrared gas imaging systems have been utilized in the equipment leak detection and repair in chemical manufacturers and petroleum refineries. The detection performance mainly relates to the sensitivity of infrared detector, optical depth of gas, atmospheric transmission, wind speed, and so on. Based on our knowledge, the spatial concentration distribution of continuously leaking gas plays an important part in leak detection. Several computational model of gas diffusion were proposed by researchers, such as Gaussian model, BM model, Sutton model and FEM3 model. But these models focus on calculating a large scale gas concentration distribution for a great amount of gas leaks above over 100- meter height, and not applicable to assess detection limit of a gas imaging system in short range. In this paper, a wind tunnel experiment is designed. Under different leaking rate and wind speed, concentration in different spatial positions is measured by portable gas detectors. Through analyzing the experimental data, the two parameters σy(x) and σz (x) that determine the plume dispersion in Gaussian model are adjusted to produce the best curve fit to the gas concentration data. Then a concentration distribution model for small mount gas leakage in short range is established. Various gases, ethylene and methane are used to testify this model.

  13. Estimation of background gas concentration from differential absorption lidar measurements

    NASA Astrophysics Data System (ADS)

    Harris, Peter; Smith, Nadia; Livina, Valerie; Gardiner, Tom; Robinson, Rod; Innocenti, Fabrizio

    2016-10-01

    Approaches are considered to estimate the background concentration level of a target species in the atmosphere from an analysis of the measured data provided by the National Physical Laboratory's differential absorption lidar (DIAL) system. The estimation of the background concentration level is necessary for an accurate quantification of the concentration level of the target species within a plume, which is the quantity of interest. The focus of the paper is on methodologies for estimating the background concentration level and, in particular, contrasting the assumptions about the functional and statistical models that underpin those methodologies. An approach is described to characterise the noise in the recorded signals, which is necessary for a reliable estimate of the background concentration level. Results for measured data provided by a field measurement are presented, and ideas for future work are discussed.

  14. Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers.

    PubMed

    Xie, Peng; Lin, Huichuan; Liu, Yong; Li, Baojun

    2014-10-20

    We present a waveguide coupling approach for planar waveguide solar concentrator. In this approach, total internal reflection (TIR)-based symmetric air prisms are used as couplers to increase the coupler reflectivity and to maximize the optical efficiency. The proposed concentrator consists of a line focusing cylindrical lens array over a planar waveguide. The TIR-based couplers are located at the focal line of each lens to couple the focused sunlight into the waveguide. The optical system was modeled and simulated with a commercial ray tracing software (Zemax). Results show that the system used with optimized TIR-based couplers can achieve 70% optical efficiency at 50 × geometrical concentration ratio, resulting in a flux concentration ratio of 35 without additional secondary concentrator. An acceptance angle of ± 7.5° is achieved in the x-z plane due to the use of cylindrical lens array as the primary concentrator.

  15. On The Impact of Borescope Camera Air Purge on DWPF Melter Off-Gas Flammability

    SciTech Connect

    CHOI, ALEXANDER

    2004-07-22

    DWPF Engineering personnel requested that a new minimum backup film cooler air flow rate, which will meet the off-gas safety basis limits for both normal and seismic sludge-only operations, be calculated when the air purge to the borescope cameras is isolated from the melter. Specifically, it was requested that the latest calculations which were used to set the off-gas flammability safety bases for the sludge batch 2 and 3 feeds be revised, while maintaining all other process variables affecting off-gas flammability such as total organic carbon (TOC), feed rate, melter air purges, and vapor space temperature at their current respective maximum or minimum limits. Before attempting to calculate the new minimum backup film cooler air flow, some of the key elements of the combustion model were reviewed, and it was determined that the current minimum backup film cooler air flow of 233 lb/hr is adequate to satisfy the off-gas flammability safety bases for both normal and seismic operations i n the absence of any borescope camera air purge. It is, therefore, concluded that there is no need to revise the reference E-7 calculations. This conclusion is in essence based on the fact that the current minimum backup film cooler air flow was set to satisfy the minimum combustion air requirement under the worst-case operating scenario involving a design basis earthquake during which all the air purges not only to the borescope cameras but to the seal pot are presumed to be lost due to pipe ruptures. The minimum combustion air purge is currently set at 150 per cent of the stoichiometric air flow required to combust 3 times the normal flow of flammable gases. The DWPF control strategy has been that 100 per cent of the required minimum combustion air is to be provided by the controlled air purge through the backup film cooler alone.

  16. Deposition and air concentrations of permethrin and naled used for adult mosquito management.

    PubMed

    Schleier, Jerome J; Peterson, Robert K D

    2010-01-01

    One of the most effective ways of managing adult mosquitoes that vector human and animal pathogens is the use of ultra-low-volume (ULV) insecticides. Because of the lack of environmental fate studies and concerns about the safety of the insecticides used for the management of adult mosquitoes, we conducted an environmental fate study after truck-mounted applications of permethrin and naled. One hour after application, concentrations of permethrin on cotton dosimeters placed at ground level 25, 50, and 75 m from the spray source were 2, 4, and 1 ng/cm2 in 2007 and 5, 2, and 0.9 ng/cm2 in 2008, respectively. One hour after application, concentrations of naled 25, 50, and 75 m were 47, 66, and 67 ng/cm2 in 2007 and 15, 6.1, and 0 (nondetectable) ng/cm2 in 2008, respectively. Deposition concentrations 12 h after application were not significantly different than 1 h after application for permethrin and naled either year. During 2007 and 2008 permethrin applications, two quantifiable air concentrations of 375 and 397 ng/m3 were observed 1 h after application. In 2007 and 2008, naled air concentrations ranged from 2300 to 4000 ng/m3 1 h after application. There were no quantifiable air concentrations between 1 and 12 h after application in either 2007 or 2008 for both naled and permethrin. Environmental concentrations observed in this study demonstrate that models used in previous risk assessments were sufficiently conservative (i.e., the models overestimated environmental concentrations). However, we also demonstrate inadequacies of models such as AgDrift and AGDISP, which currently are used by the US Environmental Protection Agency to estimate environmental concentrations of ULV insecticides. PMID:19536586

  17. Application of LIF to investigate gas transfer near the air-water interface in a grid-stirred tank

    NASA Astrophysics Data System (ADS)

    Herlina; Jirka, G. H.

    The interaction between oxygen absorption into liquids and bottom shear-induced turbulence was investigated in a grid-stirred tank using a laser-induced fluorescence (LIF) technique. The LIF technique enabled visualization as well as quantification of planar concentration fields of the dissolved oxygen (DO) near the air-water interface. Qualitative observation of the images provided more insight into the physical mechanism controlling the gas transfer process. The high data resolution is an advantage for revealing the concentration distribution within the boundary layer, which is a few hundreds of a micrometer thick. Mean and turbulent fluctuation characteristics were obtained and compared with previous results.

  18. Contributions of gas flaring to a global air pollution hotspot: Spatial and temporal variations, impacts and alleviation

    NASA Astrophysics Data System (ADS)

    Anejionu, Obinna C. D.; Whyatt, J. Duncan; Blackburn, G. Alan; Price, Catheryn S.

    2015-10-01

    Studies of environmental impacts of gas flaring in the Niger Delta are hindered by limited access to official flaring emissions records and a paucity of reliable ambient monitoring data. This study uses a combination of geospatial technologies and dispersion modelling techniques to evaluate air pollution impacts of gas flaring on human health and natural ecosystems in the region. Results indicate that gas flaring is a major contributor to air pollution across the region, with concentrations exceeding WHO limits in some locations over certain time periods. Due to the predominant south-westerly wind, concentrations are higher in some states with little flaring activity than in others with significant flaring activity. Twenty million people inhabit areas of high flare-associated air pollution, which include all of the main ecological zones of the region, indicating that flaring poses a substantial threat to human health and the environment. Model scenarios demonstrated that substantial reductions in pollution could be achieved by stopping flaring at a small number of the most active sites and by improving overall flaring efficiency.

  19. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity. PMID:20681430

  20. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  1. Optical and probe determination of soot concentrations in a model gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Eckerle, W. A.; Rosfjord, T. J.

    1986-01-01

    An experimental program was conducted to track the variation in soot loading in a generic gas turbine combustor. The burner is a 12.7-cm dia cylindrical device consisting of six sheet-metal louvers. Determination of soot loading along the burner length is achieved by measurement at the exit of the combustor and then at upstream stations by sequential removal of liner louvers to shorten burner length. Alteration of the flow field approaching and within the shortened burners is minimized by bypassing flow in order to maintain a constant linear pressure drop. The burner exhaust flow is sampled at the burner centerline to determine soot mass concentration and smoke number. Characteristic particle size and number density, transmissivity of the exhaust flow, and local radiation from luminous soot particles in the exhaust are determined by optical techniques. Four test fuels are burned at three fuel-air ratios to determine fuel chemical property and flow temperature influences. Particulate concentration data indicate a strong oxidation mechanism in the combustor secondary zone, though the oxidation is significantly affected by flow temperature. Soot production is directly related to fuel smoke point.

  2. High pressure ceramic air heater for indirectly fired gas turbine applications

    SciTech Connect

    LaHaye, P.G.; Briggs, G.F.; Orozxo, N.J.; Seger, J.L.

    1993-11-01

    The EFCC cycle is conceptually simple. Air enters the compressor where it is pressurized and becomes the tube-side flow of the ceramic air heater. Heat transferred from the hot combustion gases flowing through the shell-side raises the air temperature to the desired turbine inlet temperature. Internally insulated high pressure piping returns the heated compressor air to the turbine, where it is expanded providing power to drive the electric generator and gas turbine compressor. Exhaust air from the turbine is used as the combustion air for the coal combustor. The EFCC cycle burns pulverized coal in an atmospheric combustion chamber similar to the combustion system in a conventional steam generator. The combustion gas exits the combustor and enters a slag screen, or impact separator, where the larger ash particles are collected to prevent fouling of the heat exchanger. After the slag screen, the combustion gas enters the shell-side of the CerHX where its thermal energy is transferred to the tube side air flow. Shell-side exit temperatures are sufficiently high to provide thermal energy for the bottoming Rankine Cycle through a heat recovery steam generator. Exhaust gas exiting the steam generator passes through a flue gas desulfurization system and a particulate removal system.

  3. Study of a cave's air exchange pattern based on radon concentration and the time dependence of radon concentration in Pál-völgy Cave (Budapest, Hungary)

    NASA Astrophysics Data System (ADS)

    Nagy, H. E.; Horvath, A.; Jordan, Gy.; Szabo, Cs.; Kiss, A.

    2012-04-01

    A long-term (one year and a half), high resolution, with an integration time of one hour, radon concentration monitoring was carried out in Pál-völgy Cave (Budapest, Hungary). Our major goal was to determine the time dependence of radon concentration in the cave and to understand the exchange pattern of the cave air with the outdoor air based on radon concentrations, and to determine the factors that affect the radon concentration in the cave air. Pál-völgy Cave is situated in the Buda Hills, which is the NE part of the Transdanubian Central Range. The wall rock of the cave is dominantly Eocene Szépvölgy Limestone Formation. Above the limestone Eocene Buda Marl and Oligocene Tard Clay are deposited. A huge multiphase hydrothermal cave system developed in the Szépvölgy Limestone and partially in the Buda Marl resulted in a long-term complex paleokarstic evolution from the Late Eocene to the Quaternary. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were also collected simultaneously. The arithmetic mean of the annual radon concentration was 1.9 kBq/m3 and the radon concentration varied between 104-7,776 Bq/m3. In addition, the results indicate a clear seasonal variability of radon concentration in the cave air: in winter the radon concentration fluctuates around a low mean value of 253 Bq/m3, in summer it oscillates around a high mean value of 5,504 Bq/m3, whereas in spring and autumn the radon level varies between the winter and summer values. The summer to winter radon concentration ratio (radon concentration in summer/radon concentration in winter) was high, 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, Pierson's linear correlation coefficient is 0.76. If the outdoor air temperature is lower than the cave air temperature (12 °C), especially in autumn and winter the air flows from outside into the

  4. Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems.

    PubMed

    Brun, C P; Miron, D; Silla, L M R; Pasqualotto, A C

    2013-04-01

    Invasive fungal diseases have emerged as important causes of morbidity and mortality in haematological patients. In this study air samples were collected in two haematopoietic stem cell transplantation (HSCT) units, in which distinct air-control systems were in place. In hospital 1 no high-efficiency particulate air (HEPA) filter was available whereas in hospital 2 HSCT rooms were equipped with HEPA filters, with positive air pressure in relation to the corridor. A total of 117 samples from rooms, toilets and corridors were obtained during December 2009 to January 2011, using a six-stage Andersen sampler. In both hospitals, the concentration of potentially pathogenic fungi in the air was reduced in patients' rooms compared to corridors (P < 0·0001). Despite the presence of a HEPA filter in hospital 2, rooms in both hospitals showed similar concentrations of potentially pathogenic fungi (P = 0·714). These findings may be explained by the implementation of additional protective measures in hospital 1, emphasizing the importance of such measures in protected environments. PMID:22691688

  5. Investigation of air pollution concentration in Kathmandu valley during winter season.

    PubMed

    Kondo, Akir; Kaga, Akikazu; Imamura, Kiyoshi; Inoue, Yoshio; Sugisawa, Masahiko; Shrestha, Manohar Lal; Sapkota, Balkrishan

    2005-01-01

    The monthly concentrations of NO2, NOx, SO2 and O3 measured by a passive sampler from February 2003 to January 2004 showed that the air pollution during the winter season in Kathmandu valley was higher than the summer season. The O3 level was found the highest during April, May and June due to strong radiation. The hourly concentrations of NO2, NOx, O3 and suspended particulate matter (SPM) were also measured by automatic instruments on December 2003. Temperature at the height of 60 m and 400 m at Raniban Mountain in the northwest of Kathmandu valley was measured on February 2001 in the winter season and the average potential temperature gradient was estimated from observed temperature. Wind speed was also measured at the department of hydrology, airport section, from 18 February to 6 March 2001. It was found that the stable layer and the calm condition in the atmosphere strongly affected the appearance of the maximum concentrations of NO2 and SPM in the morning, and that the unstable layer and the windy condition in the atmosphere was considerably relevant to the decrease of air pollution concentrations at daytime. The emission amounts of NOx, HCs and total suspended particle(TSP) from transport sector in 2003 were estimated from the increasing rate of vehicles on the basis of the emission amounts in 1993 to be 3751 t/a, 30570 t/a and 1317 t/a, respectively. The diurnal concentrations in 2003 calculated by the two-layers box model reproduced the characteristics of air pollution in Kathmandu valley such as the maximum value of O3 and its time, the maximum value of NO in the morning, and the decrease of NO and NO2 at daytime. The comparison with the concentrations in 1993 calculated suggested that the main cause of air pollution was the emission from transport sector.

  6. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples.

  7. The Use of an Air-Natural Gas Flame in Atomic Absorption.

    ERIC Educational Resources Information Center

    Melucci, Robert C.

    1983-01-01

    Points out that excellent results are obtained using an air-natural gas flame in atomic absorption experiments rather than using an air-acetylene flame. Good results are obtained for alkali metals, copper, cadmium, and zinc but not for the alkaline earths since they form refractory oxides. (Author/JN)

  8. Cooling air recycling for gas turbine transition duct end frame and related method

    DOEpatents

    Cromer, Robert Harold; Bechtel, William Theodore; Sutcu, Maz

    2002-01-01

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  9. Air toxics concentrations, source identification, and health risks: An air pollution hot spot in southwest Memphis, TN

    NASA Astrophysics Data System (ADS)

    Jia, Chunrong; Foran, Jeffery

    2013-12-01

    Southwest Memphis is a residential region surrounded by fossil fuel burning, steel, refining, and food processing industries, and considerable mobile sources whose emissions may pose adverse health risks to local residents. This study characterizes cancer and non-cancer risks resulting from exposure to ambient air toxics in southwest Memphis. Air toxics samples were collected at a central location every 6 days from June 5, 2008 to January 8, 2010. Volatile organic compounds (VOCs) were collected in evacuated stainless-steel canisters and aldehydes by DNPH cartridges, and samples were analyzed for 73 target compounds. A total of 60 compounds were detected and 39 were found in over 86% of the samples. Mean concentrations of many compounds were higher than those measured in many industrial communities throughout the U.S. The cumulative cancer risk associated with exposure to 13 carcinogens found in southwest Memphis air was 2.3 × 10-4, four times higher than the national average of 5.0 × 10-5. Three risk drivers were identified: benzene, formaldehyde, and acrylonitrile, which contributed 43%, 19%, and 14% to the cumulative risk, respectively. This is the first field study to confirm acrylonitrile as a potential risk driver. Mobile, secondary, industrial, and background sources contributed 57%, 24%, 14%, and 5% of the risk, respectively. The results of this study indicate that southwest Memphis, a region of significant income, racial, and social disparities, is also a region under significant environmental stress compared with surrounding areas and communities.

  10. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs.

  11. Air conditioning impact on the dynamics of radon and its daughters concentration.

    PubMed

    Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz

    2014-12-01

    Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation.

  12. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs. PMID:22739680

  13. Air conditioning impact on the dynamics of radon and its daughters concentration.

    PubMed

    Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz

    2014-12-01

    Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation. PMID:24375376

  14. Polybrominated diphenyl ethers in air across China: levels, compositions, and gas-particle partitioning.

    PubMed

    Yang, Meng; Qi, Hong; Jia, Hong-Liang; Ren, Nan-Qi; Ding, Yong-Sheng; Ma, Wan-Li; Liu, Li-Yan; Hung, Hayley; Sverko, Ed; Li, Yi-Fan

    2013-08-01

    Air samples were concurrently collected using high volume air samplers for 24 h every week from September 2008 to August 2009 at 15 sites (11 urban, 1 suburban, and 3 background/rural) across China. Twelve polybrominated diphenyl ether (PBDE) congeners (BDE-17, -28, -47, -66, -85, -99, -100, -138, -153, -154, -183, and -209) were measured. Total PBDE concentrations (∑12PBDEs) in air (gas + particle phases) were in the range of 11.0-838 pg m(-3) with a mean of 232 ± 72 (mean ± SE) pg m(-3). The site with the highest concentration was Guangzhou (838 ± 126 pg m(-3)), followed by Beijing (781 ± 107 pg m(-3)). Significant positive correlations were found between PBDEs levels and urban population (R = 0.69, P < 0.05) and gross industrial output values (R = 0.87, P < 0.001) as well. BDE-209 was the dominating congener with the contribution of 64 ± 23% to ∑12PBDEs, followed by BDE-47(8 ± 8%) and -99(6 ± 5%) at all urban and suburban sites. At background/rural sites, however, BDE-47 was the dominating congener, followed by BDE-99, together accounting for 52 ± 21% of ∑12PBDEs, while BDE-209 was only 11 ± 2%. It was found that PBDEs at the 15 sites showed a primary distribution and fractionation pattern. This study produced more than 700 pairs of air samples in gaseous and particulate phases with a wide temperature range of ∼60 °C, providing a good opportunity to investigate gas-particle partitioning for individual PBDE congeners. The results of gas-particle partitioning analysis for PBDEs using both subcooled-liquid-vapor pressure (PL)-based and octanol-air partition coefficient (KOA)-based models indicated that PBDEs in air at all sampling sites had not reached equilibrium because the slope values (mO) in the KOA-based equation and the opposite slope values (mP) in the PL-based equation at all 15 sampling sites were less than 1. It also found that both mO and -mP were significantly and positively correlated with the annual average temperatures of sampling

  15. Particle-phase concentrations of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in southern Germany

    PubMed Central

    Baumbach, Günter; Kuch, Bertram; Scheffknecht, Günter

    2010-01-01

    An important source of polycyclic aromatic hydrocarbons (PAHs) in residential areas, particularly in the winter season, is the burning process when wood is used for domestic heating. The target of this study was to investigate the particle-phase PAH composition of ambient samples in order to assess the influence of wood combustion on air quality in residential areas. PM10 samples (particulate matter <10 μm) were collected during two winter seasons at two rural residential areas near Stuttgart in Germany. Samples were extracted using toluene in an ultrasonic bath and subsequently analysed by gas chromatography–mass spectrometry. Twenty-one PAH compounds were detected and quantified. The PAH fingerprints of different wood combustion emissions were found in significant amounts in ambient samples and high correlations between total PAHs and other wood smoke tracers were found, indicating the dominant influence of wood combustion on air quality in residential areas. Carcinogenic PAHs were detected in high concentrations and contributed 49% of the total PAHs in the ambient air. To assess the health risk, we investigated the exposure profile of individual PAHs. The findings suggest that attention should be focused on using the best combustion technology available to reduce emissions from wood-fired heating during the winter in residential areas. PMID:20495599

  16. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    NASA Astrophysics Data System (ADS)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  17. Detonation propagation in hydrogen-air mixtures with transverse concentration gradients

    NASA Astrophysics Data System (ADS)

    Boeck, L. R.; Berger, F. M.; Hasslberger, J.; Sattelmayer, T.

    2016-03-01

    The influence of transverse concentration gradients on detonation propagation in H_2-air mixtures is investigated experimentally in a wide parameter range. Detonation fronts are characterized by means of high-speed shadowgraphy, OH* imaging, pressure measurements, and soot foils. Steep concentration gradients at low average H_2 concentrations lead to single-headed detonations. A maximum velocity deficit compared to the Chapman-Jouguet velocity of 9 % is observed. Significant amounts of mixture seem to be consumed by turbulent deflagration behind the leading detonation. Wall pressure measurements show high local pressure peaks due to strong transverse waves caused by the concentration gradients. Higher average H_2 concentrations or weaker gradients allow for multi-headed detonation propagation.

  18. Determining the long-term effects of H₂S concentration, relative humidity and air temperature on concrete sewer corrosion.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L

    2014-11-15

    Many studies of sewer corrosion are performed in accelerated conditions that are not representing the actual corrosion processes. This study investigated the effects of various factors over 3.5 years under controlled conditions simulating the sewer environment. Concrete coupons prepared from precorroded sewers were exposed, both in the gas phase and partially submerged in wastewater, in laboratory controlled corrosion chambers. Over the 45 month exposure period, three environmental factors of H2S concentration, relative humidity and air temperature were controlled at different levels in the corrosion chambers. A total of 36 exposure conditions were investigated to determine the long term effects of these factors by regular retrieval of concrete coupons for detailed analysis of surface pH, corrosion layer sulfate levels and concrete loss. Corrosion rates were also determined for different exposure periods. It was found that the corrosion rate of both gas-phase and partially-submerged coupons was positively correlated with the H2S concentration in the gas phase. Relative humidity played also a role for the corrosion activity of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as the surfaces of these coupons were saturated due to capillary suction of sewage on the coupon surface. The effect of temperature on corrosion activity varied and possibly the acclimation of corrosion-inducing microbes to temperature mitigated effects of that factor. It was apparent that biological sulfide oxidation was not the limiting step of the overall corrosion process. These findings provide real insights into the long-term effects of these key environmental factors on the sewer corrosion processes.

  19. Determining the long-term effects of H₂S concentration, relative humidity and air temperature on concrete sewer corrosion.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L

    2014-11-15

    Many studies of sewer corrosion are performed in accelerated conditions that are not representing the actual corrosion processes. This study investigated the effects of various factors over 3.5 years under controlled conditions simulating the sewer environment. Concrete coupons prepared from precorroded sewers were exposed, both in the gas phase and partially submerged in wastewater, in laboratory controlled corrosion chambers. Over the 45 month exposure period, three environmental factors of H2S concentration, relative humidity and air temperature were controlled at different levels in the corrosion chambers. A total of 36 exposure conditions were investigated to determine the long term effects of these factors by regular retrieval of concrete coupons for detailed analysis of surface pH, corrosion layer sulfate levels and concrete loss. Corrosion rates were also determined for different exposure periods. It was found that the corrosion rate of both gas-phase and partially-submerged coupons was positively correlated with the H2S concentration in the gas phase. Relative humidity played also a role for the corrosion activity of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as the surfaces of these coupons were saturated due to capillary suction of sewage on the coupon surface. The effect of temperature on corrosion activity varied and possibly the acclimation of corrosion-inducing microbes to temperature mitigated effects of that factor. It was apparent that biological sulfide oxidation was not the limiting step of the overall corrosion process. These findings provide real insights into the long-term effects of these key environmental factors on the sewer corrosion processes. PMID:25108169

  20. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  1. Concentrations and patterns of polychlorinated naphthalenes in urban air in Beijing, China.

    PubMed

    Xue, Lingnan; Zhang, Lifei; Yan, Yan; Dong, Liang; Huang, Yeru; Li, Xiaoxiu

    2016-11-01

    Air samples were collected, using a high-volume air sampler, at an urban site in Beijing from April 2014 to March 2015. The polychlorinated naphthalene (PCN) concentration in the atmosphere in each season was determined. The total PCN (total target tri- to octachloronaphthalene congeners) concentrations were 1.99-19.0 pg/m(3), and the mean was 7.20 pg/m(3). The PCN concentrations were higher in fall than summer, indicating that the concentrations varied significantly over time. The trichloronaphthalene homolog was the predominant PCN homolog in all four seasons. The PCN toxic equivalent (TEQ) concentrations were 0.42-6.89 fg/m(3), and the mean was 1.74 fg/m(3). The CN-66/67 and CN-73 congeners were the predominant contributors to the TEQ concentrations. The mean seasonal TEQ concentration decreased in the order fall (3.18 fg/m(3)) > winter (1.41 fg/m(3)) > summer (1.11 fg/m(3)) > spring (1.03 fg/m(3)). The TEQ concentrations and the PCN concentrations did not follow the same seasonal trends, but the highest TEQ and PCN concentrations were both found in fall. Correlation analysis, ratio analysis, and principal component analysis were used to investigate the sources of PCNs to the Beijing atmosphere. The results suggested that combustion processes may be the main sources of PCNs to the Beijing atmosphere.

  2. Concentrations and patterns of polychlorinated naphthalenes in urban air in Beijing, China.

    PubMed

    Xue, Lingnan; Zhang, Lifei; Yan, Yan; Dong, Liang; Huang, Yeru; Li, Xiaoxiu

    2016-11-01

    Air samples were collected, using a high-volume air sampler, at an urban site in Beijing from April 2014 to March 2015. The polychlorinated naphthalene (PCN) concentration in the atmosphere in each season was determined. The total PCN (total target tri- to octachloronaphthalene congeners) concentrations were 1.99-19.0 pg/m(3), and the mean was 7.20 pg/m(3). The PCN concentrations were higher in fall than summer, indicating that the concentrations varied significantly over time. The trichloronaphthalene homolog was the predominant PCN homolog in all four seasons. The PCN toxic equivalent (TEQ) concentrations were 0.42-6.89 fg/m(3), and the mean was 1.74 fg/m(3). The CN-66/67 and CN-73 congeners were the predominant contributors to the TEQ concentrations. The mean seasonal TEQ concentration decreased in the order fall (3.18 fg/m(3)) > winter (1.41 fg/m(3)) > summer (1.11 fg/m(3)) > spring (1.03 fg/m(3)). The TEQ concentrations and the PCN concentrations did not follow the same seasonal trends, but the highest TEQ and PCN concentrations were both found in fall. Correlation analysis, ratio analysis, and principal component analysis were used to investigate the sources of PCNs to the Beijing atmosphere. The results suggested that combustion processes may be the main sources of PCNs to the Beijing atmosphere. PMID:27497350

  3. Seasonal change of persistent organic pollutant concentrations in air at Niigata area, Japan.

    PubMed

    Murayama, Hitoshi; Takase, Yuuya; Mitobe, Hideko; Mukai, Hiroyuki; Ohzeki, Toshiharu; Shimizu, Ken-ichi; Kitayama, Yoshie

    2003-07-01

    The concentrations of persistent organic pollutants (POPs), such as HCB, alpha-, beta-, gamma- and delta-HCH, trans- and cis-chlordane (t-CHL, c-CHL), DDE, DDD and DDT, in ambient air have been measured at five sampling points in Niigata area, Japan (Niigata, Maki, Tsubame, Jouzo and Yahiko) during the period from September 1999 to November 2001. HCB, alpha-HCH, t-CHL and c-CHL showed higher concentrations than the other chemicals in all locations. All the POPs except t-CHL and c-CHL collected at urban sites of the Niigata Plain was almost the same in their concentration levels. Higher concentrations of t-CHL and c-CHL in residential areas should be attributed to the past usage of the chemical as a termiticide. At Yahiko (remote site), most of the POPs showed lower concentrations than those measured at the other sampling sites, although alpha-HCH and gamma-HCH were comparable with the concentrations found at the other sampling sites. All POPs except alpha-HCH and gamma-HCH tend to decrease 41-80% in their concentrations from 2000 to 2001. The lower POPs concentrations in winter and the higher POPs concentrations in summer at every sampling point can be partly explained by temperature differences. Applying the equation of the logarithm of the POP partial pressure in air versus reciprocal temperature (lnPa=m/T+b) to our data, linear relations were observed. HCB gave a poor linearity and the smallest slope, while beta-HCH, t-CHL and c-CHL gave good linearities and large slopes in the equation. The results suggest that HCB level is influenced by not only the emission from terrestrial sources but the global-scale background pollution. A peculiar observation is that beta-HCH concentration measured in our study showed large temperature dependence, indicating there could be a source of contamination in the surrounding areas. PMID:12738282

  4. Assessment of regional air quality by a concentration-dependent Pollution Permeation Index

    NASA Astrophysics Data System (ADS)

    Liang, Chun-Sheng; Liu, Huan; He, Ke-Bin; Ma, Yong-Liang

    2016-10-01

    Although air quality monitoring networks have been greatly improved, interpreting their expanding data in both simple and efficient ways remains challenging. Therefore, needed are new analytical methods. We developed such a method based on the comparison of pollutant concentrations between target and circum areas (circum comparison for short), and tested its applications by assessing the air pollution in Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta and Cheng-Yu, China during 2015. We found the circum comparison can instantly judge whether a city is a pollution permeation donor or a pollution permeation receptor by a Pollution Permeation Index (PPI). Furthermore, a PPI-related estimated concentration (original concentration plus halved average concentration difference) can be used to identify some overestimations and underestimations. Besides, it can help explain pollution process (e.g., Beijing’s PM2.5 maybe largely promoted by non-local SO2) though not aiming at it. Moreover, it is applicable to any region, easy-to-handle, and able to boost more new analytical methods. These advantages, despite its disadvantages in considering the whole process jointly influenced by complex physical and chemical factors, demonstrate that the PPI based circum comparison can be efficiently used in assessing air pollution by yielding instructive results, without the absolute need for complex operations.

  5. BTEX in indoor air of waterpipe cafés: Levels and factors influencing their concentrations.

    PubMed

    Hazrati, Sadegh; Rostami, Roohollah; Fazlzadeh, Mehdi

    2015-08-15

    BTEX (benzene, toluene, ethylbenzene and xylene) concentrations, factors affecting their levels, and the exposure risks related to these compounds were studied in waterpipe (Ghalyun/Hookah) cafés of Ardabil city in Islamic Republic of Iran. 81 waterpipe cafés from different districts of Ardabil city were selected and their ambient air was monitored for BTEX compounds. Air samples were taken from standing breathing zone of employees, ~150 cm above the ground level, and were analyzed using GC-FID. In each case, the types of smoked tobacco (regular, fruit flavored), types of ventilation systems (natural/artificial), and the floor level at which the café was located were investigated. A high mean concentration of 4.96±2.63 mg/m(3) corresponding to long term exposure to benzene-related cancer risk of 4314×10(-6) was estimated. The levels of the remaining compounds were lower than the national guideline limits, but their hazard quotients (HQ) for long term exposure to ethylbenzene (1.15) and xylene (17.32) exceeded the HQ unit value. Total hazard indices (HI) of 63.23 were obtained for non-cancer risks. Type of the smoked tobacco was the most important factor influencing BTEX concentrations in the cafés. BTEX concentrations in indoor ambient air of Ardabil waterpipe cafés were noticeably high, and therefore may pose important risks for human health on both short and long term exposures. PMID:25912530

  6. Quantile regression of indoor air concentrations of volatile organic compounds (VOC).

    PubMed

    Schlink, Uwe; Thiem, Alexander; Kohajda, Tibor; Richter, Matthias; Strebel, Kathrin

    2010-08-15

    There are many factors determining the concentration of volatile organic compounds (VOCs) in indoor air. On the basis of 601 population-based measurements we develop an explicit exposure model that includes factors, such as renovation, furniture, flat size, smoking, and education level of the occupants. As a novel method for the evaluation of concentrations of indoor air pollutants we use quantile regression, which has the advantages of robustness against non-Gaussian distributions (and outliers) and can adjust for unbalanced frequencies of observations. The applied bi- and multivariate quantile regressions provide (1) the VOC burden that is representative for the population of Leipzig, Germany, and (2) an inter-comparison of the effects of the studied factors and their levels. As a result, we find strong evidence for factors of general impact on most VOC components, such as the season, flooring, the type of the room, and the size of the apartment. Other impact factors are very specific to the VOC components. For example, wooden flooring (parquet) and new furniture increase the concentration of terpenes as well as the modifying factors high education and sampling in the child's room. Smokers ventilate their flats in an extent that in general reduces the VOC concentrations, except for benzene (contained in tobacco smoke), which is still higher in smoking than in non-smoking flats. Very often dampness is associated with an increased VOC burden in indoor air. An investigation of mixtures emphasises a high burden of co-occurring terpenes in very small and very large apartments.

  7. Assessment of regional air quality by a concentration-dependent Pollution Permeation Index

    PubMed Central

    Liang, Chun-Sheng; Liu, Huan; He, Ke-Bin; Ma, Yong-Liang

    2016-01-01

    Although air quality monitoring networks have been greatly improved, interpreting their expanding data in both simple and efficient ways remains challenging. Therefore, needed are new analytical methods. We developed such a method based on the comparison of pollutant concentrations between target and circum areas (circum comparison for short), and tested its applications by assessing the air pollution in Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta and Cheng-Yu, China during 2015. We found the circum comparison can instantly judge whether a city is a pollution permeation donor or a pollution permeation receptor by a Pollution Permeation Index (PPI). Furthermore, a PPI-related estimated concentration (original concentration plus halved average concentration difference) can be used to identify some overestimations and underestimations. Besides, it can help explain pollution process (e.g., Beijing’s PM2.5 maybe largely promoted by non-local SO2) though not aiming at it. Moreover, it is applicable to any region, easy-to-handle, and able to boost more new analytical methods. These advantages, despite its disadvantages in considering the whole process jointly influenced by complex physical and chemical factors, demonstrate that the PPI based circum comparison can be efficiently used in assessing air pollution by yielding instructive results, without the absolute need for complex operations. PMID:27731344

  8. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    NASA Astrophysics Data System (ADS)

    Gong, J. C.; Zhu, T.; Hu, M.; Zhang, L. W.; Cheng, H.; Zhang, L.; Tong, J.; Zhang, J.

    2010-08-01

    Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein) in a central Beijing site in the summer and early fall of 2008 (from June to October). Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions). In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5). These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  9. Some possibilities of using gas mixtures other than air in aerodynamic research

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R

    1956-01-01

    A study is made of the advantages that can be realized in compressible-flow research by employing a substitute heavy gas in place of air. The present report is based on the idea that by properly mixing a heavy monatomic gas with a suitable heavy polyatomic gas, it is possible to obtain a heavy gas mixture which has the correct ratio of specific heats and which is nontoxic, nonflammable, thermally stable, chemically inert, and comprised of commercially available components. Calculations were made of wind-tunnel characteristics for 63 gas pairs comprising 21 different polyatomic gases properly mixed with each of three monatomic gases (argon, krypton, and zenon).

  10. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  11. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  12. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries

    NASA Astrophysics Data System (ADS)

    Davydova, E. S.; Atamanyuk, I. N.; Ilyukhin, A. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2016-02-01

    Cobalt tetramethoxyphenyl porphyrin and polyacrylonitrile - based catalysts for oxygen reduction reaction were synthesized and characterized by means of SEM, TEM, XPS, BET, limited evaporation method, rotating disc and rotating ring-disc electrode methods. Half-cell and Al-air cell tests were carried out to determine the characteristics of gas-diffusion cathodes. Effect of active layer thickness and its composition on the characteristics of the gas-diffusion cathodes was investigated. Power density of 300 mW cm-2 was achieved for alkaline Al-air cell with an air-breathing polyacrylonitrile-based cathode.

  13. Persistence analysis of extreme CO, NO2 and O3 concentrations in ambient air of Delhi

    NASA Astrophysics Data System (ADS)

    Chelani, Asha B.

    2012-05-01

    Persistence analysis of air pollutant concentration and corresponding exceedance time series is carried out to examine for temporal evolution. For this purpose, air pollutant concentrations, namely, CO, NO2 and O3 observed during 2000-2009 at a traffic site in Delhi are analyzed using detrended fluctuation analysis. Two types of extreme values are analyzed; exceeded concentrations to a threshold provided by national pollution controlling agency and time interval between two exceedances. The time series of three pollutants is observed to possess persistence property whereas the extreme value time series of only primary pollutant concentrations is found to be persistent. Two time scaling regions are observed to be significant in extreme time series of CO and NO2, mainly attributed to implementation of CNG in vehicles. The presence of persistence in three pollutant concentration time series is linked to the property of self-organized criticality. The observed persistence in the time interval between two exceeded levels is a matter of concern as persistent high concentrations can trigger health problems.

  14. Gas phase dispersion in compost as a function of different water contents and air flow rates

    NASA Astrophysics Data System (ADS)

    Sharma, Prabhakar; Poulsen, Tjalfe G.

    2009-07-01

    Gas phase dispersion in a natural porous medium (yard waste compost) was investigated as a function of gas flow velocity and compost volumetric water content using oxygen and nitrogen as tracer gases. The compost was chosen because it has a very wide water content range and because it represents a wide range of porous media, including soils and biofilter media. Column breakthrough curves for oxygen and nitrogen were measured at relatively low pore gas velocities, corresponding to those observed in for instance soil vapor extraction systems or biofilters for air cleaning at biogas plants or composting facilities. Total gas mechanical dispersion-molecular diffusion coefficients were fitted from the breakthrough curves using a one-dimensional numerical solution to the advection-dispersion equation and used to determine gas dispersivities at different volumetric gas contents. The results showed that gas mechanical dispersion dominated over molecular diffusion with mechanical dispersion for all water contents and pore gas velocities investigated. Importance of mechanical dispersion increased with increasing pore gas velocity and compost water content. The results further showed that gas dispersivity was relatively constant at high values of compost gas-filled porosity but increased with decreasing gas-filled porosity at lower values of gas-filled porosity. Results finally showed that measurement uncertainty in gas dispersivity is generally highest at low values of pore gas velocity.

  15. TRACE GAS CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    Seventeen headwater watersheds within the SFBR watershed ranging from 0.5 to 3.4 km2 were selected. We have been monitoring concentrations of the trace gases nitrous oxide, methane, and carbon dioxide, and other parameters (T, conductivity, dissolved oxygen, pH, nutrients, flow r...

  16. SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS

    SciTech Connect

    , J; David Allison , D; John Mccord, J

    2009-05-06

    The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that a nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.

  17. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  18. Compilation of atmospheric gas concentration profiles from 0 to 50 km

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.

    1982-01-01

    A set of 52 atmospheric gas concentration profiles between 0 and 50 km was compiled as a convenient reference data set for calculation of atmospheric infrared absorption or emission signals and for initialization of iterative procedures for retrieval of gas concentrations from measured data. The distributions of volume mixing ratio as a function of altitude generally correspond to typical diurnally averaged, seasonally averaged Northern Hemisphere midlatitude gas concentration profiles. Profiles are given for all gases included in current infrared atmospheric absorption line parameter compilations, and for a number of additional important trace gases.

  19. Effects of air current speed on gas exchange in plant leaves and plant canopies

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Tsuruyama, J.; Shibuya, T.; Yoshida, M.; Kiyota, M.

    To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS.

  20. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    PubMed

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.

  1. Development and application of a sensitive method to determine concentrations of acrolein and other carbonyls in ambient air.

    PubMed

    Cahill, Thomas M; Charles, M Judith; Seaman, Vincent Y

    2010-05-01

    Acrolein, an unsaturated aldehyde, has been identified as one of the most important toxic air pollutants in recent assessments of ambient air quality. Current methods for determining acrolein concentrations, however, suffer from poor sensitivity, selectivity, and reproducibility. The collection and analysis of unsaturated carbonyls, and acrolein in particular, is complicated by unstable derivatives, coelution of similar compounds, and ozone interference. The primary objective of this research was to develop an analytical method to measure acrolein and other volatile carbonyls present in low part-per-trillion concentrations in ambient air samples obtained over short sampling periods. The method we devised uses a mist chamber in which carbonyls from air samples form water-soluble adducts with bisulfite in the chamber solution, effectively trapping the carbonyls in the solution. The mist chamber methodology proved effective, with collection efficiency for acrolein of at least 70% for each mist chamber at a flow rate of approximately 17 L/min. After the sample collection, the carbonyls are liberated from the bisulfite adducts through the addition of hydrogen peroxide, which converts the bisulfite to sulfate, reversing the bisulfite addition reaction. The free carbonyls are then derivatized by o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA*), which stabilizes the analytes and makes them easier to detect by electron-capture negative ionization mass spectrometry (ECNI-MS). The derivatives are then extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The mist chamber method was applied in a field test to determine the extent of acrolein in ambient air near the Peace Bridge plaza in Buffalo, New York, an area of heavy traffic near a major border crossing between the United States and Canada. In addition, XAD-2 adsorbent cartridges coated with 2-(hydroxymethyl)piperidine (2-HMP) according to Occupational Safety and Health Administration (OSHA) Method

  2. Development and application of a sensitive method to determine concentrations of acrolein and other carbonyls in ambient air.

    PubMed

    Cahill, Thomas M; Charles, M Judith; Seaman, Vincent Y

    2010-05-01

    Acrolein, an unsaturated aldehyde, has been identified as one of the most important toxic air pollutants in recent assessments of ambient air quality. Current methods for determining acrolein concentrations, however, suffer from poor sensitivity, selectivity, and reproducibility. The collection and analysis of unsaturated carbonyls, and acrolein in particular, is complicated by unstable derivatives, coelution of similar compounds, and ozone interference. The primary objective of this research was to develop an analytical method to measure acrolein and other volatile carbonyls present in low part-per-trillion concentrations in ambient air samples obtained over short sampling periods. The method we devised uses a mist chamber in which carbonyls from air samples form water-soluble adducts with bisulfite in the chamber solution, effectively trapping the carbonyls in the solution. The mist chamber methodology proved effective, with collection efficiency for acrolein of at least 70% for each mist chamber at a flow rate of approximately 17 L/min. After the sample collection, the carbonyls are liberated from the bisulfite adducts through the addition of hydrogen peroxide, which converts the bisulfite to sulfate, reversing the bisulfite addition reaction. The free carbonyls are then derivatized by o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA*), which stabilizes the analytes and makes them easier to detect by electron-capture negative ionization mass spectrometry (ECNI-MS). The derivatives are then extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The mist chamber method was applied in a field test to determine the extent of acrolein in ambient air near the Peace Bridge plaza in Buffalo, New York, an area of heavy traffic near a major border crossing between the United States and Canada. In addition, XAD-2 adsorbent cartridges coated with 2-(hydroxymethyl)piperidine (2-HMP) according to Occupational Safety and Health Administration (OSHA) Method

  3. Compressor discharge bleed air circuit in gas turbine plants and related method

    SciTech Connect

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2002-01-01

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  4. Compressor discharge bleed air circuit in gas turbine plants and related method

    SciTech Connect

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2003-04-08

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  5. MODELING AIR TOXICS AND PM 2.5 CONCENTRATION FIELDS AS A MEANS FOR FACILITATING HUMAN EXPOSURE ASSESSMENTS

    EPA Science Inventory

    The capability of the US EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system is extended to provide gridded ambient air quality concentration fields at fine scales. These fields will drive human exposure to air toxics and fine particulate matter (PM2.5) models...

  6. Combatting urban air pollution through Natural Gas Vehicle (NGV) analysis, testing, and demonstration

    SciTech Connect

    1995-03-01

    Deteriorating urban air quality ranks as a top concern worldwide, since air pollution adversely affects both public health and the environment. The outlook for improving air quality in the world`s megacities need not be bleak, however, The use of natural gas as a transportation fuel can measurably reduce urban pollution levels, mitigating chronic threats to health and the environment. Besides being clean burning, natural gas vehicles (NGVs) are economical to operate and maintain. The current cost of natural gas is lower than that of gasoline. Natural gas also reduces the vehicle`s engine wear and noise level, extends engine life, and decreases engine maintenance. Today, about 700,000 NGVs operate worldwide, the majority of them converted from gasoline or diesel fuel. This article discusses the economic, regulatory and technological issues of concern to the NGV industry.

  7. Hyperbaric oxygen treatment for air or gas embolism.

    PubMed

    Moon, R E

    2014-01-01

    Gas can enter arteries (arterial gas embolism) due to alveolar-capillary disruption (caused by pulmonary overpressurization, e.g., breath-hold ascent by divers) or veins (venous gas embolism, VGE) as a result of tissue bubble formation due to decompression (diving, altitude exposure) or during certain surgical procedures where capillary hydrostatic pressure at the incision site is sub-atmospheric. Both AGE and VGE can be caused by iatrogenic gas injection. AGE usually produces strokelike manifestations, such as impaired consciousness, confusion, seizures and focal neurological deficits. Small amounts of VGE are often tolerated due to filtration by pulmonary capillaries. However, VGE can cause pulmonary edema, cardiac "vapor lock" and AGE due to transpulmonary passage or right-to-left shunt through a patent foramen ovale. Intravascular gas can cause arterial obstruction or endothelial damage and secondary vasospasm and capillary leak. Vascular gas is frequently not visible with radiographic imaging, which should not be used to exclude the diagnosis of AGE. Isolated VGE usually requires no treatment; AGE treatment is similar to decompression sickness (DCS), with first aid oxygen then hyperbaric oxygen. Although cerebral AGE (CAGE) often causes intracranial hypertension, animal studies have failed to demonstrate a benefit of induced hypocapnia. An evidence-based review of adjunctive therapies is presented.

  8. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions

    NASA Technical Reports Server (NTRS)

    Zupanc, Frank J. (Inventor); Yankowich, Paul R. (Inventor)

    2006-01-01

    A fuel-air mixer for use in a combustion chamber of a gas turbine engine is provided. The fuel air mixing apparatus comprises an annular fuel injector having a plurality of discrete plain jet orifices, a first swirler wherein the first swirler is located upstream from the fuel injector and a second swirler wherein the second swirler is located downstream from the fuel injector. The plurality of discrete plain jet orifices are situated between the highly swirling airstreams generated by the two radial swirlers. The distributed injection of the fuel between two highly swirling airstreams results in rapid and effective mixing to the desired fuel-air ratio and prevents the formation of local hot spots in the combustor primary zone. A combustor and a gas turbine engine comprising the fuel-air mixer of the present invention are also provided as well as a method using the fuel-air mixer of the present invention.

  9. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners

    PubMed Central

    Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.-Y.; O'Toole, A.; Robins, T.; Rowe, Z.; Lewis, T.

    2014-01-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84 ± 27%, but dropped to 63 ± 33% in subsequent seasons. In months when households were not visited, use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. PMID:22145709

  10. Determination of radionuclide concentrations in ground level air using the ASS-500 high volume sampler

    SciTech Connect

    Frenzel, E.; Arnold, D.; Wershofen, H.

    1996-06-01

    A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling period 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).

  11. Groundwater level and nitrate concentration trends on Mountain Home Air Force Base, southwestern Idaho

    USGS Publications Warehouse

    Williams, Marshall L.

    2014-01-01

    Mountain Home Air Force Base in southwestern Idaho draws most of its drinking water from the regional aquifer. The base is located within the State of Idaho's Mountain Home Groundwater Management Area and is adjacent to the State's Cinder Cone Butte Critical Groundwater Area. Both areas were established by the Idaho Department of Water Resources in the early 1980s because of declining water levels in the regional aquifer. The base also is listed by the Idaho Department of Environmental Quality as a nitrate priority area. The U.S. Geological Survey, in cooperation with the U.S. Air Force, began monitoring wells on the base in 1985, and currently monitors 25 wells for water levels and 17 wells for water quality, primarily nutrients. This report provides a summary of water-level and nitrate concentration data collected primarily between 2001 and 2013 and examines trends in those data. A Regional Kendall Test was run to combine results from all wells to determine an overall regional trend in water level. Groundwater levels declined at an average rate of about 1.08 feet per year. Nitrate concentration trends show that 3 wells (18 percent) are increasing in nitrate concentration trend, 3 wells (18 percent) show a decreasing nitrate concentration trend, and 11 wells (64 percent) show no nitrate concentration trend. Six wells (35 percent) currently exceed the U.S. Environmental Protection Agency's maximum contaminant limit of 10 milligrams per liter for nitrate (nitrite plus nitrate, measured as nitrogen).

  12. Detection of room air contamination of angiographic CO2 with use of a gas analyzer.

    PubMed

    Culp, William C; Culp, William C

    2002-07-01

    The purpose of this study was to describe a practical method to detect room air contamination in CO2 used for angiography. Samples of CO2 with known room air contamination levels were used in a "bag system" of CO2 delivery and sampled by a gas analyzer commonly used in anesthesia. Nitrogen levels were reliably detected indicating contamination with as little as 2% air. Oxygen levels were reliably detected, indicating contamination with as little as 5% air. Measured CO2 values were unreliable with higher-than-true values at all levels except 100%. All clinically important amounts of N2 and O2 contamination were readily detected by this practical method.

  13. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    SciTech Connect

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized.

  14. 10 CFR Appendix A to Part 835 - Derived Air Concentrations (DAC) for Controlling Radiation Exposure to Workers at DOE Facilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Derived Air Concentrations (DAC) for Controlling Radiation... RADIATION PROTECTION Pt. 835, App. A Appendix A to Part 835—Derived Air Concentrations (DAC) for Controlling Radiation Exposure to Workers at DOE Facilities The data presented in appendix A are to be used...

  15. Modeling CO2 air dispersion from gas driven lake eruptions

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Costa, Antonio; Rouwet, Dmitri; Tassi, Franco

    2016-04-01

    The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a theoretical point of view, gas dispersion can be fully studied by solving the complete equations system for mass, momentum and energy transport, in actual practice, different simplified models able to describe only specific phases or aspects have to be used. In order to simulate dispersion of a heavy gas and to assess the consequent hazard we used a model based on a shallow layer approach (TWODEE2). This technique which uses depth-averaged variables to describe the flow behavior of dense gas over complex topography represents a good compromise between the complexity of computational fluid dynamic models and the simpler integral models. Recently the model has been applied for simulating CO2 dispersion from natural gas emissions in Central Italy. The results have shown how the dispersion pattern is strongly affected by the intensity of gas release, the topography and the ambient wind speed. Here for the first time we applied TWODEE2 code to simulate the dispersion of the large CO2 clouds released by limnic eruptions. An application concerns the case of the 1986 event at lake Nyos. Some difficulties for the simulations were related to the lack of quantitative information: gas flux estimations are not well constrained, meteorological conditions are only qualitatively known, the digital model of the terrain is of poor quality. Different scenarios were taken into account in order to reproduce the qualitative observations available for such episode. The observations regard mainly the effects of gas on

  16. Seasonal characteristics of gas-phase air pollutants: implications for public health in northeastern New Jersey

    NASA Astrophysics Data System (ADS)

    Roberts-Semple, D. A.; Gao, Y.

    2011-12-01

    To characterize the impact of urban air pollution and local weather conditions on human health, the ambient air concentrations of nitrogen oxide (NOx) and ground-level ozone (O3) were measured at the Meadowlands in Lyndhurst, NJ (41N, 74W) from June 1, 2007 to May 31, 2008. Meteorological data, mainly temperature, wind speed, relative humidity and barometric pressure, were supplemented with data from Weather Underground. Public health data were obtained from the New Jersey Department of Health and Senior Services (NJDHSS). The relationship between gas-phase pollutants and hospital admissions were examined through path analytic models by using multiple regressions and bivariate correlations. The meteorological conditions and air pollutants that may be associated with human respiratory health effects are analyzed. Preliminary results demonstrate that the ambient levels of NOx and O3 are influenced by certain meteorological conditions in the Meadowlands, and that there is a strong relationship between hospital admission and personal exposure to NO2 over the short-term. There is no direct relationship between O3 and hospital admission (r=-0.092), whereas hospital admission and NOx correlate (r=0.317) but more significantly with NO2 (r=.359) at a significance level of 0.01. Hospital admission rates are indirectly affected by humidity (r=-0.077). The seasonal dependence of pollutants is caused mainly by low wind speed and differences in chemical processing, making them interdependent. The monthly average O3 ranged from 11.1ppb to 36.2ppb with the highest values in summer; NOx ranged from 17.0ppb to 29.0ppb with no marked seasonal variations and were lower on weekends than on week days. There were dissimilar diurnal patterns and an inverse relationship between the hourly average of NOx and O3 concentrations, suggesting that O3 formation was not limited by the availability of NOx but is likely influenced by a VOC-sensitive chemical regime. This study provides a basis for

  17. Halogenated greenhouse gas emissions over Central Europe inferred from ambient air measurements and 222-Rn activity

    NASA Astrophysics Data System (ADS)

    Keller, Christoph; Brunner, Dominik; Vollmer, Martin K.; O'Doherty, Simon; Manning, Alistair; Reimann, Stefan

    2010-05-01

    To check for compliance with the reduction targets defined under the Kyoto Protocol, each participating country has to report its greenhouse gas emissions to the UNFCCC (United Nations Framework Convention on Climate Change). These emissions are calculated using a bottom-up approach, by combining categories of compound use and specific activity (release) functions. The uncertainties of these estimates are not well defined, thereby making an independent validation of the reported emissions highly desirable. Top-down estimates based on atmospheric concentration measurements and using a reference species as a priori information are a promising method for independent emission estimates. For this purpose, atmospheric Radon (222-Rn) is very well suited due to its exactly known radioactive decay lifetime of 5.5 days and its homogeneous release over soil with comparatively small spatial and temporal variability. In the present study, concentration measurements of halogenated greenhouse gases such as hydrofluorocarbons (HFC), perfluorocarbons (PFC) and SF6 at the remote sites Jungfraujoch (Switzerland) and Mace Head (Ireland) were combined with backward calculations of the Lagrangian Particle dispersion model FLEXPART to derive emission rates over Central Europe. The ability of FLEXPART to simulate the origin of air masses arriving at the receptor point was checked using 222-Rn measurements in combination with the flux map recently developed by Szegvary et al. (2007), and analysis was restricted to episodes where FLEXPART successfully reproduced the observed concentration pattern of 222-Rn. This procedure not only removes all measurements where the flow regime of air masses is uncertain and source attribution of emissions is therefore difficult, but also allows to correct for potential model uncertainties originating e.g. from the complex topography not resolved by the model. The top-down estimations derived in this study generally agree well with the bottom-up estimates

  18. Air quality in postunification Erfurt, East Germany: associating changes in pollutant concentrations with changes in emissions.

    PubMed Central

    Ebelt, S; Brauer, M; Cyrys, J; Tuch, T; Kreyling, W G; Wichmann, H E; Heinrich, J

    2001-01-01

    The unification of East and West Germany in 1990 resulted in sharp decreases in emissions of major air pollutants. This change in air quality has provided an opportunity for a natural experiment to evaluate the health impacts of air pollution. We evaluated airborne particle size distribution and gaseous co-pollutant data collected in Erfurt, Germany, throughout the 1990s and assessed the extent to which the observed changes are associated with changes in the two major emission sources: coal burning for power production and residential heating, and motor vehicles. Continuous data for sulfur dioxide, total suspended particulates (TSP), nitric oxide, carbon monoxide, and meteorologic parameters were available for 1990-1999, and size-selective particle number and mass concentration measurements were made during winters of 1991 and 1998. We used hourly profiles of pollutants and linear regression analyses, stratified by year, weekday/weekend, and hour, using NO and SO(2) as markers of traffic- and heating-related combustion sources, respectively, to study the patterns of various particle size fractions. Supplementary data on traffic and heating-related sources were gathered to support hypotheses linking these sources with observed changes in ambient air pollution levels. Substantially decreased (19-91%) concentrations were observed for all pollutants, with the exception of particles in the 0.01-0.03 microm size range (representing the smallest ultrafine particles that were measured). The number concentration for these particles increased by 115% between 1991 and 1998. The ratio of these ultrafine particles to TSP also increased by more than 500%, indicating a dramatic change in the size distribution of airborne particles. Analysis of hourly concentration patterns indicated that in 1991, concentrations of SO(2) and larger particle sizes were related to residential heating with coal. These peaks were no longer evident in 1998 due to decreases in coal consumption and

  19. Variation and balance of positive air ion concentrations in a boreal forest

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Aalto, P. P.; Salm, J.; Komsaare, K.; Tammet, H.; Mäkelä, J. M.; Laakso, L.; Kulmala, M.

    2008-02-01

    Air ions are characterized on the basis of measurements carried out in a boreal forest at the Hyytiälä SMEAR station, Finland, during the BIOFOR III campaign in spring 1999. The air ions were discriminated as small ions (charged molecular aggregates of the diameter of less than 2.5 nm), intermediate ions (charged aerosol particles of the diameter of 2.5-8 nm), and large ions (charged aerosol particles of the diameter of 8-20 nm). Statistical characteristics of the ion concentrations and the parameters of ion balance in the atmosphere are presented separately for the nucleation event days and non-event days. In the steady state, the ionization rate is balanced with the loss of small ions, which is expressed as the product of the small ion concentration and the ion sink rate. The widely known sinks of small ions are the recombination with small ions of opposite polarity and attachment to aerosol particles. The dependence of small ion concentration on the concentration of aerosol particles was investigated applying a model of the bipolar diffusion charging of particles by small ions. When the periods of relative humidity above 95% and wind speed less than 0.6 m s-1 were excluded, then the small ion concentration and the theoretically calculated small ion sink rate were closely negatively correlated (correlation coefficient -87%). However, an extra ion loss term of the same magnitude as the ion loss onto aerosol particles is needed for a quantitative explanation of the observations. This term is presumably due to the small ion deposition on coniferous forest. The hygroscopic growth correction of the measured aerosol particle size distributions was also found to be necessary for the proper estimation of the ion sink rate. In the case of nucleation burst events, the concentration of small positive ions followed the general balance equation, no extra ion loss in addition to the deposition on coniferous forest was detected, and the hypothesis of the conversion of ions

  20. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring.

  1. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring. PMID:27410280

  2. Spatial and temporal distribution of pesticide air concentrations in Canadian agricultural regions

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Tuduri, Ludovic; Harner, Tom; Blanchard, Pierrette; Waite, Don; Poissant, Laurier; Murphy, Clair; Belzer, Wayne; Aulagnier, Fabien; Li, Yi-Fan; Sverko, Ed

    The Canadian Pesticide Air Sampling Campaign was initiated in 2003 to assess atmospheric levels of pesticides, especially currently used pesticides (CUPs) in agricultural regions across Canada. In the first campaign during the spring to summer of 2003, over 40 pesticides were detected. The spatial and temporal distribution of pesticides in the Canadian atmosphere was shown to reflect the pesticide usage in each region. Several herbicides including triallate, bromoxynil, MCPA, 2,4-D, dicamba, trifluralin and ethalfluralin were detected at highest levels at Bratt's Lake, SK in the prairie region. Strong relationships between air concentrations and dry depositions were observed at this site. Although no application occurred in the Canadian Prairies in 2003, high air concentrations of lindane ( γ-hexachlorocyclohexane) were still observed at Bratt's Lake and Hafford, SK. Two fungicides (chlorothalonil and metalaxyl) and two insecticides (endosulfan and carbofuran) were measured at highest levels at Kensington, PEI. Maximum concentrations of chlorpyrifos and metolachlor were found at St. Anicet, QC. The southern Ontario site, Egbert showed highest concentration of alachlor. Malathion was detected at the highest level at the west coast site, Abbotsford, BC. In case of legacy chlorinated insecticides, high concentrations of DDT, DDE and dieldrin were detected in British Columbia while α-HCH and HCB were found to be fairly uniform across the country. Chlordane was detected in Ontario, Québec and Prince Edward Island. This study demonstrates that the sources for the observed atmospheric occurrence of pesticides include local current pesticide application, volatilization of pesticide residues from soil and atmospheric transport. In many instances, these data represent the first measurements for certain pesticides in a given part of Canada.

  3. System for detecting and estimating concentrations of gas or liquid analytes

    NASA Technical Reports Server (NTRS)

    Homer, Margie L. (Inventor); Jan, Darrell L. (Inventor); Jewell, April D. (Inventor); Kisor, Adam (Inventor); Manatt, Kenneth S. (Inventor); Manfreda, Allison M. (Inventor); Ryan, Margaret A. (Inventor); Shevade, Abhijit V. (Inventor); Taylor, Charles (Inventor); Tran, Tuan A. (Inventor)

    2011-01-01

    A sensor system for detecting and estimating concentrations of various gas or liquid analytes. In an embodiment, the resistances of a set of sensors are measured to provide a set of responses over time where the resistances are indicative of gas or liquid sorption, depending upon the sensors. A concentration vector for the analytes is estimated by satisfying a criterion of goodness using the set of responses. Other embodiments are described and claimed.

  4. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  5. Comparison of indoor/outdoor carbon content and time resolved PM concentrations for gas and biomass cooking fuels in Nogales, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.; Pardyjak, Eric R.; Speckart, Scott O.; Alexander, Daniel

    2011-12-01

    A case study designed to investigate indoor and outdoor air quality in naturally ventilated homes near the US-Mexico border was conducted in Nogales, Sonora, Mexico from 14-30 March 2009. To better understand resident's actual exposure to various sizes of particulate matter ( PM), we compare measured concentrations in homes using different household stove cooking fuels (gas versus biomass) and investigate the spatial distribution of outdoor PM. Data from two home locations, one with a gas stove and one with both biomass and gas stoves are evaluated. In each home, continuous PM concentrations were sampled over a range of particle sizes. Indoor and outdoor concentration measurements were facilitated using a valve switching system. PM2.5 was also sampled on quartz filters located inside and outside of the two homes for carbon analysis. This paper will present a subset of the field data to compare time resolved indoor PM concentrations and carbon content for the two homes; specifically, comparing cooking versus non-cooking time periods. Results indicate that indoor elemental carbon concentrations are dominated by indoor sources during biomass burning, and outdoor sources at all other times. The data indicate that the influence of indoor sources on organic carbon concentrations increases during both gas and biomass stove use; this information is correlated to continuous indoor PM concentrations and home activities. The mean 24 h indoor PM10 concentration was 408 μg m -3 for the gas stove home and 648 μg m -3 for the home with biomass and gas stoves, while the outdoor concentrations were 609 μg m -3 and 381 μg m -3, respectively. The average 24 h PM10 Indoor/Outdoor ratio was 0.71 for the gas stove home and 1.79 for the home with both gas and biomass stoves. These ratios should be interpreted with caution as they appear to underestimate the indoor source contribution due to high outdoor PM levels.

  6. Benzo(a)pyrene in Europe: Ambient air concentrations, population exposure and health effects.

    PubMed

    Guerreiro, C B B; Horálek, J; de Leeuw, F; Couvidat, F

    2016-07-01

    This study estimated current benzo(a)pyrene (BaP) concentration levels, population exposure and potential health impacts of exposure to ambient air BaP in Europe. These estimates were done by combining the best available information from observations and chemical transport models through the use of spatial interpolation methods. Results show large exceedances of the European target value for BaP in 2012 over large areas, particularly in central-eastern Europe. Results also show large uncertainties in the concentration estimates in regions with a few or no measurement stations. The estimation of the population exposure to BaP concentrations and its health impacts was limited to 60% of the European population, covering only the modelled areas which met the data quality requirement for modelling of BaP concentrations set by the European directive 2004/107/EC. The population exposure estimate shows that 20% of the European population is exposed to BaP background ambient concentrations above the EU target value and only 7% live in areas with concentrations under the estimated acceptable risk level of 0.12 ng m(-3). This exposure leads to an estimated 370 lung cancer incidences per year, for the 60% of the European population included in the estimation. Emissions of BaP have increased in the last decade with the increase in emissions from household combustion of biomass. At the same time, climate mitigation policies are promoting the use of biomass burning for domestic heating. The current study shows that there is a need for more BaP measurements in areas of low measurement density, particularly where high concentrations are expected, e.g. in Romania, Bulgaria, and other Balkan states. Furthermore, this study shows that the health risk posed by PAH exposure calls for better coordination between air quality and climate mitigation policies in Europe.

  7. Inhalation of concentrated ambient air particles exacerbates myocardial ischemia in conscious dogs.

    PubMed Central

    Wellenius, Gregory A; Coull, Brent A; Godleski, John J; Koutrakis, Petros; Okabe, Kazunori; Savage, Sara T; Lawrence, Joy E; Murthy, G G Krishna; Verrier, Richard L

    2003-01-01

    Short-term increases in ambient air pollution have been associated with an increased incidence of acute cardiac events. We assessed the effect of inhalation exposure to concentrated ambient particles (CAPs) on myocardial ischemia in a canine model of coronary artery occlusion. Six mongrel dogs underwent thoracotomy for implantation of a vascular occluder around the left anterior descending coronary artery and tracheostomy to facilitate particulate exposure. After recovery (5-13 weeks), pairs of subjects were exposed for 6 hr/day on 3 or 4 consecutive days. Within each pair, one subject was randomly assigned to breathe CAPs on the second exposure day and filtered air at other times. The second subject breathed CAPs on the third exposure day and filtered air at other times. Immediately after each exposure, subjects underwent 5-min coronary artery occlusion. We determined ST-segment elevation, a measure of myocardial ischemia heart rate, and arrhythmia incidence during occlusion from continuous electrocardiograms. Exposure to CAPs (median, 285.7; range, 161.3-957.3 microg/m3) significantly (p = 0.007) enhanced occlusion-induced peak ST-segment elevation in precordial leads V4 (9.4 +/- 1.7 vs. 6.2 +/- 0.9 mm, CAPs vs. filtered air, respectively) and V5 (9.2 +/- 1.3 vs. 7.5 +/- 0.9 mm). ST-segment elevation was significantly correlated with the silicon concentration of the particles and other crustal elements possibly associated with urban street dust (p = 0.003 for Si). No associations were found with CAPs mass or number concentrations. Heart rate was not affected by CAPs exposure. These results suggest that exacerbation of myocardial ischemia during coronary artery occlusion may be an important mechanism of environmentally related acute cardiac events. PMID:12676590

  8. High-pressure ceramic air heater for indirectly fired gas turbine applications

    NASA Astrophysics Data System (ADS)

    Lahaye, P. G.; Briggs, G. F.; Vandervort, C. L.; Seger, J. L.

    The Externally-Fired Combined Cycle (EFCC) offers a method for operating high-efficiency gas and steam turbine combined cycles on coal. In the EFCC, an air heater replaces the gas turbine combustor so that the turbine can be indirectly fired. Ceramic materials are required for the heat exchange surfaces to accommodate the operating temperatures of modern gas turbines. The ceramic air heater or heat exchanger is the focus of this program, and the two primary objectives are (1) to demonstrate that a ceramic air heater can be reliably pressurized to a level of 225 psia (1.5 MPa); and (2) to show that the air heater can withstand exposure to the products of coal combustion at elevated temperatures. By replacing the gas turbine combustor with a ceramic air heater, the cycle can use coal or other ash-bearing fuels. Numerous programs have attempted to fuel high efficiency gas turbines directly with coal, often resulting in significant ash deposition upon turbine components and corrosion or erosion of turbine blades. This report will show that a ceramic air heater is significantly less susceptible to ash deposition or corrosion than a gas turbine when protected by rudimentary methods of gas-stream clean-up. A 25 x 10(sup 6) Btu/hr (7 MW) test facility is under construction in Kennebunk, Maine. It is anticipated that this proof of concept program will lead to commercialization of the EFCC by electric utility and industrial organizations. Applications are being pursued for power plants ranging from 10 to 100 megawatts.

  9. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    PubMed

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  10. Microtrap assembly for greenhouse gas and air pollution monitoring

    SciTech Connect

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  11. Evaluation of anthropogenic influence on thermodynamics, gas and aerosol composition of city air

    NASA Astrophysics Data System (ADS)

    Uzhegova, Nina; Belan, Boris; Antokhin, Pavel; Zhidovkhin, Evgenii; Ivlev, Georgii; Kozlov, Artem; Fofonov, Aleksandr

    2010-05-01

    In the last 40-50 years there is a global tendency of urbanisation, which is a consequence of most countries' economical development. Concurrently, the issue of environment's ecological state has become critical. Urban air pollution is among the most important ecological problems nowadays. World Health Organization (WHO) points out certain "classical" polluting agents: carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2), troposphere ozone (O3) (studied here), as well as lead, carbon dioxide (CO2), aldehydes, soot, benzpyrene and dredges (including dust, haze and smoke) [1]. An evaluation of antropogenic component's weight in the thermodynamical conditions and gas and aerosol composition of a city's atmosphere (by the example of Tomsk) is given in this paper. Tomsk is located at the South of West Siberia and is the administrative center of Tomsk region. The city's area is equal to 294,6 km2. Its population is 512.6 thousands of people. The overall number of registered motor vehicles in the city in 2008 was 131 700. That is, every fourth city inhabitant has a personal car. From 2002 to 2008 the number of motor vehicles in Tomsk has increased by 25 thousands units [2]. This increase consists mostly of passenger cars. There is also a positive trend in fuel consumtion by the city's industries and motor vehicles - from 2004 to 2007 it has increased by 10%. Such a quick rate of transport quantity's increase in the city provides reason to suggest an unfavorable ecological situation in Tomsk. For this study we have used the AKV-2 mobile station designed by the SB RAS Institute of Atmospheric Optics. The station's equipment provides the following measurements [3]: air temperature and humidity; aerosol disperse composition in 15 channels with a particle size range of 0.3-20 µm by use of the Grimm-1.108 aerosol spectrometer; NO, NO2, O3, SO2, CO, CO2 concentration. This paper describes a single experiment conducted in Tomsk. Date of

  12. Diffuse CO 2 soil degassing and CO 2 and H 2S concentrations in air and related hazards at Vulcano Island (Aeolian arc, Italy)

    NASA Astrophysics Data System (ADS)

    Carapezza, M. L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.; Barrancos, J.; Fischer, C.; Perez, N.; Weber, K.; Di Piazza, A.; Gattuso, A.

    2011-10-01

    La Fossa crater on Vulcano Island is quiescent since 1890. Periodically it undergoes "crises" characterized by marked increase of temperature (T), gas output and concentration of magmatic components in the crater fumaroles (T may exceed 600 °C). During these crises, which so far did not lead to any eruptive reactivation, the diffuse CO 2 soil degassing also increases and in December 2005 an anomalous CO 2 flux of 1350 tons/day was estimated by 1588 measurements over a surface of 1.66 km 2 extending from La Fossa crater to the inhabited zone of Vulcano Porto. The crater area and two other anomalously degassing sites (Levante Beach and Palizzi) have been periodically investigated from December 2004 to August 2010 for diffuse CO 2 soil flux. They show a marked variation with time of the degassing rate, with synchronous maxima in December 2005. Carbon dioxide soil flux and environmental parameters have been also continuously monitored for over one year by an automatic station at Vulcano Porto. In order to assess the hazard of the endogenous gas emissions, CO 2 and H 2S air concentrations have been measured by Tunable Diode Laser profiles near the fumaroles of the crater rim and of the Levante Beach area, where also the viscous gas flux has been estimated. In addition, CO 2 air concentration has been measured both indoor and outdoor in an inhabited sector of Vulcano Porto. Results show that in some sites usually frequented by tourists there is a dangerous H 2S air concentration and CO 2 exceeds the hazardous thresholds in some Vulcano houses. These zones should be immediately monitored for gas hazard should a new crisis arise.

  13. An analytical method for trifluoroacetic Acid in water and air samples using headspace gas chromatographic determination of the methyl ester.

    PubMed

    Zehavi, D; Seiber, J N

    1996-10-01

    An analytical method has been developed for the determination of trace levels of trifluoroacetic acid (TFA), an atmospheric breakdown product of several of the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) replacements for the chlorofluorocarbon (CFC) refrigerants, in water and air. TFA is derivatized to the volatile methyl trifluoroacetate (MTFA) and determined by automated headspace gas chromatography (HSGC) with electron-capture detection or manual HSGC using GC/MS in the selected ion monitoring (SIM) mode. The method is based on the reaction of an aqueous sample containing TFA with dimethyl sulfate (DMS) in concentrated sulfuric acid in a sealed headspace vial under conditions favoring distribution of MTFA to the vapor phase. Water samples are prepared by evaporative concentration, during which TFA is retained as the anion, followed by extraction with diethyl ether of the acidified sample and then back-extraction of TFA (as the anion) in aqueous bicarbonate solution. The extraction step is required for samples with a relatively high background of other salts and organic materials. Air samples are collected in sodium bicarbonate-glycerin-coated glass denuder tubes and prepared by rinsing the denuder contents with water to form an aqueous sample for derivatization and analysis. Recoveries of TFA from spiked water, with and without evaporative concentration, and from spiked air were quantitative, with estimated detection limits of 10 ng/mL (unconcentrated) and 25 pg/mL (concentrated 250 mL:1 mL) for water and 1 ng/m(3) (72 h at 5 L/min) for air. Several environmental air, fogwater, rainwater, and surface water samples were successfully analyzed; many showed the presence of TFA. PMID:21619278

  14. Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping.

    PubMed

    Ippersiel, D; Mondor, M; Lamarche, F; Tremblay, F; Dubreuil, J; Masse, L

    2012-03-01

    The practice of intensive animal production in certain areas has resulted in excessive manure production for the available regional land base. Consequently, there is a need to develop treatment technologies to recover the valuable nutrients that manure contains so that the resulting product can be transported and used as fertilizer on agricultural land. The project presented here used electrodialysis in a dilution/concentration configuration to transfer the manure ammonia in the diluate solution by electromigration to an adjacent solution separated by an ion-exchange membrane under the driving force of an electrical potential. Then, air stripping from the electrodialysis-obtained concentrate solution without pH modification was used to isolate the ammonia in an acidic solution. An optimal process operating voltage of 17.5 V was first determined on the basis of current efficiency and total energy consumption. During the process, the swine manure pH varied from 8.5 to 8.2, values favourable for NH(4)(+) electromigration. Total ammonia nitrogen reached 21,352 mg/L in the concentrate solution, representing approximately seven times the concentration in the swine manure. Further increases in concentration were limited by water transfer from the diluate solution due to electroosmosis and osmosis. Applying vacuum to the concentrate reservoir was found to be more efficient than direct concentrate solution aeration for NH(3) recuperation in the acid trap, given that the ammonia recuperated under vacuum represented 14.5% of the theoretical value of the NH(3) present in the concentrate solution as compared to 6.2% for aeration. However, an excessively low concentrate solution pH (8.6-8.3) limited NH(3)volatilization toward the acid trap. These results suggest that the concentrate solution pH needs to be raised to promote the volatile NH(3) form of total ammonia nitrogen.

  15. Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest

    NASA Astrophysics Data System (ADS)

    Noe, S. M.; Hüve, K.; Niinemets, Ü.; Copolovici, L.

    2011-05-01

    The vertical distribution of ambient biogenic volatile organic compounds (BVOC) concentrations within a hemiboreal forest canopy was investigated over a period of one year. Variability in temporal and spatial isoprene concentrations can be mainly explained by biogenic emissions from deciduous trees, ranging from 0.1 to 7.5 μg m-3. Monoterpene concentrations exceeded isoprene largely and ranged from 0.01 to 140 μg m-3 and during winter time anthropogenic contributions are likely. Variation in monoterpene concentrations found to be largest right above the ground and the vertical profile suggest a weak mixing leading to terpene accumulation in the lower canopy. Exceptionally high values were recorded during a heat wave in July 2010 with very high midday temperatures above 30 °C for several weeks. During summer months, monoterpene exceeded isoprene concentrations 6-fold and during winter 12-fold. The relative contribution of diverse monoterpene species to the ambient concentrations revealed a dominance of α-pinene in the lower and of limonene in the upper part of the canopy, both accounting for up to 70 % of the total monoterpene concentration during summer months. The main contributing monoterpene during wintertime was Δ3-carene accounting for 60 % of total monoterpene concentration in January. Possible biogenic monoterpene sources beside the foliage are the leaf litter, the soil and also resins exuding from stems. In comparison, the hemiboreal mixed forest canopy showed similar isoprene but higher monoterpene concentrations than the boreal forest and lower isoprene but substantially higher monoterpene concentrations than the temperate mixed forest canopies. These results have major implications for simulating air chemistry and secondary organic aerosol formation within and above hemiboreal forest canopies.

  16. Effect of Varying Inert Gas and Acetylene Concentration on the Synthesis of Carbon Nanotubes.

    PubMed

    Afrin, Rahat; Abbas, Syed Mustansar; Shah, Nazar Abbas; Mustafa, Muhammad Farooq; Ali, Zulfiqar; Ahmad, Nisar

    2016-03-01

    The multiwalled carbon nanotubes (MWCNTs) with small diameter and high purity were achieved by chemical vapor deposition technique using silicon substrate. The introduction of specific concentration of inert gas with hydrocarbon played a key role in controlling morphology and diameter of MWCNTs. Nickel mixed ferrite nanoparticles were used as a catalyst for the growth of MWCNTs. Growth parameters like concentration of hydrocarbon source and inert gas flow, composition of catalyst particles and growth temperature were studied. In this work smaller diameter and twisted MWCNTs were formed by dilution of acetylene with argon gas. Electrical properties suggest a semimetallic behavior of synthesized MWCNTs. PMID:27455741

  17. Effect of Varying Inert Gas and Acetylene Concentration on the Synthesis of Carbon Nanotubes.

    PubMed

    Afrin, Rahat; Abbas, Syed Mustansar; Shah, Nazar Abbas; Mustafa, Muhammad Farooq; Ali, Zulfiqar; Ahmad, Nisar

    2016-03-01

    The multiwalled carbon nanotubes (MWCNTs) with small diameter and high purity were achieved by chemical vapor deposition technique using silicon substrate. The introduction of specific concentration of inert gas with hydrocarbon played a key role in controlling morphology and diameter of MWCNTs. Nickel mixed ferrite nanoparticles were used as a catalyst for the growth of MWCNTs. Growth parameters like concentration of hydrocarbon source and inert gas flow, composition of catalyst particles and growth temperature were studied. In this work smaller diameter and twisted MWCNTs were formed by dilution of acetylene with argon gas. Electrical properties suggest a semimetallic behavior of synthesized MWCNTs.

  18. VOCs Emissions from Multiple Wood Pellet Types and Concentrations in Indoor Air

    PubMed Central

    Soto-Garcia, Lydia; Ashley, William J.; Bregg, Sandar; Walier, Drew; LeBouf, Ryan; Hopke, Philip K.; Rossner, Alan

    2016-01-01

    Wood pellet storage safety is an important aspect for implementing woody biomass as a renewable energy source. When wood pellets are stored indoors in large quantities (tons) in poorly ventilated spaces in buildings, such as in basements, off-gassing of volatile organic compounds (VOCs) can significantly affect indoor air quality. To determine the emission rates and potential impact of VOC emissions, a series of laboratory and field measurements were conducted using softwood, hardwood, and blended wood pellets manufactured in New York. Evacuated canisters were used to collect air samples from the headspace of drums containing pellets and then in basements and pellet storage areas of homes and small businesses. Multiple peaks were identified during GC/MS and GC/FID analysis, and four primary VOCs were characterized and quantified: methanol, pentane, pentanal, and hexanal. Laboratory results show that total VOCs (TVOCs) concentrations for softwood (SW) were statistically (p < 0.02) higher than blended or hardwood (HW) (SW: 412 ± 25; blended: 203 ± 4; HW: 99 ± 8, ppb). The emission rate from HW was the fastest, followed by blended and SW, respectively. Emissions rates were found to range from 10−1 to 10−5 units, depending upon environmental factors. Field measurements resulted in airborne concentrations ranging from 67 ± 8 to 5000 ± 3000 ppb of TVOCs and 12 to 1500 ppb of aldehydes, with higher concentrations found in a basement with a large fabric bag storage unit after fresh pellet delivery and lower concentrations for aged pellets. These results suggest that large fabric bag storage units resulted in a substantial release of VOCs into the building air. Occupants of the buildings tested discussed concerns about odor and sensory irritation when new pellets were delivered. The sensory response was likely due to the aldehydes. PMID:27022205

  19. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended.

  20. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    SciTech Connect

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.; Nazaroff,William W.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.

  1. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    PubMed Central

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  2. Pt-TiO2/MWCNTs Hybrid Composites for Monitoring Low Hydrogen Concentrations in Air

    PubMed Central

    Trocino, Stefano; Donato, Andrea; Latino, Mariangela; Donato, Nicola; Leonardi, Salvatore Gianluca; Neri, Giovanni

    2012-01-01

    Hydrogen is a valuable fuel for the next energy scenario. Unfortunately, hydrogen is highly flammable at concentrations higher than 4% in air. This aspect makes the monitoring of H2 leaks an essential issue for safety reasons, especially in the transportation field. In this paper, nanocomposites based on Pt-doped TiO2/multiwalled carbon nanotubes (MWCNTs) have been introduced as sensitive materials for H2 at low temperatures. Pt-TiO2/MWNTs nanocomposites with different composition have been prepared by a simple wet chemical procedure and their morphological, microstructural and electrical properties were investigated. Resistive thick-film devices have been fabricated printing the hybrid nanocomposites on alumina substrates provided with Pt interdigitated electrodes. Electrical tests in air have shown that embedding MWCNTs in the TiO2 matrix modify markedly the electrical conductivity, providing a means to decrease the resistance of the sensing layer. Pt acts as a catalytic additive. Pt-TiO2/MWNTs-based sensors were found to be sensitive to hydrogen at concentrations between 0.5 and 3% in air, satisfying the requisites for practical applications in hydrogen leak detection devices.

  3. Modeling breathing-zone concentrations of airborne contaminants generated during compressed air spray painting.

    PubMed

    Flynn, M R; Gatano, B L; McKernan, J L; Dunn, K H; Blazicko, B A; Carlton, G N

    1999-01-01

    This paper presents a mathematical model to predict breathing-zone concentrations of airborne contaminants generated during compressed air spray painting in cross-flow ventilated booths. The model focuses on characterizing the generation and transport of overspray mist. It extends previous work on conventional spray guns to include exposures generated by HVLP guns. Dimensional analysis and scale model wind-tunnel studies are employed using non-volatile oils, instead of paint, to produce empirical equations for estimating exposure to total mass. Results indicate that a dimensionless breathing zone concentration is a nonlinear function of the ratio of momentum flux of air from the spray gun to the momentum flux of air passing through the projected area of the worker's body. The orientation of the spraying operation within the booth is also very significant. The exposure model requires an estimate of the contaminant generation rate, which is approximated by a simple impactor model. The results represent an initial step in the construction of more realistic models capable of predicting exposure as a mathematical function of the governing parameters. PMID:10028895

  4. Detonation propagation through methane-air mixtures with fuel concentration gradients

    NASA Astrophysics Data System (ADS)

    Kessler, David; Gamezo, Vadim; Oran, Elaine

    2010-11-01

    The complex structure of a multidimensional detonation front consists of constantly changing, multiply intersecting incident shocks and Mach stems followed by growing and shrinking regions of reacted and unreacted gases. Because these flow structures change in time, the energy release in the shocked and compressed gases varies in space and time. Trajectories of triple points formed at shock intersections create cellular patterns whose size and structure are characteristic of the particular material and the background condition. In high-activation-energy fuel-air mixtures, such as methane in air, cellular patterns are relatively large, very irregular, and have complex and changing substructures. Here we use numerical simulations to study the behavior of detonations propagating through methane-air mixtures with a spatial gradient of fuel concentration. When the mixture stoichiometry varies from stoichiometric, the detonation propagation speed slows and sizes of cellular structures grow. In partially premixed systems with a nonuniform concentration of fuel -- a condition that can occur, for example, naturally in sealed underground coal mine tunnels -- both the propagation speed and the characteristic detonation cell size vary spatially.

  5. High Concentrations of Organic Contaminants in Air from Ship Breaking Activities in Chittagong, Bangladesh.

    PubMed

    Nøst, Therese H; Halse, Anne K; Randall, Scott; Borgen, Anders R; Schlabach, Martin; Paul, Alak; Rahman, Atiqur; Breivik, Knut

    2015-10-01

    The beaches on the coast of Chittagong in Bangladesh are one of the most intense ship breaking areas in the world. The aim of the study was to measure the concentrations of organic contaminants in the air in the city of Chittagong, including the surrounding ship breaking areas using passive air samplers (N = 25). The compounds detected in the highest amounts were the polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs), whereas dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), and polychlorinated biphenyls (PCBs) were several orders of magnitude lower in comparison. PCBs, PAHs, and HCB were highest at sites near the ship breaking activities, whereas DDTs and SCCPs were higher in the urban areas. Ship breaking activities likely act as atmospheric emission sources of PCBs, PAHs, and HCB, thus adding to the international emphasis on responsible recycling of ships. Concentrations of PAHs, PCBs, DDTs, HCB, and SCCPs in ambient air in Chittagong are high in comparison to those found in similar studies performed in other parts of Asia. Estimated toxic equivalent quotients indicate elevated human health risks caused by inhalation of PAHs at most sites. PMID:26351879

  6. High Concentrations of Organic Contaminants in Air from Ship Breaking Activities in Chittagong, Bangladesh.

    PubMed

    Nøst, Therese H; Halse, Anne K; Randall, Scott; Borgen, Anders R; Schlabach, Martin; Paul, Alak; Rahman, Atiqur; Breivik, Knut

    2015-10-01

    The beaches on the coast of Chittagong in Bangladesh are one of the most intense ship breaking areas in the world. The aim of the study was to measure the concentrations of organic contaminants in the air in the city of Chittagong, including the surrounding ship breaking areas using passive air samplers (N = 25). The compounds detected in the highest amounts were the polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs), whereas dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), and polychlorinated biphenyls (PCBs) were several orders of magnitude lower in comparison. PCBs, PAHs, and HCB were highest at sites near the ship breaking activities, whereas DDTs and SCCPs were higher in the urban areas. Ship breaking activities likely act as atmospheric emission sources of PCBs, PAHs, and HCB, thus adding to the international emphasis on responsible recycling of ships. Concentrations of PAHs, PCBs, DDTs, HCB, and SCCPs in ambient air in Chittagong are high in comparison to those found in similar studies performed in other parts of Asia. Estimated toxic equivalent quotients indicate elevated human health risks caused by inhalation of PAHs at most sites.

  7. Combining regression analysis and air quality modelling to predict benzene concentration levels

    NASA Astrophysics Data System (ADS)

    Vlachokostas, Ch.; Achillas, Ch.; Chourdakis, E.; Moussiopoulos, N.

    2011-05-01

    State of the art epidemiological research has found consistent associations between traffic-related air pollution and various outcomes, such as respiratory symptoms and premature mortality. However, many urban areas are characterised by the absence of the necessary monitoring infrastructure, especially for benzene (C 6H 6), which is a known human carcinogen. The use of environmental statistics combined with air quality modelling can be of vital importance in order to assess air quality levels of traffic-related pollutants in an urban area in the case where there are no available measurements. This paper aims at developing and presenting a reliable approach, in order to forecast C 6H 6 levels in urban environments, demonstrated for Thessaloniki, Greece. Multiple stepwise regression analysis is used and a strong statistical relationship is detected between C 6H 6 and CO. The adopted regression model is validated in order to depict its applicability and representativeness. The presented results demonstrate that the adopted approach is capable of capturing C 6H 6 concentration trends and should be considered as complementary to air quality monitoring.

  8. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    NASA Astrophysics Data System (ADS)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  9. Theoretical model for diffusive greenhouse gas fluxes estimation across water-air interfaces measured with the static floating chamber method

    NASA Astrophysics Data System (ADS)

    Xiao, Shangbin; Wang, Chenghao; Wilkinson, Richard Jeremy; Liu, Defu; Zhang, Cheng; Xu, Wennian; Yang, Zhengjian; Wang, Yuchun; Lei, Dan

    2016-07-01

    Aquatic systems are sources of greenhouse gases on different scales, however the uncertainty of gas fluxes estimated using popular methods are not well defined. Here we show that greenhouse gas fluxes across the air-water interface of seas and inland waters are significantly underestimated by the currently used static floating chamber (SFC) method. We found that the SFC CH4 flux calculated with the popular linear regression (LR) on changes of gas concentration over time only accounts for 54.75% and 35.77% of the corresponding real gas flux when the monitoring periods are 30 and 60 min respectively based on the theoretical model and experimental measurements. Our results do manifest that nonlinear regression models can improve gas flux estimations, while the exponential regression (ER) model can give the best estimations which are close to true values when compared to LR. However, the quadratic regression model is proved to be inappropriate for long time measurements and those aquatic systems with high gas emission rate. The greenhouse gases effluxes emitted from aquatic systems may be much more than those reported previously, and models on future scenarios of global climate changes should be adjusted accordingly.

  10. Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production

    NASA Astrophysics Data System (ADS)

    Popov, N. A.

    2016-08-01

    The results of a numerical study on kinetic processes initiated by a pulsed nanosecond discharge in air at high specific deposited energy, when the dissociation degree of oxygen molecules is high, are presented. The calculations of the temporal dynamics of the electron concentration, density of atomic oxygen, vibrational distribution function of nitrogen molecules, and gas temperature agree with the experimental data. It is shown that quenching of electronically excited states of nitrogen N2(B3Πg), N2(C3Πu), N2(a‧1 Σ \\text{u}- ) by oxygen molecules leads to the dissociation of O2. This conclusion is based on the comparison of calculated dynamics of atomic oxygen in air, excited by a pulsed nanosecond discharge, with experimental data. In air plasma at a high dissociation degree of oxygen molecules ([O]/[O2] > 10%), relaxation of the electronic energy of atoms and molecules in reactions with O atoms becomes extremely important. Active production of NO molecules and fast gas heating in the discharge plasma due to the quenching of electronically excited N2(B3Πg, C3Πu, a‧1 Σ \\text{u}- ) molecules by oxygen atoms is notable. Owing to the high O atom density, electrons are effectively detached from negative ions in the discharge afterglow. As a result, the decay of plasma in the afterglow is determined by electron-ion recombination, and the electron density remains relatively high between the pulses. An increase in the vibrational temperature of nitrogen molecules at the periphery of the plasma channel at time delay t = 1-30 μs after the discharge is obtained. This is due to intense gas heating and, as a result, gas-dynamic expansion of a hot gas channel. Vibrationally excited N2(v) molecules produced near the discharge axis move from the axial region to the periphery. Consequently, at the periphery the vibrational temperature of nitrogen molecules is increased.

  11. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  12. Daily variation of radon gas and its short-lived progeny concentration near ground level and estimation of aerosol residence time

    NASA Astrophysics Data System (ADS)

    M, Mohery; A, M. Abdallah; A, Ali; S, S. Baz

    2016-05-01

    Atmospheric concentrations of radon (222Rn) gas and its short-lived progenies 218Po, 214Pb, and 214Po were continuously monitored every four hours at the ground level in Jeddah city, Kingdom of Saudi Arabia. The measurements were performed three times every week, starting from November 2014 to October 2015. A method of electrostatic precipitation of positively charged 218Po and 214Po by a positive voltage was applied for determining 222Rn gas concentration. The short-lived 222Rn progeny concentration was determined by using a filter holder connected with the alpha-spectrometric technique. The meteorological parameters (relative air humidity, air temperature, and wind speed) were determined during the measurements of 222Rn and its progeny concentrations. 222Rn gas as well as its short-lived progeny concentration display a daily and seasonal variation with high values in the night and early morning hours as compared to low values at noon and in the afternoon. The observed monthly atmospheric concentrations showed a seasonal trend with the highest values in the autumn/winter season and the lowest values in the spring/summer season. Moreover, and in parallel with alpha-spectrometric measurements, a single filter-holder was used to collect air samples. The deposited activities of 214Pb and the long-lived 222Rn daughter 210Pb on the filter were measured with the gamma spectrometric technique. The measured activity concentrations of 214Pb by both techniques were found to be relatively equal largely. The highest mean seasonally activity concentrations of 210Pb were observed in the autumn/winter season while the lowest mean were observed in the spring/summer season. The mean residence time (MRT) of aerosol particles in the atmospheric air could be estimated from the activity ratios of 210Pb/214Pb. Project supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (Grant No. 291/965/1434).

  13. Photoacoustic spectroscopy-based detector for measuring benzene and toluene concentration in gas and liquid samples

    NASA Astrophysics Data System (ADS)

    Hanyecz, Veronika; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád; Szabó, Gábor

    2011-12-01

    Here we present a novel instrument for on-line, automatic measurement of benzene and toluene concentration in gas and liquid samples produced in the natural gas industry. Operation of the instrument is based on the collection of analytes on an adsorbent, separation using a chromatographic column and detection by near-infrared diode laser-based photoacoustic spectroscopy. Sample handling, measurement and data evaluation are carried out fully automatically, using an integrated, programmable electronic unit. The instrument was calibrated in the laboratory for natural gas, nitrogen and liquid glycol samples, and tested under field conditions at a natural gas dehydration unit of the MOL Hungarian Oil and Gas Company. Minimum detectable concentrations (3σm-1) were found to be 2.5 µg l-1 for benzene and 4 µg l-1 for toluene in gas samples, while 1.5 mg l-1 for benzene and 3 mg l-1 for toluene in liquid samples, which is suitable for measuring benzene and toluene concentration in natural gas and glycol samples occurring at natural gas dehydration plants.

  14. Template-directed fabrication of porous gas diffusion layer for magnesium air batteries

    NASA Astrophysics Data System (ADS)

    Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2015-11-01

    The uniform micropore distribution in the gas diffusion layers (GDLs) of the air-breathing cathode is very important for the metal air batteries. In this work, the super-hydrophobic GDL with the interconnected regular pores is prepared by a facile silica template method, and then the electrochemical properties of the Mg air batteries containing these GDLs are investigated. The results indicate that the interconnected and uniform pore structure, the available water-breakout pressure and the high gas permeability coefficient of the GDL can be obtained by the application of 30% silica template. The maximum power density of the Mg air battery containing the GDL with 30% regular pores reaches 88.9 mW cm-2 which is about 1.2 times that containing the pristine GDL. Furthermore, the GDL with 30% regular pores exhibits the improved the long term hydrophobic stability.

  15. Concentration, size, and density of total suspended particulates at the air exhaust of concentrated animal feeding operations.

    PubMed

    Yang, Xufei; Lee, Jongmin; Zhang, Yuanhui; Wang, Xinlei; Yang, Liangcheng

    2015-08-01

    Total suspended particulate (TSP) samples were seasonally collected at the air exhaust of 15 commercial concentrated animal feeding operations (CAFOs; including swine finishing, swine farrowing, swine gestation, laying hen, and tom turkey) in the U.S. Midwest. The measured TSP concentrations ranged from 0.38 ± 0.04 mg m⁻³ (swine gestation in summer) to 10.9 ± 3.9 mg m⁻³ (tom turkey in winter) and were significantly affected by animal species, housing facility type, feeder type (dry or wet), and season. The average particle size of collected TSP samples in terms of mass median equivalent spherical diameter ranged from 14.8 ± 0.5 µm (swine finishing in winter) to 30.5 ± 2.0 µm (tom turkey in summer) and showed a significant seasonal effect. This finding affirmed that particulate matter (PM) released from CAFOs contains a significant portion of large particles. The measured particle size distribution (PSD) and the density of deposited particles (on average 1.65 ± 0.13 g cm⁻³) were used to estimate the mass fractions of PM10 and PM2.5 (PM ≤ 10 and ≤ 2.5 μm, respectively) in the collected TSP. The results showed that the PM10 fractions ranged from 12.7 ± 5.1% (tom turkey) to 21.1 ± 3.2% (swine finishing), whereas the PM2.5 fractions ranged from 3.4 ± 1.9% (tom turkey) to 5.7 ± 3.2% (swine finishing) and were smaller than 9.0% at all visited CAFOs. This study applied a filter-based method for PSD measurement and deposited particles as a surrogate to estimate the TSP's particle density. The limitations, along with the assumptions adopted during the calculation of PM mass fractions, must be recognized when comparing the findings to other studies.

  16. Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest

    NASA Astrophysics Data System (ADS)

    Noe, S. M.; Hüve, K.; Niinemets, Ü.; Copolovici, L.

    2012-05-01

    The vertical distribution of ambient biogenic volatile organic compounds (BVOC) concentrations within a hemiboreal forest canopy was investigated over a period of one year. Variability in temporal and spatial isoprene concentrations, ranging from 0.1 to 7.5 μg m-3, can be mainly explained by biogenic emissions from deciduous trees. Monoterpene concentrations exceeded isoprene largely and ranged from 0.01 to 140 μg m-3 and during winter time anthropogenic contributions are likely. Variation in monoterpene concentrations were found to be largest right above the ground and the vertical profiles suggest a weak mixing leading to terpene accumulation in the lower canopy. Exceptionally high values were recorded during a heat wave in July 2010 with very high midday temperatures above 30 °C for several weeks. During summer months, monoterpene exceeded isoprene concentrations 6-fold and during winter 12-fold. During summer months, dominance of α-pinene in the lower and of limonene in the upper part of the canopy was observed, both accounting for up to 70% of the total monoterpene concentration. During wintertime, Δ3-carene was the dominant species, accounting for 60% of total monoterpene concentration in January. Possible biogenic monoterpene sources beside the foliage are the leaf litter, the soil and also resins exuding from stems. In comparison, the hemiboreal mixed forest canopy showed similar isoprene but higher monoterpene concentrations than the boreal forest and lower isoprene but substantially higher monoterpene concentrations than the temperate mixed forest canopies. These results have major implications for simulating air chemistry and secondary organic aerosol formation within and above hemiboreal forest canopies. Possible effects of in-cartridge oxidation reactions are discussed as our measurement technique did not include oxidant scavenging. A comparison between measurements with and without scavenging oxidants is presented.

  17. Tracking Dissolved Methane Concentrations near Active Seeps and Gas Hydrates: Sea of Japan.

    NASA Astrophysics Data System (ADS)

    Snyder, G. T.; Aoki, S.; Matsumoto, R.; Tomaru, H.; Owari, S.; Nakajima, R.; Doolittle, D. F.; Brant, B.

    2015-12-01

    A number of regions in the Sea of Japan are known for active gas venting and for gas hydrate exposures on the sea floor. In this investigation we employed several gas sensors mounted on a ROV in order to determine the concentrations of dissolved methane in the water near these sites. Methane concentrations were determined during two-second intervals throughout each ROV deployment during the cruise. The methane sensor deployments were coupled with seawater sampling using Niskin bottles. Dissolved gas concentrations were later measured using gas chromatography in order to compare with the sensor results taken at the same time. The observed maximum dissolved methane concentrations were much lower than saturation values, even when the ROV manipulators were in contact with gas hydrate. Nonetheless, dissolved concentrations did reach several thousands of nmol/L near gas hydrate exposures and gas bubbles, more than two orders of magnitude over the instrumental detection limits. Most of the sensors tested were able to detect dissolved methane concentrations as low as 10 nmol/L which permitted detection when the ROV approached methane plume sites, even from several tens of meters above the sea floor. Despite the low detection limits, the methane sensors showed variable response times when returning to low-background seawater (~5nM). For some of the sensors, the response time necessary to return to background values occurred in a matter of minutes, while for others it took several hours. Response time, as well as detection limit, should be an important consideration when selecting methane sensors for ROV or AUV investigations. This research was made possible, in part, through funding provided by the Japanese Ministry of Economy, Trade and Industry (METI).

  18. Atmospheric hydrocarbon emissions and concentrations in the barnett shale natural gas production region.

    PubMed

    Zavala-Araiza, Daniel; Sullivan, David W; Allen, David T

    2014-05-01

    Hourly ambient hydrocarbon concentration data were collected, in the Barnett Shale Natural Gas Production Region, using automated gas chromatography (auto-GC), for the period from April 2010 to December 2011. Data for three sites were compared: a site in the geographical center of the natural gas production region (Eagle Mountain Lake (EML)); a rural/suburban site at the periphery of the production region (Flower Mound Shiloh), and an urban site (Hinton). The dominant hydrocarbon species observed in the Barnett Shale region were light alkanes. Analyses of daily, monthly, and hourly patterns showed little variation in relative composition. Observed concentrations were compared to concentrations predicted using a dispersion model (AERMOD) and a spatially resolved inventory of volatile organic compounds (VOC) emissions from natural gas production (Barnett Shale Special Emissions Inventory) prepared by the Texas Commission on Environmental Quality (TCEQ), and other emissions information. The predicted concentrations of VOC due to natural gas production were 0-40% lower than background corrected measurements, after accounting for potential under-estimation of certain emission categories. Hourly and daily variations in observed, background corrected concentrations were primarily explained by variability in meteorology, suggesting that episodic emission events had little impact on hourly averaged concentrations. Total emissions for VOC from natural gas production sources are estimated to be approximately 25,300 tons/yr, when accounting for potential under-estimation of certain emission categories. This region produced, in 2011, approximately 5 bcf/d of natural gas (100 Gg/d) for a VOC to natural gas production ratio (mass basis) of 0.0006.

  19. Sudden changes in aerosol and gas concentrations in the central Arctic marine boundary layer: Causes and consequences

    NASA Astrophysics Data System (ADS)

    Bigg, E. Keith; Leck, Caroline; Nilsson, E. Douglas

    2001-12-01

    Measurements of aerosol number size distributions and concentrations of the precursor gases dimethyl sulfide, sulfur dioxide and ammonia were made within the pack ice region of the central Arctic Ocean during July and August 1996 from the icebreaker Oden. Changes in concentration, sometimes exceeding the entire seasonal variation, often occurred within an hour and attempts to find the reasons for them are described. Vertical profiles of aerosol concentration in Aitken and accumulation mode particles obtained on helicopter flights revealed intense concentration gradients in the lowest 1000 m. Those below 100 m were common. Concentrations of accumulation mode particles were usually greater near the surface than at 100 m. Four representative case studies for which vertical aerosol profiles were obtained are presented. Observations of rapid large changes in near-surface concentration of aerosols in different size ranges are compared with the vertical profiles, meteorological information, and acoustic or optical remote sensing to infer processes causing the changes. Comparison of simultaneous variations in aerosols and precursor gas concentrations are used to define the vertical profiles of the gases. It was found that dimethyl sulfide and ammonia concentrations usually must have been strongly depleted near the surface relative to concentrations at about 100 m. Sulfur dioxide profiles appeared to be more complex. Turbulence or vertical air motions initiated by atmospheric wave motions trapped within the stable boundary layer appeared to be directly responsible for many of the sudden concentration changes, through interaction with concentration gradients close to the surface. The presence of low-level jets also had direct or indirect influences on mixing in the lowest few hundred meters. The extent to which aerosols measured near the surface can determine the microphysics of central Arctic marine boundary layer clouds is examined.

  20. CACD (Complex Air Cleaning Devices) of the GTE (Gas turbine electrostation)-110: Problems and solutions

    NASA Astrophysics Data System (ADS)

    Budakov, I. V.; Neuimin, V. M.

    2015-12-01

    The paper considers CACD of the compressor of the GTE-110 gas turbine. The CACD efficiency has been tested under different conditions of the GTE-325 of the Ivanovo combined cycle plant (CCP) JSC INTER RAO-Electrogeneration Exploitation. It sets out the requirements for the dust collector, de-icing system, and air intake tract CACD. De-icing and air preparation methods are shown.

  1. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    SciTech Connect

    Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

  2. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures

    SciTech Connect

    Huang, Zuohua; Zhang, Yong; Zeng, Ke; Liu, Bing; Wang, Qian; Jiang, Deming

    2006-07-15

    Laminar flame characteristics of natural gas-hydrogen-air flames were studied in a constant-volume bomb at normal temperature and pressure. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to natural gas (volume fraction from 0 to 100%) and equivalence ratios (f from 0.6 to 1.4). The influence of stretch rate on flame was also analyzed. The results show that, for lean mixture combustion, the flame radius increases with time but the increasing rate decreases with flame expansion for natural gas and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for natural gas and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for natural gas-air, hydrogen-air, and natural gas-hydrogen-air flames. Laminar burning velocities increase exponentially with the increase of hydrogen fraction in mixtures, while the Markstein length decreases and flame instability increases with the increase of hydrogen fractions in mixture. For a fixed hydrogen fraction, the Markstein number shows an increase and flame stability increases with the increase of equivalence ratios. Based on the experimental data, a formula for calculating the laminar burning velocities of natural gas-hydrogen-air flames is proposed. (author)

  3. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    NASA Astrophysics Data System (ADS)

    Antoniak, Z. I.; Brown, D. R.; Drost, M. K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20 percent cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20 percent more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5 percent when compared to larger gas turbines.

  4. Determination of lead, cations, and anions concentration in indoor and outdoor air at the primary schools in Kuala Lumpur.

    PubMed

    Awang, Normah; Jamaluddin, Farhana

    2014-01-01

    This study was carried out to determine the concentration of lead (Pb), anions, and cations at six primary schools located around Kuala Lumpur. Low volume sampler (MiniVol PM10) was used to collect the suspended particulates in indoor and outdoor air. Results showed that the concentration of Pb in indoor air was in the range of 5.18 ± 1.08 μg/g-7.01 ± 0.08 μg/g. All the concentrations of Pb in indoor air were higher than in outdoor air at all sampling stations. The concentrations of cations and anions were higher in outdoor air than in indoor air. The concentration of Ca(2+) (39.51 ± 5.01 mg/g-65.13 ± 9.42 mg/g) was the highest because the cation existed naturally in soil dusts, while the concentrations of NO3 (-) and SO4 (2-) were higher in outdoor air because there were more sources of exposure for anions in outdoor air, such as highly congested traffic and motor vehicles emissions. In comparison, the concentration of NO3 (-) (29.72 ± 0.31 μg/g-32.00 ± 0.75 μg/g) was slightly higher than SO4 (2-). The concentrations of most of the parameters in this study, such as Mg(2+), Ca(2+), NO3 (-), SO4 (2-), and Pb(2+), were higher in outdoor air than in indoor air at all sampling stations.

  5. Modeling VOC emissions and air concentrations from the Exxon Valdez oil spill

    SciTech Connect

    Hanna, S.R. ); Drivas, P.J. )

    1993-03-01

    During the two-week period following the Exxon Valdez oil spill in March 1989 in Prince William Sound, Alaska, toxic volatile organic compounds (VOCs) evaporated from the surface of the oil spill and were transported and dispersed throughout the region. To estimate the air concentrations of these VOCs, emissions and dispersion modeling was conducted for each hour during the first two weeks of the spill. A multicomponent evaporative emissions model was developed and applied to the oil spill; the model considered the evaporation of 15 specific compounds, including benzene and toluene. Both mass transfer from the surface of the spill and diffusion through the oil layer were considered in the emissions model. Maximum emissions of toluene were calculated to equal about 20,000 kg/hr, or about 5 g/m[sup 2] hr, at a time of eight hours after the initial oil spill. Meteorological data were acquired from sources and used to estimate hourly-averaged wind velocity over the spill. Air concentrations of specific components were calculated using the ATDL area source diffusion model and the Offshore and Coastal Dispersion (OCD) model. Maximum hourly-averaged concentrations were predicted not to exceed 10 ppmv for any compound. 24 refs., 6 figs., 4 tabs.

  6. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.

    PubMed

    Zhuang, Ye; Pavlish, John H

    2012-04-17

    Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion.

  7. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.

    PubMed

    Zhuang, Ye; Pavlish, John H

    2012-04-17

    Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion. PMID:22439940

  8. Near-surface physics during convection affecting air-water gas transfer

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  9. Methane Gas Concentration in Soils and Ground Water, Carbon and Emery Counties, Utah, 1995-2003

    USGS Publications Warehouse

    Stolp, B.J.; Burr, A.L.; Johnson, K.K.

    2006-01-01

    The release of methane gas from coal beds creates the potential for it to move into near-surface environments through natural and human-made pathways. To help ensure the safety of communities and determine the potential effects of development of coal-bed resources, methane gas concentrations in soils and ground water in Carbon and Emery Counties, Utah, were monitored from 1995 to 2003. A total of 420 samples were collected, which contained an average methane concentration of 2,740 parts per million by volume (ppmv) and a median concentration of less than 10 ppmv. On the basis of spatial and temporal methane concentration data collected during the monitoring period, there does not appear to be an obvious, widespread, or consistent migration of methane gas to the near-surface environment.

  10. Internally coated air-cooled gas turbine blading

    NASA Technical Reports Server (NTRS)

    Hsu, L.; Stevens, W. G.; Stetson, A. R.

    1979-01-01

    Ten candidate modified nickel-aluminide coatings were developed using the slip pack process. These coatings contain additives such as silicon, chromium and columbium in a nickel-aluminum coating matrix with directionally solidified MAR-M200 + Hf as the substrate alloy. Following a series of screening tests which included strain tolerance, dynamic oxidation and hot corrosion testing, the Ni-19A1-1Cb (nominal composition) coating was selected for application to the internal passages of four first-stage turbine blades. Process development results indicate that a dry pack process is suitable for internal coating application resulting in 18 percent or less reduction in air flow. Coating uniformity, based on coated air-cooled blades, was within + or - 20 percent. Test results show that the presence of additives (silicon, chromium or columbium) appeared to improve significantly the ductility of the NiA1 matrix. However, the environmental resistance of these modified nickel-aluminides were generally inferior to the simple aluminides.

  11. Air quality modelling : effects of emission reductions on concentrations of particulate matter

    NASA Astrophysics Data System (ADS)

    Girault, L.; Roustan, Y.; Seigneur, C.

    2012-04-01

    Atmospheric particulate matter (PM) has adverse effects on human health. PM acts primarily on respiratory and cardiovascular (due to their small size they can penetrate deep into the lungs), but they are also known effects on the skin. In France, the "Particulate Plan" - developed as part of the second National Environmental Health Plan - aims to reduce by 30% fine PM (noted PM2.5because these particles have an aerodynamic diameter of 2.5 micrometers or less) by 2015. A recent study by Airparif (the organization in charge of monitoring air quality in the Paris region, the Île-de-France) and LSCE (Laboratory of climate and the environmental science, France) has allowed, through a large measurement campaign conducted between 2009 and 2011, to quantify the proportion of PM produced in Île-de-France and those transported from the surrounding areas. The study by numerical modelling of air pollution presented here complements these results by investigating future emission scenarios. The CEREA develops and uses an air quality model which simulates the concentrations of pollutants from an emission inventory, meteorological data and boundary conditions of the area studied. After an evaluation of simulation results for the year 2005, the model is used to assess the effects of various scenarios of reductions in NOx and NH3 emissions on the concentrations of PM2.5in Île-de-France. The effects of the controls on the local pollution and the long-range pollution are considered separately. For each emitted species, three scenarios of emission reductions are identified: an emission reduction at the local level (Île-de-France), a reduction at the regional scale (France) and a reduction at the continental scale (across Europe). In each case, a 15% reduction is applied. The comparison of the results allows us to assess the respective contributions of local emissions and long-range transport to PM2.5 concentrations. For instance, the reduction of NOx emissions in Europe leads to a

  12. Gas-fired boiler and turbine air toxics summary report. Final report, January-September 1995

    SciTech Connect

    Rossi-Lane, C.; Stein, D.; Himes, R.

    1996-08-01

    The objective of the report is to provide a summary of the criteria pollutants and hazardous air pollutants (HAPs) emitted from a variety of gas-fired stationary sources including utility boilers, utility turbines, and turbines used for natural gas transmission. The report provides emission factors for each compound measured as a function of load to support general use during the preparation of Title V permit applications.

  13. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator.

    PubMed

    Ge, Yong; Sun, Hong-Xiang; Liu, Shu-Sen; Yuan, Shou-Qi; Xia, Jian-Ping; Guan, Yi-Jun; Zhang, Shu-Yi

    2016-08-01

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications. PMID:27587144

  14. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator

    NASA Astrophysics Data System (ADS)

    Ge, Yong; Sun, Hong-xiang; Liu, Shu-sen; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Zhang, Shu-yi

    2016-08-01

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.

  15. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings

    PubMed Central

    Beamer, P.I.; Sugeng, A. J.; Kelly, M.D.; Lothrop, N.; Klimecki, W.; Wilkinson, S.T.; Loh, M.

    2014-01-01

    Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p<0.05), whose primary source in indoor air is resuspended soil from outdoors. In the second rural community, our estimated metal concentrations in air were comparable to active air sampling measurements taken previously. This passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites. PMID:24469149

  16. Locating and quantifying gas emission sources using remotely obtained concentration data

    NASA Astrophysics Data System (ADS)

    Hirst, Bill; Jonathan, Philip; González del Cueto, Fernando; Randell, David; Kosut, Oliver

    2013-08-01

    We describe a method for detecting, locating and quantifying sources of gas emissions to the atmosphere using remotely obtained gas concentration data; the method is applicable to gases of environmental concern. We demonstrate its performance using methane data collected from aircraft. Atmospheric point concentration measurements are modelled as the sum of a spatially and temporally smooth atmospheric background concentration, augmented by concentrations due to local sources. We model source emission rates with a Gaussian mixture model and use a Markov random field to represent the atmospheric background concentration component of the measurements. A Gaussian plume atmospheric eddy dispersion model represents gas dispersion between sources and measurement locations. Initial point estimates of background concentrations and source emission rates are obtained using mixed ℓ2 - ℓ1 optimisation over a discretised grid of potential source locations. Subsequent reversible jump Markov chain Monte Carlo inference provides estimated values and uncertainties for the number, emission rates and locations of sources unconstrained by a grid. Source area, atmospheric background concentrations and other model parameters, including plume model spreading and Lagrangian turbulence time scale, are also estimated. We investigate the performance of the approach first using a synthetic problem, then apply the method to real airborne data from a 1600 km2 area containing two landfills, then a 225 km2 area containing a gas flare stack.

  17. Influence of the meteorological parameters on CFCs and SF6 concentration in the air of Krakow, Poland

    NASA Astrophysics Data System (ADS)

    Bielewski, Jarosław; Najman, Joanna; Śliwka, Ireneusz; Bartyzel, Jakub; Rosiek, Janusz

    2013-04-01

    key words: gas chromatography, trace gases, CFCs and SF6 measurements in urban area. Halogenated compounds (chlorofluorocarbons-CFCs), both natural and industrial, so-called freons, currently exist as trace gases in the entire human environment. The CFCs cause ozone depletion in the stratosphere. Moreover CFCs and SF6 take part in intensification of the greenhouse effect. The decisions of the Vienna Convention (1985) and of the Montreal Protocol (1987) limited the world production level of CFCs in the year 1989 at least 35% after 2004, 90% after 2015 and total reduction after year 2030. On account of international agreements, the measurements of CFCs and SF6 in air were started. Measurement "clean" stations were situated at places outside of urban areas influence and gathered on world program - AGAGE (Advanced Global Atmospheric Gases Experiment). One of these stations is Mace Head (Ireland, 53o N, 10o W), which participates in AGAGE since 1987 [1] and in European InGOS (Integrated non-CO2 Greenhouse gas Observing System) program since 2011. Similar research is also conducted in Central Europe, in urban area of Krakow (Poland, 50o N, 19o E) since 1997. The work discusses results from 15 years of concentration measurements (in the years 1997-2012) of selected halocarbons and SF6 in Krakow. To obtain concentrations of measured compounds the mathematical procedure has been used, where concentrations were calculated using a five points Lagrange's interpolation method. Using temporary measurement data were determined daily arithmetic means and their standard deviations. Based on these data, efficiency of Montreal Protocol legislation, implemented in Poland (The Journal of Laws No. 52) could be assessed [2]. Additionally cut-off filtration method was used to estimate trend of the base line of individual air pollutant. Rejected exceedances of base lines were corelated with meteorological characteristics of Krakow region to evaluate possible sources of pollution. The

  18. CONUP: A code that calculates tag gas concentrations for reactor components

    SciTech Connect

    Hammervold, D.J.; Siciliano, E.R.; Schmittroth, F.; Schenter, R.E.

    1991-11-01

    The CONUP code calculates the current tag isotopic concentrations for the Tag Gas Analysis Code, SMTAG. The combined codes, CONUP and SMTAG, represent the Tag Gas System. CONUP produces tag concentrations that are decayed and transmuted over specific reactor core cycles. The calculated concentrations are used, together with measured concentrations, as input for the SMTAG code, which identifies the failed reactor components that have released tag gas. The CONUP code has two modes for calculating isotopic concentrations: absolute and incremental. In the absolute mode, the CONUP code calculates concentrations from the beginning of the reactor startup through the current cycle. In the incremental mode, the CONUP code processes concentrations from the last reactor component cycle for each component. The incremental mode saves significant processing time because the concentrations are updated only for the current cycle. A description of the underlying physical model and method of solution are presented. A description of the code and a user`s guide are also given, along with example input and corresponding concentration output.

  19. Measurements of radon concentrations in waters and soil gas of Zonguldak, Turkey.

    PubMed

    Koray, Abdullah; Akkaya, Gizem; Kahraman, Ayşegül; Kaynak, Gökay

    2014-12-01

    The radon concentrations in soil-gas and water samples (in the form of springs, catchment, tap, thermal) used as drinking water or thermal were measured using a professional radon monitor AlphaGUARD PQ 2000PRO. The measured radon concentrations in water samples ranged from 0.32 to 88.22 Bq l(-1). Most of radon levels in potable water samples are below the maximum contaminant level of 11 Bq l(-1) recommended by the US Environmental Protection Agency. The calculated annual effective doses due to radon intake through water consumption varied from 0.07 to 18.53 µSv y(-1). The radon concentrations in soil gas varied from 295.67 to 70 852.92 Bq m(-3). The radon level in soil gas was found to be higher in the area close to the formation boundary thrust and faults. No correlation was observed between radon concentrations in groundwater and soil gas. Also, no significant correlation was observed between soil-gas radon and temperature, pressure and humidity. The emanation of radon from groundwater and soil gas is controlled by the geological formation and by the tectonic structure of the area. PMID:24287600

  20. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOEpatents

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  1. Soil gas 222Rn concentration in northern Germany and its relationship with geological subsurface structures.

    PubMed

    Künze, N; Koroleva, M; Reuther, C-D

    2013-01-01

    (222)Rn in soil gas activity was measured across the margins of two active salt diapirs in Schleswig-Holstein, northern Germany, in order to reveal the impact of halokinetic processes on the soil gas signal. Soil gas and soil sampling were carried out in springtime and summer 2011. The occurrence of elevated (222)Rn in soil gas concentrations in Schleswig-Holstein has been ascribed to radionuclide rich moraine boulder material deposits, but the contribution of subsurface structures has not been investigated so far. Reference samples were taken from a region known for its granitic moraine boulder deposits, resulting in (222)Rn in soil gas activity of 40 kBq/m(3). The values resulting from profile sampling across salt dome margins are of the order of twice the moraine boulder material reference values and exceed 100 kBq/m(3). The zones of elevated concentrations are consistent throughout time despite variations in magnitude. One soil gas profile recorded in this work expands parallel to a seismic profile and reveals multiple zones of elevated (222)Rn activities above a rising salt intrusion. The physical and chemical properties of salt have an impact on the processes influencing gas migration and surface near radionuclide accumulations. The rise of salt supports the breakup of rock components thus leading to enhanced emanation. This work provides a first approach regarding the halokinetic contribution to the (222)Rn in soil gas occurrence and a possible theoretical model which summarizes the relevant processes was developed.

  2. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA.

    PubMed

    Gray, John E; Theodorakos, Peter M; Fey, David L; Krabbenhoft, David P

    2015-02-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8-11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03-0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9-14 ng/L) were generally higher than those found in springs and wells (0.05-3.1 ng/L), baseline streams (1.1-9.7 ng/L), and sources of drinking water (0.63-9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690-82,000 ng/m(3)) were highly elevated compared to soil gas collected from baseline sites (1.2-77 ng/m(3)). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9-64 ng/m(3)) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the

  3. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA.

    PubMed

    Gray, John E; Theodorakos, Peter M; Fey, David L; Krabbenhoft, David P

    2015-02-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8-11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03-0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9-14 ng/L) were generally higher than those found in springs and wells (0.05-3.1 ng/L), baseline streams (1.1-9.7 ng/L), and sources of drinking water (0.63-9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690-82,000 ng/m(3)) were highly elevated compared to soil gas collected from baseline sites (1.2-77 ng/m(3)). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9-64 ng/m(3)) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the

  4. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA

    USGS Publications Warehouse

    Gray, John E.; Theodorakos, Peter M.; Fey, David L.; Krabbenhoft, David P.

    2015-01-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8–11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03–0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9–14 ng/L) were generally higher than those found in springs and wells (0.05–3.1 ng/L), baseline streams (1.1–9.7 ng/L), and sources of drinking water (0.63–9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690–82,000 ng/m3) were highly elevated compared to soil gas collected from baseline sites (1.2–77 ng/m3). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9–64 ng/m3) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air

  5. Multi-year levels and trends of non-methane hydrocarbon concentrations observed in ambient air in France

    NASA Astrophysics Data System (ADS)

    Waked, Antoine; Sauvage, Stéphane; Borbon, Agnès; Gauduin, Julie; Pallares, Cyril; Vagnot, Marie-Pierre; Léonardis, Thierry; Locoge, Nadine

    2016-09-01

    Measurements of 31 non-methane hydrocarbons (NMHCs) were carried out at three urban (Paris, 2003-2014, Strasbourg, 2002-2014 and Lyon, 2007-2014) sites in France over the period of a decade. A trend analysis was applied by means of the Mann-Kendall non-parametric test to annual and seasonal mean concentrations in order to point out changes in specific emission sources and to assess the impact of emission controls and reduction strategies. The trends were compared to those from three rural sites (Peyrusse-Vieille, 2002-2013, Tardière, 2003-2013 and Donon, 1997-2007). The results obtained showed a significant yearly decrease in pollutant concentrations over the study period and for the majority of species in the range of -1 to -7% in accordance with the decrease of NMHC emissions in France (-5 to -9%). Concentrations of long-lived species such as ethane and propane which are recognized as tracers of distant sources and natural gas remained constant. Compounds associated with combustion processes such as acetylene, propene, ethylene and benzene showed a significant decline in the range of -2% to -5% yr-1. These trends are consistent with those recently described at urban and background sites in the northern mid-latitudes and with emission inventories. C7-C9 aromatics such as toluene and xylenes as well as C4-C5 alkanes such as isopentane and isobutane also showed a significant decrease in the range of -3% to -7% yr-1. The decreasing trends in terms of % yr-1 observed at these French urban sites were typically higher for acetylene, ethylene and benzene than those reported for French rural sites of the national observatory of Measurement and Evaluation in Rural areas of trans-boundary Air pollution (MERA). The study also highlighted the difficult choice of a long term sampling site representative of the general trends of pollutant concentrations.

  6. Estimates of in situ gas hydrate concentration from resistivity monitoring of gas hydrate bearing sediments during temperature equilibration

    USGS Publications Warehouse

    Riedel, M.; Long, P.E.; Collett, T.S.

    2006-01-01

    As part of Ocean Drilling Program Leg 204 at southern Hydrate Ridge off Oregon we have monitored changes in sediment electrical resistivity during controlled gas hydrate dissociation experiments. Two cores were used, each filled with gas hydrate bearing sediments (predominantly mud/silty mud). One core was from Site 1249 (1249F-9H3), 42.1 m below seafloor (mbsf) and the other from Site 1248 (1248C-4X1), 28.8 mbsf. At Site 1247, a third experiment was conducted on a core without gas hydrate (1247B-2H1, 3.6 mbsf). First, the cores were imaged using an infra-red (IR) camera upon recovery to map the gas hydrate occurrence through dissociation cooling. Over a period of several hours, successive runs on the multi-sensor track (includes sensors for P-wave velocity, resistivity, magnetic susceptibility and gamma-ray density) were carried out complemented by X-ray imaging on core 1249F-9H3. After complete equilibration to room temperature (17-18??C) and complete gas hydrate dissociation, the final measurement of electrical resistivity was used to calculate pore-water resistivity and salinities. The calculated pore-water freshening after dissociation is equivalent to a gas hydrate concentration in situ of 35-70% along core 1249F-9H3 and 20-35% for core 1248C-4X1 assuming seawater salinity of in situ pore fluid. Detailed analysis of the IR scan, X-ray images and split-core photographs showed the hydrate mainly occurred disseminated throughout the core. Additionally, in core 1249F-9H3, a single hydrate filled vein, approximately 10 cm long and dipping at about 65??, was identified. Analyses of the logging-while-drilling (LWD) resistivity data revealed a structural dip of 40-80?? in the interval between 40 and 44 mbsf. We further analyzed all resistivity data measured on the recovered core during Leg 204. Generally poor data quality due to gas cracks allowed analyses to be carried out only at selected intervals at Sites 1244, 1245, 1246, 1247, 1248, 1249, and 1252. With a few

  7. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOEpatents

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  8. Size distribution and concentration of soot generated in oil and gas-fired residential boilers under different combustion conditions

    NASA Astrophysics Data System (ADS)

    Jiménez, Santiago; Barroso, Jorge; Pina, Antonio; Ballester, Javier

    2016-05-01

    In spite of the relevance of residential heating burners in the global emission of soot particles to the atmosphere, relatively little information on their properties (concentration, size distribution) is available in the literature, and even less regarding the dependence of those properties on the operating conditions. Instead, the usual procedure to characterize those emissions is to measure the smoke opacity by several methods, among which the blackening of a paper after filtering a fixed amount of gas (Bacharach test) is predominant. In this work, the size distributions of the particles generated in the combustion of a variety of gaseous and liquid fuels in a laboratory facility equipped with commercial burners have been measured with a size classifier coupled to a particle counter in a broad range of operating conditions (air excesses), with simultaneous determination of the Bacharach index. The shape and evolution of the distribution with progressively smaller oxygen concentrations depends essentially on the state of the fuel: whereas the combustion of the gases results in monomodal distributions that 'shift' towards larger diameters, in the case of the gas-oils an ultrafine mode is always observed, and a secondary mode of coarse particle grows in relevance. In both cases, there is a strong, exponential correlation between the total mass concentration and the Bacharach opacity index, quite similar for both groups of fuels. The empirical expressions proposed may allow other researchers to at least estimate the emissions of numerous combustion facilities routinely characterized by their smoke opacities.

  9. Soil Surface Carbon Dioxide Fluxes and Carbon Dioxide Concentrations in Soil Air

    NASA Astrophysics Data System (ADS)

    Arkebauer, T. J.; Billesbach, D.

    2006-12-01

    We have been monitoring soil surface CO2 fluxes at three AmeriFlux sites in eastern Nebraska for several years. Recently, we have installed soil CO2 sensors at the rainfed soybean site in order to obtain profiles of CO2 concentrations in soil air (to 0.8 m depth). Supporting data include profiles of soil water content and soil temperature, aboveground biomass, leaf area index and precipitation. Soil surface fluxes had been rather small for much of the 2006 growing season (e.g., midday values of about 5 umol/m2/s) due, in large part, to the very dry conditions in eastern Nebraska and the consequent low soil water contents. However, copious rainfall in August raised soil water contents to field capacity throughout the profile. Soil air CO2 concentrations during this period also increased and reached peaks near 10% (at 0.4 and 0.8 m depth). Through analyses of relationships between surface CO2 flux and profiles of soil parameters we seek to identify biophysical factors responsible for controlling surface fluxes as well as to begin to quantify sources and sinks of CO2 within the soil profile (e.g., plant-related production of CO2 due to root exudation and respiration). The influence of precipitation events on CO2 profiles and fluxes is of particular interest.

  10. Portable Cathode-Air Vapor-Feed Electrochemical Medical Oxygen Concentrator (OC)

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Ashwin

    2015-01-01

    Missions on the International Space Station and future space exploration will present significant challenges to crew health care capabilities, particularly in the efficient utilization of onboard oxygen resources. Exploration vehicles will require lightweight, compact, and portable oxygen concentrators that can provide medical-grade oxygen from the ambient cabin air. Current pressure-swing adsorption OCs are heavy and bulky, require significant start-up periods, operate in narrow temperature ranges, and require a liquid water feed. Lynntech, Inc., has developed an electrochemical OC that operates with a cathode-air vapor feed, eliminating the need for a bulky onboard water supply. Lynntech's OC is smaller and lighter than conventional pressure-swing OCs, is capable of instant start-up, and operates over a temperature range of 5-80 C. Accomplished through a unique nanocomposite proton exchange membrane and catalyst technology, the unit delivers 4 standard liters per minute of humidified oxygen at 60 percent concentration. The technology enables both ambient-pressure operating devices for portable applications and pressurized (up to 3,600 psi) OC devices for stationary applications.

  11. Decline of hexachlorocyclohexane in the Arctic atmosphere and reversal of air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Falconer, R. L.; Barrie, L. A.; Fellin, P.

    1995-02-01

    Hexachlorocyclohexanes (HCHs) are the most abundant organochlorine pesticides in the arctic atmosphere and ocean surface water. A compilation of measurements made between 1979-93 from stations in the Canadian and Norwegian Arctic and from cruises in the Bering and Chukchi seas indicates that atmospheric concentrations of α-HCH have declined significantly (p < 0.01), with a time for 50% decrease of about 4 y in summer-fall and 6 y in winter-spring. The 1992-93 levels of about 100 pg m-3 are 2-4 fold lower than values in the mid-1980s. The trend in γ-HCH is less pronounced, but a decrease is also suggested from measurements in the Canadian Arctic and the Bering-Chukchi seas. HCHs in ocean surface water have remained relatively constant since the early 1980s. The decline in atmospheric α-HCH has reversed the net direction of air-sea gas exchange to the point where some northern waters are now sources of the pesticide to the atmosphere instead of sinks.

  12. Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lee, Shun-Cheng; Guo, Hai; Li, Wai-Ming; Chan, Lo-Yin

    Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO 2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO 2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM 10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM 10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.

  13. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    NASA Astrophysics Data System (ADS)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  14. Approximation of flammability region for natural gas-air-diluent mixture.

    PubMed

    Liao, S Y; Jiang, D M; Huang, Z H; Cheng, Q; Gao, J; Hu, Y

    2005-10-17

    The growing implementation of exhaust gas recirculation (EGR) in reducing NO(x) emissions of engine is of paramount motivation to perform a fundamental research on the flammability characteristics of fuel-air-diluent mixtures. In this work, the influences of EGR on the flammability region of natural gas-air-diluent flames were experimentally studied in a constant volume bomb. An assumption of critical burning velocity at flammability limit is proposed to approximately determine the flammability region of these mixtures. Based on this assumption, an estimation of the flammability map for natural gas-air-diluent mixtures was obtained by using the empirical formula of burning velocity data. The flammability regions of natural gas-air mixtures with EGR are plotted versus the EGR rate. From the comparison of estimated results and experimental measurements, it is suggested that the accuracy of prediction is largely dependent upon the formula of burning velocity used. Meanwhile, the influence of pressure on the critical burning velocity at flammability limit is also investigated. On the basis of the pressure dependence criterion, the estimation was performed for the circumstance of high temperature and pressure, and the prediction results still agree well with those of experiments.

  15. Air Pollutant Emissions from Oil and Gas Production pads (Investigating Low Cost Passive Samplers)

    EPA Science Inventory

    To help achieve the goal of sustainable, environmentally responsible development of oil and gas resources, it isnecessary to understand the potential for air pollutant emissions from various extraction and production (E&P)processes at the upstream, wellpad level. Upstream oil and...

  16. Concentration and determinants of molds and allergens in indoor air and house dust of French dwellings.

    PubMed

    Dallongeville, Arnaud; Le Cann, Pierre; Zmirou-Navier, Denis; Chevrier, Cécile; Costet, Nathalie; Annesi-Maesano, Isabella; Blanchard, Olivier

    2015-12-01

    Molds and allergens are common indoor biocontaminants. The aims of this study were to assess the concentrations of common molds in indoor air and floor dust and the concentrations of house dust mite, cat and dog allergens in mattress dust in French dwellings, and to assess predictors of these concentrations. A sample of 150 houses in Brittany (western France) was investigated. Airborne Cladosporium and Penicillium were detected in more than 90% of the dwellings, Aspergillus in 46% and Alternaria in only 6% of the housings. Regarding floor dust samples, Cladosporium and Penicillium were detected in 92 and 80% of the housings respectively, Aspergillus in 49% and Alternaria in 14%. House dust mite allergens Der p1 and Der f1 were detected in 90% and 77% of the mattress dust samples respectively and Can f1 and Fel d1 in 37% and 89% of the homes. Airborne and dustborne mold concentrations, although not statistically correlated (except for Aspergillus) shared most of their predictors. Multivariate linear models for mold levels, explaining up to 62% of the variability, showed an influence of the season, of the age of the dwelling, of aeration habits, presence of pets, smoking, signals of dampness, temperature and relative humidity. Allergens in the dust of the mattress were strongly related to the presence of pets and cleaning practices of bedsheets, these factors accounting for 60% of the variability. This study highlights ubiquitous contamination by molds and underlines complex interaction between outdoor and indoor sources and factors. PMID:26094801

  17. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  18. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  19. Air separation membranes : an alternative to EGR in large bore natural gas engines.

    SciTech Connect

    Biruduganti, M.; Gupta, S.; Bihari, B.; McConnell, S.; Sekar, R.; Energy Systems

    2010-08-01

    Air separation membranes (ASMs) could potentially replace exhaust gas recirculation (EGR) technology in engines due to the proven benefits in NOx reduction but without the drawbacks of EGR. Previous investigations of nitrogen-enriched air (NEA) combustion using nitrogen bottles showed up to 70% NOx reduction with modest 2% nitrogen enrichment. The investigation in this paper was performed with an ASM capable of delivering at least 3.5% NEA to a single-cylinder spark-ignited natural gas engine. Low temperature combustion is one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. In this study, a comparative assessment is made between natural gas combustion in standard air and 2% NEA. Enrichment beyond this level degraded engine performance in terms of power density, brake thermal efficiency (BTE), and unburned hydrocarbon emissions for a given equivalence ratio. The ignition timing was optimized to yield maximum brake torque for standard air and NEA. Subsequently, conventional spark ignition was replaced by laser ignition (LI) to extend lean ignition limit. Both ignition systems were studied under a wide operating range from {Psi} :1.0 to the lean misfire limit. It was observed that with 2% NEA, for a similar fuel quantity, the equivalence ratio {Psi} increases by 0.1 relative to standard air conditions. Analysis showed that lean burn operation along with NEA and alternative ignition source, such as LI, could pave the pathway for realizing lower NO{sub x} emissions with a slight penalty in BTE.

  20. LINKING AIR TOXIC CONCENTRATIONS FROM CMAQ TO THE HAPEM5 EXPOSURE MODEL AT NEIGHORHOOD SCALES FOR THE PHILADELPHIA AREA

    EPA Science Inventory

    This paper provides a preliminary demonstration of the EPA neighborhood scale modeling paradigm for air toxics by linking concentration from the Community Multi-scale Air Quality (CMAQ) modeling system to the fifth version of the Hazardous Pollutant Exposure Model (HAPEM5). For ...

  1. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons.

    PubMed

    Lv, Jinze; Zhu, Lizhong

    2013-03-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p < 0.05), and the slopes (1.2-4.54) indicated that ventilating like the model supermarket increased the potential health risks from low molecular weight PAHs. During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket. PMID:23923426

  2. Trace Analysis in End-Exhaled Air Using Direct Solvent Extraction in Gas Sampling Tubes: Tetrachloroethene in Workers as an Example

    PubMed Central

    Braunsdorf, Pia-Paulin

    2014-01-01

    Simple and cost-effective analytical methods are required to overcome the barriers preventing the use of exhaled air in routine occupational biological monitoring. Against this background, a new method is proposed that simplifies the automation and calibration of the analytical measurements. End-exhaled air is sampled using valveless gas sampling tubes made of glass. Gaseous analytes are transferred to a liquid phase using a microscale solvent extraction performed directly inside the gas sampling tubes. The liquid extracts are analysed using a gas chromatograph equipped, as usual, with a liquid autosampler, and liquid standards are used for calibration. For demonstration purposes, the method's concept was applied to the determination of tetrachloroethene in end-exhaled air, which is a biomarker for occupational tetrachloroethene exposure. The method's performance was investigated in the concentration range 2 to 20 μg tetrachloroethene/L, which corresponds to today's exposure levels. The calibration curve was linear, and the intra-assay repeatability and recovery rate were sufficient. Analysis of real samples from dry-cleaning workers occupationally exposed to tetrachloroethene and from nonexposed subjects demonstrated the method's utility. In the case of tetrachloroethene, the method can be deployed quickly, requires no previous experiences in gas analysis, provides sufficient analytical reliability, and addresses typical end-exhaled air concentrations from exposed workers. PMID:24772171

  3. Internal coating of air-cooled gas turbine blades

    NASA Technical Reports Server (NTRS)

    Hsu, L. L.; Stetson, A. R.

    1980-01-01

    Four modified aluminide coatings were developed for IN-792 + Hf alloy using a powder pack method applicable to internal surfaces of air-cooled blades. The coating compositions are Ni-19Al-1Cb, Ni-19Al-3Cb, Ni-17Al-20Cr, and Ni-12Al-20Cr. Cyclic burner rig hot corrosion (900 C) and oxidation (1050 C) tests indicated that Ni-Al-Cb coatings provided better overall resistance than Ni-Al-Cr coatings. Tensile properties of Ni-19Al-1Cb and Ni-12Al-20Cr coated test bars were fully retained at room temperature and 649 C. Stress rupture results exhibited wide scatter around uncoated IN-792 baseline, especially at high stress levels. High cycle fatigue lives of Ni-19Al-1Cb and Ni-12Al-20Cr coated bars (as well as RT-22B coated IN-792) suffered approximately 30 percent decrease at 649 C. Since all test bars were fully heat treated after coating, the effects of coating/processing on IN-792 alloy were not recoverable. Internally coated Ni-19Al-1Cb, Ni-19Al-3Cb, and Ni-12Al-20Cr blades were included in 500-hour endurance engine test and the results were similar to those obtained in burner rig oxidation testing.

  4. Pressure-operated portable siphon apparatus for removing concentrations of liquid from a gas pipeline

    SciTech Connect

    Mills, W.C.; Patterson, J.W.

    1982-08-24

    An apparatus is disclosed for removing concentrations of liquid from a natural gas pipeline comprising a tap valve mounted on the pipeline at the upper portion thereof so as to be in communication with the interior of the pipeline. A siphon apparatus is removably mounted on the tap valve and includes a siphon pipe which is vertically movably mounted with respect to the tap valve. The siphon pipe is vertically movable from an upper position wherein the lower end of the siphon pipe is positioned above the tap valve to a lower position wherein the siphon pipe extends through the tap valve so that the lower end of the siphon pipe is positioned at the bottom interior of the pipeline. A discharge pipe extends from the siphon pipe and is in communication with a liquid holding tank. A siphon valve is imposed in the discharge pipe to permit the selective removal of the liquid from the pipeline. A portion of the siphon pipe is enclosed by an operating cylinder barrel. A piston is positioned on the siphon tube and sealably engages the interior of the operating cylinder barrel. The upper and lower ends of the operating cylinder barrel are in communication with a source of pressure so that the siphon pipe may be raised or lowered by means of the pressure. The source of pressure may be either an auxiliary pressure source such as nitrogen, co2 or compressed air. The source of pressure for raising and lowering the siphon pipe may also comprise a hydraulic pump assembly including a safety bypass. The upper and lower ends of the operating cylinder barrel are also in communication with the atmosphere through valves to permit the venting of the operating cylinder barrel as desired.

  5. Air classification: Potential treatment method for optimized recycling or utilization of fine-grained air pollution control residues obtained from dry off-gas cleaning high-temperature processing systems.

    PubMed

    Lanzerstorfer, Christof

    2015-11-01

    In the dust collected from the off-gas of high-temperature processes, usually components that are volatile at the process temperature are enriched. In the recycling of the dust, the concentration of these volatile components is frequently limited to avoid operation problems. Also, for external utilization the concentration of such volatile components, especially heavy metals, is often restricted. The concentration of the volatile components is usually higher in the fine fractions of the collected dust. Therefore, air classification is a potential treatment method to deplete the coarse material from these volatile components by splitting off a fines fraction with an increased concentration of those volatile components. In this work, the procedure of a sequential classification using a laboratory air classifier and the calculations required for the evaluation of air classification for a certain application were demonstrated by taking the example of a fly ash sample from a biomass combustion plant. In the investigated example, the Pb content in the coarse fraction could be reduced to 60% by separation of 20% fines. For the non-volatile Mg the content was almost constant. It can be concluded that air classification is an appropriate method for the treatment of off-gas cleaning residues.

  6. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1981-01-01

    Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.

  7. Novel method for online monitoring of dissolved N2O concentrations through a gas stripping device.

    PubMed

    Mampaey, Kris E; van Dongen, Udo G J M; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2015-01-01

    Nitrous oxide emissions from wastewater treatment plants are currently measured by online gas phase analysis or grab sampling from the liquid phase. In this study, a novel method is presented to monitor the liquid phase N2O concentration for aerated as well as non-aerated conditions/reactors, following variations both in time and in space. The monitoring method consists of a gas stripping device, of which the measurement principle is based on a continuous flow of reactor liquid through a stripping flask and subsequent analysis of the N2O concentration in the stripped gas phase. The method was theoretically and experimentally evaluated for its fit for use in the wastewater treatment context. Besides, the influence of design and operating variables on the performance of the gas stripping device was addressed. This method can easily be integrated with online off-gas measurements and allows to better investigate the origin of the gas emissions from the treatment plant. Liquid phase measurements of N2O are of use in mitigation of these emissions. The method can also be applied to measure other dissolved gasses, such as methane, being another important greenhouse gas.

  8. Novel method for online monitoring of dissolved N2O concentrations through a gas stripping device.

    PubMed

    Mampaey, Kris E; van Dongen, Udo G J M; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2015-01-01

    Nitrous oxide emissions from wastewater treatment plants are currently measured by online gas phase analysis or grab sampling from the liquid phase. In this study, a novel method is presented to monitor the liquid phase N2O concentration for aerated as well as non-aerated conditions/reactors, following variations both in time and in space. The monitoring method consists of a gas stripping device, of which the measurement principle is based on a continuous flow of reactor liquid through a stripping flask and subsequent analysis of the N2O concentration in the stripped gas phase. The method was theoretically and experimentally evaluated for its fit for use in the wastewater treatment context. Besides, the influence of design and operating variables on the performance of the gas stripping device was addressed. This method can easily be integrated with online off-gas measurements and allows to better investigate the origin of the gas emissions from the treatment plant. Liquid phase measurements of N2O are of use in mitigation of these emissions. The method can also be applied to measure other dissolved gasses, such as methane, being another important greenhouse gas. PMID:25573615

  9. Hydrogen and Carbon Stable Isotopic Compositions and Concentrations of Methane in Cave Air of Cueva de Villa Luz, Tabasco, Mexico

    NASA Astrophysics Data System (ADS)

    Webster, K.; Rosales Lagarde, L.; Sauer, P. E.; Schimmelmann, A.; Lennon, J. T.; Boston, P. J.

    2014-12-01

    Cueva de Villa Luz (CVL) is a unique biogeochemical environment where microbial consortia are supported by hydrogen sulfide (H2S) leading to sulfuric acid speleogenesis (SAS) which is thought to have generated the porosity and permeability of several petroleum reservoirs. Possible sources of the sulfur (S) include the Chichón Volcano and petroleum basins in the area. A better understanding of the source of the H2S in CVL may help predict where else SAS may have occurred. Analysis of methane (CH4) in CVL may provide a proxy to assess the source of S entering CVL. We obtained 13 air samples in 1-L Tedlar® bags from varying locations in CVL to assess the role of CH4 in sulfide-rich karst systems. CH4 and carbon dioxide (CO2) concentrations were measured by gas-chromatography. The stable isotopic ratios of carbon and hydrogen were measured on a stable isotope-ratio mass-spectrometer. CH4 in the air of CVL ranged from 1.88 ± 0.10 ppmv to 3.7 ± 0.2 ppmv. CO2 concentrations ranged from 400 ± 20 ppmv to 920 ± 50 ppmv. For comparison, the CH4 and CO2 concentrations in the outside atmosphere were 1.96 ± 0.10 ppmv and 430 ± 20 ppmv respectively. CH4 and CO2 were positively correlated in CVL (R2 = 0.91, CH4 = [0.0035 ± 0.0007] CO2 + [0.4 ± 0.4], p >0.01). The highest concentrations were near springs. Keeling-style analysis showed that the CH4 samples from CVL plot along a two-end member mixing model and suggest that CH4 is outgassing from spring water with isotopic compositions δ13CCH4 = -24 ± 3 ‰ and δ2HCH4 = -40 ± 40 ‰. CO2 did not plot along a two end member mixing model. The proposed δ13C of CH4 entering from springs does not closely match the δ13CCH4 values from hydrocarbon basins in the area. This is likely due to oxidative loss of CH4 as it ascends to CVL which may be partly driven by anaerobic methanotrophy coupled to sulfate reduction. Analysis of the spring water chemistry coupled to biogeochemical modeling may help quantify the amount of

  10. Concentrated ambient air particles induce vasoconstriction of small pulmonary arteries in rats.

    PubMed Central

    Batalha, Joao R F; Saldiva, Paulo H N; Clarke, Robert W; Coull, Brent A; Stearns, Rebecca C; Lawrence, Joy; Murthy, G G Krishna; Koutrakis, Petros; Godleski, John J

    2002-01-01

    The objective of this study was to determine whether short-term exposures to concentrated ambient particles (CAPs) alter the morphology of small pulmonary arteries in normal rats and rats with chronic bronchitis (CB). Sprague-Dawley male rats were exposed to CAPs, using the Harvard Ambient Particle Concentrator, or to particle-free air (sham) under identical conditions during 3 consecutive days (5 hr/day) in six experimental sets. CB was induced by exposure to 276 +/- 9 ppm of sulfur dioxide (5 hr/day, 5 days/week, 6 weeks). Physicochemical characterization of CAPs included measurements of particle mass, size distribution, and composition. Rats were sacrificed 24 hr after the last CAPs exposure. Histologic slides were prepared from random sections of lung lobes and coded for blinded analysis. The lumen/wall area (L/W) ratio was determined morphometrically on transverse sections of small pulmonary arteries. When all animal data (normal and CB) were analyzed together, the L/W ratios decreased as concentrations of fine particle mass, silicon, lead, sulfate, elemental carbon, and organic carbon increased. In separate univariate analyses of animal data, the association for sulfate was significant only in normal rats, whereas silicon was significantly associated in both CB and normal rats. In multivariate analyses including all particle factors, the association with silicon remained significant. Our results indicate that short-term CAPs exposures (median, 182.75 micro g/m3; range, 73.50-733.00 micro g/m3) can induce vasoconstriction of small pulmonary arteries in normal and CB rats. This effect was correlated with specific particle components and suggests that the pulmonary vasculature might be an important target for ambient air particle toxicity. PMID:12460797

  11. Diagnostic significance of nitric oxide concentrations in exhaled air from the airways in allergic rhinitis patients

    PubMed Central

    Krzych-Fałta, Edyta; Samoliński, Bolesław K; Zalewska, Marta

    2016-01-01

    Introduction The effect of nitric oxide (NO) on the human body is very important due its physiological regulation of the following functions of airways: modulation of ciliary movement and maintenance of sterility in sinuses. Aim To evaluate the diagnostic significance of NO concentrations in exhaled air from the upper and lower airways in patients diagnosed with allergic rhinitis (AR). Material and methods The subjects included in the study were a group of 30 people diagnosed with sensitivity to environmental allergens and a control group consisting of 30 healthy subjects. The measurement of NO in the air exhaled from the lower and upper airways was performed using an on-line method by means of Restricted Exhaled Breath (REB), as well as using the measurement procedure (chemiluminescence) set out in the guidelines prepared in 2005 by the American Thoracic Society and the European Respiratory Society. Results In the late phase of the allergic reaction, higher values of the level of exhaled NO concentration from the lower airways were observed in the groups of subjects up to the threshold values of 25.17 ppb in the group of subjects with year-round allergic rhinitis and 21.78 ppb in the group with diagnosed seasonal allergic rhinitis. The difference in the concentration of NO exhaled from the lungs between the test group and the control group in the 4th h of the test was statistically significant (p = 0.045). Conclusions Exhaled NO should be considered as a marker of airway inflammation. It plays an important role in the differential diagnosis of allergy. PMID:27279816

  12. Flue gas treatment for SO2 removal with air-sparged hydrocyclone technology.

    PubMed

    Bokotko, Romuald P; Hupka, Jan; Miller, Jan D

    2005-02-15

    Laboratory results from an initial study on the removal of SO2 from gas mixtures are reported using air-sparged hydrocyclone (ASH) technology. Tap water and alkaline solutions were used for absorption, and the influence of gas flow rate, water flow rate, and length of the ASH unit were investigated. The research results indicate thatthe air-sparged hydrocyclone can be used as a highly efficient absorber for SO2 emissions. The ASH allows for 97% SO2 removal using water alone for sulfur dioxide content in the gas phase of 5 g/m3. All SO2 is removed in weakly alkaline solution (0.01 mol NaOH/dm3).

  13. Mercury in soil gas and air--A potential tool in mineral exploration

    USGS Publications Warehouse

    McCarthy, Joseph Howard; Vaughn, W.W.; Learned, R.E.; Meuschke, J.L.

    1969-01-01

    The mercury content in soil gas and in the atmosphere was measured in several mining districts to test the possibility that the mercury content in the atmosphere is higher over ore deposits than over barren ground. At Cortez, Nev., the distribution of anorhalous amounts of mercury in the air collected at ground level (soil gas) correlates well with the distribution of gold-bearing rocks that are covered by as much as 100 feet of gravel. The mercury content in the atmosphere collected at an altitude of 200 feet by an aircraft was 20 times background over a mercury posit and 10 times background over two porphyry copper deposits. Measurement of mercury in soil gas and air may prove to be a valuable exploration tool.

  14. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  15. Analysis of radionuclide concentration in air released through the stack of a radiopharmaceutical production facility based on a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Giardina, M.; Tomarchio, E.; Greco, D.

    2015-11-01

    Positron emitting radionuclides are increasingly used in medical diagnostics and the number of radiopharmaceutical production facilities have been estimated to be growing worldwide. During the process of production and/or patient administration of radiopharmaceuticals, an amount of these radionuclides might become airborne and escape into the environment. Therefore, the analysis of radionuclide concentration in the air released to the stack is a very important issue to evaluate the dose to the population living around the plant. To this end, sampling and measurement of radion