Science.gov

Sample records for air gravity anomaly

  1. Plumes in the mantle. [free air and isostatic gravity anomalies for geophysical interpretation

    NASA Technical Reports Server (NTRS)

    Khan, M. A.

    1973-01-01

    Free air and isostatic gravity anomalies for the purposes of geophysical interpretation are presented. Evidence for the existance of hotspots in the mantle is reviewed. The prosposed locations of these hotspots are not always associated with positive gravity anomalies. Theoretical analysis based on simplified flow models for the plumes indicates that unless the frictional viscosities are several orders of magnitude smaller than the present estimates of mantle viscosity or alternately, the vertical flows are reduced by about two orders of magnitude, the plume flow will generate implausibly high temperatures.

  2. 3D free-air gravity anomaly modeling for the Southeast Indian Ridge

    NASA Astrophysics Data System (ADS)

    Girolami, Chiara; Heyde, Ingo; Rinaldo Barchi, Massimiliano; Pauselli, Cristina

    2016-04-01

    In this study we analyzed the free-air gravity anomalies measured on the northwestern part of the Southeast Indian Ridge (hereafter SEIR) during the BGR cruise INDEX2012 with RV FUGRO GAUSS. The survey area covered the ridge from the Rodriguez Triple Junction along about 500 km towards the SSE direction. Gravity and magnetic data were measured along 65 profiles with a mean length of 60 km running approximately perpendicular to the ridge axis. The final gravity data were evaluated every 20 seconds along each profile. This results in a sampling interval of about 100 m. The mean spacing of the profiles is about 7 km. Together with the geophysical data also the bathymetry was measured along all profiles with a Kongsberg Simrad EM122 multibeam echosounder system. Previous studies reveal that the part of the ridge covered by the high resolution profiles is characterized by young geologic events (the oldest one dates back to 1 Ma) and that the SEIR is an intermediate spreading ridge. We extended the length of each profile to the area outside the ridge, integrating INDEX2012 high resolution gravity and bathymetric data with low resolution data derived from satellite radar altimeter measurements. The 3D forward gravity modeling made it possible to reconstruct a rough crustal density model for an extended area (about 250000 km2) of the SEIR. We analyzed the gravity signal along those 2D sections which cross particular geological features (uplifted areas, accommodation zones, hydrothermal fields and areas with hints for extensional processes e.g. OCCs) in order to establish a correlation between the gravity anomaly signal and the surface geology. We started with a simple "layer-cake" geologic model consisting of four density bodies which represent the sea, upper oceanic crust, lower oceanic crust and the upper mantle. Considering that in the study area the oceanic crust is young, we did not include the sediment layer. We assumed the density values of these bodies considering

  3. Gravity Anomalies of the Lunar Orientale Basin and the Mercurian Caloris Basin

    NASA Astrophysics Data System (ADS)

    Blair, D. M.; Johnson, B. C.; Freed, A. M.; Melosh, H. J.

    2013-08-01

    We model the formation and evolution of the lunar Orientale and mercurian Caloris basin gravity anomalies using a combination of hydrocode and finite-element methods, constrained by free-air and Bouguer gravity anomalies and basin topography.

  4. Consistent anomalies of the induced W gravities

    NASA Astrophysics Data System (ADS)

    Abud, Mario; Ader, Jean-Pierre; Cappiello, Luigi

    1996-02-01

    The BRST anomaly which may be present in the induced Wn gravity quantized on the light-cone is evaluated in the geometrical framework of Zucchini. The cocycles linked by the cohomology of the BRST operator to the anomaly are straightforwardly calculated thanks to the analogy between this formulation and the Yang-Mills theory. We give also a conformally covariant formulation of these quantities including the anomaly, which is valid on arbitrary Riemann surfaces. The example of the W3 theory is discussed and a comparison with other candidates for the anomaly available in the literature is presented.

  5. Study of gravity and magnetic anomalies using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    The results of modeling satellite-elevation magnetic and gravity data using the constraints imposed by near surface data and seismic evidence shows that the magnetic minimum can be accounted for by either an intracrustal lithologic variation or by an upwarp of the Curie point isotherm. The long wavelength anomalies of the NOO's-vector magnetic survey of the conterminous U.S. were contoured and processed by various frequency filters to enhance particular characteristics. A preliminary inversion of the data was completed and the anomaly field calculated at 450 km from the equivalent magnet sources to compare with the POGO satellite data. Considerable progress was made in studing the satellite magnetic data of South America and adjacent marine areas. Preliminary versions of the 1 deg free-air gravity anomaly map (20 m gal contour interval) and the high cut (lambda approximately 8 deg) filtered anomaly maps are included.

  6. Negative gravity anomalies on the moon

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1975-01-01

    Two kinds of negative gravity anomalies on the moon are distinguished - those which show a correspondence to lunar topography and those which appear to be unrelated to surface topography. The former appear to be due to mass deficiencies caused by the cratering process, in large part probably by ejection of material from the crater. Anomalies on the far side which do not correspond to topography are thought to have resulted from irregularities in the thickness of the lunar crust. Localized large negative anomalies adjacent to mascons are considered. Although structures on the moon having a half-wavelength of 800 km or less and large negative or positive gravity anomalies are not in isostatic equilibrium, many of these features have mass loadings of about 1000 kg/sq cm which can be statically sustained on the moon.

  7. On global gravity anomalies and two-scale mantle convection

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Marsh, J. G.

    1976-01-01

    The two-scale model of mantle convection developed by Richter and Parsons (1975) predicts that if the depth of the convective layer is about 600 km, then for a plate moving at 10 cm/yr, longitudinal convective rolls will be produced in about 50 million years, and the strike of these rolls indicates the direction of motion of the plate relative to the upper mantle. The paper tests these predictions by examining a new global free air gravity model complete to the 30th degree and order. The free air gravity map developed shows a series of linear positive and negative anomalies (with transverse wavelengths of about 2000 km) spanning the Pacific Ocean, crossing the Pacific rise and striking parallel to the Hawaiian seamounts. It is suggested that the pattern of these anomalies may indicate the presence of longitudinal convective rolls beneath the Pacific plates, a result which tends to support the predictions of Richter and Parsons.

  8. Trace anomaly and counterterms in designer gravity

    NASA Astrophysics Data System (ADS)

    Anabalón, Andrés; Astefanesei, Dumitru; Choque, David; Martínez, Cristián

    2016-03-01

    We construct concrete counterterms of the Balasubramanian-Kraus type for Einstein-scalar theories with designer gravity boundary conditions in AdS4, so that the total action is finite on-shell and satisfy a well defined variational principle. We focus on scalar fields with the conformal mass m 2 = -2 l -2 and show that the holographic mass matches the Hamiltonian mass for any boundary conditions. We compute the trace anomaly of the dual field theory in the generic case, as well as when there exist logarithmic branches of non-linear origin. As expected, the anomaly vanishes for the boundary conditions that are AdS invariant. When the anomaly does not vanish, the dual stress tensor describes a thermal gas with an equation of state related to the boundary conditions of the scalar field. In the case of a vanishing anomaly, we recover the dual theory of a massless thermal gas. As an application of the formalism, we consider a general family of exact hairy black hole solutions that, for some particular values of the parameters in the moduli potential, contains solutions of four-dimensional gauged {N}=8 supergravity and its ω-deformation. Using the AdS/CFT duality dictionary, they correspond to triple trace deformations of the dual field theory.

  9. New analytic solutions for modeling vertical gravity gradient anomalies

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Sep; Wessel, Paul

    2016-05-01

    Modern processing of satellite altimetry for use in marine gravimetry involves computing the along-track slopes of observed sea-surface heights, projecting them into east-west and north-south deflection of the vertical grids, and using Laplace's equation to algebraically obtain a grid of the vertical gravity gradient (VGG). The VGG grid is then integrated via overlapping, flat Earth Fourier transforms to yield a free-air anomaly grid. Because of this integration and associated edge effects, the VGG grid retains more short-wavelength information (e.g., fracture zone and seamount signatures) that is of particular importance for plate tectonic investigations. While modeling of gravity anomalies over arbitrary bodies has long been a standard undertaking, similar modeling of VGG anomalies over oceanic features is not commonplace yet. Here we derive analytic solutions for VGG anomalies over simple bodies and arbitrary 2-D and 3-D sources. We demonstrate their usability in determining mass excess and deficiency across the Mendocino fracture zone (a 2-D feature) and find the best bulk density estimate for Jasper seamount (a 3-D feature). The methodologies used herein are implemented in the Generic Mapping Tools, available from gmt.soest.hawaii.edu.

  10. Determination of mean gravity anomalies in the Taiwan Island

    NASA Technical Reports Server (NTRS)

    Chang, Ruey-Gang

    1989-01-01

    The fitting and proper regression coefficients were made of one hundred seventeen 10 x 10' blocks with observed gravity data and corresponding elevation in the Taiwan Island. To compare five different predicted models, and the proper one for the mean gravity anomalies were determined. The predicted gravity anomalies of the non-observed gravity blocks were decided when the coefficients obtained through the model with the weighted mean method. It was suggested that the mean gravity anomalies of 10 x 10' blocks should be made when comprehensive the observed and predicted data.

  11. Analysis of gravity anomalies in Maio Island, Cape Verde.

    NASA Astrophysics Data System (ADS)

    Catalao, Joao; Represas, Patricia; Montesinos, Fuensanta; Antunes, Carlos; Madeira, José; Mata, João.

    2010-05-01

    was performed by a stabilized non-linear inversion methodology. A local average terrain density of 2200 kgm-3 was determined by applying a fractal analysis to the free-air anomaly. Topographic gravity effects were computed and the Bouguer anomaly for Maio Island was revealed. The global model was used to estimate the regional field. The resulting residual field shows a single positive anomaly, with a maximum value of 63 mGal. It has an elliptic shape, slightly off-centred with the island, and presenting a long axis trending N20W. A 3-D density contrast model was estimated from the Bouguer anomalies by means of a stabilized non-linear inversion methodology. This gravimetric inversion technique aims to determine the geometry of the sources of the observed gravity field, upon the adjustment of a three dimensional model of prismatic cells which adopt a priori values of density contrast (positive and negative). The density contrast assigned for each cell is determined using a combination of a process of accretion with a search of model changes to achieve a minimum residual between gravity data and model response. Results from the gravity inversion presents a good correlation with the geology of the island of Maio. The structural model obtained depicts a main high density body coinciding with the positive gravity anomaly which dominates the island. This body corresponds to the Basament Complex which is exposed in this area, where the plutonic bodies of essexite/pyroxenite crop out and thus reflect the highest density of those rocks relatively to mafic lava flows and accompanying sediments. The deepest sections of the model show the relation between this body and the earlier growth stage of the island.

  12. On the ratio of dynamic topography and gravity anomalies in a dynamic Earth

    NASA Astrophysics Data System (ADS)

    Colli, L.; Ghelichkhan, S.; Bunge, H.-P.

    2016-03-01

    Growing evidence from a variety of geologic indicators points to significant topography maintained convectively by viscous stresses in the mantle. However, while gravity is sensitive to dynamically supported topography, there are only small free-air gravity anomalies (<30 mGal) associated with Earth's long-wavelength topography. This has been used to suggest that surface heights computed assuming a complete isostatic equilibrium provide a good approximation to observed topography. Here we show that the apparent paradox is resolved by the well-established formalism of global, self-gravitating, viscously stratified Earth models. The models predict a complex relation between dynamic topography, mass, and gravity anomalies that is not summarized by a constant admittance—i.e., ratio of gravity anomalies to surface deflections—as one would infer from analytic flow solutions formulated in a half-space. Our results suggest that sizable dynamic topography may exist without a corresponding gravity signal.

  13. Long-wavelength magnetic and gravity anomaly correlations on Africa and Europe

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Olivier, R.; Hinze, W. J.

    1985-01-01

    Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.

  14. Long-wavelength Magnetic and Gravity Anomaly Correlations of Africa and Europe

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J. (Principal Investigator); Olivier, R.

    1984-01-01

    Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic Shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.

  15. Gravity and geoid anomalies of the Philippine Sea: Evidence on the depth of compensation for the negative residual water depth anomaly

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1982-01-01

    A negative free-air gravity anomaly which occurs in the central part of the Philippine Sea was examined to determine the distribution and nature of possible regional mass excesses or deficiencies. Geoid anomalies from GEOS-3 observation were positive. A negative residual geoid anomaly consistent with the area of negative free-air gravity anomalies were found. Theoretical gravity-topography and geoid-topography admittance functions indicated that high density mantle at about 60 km dept could account for the magnitudes of the gravity and residual geoid anomaly and the 1 km residual water depth anomaly in the Philippine Sea. The negative residual depth anomaly may be compensated for by excess density in the uppermost mantle, but the residual geoid and regional free-air gravity anomalies and a slow surface wave velocity structure might result from low-density warm upper mantle material lying beneath the zone of high-density uppermost mantle. From a horizontal disk approximation, the depth of the low-density warm mantle was estimated to be on the order of 200 km.

  16. Gravity anomalies, forearc morphology and seismicity in subduction zones

    NASA Astrophysics Data System (ADS)

    Bassett, D.; Watts, A. B.; Das, S.

    2012-12-01

    We apply spectral averaging techniques to isolate and remove the long-wavelength large-amplitude trench-normal topographic and free-air gravity anomaly "high" and "low" associated with subduction zones. The residual grids generated illuminate the short-wavelength structure of the forearc. Systematic analysis of all subduction boundaries on Earth has enabled a classification of these grids with particular emphasis placed on topography and gravity anomalies observed in the region above the shallow seismogenic portion of the plate interface. The isostatic compensation of these anomalies is investigated using 3D calculations of the gravitational admittance and coherence. In the shallow region of the megathrust, typically within 100 km from the trench, isolated residual anomalies with amplitudes of up to 2.5 km and 125 mGal are generally interpreted as accreted/subducting relief in the form of seamounts and other bathymetric features. While most of these anomalies, which have radii < 50km, are correlated with areas of reduced seismicity, several in regions such as Japan and Java appear to have influenced the nucleation and/or propagation of large magnitude earthquakes. Long-wavelength (500 - >1000 km) trench-parallel forearc ridges with residual anomalies of up to 1.5 km and 150 mGal are identified in approximately one-third of the subduction zones analyzed. Despite great length along strike, these ridges are less than 100 km wide and several appear uncompensated. A high proportion of arc-normal structure and the truncation/morphological transition of trench-parallel forearc ridges is explained through the identification and tracking of pre-existing structure on the over-riding and subducting plates into the seismogenic portion of the plate boundary. Spatial correlations between regions with well-defined trench-parallel forearc ridges and the occurrence of large magnitude interplate earthquakes, in addition to the uncompensated state of these ridges, suggest links

  17. Upgraded gravity anomaly base of the United States

    USGS Publications Warehouse

    Keller, Gordon R.; Hildenbrand, T.G.; Kucks, R.; Roman, D.; Hittelman, A.M.

    2002-01-01

    A concerted effort to compile an upgraded gravity anomaly database, grid, and map for the United States by the end of 2002 is under way. This effort can be considered as the first step in building a data system for gravity measurements, and it builds on existing collaborative efforts. This paper outlines the strategy for assembling the individual map and digital products related to the United States gravity database.

  18. Interpretation of Local Gravity Anomalies in Northern New York

    NASA Astrophysics Data System (ADS)

    Revetta, F. A.

    2004-05-01

    About 10,000 new gravity measurements at a station spacing of 1 to 2 Km were made in the Adirondack Mountains, Lake Champlain Valley, St. Lawrence River Valley and Tug Hill Plateau. These closely spaced gravity measurements were compiled to construct computer contoured gravity maps of the survey areas. The gravity measurements reveal local anomalies related to seismicity, faults, mineral resources and gas fields that are not seen in the regional gravity mapping. In northern New York gravity and seismicity maps indicate epicenters are concentrated in areas of the most pronounced gravity anomalies along steep gravity gradients. Zones of weakness along the contacts of these lithologies of different density could possibly account for the earthquakes in this high stress area. Also, a computer contoured gravity map of the 5.3 magnitude Au Sable Forks earthquake of April 20, 2002 indicates the epicenter lies along a north-south trending gravity gradient produced by a high angle fault structure separating a gravity low in the west from high gravity in the east. In the St. Lawrence Valley, the Carthage-Colton Mylonite Zone, a major northeast trending structural boundary between the Adirondack Highlands and Northwest Lowlands, is represented as a steep gravity gradient extending into the eastern shore of Lake Ontario. At Russell, New York near the CCMZ, a small circular shaped gravity high coincides with a cluster of earthquakes. The coincidence of the epicenters over the high may indicate stress amplification at the boundary of a gabbro pluton. The Morristown fault located in the Morristown Quadrangle in St. Lawrence County produces both gravity and magnetic anomalies due to Precambrian Basement faulting. This faulting indicates control of the Morristown fault in the overlying Paleozoics by the Precambrian faults. Gravity and magnetic anomalies also occur over proposed extensions of the Gloucester and Winchester Springs faults into northern New York. Gravity and magnetic

  19. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica

    NASA Astrophysics Data System (ADS)

    Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; Blankenship, D. D.; Damiani, T. M.; Young, D.; Cochran, J. R.; Richter, T. D.

    2016-01-01

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne, and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated leveling of the different gravity data sets with respect to an Earth gravity model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth gravity models to be derived and represent a major step forward toward solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.

  20. Gravity anomaly, lithospheric structure and seismicity of Western Himalayan Syntaxis

    NASA Astrophysics Data System (ADS)

    Tiwari, V. M.; Rajasekhar, R. P.; Mishra, D. C.

    2009-07-01

    A compiled gravity anomaly map of the Western Himalayan Syntaxis is analysed to understand the tectonics of the region around the epicentre of Kashmir earthquake of October 8, 2005 (Mw = 7.6). Isostatic gravity anomalies and effective elastic thickness (EET) of lithosphere are assessed from coherence analysis between Bouguer anomaly and topography. The isostatic residual gravity high and gravity low correspond to the two main seismic zones in this region, viz. Indus-Kohistan Seismic Zone (IKSZ) and Hindu Kush Seismic Zones (HKSZ), respectively, suggesting a connection between siesmicity and gravity anomalies. The gravity high originates from the high-density thrusted rocks along the syntaxial bend of the Main Boundary Thrust and coincides with the region of the crustal thrust earthquakes, including the Kashmir earthquake of 2005. The gravity low of HKSZ coincides with the region of intermediate-deep-focus earthquakes, where crustal rocks are underthrusting with a higher speed to create low density cold mantle. Comparable EET (˜55 km) to the focal depth of crustal earthquakes suggests that whole crust is seismogenic and brittle. An integrated lithospheric model along a profile provides the crustal structure of the boundary zones with crustal thickness of about 60 km under the Karakoram-Pamir regions and suggests continental subduction from either sides (Indian and Eurasian) leading to a complex compressional environment for large earthquakes.

  1. Application of Magsat lithospheric modeling in South America. Part 1: Processing and interpretation of magnetic and gravity anomaly data

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B. (Principal Investigator); Keller, G. R.; Lidiak, E. G.

    1984-01-01

    Scalar magnetic anomaly data from MAGSAT, reduced to vertical polarization and long wavelength pass filtered free air gravity anomaly data of South America and the Caribbean are compared to major crustal features. The continental shields generally are more magnetic than adjacent basins, oceans and orogenic belts. In contrast, the major aulacogens are characterized by negative anomalies. Spherical earth magnetic modeling of the Amazon River and Takatu aulacogens in northeastern South America indicates a less magnetic crust associated with the aulacogens. Spherical earth modeling of both positive gravity and negative magnetic anomalies observed over the Mississippi Embayment indicate the presence of a nonmagnetic zone of high density material within the lower crust associated with the aulacogen. The MAGSAT scalar magnetic anomaly data and available free air gravity anomalies over Euro-Africa indicate several similar relationships.

  2. The estimation of 550 km x 550 km mean gravity anomalies. [from free atmosphere gravimetry data

    NASA Technical Reports Server (NTRS)

    Williamson, M. R.; Gaposchkin, E. M.

    1975-01-01

    The calculation of 550 km X 550 km mean gravity anomalies from 1 degree X 1 degree mean free-air gravimetry data is discussed. The block estimate procedure developed by Kaula was used, and estimates for 1452 of the 1654 blocks were obtained.

  3. Principal facts and a discussion of terrain correction methods for the complete Bouguer gravity anomaly map of the Cascade Mountains, Washington

    SciTech Connect

    Danes, Z.F.; Phillips, W.M.

    1983-02-01

    Since 1974, the Division of Geology and Earth Resources, in conjunction with the US Department of Energy, has supported gravity studies in the Cascade Mountains of Washington State. Results of the Cascade gravity project are summarized graphically as a complete Bouguer gravity anomaly map of the Cascade Mountains, Washington (Danes and Phillips, 1983). This report provides supplementary data and documentation for the complete Bouguer gravity anomaly map. Presented are principal gravity facts, simple Bouguer and Free-air gravity anomalies, computational methods, error analysis and a discussion of terrain corrections.

  4. Detailed gravity anomalies from GEOS-3 satellite altimetry data

    NASA Technical Reports Server (NTRS)

    Gopalapillai, G. S.; Mourad, A. G.

    1978-01-01

    A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data.

  5. Detailed gravity anomalies from Geos 3 satellite altimetry data

    NASA Technical Reports Server (NTRS)

    Gopalapillai, G. S.; Mourad, A. G.

    1979-01-01

    Detailed gravity anomalies are computed from a combination of Geos 3 satellite altimeter and terrestrial gravity data using least-squares principles. The mathematical model used is based on the Stokes' equation modified for a nonglobal solution. Using Geos 3 data in the calibration area, the effects of several anomaly parameter configurations and data densities/distributions on the anomalies and their accuracy estimates are studied. The accuracy estimates for 1 deg x 1 deg mean anomalies from low density altimetry data are of the order of 4 mgal. Comparison of these anomalies with the terrestrial data and also with Rapp's data derived using collocation techniques show rms differences of 7.2 and 4.9 mgal, respectively. Indications are that the anomaly accuracies can be improved to about 2 mgal with high density data. Estimation of 30 in. x 30 in. mean anomalies indicates accuracies of the order of 5 mgal. Proper verification of these results will be possible only when accurate ground truth data become available.

  6. Gravity Anomaly Assessment Using Ggms and Airborne Gravity Data Towards Bathymetry Estimation

    NASA Astrophysics Data System (ADS)

    Tugi, A.; Din, A. H. M.; Omar, K. M.; Mardi, A. S.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Yazid, N.

    2016-09-01

    The Earth's potential information is important for exploration of the Earth's gravity field. The techniques of measuring the Earth's gravity using the terrestrial and ship borne technique are time consuming and have limitation on the vast area. With the space-based measuring technique, these limitations can be overcome. The satellite gravity missions such as Challenging Mini-satellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), and Gravity-Field and Steady-State Ocean Circulation Explorer Mission (GOCE) has introduced a better way in providing the information on the Earth's gravity field. From these satellite gravity missions, the Global Geopotential Models (GGMs) has been produced from the spherical harmonics coefficient data type. The information of the gravity anomaly can be used to predict the bathymetry because the gravity anomaly and bathymetry have relationships between each other. There are many GGMs that have been published and each of the models gives a different value of the Earth's gravity field information. Therefore, this study is conducted to assess the most reliable GGM for the Malaysian Seas. This study covered the area of the marine area on the South China Sea at Sabah extent. Seven GGMs have been selected from the three satellite gravity missions. The gravity anomalies derived from the GGMs are compared with the airborne gravity anomaly, in order to figure out the correlation (R2) and the root mean square error (RMSE) of the data. From these assessments, the most suitable GGMs for the study area is GOCE model, GO_CONS_GCF_2_TIMR4 with the R2 and RMSE value of 0.7899 and 9.886 mGal, respectively. This selected model will be used in the estimating the bathymetry for Malaysian Seas in future.

  7. Approximating edges of source bodies from magnetic or gravity anomalies.

    USGS Publications Warehouse

    Blakely, R.J.; Simpson, R.W.

    1986-01-01

    Cordell and Grauch (1982, 1985) discussed a technique to estimate the location of abrupt lateral changes in magnetization or mass density of upper crustal rocks. The final step of their procedure is to identify maxima on a contoured map of horizontal gradient magnitudes. Attempts to automate their final step. The method begins with gridded magnetic or gravity anomaly data and produces a plan view of inferred boundaries of magnetic or gravity sources. The method applies to both local surveys and to continent-wide compilations of magnetic and gravity data.-from Authors

  8. Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.

    1981-01-01

    To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.

  9. Spreading rate dependence of gravity anomalies along oceanic transform faults.

    PubMed

    Gregg, Patricia M; Lin, Jian; Behn, Mark D; Montési, Laurent G J

    2007-07-12

    Mid-ocean ridge morphology and crustal accretion are known to depend on the spreading rate of the ridge. Slow-spreading mid-ocean-ridge segments exhibit significant crustal thinning towards transform and non-transform offsets, which is thought to arise from a three-dimensional process of buoyant mantle upwelling and melt migration focused beneath the centres of ridge segments. In contrast, fast-spreading mid-ocean ridges are characterized by smaller, segment-scale variations in crustal thickness, which reflect more uniform mantle upwelling beneath the ridge axis. Here we present a systematic study of the residual mantle Bouguer gravity anomaly of 19 oceanic transform faults that reveals a strong correlation between gravity signature and spreading rate. Previous studies have shown that slow-slipping transform faults are marked by more positive gravity anomalies than their adjacent ridge segments, but our analysis reveals that intermediate and fast-slipping transform faults exhibit more negative gravity anomalies than their adjacent ridge segments. This finding indicates that there is a mass deficit at intermediate- and fast-slipping transform faults, which could reflect increased rock porosity, serpentinization of mantle peridotite, and/or crustal thickening. The most negative anomalies correspond to topographic highs flanking the transform faults, rather than to transform troughs (where deformation is probably focused and porosity and alteration are expected to be greatest), indicating that crustal thickening could be an important contributor to the negative gravity anomalies observed. This finding in turn suggests that three-dimensional magma accretion may occur near intermediate- and fast-slipping transform faults. PMID:17625563

  10. Spreading rate dependence of gravity anomalies along oceanic transform faults.

    PubMed

    Gregg, Patricia M; Lin, Jian; Behn, Mark D; Montési, Laurent G J

    2007-07-12

    Mid-ocean ridge morphology and crustal accretion are known to depend on the spreading rate of the ridge. Slow-spreading mid-ocean-ridge segments exhibit significant crustal thinning towards transform and non-transform offsets, which is thought to arise from a three-dimensional process of buoyant mantle upwelling and melt migration focused beneath the centres of ridge segments. In contrast, fast-spreading mid-ocean ridges are characterized by smaller, segment-scale variations in crustal thickness, which reflect more uniform mantle upwelling beneath the ridge axis. Here we present a systematic study of the residual mantle Bouguer gravity anomaly of 19 oceanic transform faults that reveals a strong correlation between gravity signature and spreading rate. Previous studies have shown that slow-slipping transform faults are marked by more positive gravity anomalies than their adjacent ridge segments, but our analysis reveals that intermediate and fast-slipping transform faults exhibit more negative gravity anomalies than their adjacent ridge segments. This finding indicates that there is a mass deficit at intermediate- and fast-slipping transform faults, which could reflect increased rock porosity, serpentinization of mantle peridotite, and/or crustal thickening. The most negative anomalies correspond to topographic highs flanking the transform faults, rather than to transform troughs (where deformation is probably focused and porosity and alteration are expected to be greatest), indicating that crustal thickening could be an important contributor to the negative gravity anomalies observed. This finding in turn suggests that three-dimensional magma accretion may occur near intermediate- and fast-slipping transform faults.

  11. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy

    2016-04-01

    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins

  12. Improved gravity anomaly fields from retracked multimission satellite radar altimetry observations over the Persian Gulf and the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Khaki, M.; Forootan, E.; Sharifi, M. A.; Awange, J.; Kuhn, M.

    2015-09-01

    Satellite radar altimetry observations are used to derive short wavelength gravity anomaly fields over the Persian Gulf and the Caspian Sea, where in situ and ship-borne gravity measurements have limited spatial coverage. In this study the retracking algorithm `Extrema Retracking' (ExtR) was employed to improve sea surface height (SSH) measurements that are highly biased in the study regions due to land contaminations in the footprints of the satellite altimetry observations. ExtR was applied to the waveforms sampled by the five satellite radar altimetry missions: TOPEX/POSEIDON, JASON-1, JASON-2, GFO and ERS-1. Along-track slopes have been estimated from the improved SSH measurements and used in an iterative process to estimate deflections of the vertical, and subsequently, the desired gravity anomalies. The main steps of the gravity anomaly computations involve estimating improved SSH using the ExtR technique, computing deflections of the vertical from interpolated SSHs on a regular grid using a biharmonic spline interpolation and finally estimating gridded gravity anomalies. A remove-compute-restore algorithm, based on the fast Fourier transform, has been applied to convert deflections of the vertical into gravity anomalies. Finally, spline interpolation has been used to estimate regular gravity anomaly grids over the two study regions. Results were evaluated by comparing the estimated altimetry-derived gravity anomalies (with and without implementing the ExtR algorithm) with ship-borne free air gravity anomaly observations, and free air gravity anomalies from the Earth Gravitational Model 2008 (EGM2008). The comparison indicates a range of 3-5 mGal in the residuals, which were computed by taking the differences between the retracked altimetry-derived gravity anomaly and the ship-borne data. The comparison of retracked data with ship-borne data indicates a range in the root-mean-square-error (RMSE) between approximately 1.8 and 4.4 mGal and a bias between 0

  13. Gravity anomalies without geomagnetic disturbances interfere with pigeon homing--a GPS tracking study.

    PubMed

    Blaser, Nicole; Guskov, Sergei I; Entin, Vladimir A; Wolfer, David P; Kanevskyi, Valeryi A; Lipp, Hans-Peter

    2014-11-15

    The gravity vector theory postulates that birds determine their position to set a home course by comparing the memorized gravity vector at the home loft with the local gravity vector at the release site, and that they should adjust their flight course to the gravity anomalies encountered. As gravity anomalies are often intermingled with geomagnetic anomalies, we released experienced pigeons from the center of a strong circular gravity anomaly (25 km diameter) not associated with magnetic anomalies and from a geophysical control site, equidistant from the home loft (91 km). After crossing the border zone of the anomaly--expected to be most critical for pigeon navigation--they dispersed significantly more than control birds, except for those having met a gravity anomaly en route. These data increase the credibility of the gravity vector hypothesis.

  14. Gravity anomalies without geomagnetic disturbances interfere with pigeon homing--a GPS tracking study.

    PubMed

    Blaser, Nicole; Guskov, Sergei I; Entin, Vladimir A; Wolfer, David P; Kanevskyi, Valeryi A; Lipp, Hans-Peter

    2014-11-15

    The gravity vector theory postulates that birds determine their position to set a home course by comparing the memorized gravity vector at the home loft with the local gravity vector at the release site, and that they should adjust their flight course to the gravity anomalies encountered. As gravity anomalies are often intermingled with geomagnetic anomalies, we released experienced pigeons from the center of a strong circular gravity anomaly (25 km diameter) not associated with magnetic anomalies and from a geophysical control site, equidistant from the home loft (91 km). After crossing the border zone of the anomaly--expected to be most critical for pigeon navigation--they dispersed significantly more than control birds, except for those having met a gravity anomaly en route. These data increase the credibility of the gravity vector hypothesis. PMID:25392461

  15. Petrophysical correlation of Fennoscandian magnetic and gravity anomalies

    NASA Astrophysics Data System (ADS)

    Korhonen, J. V.; Säävuori, H.; Koistinen, T.; Working GroupFennoscandian Geophysical Maps

    2003-04-01

    Magnetic anomaly, Bouguer-anomaly and petrophysical grids of the Fennoscandian shield and adjoining area have been compiled as a joint venture between Finland, Norway, Sweden and Russia, and with contribution of Denmark, Estonia, Latvia and Lithuania. Maps have been printed on a scale of 1:2 million. The aim was to provide an overall view of the anomaly structure of the area, and especially assist in correlating Precambrian geological formations across seas, state borders and areas covered by younger formations. Insert maps on a scale of 1:15 million are aimed to correlate anomaly components in different source scales: pseudogravimetric anomaly with Bouguer anomaly, DGRF-65 anomaly with pseudomagnetic anomaly, magnetic vertical derivative with second derivative of Bouguer anomaly. Data on bulk density, total magnetisation, Q-value and lithology of samples have been presented as scatter diagrams and average distribution maps to delineate variation and evolution trends of properties in space and time. Major anomalies of the Bouguer-anomaly map are due to Caledonian and Belomorian zones, Rapakivi granites and high metamorphic blocks in central area of the shield. Magnetic positive regional anomalies are due to granite areas in the north and west and to high-grade rocks in south. The central magnetic low is associated with rocks of supracrustal origin. Bouguer anomaly and depth-integrated magnetisation were compared with average bulk density and total magnetisation to find information on depth extent of exposed anomaly sources. The source magnetisation of the north Fennoscandian magnetic high is interpreted to reach 10 km in depth. The source area extends to the west under the Caledonian cover and to the east under the granite area of Central Finnish Lapland. The thickness of the latter is a few km only, as interpreted by density -- gravity correlation. In SE Fennoscandia the thickness of Wiborg rapakivi is c. 10 km by bulk density, and thickness of North Estonian

  16. World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2012-04-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface free air, Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. The Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, 2011). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy-Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial

  17. Gravity anomalies in Silurian pinnacle reef trend, southwestern Indiana

    SciTech Connect

    Malinconico, L.L. Jr.; Gognat, T.A.; Scher, P.L. )

    1989-08-01

    Structures produced over the top or along the margins of Silurian Pinnacle reefs have proven to be the source of significant oil production in the eastern Illinois basin. The authors have been able to refine gravity methods that can assist in the exploration of such reef targets. A gravity/density model was developed by combining the 1980 work of Dana at the Wilfred pool (Sullivan County, Indiana) with other lithologic and log data in southwestern Indiana. This model includes the density differences between the reef facies and surrounding lithologies as well as density variations that are the result of compaction of the sedimentary sequence above the reef. The density models suggest that positive gravity anomalies with amplitude between 1.5 to 2.5 mgals might occur over the reefs.

  18. Oceanwide gravity anomalies from Geos-3, Seasat and Geosat altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Basic, Tomislav

    1992-01-01

    Three kinds of satellite altimeter data have been combined, along with 5 x 5 arcmin bathymetric data, to calculate a 0.125 deg ocean wide gridded set of 2.3 x 10 exp 6 free-air gravity anomalies. The procedure used was least squares collocation that yields the predicted anomaly and standard deviation. The value of including the bathymetric data was shown in a test around the Dowd Seamount where the root mean square (rms) difference between ship gravity measurements decreased from +/- 40 mgal to +/- 20 mgal when the bathymetry was included. Comparisons between the predicted anomalies and ship gravity data is described in three cases. In the Banda Sea the rms differences were +/- 20 mgal for two lines. In the South Atlantic rms differences over lines of 2000 km in length were +/- 7 mgal. For cruise data in the Antarctica region the discrepancies were +/- 12 mgal. Comparisons of anomalies derived from the Geosat geodetic mission data by Marks and McAdoo (1992) with ship dta gave differences of +/- 6 mgal showing the value of the much denser Geosat geodetic mission altimeter data.

  19. The quest for the perfect gravity anomaly: Part 2 - Mass effects and anomaly inversion

    USGS Publications Warehouse

    Keller, Gordon R.; Hildenbrand, T.G.; Hinze, W. J.; Li, X.; Ravat, D.; Webring, M.

    2006-01-01

    Gravity anomalies have become an important tool for geologic studies since the widespread use of high-precision gravimeters after the Second World War. More recently the development of instrumentation for airborne gravity observations, procedures for acquiring data from satellite platforms, the readily available Global Positioning System for precise vertical and horizontal control, improved global data bases, and enhancement of computational hardware and software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases that are made available to the geoscience community by broadening their observational holdings and increasing the accuracy and precision of the included data. Currently the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States of America are being revised using new formats and standards. The objective of this paper is to describe the use of the revised standards for gravity data processing and modeling and there impact on geological interpretations. ?? 2005 Society of Exploration Geophysicists.

  20. Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.

    PubMed

    Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.

  1. Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study

    PubMed Central

    Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860

  2. Improving the geological interpretation of magnetic and gravity satellite anomalies

    NASA Technical Reports Server (NTRS)

    Hinze, William J.; Braile, Lawrence W.; Vonfrese, Ralph R. B.

    1987-01-01

    Quantitative analysis of the geologic component of observed satellite magnetic and gravity fields requires accurate isolation of the geologic component of the observations, theoretically sound and viable inversion techniques, and integration of collateral, constraining geologic and geophysical data. A number of significant contributions were made which make quantitative analysis more accurate. These include procedures for: screening and processing orbital data for lithospheric signals based on signal repeatability and wavelength analysis; producing accurate gridded anomaly values at constant elevations from the orbital data by three-dimensional least squares collocation; increasing the stability of equivalent point source inversion and criteria for the selection of the optimum damping parameter; enhancing inversion techniques through an iterative procedure based on the superposition theorem of potential fields; and modeling efficiently regional-scale lithospheric sources of satellite magnetic anomalies. In addition, these techniques were utilized to investigate regional anomaly sources of North and South America and India and to provide constraints to continental reconstruction. Since the inception of this research study, eleven papers were presented with associated published abstracts, three theses were completed, four papers were published or accepted for publication, and an additional manuscript was submitted for publication.

  3. Optimization schemes for the inversion of Bouguer gravity anomalies

    NASA Astrophysics Data System (ADS)

    Zamora, Azucena

    Data sets obtained from measurable physical properties of the Earth structure have helped advance the understanding of its tectonic and structural processes and constitute key elements for resource prospecting. 2-Dimensional (2-D) and 3-D models obtained from the inversion of geophysical data sets are widely used to represent the structural composition of the Earth based on physical properties such as density, seismic wave velocities, magnetic susceptibility, conductivity, and resistivity. The inversion of each one of these data sets provides structural models whose consistency depends on the data collection process, methodology, and overall assumptions made in their individual mathematical processes. Although sampling the same medium, seismic and non-seismic methods often provide inconsistent final structural models of the Earth with varying accuracy, sensitivity, and resolution. Taking two or more geophysical data sets with complementary characteristics (e.g. having higher resolution at different depths) and combining their individual strengths to create a new improved structural model can help achieve higher accuracy and resolution power with respect to its original components while reducing their ambiguity and uncertainty effects. Gravity surveying constitutes a cheap, non-invasive, and non-destructive passive remote sensing method that helps to delineate variations in the gravity field. These variations can originate from regional anomalies due to deep density variations or from residual anomalies related to shallow density variations [41]. Since gravity anomaly inversions suffer from significant non-uniqueness (allowing two or more distinct density structures to have the same gravity signature) and small changes in parameters can highly impact the resulting model, the inversion of gravity data represents an ill-posed mathematical problem. However, gravity studies have demonstrated the effectiveness of this method to trace shallow subsurface density variations

  4. Spectral analysis of gravity anomalies and the architecture of tectonic wedging, NE Venezuela and Trinidad

    NASA Astrophysics Data System (ADS)

    Russo, R. M.; Speed, R. C.

    1994-06-01

    We have analyzed the spectral content of free air gravity anomalies in the Caribbean-South American plate boundary zone in order to determine better the near-surface (0-120 km) distribution of crustal and upper mantle elements which give rise to the unusual gravity field of this region. The plate boundary zone in northeastern Venezuela and Trinidad is the site of the world's sea level continental minimum of Bouguer gravity anomalies, yet the region is also one of mild topography (mean value 43 m, maximum 1200 m). We find the mean depths to interfaces of significant density contrast at a variety of depths for portions of the plate boundary zone. We interpret interfaces at 30-35 km and 32 km beneath the Guyana Shield and the Aves Ridge, respectively, to be the Moho. Other shallow interfaces (5-14 km) are most likely sediment cover-basement contacts in the Maturin foreland basin and southern Grenada Basin. Deeper interfaces (54-63 km) we associate with loaded and downwarped continental and oceanic South American lithosphere. The deepest boundaries, at depths of 89-120 km, may be related to detached or detaching oceanic lithosphere overridden by continental South America. We use our results to test the tectonic wedging model of the plate boundary zone recently published by Russo and Speed (1992). We find that the tectonic wedging model adequately describes many of the structural boundaries inferable from our analysis of gravity anomalies but that the model must be modified to include a thinner Guyana Shield crust.

  5. Gravity anomalies along the East Scotia Ridge: Importance of magmatic and tectonic controls on crustal accretion

    NASA Astrophysics Data System (ADS)

    Nicholson, B. L.; Georgen, J. E.

    2010-12-01

    This study uses bathymetry and gravity data to infer upper mantle geodynamics in the eastern Scotia Sea region. The eastern Scotia Sea is comprised of an intermediate-rate back-arc spreading center known as the East Scotia Ridge (ESR) that forms the boundary between the Scotia and Sandwich plates. To the east of the ESR are the South Sandwich island arc and the South Sandwich Trench. The ESR is a relatively young feature, with spreading estimated to have begun ~20 Ma. Earlier studies examining trends in bathymetry and geochemistry along the north-south striking ESR (e.g., Livermore 2003) suggested that westward-directed flow from the Bouvet plume, located approximately 2000 km to the east, may affect ridge magmatic processes near the slab ends, particularly at the northern ridge-trench intersection. In this investigation mantle Bouguer anomaly (MBA) is calculated for the eastern Scotia Sea to evaluate the relative importance of magmatic and tectonic factors in controlling crustal accretion along the ESR. Bathymetric and free-air gravity anomaly data were obtained from global satellite-derived grids (Smith and Sandwell 1997; Sandwell and Smith 1997). In order to determine MBA, a mantle Bouguer anomaly correction term was calculated by assuming that a constant density and constant thickness crustal layer is present above a crust-mantle interface mimicking seafloor topography. To ensure the independence of the gravity and bathymetry data sets, only seafloor depths along shiptracks were used during the calculation of the mantle Bouguer anomaly correction. MBA was then determined by subtracting the mantle Bouguer anomaly correction from free-air anomaly data. Along the ESR, MBA is generally highest in the north and lowest in the south, with a long-wavelength decrease of approximately 25-50 mGal in a profile extracted along the ridge axis. Several segments in the central portion of the ridge have fairly well-developed MBA lows of approximately 15-20 mGal amplitude

  6. Global correlation of topographic heights and gravity anomalies

    NASA Technical Reports Server (NTRS)

    Roufosse, M. C.

    1977-01-01

    The short wavelength features were obtained by subtracting a calculated 24th-degree-and-order field from observed data written in 1 deg x 1 deg squares. The correlation between the two residual fields was examined by a program of linear regression. When run on a worldwide scale over oceans and continents separately, the program did not exhibit any correlation; this can be explained by the fact that the worldwide autocorrelation function for residual gravity anomalies falls off much faster as a function of distance than does that for residual topographic heights. The situation was different when the program was used in restricted areas, of the order of 5 deg x 5 deg square. For 30% of the world,fair-to-good correlations were observed, mostly over continents. The slopes of the regression lines are proportional to apparent densities, which offer a large spectrum of values that are being interpreted in terms of features in the upper mantle consistent with available heat-flow, gravity, and seismic data.

  7. Gravity anomalies of the active mud diapirs off southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Doo, Wen-Bin; Hsu, Shu-Kun; Lo, Chung-Liang; Chen, Song-Chuen; Tsai, Ching-Hui; Lin, Jing-Yi; Huang, Yuan-Ping; Huang, Yin-Sheng; Chiu, Shye-Donq; Ma, Yu-Fang

    2015-12-01

    Overpressure and buoyant effect of underlying sediments are generally used to account for the upward motion or formation of submarine mud volcanoes and mud diapirs. In this study, we process and interpret the gravity anomalies associated with the active mud diapirs off SW Taiwan. Geologically, the mud diapirs are just formed and are still very active, thus we can better understand the initial process of the mud diapirs formation through the gravity analysis. Our results show that the density contrasts of the submarine mud diapirs with respect to the surroundings are generally positive. Because the study area is in a tectonically compressive regime and the gas plume venting from the submarine mud volcanoes is very active, we thus infer that mechanically the mud diapirs off SW Taiwan have been formed mainly due to the tectonic compression on the underlying sediments of high pore-fluid pressure, instead of the buoyancy of the buried sediments. The overpressured sediments and fluid are compressed and pushed upwards to pierce the overlying sediments and form the more compacted mud diapirs. The relatively denser material of the mud diapirs probably constrains the flowing courses of the submarine canyons off SW Taiwan, especially for the upper reaches of the Kaoping and Fangliao submarine canyons.

  8. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys

  9. Gravity anomalies, caldera structure, and subsurface geology in the Rotorua area, New Zealand

    SciTech Connect

    Hunt, T.M. )

    1992-04-01

    This paper discusses a re-examination of gravity which indicates that Rotorua Caldera does not have the circular, negative gravity anomaly typical of other rhyolitic calderas. New gravity measurements and residual gravity anomalies in Rotorua City are consistent with numerous rhyolite domes and ignimbrite sheets, interbedded with a thick sequence of poorly-compacted sediments. Within the city a gravity high extends from the shore of Lake Rotorua south to Whakarewarewa and is associated with a buried ridge, formed by the coalescing of two rhyolite domes. A gravity low centered near Linton Park suggests that rhyolites are thin or absent in this area and sediments extend to a depth of about 1 km. A quantitative analysis of the residual gravity anomalies was limited by insufficient information about the density, extent, and thickness of the material underlying the rhyolites, and the uncertainty in the distribution and density of silicification within the sediments.

  10. Evolution of gravity anomalies across collisional mountain belts: Clues to the amount of continental convergence and underthrusting

    NASA Astrophysics Data System (ADS)

    Lillie, Robert J.

    1991-08-01

    A series of density models illustrates the gross form of free air and Bouguer gravity anomalies anticipated during ocean basin closure and consequent development of collisional orogens. When compared to gravity anomalies observed across some mountain belts, the hypothetical anomalies provide a clue to the degree of under thrusting of crust associated with one lithospheric plate beneath crust of the opposing plate margin. The results of the study suggest very early stage collision in the Ouachita Mountains of Arkansas and the Sulaiman Range of Pakistan, with thin transitional or oceanic crust still intact on the lower plate. In contrast, the Himalaya of Pakistan represent a much more advanced stage of collision, where continental crust may have underthrust the mountains for 600 km.

  11. The quest for the perfect gravity anomaly: Part 1 - New calculation standards

    USGS Publications Warehouse

    Li, X.; Hildenbrand, T.G.; Hinze, W. J.; Keller, Gordon R.; Ravat, D.; Webring, M.

    2006-01-01

    The North American gravity database together with databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account our enhanced computational power, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining different anomaly components. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. ?? 2005 Society of Exploration Geophysicists.

  12. An Anzatz about Gravity, Cosmology, and the Pioneer Anomaly

    SciTech Connect

    Murad, Paul

    2010-01-28

    The Pulsar 1913+16 binary system may represent a 'young' binary system where previously it is claimed that the dynamics are due to either a third body or a gravitational vortex. Usually a binary system's trajectory could reside in a single ellipse or circular orbit; the double ellipse implies that the 1913+16 system may be starting to degenerate into a single elliptical trajectory. This could be validated only after a considerably long time period. In a majority of binary star systems, the weights of both stars are claimed by analysis to be the same. It may be feasible that the trajectory of the primary spinning star could demonstrate repulsive gravitational effects where the neutron star's high spin rate induces a repulsive gravitational source term that compensates for inertia. If true, then it provides evidence that angular momentum may be translated into linear momentum as a repulsive source that has propulsion implications. This also suggests mass differences may dictate the neutron star's spin rate as an artifact of a natural gravitational process. Moreover, the reduced matter required by the 'dark' mass hypothesis may not exist but these effects could be due to repulsive gravity residing in rotating celestial bodies.The Pioneer anomaly observed on five different deep-space spacecraft, is the appearance of a constant gravitational force directed toward the sun. Pioneer spacecraft data reveals that a vortex-like magnetic field exists emanating from the sun. The spiral arms of the Sun's magnetic vortex field may be causal to this constant acceleration. This may profoundly provide a possible experimental verification on a cosmic scale of Gertsenshtein's principle relating gravity to electromagnetism. Furthermore, the anomalous acceleration may disappear once the spacecraft passes out into a magnetic spiral furrow, which is something that needs to be observed in the future. Other effects offer an explanation from space-time geometry to the Yarkovsky thermal

  13. Upward Continuation Apply Newly to Process Gravity Anomaly Data in the East China Sea

    NASA Astrophysics Data System (ADS)

    Han, Bo; Zhang, Xunhua; Jiang, Jinyu

    2014-05-01

    The research area lies in the East China Sea and its adjacent area and the concrete is between 120-130 degree of east longitude and 20-30 degree of north latitude and it also lies between Eurasian Plate and Pacific Plate. The structures of the area transform differently and they are namely Uplifted Zone of Zhejiang-Fujian, East China Sea Shelf Basin, Okinawa Trough Back-arc Basin, Ryukyu Arc, Ryukyu trench and Philippine Sea from west to east. Bouguer gravity anomaly can reflect deep structure characters and it is help to judge deep structures. The bouguer gravity anomalies of the area change differently from west to east. The anomalies increase gradually from land to the middle of Okinawa trough and near land anomaly contour strike accords with coastline and the middle of Okinawa trough reflect the highest anomalies in this area. Gravity anomalies re-increase from Ryukyu fore-arc basin to trench and Ryukyu island arc appears the low anomalies. Philippine Sea appears high gravity anomalies background. Upward continuation method has been used to process original gravity anomaly as a common method and its destination is to weaken local anomaly and at last strengthen deep anomaly and it's important to deep structure study. Upward 5 km, 10 km and 20 km have been used to process data and the results been compared. However, the research area is very large and the deep structure is complex, it isn't suitable to use single height to upward continuation processing bouguer gravity anomaly. Then we propose multiple upward heights continuation to process gravity data respectively in different area. We use upward 20km to process data in the area from land to the slope and upward 10km from Okinawa trough to Ryukyu island arc and upward 5km from Ryukyu trench to Philippine Sea. At last we obtain multiple upward height result and the calculated result confirms that it is fit to use this method. Gravity anomalies contours become smoother than before and the deep structures become

  14. Procedures and results related to the direct determination of gravity anomalies from satellite and terrestrial gravity data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1974-01-01

    The equations needed for the incorporation of gravity anomalies as unknown parameters in an orbit determination program are described. These equations were implemented in the Geodyn computer program which was used to process optical satellite observations. The arc dependent parameter unknowns, 184 unknown 15 deg and coordinates of 7 tracking stations were considered. Up to 39 arcs (5 to 7 days) involving 10 different satellites, were processed. An anomaly solution from the satellite data and a combination solution with 15 deg terrestrial anomalies were made. The limited data samples indicate that the method works. The 15 deg anomalies from various solutions and the potential coefficients implied by the different solutions are reported.

  15. The decompensative gravity anomaly and deep structure of the region of the Rio Grande rift

    SciTech Connect

    Cordell, L. ); Zorin, Y.A. ); Keller, G.R. )

    1991-04-10

    An isostatic correction is commonly made to Bouguer anomaly gravity data to remove the gravity effect of isostatic compensation of topographic loads. In the USSR a decompensative correction has then been made to the isostatic gravity anomaly to remove the gravity effect of isostatic compensation of geologic loads as well. The authors employ here calculations in the wave number domain, leading to an efficient and exact solution. In a 1,200 {times} 1,200 km region centered on the Rio Grande rift the decompensative correction ranges from about {minus}35 to +25 mGal. The decompensative anomaly, highlights an arcuate gravity low and a system of gravity highs inferred to reflect prerift welts of mass concentration which have indirectly influenced the position of the rift and its segmentation and zones of accommodation. Under the assumptions made, if the decompensative anomaly is subtracted from the Bouguer anomaly, then the residual is the gravity anomaly field of deep structure, without gravity effects of shallow sources in the upper crust. Using available seismic data to (weakly) constrain the Moho surface, they invert the residual gravity field for topography of the base of the lithosphere. Lithosphere is found to be 200 km thick in the High Plains; 40-50 km in the eastern Great Basin; 75-100 km in the Colorado Plateau, and as thin as 40 km in the southern Rio Grande rift. In the area studied, the thickness of the lithospere is everwhere greater than that of the crust. The separation of gravity effects made possible by the decompensative correction shows how the rift is fundamentally controlled by thinning of the lithosphere, yet in detail is deflected by long-lived tectonic welts in the shallow, brittle crust.

  16. Gravity anomaly and crustal density structure in Jilantai rift zone and its adjacent region

    NASA Astrophysics Data System (ADS)

    Wu, Guiju; Shen, Chongyang; Tan, Hongbo; Yang, Guangliang

    2016-08-01

    This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly ( G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault ( F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault ( F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.

  17. Gravity anomaly and crustal density structure in Jilantai rift zone and its adjacent region

    NASA Astrophysics Data System (ADS)

    Wu, Guiju; Shen, Chongyang; Tan, Hongbo; Yang, Guangliang

    2016-08-01

    This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault (F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.

  18. Analysis of gravity anomaly over coral-reef oil field: Wilfred Pool, Sullivan County, Indiana

    SciTech Connect

    Dana, S.W.

    1980-03-01

    To compare the measured and theoretical gravity anomaly of a typical coral-reef oil field, data were collected from the wilfred Pool, Sullivan County, Indiana. Densities of available core samples from the field were determined and the anomaly was calculated, taking into account the lateral and vertical variation of density and the geologic structure known from core studies and drilling-log records of lithologic types penetrated by the wells. Comparison of the theoretical and actual anomalies indicated a rough correspondence except for several sharp negative anomalies on the flanks of the measured gravity anomaly. Further studies indicated that the negative anomalies are possibly due to fluvial erosion that produced, on the surface of the youngest Pennsylvanian sediments, channels which were later filled with glacial till of lower density than the sediments. 13 figures.

  19. Gravity anomalies, plate tectonics and the lateral growth of Precambrian North America

    NASA Technical Reports Server (NTRS)

    Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.

    1988-01-01

    The widespread gravity coverage of North America provides a picture of the gross structural fabric of the continent via the trends of gravity anomalies. The structural picture so obtained reveals a mosaic of gravity trend domains, many of which correlate closely with structural provinces and orogenic terranes. The gravity trend map, interpreted in the light of plate-tectonic theory, thus provides a new perspective for examining the mode of assembly and growth of North America. Suture zones, palaeosubduction directions, and perhaps, contrasting tectonic histories may be identified using gravity patterns.

  20. Improving the geological interpretation of magnetic and gravity satellite anomalies

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Braile, L. W. (Principal Investigator); Vonfrese, R. R. B.

    1985-01-01

    Current limitations in the quantitative interpretation of satellite-elevation geopotential field data and magnetic anomaly data were investigated along with techniques to overcome them. A major result was the preparation of an improved scalar magnetic anomaly map of South America and adjacent marine areas directly from the original MAGSAT data. In addition, comparisons of South American and Euro-African data show a strong correlation of anomalies along the Atlantic rifted margins of the continents.

  1. GTeC-A versatile MATLAB® tool for a detailed computation of the terrain correction and Bouguer gravity anomalies

    NASA Astrophysics Data System (ADS)

    Cella, Federico

    2015-11-01

    Gravity Terrain Correction (GTeC) is a versatile MATLAB® code for terrain correction aimed to this purpose and capable of going beyond the limits of other public domain codes targeted to this aim. It runs with input gravity data (absolute measurements or free air anomalies) at the land/sea surface and with one or more DTMs (indifferently gridded or scattered) at different detail levels. Each of them can be used to calculate the gravity contribution of a concentric terrain zone around the point station with increasing resolution toward the center. The user can choose between two alternative algorithms for terrain modeling. The simplest one considers each grid point as the flat top of a squared prism. For areas closer to the point station a second algorithm can be chosen to better approximate the relief, with respect to others formulas, by means of a tessellation based network formed by triangular prisms. A more precise terrain correction is therefore achieved, especially in presence of high topographic gradients or just outside the sea/land boundaries. In the last case a suitable algorithm was expressly devised to fit the tessellation based network to the irregular trend of the coastline. GTeC calculates also free air anomalies and both plate and curvature corrections, providing also a complete graphic output including topography, free air anomalies, plate correction, total terrain correction, Bouguer anomalies and the terrain effect due to each computational zone. GTeC speeds up CPU times taking advantage from the parallel computing functions and from the vectorization code, both exploited in MATLAB®. Two code versions of GTeC (for normal or parallel computation), executable under MATLAB environment (pcode), are fully available as public domain software. The results of a synthetic case, of a real case at the regional scale and of a microgravity survey carried out at a short scale, are here presented.

  2. Global accuracy estimates of point and mean undulation differences obtained from gravity disturbances, gravity anomalies and potential coefficients

    NASA Technical Reports Server (NTRS)

    Jekeli, C.

    1979-01-01

    Through the method of truncation functions, the oceanic geoid undulation is divided into two constituents: an inner zone contribution expressed as an integral of surface gravity disturbances over a spherical cap; and an outer zone contribution derived from a finite set of potential harmonic coefficients. Global, average error estimates are formulated for undulation differences, thereby providing accuracies for a relative geoid. The error analysis focuses on the outer zone contribution for which the potential coefficient errors are modeled. The method of computing undulations based on gravity disturbance data for the inner zone is compared to the similar, conventional method which presupposes gravity anomaly data within this zone.

  3. GEOS 3 data processing for the recovery of geoid undulations and gravity anomalies

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1979-01-01

    The paper discusses the analysis of GEOS 3 altimeter data for the determination of geoid heights and point and mean gravity anomalies. Methods are presented for determining the mean anomalies and mean undulations from the GEOS 3 altimeter data available by the end of September 1977 without having a complete set of precise orbits. The editing of the data is extensive to remove questionable data, although no filtering of the data is carried out. An adjustment process is carried out to eliminate orbit error and altimeter bias. Representative point anomaly values are computed to investigate anomaly behavior across the Bonin Trench and over the Patton seamounts.

  4. Interpretation of gravity anomalies in the northwest Adirondack lowlands, northern New York

    SciTech Connect

    Revetta, F.A.; O'Brian, B. . Geology Dept.)

    1993-03-01

    Twelve hundred gravity measurements were made in the Adirondack Highlands and northwest Adirondack Lowlands, New York between 44[degree]15 minutes and 44[degree]30 minutes N. Latitude and 75[degree]00 minutes W. Longitude. A Bouguer gravity map constructed from the gravity measurements includes the Carthage-Colton Mylonite Zone, a major structural boundary between the highlands and lowlands. The gravity map indicates the gravity contours trend parallel to the CCMZ along most of its length however in some areas the contours cross the boundary. No clear-cut relationships exists between the CCMZ and gravity contours. The Bouguer gravity map shows several prominent gravity anomalies which correlate with the geology seismicity and mineral deposits in the area. Gravity lows of 20 to 30 g.u. are centered over the Gouverneur, Hyde and Payne Lake Alaskite gneiss bodies. A gravity high of 20 g.u. occurs over the Pleasant Lake gabbro pluton. Gravity highs of 35 and 100 g.u. occur over the Sylvia Lake Zinc District and marble just north of the district. A gravity high at Russell, N.Y. coincides with a cluster of nine earthquake epicenters. Finally a steep gravity gradient separates high density rocks from lower density rocks along the Black Lake fault. Two-dimensional computer modeling of the geologic features is underway and quantitative models of the structures will be presented.

  5. Gravity anomalies, flexure and mantle rheology seaward of Circum-Pacific trenches

    NASA Astrophysics Data System (ADS)

    Hunter, J.; Watts, A. B.

    2016-07-01

    We have used ensemble averages of satellite-derived free-air gravity anomaly data, together with inverse modelling techniques, to determine the effective elastic thickness, Te, of circum-Pacific subducting oceanic lithosphere and its relationship to plate age. Synthetic modelling tests show that Te can be recovered best using gravity anomaly, rather than bathymetry, data and profiles that are at least 750 km long. Inverse modeling based on a uniform Te elastic plate suggests that Te increases with age of the subducting oceanic lithosphere and is given approximately by the depth to the 390 ± 10°C oceanic isotherm based on a cooling plate model. Misfits between the observed and calculated gravity anomalies are significantly improved if a mechanically weak zone is included between the trench axis and the outer rise. This weak zone is coincident with observations of bend-faulting and seismicity. Inverse modelling shows that Te landward of the outer rise is generally 40-65% less than the Te seaward of the outer rise. Both landward and seaward Te increases with age of the lithosphere and are given by the depth to the 342-349°C and 671-714°C oceanic isotherm respectively. A dependence of Te on age is consistent with models for the cooling of oceanic lithosphere as it moves away from a mid-ocean ridge and the temperature-dependent ductile creep of oceanic lithospheric minerals such as olivine. By comparing the observed Te to the predicted Te based on laboratory-derived yield strength envelopes and an assumption of elastic-perfectly plastic deformation, we have attempted to constrain the rheology of oceanic lithosphere. Regardless of the assumed friction coefficient, the dry-olivine low-temperature plasticity flow laws of Goetze (1978), Evans & Goetze (1979), Raterron et al. (2004) and Mei et al. (2010) all provide quite a good fit to the observed Te at circum-Pacific subduction zones. This result contrasts with the Hawaiian Islands, where these flow laws are generally

  6. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches

    NASA Astrophysics Data System (ADS)

    Hunter, J.; Watts, A. B.

    2016-10-01

    We have used ensemble averages of satellite-derived free-air gravity anomaly data, together with inverse modelling techniques, to determine the effective elastic thickness, Te, of circum-Pacific subducting oceanic lithosphere and its relationship to plate age. Synthetic modelling tests show that Te can be recovered best using gravity anomaly, rather than bathymetry, data and profiles that are at least 750 km long. Inverse modelling based on a uniform Te elastic plate suggests that Te increases with age of the subducting oceanic lithosphere and is given approximately by the depth to the 390 ± 10 °C oceanic isotherm based on a cooling plate model. Misfits between the observed and calculated gravity anomalies are significantly improved if a mechanically weak zone is included between the trench axis and the outer rise. This weak zone is coincident with observations of bend-faulting and seismicity. Inverse modelling shows that Te landward of the outer rise is generally 40-65 per cent less than the Te seaward of the outer rise. Both landward and seaward Te increases with age of the lithosphere and are given by the depth to the 342-349 °C and 671-714 °C oceanic isotherm, respectively. A dependence of Te on age is consistent with models for the cooling of oceanic lithosphere as it moves away from a mid-ocean ridge and the temperature-dependent ductile creep of oceanic lithospheric minerals such as olivine. By comparing the observed Te to the predicted Te based on laboratory-derived yield strength envelopes and an assumption of elastic-perfectly plastic deformation, we have attempted to constrain the rheology of oceanic lithosphere. Regardless of the assumed friction coefficient, the dry-olivine low-temperature plasticity flow laws of Goetze, Evans & Goetze, Raterron et al. and Mei et al. all provide quite a good fit to the observed Te at circum-Pacific subduction zones. This result contrasts with the Hawaiian Islands, where these flow laws are generally too strong to

  7. Mantle origin of the Emeishan large igneous province from an analysis of residual gravity anomalies

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Zhang, Z.; Mooney, W. D.; Fan, W.; Zhong, Q.; Badal, J.

    2013-12-01

    The Emeishan large igneous province (ELIP) is the only verified large igneous province in China. It covers an area of 250,000 km2 from the eastern margin of the Tibetan Plateau to the western margin of the Yangtze block. Most studies on ELIP are from geochemistry and tectonics, but the deep origin of the ELIP is still unclear. In this study, we investigate the residual gravity anomaly in South China and its relationship to the Emeishan large igneous province with constrains of lithospheric structure from deep seismic sounding profiles, deep seismic reflection surveys, and a variety of broadband seismic observations acquired in South China in the last several decades. Our working scheme consists of removing the respective gravitational effects due to: (1) the sediments, and undulations of the (2) crystalline basement, (3) upper crust; (4) Moho and (5) lithospheric thickness. We have thus obtained the residual gravity anomaly of the ELIP and surrounding region, striking positive residual anomaly with maximum value of 140 mGal is observed at the ELIP region. We use the conjugate gradient method to locate the deep origins of the residual gravity data. As a result, our preferred model consists of a positive cylindrical density anomaly that provides a fit to the residual gravity anomaly observed in ELIP. As the distance increases from the inner zone of the ELIP to the outer zone, the positive residual gravity decreases. Hence, in our model, the density anomaly decreases from about 0.06 g/cm3 beneath the inner zone to about 0.03 g/cm3 beneath the outer zone. The residual gravity and our preferred density anomaly provide new evidence, along with the seismic data and geochemical data, to confirm the domal structure of the Permian mantle plume that gave rise to the Emenshan Large Igneous Province.

  8. Interpretations of gravity and magnetic anomalies in the Songliao Basin with Wavelet Multi-scale Decomposition

    NASA Astrophysics Data System (ADS)

    Li, Changbo; Wang, Liangshu; Sun, Bin; Feng, Runhai; Wu, Yongjing

    2015-09-01

    In this paper, we introduce the method of Wavelet Multi-scale Decomposition (WMD) combined with Power Spectrum Analysis (PSA) for the separation of regional gravity and magnetic anomalies. The Songliao Basin is situated between the Siberian Plate and the North China Plate, and its main structural trend of gravity and magnetic anomaly fields is NNE. The study area shows a significant feature of deep collage-type construction. According to the feature of gravity field, the region was divided into five sub-regions. The gravity and magnetic fields of the Songliao Basin were separated using WMD with a 4th order separation. The apparent depth of anomalies in each order was determined by Logarithmic PSA. Then, the shallow high-frequency anomalies were removed and the 2nd-4th order wavelet detail anomalies were used to study the basin's major faults. Twenty-six faults within the basement were recognized. The 4th order wavelet approximate anomalies were used for the inversion of the Moho discontinuity and the Curie isothermal surface.

  9. Constraints on the deep structure and dynamic processes beneath the Alps and adjacent regions from an analysis of gravity anomalies

    NASA Technical Reports Server (NTRS)

    Lyon-Caen, Helene; Molnar, Peter

    1989-01-01

    Gravity anomalies over the Alps and the Molasse Basin are examined, focusing on the relationship between the anomalies and the tectonic processes beneath the region. Bouguer gravity anomalies measured in France, Germany, Italy, and Switzerland are analyzed. No large isostatic anomalies are observed over the Alps and an elastic model is unable to account for gravity anomalies over the Molasse Basin. These results suggest that the dynamic processes that flexed the European plate down, forming the Molasse Basin and building the Alpine chain, have waned. It is proposed that the late Cenozoic uplift of the region may be due to a diminution or termination of downwelling of mantle material.

  10. Anomaly-free cosmological perturbations in effective canonical quantum gravity

    SciTech Connect

    Barrau, Aurelien; Calcagni, Gianluca; Grain, Julien E-mail: bojowald@gravity.psu.edu E-mail: julien.grain@ias.u-psud.fr

    2015-05-01

    This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.

  11. Gravity anomalies and lithospheric flexure around the Longmen Shan deduced from combinations of in situ observations and EGM2008 data

    NASA Astrophysics Data System (ADS)

    She, Yawen; Fu, Guangyu; Wang, Zhuohua; Liu, Tai; Xu, Changyi; Jin, Honglin

    2016-10-01

    The current work describes the combined data of three field campaigns, spanning 2009-2013. Their joint gravity and GPS observations thoroughly cover the sites of lithospheric flexure between the Sichuan Basin and the Eastern Tibetan Plateau. The study area's free-air gravity anomalies (FGAs) are updated by using a remove-and-restore algorithm which merges EGM2008 data with in situ observations. These new FGAs show pairs of positive and negative anomalies along the eastern edges of the Tibetan Plateau. The FGAs are used to calculate effective elastic thickness ( T e) and load ratios ( F) of the lithosphere. Admittance analysis indicates the T e of Longmen Shan (LMS) to be 6 km, and profile analysis indicates that the T e of the Sichuan Basin excesses 30 km. The load ratio ( F 1 = 1) confirms that the lithospheric flexure of the LMS area can be attributed solely to the surface load of the crust. [Figure not available: see fulltext. Caption: The current work describes the combined data of three field campaigns, spanning 2009-2013. Their joint gravity and GPS observations thoroughly cover the sites of lithospheric flexure between the Sichuan Basin and the Eastern Tibetan Plateau. The study area's free-air gravity anomalies (FGAs) are updated by using a remove-and-restore algorithm which merges EGM2008 data with in situ observations. With the new FGAs data, the lithospheric strength of the study area is studied by the authors, and they also give a combined model to illustrate the uplift mechanism of this area.

  12. Geoid undulations and gravity anomalies over the Aral Sea, the Black Sea and the Caspian Sea from a combined GEOS-3/SEASAT/GEOSAT altimeter data set

    NASA Technical Reports Server (NTRS)

    Au, Andrew Y.; Brown, Richard D.; Welker, Jean E.

    1991-01-01

    Satellite-based altimetric data taken by GOES-3, SEASAT, and GEOSAT over the Aral Sea, the Black Sea, and the Caspian Sea are analyzed and a least squares collocation technique is used to predict the geoid undulations on a 0.25x0.25 deg. grid and to transform these geoid undulations to free air gravity anomalies. Rapp's 180x180 geopotential model is used as the reference surface for the collocation procedure. The result of geoid to gravity transformation is, however, sensitive to the information content of the reference geopotential model used. For example, considerable detailed surface gravity data were incorporated into the reference model over the Black Sea, resulting in a reference model with significant information content at short wavelengths. Thus, estimation of short wavelength gravity anomalies from gridded geoid heights is generally reliable over regions such as the Black Sea, using the conventional collocation technique with local empirical covariance functions. Over regions such as the Caspian Sea, where detailed surface data are generally not incorporated into the reference model, unconventional techniques are needed to obtain reliable gravity anomalies. Based on the predicted gravity anomalies over these inland seas, speculative tectonic structures are identified and geophysical processes are inferred.

  13. Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.

  14. On the recovery of gravity anomalies from high precision altimeter data

    NASA Technical Reports Server (NTRS)

    Lelgemann, D.

    1976-01-01

    A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.

  15. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    USGS Publications Warehouse

    Plouff, Donald

    1992-01-01

    A residual isostatic gravity map (sheet 2) was prepared so that the regional effect of isostatic compensation present on the Bouguer gravity anomaly map (sheet 1) would be minimized. Isostatic corrections based on the Airy-Heiskanen system (Heiskanen and Vening Meinesz, 1958, p. 135-137) were estimated by using 3-minute topographic digitization and applying the method of Jachens and Roberts (1981). Parameters selected for the isostatic model were 25 km for the normal crustal thickness at sea level, 2.67 g/cm3 for the density of the crust, and 0.4 g/cm3 for the contrast in density between the crust and the upper mantle. These parameters were selected so that the isostatic residual gravity map would be consistent with isostatic residual gravity maps of the adjacent Walker Lake quadrangle (Plouff, 1987) and the state of Nevada (Saltus, 1988c).

  16. Mafic and ultramafic rocks of the northwestern Brooks Range of Alaska produce nearly symmetric gravity anomalies

    SciTech Connect

    Morin, R.L. )

    1993-04-01

    An arc of mafic and ultramafic rocks is mapped from Asik Mountain to Siniktanneyak Mountain in the northwestern Brooks Range of Alaska. Gravity data, although not very detailed, have been collected over the region and show some very conspicuous circular or oval gravity highs over portions of the mapped mafic-ultramafic bodies. Bodies which have large associated gravity anomalies are Asik Mountain (80 mGal), Avon Hills (20 mGal), Misheguk Mountain (30 mGal), and Siniktanneyak Mountain (20 mGal). Gabbros of the Siniktanneyak Mountain complex, where the gravity coverage is best, have densities of about 3.0 g/cm[sup 3] while the densities of the surrounding sedimentary rocks are about 2.6 g/cm[sup 3]. Volcanic rocks in the area have average densities of about 2.7 g/cm[sup 3]. Three-dimensional modeling indicates that the largest anomaly, on the southwestern part of the complex, could be caused by a polygonal prism of gabbro with vertical sides, about 6 km across and about 4.5 km deep. A smaller lobe of the anomaly on the northeast of the complex could be caused by another oblong polygonal prism about 4 km long and 2 km wide trending northeast and about 1.5 km deep. Modeling this anomaly with densities lower than gabbro would require greater thicknesses to produce the same anomaly. Modeling each anomaly along this arc in 2 1/2-dimensions shows many possible solutions using different body shapes and different density contrasts. There are several other gravity anomalies in this vicinity which could represent unexposed high density rocks. One such anomaly is in the Maiyumerak Mountains northeast of Asik Mountain (30 mGal). Another anomaly is to the northwest of Asik Mountain (20 mGal). There is also an anomaly at Uchugrak (20 mGal) east of Avan Hills. Although many of the anomalies in this region are poorly controlled, an attempt has been made to interpret the data to show possible solutions.

  17. Inversion of gravity and magnetic anomalies of two-dimensional polygonal cross sections

    NASA Astrophysics Data System (ADS)

    Radhakrishna Murthy, I. V.; Rama Rao, P.

    1993-10-01

    Two computer programs GPOLYIN and TPOLYIN coded in FORTRAN 77 are presented to invert respectively gravity and magnetic anomalies of two-dimensional (2-D) bodies of polygonal cross section. The computer input consists of the observed anomalies, their distances relative to a convenient reference point and the density contrast or the dip and direction of magnetization, as well as the coordinates of the vertices of the initial model. The programs solve for increments to the initial values of the coordinates using Marquardt's optimization technique. The partial derivatives are calculated by numerical differentiation. The program TPOLYIN is valid for any magnetization and for anomalies in any component.

  18. Kerr metric, geodesic motion, and Flyby Anomaly in fourth-order Conformal Gravity

    NASA Astrophysics Data System (ADS)

    Varieschi, Gabriele U.

    2014-06-01

    In this paper we analyze the Kerr geometry in the context of Conformal Gravity, an alternative theory of gravitation, which is a direct extension of General Relativity (GR). Following previous studies in the literature, we introduce an explicit expression of the Kerr metric in Conformal Gravity, which naturally reduces to the standard GR Kerr geometry in the absence of Conformal Gravity effects. As in the standard case, we show that the Hamilton-Jacobi equation governing geodesic motion in a space-time based on this geometry is indeed separable and that a fourth constant of motion—similar to Carter's constant—can also be introduced in Conformal Gravity. Consequently, we derive the fundamental equations of geodesic motion and show that the problem of solving these equations can be reduced to one of quadratures. In particular, we study the resulting time-like geodesics in Conformal Gravity Kerr geometry by numerically integrating the equations of motion for Earth flyby trajectories of spacecraft. We then compare our results with the existing data of the Flyby Anomaly in order to ascertain whether Conformal Gravity corrections are possibly the origin of this gravitational anomaly. Although Conformal Gravity slightly affects the trajectories of geodesic motion around a rotating spherical object, we show that these corrections are minimal and are not expected to be the origin of the Flyby Anomaly, unless conformal parameters are drastically different from current estimates. Therefore, our results confirm previous analyses, showing that modifications due to Conformal Gravity are not likely to be detected at the Solar System level, but might affect gravity at the galactic or cosmological scale.

  19. A simple Bouguer gravity anomaly map of southwestern Saudi Arabia and an initial interpretation

    USGS Publications Warehouse

    Gettings, M.E.

    1983-01-01

    Approximately 2,200 gravity stations on a 10-km2 grid were used to construct a simple Bouguer gravity anomaly map at 1:2,000,000 scale along a 150-km-wide by 850-km-long strip of the Arabian Peninsula from Sanam, southwest of Ar Riyad, through the Farasan Islands and including offshore islands, the coastal plain, and the Hijaz-Asir escarpment from Jiddah to the Yemen border. On the Precambrian Arabian Shield, local positive gravity anomalies are associated with greenstone belts, gneiss domes, and the Najd fault zones. Local negative gravity anomalies correlate with granitic plutonic rocks. A steep gravity gradient of as much as 4 mgal-km-1 marks the continental margin on the coastal plain near the southwestern end of the strip. Bouguer gravity anomaly values range from -10 to +40 mgal southwest of this gradient and from -170 to -100 mgal in a 300-km-wide gravity minimum northeast of the gradient. Farther northeast, the minimum is terminated by a regional gradient of about 0.1 mgal-km-1 that increases toward the Arabian Gulf. The regional gravity anomaly pattern has been modeled by using seismic refraction and Raleigh wave studies, heat-flow measurements, and isostatic considerations as constraints. The model is consistent with the hypothesis of upwelling of hot mantle material beneath the Red Sea and lateral mantle flow beneath the Arabian plate. The model yields best-fitting average crustal densities of 2.80 g-cm-3 (0-20 km depth) and 3.00 g-cm-3 (20-40 km depth) southwest of the Nabitah suture zone and 2.74 g-cm-3 (0-20 km depth) and 2.94 g-cm-3 (20-40 km depth) northeast of the suture zone. The gravity model requires that the crust be about 20 km thick at the continental margin and that the lower crust between the margin and Bishah (lat 20? N., long 42.5? E.) be somewhat denser than the lower crust to the northeast. Detailed correlations between 1:250,000- and 1:500,000-scale geologic maps and the gravity anomaly map suggest that the greenstone belts associated

  20. Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.

  1. Forward modeling: Gravity anomalies of two-dimensional bodies of arbitrary shape with hyperbolic and parabolic density functions

    NASA Astrophysics Data System (ADS)

    Visweswara Rao, C.; Chakravarthi, V.; Raju, M. L.

    1994-06-01

    Computer programs in FORTRAN 77 to compute the gravity anomaly of a two-dimensional (2-D) body of irregular cross section with hyperbolic and parabolic variations in density contrast are developed and presented. The gravity anomaly of San Jacinto Graben, California, using a hyperbolic function and that of Los Angeles Basin, California, using a parabolic function, are computed and compared with respective observed anomalies.

  2. Gravity Anomalies and Depths of Sedimentary of Mekong Delta Area, South of Vietnam

    NASA Astrophysics Data System (ADS)

    Dang Van, L.

    2014-12-01

    The Mekong Delta is the region in the south of Vietnam with the total area of about 40.000 km2 and almost of this area is covered by water. Gravity measurement of this area was performed by Cuu Long Petroleum Agency (Vietnam) in 1980's and the Bouguer anomaly map of this area at the scale of 1/500.000 was established.We used the Bouguer anomaly map to study the geological structure of this area. This paper is divided into two parts. Firstly, we split the Mekong Delta area into two basins (CanTho-DongThap and TraCu basins) and two swells (Saigon and SocTrang swells) and delineated their boundaries by using the characteristics of Bouguer anomalies. Secondly, we used the second polynomial formula to separate the Bouger anomaly map into the regional and residual gravity anomaly maps. With this residual anomaly map, the 3D basemenf of Cenozoic-Mesozoic sediments of this area was computed by using the Parker-Oldenburg method.

  3. Covariant anomaly and Hawking radiation from the modified black hole in the rainbow gravity theory

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin; Wu, Shuang-Qing

    2008-12-01

    Recently, Banerjee and Kulkarni (R. Banerjee, S. Kulkarni, arXiv: 0707. 2449 [hep-th]) suggested that it is conceptually clean and economical to use only the covariant anomaly to derive Hawking radiation from a black hole. Based upon this simplified formalism, we apply the covariant anomaly cancellation method to investigate Hawking radiation from a modified Schwarzschild black hole in the theory of rainbow gravity. Hawking temperature of the gravity’s rainbow black hole is derived from the energy-momentum flux by requiring it to cancel the covariant gravitational anomaly at the horizon. We stress that this temperature is exactly the same as that calculated by the method of cancelling the consistent anomaly.

  4. MAGSAT scalar and vector anomaly data analysis

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Efforts on the analysis of MAGSAT scalar anomaly data, the application of the scalar analysis results to three component vector data, and the comparison of MAGSAT data with corresponding MAGNET aeromagnetic and free air gravity anomaly data are briefly described.

  5. The origin of the non-mare mascon gravity anomalies in lunar basins

    NASA Astrophysics Data System (ADS)

    Andrews-Hanna, Jeffrey C.

    2013-01-01

    Many lunar basins are characterized by prominent positive gravity anomalies over the basin interiors, referred to as mass concentrations or mascons. While a significant fraction of some near-side mascon anomalies can be explained as a result of the flexural support of the mare basalts within the basins, a number of basins, including Orientale, exhibit mascons in excess of those that can be plausibly ascribed to the mare. Some basins exhibit mascons but lack mare altogether. Lunar gravity and topography data are used to map the isostatic anomaly, or the height of the surface above or below its isostatic level. Orientale is representative of the majority of lunar basins, in which the super-isostatic basin center is surrounded by a sub-isostatic annulus of comparable magnitude but greater area. The basin structure as a whole is found to be strongly sub-isostatic. High-resolution crustal thickness models of Orientale confirm that it is surrounded by an annulus of thickened but sub-isostatic crust. It is proposed that the flexural uplift of the annulus causes the uplift and positive gravity anomalies within the basin center. Finite element models are used to examine the flexural uplift of the sub-isostatic annulus and the basin center for a range of lithosphere thicknesses both outside the basin and in the basin interior. The uplift of the basin center can exceed 2 km, increasing the central gravity anomaly by ˜200 mGal. This annular uplift explains a significant fraction of the Orientale mascon, and is likely a dominant cause of non-mare mascons globally.

  6. Sub-surface Models of Long- and Short-wavelength Gravity Anomalies in Pennsylvania

    NASA Astrophysics Data System (ADS)

    Malinconico, L. L.; Morabito, J.; Hudacek, W.; Harhen, M.; McAtee, B.

    2008-12-01

    Over the past several years we have been collecting and compiling gravity data in various areas in Pennsylvania to complement existing data previously compiled by the National Image and Mapping Agency and GeoNet. Supported by the Pennsylvania Geological Survey, the aim of this project is to generate a gravity map for the state. This has involved the collection of approximately 4000 new observations and identification of previously acquired data from other sources that had not been included in the above listed data bases. While we are still in the process of cleaning up the data set, it is now possible to use the data to model subsurface density changes for both short and long-wavelength anomalies. An intriguing feature of the gravity map of Pennsylvania is the long-wavelength NE-SW-trending positive and negative anomalies that have little direct correlation with the observed surface geology. The negative anomalies range in amplitude from -12 to - 40 mgals, with wavelengths from 80 to 150 km, while the positive anomalies have amplitudes from 11 to 54 mgals and wavelengths between 100 and 135 km. We have modeled several of these using both wavelength analysis and simple two-dimensional modeling. The results suggest that, unlike previous interpretations that suggested shallow basins or intrusions, part of the cause of these anomalies may be as deep as topographic variations at the crust-mantle boundary. With well-constrained regional trends we have also been able to use these data to isolate and model short- wavelength anomalies. Within the Newark Basin in southeastern Pennsylvania one focus has been on the diabase intrusions. The gravity data demonstrate a remarkable special coincidence of 5 to 10 mgal positive anomalies with the known outcrop pattern of the sills, however there are also some areas where the sill is observed to outcrop, but where the gravity signature is minimal or does not exist. The density models of the sills range in thickness from .3 km to

  7. Crustal Structure beneath Northeastern Japan Derived from Explosion Seismology and Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    HARA, H.; KONO, Y.

    2001-12-01

    In 1997, one of the most extensive explosion seismological investigation was conducted along the Kamaishi-Iwaki profile in the northern part of Honshu Island, Japan, and Iwasaki et al.(1999) presented a detailed P-wave crustal velocity structure in this region. Our group had about 35,000 gravity data points covering northeastern Japan, and now we added the gravity data along the Kamaishi-Iwaki profile. Using this data set, we constructed a detailed gravity profile along this line. We obtained a two dimensional crustal structures applying 2D-Talwani?s method as we describe below. As a starting model, we converted a P-wave velocity structure given by Iwasaki et al. (1999) into a density structure model employing an empirical relationship between seismic velocity and rock density (Nafe and Drake, 1957). This model, however, did not agree with the gravity anomalies. Therefore we modified the starting model in the following order: (a) we changed the depth of the Moho and the Conrad boundary in order to achive a better fit to the long wavelength component of gravity anomalies; (b) modify the density of the sedimentary rocks into heavier one. However we could not obtain consistent theoretical gravity anomalies over the Tono region where large granitic bodies is thought to have intruded during the Cretaceous period exist. Therefore we assume a granite pluton whose density is lighter than surrounding rocks?, 2.64 g/cc, and insert in an advanced model. In this model, the depth of the diapir-shaped granite pluton is considered to be no deeper than 8-10 kilometers. This model is consistent with epicenter distribution of earthquakes and geology in this region.

  8. The Origin of the Rodrigues Depth Anomaly: New constraints from integrated gravity inversion

    NASA Astrophysics Data System (ADS)

    Minakov, Alexander; Gaina, Carmen; Faleide, Jan Inge

    2016-04-01

    This study is focused on the Western Indian Ocean including the Central Indian Ridge. The Rodrigues Ridge is a bathymetric feature (500 km -long and 20 km -wide) situated east of the Mascarene Plateau and Mauritius, with an oblique trend with respect to the underlying seafloor spreading fabric. The trend is also different from the fracture zone and hotspot tracks in this area. The region where the Rodrigues Ridge intersects the Central Indian Ridge is characterized by broad area being shallower than it should be according to standard age-depth relations for oceanic basement. With this contribution we aim to determine key factors controlling the formation of the Rodrigues Ridge and the development of the depth anomaly through time. In order to better constrain the nature and extent of the depth anomaly underlying the Rodrigues Ridge and surrounding region, we have carried out a 3D gravity and bathymetry data analysis. This analysis included an iterative gravity inversion approach linked to the computation of residual topography through the temperature and density model of the crust and upper mantle. We use a refined plate kinematic model of the study area for the time period ca. 30 Ma to the present. The refined kinematic model is an important element for temperature modelling at the ridge-transform intersection. Existing seismological data provide additional constraints for the gravity inversion. The results of the 3D gravity and bathymetry data analysis support the model of enhanced production of crust at the Central Indian Ridge adjacent to the Rodrigues Ridge. The depth anomaly is composed of abrupt Rodrigues Ridge edifice sitting on top a relatively smooth and broad anomaly characterized by crustal thickness between 8 and 13 km. These values are significantly higher than those typical for the crustal thickness generated by slow seafloor spreading at the Central Indian Ridge and other slow spreading ridges. This gives rise to a large negative residual mantle

  9. Gravity anomaly and geoid undulation results in local areas from GEOS-3 altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1979-01-01

    The adjusted GEOS-3 altimeter data, taken as averages within a data frame, have been used to construct free air anomaly and geoid undulation profiles and maps in areas of geophysical interest. Profiles were constructed across the Philippine Trench (at a latitude of 6 deg) and across the Bonin Trench (at a latitude of 28 deg). In the latter case an anomaly variation of 443 mgals in 143 km was derived from the altimeter data. These variations agreed reasonably with terrestrial estimates, considering the predicted point accuracy was about + or - 27 mgals. An area over the Patton Sea mounts was also investigated with the altimeter anomaly field agreeing well with the terrestrial data except for the point directly over the top of the sea mount. It is concluded that the GEOS-3 altimeter data is valuable not only for determining 5 deg and 1 deg x 1 deg mean anomalies, but also can be used to describe more local anomaly variations.

  10. Anomalies and Hawking fluxes from the black holes of topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Porfyriadis, Achilleas P.

    2009-05-01

    The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U (1) gauge field of the reduced (1 + 1)-dimensional theory. It is found that the terms in this U (1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.

  11. Joint Interpretation of Bathymetric and Gravity Anomaly Maps Using Cross and Dot-Products.

    NASA Astrophysics Data System (ADS)

    Jilinski, Pavel; Fontes, Sergio Luiz

    2010-05-01

    0.1 Summary We present the results of joint map interpretation technique based on cross and dot-products applied to bathymetric and gravity anomaly gradients maps. According to the theory (Gallardo, Meju, 2004) joint interpretation of different gradient characteristics help to localize and empathize patterns unseen on one image interpretation and gives information about the correlation of different spatial data. Values of angles between gradients and their cross and dot-product were used. This technique helps to map unseen relations between bathymetric and gravity anomaly maps if they are analyzed separately. According to the method applied for the southern segment of Eastern-Brazilian coast bathymetrical and gravity anomaly gradients indicates a strong source-effect relation between them. The details of the method and the obtained results are discussed. 0.2 Introduction We applied this method to investigate the correlation between bathymetric and gravity anomalies at the southern segment of the Eastern-Brazilian coast. Gridded satellite global marine gravity data and bathymetrical data were used. The studied area is located at the Eastern- Brazilian coast between the 20° W and 30° W meridians and 15° S and 25° S parallels. The volcanic events responsible for the uncommon width of the continental shelf at the Abrolhos bank also were responsible for the formation of the Abrolhos islands and seamounts including the major Vitoria-Trindade chain. According to the literature this volcanic structures are expected to have a corresponding gravity anomaly (McKenzie, 1976, Zembruscki, S.G. 1979). The main objective of this study is to develop and test joint image interpretation method to compare spatial data and analyze its relations. 0.3 Theory and Method 0.3.1 Data sources The bathymetrical satellite data were derived bathymetry 2-minute grid of the ETOPO2v2 obtained from NOAA's National Geophysical Data Center (http://www.ngdc.noaa.gov). The satellite marine gravity 1

  12. Mean gravity anomalies and sea surface heights derived from GEOS-3 altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1978-01-01

    Approximately 2000 GEOS-3 altimeter arcs were analyzed to improve knowledge of the geoid and gravity field. An adjustment procedure was used to fit the sea surface heights (geoid undulations) in an adjustment process that incorporated cross-over constraints. The error model used for the fit was a one or two parameter model which was designed to remove altimeter bias and orbit error. The undulations on the adjusted arcs were used to produce geoid maps in 20 regions. The adjusted data was used to derive 301 5 degree equal area anomalies and 9995 1 x 1 degree anomalies in areas where the altimeter data was most dense, using least squares collocation techniques. Also emphasized was the ability of the altimeter data to imply rapid anomaly changes of up to 240 mgals in adjacent 1 x 1 degree blocks.

  13. Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.

    1980-01-01

    The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.

  14. Spherical Earth analysis and modeling of lithospheric gravity and magnetic anomalies. Ph.D. Thesis - Purdue Univ.

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.

    1980-01-01

    A comprehensive approach to the lithospheric analysis of potential field anomalies in the spherical domain is provided. It has widespread application in the analysis and design of satellite gravity and magnetic surveys for geological investigation.

  15. Chapter 3: Circum-Arctic mapping project: New magnetic and gravity anomaly maps of the Arctic

    USGS Publications Warehouse

    Gaina, C.; Werner, S.C.; Saltus, R.; Maus, S.; Aaro, S.; Damaske, D.; Forsberg, R.; Glebovsky, V.; Johnson, K.; Jonberger, J.; Koren, T.; Korhonen, J.; Litvinova, T.; Oakey, G.; Olesen, O.; Petrov, O.; Pilkington, M.; Rasmussen, T.; Schreckenberger, B.; Smelror, M.

    2011-01-01

    New Circum-Arctic maps of magnetic and gravity anomalies have been produced by merging regional gridded data. Satellite magnetic and gravity data were used for quality control of the long wavelengths of the new compilations. The new Circum-Arctic digital compilations of magnetic, gravity and some of their derivatives have been analyzed together with other freely available regional and global data and models in order to provide a consistent view of the tectonically complex Arctic basins and surrounding continents. Sharp, linear contrasts between deeply buried basement blocks with different magnetic properties and densities that can be identified on these maps can be used, together with other geological and geophysical information, to refine the tectonic boundaries of the Arctic domain. ?? 2011 The Geological Society of London.

  16. Calculation of gravity and magnetic anomalies along profiles with end corrections and inverse solutions for density and magnetization

    USGS Publications Warehouse

    Cady, John W.

    1977-01-01

    A computer program is presented which performs, for one or more bodies, along a profile perpendicular to strike, both forward calculations for the magnetic and gravity anomaly fields and independent gravity and magnetic inverse calculations for density and susceptibility or remanent magnetization.

  17. Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings

    NASA Astrophysics Data System (ADS)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2016-04-01

    The isostatic modeling represents one of the most useful "geological" reduction methods of the gravity field. With the isostatic correction, it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. Although there exist several isostatic compensation schemes, it is usually supposed that a choice of the model is not an important factor to first order, since the total weight of compensating masses remains the same. We compare two alternative models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which cannot be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also, the predicted "isostatic" Moho is very different from existing seismic observations. The second isostatic model includes the Moho, which is based on seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). According to this model, the upper mantle under the Arabian Shield is less dense than under the Platform. In the Arabian platform, the maximum density coincides with the Rub' al Khali, one of the richest oil basin in the world. This finding agrees with previous studies, showing that such basins are often underlain by dense mantle, possibly related to an eclogite layer that has caused their subsidence. The mantle density variations might be also a result of variations of the lithosphere thickness. With the combined isostatic model, it is possible to minimize regional anomalies over the Arabian plate. The residual local anomalies correspond well to tectonic structure of the plate. Still very significant anomalies, showing isostatic disturbances of the lithosphere, are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  18. On the Global Oxygen Anomaly and Air-Sea Flux

    NASA Technical Reports Server (NTRS)

    Garcia, Hernan E.; Keeling, Ralph F.

    2001-01-01

    A new climatology of monthly air-sea oxygen fluxes throughout the ice-free surface global ocean is presented. The climatology is based on weighted linear least squares regressions using heat flux monthly anomalies for spatial and temporal interpolation of historical O2 data. The seasonal oceanic variations show that the tropical belt (20 S - 20 N) is characterized by relatively small air-sea fluxes when compared to the middle to high latitudes (40 deg - 70 deg). The largest and lowest seasonal fluxes occur during summer and winter in both hemispheres. By means of an atmospheric transport model we show that our climatology is in better agreement with the observed amplitude and phasing of the variations in atmospheric O2/N2 ratios because of seasonal air-sea exchanges at baseline stations in the Pacific Ocean than with previous air-sea O2 climatologies. Our study indicates that the component of the air-sea O2 flux that correlates with heat flux dominates the large-scale air-sea O2 exchange on seasonal timescales. The contribution of each major oceanic basin to the atmospheric observations is described. The seasonal net thermal (SNO(sub T)) and biological (SNO(sub B)) outgassing components of the flux are examined in relation to latitudinal bands, basin-wide, and hemispheric contributions. The Southern Hemisphere's SNO(sub B) (approximately 0.26 Pmol) and SNO(sub T) (approximately 0.29 Pmol) values are larger than the Northern Hemisphere's SNO(sub B) (approximately 0.15 Pmol) and SNO(sub T) (approximately 0.16 Pmol) values (1 Pmol = 10(exp 15) mol). We estimate a global extratropical carbon new production during the outgassing season of 3.7 Pg C (1 Pg = 10(exp 15) g), lower than previous estimates with air-sea O2 climatologies.

  19. Longwavelength gravity anomalies and the deep thermal structure of the Baikal rift

    SciTech Connect

    Diament, M. ); Kogan, M.G. )

    1990-10-01

    The analysis of the gravity field over the Baikal rift area has been carried out in order: (1) to detect the amount of the deep hot material, and (2) to constrain the flexural rigidity of the lithosphere. The authors removed a few first harmonics of the global field and the gravity effects due to the crust from the observed field and found a residual anomaly which is aligned with the rift. This residual, which they attribute to the mantle, shows a minimum of about 15 mgal in amplitude and 900 km width, which is superimposed over a wider minimum with smaller amplitude. A model involving a simple stretching of the lithosphere with diffusion of heat predicts the right order of magnitude for both the amplitude and the wavelength of the 900-km anomaly. Results confirm that the stretching factor is of the order of 1.2 to 1.5. Interpretation of the coherence function computed between gravity and topography shows that the lithosphere in the area has a significant equivalent elastic thickness of about 30 km (i.e. flexural rigidity about 2.3 10{sup 23} N.m.).

  20. Stratospheric gravity wave observations of AIRS and HIRDLS

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Hoffmann, Lars; Ern, Manfred; Trinh, Thai

    2016-04-01

    The Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite provides stratospheric temperature observations for a variety of scientific analyses. However, the horizontal resolution of the operational temperature retrievals is generally not sufficient for studies of gravity waves. The AIRS high-resolution retrieval discussed here provides stratospheric temperature profiles for each individual satellite footprint and therefore has nine times better horizontal sampling than the operational data. The retrieval configuration is optimized so that the results provide a trade-off between spatial resolution and retrieval noise that is considered optimal for gravity wave analysis. To validate the AIRS data we performed an intercomparison with stratospheric temperature measurements of the High Resolution Dynamics Limb Sounder (HIRDLS). Selected case studies of gravity wave events are analyzed. AIRS and HIRDLS utilize rather different measurement geometries (nadir and limb) and have different sensitivities to gravity wave horizontal and vertical wavelengths, as indicated by their observational filters. Nevertheless, the wave structures found in the stratosphere in AIRS and HIRDLS data are often in remarkably good agreement. The three-dimensional temperature fields from AIRS allow us to derive the horizontal orientation of the phase fronts, which is a limiting factor for gravity wave analyses based on limb measurements today. In addition, a statistical comparison focuses on temperature variances due to stratospheric gravity wave activity at 20-60 km altitude. The analysis covers monthly zonal averages and time series for the HIRDLS measurement time period (January 2005-March 2008). We found good agreement in the seasonal and latitudinal patterns of gravity wave activity. Time series of gravity wave variances show a strong annual cycle at high latitudes with maxima during wintertime and minima during summertime. Largest variability is found at 60°S during austral

  1. Anomalies.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  2. Gravity anomalies and the structure of western Tibet and the southern Tarim Basin

    NASA Technical Reports Server (NTRS)

    Lyon-Caen, H.; Molnar, P.

    1984-01-01

    Gravity anomalies across the western part of the Tarim Basin and the Kunlun mountain belt show that this area is not in local isostatic equilibrium. These data can be explained if a strong plate underlying the Tarim Basin extends southwestward beneath the belt at least 80 km and supports part of the topography of northwest Tibet. This corroborates Norin's inference that late Tertiary crustal shortening has occurred in this area by southward underthrusting of the Tarim Basin beneath the Kunlun. This study places a lower bound on the amount of underthrusting.

  3. Basement structure based on gravity anomaly in the northern Noto peninsula, Central Japan

    NASA Astrophysics Data System (ADS)

    Mizubayashi, T.; Sawada, A.; Hamada, M.; Hiramatsu, Y.; Honda, R.

    2012-12-01

    Upper crustal block structures are usually defined by using surface information, such as geological and morphological data. The northern Noto Peninsula, central Japan, is divided into four geological block structures from tectonic geomorphologic perspectives (Ota and Hirakawa, 1979). This division is based on the surface crustal movement. To image the geological blocks three-dimensionally, it is necessary to construct a subsurface structure model. Gravity survey can clarify the detailed subsurface structure with dense gravity measurement. From the detailed Bouguer anomalies in the northwestern Noto Peninsula, Honda et al. (2008) suggested that the rupture size of the 2007 Noto Hanto earthquake was constrained by the geological block structures. Hiramatsu et al. (2008) also suggested the active faults on the seafloor, such as the source fault of the 2007 Noto Hanto earthquake plays a major role for the formation of the geological block structures. In this study, we analyze subsurface density structure based on the Bouguer anomaly and estimate the distribution of basement depth in the northern Noto Peninsula. We focus the relationship among the basement depth, the block structures and the active faults on the seafloor and discuss the block movement in the northern Noto Peninsula. We compiled the data measured and published previously (Gravity Database of Southwest Japan, 2001; Geological survey of Japan, 2004; Geographical survey institute of Japan, 2006; The Gravity Research Group in Southwest Japan, 2001; Komazawa and Okuma, 2010; Hokuriku electric power Co. Ltd., undisclosed) and calculated Bouguer anomaly in the northern Noto Peninsula. Based on this Bouguer anomaly, we analyzed subsurface density structures along 13 northeastern-southwestern profiles and 35 northwestern-southeastern profiles with the interval of 2 km using the two dimensional Talwani's method (Talwani et al., 1959). In the analysis, we assumed a density structure with four layers: basement

  4. Modeling of shallow structures in the Cappadocia region using gravity and aeromagnetic anomalies

    NASA Astrophysics Data System (ADS)

    Kosaroglu, Sinan; Buyuksarac, Aydin; Aydemir, Attila

    2016-07-01

    In this study, shallow structures and bodies creating gravity and magnetic anomalies in the Cappadocia Volcanic Complex region in central Anatolia were investigated in order to determine the tectonic origin and structural setting of young volcanic units. The shallow geological structures in the region are depressions filled with mainly low-density, loose volcano-clastics and ignimbrite sheets associated with the continental Neogene deposits. These units together with other volcanic products are originated from the large Neogene and Quaternary volcanoes of the central Anatolia, particularly in the Cappadocia region. At first, spectral analysis to obtain the cut-off frequencies for the high-pass filter was performed in this investigation. Then, gravity and magnetic data were high-pass filtered to remove the deep and regional effects on anomalies and to unveil only shallow structures' effects. Subsequently, upward and downward continuations were carried out to determine how these shallow structures influence the total anomalies and their contribution in the confining total potential field. In addition, three and two dimensional gravity models (3D and 2D) of the study area were also constructed to obtain the bottom depth of shallow bodies. According to spectral analysis results, shallow structures could be separated into two groups from the power spectrums and bottom depth of deeper structure was commonly determined about 2 km in gravity and magnetic spectrum, both. More shallow structure is at the depth around 0.317 km according to the gravity power spectrum. Obviously, 3D and 2D models are consistent with the spectral analysis results for the deeper unit depth. A circular, large depression (70 × 50 km2) surrounds Mount Melendiz with a 1-2.7 km depth range (2 km in average). Because the depressions around the central volcanoes of Mount Melendiz and Mount Hasan cover very large areas in the basin scale, the shallow and low-density volcanic units can hardly be claimed

  5. Genesis of the largest Amazonian wetland in northern Brazil inferred by morphology and gravity anomalies

    NASA Astrophysics Data System (ADS)

    Rossetti, Dilce de Fátima; Cassola Molina, Eder; Cremon, Édipo Henrique

    2016-08-01

    The Pantanal Setentrional (PS) is the second largest wetland in Brazil, occurring in a region of northern Amazonia previously regarded as part of the intracratonic Solimões Basin. However, while Paleozoic to Neogene strata are recorded in this basin, the PS constitutes a broad region with an expressive record of only Late Pleistocene and Holocene deposits. The hypothesis investigated in the present work is if these younger deposits were formed within a sedimentary basin having a geological history separated from the Solimões Basin. Due to the location in a remote region of low accessibility, the sedimentary fill of the PS wetland remains largely unknown in subsurface. In the present work, we combine geomorphological and gravity data acquired on a global basis by several satellite gravity missions to approach the geological context of this region. The results revealed a wetland characterized in surface by a low-lying terrain with wedge shape and concave-up geometry that is in sharp contact with highland areas of Precambrian rocks of the Guiana Shield. Such contact is defined by a series of mainly NE- or NW-trending straight lineaments that eventually extend into both the Guiana Shield and the PS wetland. Also of relevance is that a great part of the PS wetland sedimentary cover consists of dominantly sandy deposits preserved as residual paleo-landforms with triangular shapes previously related to megafan depositional systems. These are distributed radially at the northern margin of the PS, with axis toward basement rocks and fringes toward the wetland's center, the latter containing the largest megafan landform. The analysis of gravity anomaly data revealed a main NNE-trending chain ∼500 km in length defined by high gravity values (i.e., up to 60 mGal); these are bounded by negative anomalies as low as -90 mGal. The chain with positive gravity anomaly marks the center of a subsiding area having a geological evolution that differs from the adjacent intracratonic

  6. Intercomparison of stratospheric gravity wave observations with AIRS and IASI

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Alexander, M. Joan; Clerbaux, Cathy; Grimsdell, Alison W.; Meyer, Catrin I.; Rößler, Thomas; Tournier, Bernard

    2015-04-01

    Gravity waves are an important driver for the atmospheric circulation and have substantial impact on weather and climate. Satellite instruments offer excellent opportunities to study gravity waves on a global scale. This study focuses on observations from the Atmospheric Infrared Sounder (AIRS) onboard the National Aeronautics and Space Administration's Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI) onboard the European MetOp satellites. The main aim of this study is an intercomparison of stratospheric gravity wave observations of both instruments. In particular, we analyzed AIRS and IASI 4.3 μm brightness temperature measurements, which directly relate to stratospheric temperature. Three case studies showed that AIRS and IASI provide a clear and consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on a five-year period of measurements (2008 - 2012) showed similar spatial and temporal patterns of gravity wave activity. However, the statistical comparisons also revealed systematic differences of variances between AIRS and IASI that we attribute to the different spatial measurement characteristics of both instruments. We also found differences between day- and nighttime data that are partly due to the local time variations of the gravity wave sources. While AIRS has been used successfully in many previous gravity wave studies, IASI data are applied here for the first time for that purpose. Our study shows that gravity wave observations from different hyperspectral infrared sounders such as AIRS and IASI can be directly related to each other, if instrument-specific characteristics such as different noise levels and spatial resolution and sampling are carefully considered. The ability to combine observations from different satellites provides an opportunity to create a long-term record, which is an exciting prospect for future climatological studies of stratospheric gravity wave

  7. Short-wavelength, high-amplitude gravity anomalies around the Banda Sea, and the collapse of the Sulawesi orogen

    NASA Astrophysics Data System (ADS)

    Milsom, J.; Sardjono; Susilo, A.

    2001-04-01

    In eastern Indonesia, high-density ophiolitic rocks outcropping on islands surrounding the Banda Sea are in many cases associated with strong gravity anomalies and steep gravity gradients. However, the relationships are not always straightforward. Bouguer gravity levels and gradients over the extensive East Sulawesi Ophiolite are generally relatively low, although short-wavelength, high amplitude anomalies indicate rapid changes in thickness of high-density rocks in a few places. In the Banda Arc, most local positive anomalies due to ophiolites are superimposed on a steep regional gravity gradient but in one case, in western Seram, there is a distinct and important spatial separation between the two. On Buru, west of Seram, a gradient of more than 10 mGal/km testifies to the presence of very dense rocks in the near subsurface, despite the absence of ophiolites in the outcrop. Gravity variations and ophiolite distribution around the Banda Sea are compatible with extension having occurred in the Sulawesi region following, and as a result of, Oligo-Miocene collision with an Australian-derived microcontinent. Similar histories have been proposed for many Mediterranean deep basins of similar size, shape and character, and emplacement of some of the high-density masses in the Banda Arc has probably resembled at least the later stages in the emplacement of peridotite massifs in the Rif-Betic belt. In both areas the present close association of the ultramafic rocks and their associated local anomalies with a strong regional gravity gradient is largely coincidental.

  8. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Lin, Jian; Tucholke, Brian; Chen, Yongshun John

    2011-03-01

    Gravity-derived crustal thickness models were calculated for the North Atlantic Ocean between 76°N and the Chain Fracture Zone and calibrated using seismically determined crustal thickness. About 7% of the ocean crust is <4 km thick (designated as thin crust), and 58% is 4-7 km thick (normal crust); the remaining 35% is >7 km thick and is interpreted to have been affected by excess magmatism. Thin crust probably reflects reduced melt production from relatively cold or refractory mantle at scales of up to hundreds of kilometers along the spreading axis. By far the most prominent thick crust anomaly is associated with Iceland and adjacent areas, which accounts for 57% of total crustal volume in excess of 7 km. Much smaller anomalies include the Azores (8%), Cape Verde Islands (6%), Canary Islands (5%), Madeira (<4%), and New England-Great Meteor Seamount chain (2%), all of which appear to be associated with hot spots. Hot spot-related crustal thickening is largely intermittent, suggesting that melt production is episodic on time scales of tens of millions of years. Thickened crust shows both symmetrical and asymmetrical patterns about the Mid-Atlantic Ridge (MAR) axis, reflecting whether melt anomalies were or were not centered on the MAR axis, respectively. Thickened crust at the Bermuda and Cape Verde rises appears to have been formed by isolated melt anomalies over periods of only ˜20-25 Myr. Crustal thickness anomalies on the African plate generally are larger than those on the North American plate; this most likely results from slower absolute plate speed of the African plate over relatively fixed hot spots.

  9. Massive torsion modes, chiral gravity and the Adler-Bell-Jackiw anomaly

    NASA Astrophysics Data System (ADS)

    Chang, Lay Nam; Soo, Chopin

    2003-04-01

    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-transverse vacuum polarization tensors, and become massive as a result. The underlying reasons are similar to those responsible for the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin-½ particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the reasons underpinning the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful. In addition, it is shown that the teleparallel limit of a Weyl fermion theory coupled only to the left-handed spin connection leads to a counter term which is the Samuel-Jacobson-Smolin action of chiral gravity in four dimensions.

  10. Interpretation of gravity and magnetic anomalies at Lake Rotomahana: Geological and hydrothermal implications

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, F.; de Ronde, C. E. J.; Scott, B. J.; Soengkono, S.; Stagpoole, V.; Timm, C.; Tivey, M.

    2016-03-01

    We investigate the geological and hydrothermal setting at Lake Rotomahana, using recently collected potential-field data, integrated with pre-existing regional gravity and aeromagnetic compilations. The lake is located on the southwest margin of the Okataina Volcanic Center (Haroharo caldera) and had well-known, pre-1886 Tarawera eruption hydrothermal manifestations (the famous Pink and White Terraces). Its present physiography was set by the caldera collapse during the 1886 eruption, together with the appearance of surface activities at the Waimangu Valley. Gravity models suggest that subsidence associated with the Haroharo caldera is wider than the previously mapped extent of the caldera margins. Magnetic anomalies closely correlate with heat-flux data and surface hydrothermal manifestations and indicate that the west and northwestern shore of Lake Rotomahana are characterized by a large, well-developed hydrothermal field. The field extends beyond the lake area with deep connections to the Waimangu area to the south. On the south, the contact between hydrothermally demagnetized and magnetized rocks strikes along a structural lineament with high heat-flux and bubble plumes which suggest hydrothermal activity occurring west of Patiti Island. The absence of a well-defined demagnetization anomaly at this location suggests a very young age for the underlying geothermal system which was likely generated by the 1886 Tarawera eruption. Locally confined intense magnetic anomalies on the north shore of Lake Rotomahana are interpreted as basalt dikes with high magnetization. Some appear to have been emplaced before the 1886 Tarawera eruption. A dike located in proximity of the southwest lake shore may be related to the structural lineament controlling the development of the Patiti geothermal system, and could have been originated from the 1886 Tarawera eruption.

  11. Comparison of New Airborne Gravity Results and GRACE Anomalies in the Thwaites Glacier Catchment of the Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Diehl, T. M.; Holt, J. W.; Blankenship, D. D.; Richter, T. G.; Filina, I. Y.

    2005-12-01

    The West Antarctic Ice Sheet is a marine ice sheet of which 75% is resting on bedrock below sea level. This situation is highly unstable and as the climate warms, the potential for rapid discharge of the ice sheet grows. Examining the areas of the ice sheet that are most likely to react to changing climate is essential. The Amundsen Sea Embayment contains two of the most important outlet glaciers in West Antarctica: Thwaites and Pine Island Glaciers. These two glaciers have among the highest discharge velocities in West Antarctica and they lack large protective ice shelves, making them susceptible to warming ocean waters. The area is currently a target of interest for both GRACE and GLAS, as well as future land- and air-based surveys. To date, we have conducted the only large-scale geophysical survey over the catchment of Thwaites Glacier: an airborne survey completed during the austral summer 2004-2005. Over 43,500 line-kilometers of data were collected with a geophysical platform that included ice-penetrating radar, gravity, magnetics, laser and pressure altimetry, and GPS. Free-air gravity, in conjunction with magnetics and radar-derived subglacial topography, is capable of delineating microplate and rift boundaries as well as basin and volcano locations. A free-air gravity map of these structures helps ascertain the contribution of subglacial geology to the ice sheet's decay in the Thwaites Glacier catchment. The acquisition, reduction, and initial results of the airborne gravity survey will be presented and then compared to GRACE gravity anomalies. Extreme relief in ice surface elevation across the survey area necessitated short, smooth vertical altitude changes at survey block boundaries to maintain adequate flight altitude for the onboard ice-penetrating radar systems. Weather conditions sometimes required additional elevation changes or course corrections, producing significant aircraft motion during data acquisition. The impacts of these aircraft motions

  12. Magnetic and gravity anomalies of the slow-spreading system in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Nakanishi, M.; Fujimoto, H.; Tamaki, K.; Okino, K.

    2002-12-01

    The spreading system in the Gulf of Aden between Somalia, NE Africa, and Arabia has an ENE-WSW trend and its half spreading rate is about 1.0 cm/yr (e.g., Jestin et al., 1994). Previous studies (e.g., Tamsett and Searle, 1988) provided the general morphology of the spreading system. To reveal detailed morphology and tectonics of the spreading system in the Gulf of Aden, geophysical investigation was conducted along the spreading system between 45°30OE and 50°20OE by the R/V Hakuho-maru from December 2000 to January 2001. Bathymetric data were collected using an echo sounder SEA BEAM 2120 aboard R/V Hakuho-maru. Magnetic and gravity data were collected by towed proton magnetometer and shipboard gravimeter, respectively. The strike of the spreading centers east of 46°30OE is N65°W. The topographic expression of the spreading centers east of N46°30OE is an axial rift valley offset by transform faults siilar to that observed at slow spreading centers in other areas. The bathymetric feature of the spreading centers between 45°50OE and 46°30OE with a strike N80°E is N65°W trending en-echelon basins. The spreading center west of 45°50OE with a strike E-W is bouned by linear ridges and its bathymetric expression is N65°W trending en-echelon ridges. The axial rift valley west of N46°30OE is not offset by any prominent transform faults. Negative magnetic anomaly is dominant over the axial valleys. Its amplitude is about 500 nT and the wavelength is about 30 km. Prominent linear negative magnetic anomaly, which is more than 1000 nT, exists west of N46°30OE. The strike of the linear magnetic anomaly correlates with that of axial valleys west of N46°30OE. Mantle Bouguer gravity anomaly of the spreading centers increases eastward. This trend correlates with the eastward deepening of spreading centers.

  13. Anomalies

    NASA Astrophysics Data System (ADS)

    Deo, Nivedita

    1988-12-01

    This thesis studies the structure of local and global anomalies in certain systems and examines the conditions for their cancellation. Gauge anomalies-abelian and non -albelian-antisymmetric tensor, and gravitational anomalies in simple spinor theories with background fields have been analyzed by perturbative methods and local counterterms have been constructed to cancel the anomalies wherever possible. Anomalies occurring in supersymmetric theories in (2 + 1)-dimensions have also been calculated using both perturbative and heat kernel techniques, here again counterterms have been constructed to cancel these parity violating anomalies for certain gauge field configurations. (i) For gauge theories in four dimensions which contain couplings of fermions to a non-abelian antisymmetric tensor field, the contribution of the later to anomalies in the non-abelian chiral Ward identity is computed. It is shown by explicit construction of suitable counterterms that these anomalies can all be cancelled. (ii) The gauge anomalies associated with the gravitational fields in abelian gauge theories can be completely removed provided torsion is nonzero. This is shown by constructing a counterterm associated with the gravitational Goldstone-Wilczek current which cancels the anomalous gravitational contribution to the chiral Ward identity without introducing anomalies in the Lorentz or Einstein Ward identities. (iii) Using perturbative BPHZ renormalization techniques the parity odd part of the effective action has been extracted and explicitly determined for abitrary non-abelian gauge superfields in odd dimensions and shown to be the supersymmetric Chern -Simons secondary topological invariant. (iv) Schwinger's proper time technique is generalized to supersymmetric theories in odd dimensions. The effective action for supersymmetric QED is exactly found for space-time constant superfield. The parity violating anomaly induced in the effective action can be cancelled by adding a local

  14. The effect of spatial truncation error on variance of gravity anomalies derived from inversion of satellite orbital and gradiometric data

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Ghorbannia, Morteza

    2014-07-01

    The spatial truncation error (STE) is a significant systematic error in the integral inversion of satellite gradiometric and orbital data to gravity anomalies at sea level. In order to reduce the effect of STE, a larger area than the desired one is considered in the inversion process, but the anomalies located in its central part are selected as the final results. The STE influences the variance of the results as well because the residual vector, which is contaminated with STE, is used for its estimation. The situation is even more complicated in variance component estimation because of its iterative nature. In this paper, we present a strategy to reduce the effect of STE on the a posteriori variance factor and the variance components for inversion of satellite orbital and gradiometric data to gravity anomalies at sea level. The idea is to define two windowing matrices for reducing this error from the estimated residuals and anomalies. Our simulation studies over Fennoscandia show that the differences between the 0.5°×0.5° gravity anomalies obtained from orbital data and an existing gravity model have standard deviation (STD) and root mean squared error (RMSE) of 10.9 and 12.1 mGal, respectively, and those obtained from gradiometric data have 7.9 and 10.1 in the same units. In the case that they are combined using windowed variance components the STD and RMSE become 6.1 and 8.4 mGal. Also, the mean value of the estimated RMSE after using the windowed variances is in agreement with the RMSE of the differences between the estimated anomalies and those obtained from the gravity model.

  15. Spectral analysis of GEOS-3 altimeter data and frequency domain collocation. [to estimate gravity anomalies

    NASA Technical Reports Server (NTRS)

    Eren, K.

    1980-01-01

    The mathematical background in spectral analysis as applied to geodetic applications is summarized. The resolution (cut-off frequency) of the GEOS 3 altimeter data is examined by determining the shortest wavelength (corresponding to the cut-off frequency) recoverable. The data from some 18 profiles are used. The total power (variance) in the sea surface topography with respect to the reference ellipsoid as well as with respect to the GEM-9 surface is computed. A fast inversion algorithm for matrices of simple and block Toeplitz matrices and its application to least squares collocation is explained. This algorithm yields a considerable gain in computer time and storage in comparison with conventional least squares collocation. Frequency domain least squares collocation techniques are also introduced and applied to estimating gravity anomalies from GEOS 3 altimeter data. These techniques substantially reduce the computer time and requirements in storage associated with the conventional least squares collocation. Numerical examples given demonstrate the efficiency and speed of these techniques.

  16. Flexure and gravity anomalies of the oceanic lithosphere beneath the Louisville seamount

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-08-01

    We have calculated the elastic thickness (Te), flexural deflection, and gravity anomaly of the oceanic crust beneath the Louisville seamount (LSC-03), near the Kermadec trench. A regional-residual separation of the bathymetry was performed to remove the effect of other geologic features (e.g., the trench). We used the uniform density and dense core models to approximate the total mass of the seamount, which was defined as the surface load required for flexural deformation. From the flexure modeling results, we found that more flexural depression was predicted by the uniform density model than by the dense core model. However, the uniform density model predicted a significantly smaller gravity anomaly than observed, whereas the dense core model minimized the prediction misfits reasonably. The best flexure model was found with a Te of 16 km for the uniform density model and 6 km for the dense core model. The flexure computed with the dense core model was consistent with the seismically detected Moho. The flexure modeling for LSC-03, thus, indicates that the dense core model better approximates the inner structure of the LSC-03. Based on the crustal age and geochronology of the given seamount, the age of the oceanic crust at the time of seamount formation (Δt) is 20 Ma. If this is the case, however, the Te estimates from both flexure models require some degree of lithospheric reheating by Louisville hotspot activity. Alternatively, considering the tectonic plate motion of the Osbourn Trough, Δt becomes approximately 4 Ma. This younger lithosphere model is more consistent with the observed flexural deformation and the Te estimate from the dense core model. Therefore, the time that the seamount-induced lithospheric deformation occurred may be far earlier than the age-dated volcanism.

  17. Implications of the Utopia Gravity Anomaly for the Resurfacing of the Northern Plains of Mars

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.

    2004-01-01

    Whereas the surface units of the northern plain of Mars generally exhibit ages ranging from late Hesperian to Amazonian, interpretation of precise topographic measurements indicate that the age of the underlying "basement" is early Noachian, or almost as old as the southern highlands. This suggests that widespread but relatively superficial resurfacing has occurred throughout the northern plains since the end of early heavy bombardment. In this abstract I examine some of the possible implications of the subsurface structure inferred for the Utopia basin from gravity data on the nature of this resurfacing. The large, shallow, circular depression in Utopia Planitia has been identified as a huge impact basin, based on both geological evidence and detailed analysis of MOLA topography. Its diameter (approx. 3000 km) is equivalent to that of the Hellas basin, as is its inferred age (early Noachian). However, whereas Hellas is extremely deep with rough terrain and large slopes, the Utopia basin is a smooth, shallow, almost imperceptible bowl. Conversely, Utopia displays one of the largest (non-Tharsis-related) positive geoid anomalies on Mars, in contrast to a much more subdued negative anomaly over Hellas.

  18. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly***

    NASA Astrophysics Data System (ADS)

    Megías, Eugenio; Pena-Benitez, Francisco

    2014-03-01

    We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed. Talk given by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2009-07908, FPA2011-25948), Spanish MICINN Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473, Spanish MINECO's Centro de Excelencia Severo Ochoa Program (SEV-2012-0234, SEV-2012-0249), and the Juan de la Cierva Program.

  19. The mineralogy of global magnetic anomalies. [rock magnetic signatures and MAGSAT geological, and gravity correlations in West Africa

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E. (Principal Investigator)

    1982-01-01

    Problems with the Curie balance, which severely hindered the acquisition of data, were rectified. Chemical analytical activities are proceeding satisfactorily. The magnetization characteristics of metamorphic suites were analyzed and susceptibility data for a wide range of metamorphic and igneous rocks. These rock magnetic signatures are discussed as well as the relationships between geology, gravity and MAGSAT anomalies of West Africa.

  20. Modelling the gravity and magnetic field anomalies of the Chicxulub crater

    NASA Technical Reports Server (NTRS)

    Aleman, C. Ortiz; Pilkington, M.; Hildebrand, A. R.; Roest, W. R.; Grieve, R. A. F.; Keating, P.

    1993-01-01

    The approximately 180-km-diameter Chicxulub crater lies buried by approximately 1 km of sediment on the northwestern corner of the Yucatan Peninsula, Mexico. Geophysical, stratigraphic and petrologic evidence support an impact origin for the structure and biostratigraphy suggests that a K/T age is possible for the impact. The crater's location is in agreement with constraints derived from proximal K/T impact-wave and ejecta deposits and its melt-rock is similar in composition to the K/T tektites. Radiometric dating of the melt rock reveals an age identical to that of the K/T tektites. The impact which produced the Chicxulub crater probably produced the K/T extinctions and understanding the now-buried crater will provide constraints on the impact's lethal effects. The outstanding preservation of the crater, the availability of detailed gravity and magnetic data sets, and the two-component target of carbonate/evaporites overlying silicate basement allow application of geophysical modeling techniques to explore the crater under most favorable circumstances. We have found that the main features of the gravity and magnetic field anomalies may be produced by the crater lithologies.

  1. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies

    PubMed Central

    Hetényi, György; Cattin, Rodolphe; Berthet, Théo; Le Moigne, Nicolas; Chophel, Jamyang; Lechmann, Sarah; Hammer, Paul; Drukpa, Dowchu; Sapkota, Soma Nath; Gautier, Stéphanie; Thinley, Kinzang

    2016-01-01

    Lateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen’s segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal & India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes. PMID:27649782

  2. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies.

    PubMed

    Hetényi, György; Cattin, Rodolphe; Berthet, Théo; Le Moigne, Nicolas; Chophel, Jamyang; Lechmann, Sarah; Hammer, Paul; Drukpa, Dowchu; Sapkota, Soma Nath; Gautier, Stéphanie; Thinley, Kinzang

    2016-01-01

    Lateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen's segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal &India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes. PMID:27649782

  3. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Cattin, Rodolphe; Berthet, Théo; Le Moigne, Nicolas; Chophel, Jamyang; Lechmann, Sarah; Hammer, Paul; Drukpa, Dowchu; Sapkota, Soma Nath; Gautier, Stéphanie; Thinley, Kinzang

    2016-09-01

    Lateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen’s segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal & India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes.

  4. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies.

    PubMed

    Hetényi, György; Cattin, Rodolphe; Berthet, Théo; Le Moigne, Nicolas; Chophel, Jamyang; Lechmann, Sarah; Hammer, Paul; Drukpa, Dowchu; Sapkota, Soma Nath; Gautier, Stéphanie; Thinley, Kinzang

    2016-09-21

    Lateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen's segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal &India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes.

  5. Detection of Characteristic Precipitation Anomaly Patterns of El Nino / La Nina in Time- variable Gravity Fields by GRACE

    NASA Astrophysics Data System (ADS)

    Heki, K.; Morishita, Y.

    2007-12-01

    GRACE (Gravity Recovery and Climate Experiment) satellites, launched in March 2002, have been mapping monthly gravity fields of the Earth, allowing us to infer changes in surface mass, e.g. water and ice. Past findings include the ice mass loss in southern Greenland (Luthcke et al., 2006) and its acceleration in 2004 (Velicogna and Wahr, 2006), crustal dilatation by the 2004 Sumatra Earthquake (Han et al., 2006) and the postseismic movement of water in mantle (Ogawa and Heki, 2007). ENSO (El Nino and Southern Oscillation) brings about global climate impacts, together with its opposite phenomenon, La Nina. Ropelewski and Halpert (1987) showed typical precipitation patterns in ENSO years; characteristic regional-scale precipitation anomalies occur in India, tropical and southern Africa and South America. Nearly opposite precipitation anomalies are shown to occur in La Nina years (Ropelewski and Halpert, 1988). Here we report the detection of such precipitation anomaly patterns in the GRACE monthly gravity data 2002 - 2007, which includes both La Nina (2005 fall - 2006 spring) and El Nino (2006 fall - 2007 spring) periods. We modeled the worldwide gravity time series with constant trends and seasonal changes, and extracted deviations of gravity values at two time epochs, i.e. February 2006 and 2007, and converted them into the changes in equivalent surface water mass. East Africa showed negative gravity deviation (-20.5 cm in water) in 2006 February (La Nina), which reversed to positive (18.7 cm) in 2007 February (El Nino). Northern and southern parts of South America also showed similar see-saw patterns. Such patterns closely resemble to those found meteorologically (Ropelewski and Halpert, 1987; 1988), suggesting the potential of GRACE as a sensor of inter-annual precipitation anomalies through changes in continental water storage. We performed numerical simulations of soil moisture changes at grid points in land area incorporating the CMAP precipitation data, NCEP

  6. The location and nature of the Telemzan High Ghadames basin boundary in southern Tunisia based on gravity and magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Gabtni, H.; Jallouli, C.; Mickus, K. L.; Zouari, H.; Turki, M. M.

    2006-03-01

    Gravity and magnetic data were analyzed to add constraints on the location and nature of the Telemzan-Ghadames boundary (TGB) and structure of the Ghadames basin in southern Tunisia. TGB is the boundary between the thick sedimentary cover of the intracratonic Ghadames basin to the south and the thin sedimentary cover of the Saharan platform to the north. The upward continuation of the Bouguer gravity anomalies showed that the TGB is a regional geophysical feature that may have controlled the amount of sediment being deposited both north and south of the boundary and the tectonic environment in the region since Paleozoic time. To emphasize the shorter wavelength gravity and magnetic anomalies, a series of gray scale images of the directional horizontal gradients were constructed that determined a series of previously unknown east-west-trending gravity and magnetic anomalies south of 31.6°N that correspond to lineaments seen on a Landsat 7 image and the location of the TGB. Also, an edge-enhancement analysis illustrated the same linear gravity anomalies and showed the subbasins and uplifts within the Ghadames basin had source depths of between 0.5 and 3.4 km. A north-south trending gravity model showed that the TGB is a relatively gradual feature (possibly basement stepped down by relatively low-displacement faulting) controlling the subsidence of the main Ghadames basin and confirms the edge-enhancement analysis that subbasin S3 and uplift U1 are the main structural features within the Ghadames basin. The knowledge of basement architecture of the Ghadames basin is important for future petroleum exploration within this intracratonic basin.

  7. The gravity anomaly field in the Gulf of Bothnia spatially characterized from satellite altimetry and in situ measurements

    NASA Astrophysics Data System (ADS)

    Noréus, J. P.; Nyborg, M. R.; Hayling, K. L.

    1997-06-01

    The gravity anomaly field in the Gulf of Bothnia has been investigated using (1) in situ high-precision measurements conducted on the sea ice during cold winters, and (2) gravity anomaly profiles computed from collinear satellite radar altimeter data from the Geosat ERM and the Topex/Poseidon missions. The in situ measurements were obtained from a collaboration between the Finnish Geodetic Institute, the Geological Survey of Sweden (SGU) and the National Survey of Sweden (LMV), and were processed with the geostatistical method called kriging. These data were used to calibrate the altimetric gravity. Altimetry generally resolves features of 20 km wavelength or longer, and in some cases detects shorter features when a sampling interval of 10 Hz is used. The precision of the along-track one-dimensional altimetric profiles corresponds to a gravity uncertainty of 2-3 mGal, and comparison with in situ measured gravity show 4 mGal discrepancy. The precision of the in situ measurements is better. However, depending on the sampling distance, the estimation uncertainty interior the in situ data areas may be up to 5 mGal between neighbouring data points. In regions with in situ data gaps, the estimation uncertainty of the in situ gravity measurements is rapidly increasing to a maximum of 9 mGal. An improved estimation uncertainty of 4-9 mGal was obtained in the same data gap regions with the support of satellite altimetry. Altimetric gravity is therefore used to estimate the gravity field in such regions, and to spatially characterize the gravity field in the Gulf of Bothnia.

  8. Evaluation Of The Potential Of Gravity Anomalies From Satellite Altimetry By Merging With Gravity Data From Various Sources - Application To Coastal Areas

    NASA Astrophysics Data System (ADS)

    Fernandes, M. J.; Bastos, L.; Tomé, P.

    The region of the Azores archipelago is a natural laboratory for gravity field studies, due to its peculiar geodynamic and oceanographic features, related to rough structures in the gravity field. As a consequence, gravity data from various sources have been collected in the scope of various observation campaigns. The available data set comprises marine, airborne and satellite derived gravity anoma- lies. The satellite data have been derived by altimetric inversion of satellite altimeter data (Topex/Poseidon and ERS), to which processing methods tuned for optimal data recovery in coastal areas have been applied. Marine and airborne data along coinci- dent profiles, some of them coincident with satellite tracks, were collected during an observation campaign that took place in the Azores in 1997, in the scope of the Eu- ropean Union project AGMASCO. In addition, gravity anomalies from an integrated GPS/INS system installed aboard an aircraft, have also been computed from the posi- tion and navigation data collected during the AGMASCO campaign. This paper presents a comparison study between all available data sets. In particular, the improvement of the satellite derived anomalies near the shoreline is assessed with respect to existing satellite derived models and with the high resolution geopotential model GPM98. The impact of these data sets in the regional geoid improvement will also be presented.

  9. Estimation of regional mass anomalies from Gravity Recovery and Climate Experiment (GRACE) over Himalayan region

    NASA Astrophysics Data System (ADS)

    Agrawal, R.; Singh, S. K.; Rajawat, A. S.; Ajai

    2014-11-01

    Time-variable gravity changes are caused by a combination of postglacial rebound, redistribution of water and snow/ice on land and as well as in the ocean. The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides monthly average of the spherical harmonic co-efficient. These spherical harmonic co-efficient describe earth's gravity field with a resolution of few hundred kilometers. Time-variability of gravity field represents the change in mass over regional level with accuracies in cm in terms of Water Equivalent Height (WEH). The WEH reflects the changes in the integrated vertically store water including snow cover, surface water, ground water and soil moisture at regional scale. GRACE data are also sensitive towards interior strain variation, surface uplift and surface subsidence cover over a large area. GRACE data was extracted over the three major Indian River basins, Indus, Ganga and Brahmaputra, in the Himalayas which are perennial source of fresh water throughout the year in Northern Indian Plain. Time series analysis of the GRACE data was carried out from 2003-2012 over the study area. Trends and amplitudes of the regional mass anomalies in the region were estimated using level 3 GRACE data product with a spatial resolution at 10 by 10 grid provided by Center for Space Research (CSR), University of Texas at Austin. Indus basin has shown a subtle decreasing trend from 2003-2012 however it was observed to be statistically insignificant at 95 % confidence level. Ganga and Brahmaputra basins have shown a clear decreasing trend in WEH which was also observed to be statistically significant. The trend analysis over Ganga and Brahamputra basins have shown an average annual change of -1.28 cm and -1.06 cm in terms of WEH whereas Indus basin has shown a slight annual change of -0.07 cm. This analysis will be helpful to understand the loss of mass in terms of WEH over Indian Himalayas and will be crucial for hydrological and

  10. Improved global prediction of 300 nautical mile mean free air anomalies

    NASA Technical Reports Server (NTRS)

    Cruz, J. Y.

    1982-01-01

    Current procedures used for the global prediction of 300nm mean anomalies starting from known values of 1 deg by 1 deg mean anomalies yield unreasonable prediction results when applied to 300nm blocks which have a rapidly varying gravity anomaly field and which contain relatively few observed 60nm blocks. Improvement of overall 300nm anomaly prediction is first achieved by using area-weighted as opposed to unweighted averaging of the 25 generated 60nm mean anomalies inside the 300nm block. Then, improvement of prediction over rough 300nm blocks is realized through the use of fully known 1 deg by 1 deg mean elevations, taking advantage of the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations inside the 300nm block. An improved prediction model which adapts itself to the roughness of the local anomaly field is found to be the model of Least Squares Collocation with systematic parameters, the systematic parameter being the slope b which is a type of Bouguer slope expressing the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations.

  11. Middle proterozoic tectonic activity in west Texas and eastern New Mexico and analysis of gravity and magnetic anomalies

    SciTech Connect

    Adams, D.C.; Keller, G.R. )

    1994-03-01

    The Precambrian history of west Texas and eastern New Mexico is complex, consisting of four events: Early Proterozoic orogenic activity (16309-1800 Ma), formation of the western granite-rhyolite province (WGRP) (1340-1410 Ma), Grenville age tectonics (1116-1232 Ma), and middle Proterozoic extension possibly related to mid-continent rifting (1086-1109 Ma). Pre-Grenville tectonics, Grenville tectonics, and mid-continent rifting are represented in this area by the Abilene gravity minimum (AGM) and bimodal igneous rocks, which are probably younger. We have used gravity modeling and the comparison of gravity and magnetic anomalies with rock types reported from wells penetrating Precambrian basement to study the AGM and middle Proterozoic extension in this area. The AGM is an east-northeast-trending, 600 km long, gravity low, which extends from the Texas-Oklahoma border through the central basin platform (CBP) to the Delaware basin. This feature appears to predate formation of the mafic body in the CBP (1163 Ma) and is most likely related to Pre-Grenville tectonics, possibly representing a continental margin arc batholith. Evidence of middle Proterozoic extension is found in the form of igneous bodies in the CBP, the Van Horn uplift, the Franklin Mountains, and the Sacramento Mountains. Analysis of gravity and magnetic anomalies shows that paired gravity and magnetic highs are related to mafic intrusions in the upper crust. Mapping of middle Proterozoic igneous rocks and the paired anomalies outlines a 530 km diameter area of distributed east-west-oriented extension. The Debaca-Swisher terrain of shallow marine and clastic sedimentary rocks is age correlative with middle Proterozoic extension. These rocks may represent the lithology of possible Proterozoic exploration targets. Proterozoic structures were reactivated during the Paleozoic, affecting both the structure and deposition in the Permian basin.

  12. A priori noise and regularization in least squares collocation of gravity anomalies

    NASA Astrophysics Data System (ADS)

    Jarmołowski, Wojciech

    2013-12-01

    The paper describes the estimation of covariance parameters in least squares collocation (LSC) by the cross-validation (CV) technique called leave-one-out (LOO). Two parameters of Gauss-Markov third order model (GM3) are estimated together with a priori noise standard deviation, which contributes significantly to the covariance matrix composed of the signal and noise. Numerical tests are performed using large set of Bouguer gravity anomalies located in the central part of the U.S. Around 103 000 gravity stations are available in the selected area. This dataset, together with regular grids generated from EGM2008 geopotential model, give an opportunity to work with various spatial resolutions of the data and heterogeneous variances of the signal and noise. This plays a crucial role in the numerical investigations, because the spatial resolution of the gravity data determines the number of gravity details that we may observe and model. This establishes a relation between the spatial resolution of the data and the resolution of the gravity field model. This relation is inspected in the article and compared to the regularization problem occurring frequently in data modeling. Artykuł opisuje estymację parametrów kowariancji w kolokacji najmniejszych kwadratów (LSC) przy pomocy techniki kroswalidacji nazywanej leave-one-out (LOO). Wyznaczane są dwa parametry modelu Gaussa-Markova trzeciego rzędu (GM3) wraz z odchyleniem standardowym szumu a priori, które ma znaczny wpływ na macierz kowariancji złożoną z sygnału i szumu. Testy numeryczne przeprowadzono na dużym zbiorze anomalii grawimetrycznych Bouguera z obszaru centralnej części USA. Obszar ten mieści około 103000 pomiarów grawimetrycznych. Dane te wraz z regularnymi siatkami wygenerowanymi z modelu geopotencjalnego EGM2008 pozwalają na pracę z różną rozdzielczością przestrzenną i różnymi wariancjami sygnału i szumu. Odgrywa to kluczową rolę w badaniach numerycznych, ponieważ rozdzielczo

  13. Multifractal singular value decomposition (MSVD) for extraction of marine gravity anomaly

    NASA Astrophysics Data System (ADS)

    LYU, Wenchao; Zhu, Benduo; Qiu, Yan

    2015-04-01

    The concept of singularity is used for characterizing different types of nonlinear natural processes, including volcanic eruptions, faults, cloud formation, landslides, rainfall, hurricanes, flooding, earthquakes, wildfires, oil fields and mineralization. The singularity often results in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval.The marine gravitation field has multi-fractal features, which show different scale invariant properties in region and local field. The SVD can be used in geophysical data processing for signal and noise separation, radar processing for enhancing weak signals in vertical seismic profiles (VSP). It has also been used in multi component seismic polarization filters and evaluating the amount of wavy reflections in ground-penetrating radar (GPR) images of base surge deposits. With the SVD, a matrix X can be decomposed to a series of eigenvalues. The eigenvalues conformed fractal or multi-fractal distribution described with the power-law function. The multi-fractal SVD can be used for feature extraction and anomaly identification for marine gravity investigation.This paper aims to analyze the marine gravitation data using the SVD and multifractal methods. This paper will also aim to more clearly define the spatial relationship between marine mineralization and the deep geological structures in the field by extracting the marine gravitation information at a particular frequency to provide valuable in depth evidence for predicting new deposits and deep tectonic.

  14. Coupled structural joint inversion and Euler deconvolution of isolated gravity and magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Fregoso, E.; Gallardo, L. A.; García-Abdeslem, J.

    2013-05-01

    The cross-gradient joint inversion is nowadays applied to a diversity of combinations of geophysical data in the search for structurally similar models that facilitate the interpretation of the subsurface characteristics. In line with these results, the cross-gradients joint inversion of gravity and magnetic data, in particular, has succeeded on finding commonly collocated density and magnetization structures. However, the inherent lack of depth resolution in the inversion of potential data still yields density and magnetization models with ambiguities at depth. In our work, we propose that the use of conceptually different interpretation strategies may help to resolve this difficulty and we performed some experiments incorporating the more conventional Euler deconvolution strategy in the joint inversion scheme. In this study we present a methodology to jointly invert potential field data incorporating Euler deconvolution for both magnetic and density sources characterized by the upper part of isolated tridimensional causative bodies. This information feeds, as a priori constraint, the cross-gradient joint 3D inversion methodology. Using synthetic and field data we demonstrate that the coupling of both methodologies generally produce more realistic density and magnetization models than when cross-gradient joint inversion is applied alone. Even though our experiments are performed on isolated anomalies, we suggest that the methodology may be suitable to regions described by sedimentary basins, faults, irregular sills, etc., in order to improve representative models of the true structures.

  15. Determining the COB location along the Iberian margin and Galicia Bank from gravity anomaly inversion, residual depth anomaly and subsidence analysis

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Manatschal, Gianreto

    2015-11-01

    Knowledge and understanding of the ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and crustal type are of critical importance in evaluating rifted continental margin formation and evolution. OCT structure, COB location and magmatic type also have important implications for the understanding of the geodynamics of continental breakup and in the evaluation of petroleum systems in deep-water frontier oil and gas exploration at rifted continental margins. Mapping the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust and hence determining the OCT structure and COB location at rifted continental margins is therefore a generic global problem. In order to assist in the determination of the OCT structure and COB location, we present methodologies using gravity anomaly inversion, residual depth anomaly (RDA) analysis and subsidence analysis, which we apply to the west Iberian rifted continental margin. The west Iberian margin has one of the most complete data sets available for deep magma-poor rifted margins, so there is abundant data to which the results can be calibrated. Gravity anomaly inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted continental margins. These quantitative analytical techniques have been applied to the west Iberian rifted continental margin along profiles IAM9, Lusigal 12 (with the TGS-extension) and ISE-01. Our predictions of OCT structure, COB location and magmatic type (i.e. the volume of magmatic addition, whether the margin is `normal' magmatic, magma-starved or magma-rich) have been tested and validated using ODP wells (Legs 103, 149 and 173), which provide

  16. Gravity and magnetic anomalies of the western Arctic ocean and its margins provide an imperfect window to a complex, multi-stage tectonic history (Invited)

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Miller, E. L.; Gaina, C.

    2010-12-01

    Numerous scenarios are still in play for the tectonic development of the western Arctic. A wide range of kinematic models have been proposed for the opening of the Canadian basin. These models feature different combinations and geometries of extensional and transform motion and have informal descriptive names including the so-called ‘windshield wiper’, ‘railroad tracks’, ‘squeegee’, and ‘saloon door’ options. Another controversial issue is the timing and role of the gigantic Alpha-Mendeleev large igneous province relative to the tectonic stages. In our opinion, many current Arctic models have not adequately dealt with the mass and thermal fluxes implied by this huge province. Available data are extremely sparse for the circum-Arctic, although current political and economic interests are fueling accelerated data collection. Recent compilations of gravity and magnetic data are currently the best bets for synoptic imaging, however imprecise, of crustal composition and structure. Modeling and interpretation of regional geophysical anomalies provide some of the only available tests for scenario evaluation in the absence of more direct determinations of crustal structure and composition. Our goal in this talk is to review the key geophysical features of the western Arctic and relate these elements to the expectations of competing tectonic models. These key geophysical features include (1) contrasting Arctic domains of overall magnetic “thickness” and anomaly “fabric” (the domains correlate generally with broad tectonic categories); (2) cryptic sub-linear magnetic anomalies in the Canada basin (interpreted by some authors to be oceanic stripes); (3) a subtle but persistent gravity trough in the central Canada basin (inferred by some authors to represent an extensional trough); (4) spectacular “shelf edge” free-air gravity anomalies along the Canadian and Alaskan passive margins that show significant along-strike variation (which can be

  17. Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data

    NASA Technical Reports Server (NTRS)

    Leftwich, T. E.; vonFrese, R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, P. T.

    2003-01-01

    Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered and intruded. The mantle plume appears to be centered at (64.6 deg N, 17.4 deg W) near the Vatnajokull Glacier and the central Icelandic neovolcanic zones.

  18. Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data

    NASA Technical Reports Server (NTRS)

    Leftwich, T. E.; vonFrese, R. R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, Patrick T.

    2003-01-01

    Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered

  19. Ocean gravity and geoid determination

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Siry, J. W.; Brown, R. D.; Wells, W. T.

    1977-01-01

    Gravity anomalies have been recovered in the North Atlantic and the Indian Ocean regions. Comparisons of 63 2 deg x 2 deg mean free air gravity anomalies recovered in the North Atlantic area and 24 5 deg x 5 deg mean free air gravity anomalies in the Indian Ocean area with surface gravimetric measurements have shown agreement to + or - 8 mgals for both solutions. Geoids derived from the altimeter solutions are consistent with altimetric sea surface height data to within the precision of the data, about + or - 2 meters.

  20. Calculation of geoid undulations and gravity anomalies in the South China Sea by using the TOPEX/Poseidon and Geosat altimeter data

    NASA Astrophysics Data System (ADS)

    Zhang, Youguang; Zhang, Jie; Ji, Yonggang; Zhang, Huiqin

    2003-05-01

    In this paper, using TOPEX/Poseidon (9~346cycle) and Geosat/ERM(1~60cycle) altimeter data, the author applies combined adjustment model for calculating the South China Sea geoid undulations after data preprocessing. The difference between calculation result and OSU91A model is 30cm (spatial resolution is 22km). In addition, 12"x12" South China Sea gravity anomalies are calculated by using above geoid data and improved Stokes inverse formula. Contrasted with Scripps Institution of Oceanography gravity anomalies data, the accuracy of computation of gravity anomalies is 12´x10-5m/s2. These computations show that calculation speed is fast and calculation efficiency is high, so the method can calculate rapidly gravity anomalies in special sea area.

  1. Constraints on timing and magnitude of early global expansion of the Moon from topographic features in linear gravity anomaly areas

    NASA Astrophysics Data System (ADS)

    Sawada, Natsuki; Morota, Tomokatsu; Kato, Shinsuke; Ishihara, Yoshiaki; Hiramatsu, Yoshihiro

    2016-05-01

    Gravity data obtained from the Gravity Recovery and Interior Laboratory have revealed linear gravity anomalies (LGAs) formed by the early global expansion of the Moon and subsequent magma intrusion. In this study, using Lunar Orbiter Laser Altimeter topographic data, we investigated topographic profiles across LGAs to verify that they were formed by extensional tectonics. We found that 17 of the 20 LGAs investigated exhibited a valley structure, suggesting that they were formed by tensile stress. Assuming that these topographic depressions accompanied graben formation, the increase in the lunar radius is estimated to be on the order of several tens of meters. On the other hand, assuming that these topographic depressions accompanied flexure of elastic lithosphere due to the LGA load, the elastic thickness during the LGA formation is estimated as ~10 km. The crater frequencies in the vicinity of LGAs indicate that the peak tectonic activity occurred before the basin-forming epoch.

  2. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief

    NASA Astrophysics Data System (ADS)

    Bassett, Dan; Watts, Anthony B.

    2015-05-01

    An ensemble averaging technique is used to remove the long-wavelength topography and gravity field from subduction zones. >200 residual bathymetric and gravimetric anomalies are interpreted within fore arcs, many of which are attributed to the tectonic structure of the subducting plate. The residual-gravimetric expression of subducting fracture zones extends >200 km landward of the trench axis. The bathymetric expression of subducting seamounts with height ≥1 km and area ≥500 km2 (N=36), and aseismic ridges (N>10), is largest near the trench (within 70 km) and above shallow subducting slab depths (SLAB1.0 <17 km). Subducting seamounts are similar in wavelength, amplitude, and morphology to unsubducted seamounts. Morphology, spatial distributions, and reduced levels of seismicity are considered inconsistent with mechanical models proposing wholesale decapitation, and the association of subducting seamounts with large-earthquakes. Subducting aseismic ridges are associated with uplift and steepening of the outer fore arc, a gradual reduction in residual bathymetric expression across the inner fore arc, and a local increase in the width and elevation of the volcanic-arc/orogen. These contrasting expressions reflect the influence of margin-normal variations in rigidity on where and how the upper plate deforms, both to accommodate subducting relief and in response to stresses transmitted across the plate interface. The outer fore arc and arc have lower rigidity due to fracturing and thermal weakening, respectively. Similar associations with complex earthquakes and fault creep suggest aseismic ridge subduction may also be accommodated by the development and evolution of a broad fracture network, the geometrical strength of which may exceed the locking strength of a smooth fault.

  3. Gravity anomalies, spatial variation of flexural rigidity, and role of inherited crustal structure in the Aquitaine Basin

    NASA Astrophysics Data System (ADS)

    Angrand, Paul; Ford, Mary; Watts, Anthony; Bell, Rebecca E.

    2016-04-01

    The Aquitaine foreland basin developed from Campanian to Miocene by flexure of the upper (European) plate during the Pyrenean orogeny. The foreland basin forms a syn-orogenic sedimentary wedge up to 6 km thick in the south, thinning rapidly north and has a maximum width of 200 km in the west. The flexural basin was superimposed on a lithosphere previously affected by Apto-Albian hyper-extension. What are the effects of an inherited extremely weak and narrow rifted zone on the behavior of a superimposed flexural foreland basin? Coupled with surface and subsurface data, Bouguer gravity anomalies were used to determine the crustal structure of the northern Pyrenean retrowedge and the flexure of the European plate. In the centre, the basin shows a regional Bouguer anomaly pattern typical of foreland basins with the maximum of syn-orogenic deposits corresponding to a low and the forebulge to a high. However, south of the North Pyrenean Frontal Thrust (NPFT) this regional field is overprinted by strong positive Bouguer anomalies, which correspond to high density bodies (mantle or lower crust) transported along the NPFT. Stratigraphy shows that the central basin evolved as a series of narrow, laterally variable depocentres that migrated north. Shortening is accommodated mainly by thick skinned deformation and local reactivation of salt structures. In the east, the Toulouse Fault separates the central and eastern foreland. The eastern foreland shows a broader zone of negative Bouguer values. This foreland is salt-free and stratigraphy records higher subsidence. The easternmost basin is completely overprinted by the opening of the Gulf of Lion. In the west, the foreland does not show a typical regional gravity anomaly pattern due to overprinting by the opening of the Bay of Biscay. Instead, a major gravity high is centered on the northern Landes High, with a second high centered on the Labourd massif south of the NPFT. Neither the Parentis rift basin nor the salt

  4. Regional gravity and magnetic anomalies related to a Proterozoic carbonatite terrane in the eastern Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Denton, K. M.; Ponce, D. A.; Miller, D. M.; Jernigan, C. T.

    2014-12-01

    One of the world's largest rare earth element carbonatite deposits is located at Mountain Pass in the eastern Mojave Desert, California. The 1.4 Ga carbonatite deposit is hosted by and intruded into 1.7 Ga gneiss and schist that occurs in a narrow north-northwest trending belt along the eastern parts of Clark Mountain Range, Mescal Range, and Ivanpah Mountains. The carbonatite is associated with an ultrapotassic intrusive suite that ranges from shonkinite through syenite and granite. Regional geophysical data reveal that the eastern Mojave carbonatite terrane occurs along the northeast edge of a prominent magnetic high and the western margin of a gravity high along the eastern Clark Mountain Range. To improve our understanding of the geophysical and structural framework of the eastern Mojave carbonatite terrane, we collected over 1900 gravity stations and over 600 physical rock property samples to augment existing geophysical data. Carbonatite intrusions typically have distinct gravity, magnetic, and radiometric signatures because these deposits are relatively dense, contain magnetite, and are enriched in thorium or uranium. However, our results show that the carbonatite is essentially nonmagnetic with an average susceptibility of 0.18 x 10-3 SI (n=31) and the associated ultrapotassic intrusive suite is very weakly magnetic with an average susceptibility of 2.0 x 10-3 SI (n=36). Although the carbonatite body is nonmagnetic, it occurs along a steep gradient of a prominent aeromagnetic anomaly. This anomaly may reflect moderately magnetic mafic intrusive rocks at depth. East of the ultrapotassic intrusive rocks, a prominent north trending magnetic anomaly occurs in the central part of Ivanpah Valley. Based on geologic mapping in the Ivanpah Mountains, this magnetic anomaly may reflect Paleoproterozoic mafic intrusive rocks related to the 1.7 Ga Ivanpah Orogeny. Physical property measurements indicate that exposed amphibolite along the eastern Ivanpah Mountains are

  5. Model parameter estimations from residual gravity anomalies due to simple-shaped sources using Differential Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Ekinci, Yunus Levent; Balkaya, Çağlayan; Göktürkler, Gökhan; Turan, Seçil

    2016-06-01

    An efficient approach to estimate model parameters from residual gravity data based on differential evolution (DE), a stochastic vector-based metaheuristic algorithm, has been presented. We have showed the applicability and effectiveness of this algorithm on both synthetic and field anomalies. According to our knowledge, this is a first attempt of applying DE for the parameter estimations of residual gravity anomalies due to isolated causative sources embedded in the subsurface. The model parameters dealt with here are the amplitude coefficient (A), the depth and exact origin of causative source (zo and xo, respectively) and the shape factors (q and ƞ). The error energy maps generated for some parameter pairs have successfully revealed the nature of the parameter estimation problem under consideration. Noise-free and noisy synthetic single gravity anomalies have been evaluated with success via DE/best/1/bin, which is a widely used strategy in DE. Additionally some complicated gravity anomalies caused by multiple source bodies have been considered, and the results obtained have showed the efficiency of the algorithm. Then using the strategy applied in synthetic examples some field anomalies observed for various mineral explorations such as a chromite deposit (Camaguey district, Cuba), a manganese deposit (Nagpur, India) and a base metal sulphide deposit (Quebec, Canada) have been considered to estimate the model parameters of the ore bodies. Applications have exhibited that the obtained results such as the depths and shapes of the ore bodies are quite consistent with those published in the literature. Uncertainty in the solutions obtained from DE algorithm has been also investigated by Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing without cooling schedule. Based on the resulting histogram reconstructions of both synthetic and field data examples the algorithm has provided reliable parameter estimations being within the sampling limits of

  6. Frozen subduction in the Yangtze block: insights from the deep seismic profiling and gravity anomaly in east Sichuan fold belt

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaosong; Gao, Rui; Wang, Haiyan; Zhang, Jisheng; Guo, Lianghui

    2016-04-01

    The Sichuan basin is the main part of the middle-upper Yangtze block, which has been experienced a long-term tectonic evolution since Archean. The Yangtze block was regarded as a stable block until the collision with the Cathaysia block in late Neoproterozoic. A new deep seismic reflection profile conducted in the eastern Sichuan fold belt (ESFB) discovered a serials of south-dipping reflectors shown from lower crust to the mantle imply a frozen subduction zone within the Yangtze block. In order to prove the speculation, we also obtain the middle-lower crustal gravity anomalies by removing the gravity anomalies induced by the sedimentary rocks and the mantle beneath the Moho, which shows the mid-lower crustal structure of the Sichuan basin can be divided into eastern and western parts. Combined with the geochronology and Aeromagnetic anomalies, we speculated the Yangtze block was amalgamated by the West Sichuan and East Sichuan blocks separated by the Huayin-Chongqing line. The frozen subduction zone subsequently shifted to a shear zone accommodated the lower crustal shortening when the decollement at the base of the Nanhua system functioned in the upper plate.

  7. Gravity anomaly across the Yap Trench, Sorol Trough, and southernmost Parece Vela Basin and its implications for the flexural deformation of the lithosphere and regional isostasy

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, S.; Okino, K.; Koizumi, K.

    2005-12-01

    In June 2005, R/V Hakuho-maru (KH05-01-Leg 3) conducted a geological and geophysical survey of the southern tip of the Parece Vela Basin (PVB). The survey also profiled the Yap trench, the Yap arc and back-arc region, and Sorol Trough and collected multibeam bathymetry, gravity and magnetic data. In addition, one multichannel seismic reflection profiling across the Yap trench and two dredge rock samplings in the southwestern PVB were carried out. The shipboard free-air gravity field was measured by ZLS Dynamic Gravity Meter D-004 with calibration ties performed at Ocean Research Institute, University of Tokyo and at Apra Harbor in Guam. The shipboard gravity anomaly data show clear match with those derived from satellite altimetry. Also included in our analysis is the shipboard gravity data previously collected by R/V Onnuri. The Yap trench is unique in that it has a short trench-arc distance (approx. 50 km). This proximity has long been interpreted as feature resulting from a collision of over-thickened Caroline Ridge with the trench. In recent years, however, a new hypothesis has been put forward that such feature can be explained by initiation or rejuvenation of subduction, and that the style of subduction changes between north and south of the Sorol Trough. Our survey also revealed peculiar hook-shaped structures in the southernmost PVB and other evidences for large-scale, complex rotational deformation on the seafloor, whose origin remains unclear at this stage. To better understand the nature of these structures and features across Yap trench, Sorol Trough and in southernmost PVB, we examine the regional isostasy using the recently collected bathymetric and gravity data. The density information is deduced from studies conducted at other subduction systems, including Izu-Bonin Mariana trench, and from our own seismic experiment. Preliminary analysis shows that much of the features may be maintained by the flexural rigidity of the lithosphere, especially near

  8. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    NASA Technical Reports Server (NTRS)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  9. Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior

    NASA Astrophysics Data System (ADS)

    Bassett, Dan; Watts, Anthony B.

    2015-05-01

    An ensemble-averaging technique is used to remove the long-wavelength topography and gravity field associated with subduction zones. Short-wavelength residual anomalies are attributed to the tectonic structure of subducting and overthrusting plates. A paired (positive-negative) fore-arc anomaly is observed consisting of a long (>1000 km), linear, trench-parallel ridge landward of the deep-sea-terrace basin. Ridges have amplitudes of 1500-3000 m and 160-240 mGal, wavelengths of 150-200 km, and high gravity anomaly to topography ratios (50-75 mGal km-1). The ridge crests correlate with the downdip limit of coseismic slip and strong interplate coupling and in Cascadia, the updip limit of tremor epicenters. The ridge crest may be interpreted as defining the boundary between the velocity-weakening and seismogenic region of the subduction interface and the downdip frictional transition zone. In Tonga-Kermadec, the Kuril Islands and Chile landward ridges are associated with extinct volcanic arcs. Paired anomalies are attributed to the preferential subduction erosion of the outer fore arc and a spatially varying combination of (a) lower crustal underplating beneath the inner fore arc, (b) the transformation of interseismic strain into permanent geologic strain via faulting, folding, or buckling of the inner fore arc, and (c) the relative trenchward migration of extinct volcanic arcs in regions operating with a net crustal deficit. Along-strike transitions in fore-arc morphology and seismogenic behavior are related to preexisting crustal structure of subducting and overthrusting plates. Fore arcs have the added potential of recording the time-integrated response of the upper plate to subduction processes, and fore-arc structure should be considered in tandem with seismological observations.

  10. The determination of gravity anomalies from geoid heights using the inverse Stokes' formula, Fourier transforms, and least squares collocation

    NASA Technical Reports Server (NTRS)

    Rummel, R.; Sjoeberg, L.; Rapp, R. H.

    1978-01-01

    A numerical method for the determination of gravity anomalies from geoid heights is described using the inverse Stokes formula. This discrete form of the inverse Stokes formula applies a numerical integration over the azimuth and an integration over a cubic interpolatory spline function which approximates the step function obtained from the numerical integration. The main disadvantage of the procedure is the lack of a reliable error measure. The method was applied on geoid heights derived from GEOS-3 altimeter measurements in the calibration area of the GEOS-3 satellite.

  11. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.; Eckermann, S. D.

    2012-01-01

    As the first gravity wave (GW) climatology study using nadir-viewing infrared sounders, 50 Atmospheric Infrared Sounder (AIRS) radiance channels are selected to estimate GW variances at pressure levels between 2-100 hPa. The GW variance for each scan in the cross-track direction is derived from radiance perturbations in the scan, independently of adjacent scans along the orbit. Since the scanning swaths are perpendicular to the satellite orbits, which are inclined meridionally at most latitudes, the zonal component of GW propagation can be inferred by differencing the variances derived between the westmost and the eastmost viewing angles. Consistent with previous GW studies using various satellite instruments, monthly mean AIRS variance shows large enhancements over meridionally oriented mountain ranges as well as some islands at winter hemisphere high latitudes. Enhanced wave activities are also found above tropical deep convective regions. GWs prefer to propagate westward above mountain ranges, and eastward above deep convection. AIRS 90 field-of-views (FOVs), ranging from +48 deg. to -48 deg. off nadir, can detect large-amplitude GWs with a phase velocity propagating preferentially at steep angles (e.g., those from orographic and convective sources). The annual cycle dominates the GW variances and the preferred propagation directions for all latitudes. Indication of a weak two-year variation in the tropics is found, which is presumably related to the Quasi-biennial oscillation (QBO). AIRS geometry makes its out-tracks capable of detecting GWs with vertical wavelengths substantially shorter than the thickness of instrument weighting functions. The novel discovery of AIRS capability of observing shallow inertia GWs will expand the potential of satellite GW remote sensing and provide further constraints on the GW drag parameterization schemes in the general circulation models (GCMs).

  12. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    NASA Astrophysics Data System (ADS)

    Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Wells, Ray E.; Rohay, Alan C.

    2014-06-01

    The Yakima fold and thrust belt (YFTB) in central Washington has accommodated regional, mostly north-directed, deformation of the Cascadia backarc since prior to emplacement of Miocene flood basalt of the Columbia River Basalt Group (CRBG). The YFTB consists of two structural domains. Northern folds of the YFTB strike eastward and terminate at the western margin of a 20-mGal negative gravity anomaly, the Pasco gravity low, straddling the North American continental margin. Southern folds of the YFTB strike southeastward, form part of the Olympic-Wallowa lineament (OWL), and pass south of the Pasco gravity low as the Wallula fault zone. An upper crustal model based on gravity and magnetic anomalies suggests that the Pasco gravity low is caused in part by an 8-km-deep Tertiary basin, the Pasco sub-basin, abutting the continental margin and concealed beneath CRBG. The Pasco sub-basin is crossed by north-northwest-striking magnetic anomalies caused by dikes of the 8.5 Ma Ice Harbor Member of the CRBG. At their northern end, dikes connect with the eastern terminus of the Saddle Mountains thrust of the YFTB. At their southern end, dikes are disrupted by the Wallula fault zone. The episode of NE-SW extension that promoted Ice Harbor dike injection apparently involved strike-slip displacement on the Saddle Mountains and Wallula faults. The amount of lateral shear on the OWL impacts the level of seismic hazard in the Cascadia region. Ice Harbor dikes, as mapped with aeromagnetic data, are dextrally offset by the Wallula fault zone a total of 6.9 km. Assuming that dike offsets are tectonic in origin, the Wallula fault zone has experienced an average dextral shear of 0.8 mm/y since dike emplacement 8.5 Ma, consistent with right-lateral stream offsets observed at other locations along the OWL. Southeastward, the Wallula fault transfers strain to the north-striking Hite fault, the possible location of the M 5.7 Milton-Freewater earthquake in 1936.

  13. Usefulness of AIRS-Derived OLR, Temperature, Water vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Astrophysics Data System (ADS)

    Molnar, G. I.; Susskind, J.; Iredell, L. F.; NASA/Gsfc Sounder Research Team

    2010-12-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 - February 2010) CERES-observed negative trend in OLR of ~-0.1 W/m2/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondance can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by El-Niño-La Niña cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assesments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial “trends” of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of climate

  14. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of

  15. Variation in summer surface air temperature over Northeast Asia and its associated circulation anomalies

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Hong, Xiaowei; Lu, Riyu; Jin, Aifen; Jin, Shizhu; Nam, Jae-Cheol; Shin, Jin-Ho; Goo, Tae-Young; Kim, Baek-Jo

    2016-01-01

    This study investigates the interannual variation of summer surface air temperature over Northeast Asia (NEA) and its associated circulation anomalies. Two leading modes for the temperature variability over NEA are obtained by EOF analysis. The first EOF mode is characterized by a homogeneous temperature anomaly over NEA and therefore is called the NEA mode. This anomaly extends from southeast of Lake Baikal to Japan, with a central area in Northeast China. The second EOF mode is characterized by a seesaw pattern, showing a contrasting distribution between East Asia (specifically including the Changbai Mountains in Northeast China, Korea, and Japan) and north of this region. This mode is named the East Asia (EA) mode. Both modes contribute equivalently to the temperature variability in EA. The two leading modes are associated with different circulation anomalies. A warm NEA mode is associated with a positive geopotential height anomaly over NEA and thus a weakened upper-tropospheric westerly jet. On the other hand, a warm EA mode is related to a positive height anomaly over EA and a northward displaced jet. In addition, the NEA mode tends to be related to the Eurasian teleconnection pattern, while the EA mode is associated with the East Asia-Pacific/Pacific-Japan pattern.

  16. Principal facts for gravity stations in Paradise and Stagecoach valleys, Humboldt and Lyon counties, Nevada

    USGS Publications Warehouse

    Schaefer, D.H.; Duffrin, B.G.; Plume, R.W.

    1986-01-01

    Principal facts for 178 gravity stations in Paradise Valley and 117 stations in Stagecoach Valley, are tabulated; they consists of latitude, longitude, altitude, observed gravity, free-air anomaly, terrain correction, and Bouguer gravity anomaly values at a bedrock density of 2.67 grams per cubic centimeter. (USGS)

  17. Accuracy of the determination of mean anomalies and mean geoid undulations from a satellite gravity field mapping mission

    NASA Technical Reports Server (NTRS)

    Jekeli, C.; Rapp, R. H.

    1980-01-01

    Improved knowledge of the Earth's gravity field was obtained from new and improved satellite measurements such as satellite to satellite tracking and gradiometry. This improvement was examined by estimating the accuracy of the determination of mean anomalies and mean undulations in various size blocks based on an assumed mission. In this report the accuracy is considered through a commission error due to measurement noise propagation and a truncation error due to unobservable higher degree terms in the geopotential. To do this the spectrum of the measurement was related to the spectrum of the disturbing potential of the Earth's gravity field. Equations were derived for a low-low (radial or horizontal separation) mission and a gradiometer mission. For a low-low mission of six month's duration, at an altitude of 160 km, with a data noise of plus or minus 1 micrometers sec for a four second integration time, we would expect to determine 1 deg x 1 deg mean anomalies to an accuracy of plus or minus 2.3 mgals and 1 deg x 1 deg mean geoid undulations to plus or minus 4.3 cm. A very fast Fortran program is available to study various mission configurations and block sizes.

  18. GRAVITY STUDIES IN THE CASCADE RANGE.

    USGS Publications Warehouse

    Finn, Carol; Williams, David

    1983-01-01

    A compatible set of gravity data has been compiled for the entire Cascade Range. From this data set a series of interpretive color gravity maps have been prepared, including a free air anomaly map, Bouguer anomaly map at a principle, and an alternate reduction density, and filtered and derivative versions of the Bouguer anomaly map. The regional anomaly pattern and gradients outline the various geological provinces adjacent to the Cascade Range and delineate major structural elements in the range. The more local anomalies and gradients may delineate low density basin and caldera fill, faults, and shallow plutons. Refs.

  19. Analysis of converted S-waves and gravity anomaly along the Aegir Ridge: implications for crustal lithology

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Breivik, A. J.; Mjelde, R.; Hanan, B. B.; Ito, G.; Sayit, K.; Howell, S.; Vogt, P. R.; Pedersen, R.

    2012-12-01

    The Aegir Ridge is an extinct spreading ridge in North-East Atlantic ocean. A thinner than normal crust around the Aegir Ridge appears as a hole in the extensively magmatic surroundings. Its proximity to the Iceland hot-spot makes it particularly important for understanding the changing dynamics of hotspot-ridge interaction. An integrated seismic and dredging experiment was conduced during the summer of 2010 with the primary aim to understand the nature of magmatism along the ridge shortly before cessation of seafloor spreading through variations of sub-seafloor lithological properties. Here, we present results of analysis of converted shear-waves recorded on OBS-sesimic data, and ship-gravity data. The shear-wave study enables us to quantify the variation of Vp/Vs in the sediments, crust and the upper-most mantle. We also inverted the gravity data to determine the sub-seafloor density distribution. The P- to S- converted shear-waves were identified on 20 OBSs along a profile with a total length of 550 km parallel to the ridge-axis. The sedimentary section on top of the crystalline crust is well illuminated in the streamer data. The forward modelling of the OBS data reveals that the Vp/Vs ratio in sediments are as high as 4.8, decreasing rapidly to a value of 3.00, primarily due to compaction of sediments with depth. Identification of sufficient PnS and PSn phases enable us to model the crustal and upper-most mantle Vp/Vs. The upper crystalline crust requires a Vp/Vs value of 1.99 and 1.89 for the southern and the northern profiles respectively, to fit the observations. The lower crust and upper-most part of the mantle have a Vp/Vs of ~1.82 and 1.795 respectively. Slightly lower Vp and moderate increase in Vp/Vs in parts of the crust and upper mantle presumably indicate presence of faulting, fracturing in the crust and moderate degree of serpentinization of the upper mantle. A sub-seafloor density model is derived by non-linear inversion of the gravity anomaly. The

  20. Newberry Combined Gravity 2016

    DOE Data Explorer

    Kelly Rose

    2016-01-22

    Newberry combined gravity from Zonge Int'l, processed for the EGS stimulation project at well 55-29. Includes data from both Davenport 2006 collection and for OSU/4D EGS monitoring 2012 collection. Locations are NAD83, UTM Zone 10 North, meters. Elevation is NAVD88. Gravity in milligals. Free air and observed gravity are included, along with simple Bouguer anomaly and terrain corrected Bouguer anomaly. SBA230 means simple Bouguer anomaly computed at 2.30 g/cc. CBA230 means terrain corrected Bouguer anomaly at 2.30 g/cc. This suite of densities are included (g/cc): 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.67.

  1. An updated global grid point surface air temperature anomaly data set: 1851--1990

    SciTech Connect

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  2. Tectonic history of the north portion of the San Andreas fault system, California, inferred from gravity and magnetic anomalies

    USGS Publications Warehouse

    Griscom, A.; Jachens, R.C.

    1989-01-01

    Geologic and geophysical data for the San Andreas fault system north of San Francisco suggest that the eastern boundary of the Pacific plate migrated eastward from its presumed original position at the base of the continental slope to its present position along the San Andreas transform fault by means of a series of eastward jumps of the Mendocino triple junction. These eastward jumps total a distance of about 150 km since 29 Ma. Correlation of right-laterally displaced gravity and magnetic anomalies that now have components at San Francisco and on the shelf north of Point Arena indicates that the presently active strand of the San Andreas fault north of the San Francisco peninsula formed recently at about 5 Ma when the triple junction jumped eastward a minimum of 100 km to its present location at the north end of the San Andreas fault. -from Authors

  3. Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (Principal Investigator)

    1981-01-01

    The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.

  4. Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J.

    1981-01-01

    Gauss-Legendre quadrature integration is used to calculate the anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical earth. The procedure involves representation of the anomalous source as a distribution of equivalent point gravity poles or point magnetic dipoles. The distribution of equivalent point sources is determined directly from the volume limits of the anomalous body. The variable limits of integration for an arbitrarily shaped body are obtained from interpolations performed on a set of body points which approximate the body's surface envelope. The versatility of the method is shown by its ability to treat physical property variations within the source volume as well as variable magnetic fields over the source and observation surface. Examples are provided which illustrate the capabilities of the technique, including a preliminary modeling of potential field signatures for the Mississippi embayment crustal structure at 450 km.

  5. Gorringe Ridge gravity and magnetic anomalies are compatible with thrusting at a crustal scale

    NASA Astrophysics Data System (ADS)

    Galindo-Zaldívar, J.; Maldonado, A.; Schreider, A. A.

    2003-06-01

    The main features of the deep structure of the Gorringe Ridge are analysed on the basis of gravity and magnetic measurements, as well as seismic profiles, drill holes, rock dredges, submersible observations and seismicity data. The gravity and magnetic models of the Gettysburg and Ormonde seamounts, which form the Gorringe Ridge, suggest that the Moho is approximately flat and the upper part of the ridge corresponds to a northwestwards vergent fold. This structure is the result of a northwestward vergent thrust that deformed the oceanic crust, with a minimum slip of approximately 20 km. The activity of the thrust probably started 20 Myr, and produced the recent stages of seamount uplift. The seamount is mainly composed of gabbros of the oceanic crust, serpentinized rocks and alkaline basalts. The large antiform, located in the hangingwall of the thrust, is probably deformed by minor faults. This oceanic ridge is a consequence of the oblique convergence between the African Plate and the overlapping Eurasian Plate.

  6. Lithology identification with gravity and magnetic anomalies for mine exploration in the China-Mongolia border

    NASA Astrophysics Data System (ADS)

    Meng, X.; Wang, J.

    2015-12-01

    China-Mongolia border is an important metallogenic province, its structural is complex and the study of it is of great significance for future detecting. In the last three years, we have conducted gravity and magnetic survey in the eastern segment of the China-Mongolia border along the profile, hoping to get a detailed characterization of the subsurface of this area. In this study, we conducted lithology identification in this area with measured gravity and magnetic data. In our work, topological calculations were performed on inversion data and physical property data for lithology identification. Our work can be summarized into the following steps: Firstly, the rock density and magnetic susceptibility near the survey profiles were summarized by field reconnaissance, and the lithology was divided into several types. Thus, a correspondence between lithology and physical properties was defined to some extent. Secondly, different mapping equations were established according to the physical properties for each lithology.Then, inversion of the gravity and magnetic data have been performed to get the physical properties (density and susceptibility) below the profile. Lastly, the lithology was identified through gravity and magnetic inversion result and the mapping equations mentioned above. In our study, the magmatic rocks within 50 km of the lower half space can be divided into four major types based on the identification result. The lithology varies significantly from north to south below this profile. Moreover, the lithology distribution trend and the formation age of the lower half space is summarized based on characteristics of the gravity and magnetic fields and the tectonic setting. For lithology identification with different types of data, we think that identify lithology information by one of the data can be conducted firstly, such as magnetic susceptibility, and then bring the results to lithology identification among the inversion of other data , which greatly

  7. Geophysical investigations on the gravity and aeromagnetic anomalies of the region between Sapanca and Duzce, along the North Anatolian Fault, Turkey

    NASA Astrophysics Data System (ADS)

    Tigli, Cigdem Sendur; Ates, Abdullah; Aydemir, Attila

    2012-12-01

    In this paper, it is aimed to model subsurface structures to the east of the Gulf of Izmit through Duzce by using the gravity and aeromagnetic anomaly data. 1/500.000 scaled gravity anomaly map of the area was taken from the General Directorate of Mineral Research and Exploration (MTA) and it was digitized. The aeromagnetic anomaly data were obtained in the digital form. 3D and 2D models were constructed to reveal the subsurface structure in two different inset regions in the study area including most important negative and positive gravity anomalies. Seismic velocities obtained from the deep seismic recordings were converted to densities. In addition, density information from a previous research was also taken. These densities were used for construction of 3D and 2D gravity models where it was shown that there are narrow and long sedimentary basins and depressions with 0.5-3 km depths. These sedimentary basins with the shape of negative flower structures indicating pull-apart basins are controlled by the active fault segments of the North Anatolian Fault (NAF). Earthquake epicenter data were also correlated with the constructed models from the gravity anomalies. Positive gravity anomalies are also caused by very shallow (about 2 km) masses that are accepted as the crustal origin intrusions into the fractures of the NAF and, ophiolites and gabbro outcropping on the surface of the studied regions. These intrusives and remnants of the Tethys Ocean are located between the fault segments where the fault bifurcates and they also constitute barriers for straight extension of the NAF. Analytic signal method was applied to the aeromagnetic anomaly data to determine the locations and boundaries of the causative bodies. Those bodies are observed around Duzce, and to the E-SE of it, to the NW of Golyaka and a large mass between Adapazari and Sapanca. Shallow settlement of these magmatics was confirmed by the second vertical derivative of the aeromagnetic data. An anti

  8. Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms.

    USGS Publications Warehouse

    Cady, J.W.

    1980-01-01

    An equation is derived for the vertical gravity field due to a homogeneous body with polygonal cross‐section and finite strike‐length. The equation can be separated into the two‐dimensional (2-D) terms of Talwani et al. (1959) and exact terms for the contributions of the ends of the prism. Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973), who coined the term “two‐and‐a‐half dimensional” (2 1/2-D) to describe the geometry. Magnetic intensities are expressed as a vector sum, from which the common dot product formulation can be obtained by binomial expansion.

  9. Preliminary isostatic residual gravity anomaly map of Paso Robles 30 x 60 minute quadrangle, California

    USGS Publications Warehouse

    McPhee, D.K.; Langenheim, V.E.; Watt, J.T.

    2011-01-01

    This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.

  10. Satellite Magnetic Anomalies of Africa and Europe

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator); Olivier, R.

    1984-01-01

    Preliminary MAGSAT scalar magnetic anomaly data of Africa, Europe, and adjacent marine areas were reduced to the pole assuming a constant inducing Earth's magnetic field of 60,000 nT. This process leads to a consistent anomaly data set free from marked variations in directional and intensity effects of the Earth's magnetic field over this extensive region. The resulting data are correlated with long wave length-pass filtered free-air gravity anomalies; regional heat flow, and tectonic data to investigate magatectonic elements and the region's geologic history. Magnetic anomalies are related to both ancient as well as more recent Cenozoic structural features.

  11. Satellite Gravity Drilling the Earth

    NASA Technical Reports Server (NTRS)

    vonFrese, R. R. B.; Potts, L. V.; Leftwich, T. E.; Kim, H. R.; Han, S.-H.; Taylor, P. T.; Ashgharzadeh, M. F.

    2005-01-01

    Analysis of satellite-measured gravity and topography can provide crust-to-core mass variation models for new insi@t on the geologic evolution of the Earth. The internal structure of the Earth is mostly constrained by seismic observations and geochemical considerations. We suggest that these constraints may be augmented by gravity drilling that interprets satellite altitude free-air gravity observations for boundary undulations of the internal density layers related to mass flow. The approach involves separating the free-air anomalies into terrain-correlated and -decorrelated components based on the correlation spectrum between the anomalies and the gravity effects of the terrain. The terrain-decorrelated gravity anomalies are largely devoid of the long wavelength interfering effects of the terrain gravity and thus provide enhanced constraints for modeling mass variations of the mantle and core. For the Earth, subcrustal interpretations of the terrain-decorrelated anomalies are constrained by radially stratified densities inferred from seismic observations. These anomalies, with frequencies that clearly decrease as the density contrasts deepen, facilitate mapping mass flow patterns related to the thermodynamic state and evolution of the Earth's interior.

  12. Development of a large support surface for an air-bearing type zero-gravity simulator

    NASA Technical Reports Server (NTRS)

    Glover, K. E.

    1976-01-01

    The methods used in producing a large, flat surface to serve as the supporting surface for an air-bearing type zero-gravity simulator using low clearance, thrust-pad type air bearings are described. Major problems encountered in the use of self-leveled epoxy coatings in this surface are discussed and techniques are recommended which proved effective in overcoming these problems. Performance requirements of the zero-gravity simulator vehicle which were pertinent to the specification of the air-bearing support surface are also discussed.

  13. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  14. Modelling of the total electronic content and magnetic field anomalies generated by the 2011 Tohoku-Oki tsunami and associated acoustic-gravity waves

    NASA Astrophysics Data System (ADS)

    Kherani, E. A.; Lognonné, P.; Hébert, H.; Rolland, L.; Astafyeva, E.; Occhipinti, G.; Coïsson, P.; Walwer, D.; de Paula, E. R.

    2012-12-01

    In this work, numerical simulations of the atmospheric and ionospheric anomalies are performed for the Tohoku-Oki tsunami (2011 March 11). The Tsunami-Atmosphere-Ionosphere (TAI) coupling mechanism via acoustic gravity waves (AGWs) is explored theoretically using the TAI-coupled model. For the modelled tsunami wave as an input, the coupled model simulates the wind, density and temperature disturbances or anomalies in the atmosphere and electron density/magnetic anomalies in the F region of the ionosphere. Also presented are the GPS-total electron content (TEC) and ground-based magnetometer measurements during the first hour of tsunami and good agreements are found between modelled and observed anomalies. At first, within 6 min from the tsunami origin, the simulated wind anomaly at 250 km altitude and TEC anomaly appear as the dipole-shaped disturbances around the epicentre, then as the concentric circular wave fronts radially moving away from the epicentre with the horizontal velocity ˜800 m s-1 after 12 min followed by the slow moving (horizontal velocity ˜250 m s-1) wave disturbance after 30 min. The detailed vertical-horizontal propagation characteristics suggest that the anomalies appear before and after 30 min are associated with the acoustic and gravity waves, respectively. Similar propagation characteristics are found from the GPS-TEC and magnetic measurements presented here and also reported from recent studies. The modelled magnetic anomaly in the F region ionosphere is found to have similar temporal variations with respect to the epicentre distance as that of the magnetic anomaly registered from the ground-based magnetometers. The high-frequency component ˜10 min of the simulated wind, TEC and magnetic anomalies in the F region develops within 6-7 min after the initiation of the tsunami, suggesting the importance of monitoring the high-frequency atmospheric/ionospheric anomalies for the early warning. These anomalies are found to maximize across the

  15. On the Optimization of the Inverse Problem for Bouguer Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Velasco, A. A.; Gutierrez, A. E.

    2013-12-01

    Inverse modeling of gravity data presents a very ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting Earth's model. Although implementing 2- and 3-Dimensional gravitational inverse problems can determine the structural composition of the Earth, traditional inverse modeling approaches can be very unstable. A model of the shallow substructure is based on the density contrasts of anomalous bodies -with different densities with respect to a uniform region- or the boundaries between layers in a layered environment. We implement an interior-point method constrained optimization technique to improve the 2-D model of the Earth's structure through the use of known density constraints for transitional areas obtained from previous geological observations (e.g. core samples, seismic surveys, etc.). The proposed technique is applied to both synthetic data and gravitational data previously obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. We find improvements on the models obtained from this optimization scheme given that getting rid of geologically unacceptable models that would otherwise meet the required geophysical properties reduces the solution space.

  16. Effect of gravity on the stability and structure of lean hydrogen-air flames

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1991-01-01

    Detailed, time-dependent, 2D numerical simulations with full hydrogen-oxygen chemistry are used to investigate the effects of gravity on the stability and structure of laminar flames in lean, premixed hydrogen-air mixtures. The calculations show that the effects of gravity becomes more important as the lean flammability limit is approached. In a 12 percent hydrogen-air mixture, gravity plays only a secondary role in determining the multidimensional structure of the flame with the stability and structure of the flame controlled primarily by the thermo-diffusive instability mechanism. However, in leaner hydrogen-air mixtures gravity becomes more important. Upward-propagating flames are highly curved and evolve into a bubble rising upwards in the tube. Downward-propagating flames are flat or even oscillate between structures with concave and convex curvatures. The zero-gravity flame shows only cellular structures. Cellular structures which are present in zero gravity can be suppressed by the effect of buoyancy for mixtures leaner than 11 percent hydrogen. These observations are explained on the basis of an interaction between the processes leading to buoyancy-induced Rayleigh-Taylor instability and the thermo-diffusive instability.

  17. Gravity anomaly at a Pleistocene lake bed in NW Alaska interpreted by analogy with Greenland's Lake Taserssauq and its floating ice tongue

    USGS Publications Warehouse

    Barnes, D.F.

    1987-01-01

    A possible example of a very deep glacial excavation is provided by a distinctive gravity low located at the front of a valley glacier that once flowed into glacial Lake Aniuk (formerly Lake Noatak) in the western Brooks Range. Geologic and geophysical data suggest that sediments or ice filling a glacially excavated valley are the most probable cause of the 30-50 mGal anomaly. Reasonable choices of geometric models and density contrasts indicate that the former excavation is now filled with a buried-ice thickness of 700 m or sediment thicknesses greater than 1 km. No direct evidence of efficient excavation was observed in Greenland, but efficient glacial erosion behind a floating polar ice tongue could explain the excavation that caused the Alaskan gravity anomaly. -from Author

  18. Determining OCT structure and COB Location of the Omani Gulf of Aden Continental Margin from Gravity Inversion, Residual Depth Anomaly and Subsidence Analysis.

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie; Manatshal, Gianreto

    2013-04-01

    Knowledge and understanding of the ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust are of critical importance in evaluating rifted continental margin formation and evolution. In order to determine the OCT structure and COB location for the eastern Gulf of Aden, along the Oman margin, we use a combination of gravity inversion, subsidence analysis and residual depth anomaly (RDA) analysis. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted margins. The gravity inversion method, which is carried out in the 3D spectral domain, incorporates a lithosphere thermal gravity anomaly and includes a correction for volcanic addition due to decompression melting. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. RDAs have been calculated by comparing observed and age predicted oceanic bathymetries, using the thermal plate model predictions from Crosby and McKenzie (2009). RDAs have been computed along profiles and have been corrected for sediment loading using flexural back-stripping and decompaction. In addition, gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a synthetic RDA. The RDA results show a change in RDA signature and may be used to estimate the distal extent of thinned continental crust and where oceanic crust begins. Continental lithosphere thinning has been determined using flexural back-stripping and subsidence analysis assuming the classical rift model of McKenzie (1978) with a correction for

  19. Compositional Density Structure of the Upper Mantle from Constrained 3-D Inversion of Gravity Anomaly: A Case Study of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Chen, C.; Kaban, M. K.; Thomas, M.

    2014-12-01

    Mantle density structure is a key for tectonics. The density variations in the upper mantle are affected by temperature and composition. Seismic tomography method has been widely applied to obtain the P- and S-wave velocity structure in the mantle, which is then used to calculate the density perturbation. However, the velocity model is mainly due to the thermal effects but not the compositional effects. A method of 3-D inversion of gravity anomaly developed in spherical coordinates is used to image the large-scale density structure of upper mantle in Southeast Asia. The mantle gravity anomalies used in inversion are calculated by removing the crustal effects from the observed gravity. With constraints of thermal density model from seismic tomography, the integrative density structure is estimated from gravity inversion. Consequently, we obtain the compositional density by subtracting the thermal density from the integrative structure. The result of inversion shows the anisotropic composition of subduction zones, Cratons and plates boundary in Southeast Asia. In the shallow depth, the compositional density anomalies of large scales present uniform features in oceanic and continental mantle. In depth of 75-175 km, there are differences between the thermal and the compositional variations. The density anomalies at these depths are both affected by temperature and composition of the upper mantle. Below 175-km depth, the density anomalies are dominated by the compositional variations. Furthermore, comparing with high seismicity occurred at moderate-depth (50-300 km), we found that the compositional density variations is one of the factor that inducing earthquakes. The constrained inversion of mantle gravity anomaly has possibility to reveal the subduction which is not clearly seen from low-resolution tomography data, and may reveal the relation of seismicity and composition in the upper mantle. This study is supported by the Program of International Science and

  20. Large-scale gravity anomaly in northern Norway: tectonic implications of shallow or deep source depth and a possible conjugate in northeast Greenland

    NASA Astrophysics Data System (ADS)

    Gradmann, Sofie; Ebbing, Jörg

    2015-12-01

    A prominent gravity and geoid low lies just south of the Lofoten peninsula in northern Norway, partly coinciding with the location of Proterozoic granites of the Transscandinavian Igneous Belt and being offset by ca. 100 km to the highest topography of northern Norway. The study area extends both onshore and offshore and lies at the transition between Archaean and Proterozoic lithosphere. The Palaeoproterozoic basement has been overthrusted by the Palaeozoic nappes of the Caledonian orogen and now forms the passive margin of the NE Atlantic. We investigate the gravity anomaly performing combined 3-D geophysical-petrological forward modelling of the lithosphere and sublithospheric upper mantle using the interactive modelling program LitMod3D. We include variations in thickness and composition of the lithospheric mantle in order to include the effects on the rifted margin adjoining the Baltic craton. We compare three possible origins of the anomaly: (i) a low-density upper crust, representing the northward extension of the Transscandinavian Igneous Belt, (ii) a lower crustal source formed by a Moho depression and (iii) a thick, depleted lithospheric mantle of possibly Archaean origin. A similar, yet wider and stronger gravity anomaly is found on the conjugate margin in northeastern Greenland. A shallow crustal source is most consistent with the geophysical data sets. A respective source of the granitic belt, however, is difficult to reconcile with the regional geology both in Fennoscandia and Greenland. An additional contribution form a deeper source is suggested.

  1. Intercomparison of Recent Anomaly Time-Series of OLR as Observed by CERES and Computed Using AIRS Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Loeb, Norman G.

    2011-01-01

    This paper compares recent spatial and temporal anomaly time series of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the 7 year time period September 2002 through February 2010. This time period is marked by a substantial decrease of OLR, on the order of +/-0.1 W/sq m/yr, averaged over the globe, and very large spatial variations of changes in OLR in the tropics, with local values ranging from -2.8 W/sq m/yr to +3.1 W/sq m/yr. Global and Tropical OLR both began to decrease significantly at the onset of a strong La Ni a in mid-2007. Late 2009 is characterized by a strong El Ni o, with a corresponding change in sign of both Tropical and Global OLR anomalies. The spatial patterns of the 7 year short term changes in AIRS and CERES OLR have a spatial correlation of 0.97 and slopes of the linear least squares fits of anomaly time series averaged over different spatial regions agree on the order of +/-0.01 W/sq m/yr. This essentially perfect agreement of OLR anomaly time series derived from observations by two different instruments, determined in totally independent and different manners, implies that both sets of results must be highly stable. This agreement also validates the anomaly time series of the AIRS derived products used to compute OLR and furthermore indicates that anomaly time series of AIRS derived products can be used to explain the factors contributing to anomaly time series of OLR.

  2. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with

  3. Unforced surface air temperature anomalies and their opposite relationship with the TOA energy imbalance at local and global scales

    NASA Astrophysics Data System (ADS)

    Brown, P. T.; Li, W.; Jiang, J. H.; Su, H.

    2015-12-01

    Unforced global mean surface air temperature (Tglobal) is stable in the long-term primarily because warm Tglobal anomalies are associated with enhanced outgoing longwave radiation to space and thus a negative global radiative energy imbalance (Nglobal, positive downward) at the top of the atmosphere (TOA). However, it is shown here that at the local spatial scale, warm unforced Tlocal anomalies tend to be associated with anomalously positive Nlocal imbalances over most of the surface of the planet. It is revealed that this occurs mainly because warm Tlocal anomalies are accompanied by anomalously low surface albedo near sea ice margins and over high altitudes, anomalously low cloud albedo over much of the mid/low-latitudes and an anomalously large water-vapor greenhouse effect over the deep tropical ocean. During warm Tglobal years, the largest negative Nlocal anomalies primarily occur over regions of cool or near-neutral Tlocal anomalies. These results help explain how TOA energy imbalances can act to damp unforced Tglobal anomalies while simultaneously amplifying unforced Tlocal anomalies.

  4. New fast least-squares algorithm for estimating the best-fitting parameters due to simple geometric-structures from gravity anomalies

    PubMed Central

    Essa, Khalid S.

    2013-01-01

    A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values. PMID:25685472

  5. New fast least-squares algorithm for estimating the best-fitting parameters due to simple geometric-structures from gravity anomalies.

    PubMed

    Essa, Khalid S

    2014-01-01

    A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values.

  6. The Emerson Lake Body: A link between the Landers and Hector Mine earthquakes, southern California, as inferred from gravity and magnetic anomalies

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.

    2002-01-01

    Gravity and magnetic data indicate a mafic crustal heterogeneity that lies between the Hector Mine 16 October 1999 (Mw 7.1) and Landers 28 June 1992 (Mw 7.3) epicenters. The aftershocks and ruptures of these two events avoided the interior of the body. Two- and three-dimensional modeling of the potential-field anomalies shows that the source, here named the Emerson Lake body (ELB), extends to a depth of approximately 15 km. The source of the gravity and magnetic anomaly is most likely Jurassic diorite because exposures of these rocks coincide with both gravity and magnetic highs west of Emerson Lake. Seismic tomography also shows higher velocities within the region of the ELB. We propose that the ELB was an important influence on the rupture geometry of the Landers and Hector Mine ruptures and that the ELB may have played a role in transferring of stress from the Landers earthquake to the Hector Mine hypocenter. Seismicity before the Landers earthquake also tended to avoid the ELB, suggesting that the ELB affects how strain is distributed in this part of the Mojave Desert. Thus, faults within the body should have limited rupture sizes and lower seismic hazard than faults bounding or outside this mafic crustal heterogeneity.

  7. Gravity anomalies, Quaternary vents, and Quaternary faults in the southern Cascade Range, Oregon and California: Implications for arc and backarc evolution

    USGS Publications Warehouse

    Blakely, R.J.; Christiansen, R.L.; Guffanti, M.; Wells, R.E.; Donnelly-Nolan, J. M.; Muffler, L.J. Patrick; Clynne, M.A.; Smith, James G.

    1997-01-01

    Isostatic residual gravity anomalies in the southern Cascade Range of northern California and southern Oregon are spatially correlated with broad zones of Quaternary magmatism as reflected by the total volume of Quaternary volcanic products, the distribution of Quaternary vents, and the anomalously low teleseismic P wave velocities in the upper 30 km of crust. The orientation of Quaternary faults also appears to be related to gravity anomalies and volcanism in this area, trending generally north-south within the magmatic regions and northwest-southeast as they enter the neighboring amagmatic zones to the north and south. The relationship between gravity anomalies, vent density, and fault orientations may indicate in a broad sense the strength of the middle and upper crust. The southern Cascade Range occupies a transition zone where horizontal stress is transferred from the northwest-southeast dextral shear of the Walker Lane belt to the east-west extension characteristic of the Cascade arc in central Oregon. Faulting along north-south strikes in the volcanically active areas indicates the east-west extensional stresses in thermally weakened crust, whereas northwest faulting between the volcanically active areas reflects the northwest trending, right lateral shear strain of the Walker Lane belt. The segmentation of the arc reflected in Quaternary magmatism may be caused by differential extension behind crustal blocks of the forearc rotating clockwise with respect to North America. In this view the volcanic centers at Mount Shasta, Medicine Lake volcano, and Lassen Peak in northern California are situated along the southern parts of the trailing edges of two distinct segments of the forearc where additional extension is implied by their differential clockwise rotation. U.S. copyright. Published in 1997 by the American Geophysical Union.

  8. Gravity anomalies, Quaternary vents, and Quaternary faults in the southern Cascade Range, Oregon and California: Implications for arc and backarc evolution

    NASA Astrophysics Data System (ADS)

    Blakely, Richard J.; Christiansen, Robert L.; Guffanti, Marianne; Wells, Ray E.; Donnelly-Nolan, Julie M.; Muffler, L. J. Patrick; Clynne, Michael A.; Smith, James G.

    1997-10-01

    Isostatic residual gravity anomalies in the southern Cascade Range of northern California and southern Oregon are spatially correlated with broad zones of Quaternary magmatism as reflected by the total volume of Quaternary volcanic products, the distribution of Quaternary vents, and the anomalously low teleseismic P wave velocities in the upper 30 km of crust. The orientation of Quaternary faults also appears to be related to gravity anomalies and volcanism in this area, trending generally north-south within the magmatic regions and northwest-southeast as they enter the neighboring amagmatic zones to the north and south. The relationship between gravity anomalies, vent density, and fault orientations may indicate in a broad sense the strength of the middle and upper crust. The southern Cascade Range occupies a transition zone where horizontal stress is transferred from the northwest-southeast dextral shear of the Walker Lane belt to the east-west extension characteristic of the Cascade arc in central Oregon. Faulting along north-south strikes in the volcanically active areas indicates the east-west extensional stresses in thermally weakened crust, whereas northwest faulting between the volcanically active areas reflects the northwest trending, right lateral shear strain of the Walker Lane belt. The segmentation of the arc reflected in Quaternary magmatism may be caused by differential extension behind crustal blocks of the forearc rotating clockwise with respect to North America. In this view the volcanic centers at Mount Shasta, Medicine Lake volcano, and Lassen Peak in northern California are situated along the southern parts of the trailing edges of two distinct segments of the forearc where additional extension is implied by their differential clockwise rotation.

  9. Cosmogenic neutrinos and signals of TeV gravity in air showers and neutrino telescopes.

    PubMed

    Illana, J I; Masip, M; Meloni, D

    2004-10-01

    The existence of extra dimensions allows the possibility that the fundamental scale of gravity is at the TeV. If that is the case, gravity could dominate the interactions of ultrahigh energy cosmic rays. In particular, the production of microscopic black holes by cosmogenic neutrinos has been estimated in a number of papers. We consider here gravity-mediated interactions at larger distances, where they can be calculated in the eikonal approximation. We show that for the expected flux of cosmogenic neutrinos these elastic processes give a stronger signal than black hole production in neutrino telescopes. Taking the bounds on the higher-dimensional Planck mass M(D) (D=4 + n) from current air shower experiments, for n=2(6) elastic collisions could produce up to 118 (34) events per year at IceCube. On the other hand, the absence of any signal would imply a bound of M(D) > or approximately 5 TeV.

  10. The development of the July 1989 1 deg x 1 deg and 30' x 30' terrestrial mean free-air anomaly data bases

    NASA Technical Reports Server (NTRS)

    Kim, Jeong-Hee; Rapp, Richard H.

    1990-01-01

    In June 1986 a 1 x 1 deg/mean free-air anomaly data file containing 48955 anomalies was completed. In August 1986 a 30 x 30 min mean free-air anomaly file was defined containing 31787 values. For the past three years data has been collected to upgrade these mean anomaly files. The primary emphasis was the collection of data to be used for the estimation of 30 min means anomalies in land areas. The emphasis on land areas was due to the anticipated use of 30 min anomalies derived from satellite altimeter data in the ocean areas. There were 10 data sources in the August 1986 file. Twenty-eight sources were added based on the collection of both point and mean anomalies from a number of individuals and organizations. A preliminary 30 min file was constructed from the 38 data sources. This file was used to calculate 1 x 1 deg mean anomalies. This 1 x 1 deg file was merged with a 1 x 1 deg file which was a merger of the June 1986 file plus a 1 x 1 deg file made available by DMA Aerospace Center. Certain bad 30 min anomalies were identified and deleted from the preliminary 30 min file leading to the final 30 min file (the July 1989 30 min file) with 66990 anomalies and their accuracy. These anomalies were used to again compute 1 x 1 deg anomalies which were merged with the previous June 86 DMAAC data file. The final 1 x 1 deg mean anomaly file (the July 89 1 x 1 deg data base) contained 50793 anomalies and their accuracy. The anomaly data files were significantly improved over the prior data sets in the following geographic regions: Africa, Scandinavia, Canada, United States, Mexico, Central and South America. Substantial land areas remain where there is little or no available data.

  11. Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Grimsdell, Alison W.; Alexander, M. Joan

    2016-07-01

    Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behavior of the Southern Hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003-2014) of stratospheric gravity wave activity at Southern Hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA) Aqua satellite. We introduce a simple and effective approach, referred to as the "two-box method", to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid-fall to mid-spring (April-October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90 %), followed by the Antarctic Peninsula (76 %), Kerguelen Islands (73 %), Tasmania (70 %), New Zealand (67 %), Heard Island (60 %), and other hotspots (24-54 %). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid-stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60 % with mean absolute errors of 4-5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low-level source and other influences. The data and methods presented here can help to identify interesting

  12. The interaction of water mists and premixed propane-air flames under low-gravity conditions

    NASA Astrophysics Data System (ADS)

    Abbud-Madrid, Angel; Riedel, Edward P.; McKinnon, J. Thomas

    1999-01-01

    A preliminary investigation of the effect of water mists on premixed flame propagation in a cylindrical tube under low-gravity conditions has been conducted to define the scientific and technical objectives of the experiments to be performed on the Space Shuttle and International Space Station microgravity environments. The inhibiting characteristics of water mists in propagating flames of propane-air mixtures at various equivalence ratios are studied. The effects of droplet size and concentration on the laminar flame speed are used as the measure of fire suppression efficacy. Flame speed and propagation behavior are monitored by a video camera. Reduced gravity is obtained with an aircraft flying parabolic trajectories. Measurements and qualitative observations from the low-gravity experiments clearly show the effect of water mist on flame speed abatement, flame shape, and radiant emission. For lean propane-air mixtures, the flame speed increases at first with low water-mist concentrations and then decreases below its dry value when higher water-mist volumes are introduced in the tube. This phenomenon may be due in part to the heating of the unburned mixture ahead of the flame as a result of radiation absorption by the water droplets. For rich propane-air mixtures, similar behavior of flame speed vs. water concentration is encountered but in this case is mostly due to the formation of cellular flames. At high water loads both lean and rich flames exhibit extinction before reaching the end of the tube.

  13. Airborne Gravity Measurements using a Helicopter with Special Emphases on Delineating Local Gravity Anomalies Mainly for Detecting Active Seismic Faults (Invited)

    NASA Astrophysics Data System (ADS)

    Segawa, J.

    2010-12-01

    The first aerial gravity measurement in Japan started in 1998 using a Japanese airborne gravimeter ‘ Segawa-TKeiki airborne gravimeter Model FGA-1’. We lay emphasis on the measurement of detailed gravity structures at the land-to-sea border areas and mountainous areas. This is the reason why we use a helicopter and make surveys at low altitude and low speed. We have so far made measurement at twelve sites and the total flight amounts to 20,000km. The accuracy of measurement is 1.5 mgal and half-wavelength resolution is 1.5 km. The Japanese type gravimeter consists of a servo-accelerometer type gravity sensor, a horizontal platform controlled by an optical fiber gyro, GPS positioning system, and a data processing system. Helicopter movement has to be precisely monitored three-dimensionally to calculate the vehicle’s acceleration noises. The necessary accuracy of positioning of the vehicle must be better than 10 cm in positioning error. Our helicopter gravity measurement has a special target in Japan to investigate active seismic faults located across land-to-sea borderlines. In Japan, it is generally thought that gravity over most of the country has already been measured by the governmental surveys, leaving the land-sea border lines and mountainous zones unsurveyed as difficult-to-access areas. In addition the use of airplane or helicopter in Japan appeared disadvantageous because of the narrowness of the Japanese Islands. Under such situations the author thought there still remained a particular as well as unique need for aerial gravity measurement in Japan, i.e. the need for detailed and seamless knowledge of gravity structures across land-to-sea border lines to elucidate complicated crustal structures of the Japanese Islands as well as distribution of active seismic faults for disaster prevention. The results of gravity measurements we have conducted so far include those of 12 sites. In the following the brief logs of our measurements are listed. 1)April

  14. Aeromagnetic and complete Bouguer gravity anomaly maps of the Hunter-Fryingpan Wilderness area, Pitkin County, Colorado

    USGS Publications Warehouse

    Campbell, D.L.

    1981-01-01

    Behrendt and others (1968) pointed out the close correlation between a belt of extreme gravity lows (Behrendt and Bajwa, 1974) and a zone of precious and base mineral deposits (Tweto and Simms, 1963, fig. 1).  Tweto and Case (1972) showed that this belt of gravity lows probably reflects a series of Laramide and post-Laramide intrusions of relatively low density which may have influenced the hydrothermal systems responsible for much of the mineralization in the Colorado Mineral Belt.

  15. Structure and segmentation of the eastern Gulf of Aden basin and the Sheba ridge from gravity, bathymetric and magnetic anomalies: implications for accretion processes

    NASA Astrophysics Data System (ADS)

    D'Acremont, E.; Leroy, S.; Maia, M.; Gente, P.; Autin, J.

    2007-12-01

    The eastern Gulf of Aden is a key place for investigating seafloor spreading processes and the evolution in space and time of the margin and ridge segmentation. The rifting of the Gulf that separated Arabia from Somalia started around 35 Ma ago followed by oceanic accretion from at least17.6 Ma. Bathymetric, gravity and magnetic data from the Encens-Sheba cruise are used to study the structure and segmentation of the eastern part of the basin and ridge, which have strong implications for accretion processes. The segmentation of the first oceanic spreading centre, which is dated at least 17.6 Ma by the magnetic anomaly (A5d) identification, seems to be directly related to the structural geometry of the margins. Then, magmatic processes governed the evolution of the segmentation. The segmentation of the oceanic crust evolved, by eastward propagation of the western segment, from three segments (from an5d to an5) to two segments (from an5). At 6 Ma (an3a) a third segment appeared by duplication of the Socotra transform fault, maybe due to a regional kinematics change. The Encens-Sheba oceanic domain is divided in two distinct areas trending NE-SW perpendicular to the Sheba ridge. (1) The Eastern area is characterized by a shorter wavelength variation of the axial segmentation with two spreading segments 30 to 40 km long, and by a thin crust particularly on the northern and southern ends of its flanks. (2) The Western zone, whose axial segment is more than 120 km long, is characterized by a thick crust and/or a hot mantle and no axial rift valley. This abnormal volcanic activity for a slow spreading ridge is emphasized by bathymetric highs with 5-10 km wide volcanic edifices, and by a negative anomaly of the MBA. These different results support the presence of an off-axis thermal anomaly located below the southern flank of the Sheba ridge. The magnetic anomalies and spreading asymmetry reveal that the location of this thermal anomaly might be relatively recent (~ 10 Ma

  16. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  17. Electric Field Effects on an Injected Air Bubble at Detachment in a Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Iacona, Estelle; Herman, Cila; Chang, Shinan

    2002-01-01

    The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static and uniform electric field. Bubble formation and detachment were visualized and recorded in microgravity using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement, and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.

  18. Oscillations, trends and anomalies in rainfall and air temperature in the principal cities in Bolivia

    NASA Astrophysics Data System (ADS)

    Villazon, M. F.

    2013-05-01

    Rainfall and temperature can be extremely variable in space and time especially in mountainous environment. The determination of climate variability and climate change needs a special assessment for water management. Increase our knowledge of the main climate trends in the region toward higher quality future climate determination is required. This research examines the anomalies of observed monthly rainfall and temperature data from 4 stations located in the principal cities in Bolivia (see Table below). Trends and anomalies in quantiles were determined for each station for monthly and 6-month seasonal block periods (wet period and dry period). The results suggest the presence of cycles rather than unidirectional trends. The Southern Oscillation Index (SOI) gives an indication of the development and intensity of El Niño or La Niña events in the Pacific Ocean. After determination of the anomalies for each of the stations, in both monthly rainfall and average temperature, together with the confidence intervals, comparison is made with the anomalies calculated in a similar way with data corresponding to the SOI. Comparison in cycles, shape and correlation has been performed between the anomalies from the observation data and the anomalies from the SOI with different time delay. The aim of this comparison is to identify the external influences of the anomalies in rainfall and temperature (Tele-connections). Influences have been identified during cycles of El Niño in the Andean zones La Paz, El Alto and Cochabamba dry cycles occur and in the most Amazonian side, Santa Cruz city, wet cycle is observed. This relation is opposite in La Niña periods.Meteorological stations under study;

  19. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    SciTech Connect

    Blakely, Richard J.; Sherrod, Brian; Weaver, Craig; Wells, Ray E.; Rohay, Alan C.

    2013-11-13

    Magnetic and gravity data, collected in south-central Washington near the Yakima Fold and Thrust Belt (YFTB) are used to model upper crustal structure, the extent of the late Columbia River Basalt flow named the Ice Harbor member, the vertical conduits (dikes) that the Ice Harbor erupted from, and whether the dikes are offset or affected by faulting on the Wallula Fault zone.

  20. The Relationship Between El Nino/La Nina Oscillations and Recent Anomaly Time Series of OLR Determined by CERES and AIRS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Loeb, Norman G.

    2011-01-01

    This paper compares recent spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLRCLR (Clear Sky OLR) as determined using CERES and AIRS observations over the time period September 2002 through June 2010. We find excellent agreement in OLR anomaly time series of both data sets in almost every detail, down to the 1 x 1 spatial grid point level. This extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper then examines anomaly time series of AIRS derived products over the extended time period September 2002 through April 2011. We show that OLR anomalies during this period are closely in phase with those of an El Nino index, and that the recent global and tropical mean decreases in OLR and OLRCLR are a result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. We show that the relationship between global mean, and especially tropical mean, OLR anomalies to the El Nino index can be explained by temporal changes of the distribution of mid-tropospheric water vapor and cloud cover in two spatial regions that are in direct response to El Nino/La Nina activity which occurs outside these spatial regions.

  1. Gravity anomalies near the east Pacific rise with wavelengths shorter than 3300 km recovered from GEOS-3/ATS-6 satellite-to-satellite Doppler tracking data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Marsh, B. D.; Conrad, T. D.; Wells, W. T.; Williamson, R. G.

    1977-01-01

    The velocity of the GEOS-3 satellite measured by Doppler as a function of time from the ATS-6 satellite was used to recover gravity anomalies in the region of the East Pacific. The orbit GEOS-3 at an altitude of 840 km was perturbed by spatial changes in Earth's gravitational field. These perturbations were measured via ATS-6 which is in a synchronous orbit at an altitude of about 40,000 km. The range-rate data were reduced using a gravitational field model complete to the 12 degree and order. A simulation of the possible effects causing the remaining range-rate residuals relative to the 12, 12 field shows that in general the dominant effect is the neglect of the higher degree and order coefficients of the gravitational field model.

  2. Design of a Shuttle air and water prefilter for reduced gravity operation

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Ouellette, Fred A.

    1992-01-01

    The first design concept of the Space Shuttle humidity separator prefilter, developed to remove debris from the air/water stream which flows from the cabin condensing heat exchanger to the humidity separator, was flown on STS-40 in June 1991. This paper discusses the design of the first prefilter (which was found not to pass water at a constant rate, resulting in a tendency to slug the humidity separator) and explains the on-orbit performance of the prefilter. The redesigned prefilter (made using the results of the flight test of the first prefilter) is described, with particular attention given to the features which would allow successful reduced gravity operation.

  3. Crustal structure and gravity anomalies beneath the Rif, northern Morocco: implications for the current tectonics of the Alboran region

    NASA Astrophysics Data System (ADS)

    Petit, Carole; Le Pourhiet, Laetitia; Scalabrino, Bruno; Corsini, Michel; Bonnin, Mickaël; Romagny, Adrien

    2015-07-01

    We analyse Bouguer anomaly data and previously published Moho depths estimated from receiver functions in order to determine the amount of isostatic compensation or uncompensation of the Rif topography in northern Morocco. We use Moho depth variations extracted from receiver function analyses to predict synthetic Bouguer anomalies that are then compared to observed Bouguer anomaly. We find that Moho depth variations due to isostatic compensation of topographic and/or intracrustal loads do not match Moho depth estimates obtained from receiver function analyses. The isostatic misfit map evidences excess crustal root as large as 10 km in the western part of the study area, whereas a `missing' crustal root of ˜5 km appears east of 4.3°E. This excess root/missing topography correlates with the presence of a dense mantle lid, the noticeable southwestward drift of the Western Rif area, and with a current surface uplift. We propose that a delaminated mantle lid progressively detaching westward or southwestward from the overlying crust is responsible for viscous flow of the ductile lower crust beneath the Rif area. This gives rise to isostatic uplift and westward drift due to viscous coupling at the upper/lower crust boundary. At the same time, the presence of this dense sinking mantle lid causes a negative dynamic topography, which explains why the observed topography is too low compared to the crustal thickness.

  4. US Aeromagnetic and Satellite Magnetic Anomaly Comparisons

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W. (Principal Investigator); Sexton, J. L.

    1984-01-01

    Scalar aeromagnetic data obtained by the U.S. Naval Oceanographic Office (NOO) Vector Magnetic Survey of the conterminous U.S. were screened for periods of intense diurnal magnetic activity and reduced to anomaly form, filtered, and continued upward. A number of correlations between the NOO, POGO and preliminary MAGSAT data are evident at satellite elevations, including a prominent transcontinental magnetic high which extends from the Anadarko Basin to the Cincinnati Arch. The transcontinental magnetic high is breached by negative anomalies located over the Rio Grande Rift and Mississippi River Aulacogen. Differentially reduced-to-pole NOO and POGO magnetic anomaly data show that the transcontinental magnetic high corresponds to a well-defined regional trend of negative free-air gravity and enhanced crustal thickness anomalies.

  5. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    NASA Astrophysics Data System (ADS)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2016-04-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the thickness of lithospheric jumps and corresponding tectonic stress. We analysed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and reasonable assumptions about densities these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. They reveal a small asymmetry between the African and S-American crusts and lithospheres by a few kilometers. On both sides, the continental lithosphere is about 15 - 30km thicker than the oceanic lithosphere. To keep such geoid jumps stable over O(100Ma) fully dynamic models show that lithospheric viscosities must be of the order of 1e23 Pa s.

  6. View-Angle Dependent AIRS Cloud Radiances: Implication for Tropical Gravity Waves and Anvil Structures

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Gong, Jie

    2011-01-01

    Tropical anvil clouds play important roles in redistributing energy, water in the troposphere. Interacting with dynamics at a wide range of spatial and temporal scales, they can become organized internally and form structured cells, transporting momentum vertically and laterally. To quantify small-scale structures inside cirrus and anvils, we study view-dependence of the cloud-induced radiance from Atmospheric Infrared Sounder (AIRS) using channels near CO2 absorption line. The analysis of tropical eight-year (30degS-30degN, 2003-2010) data suggests that AIRS east-views observe 10% more anvil clouds than westviews during day (13:30 LST), whereas east-views and westviews observe equally amount of clouds at midnight (1 :30 LST). For entire tropical averages, AIRS oblique views observe more anvils than the nadir views, while the opposite is true for deep convective clouds. The dominance of cloudiness in the east-view cannot be explained by AIRS sampling and cloud microphysical differences. Tilted and banded anvil structures from convective scale to mesoscale are likely the cause of the observed view-dependent cloudiness, and gravity wave-cloud interaction is a plausible explanation for the observed structures. Effects of the tilted and banded cloud features need to be further evaluated and taken into account potentially in large-scale model parameterizations because of the vertical momentum transport through cloud wave breaking.

  7. GRAIL Gravity Observations of Lunar Volcanic Complexes

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.; Zuber, M. T.; McGovern, P. J.; Head, J. W.

    2012-12-01

    Gravity observations by NASA's GRAIL mission are providing important new insights into the volcanic plumbing associated with major volcanic complexes on the Moon. The Marius Hills are the Moon's largest volcanic dome field, consisting of more than 250 basaltic domes and cones and 20 sinuous rilles. There are two distinct free-air gravity anomalies, with the larger anomaly (260 mGal) occurring close to the maximum concentration of volcanic domes in the northern part of the field. Much of the gravity anomaly in this area is due to buried, high density material, mapping out a sill complex with a spatial scale of 200 by 250 kilometers. For plausible choices of density contrast, the sill is more than 2 km thick in the north and 4 km thick in the south. The Aristarchus Plateau is the source for the Moon's largest pyroclastic eruption and numerous sinuous rilles. Most of the gravity anomaly on the plateau itself has relatively low amplitude (< 60 mGal) and is likely due to isostatic or flexurally supported topography. There is a significant gravity high (160 mGal) associated with the Cobra Head, which is the source region for Vallis Schröteri, the largest rille in the Aristarchus Plateau. Regions of high free-air gravity also occur in the plains wrapping around the south and east sides of the plateau and in the adjacent Harbinger Mountains/Prinz Crater volcanic field (150 mGal). These gravity highs are all likely due to buried, high density material, plausibly in the form of volcanic intrusions. The Cauchy volcanic dome complex in eastern Mare Tranquillitatis is a regional topographic high about 400 km across but a free-air gravity low (-90 mGal). Similarly, the Hortensius/Tobias Mayer volcanic field in Mare Insularum is also a free-air gravity low (-80 mGal) in its center. In both cases, this implies the presence of low density material at depth, possibly due to thicker than normal crust. The Rümker Hills in northern Oceanus Procellarum is a small basaltic dome complex

  8. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  9. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor....

  10. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor....

  11. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor....

  12. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor....

  13. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor....

  14. Gravity anomalies, flexure, and deformation of the converging Indian lithosphere in Nepal and Sikkim-Darjeeling Himalayas

    NASA Astrophysics Data System (ADS)

    Ansari, Md. Afroz; Khan, Prosanta K.; Tiwari, Virendra M.; Banerjee, Jayashree

    2014-09-01

    Researchers ubiquitously noted that the common processes of partitioning oblique convergence in response to drag from the trench-hanging plate simultaneously produce radial slips, along-strike translation, and extension parallel to the deformation front. Here, we focus on the area between Nepal and Sikkim-Darjeeling Himalayas, and carry out gravity and finite-element stress modeling of the strike-orthogonal converging Indian lithosphere. We delineate the geometries of different layers and their interfaces through gravity modeling. The optimum model parameters along with rheological parameters of different layers are used for finite-element modeling. Finite-element modeling is done with boundary conditions of keeping the upper surface free and rigidly fixing the section of the northern boundary below the Main Himalayan Thrust. We impart on its frontal section an amount of 6 × 1012 N/m force, equivalent to resistive force of the Himalayan-Tibet system, and analyze the maximum and minimum compressive stress fields evolved in the lithosphere. We testify our observations with earthquake database and other geophysical and geological studies. We note that an increasing flexing of the Indian lithosphere beyond the Main Boundary Thrust becomes maxima between the Main Central Thrust and South Tibetan Detachment in both the areas; however, more steepening of the Moho boundary is identified in the Sikkim-Darjeeling Himalaya. This abrupt change in lithospheric geometry beneath the Greater Himalaya is likely correlated with the sharp elevation changes in the topography. Although the highest seismicity concentration is dominant in this zone, the Lesser and the Tethys Himalayas in Sikkim-Darjeeling area also record relatively fair seismic activity. More compressive stress field in different layers right within the sharp bending zone supports this observation. We thus propose that the sharp bending zone beneath the Greater Himalaya is suffering maximum deformation, and the

  15. Nature of the Levantine (eastern Mediterranean) crust from multiple-source Werner deconvolution of Bouguer gravity anomalies

    NASA Astrophysics Data System (ADS)

    Khair, Kamal; Tsokas, Gregory N.

    1999-11-01

    The nature of the Levantine (eastern Mediterranean) crust has been the subject of controversy for many years, revolving around two hypotheses: the continental crust hypothesis and the oceanic crust hypothesis. The proponents of the first hypothesis suggest that the Levantine (eastern Mediterranean) basin is characterized by a thick sedimentary succession overlying thinned crust of continental origin, through which a number of aborted Mesozoic rifts were etched. However, multiple-source Werner deconvolution (MSWD) estimates and other geophysical data, integrated with earlier geological and geophysical results, provide further support to the second hypothesis (oceanic crust) and lead to the following conclusions: (1) The depth to Moho ranges from about 20 km to about 28 km below sea level, with an average crustal thickness of about 22 km. (2) The large thickness (about 10 km) of Phanerozoic section leaves only about 12 km of thickness for the igneous/metamorphic (basement) complex. (3) The northern boundary of the Levantine (easternmost Mediterranean) lithosphere is delineated by an arcuate belt of seismic activities along the southern margin of Cyprus. (4) The formation of the Phoenician and Latakia basins and the Iskenderun Bay is probably controlled by the counterclockwise rotation of the lithospheric slices southeast of Cyprus. (5) The apparent absence of magnetic anomaly lineations (reversals) is due probably to the thick Phanerozoic cover, and/or the formation of the oceanic crust during a long magnetic chron.

  16. Regional anomalies in chronic obstructive pulmonary disease; comparison with acid air pollution particulate characteristics.

    PubMed

    Winchester, J W

    1989-01-01

    Mortality rates due to chronic obstructive pulmonary disease (COPD) for males and females in standard metropolitan statistical areas are highest in two broad regions of the U.S. One is the southeast, with age-adjusted rates high in Georgia and north Florida but decreasing toward south Florida; the other is the western plains, with rates high in Colorado and north Texas but decreasing toward south Texas. Rates are generally low in the northeast, upper midwest, and far west, as well as in the largest cities of these regions. These geographic patterns suggest that atmospheric environmental conditions may contribute to the risk of COPD. Based on measured aerosol characteristics and atmospheric chemical reasoning, it is argued that ambient air in the high COPD regions may be especially irritating to the respiratory tract because of fine particles that contain the reaction products of acid air pollutants. In the southeast, sulfuric acid aerosol concentrations are high, apparently because of a sunny warm humid climate that favors rapid oxidation of sulfur dioxide as well as the region's proximity to large primary air pollution sources further north. Particulate sulfur is also associated with soil mineral constituents. In the western plains, concentrations of alkaline dust are high because of soil erosion during windy dry conditions. Acid air pollutants can be scavenged to mineral particle surfaces and form chemical reaction products that may include solubilized mineral aluminum. These may be inhaled and deposited in the respiratory tract so as to contribute to COPD mortality risk.

  17. Analysis of Marine Gravity Anomalies in the Ulleung Basin (East Sea/Sea of Japan) and Its Implications for the Architecture of Rift-Dominated Backarc Basin

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Mook; Kim, Yoon-Mi

    2016-04-01

    Marginal basins locate between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center (manifested by the presence of distinct seafloor magnetic anomaly patterns) to those with less obvious zones of extension and a broad magmatic emplacement most likely in the lower crust. Such difference in the style of back-arc basin formation may lead to marked difference in crustal structure in terms of its overall thickness and spatial variations. The Ulleung Basin, one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental rifting end-member of back-arc opening. Although a great deal of work has been conducted on the sedimentary sections in the last several decades, the deep crustal sections have not been systematically investigated for long time, and thus the structure and characteristics of the crust remain poorly understood. This study examines the marine gravity anomalies of the Ulleung Basin in order to understand the crustal structure using crucial sediment-thickness information. Our analysis shows that the Moho depth in general varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust is more or less the same (10-12 km), thus by varying only about 10-20% of the total thickness, contrary to the previous impression. The almost-uniformly-thick crust that is thicker than a normal oceanic crust (~ 7 km) is consistent with previous observations using ocean bottom seismometers and recent deep seismic results from the nearby Yamato Basin. Another important finding is that small residual mantle gravity anomaly highs exist in the northern part of the basin. These highs are aligned in the NNE-SSW direction which correspond to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that, though by a small degree, they are a

  18. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    NASA Astrophysics Data System (ADS)

    Bhowal, Arup Jyoti; Mandal, Bijan Kumar

    2016-07-01

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ˜7 of that at normal gravity. However, if radiation is not considered, soot formation is found to be much more.

  19. Slip in Great Megathrust Earthquakes and its Relation to Crustal Structure as Revealed by Satellite Free-air Gravity

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Blakely, R. J.; Scholl, D.

    2007-12-01

    In 2003, Song and Simons and Wells et al. showed that approximately 70% of the moment released during past large, shallow subduction zone thrust earthquakes occurred beneath trench-parallel, free-air gravity lows outlining the deep-sea slope terrace and its basins. The authors suggested that the basin-centered, fore-arc gravity lows might be good predictors of high seismic slip in future earthquakes. Since 2001, ten megathrust earthquakes have occurred with magnitudes greater than Mw 7.7, including the giant, Mw 9.17 Sumatra earthquake of 2004. These earthquakes provide a robust test of the idea that seismic slip is focused beneath basin-centered gravity lows, and also the related ideas that the landward maximum gravity gradient marks the effective down-dip limit of large coseismic slip, and that intrabasin, transverse gravity highs are areas of lower slip. A compilation of seismic and geodetic slip inversions for the post-2001 earthquakes and new analyses of slip for the great Antofagasta, Jalisco, and Peru events in 1995 and 1996 indicate that more than 80% of the high-slip areas occur beneath deep-sea terrace gravity lows (DSTL), and that half of the earthquake asperities lie beneath fore-arc basins or local gravity lows. The maximum gravity gradient along the landward margin of the deep-sea terrace may mark the point where thicker overlying crust and higher temperatures on the megathrust limit the down dip extent of stick-slip behavior. Onland analogues are the mountain front of the Himalaya, which approximately marks the down-dip limit of large coseismic slip along the Main Frontal Thrust, and the front of the Taiwan Central Ranges, which coincides with the limit of slip during the 1999 Chi-Chi earthquake (Mw 7.6). In the up dip direction, coseismic slip may be partitioned onto splay faults in the wedge, as occurred in the 1964 Alaska earthquake. The observed pattern of greater slip at depth beneath fore arc basins is consistent with partitioning of slip up

  20. Slip in Great Megathrust Earthquakes and its Relation to Crustal Structure as Revealed by Satellite Free-air Gravity

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Blakely, R. J.; Scholl, D.

    2004-12-01

    In 2003, Song and Simons and Wells et al. showed that approximately 70% of the moment released during past large, shallow subduction zone thrust earthquakes occurred beneath trench-parallel, free-air gravity lows outlining the deep-sea slope terrace and its basins. The authors suggested that the basin-centered, fore-arc gravity lows might be good predictors of high seismic slip in future earthquakes. Since 2001, ten megathrust earthquakes have occurred with magnitudes greater than Mw 7.7, including the giant, Mw 9.17 Sumatra earthquake of 2004. These earthquakes provide a robust test of the idea that seismic slip is focused beneath basin-centered gravity lows, and also the related ideas that the landward maximum gravity gradient marks the effective down-dip limit of large coseismic slip, and that intrabasin, transverse gravity highs are areas of lower slip. A compilation of seismic and geodetic slip inversions for the post-2001 earthquakes and new analyses of slip for the great Antofagasta, Jalisco, and Peru events in 1995 and 1996 indicate that more than 80% of the high-slip areas occur beneath deep-sea terrace gravity lows (DSTL), and that half of the earthquake asperities lie beneath fore-arc basins or local gravity lows. The maximum gravity gradient along the landward margin of the deep-sea terrace may mark the point where thicker overlying crust and higher temperatures on the megathrust limit the down dip extent of stick-slip behavior. Onland analogues are the mountain front of the Himalaya, which approximately marks the down-dip limit of large coseismic slip along the Main Frontal Thrust, and the front of the Taiwan Central Ranges, which coincides with the limit of slip during the 1999 Chi-Chi earthquake (Mw 7.6). In the up dip direction, coseismic slip may be partitioned onto splay faults in the wedge, as occurred in the 1964 Alaska earthquake. The observed pattern of greater slip at depth beneath fore arc basins is consistent with partitioning of slip up

  1. Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies

    NASA Astrophysics Data System (ADS)

    Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel

    2015-03-01

    , the intrusion concentrates bending primarily at the periphery, resulting in a flat, tabular intrusion. We predict that this process will result in concentric fractures over the region of greatest bending. This location is close to the crater wall in large, flat-floored craters, as observed in the crater Humboldt, and interior to the crater over the domed floor in smaller craters, as observed in the crater Vitello. A variety of volcanic features are predicted to be associated with the solidification and degassing of the intrusion; these include: (1) surface lava flows associated with concentric fractures (e.g., in the crater Humboldt); (2) vents with no associated pyroclastic material, from the deflation of under-pressurized magmatic foam (e.g., the crater Damoiseau); and (3) vents with associated pyroclastic deposits from vulcanian eruptions of highly pressurized magmatic foam (e.g., the crater Alphonsus). The intrusion of basaltic magma beneath the crater is predicted to contribute a positive component to the Bouguer gravity anomaly; we assess the predicted Bouguer anomalies associated with FFCs and outline a process for their future interpretation. We conclude that our proposed mechanism serves as a viable formation process for FFCs and accurately predicts numerous morphologic, morphometric, and geophysical features associated with FFCs. These predictions can be further tested using GRAIL (Gravity Recovery and Interior Laboratory) data.

  2. A two-dimensional Stockwell transform for gravity wave analysis of AIRS measurements

    NASA Astrophysics Data System (ADS)

    Hindley, Neil P.; Smith, Nathan D.; Wright, Corwin J.; Rees, D. Andrew S.; Mitchell, Nicholas J.

    2016-06-01

    Gravity waves (GWs) play a crucial role in the dynamics of the earth's atmosphere. These waves couple lower, middle and upper atmospheric layers by transporting and depositing energy and momentum from their sources to great heights. The accurate parameterisation of GW momentum flux is of key importance to general circulation models but requires accurate measurement of GW properties, which has proved challenging. For more than a decade, the nadir-viewing Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite has made global, two-dimensional (2-D) measurements of stratospheric radiances in which GWs can be detected. However, one problem with current one-dimensional methods for GW analysis of these data is that they can introduce significant unwanted biases. Here, we present a new analysis method that resolves this problem. Our method uses a 2-D Stockwell transform (2DST) to measure GW amplitudes, horizontal wavelengths and directions of propagation using both the along-track and cross-track dimensions simultaneously. We first test our new method and demonstrate that it can accurately measure GW properties in a specified wave field. We then show that by using a new elliptical spectral window in the 2DST, in place of the traditional Gaussian, we can dramatically improve the recovery of wave amplitude over the standard approach. We then use our improved method to measure GW properties and momentum fluxes in AIRS measurements over two regions known to be intense hotspots of GW activity: (i) the Drake Passage/Antarctic Peninsula and (ii) the isolated mountainous island of South Georgia. The significance of our new 2DST method is that it provides more accurate, unbiased and better localised measurements of key GW properties compared to most current methods. The added flexibility offered by the scaling parameter and our new spectral window presented here extend the usefulness of our 2DST method to other areas of geophysical data analysis and beyond.

  3. Extinction of Lean Near-Limit Methane/Air Flames at Elevated Pressures under Normal- and Micro-Gravity

    SciTech Connect

    Zhang, H.; Fan, R.; Wang, S.; Tian, X.; Xu, K.; Wan, S.; Egolfopoulos, Fokion N.

    2011-01-01

    The extinction limits of lean, near-limit, counterflowing, CH{sub 4}/air twin premixed flames were studied experimentally at evaluated pressures and under normal- and micro-gravity conditions utilizing the 3.5 s drop tower of the National Microgravity Laboratory of China. The results showed that under micro-gravity conditions the natural convection is minimized and the flames become more planar and symmetric compared to normal gravity. In both normal- and micro-gravity experiments and for a given strain rate and fuel concentration, the flame luminosity was found to enhance as the pressure increases. On the other hand, at a given pressure, the flame luminosity was determined to weaken as the strain rate decreases. At a given strain rate, the fuel concentration at extinction was found to vary non-monotonically with pressure, namely it first increases and subsequently decreases with pressure. The limit fuel concentration peaks around 3 and 4 atm under normal- and micro-gravity, respectively. The extinction limits measured at micro-gravity were in good agreement with predictions obtained through detailed numerical simulations but they are notably lower compared to the data obtained under normal gravity. The simulations confirmed the non-monotonic variation of flammability limits with pressure, in agreement with previous studies. Sensitivity analysis showed that for pressures between one and 5 atm, the near-limit flame response is dominated by the competition between the main branching, H + O{sub 2} → OH + O, and the pressure sensitive termination, H + O{sub 2} + M → HO{sub 2} + M, reaction. However, for pressures greater than 5 atm it was determined that the HO{sub 2} kinetics result in further chain branching in a way that is analogous to the third explosion limit of H{sub 2}/O{sub 2} mixtures.

  4. Spatial and Temporal Inter-Relationships Between Anomalies of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, percent cloud cover and cloud top pressure, and OLR. Near real time products, stating with September 2002, have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. Results in this paper included products through April 2008. The time period studied is marked by a substantial warming trend of Northern Hemisphere Extropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, are shown below, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. The ability to match this data represents a good test of a model's response to El Nino.

  5. Surface Air Temperature - Long-Term Anomaly Series and Absolute Values (Invited)

    NASA Astrophysics Data System (ADS)

    Jones, P. D.

    2013-12-01

    Of all the possible domains of the Earth's surface, surface air temperature has the longest records extending back at some European locations to the late-17th century. Since that time coverage has expanded to encompass most of the world since the 1950s onwards. It is this domain that provides our long-term record of change providing the yardstick against which we define both cooler and warmer and cooling and warming periods during the last 300 years. Assembling all the recorded data is beset with an array of problems: the reasons for collecting the data during this long period have been many and varied and instruments, exposures, observation times and methods of calculating averages have regularly changed. Even today, there is not a WMO-defined method of calculating the daily and monthly average with countries allowed to use whatever method they deem appropriate. The talk will discuss the history, the problems and the methods that have been used to overcome them. As we move to more automated measurements and dynamical approaches to interpolation (Reanalyses) the talk will conclude with a number of recommendations.

  6. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    NASA Technical Reports Server (NTRS)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  7. The south-central United States magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Starich, P. J.

    1985-01-01

    The South-Central United States Magnetic Anomaly is the most prominent positive feature in the MAGSAT scalar magnetic field over North America. The anomaly correlates with increased crustal thickness, above average crustal velocity, negative free-air gravity anomalies and an extensive zone of Middle Proterozoic anorogenic felsic basement rocks. Spherical dipole source inversion of the MAGSAT scalar data and subsequent calculation of reduced-to-pole and derivative maps provide additional constraints for a crustal magnetic model which corresponds geographically to the extensive Middle Proterozoic felsic rocks trending northeasterly across the United States. These felsic rocks contain insufficient magnetization or volume to produce the anomaly, but are rather indicative of a crustal zone which was disturbed during a Middle Proterozoic thermal event which enriched magnetic material deep in the crust.

  8. The south-central United States magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Braile, L. W. (Principal Investigator); Starich, P. J.

    1984-01-01

    The South-Central United States Magnetic Anomaly is the most prominent positive feature in the MAGSAT scalar magnetic field over North America. The anomaly correlates with increased crustal thickness, above average crustal velocity, negative free air gravity anomalies and an extensive zone of Middle Proterozoic anorogenic felsic basement rocks. Spherical dipole source inversion of the MAGSAT scalar data and subsequent calculation of reduced to pole and derivative maps provide constraints for a crustal magnetic model which corresponds geographically to the extensive Middle Proterozoic felsic rocks trending northeasterly across the United States. These felsic rocks contain insufficient magnetization or volume to produce the anomaly, but are rather indicative of a crustal zone which was disturbed during a Middle Proterozoic thermal event which enriched magnetic material deep in the crust.

  9. The Moho relief and the tectonic implications in North Vietnam using gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Hsieh, H.; Yen, H.; Toan, D.

    2010-12-01

    The Red River fault system in Vietnam is considered as a complex rupture zone by the South China platform and the Indochina plate. There are some complex structures problems unsolved. The geophysical data are easily to explore the first step investigation. In this study, we combined the Bouguer gravity anomaly on land and the free-air gravity anomaly from satellite in ocean area to obtain the complete gravity anomaly of North Vietnam. We applied the FFT method to analyze the gravity effects from shallow and deeper structures. After remove the possible effects, the Moho topography is simulated from 3D inversion method. The magnetic anomaly usually indicates the igneous minerals distribution beneath the area. In Vietnam, we try to estimate the magnetic basement depth and Curie point depth from the magnetic anomaly. After numerical modeling for two potential fields, we have obtained preliminary results beneath the Red River fault zone and its vicinity. The residual gravity anomaly map is parallel the trend of faults distributions. The Moho depth beneath the Red River fault zone is about 30-40km. From magnetic anomaly map, the distributions of intrusive and igneous rocks were easily distinguished. The Curie point depth map is also shown the lower boundary of igneous rocks.

  10. Models for Near-Ridge Seamounts Constrained by Gravity Observations

    NASA Astrophysics Data System (ADS)

    Kostlan, M.; McClain, J. S.

    2009-12-01

    In an analysis of the seamount chain centered at 105°20’W, 9°05’N, west of the East Pacific Rise and south of the Clipperton transform fault, we compared measured free air gravity anomaly values with modeled gravity anomaly values. The seamount chain contains approximately ten seamounts trending roughly east-west, perpendicular to the mid-ocean ridge axis. They lie on lithosphere between 1.5 and 2.7 Ma in age. Based on its position and age, the seamount chain appears to be associated with the 9°03’N overlapping spreading center (OSC). This OSC includes several associated seamount chains, aligned generally east-west, and of varying ages. The observed data include both free air gravity anomalies and bathymetry of the seamount chain, provided by the National Geophysical Data Center (NGDC), and was selected because the gravity measurements are relatively well covered. We used a series of different structural models of the oceanic crust and mantle to generate gravity anomalies associated with the sea mounts. The models utilize Parker’s algorithm to generate these free air gravity anomalies. We compute a gravity residual by subtracting the calculated anomalies from the observed anomalies. The models include one with a crust of a constant thickness (6 km), while another introduces a constant-thickness Layer 2A. In contrast, a third model included a variable thickness crust, where the thickness is governed by Airy compensation. The calculations show that the seamounts must be partly compensated, because the constant-thickness models predict a high negative residual (or they produce an anomaly which is too high). In contrast, the Airy compensation model produces an anomaly that is too low at the longer wavelengths, indicating that the lithosphere must have some strength, and that flexure must be supporting part of the load of the seamount chain. This contrasts with earlier studies that indicate young, near-ridge seamounts do not result in flexure of the thin

  11. Gravity data from the San Pedro River Basin, Cochise County, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Winester, Daniel

    2011-01-01

    The U.S. Geological Survey, Arizona Water Science Center in cooperation with the National Oceanic and Atmospheric Administration, National Geodetic Survey has collected relative and absolute gravity data at 321 stations in the San Pedro River Basin of southeastern Arizona since 2000. Data are of three types: observed gravity values and associated free-air, simple Bouguer, and complete Bouguer anomaly values, useful for subsurface-density modeling; high-precision relative-gravity surveys repeated over time, useful for aquifer-storage-change monitoring; and absolute-gravity values, useful as base stations for relative-gravity surveys and for monitoring gravity change over time. The data are compiled, without interpretation, in three spreadsheet files. Gravity values, GPS locations, and driving directions for absolute-gravity base stations are presented as National Geodetic Survey site descriptions.

  12. Worldwide complete spherical Bouguer and isostatic anomaly maps

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2011-12-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis

  13. Predicting gravity and sediment thickness in Afghanistan

    NASA Astrophysics Data System (ADS)

    Jung, W.; Brozena, J.; Peters, M.

    2013-02-01

    The US Naval Research Laboratory conducted comprehensive high-altitude (7 km above mean sea level) aero-geophysical surveys over Afghanistan in 2006 (Rampant Lion I). The surveys were done in collaboration with the US Geological Survey and upon the request of Islamic Republic of Afghanistan Ministry of Mines. In this study, we show that a best fitting admittance between topography and airborne gravity in western Afghanistan can be used to predict airborne gravity for the no-data area of eastern Afghanistan where the mountains are too high to conduct airborne surveys, due to the threat of ground fire. The differences between the airborne and the predicted gravity along a tie-track through the no-data area were found to be within ±12 mGal range with rms difference 7.3 mGal, while those between the predicted gravity from a simple Airy model (with compensation depth of 32 km and crustal density of 2.67 g cm-3) and the airborne gravity were within ±22 mGal range with rms difference 10.3 mGal. A combined airborne free-air anomaly has been constructed by merging the predicted gravity with the airborne data. We also demonstrate that sediment thickness can be estimated for basin areas where surface topography and airborne free-air anomaly profiles do not show a correlation presumably because of thick sediments. In order to estimate sediment thickness, we first determine a simple linear relationship from a scatter plot of the airborne gravity points and the interpolated Shuttle Radar Topography Mission (SRTM) topography along the Rampant Lion I tracks, and computed corresponding quasi-topography tracks by multiplying the linear relationship with the airborne free-air anomalies. We then take the differences between the SRTM and quasi-topography as a first-order estimate of sediment thickness. A global gravity model (GOCO02S), upward continued to the same altitude (7 km above mean sea level) as the data collection, was compared with the low-pass filtered (with cutoff

  14. Satellite Elevation Magnetic and Gravity Models of Major South American Plate Tectonic Features

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Lidiak, E. G.; Keller, G. R. (Principal Investigator); Longacre, M. B.

    1984-01-01

    Some MAGSAT scalar and vector magnetic anomaly data together with regional gravity anomaly data are being used to investigate the regional tectonic features of the South American Plate. An initial step in this analysis is three dimensional modeling of magnetic and gravity anomalies of major structures such as the Andean subduction zone and the Amazon River Aulacogen at satellite elevations over an appropriate range of physical properties using Gaus-Legendre quadrature integration method. In addition, one degree average free-air gravity anomalies of South America and adjacent marine areas are projected to satellite elevations assuming a spherical Earth and available MAGSAT data are processed to obtain compatible data sets for correlation. Correlation of these data sets is enhanced by reduction of the MAGSAT data to radial polarization because of the profound effect of the variation of the magnetic inclination over South America.

  15. A harmonic analysis of lunar gravity

    NASA Astrophysics Data System (ADS)

    Bills, B. G.; Ferrari, A. J.

    1980-02-01

    An improved model of lunar global gravity has been obtained by fitting a sixteenth-degree harmonic series to a combination of Doppler tracking data from Apollo missions 8, 12, 15, and 16, and Lunar Orbiters 1, 2, 3, 4, and 5, and laser ranging data to the lunar surface. To compensate for the irregular selenographic distribution of these data, the solution algorithm has also incorporated a semi-empirical a priori covariance function. Maps of the free-air gravity disturbance and its formal error are presented, as are free-air anomaly and Bouguer anomaly maps. The lunar gravitational variance spectrum has the form V(G; n) = O(n to the -4th power), as do the corresponding terrestrial and martian spectra. The variance spectra of the Bouguer corrections (topography converted to equivalent gravity) for these bodies have the same basic form as the observed gravity; and, in fact, the spectral ratios are nearly constant throughout the observed spectral range for each body. Despite this spectral compatibility, the correlation between gravity and topography is generally quite poor on a global scale.

  16. An Analysis of Simulated and Observed Global Mean Near-Surface Air Temperature Anomalies from 1979 to 1999: Trends and Attribution of Causes

    NASA Technical Reports Server (NTRS)

    MacKay, R. M.; Ko, M. K. W.

    2001-01-01

    The 1979 - 1999 response of the climate system to variations in solar spectral irradiance is estimated by comparing the global averaged surface temperature anomalies simulated by a 2D (two dimensional) energy balance climate model to observed temperature anomalies. We perform a multiple regression of southern oscillation index and the individual model responses to solar irradiance variations, stratospheric and tropospheric aerosol loading, stratospheric ozone trends, and greenhouse gases onto each of five near-surface temperature anomaly data sets. We estimate the observed difference in global mean near surface air temperature attributable to the solar irradiance difference between solar maximum and solar minimum to be between 0.06 and 0.11 K, and that 1.1 - 3.8% of the total variance in monthly mean near-surface air temperature data is attributable to nations in solar spectral irradiance. For the five temperature data sets used in our analysis, the trends in raw monthly mean temperature anomaly data have a large range, spanning a factor of 3 from 0.06 to 0.17 K/decade. However. our analysis suggests that trends in monthly temperature anomalies attributable to the combination of greenhouse gas, stratospheric ozone, and tropospheric sulfate aerosol variations are much more consistent among data sets, ranging from 0.16 to 0.24 K/decade. Our model results suggest that roughly half of the warming from greenhouse gases is cancelled by the cooling from changes in stratospheric ozone. Tropospheric sulfate aerosol loading in the present day atmospheric contributes significantly to the net radiative forcing of the present day climate system. However, because the change in magnitude and latitudinal distribution of tropospheric sulfate aerosol has been small over the past 20 years, the change in the direct radiative forcing attributable to changes in aerosol loading over this time is also small.

  17. On the effect of pressure, oxygen concentration, air flow and gravity on simulated pool fires

    NASA Technical Reports Server (NTRS)

    Torero, J. L.; Most, J. M.; Joulain, P.

    1995-01-01

    The initial development of a fire is characterized by the establishment of a diffusion flame over the surface of a the condensed fuel and is particularly influenced by gravity, with most of the gaseous flow induced by natural convection. Low initial momentum of the fuel vapor, strong buoyant flows induced by the hot post-combustion gases and consequently low values of the Froude number (inertia-gravity forces ratio) are typical of this kind of scenario. An experimental study is conducted by using a porous burner to simulate the burning of a horizontal combustible surface. Ethane is used as fuel and different mixtures of oxygen and nitrogen as oxidizer. The magnitude of the fuel injection velocities is restricted to values that will keep the Froude number on the order of 10-5, when calculated at normal gravity and pressure, which are characteristic of condensed fuel burning. Two different burners are used, a circular burner (62 mm diameter) placed inside a cylindrical chamber (0.3 m diameter and 1.0 m height) and a rectangular burner (50 mm wide by 200 mm long) placed in a wind tunnel (350 mm long) of rectangular cross section (120 mm wide and 90 mm height). The first burner is used to study the effect of pressure and gravity in the absence of a forced flow parallel to the surface. The second burner is used to study the effect of a forced flow parallel to the burner surface as well as the effect of oxygen concentration in the oxidizer flow. In this case experiments are also conducted at different gravity levels (micro-gravity, 0.2 g(sub 0), g(sub 0) and 1.8 g(sub 0)) to quantify the relative importance of buoyancy.

  18. Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon

    2002-01-01

    Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.

  19. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    USGS Publications Warehouse

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  20. Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera

    NASA Technical Reports Server (NTRS)

    Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.

    2011-01-01

    Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.

  1. Mass Anomalies on Ganymede

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Anderson, J. D.; Jacobson, R. A.; Lau, E. L.; Moore, W. B.; Palguta, J.

    2004-01-01

    Radio Doppler data from two Ganymede encounters (G1 and G2) on the first two orbits in the Galileo mission have been analyzed previously for gravity information . For a satellite in hydrostatic equilibrium, its gravitational field can be modeled adequately by a truncated spherical harmonic series of degree two. However, a fourth degree field is required in order to fit the second Galileo flyby (G2). This need for a higher degree field strongly suggests that Ganymede s gravitational field is perturbed by a gravity anomaly near the G2 closest approach point (79.29 latitude, 123.68 west longitude). In fact, a plot of the Doppler residuals , after removal of the best-fit model for the zero degree term (GM) and the second degree moments (J2 and C22), suggests that if an anomaly exists, it is located downtrack of the closest approach point, closer to the equator.

  2. Principal facts for gravity stations in the Elko, Steptoe Valley, Coyote Spring Valley, and Sheep Range areas, eastern and southern Nevada

    USGS Publications Warehouse

    Berger, D.L.; Schaefer, D.H.; Frick, E.A.

    1990-01-01

    Principal facts for 537 gravity stations in the carbonate-rock province of eastern and southern Nevada are tabulated and presented. The gravity data were collected in support of groundwater studies in several valleys. The study areas include the Elko area, northern Steptoe Valley, Coyote Spring Valley, and the western Sheep Range area. The data for each site include values for latitude, longitude, altitude, observed gravity, free- air anomaly, terrain correction, and Bouguer anomaly (calculated at a bedrock density of 2.67 g/cu cm. (USGS)

  3. Airborne Gravity Gradiometry Resolves a Full Range of Gravity Frequencies

    NASA Astrophysics Data System (ADS)

    Mataragio, J.; Brewster, J.; Mims, J.

    2007-12-01

    Airborne Full Tensor Gradiometry (Air\\-FTGR) was flown at high altitude coincident with Airborne Gravity (AG) flown in 2003 in West Arnhem Land, Australia. A preliminary analysis of two data sets indicates that the Air\\-FTGR system has the capability of resolving intermediate to long wavelengths features that may be associated with relatively deeper geological structures. A comparison of frequency filtered slices and power spectral density (PSD) for both data sets using the short (> 5 km), intermediate (10 km) and long (20 km) wavelengths reveals that high altitude Air\\-FTGR data show greater response in high frequency anomalies than a conventional Airborne Gravity and matches well with the AG even at the longest wavelengths anomalies. The effect of line spacing and target resolution was examined between the two data sets. Reprocessed gradient and AG data at 2, 4 and 6 km line spacing suggest that Air\\-FTGR could be effectively flown at a comparatively wider line spacing to resolve similar targets the AG would resolve with tighter line spacing. Introduction Airborne Full Tensor Gradiometry (Air\\-FTGR) data have been available to the mining industry since 2002 and their use for geologic applications is well established. However, Air\\-FTGR data has been mostly considered and used in mapping and delineation of near surface geological targets. This is due to the fact that gravity gradiometer measurements are well suited to capture the high frequency signal associated with near\\-surface targets ( Li, 2001). This is possible because the gradiometer signal strength falls off with the cube of the distance to the target. Nonetheless, in recent years there has been an increasing demand from the mining, oil, and gas industry in utilizing Full Tensor Gravity Gradiometer as a mapping tool for both regional and prospect level surveys. Air\\-FTGR as a Regional Mapping Tool Several, relatively low altitude surveys have been successfully flown in Brazil, Canada and Australia

  4. Aeromagnetic, gravity anomaly, and derivative maps of the Craig and Dixon Entrance 1-degree by 3-degree quadrangles of southeastern Alaska

    USGS Publications Warehouse

    Wynn, Jeffrey C.; Kucks, R.P.; Grybeck, D.J.

    1999-01-01

    This CD-ROM contains aeromagnetic, gravity, geology, and topographic data as well as several derivative products, for the Craig and Dixon Entrance 1? ? 3? quadrangles of Southeastern Alaska. The data were collected by the U.S. Geological Survey directly and by means of several contract airborne surveys, through August 1991.

  5. The Relationship Between Surface Temperature Anomaly Time Series and those of OLR, Water Vapor, and Cloud Cover as Observed Using Nine Years of AIRS Version-5 Level-3 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2011-01-01

    Outline: (1) Comparison of AIRS and CERES anomaly time series of outgoing longwave radiation (OLR) and OLR(sub CLR), i.e. Clear Sky OLR (2) Explanation of recent decreases in global and tropical mean values of OLR (3) AIRS "Short-term" Longwave Cloud Radiative Feedback -- A new product

  6. World gravity standards

    NASA Technical Reports Server (NTRS)

    Uotila, U. A.

    1978-01-01

    In order to use gravity anomalies in geodetic computations and geophysical interpretations, the observed gravity values from which anomalies are derived should be referred to one consistent world wide system. The International Gravity Standardization Net 1971 was adapted by the International Union of Geodesy and Geophysics at Moscow in 1971, the network was result of extensive cooperation by many organizations and individuals around the world. The network contains more than 1800 stations around the world. The data used in the adjustment included more than 25,000 gravimetry, pendulum and absolute measurements.

  7. The south-central United States magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Starich, P. J.; Hinze, W. J.; Braile, L. W.

    1985-01-01

    A positive magnetic anomaly, which dominates the MAGSAT scalar field over the south-central United States, results from the superposition of magnetic effects from several geologic sources and tectonic structures in the crust. The highly magnetic basement rocks of this region show good correlation with increased crustal thickness, above average crustal velocity and predominantly negative free-air gravity anomalies, all of which are useful constraints for modeling the magnetic sources. The positive anomaly is composed of two primary elements. The western-most segment is related to middle Proterozoic granite intrusions, rhyolite flows and interspersed metamorphic basement rocks in the Texas panhandle and eastern New Mexico. The anomaly and the magnetic crust are bounded to the west by the north-south striking Rio Grande Rift. The anomaly extends eastward over the Grenville age basement rocks of central Texas, and is terminated to the south and east by the buried extension of the Ouachita System. The northern segment of the anomaly extends eastward across Oklahoma and Arkansas to the Mississippi Embayment. It corresponds to a general positive magnetic region associated with the Wichita Mountains igneous complex in south-central Oklahoma and 1.2 to 1.5 Ga. felsic terrane to the north.

  8. Behavior of the lean methane-air flame at zero-gravity

    NASA Technical Reports Server (NTRS)

    Noe, K. A.; Strehlow, R. A.

    1985-01-01

    A special rig was designed and constructed to be compatible with the NASA Lewis Research Center Airborne Research Laboratory to allow the study of the effect of gravity on the behavior of lean limit in a standard 50.4 mm (2 in.) internal diameter tube when the mixtures are ignited at the open end and propagate towards the closed end of the tube. The lean limit at zero gravity was found to be 5.10% methane and the flame was found to extenguish in a manner previously observed for downward propagating flames at one g. It was observed that g-jitter could be maintained at less than + or 0.04 g on most zero g trajectories. All of propagating lean limit flames were found to be sporadically cellularly unstable at zero g. There was no observable correlation between the occurrence of g-jitter and the lean limit, average propagation speed of the flame through the tube or the occurrence of cellular instability.

  9. Isostatic gravity map of the Monterey 30 x 60 minute quadrangle and adjacent areas, California

    USGS Publications Warehouse

    Langenheim, V.E.; Stiles, S.R.; Jachens, R.C.

    2002-01-01

    The digital dataset consists of one file (monterey_100k.iso) containing 2,385 gravity stations. The file, monterey_100k.iso, contains the principal facts of the gravity stations, with one point coded per line. The format of the data is described below. Each gravity station has a station name, location (latitude and longitude, NAD27 projection), elevation, and an observed gravity reading. The data are on the IGSN71 datum and the reference ellipsoid is the Geodetic Reference System 1967 (GRS67). The free-air gravity anomalies were calculated using standard formulas (Telford and others, 1976). The Bouguer, curvature, and terrain corrections were applied to the free-air anomaly at each station to determine the complete Bouguer gravity anomalies at a reduction density of 2.67 g/cc. An isostatic correction was then applied to remove the long-wavelength effect of deep crustal and/or upper mantle masses that isostatically support regional topography.

  10. United States Air Force Academy's micro-gravity research using G-0307

    NASA Technical Reports Server (NTRS)

    Turner, G. D.

    1986-01-01

    The current materials research being done in microgravity solidification and the future experimentation planned onboard a space shuttle mission is reported. The Department of Engineering Mechanics at the USAF Academy is developing a microgravity furnace to be used on board the space shuttle. The microgravity furnace will be used to conduct materials research dealing with such topics as immiscible alloy solidification. The purpose behind this research project is three-fold: to develop a simple, inexpensive, and easy to use furnace to conduct space materials research, to conduct a solidification experiment on a lead-zinc alloy in space that macrosegregates due to gravity, and to provide a research mechanism for students to get involved with space materials research.

  11. Comparison of AIRS Version-6 OLR Climatologies and Anomaly Time Series with Those of CERES and MERRA-2

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae; Iredell, Lena

    2016-01-01

    RCs of AIRS and MERRA-2 500 mb specific humidity agree very well in terms of spatial patterns, but MERRA-2 ARCs are larger in magnitude and show a spurious moistening globally and over Central Africa. AIRS and MERRA-2 fractional cloud cover ARCs agree less well with each other. MERRA-2 shows a spurious global mean increase in cloud cover that is not found in AIRS, including a large spurious cloud increase in Central Africa. AIRS and MERRA-2 ARCs of surface skin and surface air temperatures are all similar to each other in patterns. AIRS shows a small global warming over the 13 year period, while MERRA-2 shows a small global cooling. This difference results primarily from spurious MERRA-2 temperature trends at high latitudes and over Central Africa. These differences all contribute to the spurious negative global MERRA-2 OLR trend. AIRS Version-6 confirms that 2015 is the warmest year on record and that the Earth's surface is continuing to warm.

  12. Sensitivity of mountain permafrost to extreme climatic events; a case study from the 2006-2007 air temperature anomaly in southern Norway

    NASA Astrophysics Data System (ADS)

    Isaksen, K.; Ødegård, R. S.; Eiken, T.; Sollid, J. L.

    2009-04-01

    An unusual synoptic situation with long periods of warm and humid southerlies produced record breaking temperatures in southern Norway during the period from July 2006 to June 2007, particularly late summer, autumn and early winter 2006-2007. For the one-year period, the temperature anomaly was 2.5-3.0 °C above the 1961-1990 average, with highest anomalies in the eastern and northern parts of southern Norway. The homogenised mean air temperature for the station Kjøremsgrende (62°06'N, 9°03'E, 626 m a.s.l.) was 2.9 °C above the 1961-1990 average. This is the warmest since records began in 1867. The most striking month was December 2006, when mean air temperature was 7.5 °C above the 1961-1990 average. At the official mountain station Fokstugu (62°11'N, 9°29'E, 972 m a.s.l.), on Dovrefjell, there were no days with temperatures below freezing in August and September. The late summer heat had a particularly strong impact on snow, ice and frozen ground in the mountains of southern Norway. Official mass balance investigations performed on three glaciers showed that they had their most negative net balances ever measured. Analysis of a leather shoe that melted out from a perennial snowfield at 2000 meters altitude was dated back 3,400 years old. Several complete arrows and a spade made from wood were also found in front of perennial snowfields. This study seeks to analyse the impact of the 2006-2007 air temperature anomaly on the ground thermal regime, including permafrost and seasonal frost, in the high mountains of Jotunheimen and Dovrefjell in southern Norway. In Jotunheimen, ground temperature data are monitored in a 129 m deep permafrost borehole, located at Juvvasshøe (61°40'N, 8°22'E, 1894 m a.s.l.), established within the PACE-project (Permafrost and Climate in Europe). On Dovrefjell ground temperatures are measured in a transect from deep seasonal frost at 1039 m a.s.l. to discontinuous mountain permafrost at 1505 m a.s.l. in 11 boreholes, 9 m deep

  13. Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities: influence on air quality.

    PubMed

    Sánchez de la Campa, Ana M; Sánchez-Rodas, Daniel; González Castanedo, Yolanda; de la Rosa, Jesús D

    2015-06-30

    A characterization of chemical composition and source contribution of PM10 in three representative environments of southwest Spain related to mining activities (mineral extraction, mining waste and Cu-smelting) has been performed. A study of geochemical anomalies was conducted in the samples collected at the three stations between July 2012 and October 2013. The influence of Cu-smelting processes was compared to other mining activities, where common tracers were identified. The Cu and As concentrations in the study area are higher than in other rural and urban stations of Spain, in which geochemical anomalies of As, Se, Bi, Cd, and Pb have been reported. The results of source contribution showed similar geochemical signatures in the industrial and mining factors. However, the contribution to PM10 is different according to the type of industrial activity. These results have been confirmed performing an arsenic speciation analysis of the PM10 samples, in which the mean extraction efficiency of arsenic depended on the origin of the samples. These finding indicate that the atmospheric particulate matter emitted from Cu-smelting has a high residence time in the atmosphere. This indicates that the Cu-smelter can impact areas of high ecological interest and considered as clean air. PMID:25748998

  14. Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities: influence on air quality.

    PubMed

    Sánchez de la Campa, Ana M; Sánchez-Rodas, Daniel; González Castanedo, Yolanda; de la Rosa, Jesús D

    2015-06-30

    A characterization of chemical composition and source contribution of PM10 in three representative environments of southwest Spain related to mining activities (mineral extraction, mining waste and Cu-smelting) has been performed. A study of geochemical anomalies was conducted in the samples collected at the three stations between July 2012 and October 2013. The influence of Cu-smelting processes was compared to other mining activities, where common tracers were identified. The Cu and As concentrations in the study area are higher than in other rural and urban stations of Spain, in which geochemical anomalies of As, Se, Bi, Cd, and Pb have been reported. The results of source contribution showed similar geochemical signatures in the industrial and mining factors. However, the contribution to PM10 is different according to the type of industrial activity. These results have been confirmed performing an arsenic speciation analysis of the PM10 samples, in which the mean extraction efficiency of arsenic depended on the origin of the samples. These finding indicate that the atmospheric particulate matter emitted from Cu-smelting has a high residence time in the atmosphere. This indicates that the Cu-smelter can impact areas of high ecological interest and considered as clean air.

  15. Reliability of CHAMP Anomaly Continuations

    NASA Technical Reports Server (NTRS)

    vonFrese, Ralph R. B.; Kim, Hyung Rae; Taylor, Patrick T.; Asgharzadeh, Mohammad F.

    2003-01-01

    CHAMP is recording state-of-the-art magnetic and gravity field observations at altitudes ranging over roughly 300 - 550 km. However, anomaly continuation is severely limited by the non-uniqueness of the process and satellite anomaly errors. Indeed, our numerical anomaly simulations from satellite to airborne altitudes show that effective downward continuations of the CHAMP data are restricted to within approximately 50 km of the observation altitudes while upward continuations can be effective over a somewhat larger altitude range. The great unreliability of downward continuation requires that the satellite geopotential observations must be analyzed at satellite altitudes if the anomaly details are to be exploited most fully. Given current anomaly error levels, joint inversion of satellite and near- surface anomalies is the best approach for implementing satellite geopotential observations for subsurface studies. We demonstrate the power of this approach using a crustal model constrained by joint inversions of near-surface and satellite magnetic and gravity observations for Maude Rise, Antarctica, in the southwestern Indian Ocean. Our modeling suggests that the dominant satellite altitude magnetic anomalies are produced by crustal thickness variations and remanent magnetization of the normal polarity Cretaceous Quiet Zone.

  16. Bangui Anomaly

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.

    2004-01-01

    Bangui anomaly is the name given to one of the Earth s largest crustal magnetic anomalies and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this anomaly. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough anomaly with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT anomaly at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough anomalies of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic anomalies, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT anomaly (figure 2). This elliptically shaped anomaly is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui anomaly is composed of three segments; there are two positive anomalies lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.

  17. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Time-series for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel; Iredell, Lena

    2010-01-01

    The ROBUST nature (biases are not as important as previous GCM-evaluations suggest) of the AIRS-observations-generated ARC-maps and ATs as well as their interrelations suggest that they could be a useful tool to select CGCMs which may be considered the reliable, i.e., to be trusted even for longer-term climate drift/change predictions (even on the regional scale). Get monthly gridded CGCM time-series of atmospheric variables coinciding with the timeframe of the AIRS analyses for at least 5-6 years and do the actual evaluations of ARC-maps and ATs for the coinciding time periods.

  18. A new method for extracting near-surface mass-density anomalies from land-based gravity data, based on a special case of Poisson's PDE at the Earth's surface: A case study of salt diapirs in the south of Iran

    NASA Astrophysics Data System (ADS)

    AllahTavakoli, Y.; Safari, A.; Ardalan, A.; Bahroudi, A.

    2015-12-01

    The current research provides a method for tracking near-surface mass-density anomalies via using only land-based gravity data, which is based on a special version of Poisson's Partial Differential Equation (PDE) of the gravitational field at Earth's surface. The research demonstrates how the Poisson's PDE can provide us with a capability to extract the near-surface mass-density anomalies from land-based gravity data. Herein, this version of the Poisson's PDE is mathematically introduced to the Earth's surface and then it is used to develop the new method for approximating the mass-density via derivatives of the Earth's gravitational field (i.e. via the gradient tensor). Herein, the author believes that the PDE can give us new knowledge about the behavior of the Earth's gravitational field at the Earth's surface which can be so useful for developing new methods of Earth's mass-density determination. In a case study, the proposed method is applied to a set of gravity stations located in the south of Iran. The results were numerically validated via certain knowledge about the geological structures in the area of the case study. Also, the method was compared with two standard methods of mass-density determination. All the numerical experiments show that the proposed approach is well-suited for tracking near-surface mass-density anomalies via using only the gravity data. Finally, the approach is also applied to some petroleum exploration studies of salt diapirs in the south of Iran.

  19. World Gravity Map (WGM) Project: Objectives and Status

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Briais, A.; Peyrefitte, A.; Biancale, R.; Gabalda, G.; Moreaux, G.; Sarrailh, M.; Fayard, T.

    2009-12-01

    The WGM project is a gravity mapping project undertaken under the aegis of the Commission for the Geological Map of the World (CGMW) to complement a set of global geological and geophysical digital maps published and updated by CGMW, such as the World Digital Magnetic Anomaly Map (WDMAM), released in 2007. This new global digital map aims to provide a high-resolution picture of the gravity anomalies of the world (free-air and topography-corrected Bouguer) based on the available information on the Earth gravity field, with the final objective to contribute to research and educational projects. The WGM project is conducted by the International Gravimetric Bureau (IGB), a center of the International Gravity Field Service (IGFS) of the International Association of Geodesy (IAG), with the support of the United Nations Educational Scientific and Cultural Organization (UNESCO). Major contributions to the WGM are provided by the EGM08 global model, recently released by the National Geospatial-Intelligence Agency (NGA, USA), as well as the new global marine gravity fields derived from satellite altimetry (DNSC08 computed at the Danish National Space Center, and V18.1 computed at Scripps Institution of Oceanography). The WGM also aims to improve the gravity anomalies at regional scale, using available products from recent regional compilations of land, marine and airborne surveys (possibly derived from BGI or other global or regional databases). As other geophysical maps published by CGMW, the WGM maps and digital products should be regularly updated according to the incoming gravity datasets. We present here the current status of the WGM project.

  20. The Effect Of Randomness On The Stability Of Capillary Gravity Waves In The Presence Of Air Flowing Over Water

    NASA Astrophysics Data System (ADS)

    Majumder, D. P.; Dhar, A. K.

    2015-12-01

    A nonlinear spectral transport equation for the narrow band Gaussian random surface wave trains is derived from a fourth order nonlinear evolution equation, which is a good starting point for the study of nonlinear water waves. The effect of randomness on the stability of deep water capillary gravity waves in the presence of air flowing over water is investigated. The stability is then considered for an initial homogenous wave spectrum having a simple normal form to small oblique long wave length perturbations for a range of spectral widths. An expression for the growth rate of instability is obtained; in which a higher order contribution comes from the fourth order term in the evolution equation, which is responsible for wave induced mean flow. This higher order contribution produces a decrease in the growth rate. The growth rate of instability is found to decrease with the increase of spectral width and the instability disappears if the spectral width increases beyond a certain critical value, which is not influenced by the fourth order term in the evolution equation.

  1. Gravity and geoid model for South America

    NASA Astrophysics Data System (ADS)

    Blitzkow, Denizar; Oliveira Cancoro de Matos, Ana Cristina; do Nascimento Guimarães, Gabriel; Pacino, María Cristina; Andrés Lauría, Eduardo; Nunes, Marcelo; Castro Junior, Carlos Alberto Correia e.; Flores, Fredy; Orihuela Guevara, Nuris; Alvarez, Ruber; Napoleon Hernandez, José

    2016-04-01

    In the last 20 years, South America Gravity Studies (SAGS) project has undertaken an ongoing effort in establishing the fundamental gravity network (FGN); terrestrial, river and airborne relative gravity densifications; absolute gravity surveys and geoid (quasi-geoid) model computation for South America. The old FGN is being replaced progressively by new absolute measurements in different countries. In recent years, Argentina, Bolivia, Brazil, Ecuador, Paraguay and Venezuela organizations participated with relative gravity surveys. Taking advantage of the large amount of data available, GEOID2015 model was developed for 15°N and 57°S latitude and 30 ° W and 95°W longitude based on EIGEN-6C4 until degree and order 200 as a reference field. The ocean area was completed with mean free air gravity anomalies derived from DTU10 model. The short wavelength component was estimated using FFT. The global gravity field models EIGEN-6C4, DIR_R5 were used for comparison with the new model. The new geoid model has been evaluated against 1,319 GPS/BM, in which 592 are located in Brazil and the reminder in other countries. The preliminary RMS difference between GPS/BM and GEOID2015 throughout South America and in Brazil is 46 cm and 17 cm, respectively. New activities are carrying out with the support of the IGC (Geographic and Cartographic Institute) under the coordination of EPUSP/LTG and CENEGEO (Centro de Estudos de Geodesia). The new project aims to establish new gravity points with the A-10 absolute gravimeter in South America. Recent such surveys occurred in São Paulo state, Argentina and Venezuela.

  2. Regional gravity analysis of the crustal structure of Tunisia

    NASA Astrophysics Data System (ADS)

    Jallouli, Chokri; Mickus, Kevin

    2000-01-01

    Gravity data were integrated with seismic refraction/reflection data, well data and geological investigations to determine a general crustal structure of Tunisia. The gravity data analysis included the construction of a complete Bouguer gravity anomaly map, residual gravity anomaly maps, horizontal gravity gradient maps and a 2.5-D gravity model. Residual gravity anomaly maps illustrate crustal anomalies associated with various structural domains within Tunisia including the Sahel Block, Saharian Flexure, Erg Oriental Basin, Algerian Anticlinorium, Gafsa Trough, Tunisian Trough, Kasserine Platform and the Tell Mountains. Gravity anomalies associated with these features are interpreted to be caused either by thickening or thinning of Palæozoic and younger sediments or by crustal thinning. Analysis of the residual gravity anomaly and horizontal gravity gradient maps also determined a number of anomalies that may be associated with previously unknown structures. A north-south trending gravity model in general indicated similar subsurface bodies as a coincident seismic model. However, thinner Mesozoic sediments within the Tunisian Trough, thinner Palæozoic sediments in the Gafsa Trough, and a greater offset on the Saharian Flexure were required by the gravity data. Additionally, basement uplifts under the Kasserine Platform and Gafsa Trough, not imaged by seismic data, were required by the gravity data. The gravity model revealed two previously unknown basins north and south of the Algerian Anticlinorium (5 km), while the Erg Oriental Basin is composed of at least two sub-basins, each with a depth of 5 km.

  3. Imaging of facial anomalies.

    PubMed

    Castillo, M; Mukherji, S K

    1995-01-01

    Anomalies of the face may occur in its lower or middle segments. Anomalies of the lower face generally involve the derivatives of the branchial apparatus and therefore manifest as defects in the mandible, pinnae, external auditory canals, and portions of the middle ears. These anomalies are occasionally isolated, but most of them occur in combination with systemic syndromes. These anomalies generally do not occur with respiratory compromise. Anomalies of the midface may extend from the upper lip to the forehead, reflecting the complex embryology of this region. Most of these deformities are isolated, but some patients with facial clefts, notably the midline cleft syndrome and holoprosencephaly, have anomalies in other sites. This is important because these patients will require detailed imaging of the face and brain. Anomalies of the midface tend to involve the nose and its air-conducting passages. We prefer to divide these anomalies into those with and without respiratory obstruction. The most common anomalies that result in airway compromise include posterior choanal stenoses and atresias, bilateral cysts (mucoceles) of the distal lacrimal ducts, and stenosis of the pyriform (anterior) nasal aperture. These may be optimally evaluated with computed tomography (CT) and generally require immediate treatment to ensure adequate ventilation. Rare nasal anomalies that also result in airway obstruction are agenesis of the pharynx, agenesis of the nose, and hypoplasia of the nasal alae. Agenesis of the nasopharynx and nose are complex anomalies that require both CT and magnetic resonance imaging (MRI). The diagnosis of hypoplasia of the nasal alae is a clinical one; these anomalies do not require imaging studies. Besides facial clefts, anomalies of the nose without respiratory obstruction tend to be centered around the nasofrontal region. This is the site of the most common sincipital encephaloceles. Patients with frontonasal and nasoethmoidal encephaloceles require both

  4. Satellite Geopotential Anomaly Constraints for the Crust of the Greenland-Iceland Region

    NASA Technical Reports Server (NTRS)

    vonFrese, R. R.; Leftwich, T. E.; Kim, H.; Taylor, Patrick T.; Kim, J.

    2004-01-01

    Satellite magnetometer observations of the Greenland-Iceland region compare quite well with lower altitude data. The satellite magnetic data suggest magnetically enhanced crust was emplaced by the Iceland Plume. Crustal thicknesses, which may be more than 30 km for the Greenland-Scotland Ridge, were obtained from inversion of the compensating terrain gravity effects that were estimated by spectral correlation analysis of the free-air gravity anomalies and terrain gravity effects. Regional magnetic anomaly maxima overlie possible thickened crust from eastern Iceland to the Greenland Coast. The Iceland-Faroe Ridge may involve thinner crust than the Greenland-Iceland portion of the Greenland-Scotland Ridge. The gravity derived crustal model exceeds a 0.7 correlation with available seismic estimates. In thermally active areas our gravity Moho estimates are systematically deeper than the seismic estimates suggesting local density reductions of the underlying lower crust/upper mantle. In south central Greenland, on the other hand, the gravity Moho estimates are shallower than seismic estimates to suggest a local enhancement of the lower crust/upper mantle density. The dichotomous crust of the Greenland-Iceland and Iceland-Faroe Ridges suggests unequal crustal development by the Iceland Plume and the Mid-Atlantic Ridge, where more crustal material may have been contributed to the North Atlantic Plate than the Eurasian Plate. A new thermal modeling scheme based on Poisson's relation between point pole gravity and thermal potentials allows estimation of magnetic crustal thicknesses. Subsequent magnetic anomaly inversion for susceptibility contrasts infers crustal development of the Greenland-Scotland Ridge by temporally variable pulses in plume strength.

  5. Principal facts for gravity stations in Dixie; Fairview, and Stingaree valleys, Churchill and Pershing counties, Nevada

    USGS Publications Warehouse

    Schaefer, D.H.; Thomas, J.M.; Duffrin, B.G.

    1984-01-01

    During March through July 1979, gravity measurements were made at 300 stations in Dixie Valley, Nevada. In December 1981, 45 additional stations were added--7 in Dixie Valley, 23 in Fairview Valley, and 15 in Stingaree Valley. Most altitudes were determined by using altimeters or topographic maps. The gravity observations were made with a Worden temperature-controlled gravimeter with an initial scale factor of 0.0965 milliGal/scale division. Principal facts for each of the 345 stations are tabulated; they consist of latitude, longitude, altitude, observed gravity, free-air anomaly, terrain correction, and Bouguer anomaly values at a bedrock density of 2.67 grams/cu cm. (Lantz-PTT)

  6. A 2000-yr reconstruction of air temperature in the Great Basin of the United States with specific reference to the Medieval Climatic Anomaly

    NASA Astrophysics Data System (ADS)

    Reinemann, Scott A.; Porinchu, David F.; MacDonald, Glen M.; Mark, Bryan G.; DeGrand, James Q.

    2014-09-01

    A sediment core representing the past two millennia was recovered from Stella Lake in the Snake Range of the central Great Basin in Nevada. The core was analyzed for sub-fossil chironomids and sediment organic content. A quantitative reconstruction of mean July air temperature (MJAT) was developed using a regional training set and a chironomid-based WA-PLS inference model (r2jack = 0.55, RMSEP = 0.9°C). The chironomid-based MJAT reconstruction suggests that the interval between AD 900 and AD 1300, corresponding to the Medieval Climate Anomaly (MCA), was characterized by MJAT elevated 1.0°C above the subsequent Little Ice Age (LIA), but likely not as warm as recent conditions. Comparison of the Stella Lake temperature reconstruction to previously published paleoclimate records from this region indicates that the temperature fluctuations inferred to have occurred at Stella Lake between AD 900 and AD 1300 correspond to regional records documenting hydroclimate variability during the MCA interval. The Stella Lake record provides evidence that elevated summer temperature contributed to the increased aridity that characterized the western United States during the MCA.

  7. The Origins of Air Parcels Uplifted in a Two Dimensional Gravity Wave in the Tropical Upper Troposphere During the NASA Stratosphere Troposphere Exchange Project (STEP)

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Pfister, Leonhard; Chan, K. Roland; Kritz, Mark; Kelly, Ken

    1989-01-01

    During January and February 1987, as part of the Stratosphere-Troposphere Exchange Project, the NASA ER-2 made 11 flights from Darwin, Australia to investigate dehydration mechanisms in the vicinity of the tropical tropopause. After the monsoon onset in the second week of January, steady easterly flow of 15-25 ms (exp -1) was established in the upper troposphere and lower stratosphere over northern Australia and adjacent seas. Penetrating into this regime were elements of the monsoon convection such as overshooting convective turrets and extensive anvils including cyclone cloud shields. In cases of the latter, the resulting flow obstructions tended to produce mesoscale gravity waves. In several instances the ER- 2 meteorological and trace constituent measurements provide a detailed description of the structure of these gravity waves. Among these was STEP Flight 6, 22-23 January. It is of particular interest to STEP because of the close proximity of ice-laden and dehydrated air on the same isentropic surfaces. Convective events inject large amounts of ice into the upper troposphere and lower stratosphere which may not be completely removed by local precipitation processes. In the present instance, a gravity wave for removed from the source region appears to induce relativity rapid upward motion in the ice-laden air and subsequent dessication. Potential mechanisms for such a localized removal process are under investigation.

  8. Gravity and crustal structure

    NASA Technical Reports Server (NTRS)

    Bowin, C. O.

    1976-01-01

    Lunar gravitational properties were analyzed along with the development of flat moon and curved moon computer models. Gravity anomalies and mascons were given particular attention. Geophysical and geological considerations were included, and comparisons were made between the gravitional fields of the Earth, Mars, and the Moon.

  9. DOWN'S ANOMALY.

    ERIC Educational Resources Information Center

    PENROSE, L.S.; SMITH, G.F.

    BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…

  10. Uhl's anomaly.

    PubMed Central

    Vecht, R J; Carmichael, D J; Gopal, R; Philip, G

    1979-01-01

    Uhl's anomaly of the heart is a rare condition. Another well-documented case is presented with a review of the published reports outlining the main clinical features and the bad overall prognosis. Right atriotomy should be avoided if closure of the atrial septal defect is attempted. Images PMID:465242

  11. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  12. Continental and oceanic magnetic anomalies: Enhancement through GRM

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.

    1985-01-01

    In contrast to the POGO and MAGSAT satellites, the Geopotential Research Mission (GRM) satellite system will orbit at a minimum elevation to provide significantly better resolved lithospheric magnetic anomalies for more detailed and improved geologic analysis. In addition, GRM will measure corresponding gravity anomalies to enhance our understanding of the gravity field for vast regions of the Earth which are largely inaccessible to more conventional surface mapping. Crustal studies will greatly benefit from the dual data sets as modeling has shown that lithospheric sources of long wavelength magnetic anomalies frequently involve density variations which may produce detectable gravity anomalies at satellite elevations. Furthermore, GRM will provide an important replication of lithospheric magnetic anomalies as an aid to identifying and extracting these anomalies from satellite magnetic measurements. The potential benefits to the study of the origin and characterization of the continents and oceans, that may result from the increased GRM resolution are examined.

  13. Reduced to pole long-wavelength magnetic anomalies of Africa and Europe

    NASA Technical Reports Server (NTRS)

    Olivier, R.; Hinze, W. J.; Vonfrese, R. R. B.

    1985-01-01

    To facilitate analysis of the tectonic framework for Africa, Europe and adjacent marine areas, MAGSAT scalar anomaly data are differentially reduced to the pole and compared to regional geologic information and geophysical data including surface free-air gravity anomaly data upward continued to satellite elevation (350 km) on a spherical Earth. Comparative analysis shows magnetic anomalies correspond with both ancient as well as more recent Cenozoic structural features. Anomalies associated with ancient structures are primarily caused by intra-crustal lithologic variations such as the crustal disturbance associated with the Bangui anomaly in west-central Africa. Anomalies correlative with Cenozoic tectonic elements appear to be related to Curie isotherm perturbations. A possible example of the latter is the well-defined trend of magnetic minima that characterize the Alphine orogenic belt from the Atlas mountains to Eurasia. In contrast, a well-defined magnetic satellite minimum extends across the stable craton from Finland to the Ural mountains. Prominent magnetic maxima characterize the Arabian plate, Iceland, the Kursk region of the central Russian uplift, and generally the Precambrian shields of Africa.

  14. Reduced to Pole Long-wavelength Magnetic Anomalies of Africa and Europe

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator); Olivier, R.

    1984-01-01

    To facilitate analysis of the tectonic framework for Africa, Europe and adjacent marine areas, MAGSAT scalar anomaly data are differentially reduced to the pole and compared to regional geologic information and geophysical data including surface free-air gravity anomaly data upward continued to satellite elevation (350 km) on a spherical Earth. Comparative analysis shows magnetic anomalies correspond with both ancient as well as more recent Cenozoic structural features. Anomalies associated with ancient structures are primarily caused by intra-crustal lithologic variations such as the crustal disturbance associated with the Bangui anomaly in west-central Africa. Anomalies correlative with Cenozoic tectonic elements appear to be related to Curie isotherm perturbations. A possible example of the latter is the well-defined trend of magnetic minima that characterize the Alpine orogenic belt from the Atlas mountains to Eurasia. In contrast, a well-defined magnetic satellite minimum extends across the stable craton from Finland to the Ural mountains. Prominent magnetic maxima characterize the Arabian plate, Iceland, the Kursk region of the central Russian uplift, and generally the Precambrian shields of Africa.

  15. Geophysical researches (gravity and magnetic) of the Eratosthenes Seamount in the eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Erbek, Ezgi; Dolmaz, M.

    2014-08-01

    New free-air gravity and magnetic maps of the Eratosthenes Seamount and its vicinity were regenerated from potential field data. Stages of data processing are power spectrum, upward continuation, filtering on the free-air gravity anomaly data. RTP, pseudo-gravity transformation map, power spectrum, upward continuation, filtering, AS, and HGAS were applied on the magnetic data. A HGAS map shows the images and locations of the Eratosthenes magnetic body. Spectral analysis of the gravity and magnetic anomalies indicates that there is an elliptical elongated structure of the Eratosthenes Seamount in the width of approx. 86 km NW-SE orientation and in the length of 138 km NE-SW orientation, with a strike of N40°E and inclined to NW. It is considered that 22.49 ± 0.08 km obtained from power spectrum of the gravity data may be related to the crust thickness. Also, 15.67 ± 0.02 km obtained from power spectrum of the magnetic data is considered to be related to the magmatic basement of the Eratosthenes Seamount.

  16. Borehole Gravity Measurements In The Salton Sea Scientific Drilling Program Well State 2-14

    SciTech Connect

    Kasameyer, P. W.; Hearst, J. R.

    1987-01-01

    Borehole gravity measurements over a depth range from 1737 to 1027 m, and the vertical gradient of gravity were measured at the Salton Sea Scientific Drilling Program well State 2-14. The borehole gravimetric densities matched the well logs, but the surface gradient was found to be 0.0040 mgal/m higher than expected. When the borehole observations are corrected for the observed free air gradient above ground, they produce densities which are nearly uniformly higher than log densities by about 0.07 gm/cm{sup 3}. These measurements require densities in the depth range .5 to 3 km, for a radius of a few kilometers around State 2-14 to be as dense as those found in State 2-14. Combining the borehole gravity and calculated vertical gravity gradients on the surface, we find that this densified zone covers much of a broad thermal anomaly to the northeast of the Salton Sea Geothermal Field.

  17. Comparative study of compensation mechanism of lunar impact basins from new gravity field model of SELENE (Kaguya)

    NASA Astrophysics Data System (ADS)

    Namiki, N.; Sugita, S.; Matsumoto, K.; Goossens, S.; Ishihara, Y.; Noda, H.; Ssasaki, S.; Iwata, T.; Hanada, H.; Araki, H.

    2009-04-01

    The gravity field is a fundamental physical quantity for the study of the internal structure and the evolution of planetary bodies. The most significant problem of the previous lunar gravity models, however, is the lack of direct observations of the far side gravity signals [1]. We then developed a satellite-to-satellite Doppler tracking sub-system for SELENE [2]. In this study, we adopt our new gravity field model with nearly full coverage of the lunar far side to discuss dichotomy of the lunar basins. Because all the nearside impact basins are filled with extensive mare basalt deposits, it is difficult to estimate the subsurface structures, such as uplift of the Moho surface, from gravity measurements. In contrast, far-side impact basins have much less or no mare basalt coverage. This may allow us to investigate the internal structure underneath impact basins. Such knowledge will be important in understanding the response of a solid planetary body to large meteoritic impacts and also the thermal state of the Moon during the late heavy bombardment period. There are distinctive differences between the anomalies of the near side principal mascons and the far side basins. As shown previously [1, 3], the near side principal mascons have sharp shoulders with a gravity plateau and a weakly negative gravity anomaly in the surroundings. In contrast, the far side basins are characterized by concentric rings of positive and negative anomalies. The circular gravity highs agree well with the topographic rims of the basins revealed by SELENE topography model STM-359_grid-02 [4]. In our gravity model, Orientale, Mendel-Rydberg, Lorentz, and Humboldtianum show more affinity with the far side basins than the near side principal mascons [5]. Korolev, Mendeleev, Planck, and Lorentz basins have sharp central peaks of which magnitude in free-air anomalies is almost equivalent to the one in Bouguer anomalies. On the other hand, Orientale, Mendel-Rydberg, Humboldtianum, Moscoviense

  18. Quantum gravity and the large scale anomaly

    SciTech Connect

    Kamenshchik, Alexander Y.; Tronconi, Alessandro; Venturi, Giovanni E-mail: Alessandro.Tronconi@bo.infn.it

    2015-04-01

    The spectrum of primordial perturbations obtained by calculating the quantum gravitational corrections to the dynamics of scalar perturbations is compared with Planck 2013 and BICEP2/Keck Array public data. The quantum gravitational effects are calculated in the context of a Wheeler-De Witt approach and have quite distinctive features. We constrain the free parameters of the theory by comparison with observations.

  19. New standards for reducing gravity data: The North American gravity database

    USGS Publications Warehouse

    Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.

    2005-01-01

    The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  20. Position from gravity

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1973-01-01

    Procedures for obtaining position from surface gravity observations are reviewed and their relevance assessed in the context of the application of modern geodetic techniques to programs of Earth and ocean physics. Solutions based on the use of surface layer techniques, the discrete value approach, and the development from Green's theorem are stated in summary, the latter being extended to order e cubed in the height anomaly. The representation of the surface gravity field which is required in order that this accuracy may be achieved is discussed. Interim techniques which could be used in the absence of such a representation are also outlined.

  1. Regional magnetic anomaly constraints on continental rifting

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  2. Environmental applications of gravity surveying

    SciTech Connect

    Barrows, L.J. ); Nesbit, L.C. ); Khan, W.A. )

    1994-04-01

    The Allis Park Sanitary Landfill Company developed a new landfill near Onway, Michigan in an area which has glacial alluvium and glacial till overlying limestone. There are several solution karst features in the region and some critics had maintained that a new karst collapse could rupture the liner system and allow escape of leachate into the groundwater. The gravity survey was conducted to determine the extent of any karst development at the site. The first portion of the survey was two profiles over some karst features located about five miles southeast of the proposed landfill. These showed negative gravity anomalies. The survey of the proposed landfill site resulted in a 50 microGal contour map of the area and also showed a negative anomaly. This could be due to either elevation variations on the till to limestone bedrock surface or to karst development within the limestone. Because there was no evidence of historic development of new karst features in the region, the gravity anomaly was not further investigated. In another gravity survey, a large retail department store had been remodeled and extended over an area previously occupied by an auto service center. The removal of a waste oil storage tank (UST) had not been documented and the environmental consultant (KEMRON, Inc.) proposed that a gravity survey be used to find the tank location. This proposal was based on calculations of the gravity effects of a UST. The survey resulted in a four-microGal contour map which showed a couple of anomalies which could be due to a tank or a backfilled tank excavation. During the survey, a store employee identified the previous location of the tank and explained that she had personally witnessed its removal. Based on the employee's eye-witness account of the tank removal and the coincidence of her indicated tank location with one of the gravity anomalies the authors recommended the site be granted clean closure.

  3. Combined magnetic and gravity analysis

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Braile, L. W.; Chandler, V. W.; Mazella, F. E.

    1975-01-01

    Efforts are made to identify methods of decreasing magnetic interpretation ambiguity by combined gravity and magnetic analysis, to evaluate these techniques in a preliminary manner, to consider the geologic and geophysical implications of correlation, and to recommend a course of action to evaluate methods of correlating gravity and magnetic anomalies. The major thrust of the study was a search and review of the literature. The literature of geophysics, geology, geography, and statistics was searched for articles dealing with spatial correlation of independent variables. An annotated bibliography referencing the Germane articles and books is presented. The methods of combined gravity and magnetic analysis techniques are identified and reviewed. A more comprehensive evaluation of two types of techniques is presented. Internal correspondence of anomaly amplitudes is examined and a combined analysis is done utilizing Poisson's theorem. The geologic and geophysical implications of gravity and magnetic correlation based on both theoretical and empirical relationships are discussed.

  4. It's All Gravity

    NASA Astrophysics Data System (ADS)

    Murad, P. A.

    2003-01-01

    Newtonian gravitation adequately predicts planet and satellite motion. Gravitational anomalies and the wish to travel at relativistic speeds, however, imply that gravity should be integrated within a unification framework that may include electricity and magnetism. Thus, new theories are needed that predict currently accepted phenomenon as well as anomalies to prepare the necessary groundwork for experimental validation needed for advanced technology propulsion schemes and far-term missions. A primary deficiency is that we are obviously limited within the confines of our own solar system and a different gravity model may be applicable elsewhere in the cosmos. The model proposed here follows previous ideas proposed by Murad, Dyatlov, and Jefimenko for a universal gravitation model with an intrinsic radial force term coupled with angular momentum. Including angular momentum may explain several spin symmetries seen in some anomalous gyroscopic experiments and throughout the universe regarding planets that orbit around the sun: moons that orbit larger planetary bodies: and the rotation about each planetary axis.

  5. Altimeter and gravity data analysis

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.

    1992-01-01

    The studies carried out under this grant fell into two broad areas. The first area was the analysis of surface gravity data with the ultimate goal of providing normal equations that could be used in combination with normal equations from the analysis of satellite orbit perturbations to obtain an optimal estimate of the gravitational potential coefficients of the Earth. The second main research activity was the estimation of gravity anomalies in ocean areas from satellite altimeter data. Such anomalies could enable the improved calibration of potential coefficient models derived solely from the analysis of orbital perturbation information. The studies in these two areas are discussed.

  6. Estimates of Te for continental regions using GOCE gravity

    NASA Astrophysics Data System (ADS)

    McKenzie, Dan; Yi, Weiyong; Rummel, Reiner

    2015-10-01

    Satellite-only gravity fields and surface gravity obtained from altimetric measurements now agree well at wavelengths greater than ∼180 km. Satellite gravity fields can therefore be used to estimate the elastic thickness Te in regions where surface observations are sparse. They are used for this purpose in a number of continental regions, of India, Africa, and Antarctica, where the topography is sufficiently rough, and also in regions of the USA, China, Australia and Siberia, where there are surface measurements. Estimates of Te for Antarctica depend on measurements of ice thickness, which are now available for much of the continent. Values of Te are obtained using two methods: from the admittance between the free air gravity and the topography, and from the coherence between Bouguer gravity anomalies and the topography. The first, but not the second, gives values of Te that are everywhere less than the seismogenic thickness. Where there is sufficient topography, estimates of Te from PreCambrian shields are all greater than 10 km and do not correlate with the lithospheric thickness. They are probably are governed by variations in crustal heat generation rates. Values for regions strongly affected by Phanerozoic tectonics are all less than 7 km, and all such regions are underlain by thin lithosphere.

  7. The mineralogy of global magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E. (Principal Investigator)

    1982-01-01

    The Curie Balance was brought to operational stage and is producing data of a preliminary nature. Substantial problems experienced in the assembly and initial operation of the instrument were, for the most part, rectified, but certain problems still exist. Relationships between the geology and the gravity and MAGSAT anomalies of West Africa are reexamined in the context of a partial reconstruction of Gondwanaland.

  8. Melt anomalies of the northern Atlantic Ocean basin

    NASA Astrophysics Data System (ADS)

    Wang, T.; Lin, J.; Tucholke, B. E.

    2009-12-01

    We investigated the melt anomalies and lithosphere dynamics of the northern Atlantic Ocean between 76°N and 8°S through combined analysis of seafloor bathymetry, shipboard and satellite-derived gravity, and sediment thickness. Residual mantle Bouguer anomaly (RMBA) was calculated by removing from free-air gravity anomaly the predicted attractions of water-sediment, sediment-crust, and crust-mantle interfaces as well as the effect of lithospheric plate cooling. Residual bathymetry anomaly (RBA) was obtained by subtracting from observed seafloor topography the predicted effects of plate cooling and the observed sediment load. Our analysis indicates that more than 50% of the seafloor has been affected by melt anomalies. The most prominent features that we observe include: (1) A pronounced negative RMBA associated with the Iceland hotspot, the Reykjanes Ridge, and the Mid-Atlantic Ridge (MAR) north of Iceland. The region of enhanced magma supply extends southward to the Charlie Gibbs F.Z., northward to the Jan Mayen F.Z., and to both the eastern and western basin margins. The strong negative RMBA associated with the submarine part of the Iceland hotspot reaches -450 mGal, corresponding to modeled crustal thickness of more than 22 km. (2) A widespread effect of the Azores hotspot on crustal accretion at the MAR since 40-50 Ma, as reflected in negative RMBA and positive RBA that extend southward to at least 26.5°N and northward to 44°N. The strongest RMBA anomaly associated with the Azores melt anomaly reaches about -230 mGal, corresponding to crustal thickening about half of that in Iceland. (3) A ~ 500 km wide corridor of negative RMBA is found along the west African margin between 40°N and 6°S, indicating that this region was influenced extensively by melt anomalies associated with the Horseshoe Seamounts, Madeira Islands, Canary Islands, and Cape Verde Islands. Negative RMBA of -100 to -180 mGal is also associated with the Bermuda Rise in the western Atlantic

  9. Geopotential field anomalies and regional tectonic features

    NASA Astrophysics Data System (ADS)

    Mandea, Mioara; Korte, Monika

    2016-07-01

    Maps of both gravity and magnetic field anomalies offer crucial information about physical properties of the Earth's crust and upper mantle, required in understanding geological settings and tectonic structures. Density and magnetization represent independent rock properties and thus provide complementary information on compositional and structural changes. Two regions are considered: southern Africa (encompassing South Africa, Namibia and Botswana) and Germany. This twofold choice is motivated firstly by the fact that these regions represent rather diverse geological and geophysical conditions (old Archean crust with strong magnetic anomalies in southern Africa, and much younger, weakly magnetized crust in central Europe) and secondly by our intimate knowledge of the magnetic vector ground data from these two regions. We take also advantage of the recently developed satellite potential field models and compare magnetic and gravity gradient anomalies of some 200 km resolution. Comparing short and long wavelength anomalies and the correlation of rather large scale magnetic and gravity anomalies, and relating them to known lithospheric structures, we generally find a better agreement over the southern African region than the German territory. This probably indicates a stronger concordance between near-surface and deeper structures in the former area, which can be perceived to agree with a thicker lithosphere.

  10. Gravity over coronae and chasmata on Venus

    NASA Technical Reports Server (NTRS)

    Schubert, Gerald; Moore, William B.; Sandwell, David T.

    1994-01-01

    The global spherical harmonic model of Venus' gravity field MGNP60FSAAP, with horizontal resolution of about 600 km, shows that most coronae have little or no signature in the gravity field. Nevertheless, some coronae and some segments of chasmata are associated with distinct positive gravity anomalies. No corona has been found to have a negative gravity anomaly. The spatial coincidence of the gravity highs over four closely spaced 300- to 400-km-diameter coronae in Eastern Eistla Regio with the structures themselves is remarkable and argues for a near-surface or lithospheric origin of the gravity signals over such relatively small features. Apparent depths of compensation (ADCs) of the prominent gravity anomalies at Artemis, Latona, and Heng-o Coronae are about 150 to 200 km. The geoid/topography ratios (GTRs) at Artemis, Latona, and Heng-o Coronae lie in the range 32 to 35 m/km. The large ADCs and GTRs of Artemis, Latona, and Heng-o Coronae are consistent with topographically related gravity and a thick Venus lithosphere or shallowly compensated topography and deep positive mass anomalies due to subduction of underthrusting at these coronae. At arcuate segments of Hecate and Parga Chasmata ADCs are about 125 to 150 km, while those at Fauta Corona, four coronae in Eastern Eistla Regio, and an arcuate segment of Wester Parga Chasmata are about 75 km. The GTRs at Fauta Corona, the four coronae in eastern Eistla Regio, and the accurate segments of Hecate, Parga, and Western Parga Chasmata are about 12 to 21 m/km. By analogy with gravity anomalies of similar horizontal scale (600 km-several thousand kilometers) on the concave sides of terrestrial subduction zone arcs, which are due in large part to subducted lithosphere, it is inferred that the gravity anomalies on Venus are consistent with retrograde subduction at Artemis Chasma, along the northern and southern margins of Latona Coronam, and elsewhere along Parga and Hecate Chasmata.

  11. N-Decane Droplet Combustion in the NASA-Lewis 5 Second Zero-Gravity Facility - Results in Test Gas Environments Other than Air

    NASA Technical Reports Server (NTRS)

    Haggard, John B.; Borowski, Brian A.; Dryer, Frederick L.; Choi, Mun Y.; Williams, Forman A.

    1991-01-01

    The burning rate of single droplets of n-decane in a microgravity environment of the NASA-Lewis 5 Second Zero-Gravity Facility was investigated as a function of time, together with the flame diameter/droplet diameter ratio, for a wide range of test environments other than normal air conditions, using an engineering model of the flight experiment. Oxygen mole fractions were varied from 18 to 50 percent, the total test chamber pressure was varied from 0.5 to 2 atmospheres, and the initial droplet diameter was varied from 0.98 to 2.41 mm. Measurements showed that the average burning rates for n-decane droplets exhibited the same qualitative trends as are found in two current models. Temporal analysis of the local burning rates showed variable rates of change in local burning as the droplet combustion progressed. The causes and implications of these findings are discussed.

  12. Gauge anomalies, gravitational anomalies, and superstrings

    SciTech Connect

    Bardeen, W.A.

    1985-08-01

    The structure of gauge and gravitational anomalies will be reviewed. The impact of these anomalies on the construction, consistency, and application of the new superstring theories will be discussed. 25 refs.

  13. ANOMALY STRUCTURE OF SUPERGRAVITY AND ANOMALY CANCELLATION

    SciTech Connect

    Butter, Daniel; Gaillard, Mary K.

    2009-06-10

    We display the full anomaly structure of supergravity, including new D-term contributions to the conformal anomaly. This expression has the super-Weyl and chiral U(1){sub K} transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. We outline the procedure for full anomaly cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.

  14. The elliptic anomaly

    NASA Technical Reports Server (NTRS)

    Janin, G.; Bond, V. R.

    1980-01-01

    An independent variable different from the time for elliptic orbit integration is used. Such a time transformation provides an analytical step-size regulation along the orbit. An intermediate anomaly (an anomaly intermediate between the eccentric and the true anomaly) is suggested for optimum performances. A particular case of an intermediate anomaly (the elliptic anomaly) is defined, and its relation with the other anomalies is developed.

  15. The Mystery of the Mars North Polar Gravity-Topography Correlation(Or Lack Thereof)

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Sjogren, W. L.; Johnson, C. L.

    1999-01-01

    Maps of moderately high resolution gravity data obtained from the Mars Global Surveyor (MGS) gravity calibration orbit campaign and high precision topography obtained from the Mars Orbiter Laser Altimeter (MOLA) experiment reveal relationships between gravity and topography in high northern latitudes of Mars. Figure 1 shows the results of a JPL spherical harmonic gravity model bandpass filtered between degrees 6 and 50 contoured over a MOLA topographic image. A positive gravity anomaly exists over the main North Polar cap, but there are at least six additional positive gravity anomalies, as well as a number of smaller negative anomalies, with no obvious correlation to topography. Additional information is contained in the original extended abstract.

  16. Evolution of arched roofs in salt caves: Role of gravity-induced stress and relative air humidity and temperature changes (Zagros Mts., Iran)

    NASA Astrophysics Data System (ADS)

    Bruthans, Jiri; Filippi, Michal; Zare, Mohammad

    2016-04-01

    In salt caves in the halite karst in SE Iran the disintegration of rock salt into individual grains can be observed. Highly disintegrated blocks and individual grains form a major volume of debris in many caves on islands in the Persian Gulf. Larger cave rooms have often perfectly arched roof. The perfect geometry of rooms and interlocking of salt grains indicate that evolution of room cross-sections in these caves is controlled by feedback between gravity-induced stress and rock salt disintegration in similar way as in evolution of sandstone landforms (Bruthans et al. 2014). Those portions of rock salt, which are under compressional stress, disintegrate much slower than portions under tensile stress. Important question is the kind of weathering mechanism responsible for intergranular disintegration of rock salt. The relationship between disintegration, its rate and cave climate was studied. Clearly the fastest disintegration rate was found in caves with strong air circulation (i.e, short caves with large cross-sections, open on both ends). Temperature and air humidity changes are considerable in these caves. On the other hand the disintegration is very slow in the inner parts of long caves with slow air circulation or caves with one entrance. The best example of such caves is the inner part of 3N Cave on Namakdan salt diapir with nearly no air circulation and stable temperature and humidity, where disintegration of rock salt into grains is missing. Strong effect of cave climate on disintegration rate can be explained by deliquescence properties of halite. Halite is absorbing air moisture forming NaCl solution if relative humidity (RH) exceeds 75 % (at 20-30 oC). In the Persian Gulf region the RH of the air is passing the 75 % threshold in case of 91% days (Qeshm Island, years 2002-2005), while in mountainous areas in mainland this threshold is less commonly reached. In most of nights (91 %) in Persian Gulf the air with RH >75 % is entering the salt caves and air

  17. A method to constrain the configuration of the subsurface structure in 3-D gravity inversion

    SciTech Connect

    Hu, Y.; Rabinowitz, P.D.

    1996-12-31

    A three-dimensional inversion technique is developed to investigate the structure of the oceanic crust, using high quality offshore bathymetry, gravity and seismic data. The gravity signatures associated with variations in the thickness of the oceanic crust are isolated from the observed free-air anomaly by subtracting the gravitational effects of seafloor topography and the upper mantle thermal structure, downward continued to the mean depth of the crust/mantle interface and converted onto the relief on that surface. The thickness of the oceanic crust is then calculated by subtracting sea water depth from the depth of the gravity-inferred crust/mantle interface. Seismic refraction data was introduced directly as a constraint in the construction of the initial model for the configuration of the crust/mantle interface and the iterative process of the 3-D joint inversion to reduce the ambiguity in gravity interpretation. This technique can be easily applied to the offshore areas to interpret bathymetry, gravity and seismic data that have been routinely collected for the purpose of geophysical exploration. Compared to the unconstrained gravity inversion, this technique can predict a 3-D crustal model that fits better both gravity and seismic observation data of the study area.

  18. Gravity is the Key Experiment to Address the Habitability of the Ocean in Jupiter's Moon Europa

    NASA Astrophysics Data System (ADS)

    Sessa, A. M.; Dombard, A. J.

    2013-12-01

    Life requires three constituents: a liquid solvent (i.e., water), a chemical system that can form large molecules to record genetic information (e.g., carbon based) as well as chemical nutrients (e.g., nitrogen, phosphorous), and a chemical disequilibrium system that can provide metabolic energy. While it is believed that there is a saline water layer located between the rock and ice layers in Jupiter's moon Europa, which would satisfy the first requirement, it is unknown if the other conditions are currently met. The likelihood that Europa is a haven for life in our Solar System skyrockets, however, if there is currently active volcanism at the rock-water interface, much the same that volcanic processes enable the chemosynthetic life that forms the basis of deep sea-vent communities at the bottom of Earth's oceans. Exploring the volcanic activity on this interface is challenging, as direct observation via a submersible or high-resolution indirect observations via a dense global seismic network on the surface is at present technically (and fiscally!) untenable. Thus, gravity studies are the best way to explore currently the structure of this all-important interface. Though mostly a silicate body with only a relatively thin (~100 km) layer of water, Europa is different from the terrestrial planets in that this rock-water interface, and not the surface, represents the largest density contrast across the moon's near-surface layers, and thus topography on this interface could conceivably dominate the gravity. Here, we calculate the potential anomalies that arise from topography on the surface, the water-ice interface (at 20 km depth), and the rock-water interface, finding that the latter dominates the free-air gravity at the longest wavelengths (spherical harmonic degrees < 10) and the Bouguer gravity at intermediate wavelengths (degrees ~10-50), and only for the shortest wavelengths (degrees > 50) does the water-ice interface (and presumably mass-density anomalies

  19. Arctic and Antarctic Crustal Thickness and Continental Lithosphere Thinning from Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick J.; Alvey, Andy; Vaughan, Alan P. M.; Ferraccioli, Fausto; Jordan, Tom A. R. M.; Roberts, Alan M.

    2013-04-01

    Mapping crustal thickness, continental lithosphere thinning and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. The Arctic region formed as a series of small distinct ocean basins leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. Antarctica, both peripherally and internally, experienced poly-phase rifting and continental breakup. We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location for the Polar Regions using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction. The method is carried out in the 3D spectral domain and predicts Moho depth and incorporates a lithosphere thermal gravity anomaly correction. Ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. A correction to the predicted continental lithospheric thinning derived from gravity inversion is made for volcanic material addition produced by decompression melting during continental rifting and seafloor spreading. For the Arctic, gravity data used is from the NGA (U) Arctic Gravity Project, bathymetry is from IBCAO and sediment thickness is from a new regional compilation. For Antarctica and the Southern Oceans, data used are elevation and bathymetry, free-air gravity anomaly, ice and sediment thickness from Smith and Sandwell (2008), Sandwell and Smith (2008) and Laske and Masters (1997) respectively, supplemented by Bedmap2 data south of 60 degrees south. Using gravity anomaly inversion, we have produced the first comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic, Antarctica and the Southern Ocean. Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Makarov, Podvodnikov, Nautilus and Canada

  20. Coupled Gravity and Elevation Measurement of Ice Sheet Mass Change

    NASA Technical Reports Server (NTRS)

    Jezek, K. C.; Baumgartner, F.

    2005-01-01

    During June 2003, we measured surface gravity at six locations about a glaciological measurement site located on the South-central Greenland Ice. We operated a GPS unit for 90 minutes at each site -the unit was operated simultaneously with a base station unit in Sondrestrom Fjord so as to enable differential, post-processing of the data. We installed an aluminum, accumulation-rate-pole at each site. The base section of the pole also served as the mount for the GPS antenna. Two gravimeters were used simultaneously at each site. Measurements were repeated at each site with at time lapse of at least 50 minutes. We measured snow physical properties in two shallow pits The same measurement sites were occupied in 1981 and all were part of a hexagonal network of geodetic and glaciological measurements established by The Ohio State University in 1980. Additional gravity observations were acquired at three of the sites in 1993 and 1995. Gravity data were collected in conjunction with Doppler satellite measurements of position and elevation in 1981 and global positioning system measurements subsequently. The use of satellite navigation techniques permitted reoccupation of the same sites in each year to within a few 10 s of meters or better. After detrending the gravity data, making adjustments for tides and removing the residual effects of local spatial gradients in gravity, we observe an average secular decrease in gravity of about 0.01 milligal/year, but with tenths of milligal variations about the mean trend. The trend is consistent with a nearly linear increase in surface elevation of between 7 to 10 c d y r (depending on location) as measured by repeated airborne laser altimeter, surface Doppler satellite and GPS elevation measurements. Differences between the residual gravity anomalies after free air correction may be attributable to local mass changes. This project is a collaboration between the Byrd Polar Research Center of the Ohio State University and the Arctic

  1. Preparation of Residual Gravity Maps for the Southern Cascade Mountains, Washington Using Fourier Analysis

    SciTech Connect

    Dishberger, Debra McLean

    1983-04-01

    This report represents a continuation of gravity work in the Cascade Mountains of Washington supported by the Division of Geology and Earth Resources since 1974. The purpose of this research has been collection of baseline gravity data for use in geothermal resource evaluation. Results of the Division's gravity studies to date are given in Danes and Phillips (1983a, 1983b). One of the problems encountered when analyzing gravity data is distinguishing between those parts of the data that represent geologic structures of interest, and those that do not. In many cases, the features of interest are relatively small, near-surface features, such as those sought in mineral, petroleum, or geothermal exploration. Gravity anomalies caused by such structures may be distorted or masked by anomalies caused by larger, deeper geologic structures. Gravity anomalies caused by relatively shallow, small geologic structures are termed residual anomalies. Those due to broad, deep-seated features can be described as regional anomalies. The purpose of this report is to describe a Fourier analysis method for separating residual and regional gravity anomalies from a complete Bouguer gravity anomaly field. The technique has been applied to gravity data from the Southern Cascade Mountains, Washington. Residual gravity anomaly maps at a scale of 1:250,000 are presented for various regional wavelength filters, and a power spectrum of the frequency components in the South Cascade gravity data is displayed. No attempt is made to interpret the results of this study in terms of geologic structures.

  2. Deep structure study of the salt body of Jbel Rheouis (central tunisia) from geological and gravity data

    NASA Astrophysics Data System (ADS)

    Bouzid, Wajih; Abbes, Chedly; Gabtni, Hakim; Hassine, Mouna

    2016-04-01

    Jbel Rheouis situated in south west of Sidi Bouzid, central Tunisia, is a complex structure located at a tectonic node between N-S, NE-SW and NW-SE corridors. It was considered as a diapir containing the most complete series of The Upper Triassic formation in Central Tunisia. The good quality of preserved fossils markers especially at the limestone levels made it possible for Burollet (1952) to propose a lithostratigraphic description of the Rheouis Formation. This stratigraphy was clarified by Soussi and Abbes (2004) basing on new paleontological, palynological and outcrops detailed mapping data. Thus, they assigned the base of this outcrops series to Carnian and its top to Rhaetian. Using these geological and lithostratigraphic data we suspects that the base of the Rheouis formation formed by black limestone can be correlated to the Rehach limestone in the South of Tunisia where this level is laying on a clayey sandstones level identified as the Lower Triassic outcrops. In this concept, this study intend to investigate the Rheouis structure and to identify it's nature basing on the intra salt structures identification and the nature of the Lower Triassic sediments buried beneath the Black limestones, using a combination of geological, lithostratigraphic and geophysical (gravity) data. The gravity data used in this work were obtained from the ONM with a mesh of 1Km /1Km. All the data were merged and reduced using the 1967 International gravity formula. Free air and Bouguer gravity correction were made using sea level as a datum and 2.4 g/cm³ as a reduction density. The Bouguer anomaly map shows a variation in anomaly values range from -12.5 mGal to -4.5 mGal with a contrasted anomaly distribution. This map present 5 gravity maxima and 4 gravity minima where the major direction of those maxima and minima are N-S, NE-SW and NW-SE. The presence of a relative positive anomaly concentrated J.Rheouis can be explained by a mass excess probably due to the uplift of the

  3. The gravity field in Taiwan Strait

    SciTech Connect

    Su Daquan; Chen Xue; Liu Zuhui )

    1990-06-01

    Gravity surveys have been carried out in the western part of Taiwan Strait by South China Sea Institute of Oceanology, Academia Sinica, from 1986 to 1989. More than 3,000 km of gravity profile data have been collected. The accuracy of the gravity is about {plus minus}2.5 mGal. Based on these data, gravity maps of Taiwan Strait (1:2,000,000) have been compiled, combined with the data from University of Tokyo, Lamont-Doherty geological observatory, and the USSR, which were collected from the east and southeast parts of Taiwan Strait. The interval of contour is 5 mGal. These maps cover part of East China Sea and South China Sea, where good gravity data have been gathered. Comparing the data from different sources in the same area, the authors think they are in very good agreement. These maps for the first time give detailed gravity information in the Taiwan Strait. It is very useful for the tectonic study and oil exploration in this area. The relationship between gravity anomalies and sedimentary basins has been studied in this area. Most of data show that the gravity low corresponds to the basin area and the gravity high is related to tectonic structure high. Xia-Peng depression, Wuqiuy depression, and Xinzhu depression, etc., show the gravity low. The relationship also can be seen in the gravity profiles clearly. The general tendency of gravity in the Taiwan Strait is that the gravity values gradually increase from the south part to the north part. It can be probably explained by deep geological structures. The relationship between gravity and geological structure units is also studied. They think the undulation of gravity anomalies is closely related to tectonic structures. Some main faults can be confirmed by the gravity maps.

  4. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  5. Arctic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion: Constraining Plate Reconstructions

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.; Alvey, A.; Roberts, A. M.

    2013-12-01

    Mapping crustal thickness, continental lithosphere thinning and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion, we have produced the first comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic. The Arctic region formed as a series of small distinct ocean basins leading to a complex distribution of oceanic crust, thinned continental crust, possible micro-continents and rifted continental margins. Mapping of continental lithosphere thinning factor and crustal thickness from gravity inversion provide predictions of ocean-continent transition structure and magmatic type and continent ocean boundary location independent of magnetic isochrons. Restoration of crustal thickness and continent-ocean boundary location from gravity inversion may be used to test plate tectonic reconstructions. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory within the Arctic basins. By restoring crustal thickness & continental lithosphere thinning maps of the Eurasia Basin & NE Atlantic to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Makarov, Podvodnikov, Nautilus and Canada Basins consistent with these basins being underlain by oceanic or highly thinned continental crust. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Moho depths predicted compare well with seismic estimates. Predicted very thin continental or oceanic crust under the North Chuchki

  6. Chiral anomalies and differential geometry

    SciTech Connect

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  7. Space truss zero gravity dynamics

    NASA Technical Reports Server (NTRS)

    Swanson, Andy

    1989-01-01

    The Structural Dynamics Branch of the Air Force Flight Dynamics Laboratory in cooperation with the Reduced Gravity Office of the NASA Lyndon B. Johnson Space Center (JSC) plans to perform zero-gravity dynamic tests of a 12-meter truss structure. This presentation describes the program and presents all results obtained to date.

  8. A regional gravity survey of the Cuyuna Iron Range, Minnesota

    USGS Publications Warehouse

    Durfee, George Austin

    1957-01-01

    A regional gravity survey of the Cuyuna Iron Range, Minnesota, was conducted during the summer of 1955 by the U. S. Geological Survey. It was believed that gravity data would aid in the understanding of the major structures of the range. It was found that synclinal and steeply dipping structures produced positive gravity anomalies while anilclinal structures produced negative anomalies. This principle was noted in areas of well known geology and then applied to outlying areas of the district. The outstanding gravity feature is a narrow positive anomaly extending from south of Brainerd eastward through Aitkin, the axis of the anomaly being somewhat south of the South Range. This gives support to the theory that the Biwabik formation passes under the stratigraphically higher South Range member as a synclinal structure. However, this anomaly is also explained using one main iron formation and assuming an anticlinal structure between the North and South Ranges and a syncline between the South Range and Bay Lake. A large magnitude negative gravity anomaly north of Mille Lacs is postulated to result from an intrusive mass extending to the erosion surface. Aeromagnetics are used to strengthen the gravity interpretation. The need is realized for additional regional gravity coverage to the east of the area Included in this survey and a detailed gravity study of the area between the North and South Ranges.

  9. Gravity in a Mine Shaft.

    ERIC Educational Resources Information Center

    Hall, Peter M.; Hall, David J.

    1995-01-01

    Discusses the effects of gravity, local density compared to the density of the earth, the mine shaft, centrifugal force, and air buoyancy on the weight of an object at the top and at the bottom of a mine shaft. (JRH)

  10. AIRS-Observed Interrelationships of Anomaly Time-Series of Moist Process-Related Parameters and Inferred Feedback Values on Various Spatial Scales

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena

    2011-01-01

    In the beginning, a good measure of a GMCs performance was their ability to simulate the observed mean seasonal cycle. That is, a reasonable simulation of the means (i.e., small biases) and standard deviations of TODAY?S climate would suffice. Here, we argue that coupled GCM (CG CM for short) simulations of FUTURE climates should be evaluated in much more detail, both spatially and temporally. Arguably, it is not the bias, but rather the reliability of the model-generated anomaly time-series, even down to the [C]GCM grid-scale, which really matter. This statement is underlined by the social need to address potential REGIONAL climate variability, and climate drifts/changes in a manner suitable for policy decisions.

  11. GravProcess: An easy-to-use MATLAB software to process campaign gravity data and evaluate the associated uncertainties

    NASA Astrophysics Data System (ADS)

    Cattin, Rodolphe; Mazzotti, Stephane; Baratin, Laura-May

    2015-08-01

    We present GravProcess, a set of MATLAB routines to process gravity data from complex campaign surveys and calculate the associated gravity field. Data reduction, analysis, and representation are done using the MATLAB Graphical User Interface Tool, which can be installed on most systems and platforms. Data processing is divided into several steps: (1) Integration of gravity data, station location, and gravity line connection input files; (2) Gravity data reduction applying solid-Earth tide and instrumental drift corrections and, depending on the required processing level, air pressure and oceanic tidal corrections; (3) Automatic network adjustment and alignment to absolute base stations; (4) Free air and terrain corrections to calculate gravity values and anomalies, and to estimate the associated errors. The final step is dedicated to post-processing and includes graphical representations of data and an output text file, which can be used by Geographic Information System software. An example of this processing chain applied to a recent survey in northern Morocco is given and compared with previous available results.

  12. A wavelet transformation approach for multi-source gravity fusion: Applications and uncertainty tests

    NASA Astrophysics Data System (ADS)

    Bai, Yongliang; Dong, Dongdong; Wu, Shiguo; Liu, Zhan; Zhang, Guangxu; Xu, Kaijun

    2016-05-01

    Gravity anomalies detected by different measurement platforms have different characteristics and advantages. There are different kinds of gravity data fusion methods for generating single gravity anomaly map with a rich and accurate spectral content. Former studies using wavelet based gravity fusion method which is a newly developed approach did not pay more attention to the fusion uncertainties. In this paper, we firstly introduce the wavelet based gravity fusion method, and then apply this method to one synthetic model and also to the northern margin of the South China Sea. Wavelet type and the decomposition level are two input parameters for this fusion method, and the uncertainty tests show that fusion results are more sensitive to wavelet type than the decomposition level. The optimal application result of the fusion methodology on the synthetic model is closer to the true anomaly field than either of the simulated shipborne anomaly and altimetry-based anomaly grid. The best fusion result on the northern margin of the South China Sea is based on the 'rbio1.3' wavelet and four-level decomposition. The fusion result contains more accurate short-wavelength anomalies than the altimetry-based gravity anomalies along ship tracks, and it also has more accurate long wavelength characteristics than the shipborne gravity anomalies between ship tracks. The real application case shows that the fusion result has better correspondences to the seafloor topography variations and sub-surface structures than each of the two input gravity anomaly maps (shipborne based gravity anomaly map and altimetry based gravity anomaly map). Therefore, it is possible to map and detect more precise seafloor topography and geologic structures by the new gravity anomaly map.

  13. MJO-related intraseasonal variation of gravity waves in the Southern Hemisphere tropical stratosphere revealed by high-resolution AIRS observations

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Chikara; Sato, Kaoru; Alexander, M. Joan; Hoffmann, Lars

    2016-07-01

    The intraseasonal variability of gravity waves (GWs) in the austral summer middle stratosphere was examined using dedicated high-resolution temperature retrieval from the Atmospheric Infrared Sounder data. Composite maps were made of stratospheric GW temperature variances, large-scale zonal winds around the tropopause, and precipitation based on the real-time multivariate Madden-Julian Oscillation (MJO) index. Regional distributions of these quantities are synchronized with the MJO: The GW variances are larger for stronger precipitation and for more strongly westward wind around the tropopause at a given precipitation. These results suggest that the GWs observed by Atmospheric Infrared Sounder (AIRS) in the stratosphere originate from convection. Moreover, it is shown that the zonal wind around the tropopause likely controls the GW propagation into the stratosphere by a critical level filtering mechanism and/or the GW generation by an obstacle source effect. This means that the MJO can modulate the middle atmospheric circulation by regulating the GWs in two ways, namely, generation and propagation.

  14. Gravity Analysis of the Jeffera Basin, Tunisia

    NASA Astrophysics Data System (ADS)

    Mickus, K.; Gabtni, H.; Jallouli, C.

    2004-12-01

    Southern Tunisia consists of two main tectonic provinces: 1) the Saharan Platform and 2) the folded Atlasic domain, separated by the North Saharan Flexure. The Saharan Platform, which contains the Ghadames Basin and the Telemzane Arch, consists of gently dipping Paleozoic strata overlain by Triassic to Cretaceous sediments. The Atlasic domain consists of a thicker sequence of mainly Mesozoic and younger rock with less complete sequences of Paleozoic strata. Within the Atlasic domain are the still actively subsiding Chotts and Jeffera basins. The Jeffera basin, which occurs to the east of the Telemzane Arch contains at least eight kilometers of Paleozoic and younger sediment that were formed during numerous subsidence episodes since Carboniferous time. The Jeffera basin is dominated by tilted fault blocks that were formed during numerous tectonic episodes. Several unpublished seismic reflection profiles and well data exist for the Jeffera basin, however a deep structural analysis of the basin has not been published. We examined the existing gravity data in conjunction with available well and geologic data to determine structural features within the basin. The Bouguer gravity anomaly map shows that the Jeffera basin is dominated by a narrow northwest-trending gravity minimum. However, a more detailed analysis consisting of wavelength filtering and edge enhancements indicate that the structure of the basin is more complicated than indicated by the Bouguer gravity anomaly map. A residual gravity anomaly map indicates that the Jeffera basin consists of at least three and maybe four subbasins. Additionally, the Jeffera Fault marks the boundary between northwest-trending gravity anomalies to its northeast and east-trending anomalies over the Saharan Platform. The above observation is amplified by the construction of the enhanced horizontal derivatives (EHG) of both the complete Bouguer gravity and the residual gravity anomaly maps. The EHG maps highlight the lateral

  15. Three-dimensional gravity ideal body studies in rough terrain

    SciTech Connect

    Ander, M.E.; Huestis, S.P.

    1985-01-01

    An approach to the interpretation of potential field anomaly data is to maximize or minimize some non-linear scalar property of solutions fitting the data. As an example, a comparison of 2-D and 3-D gravity ideal body results from the Lucero Uplift, a westward-tilted fault block located on the western flank of the Rio Grande rift, is discussed. The anomaly was analyzed to obtain bounds on the density contrast, depth of burial, and minimum thickness of its sources. Based on a synthesis of the gravity data with structural analysis and geomorphology, a shallow mafic intrusion is proposed to account for the positive gravity anomaly. 12 refs. (ACR)

  16. Lymphatic Anomalies Registry

    ClinicalTrials.gov

    2016-07-26

    Lymphatic Malformation; Generalized Lymphatic Anomaly (GLA); Central Conducting Lymphatic Anomaly; CLOVES Syndrome; Gorham-Stout Disease ("Disappearing Bone Disease"); Blue Rubber Bleb Nevus Syndrome; Kaposiform Lymphangiomatosis; Kaposiform Hemangioendothelioma/Tufted Angioma; Klippel-Trenaunay Syndrome; Lymphangiomatosis

  17. Analysis of gravity and topography in the GLIMPSE study region: Isostatic compensation and uplift of the Sojourn and Hotu Matua Ridge systems

    USGS Publications Warehouse

    Harmon, N.; Forsyth, D.W.; Scheirer, D.S.

    2006-01-01

    The Gravity Lieations Intraplate Melting Petrologic and Seismic Expedition (GLIMPSE) Experiment investigated the formation of a series of non-hot spot, intraplate volcanic ridges in the South Pacific and their relationship to cross-grain gravity lineaments detected by satellite altimetry. Using shipboard gravity measurements and a simple model of surface loading of a thin elastic plate, we estimate effective elastic thicknesses ranging from ???2 km beneath the Sojourn Ridge to a maximum of 10 km beneath the Southern Cross Seamount. These elastic thicknesses are lower than predicted for the 3-9 Ma seafloor on which the volcanoes lie, perhaps due to reheating and thinning of the plate during emplacement. Anomalously low apparent densities estimated for the Matua and Southern Cross seamounts 2050 and 2250 kg m-3, respectively, probably are artifacts caused by the assumption of only surface loading, ignoring the presence of subsurface loading in the form of underplated crust and/or low-density mantle. Using satellite free-air gravity and shipboard bathymetry, we calculate the age-detrended, residual mantle Bouguer anomaly (rMBA). The rMBA corrects the free-air anomaly for the direct effects of topography, including the thickening of the crust beneath the seamounts and volcanic ridges due to surface loading of the volcanic edifices. There are broad, negative rMBA anomalies along the Sojourn and Brown ridges and the Hotu Matua seamount chain that extend nearly to the East Pacific Rise. These negative rMBA anomalies connect to negative free-air anomalies in the western part of the study area that have been recognized previously as the beginnings of the cross-grain gravity lineaments. Subtracting the topographic effects of surface loading by the ridges and seamounts from the observed topography reveals that the ridges are built on broad bands of anomalously elevated seafloor. This swell topography and the negative rMBA anomalies contradict the predictions of lithospheric

  18. The gravity field of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Grow, A.J.; Bowin, C.O.; Hutchinson, D.O.

    1979-01-01

    Approximately 39,000 km of marine gravity data collected during 1975 and 1976 have been integrated with U.S. Navy and other available data over the U.S. Atlantic continental margin between Florida and Maine to obtain a 10 mgal contour free-air gravity anomaly map. A maximum typically ranging from 0 to +70 mgal occurs along the edge of the shelf and Blake Plateau, while a minimum typically ranging from -20 to -80 mgal occurs along the base of the continental slope, except for a -140 mgal minimum at the base of the Blake Escarpment. Although the maximum and minimum free-air gravity values are strongly influenced by continental slope topography and by the abrupt change in crustal thickness across the margin, the peaks and troughs in the anomalies terminate abruptly at discrete transverse zones along the margin. These zones appear to mark major NW-SE fractures in the subsided continental margin and adjacent deep ocean basin, which separate the margin into a series of segmented basins and platforms. Rapid differential subsidence of crustal blocks on either side of these fractures during the early stages after separation of North America and Africa (Jurassic and Early Cretaceous) is inferred to be the cause of most of the gravity transitions along the length of margin. The major transverse zones are southeast of Charleston, east of Cape Hatteras, near Norfolk Canyon, off Delaware Bay, just south of Hudson Canyon and south of Cape Cod. Local Airy isostatic anomaly profiles (two-dimensional, without sediment corrections) were computed along eight multichannel seismic profiles. The isostatic anomaly values over major basins beneath the shelf and rise are generally between -10 and -30 mgal while those over the platform areas are typically 0 to +20 mgal. While a few isostatic anomaly profiles show local 10-20 mgal increases seaward of the East Coast Magnetic Anomaly (ECMA: inferred to mark the ocean-continent boundary), the lack of a consistent correlation indicates that the

  19. Gravity survey of the southwestern part of the sourthern Utah geothermal belt

    SciTech Connect

    Green, R.T.; Cook, K.L.

    1981-03-01

    A gravity survey covering an area of 6200 km/sup 2/ was made over the southwestern part of the southern Utah geothermal belt. The objective of the gravity survey is to delineate the geologic structures and assist in the understanding of the geothermal potential of the area. A total of 726 new gravity stations together with 205 existing gravity stations, are reduced to give: (1) a complete Bouguer gravity anomaly map, and (2) a fourth-order residual gravity anomaly map; both maps have a 2-mgal contour interval. The complete Bouguer gravity anomaly map shows an east-trending regional gravity belt with a total relief of about 70 mgal which crosses the central portion of the survey area. The gravity belt is attributed to a crustal lateral density variation of 0.1 gm/cc from a depth of 5 to 15 km.

  20. 2006 Compilation of Alaska Gravity Data and Historical Reports

    USGS Publications Warehouse

    Saltus, Richard W.; Brown, Philip J.; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  1. Spectral regularisation: induced gravity and the onset of inflation

    SciTech Connect

    Kurkov, Max A.; Sakellariadou, Mairi E-mail: mairi.sakellariadou@kcl.ac.uk

    2014-01-01

    Using spectral regularisation, we compute the Weyl anomaly and express the anomaly generating functional of the quantum effective action through a collective scalar degree of freedom of all quantum vacuum fluctuations. Such a formulation allows us to describe induced gravity on an equal footing with the anomaly-induced effective action, in a self-consistent way. We then show that requiring stability of the cosmological constant under loop quantum corrections, Sakharov's induced gravity and Starobinsky's anomaly-induced inflation are either both present or both absent, depending on the particle content of the theory.

  2. Magnetic Anomalies over Iceland.

    PubMed

    Serson, P H; Hannaford, W; Haines, G V

    1968-10-18

    An aeromagnetic survey of Iceland reveals broad anomalies of large amplitude over zones of recent volcanic activity. The source of the anomalies is ascribed to large masses of basalt that have been coherently remagnetized by intrusive heating. A simple correlation of the Icelandic anomalies with those of the ocean floor therefore appears unjustified.

  3. Polyhedral shape model for terrain correction of gravity and gravity gradient data based on an adaptive mesh

    NASA Astrophysics Data System (ADS)

    Guo, Zhikui; Chen, Chao; Tao, Chunhui

    2016-04-01

    Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model

  4. Revisiting Gravitational Anomalies and a Potential Solution

    NASA Astrophysics Data System (ADS)

    Murad, P. A.

    2009-03-01

    Gravitational anomalies require investigation and resolution to understand the space environment if man is to travel beyond trans-lunar or trans-Mars region. This paper will provide a framework for further and more detailed evaluations. These anomalies include, a slight change in the sun's gravitational attraction observed by two Pioneer probes based upon trajectory deviations detected after being in flight for over a decade and, several events where other long-range spacecraft undergoing flybys of the Earth experience increases in velocity that could not be predicted by Newtonian gravitation. Moreover, the assumption of dark energy and dark matter supposedly explain some astronomical observations to include expansion of the cosmos on a scale of the order of galaxies, galaxy clusters and other celestial bodies at considerable distances from the Earth. If, however, gravitational waves exist, then gravity should obey a wavelike partial differential equation implying that gravity is a function of both spatial and temporal dimensions. If true, then gravity may grow or decay as a function of time in contrast to Newtonian gravitation, which has propulsion implications that may also provide a partial explanation to some of these anomalies.

  5. Analysis of spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Graham, W. C.

    1976-01-01

    The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.

  6. Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage - Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes

    NASA Astrophysics Data System (ADS)

    Wright, C. J.; Hindley, N. P.; Moss, A. C.; Mitchell, N. J.

    2015-07-01

    Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely-used gravity wave resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (MLS-Aura, HIRDLS and SABER), the COSMIC GPS-RO constellation, a ground-based meteor radar, the AIRS infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity wave packets from the lower troposphere to the edge of the lower thermosphere. Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically > 0.80 between any instrument pair. Meteor-radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other datasets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Except in spring, we see little dissipation of GWPE throughout the stratosphere and lower mesosphere. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal cycle. GWPE and λz exhibit strong correlations with the stratospheric winds, but not with local surface winds. Our results provide guidance for interpretation and intercomparison of such datasets in their full

  7. The mineralogy of global magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E. (Principal Investigator)

    1984-01-01

    Experimental and analytical data on magnetic mineralogy was provided as an aid to the interpretation of magnetic anomaly maps. An integrated program, ranging from the chemistry of materials from 100 or more km depth within the Earth, to an examination of the MAGSAT anomaly maps at about 400 km above the Earth's surface, was undertaken. Within this framework, a detailed picture of the pertinent mineralogical and magnetic relationships for the region of West Africa was provided. Efforts were directed toward: (1) examining the geochemistry, mineralogy, magnetic properties, and phases relations of magnetic oxides and metal alloys in rocks demonstrated to have originated in the lower crust of upper mantle, (2) examining the assumption that these rocks portray the nature of their source regions; and (3) examining the regional geology, tectonics, gravity field and the MAGSAT anomaly maps for West Africa.

  8. Investigating subglacial landscapes and crustal structure of the Gamburtsev Province in East Antarctica with the aid of new airborne gravity data

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Studinger, M.; Bell, R. E.; Damaske, D.; Elieff, S.; Finn, C.; Braaten, D. A.; Corr, H.

    2009-12-01

    The AGAP project was undertaken as part of the 2008\\09 field season and explored the Gamburtsev Subglacial Mountains (GSM) province in East Antarctica. AGAP collected >120, 000 line km of new airborne radar, aerogravity and aeromagnetic data. Here we focus on the airborne gravity part of the survey. The airborne gravity data were collected from two Twin Otters operating from remote field camps either side of Dome A. A high-resolution Sander Geophysics AIRGrav system was used for the first time in Antarctica and was mounted in the US plane. A more traditional L&R airborne gravity meter modified by ZLS was installed on the British Antarctic Survey aircraft. The AIRGrav system was flown in draped mode, which proved ideal for the simultaneous acquisition of radar and magnetic data, while the L&R system required flying along constant elevation survey blocks. The processed free-air gravity anomalies exhibit low cross-over errors of 1 mGal over the southern sector of the GSM, where the AIRGrav system was primarily used, and a spatial resolution of 3.5 km. Larger cross-over errors of 3.5 mGal and a coarser spatial resolution of 8 km characterise the northern part of the GSM and the adjacent Lambert Glacier, where the L&R meter was mainly flown. The merged free-air gravity anomaly grid primarily reflects the subglacial topography of the GSM province. The contrast between the Pensacola-Pole and Lambert Glacier basins and the rugged alpine-type relief of the GSM is clearly imaged. A dentritic system of subglacial valleys is mapped in the GSM, in good agreement with independent radar data. Inversion of the free-air gravity data assists in tracing the bedrock under several km-thick and fast-flowing crevassed ice of the Lambert Glacier. Using the ice thickness and bedrock topography data derived from airborne radar we compiled a new Bouguer anomaly map for the GSM province. The new gravity anomaly data can be used to estimate crustal thickness variations under the GSM and

  9. Lifshitz scale anomalies

    NASA Astrophysics Data System (ADS)

    Arav, Igal; Chapman, Shira; Oz, Yaron

    2015-02-01

    We analyse scale anomalies in Lifshitz field theories, formulated as the relative cohomology of the scaling operator with respect to foliation preserving diffeomorphisms. We construct a detailed framework that enables us to calculate the anomalies for any number of spatial dimensions, and for any value of the dynamical exponent. We derive selection rules, and establish the anomaly structure in diverse universal sectors. We present the complete cohomologies for various examples in one, two and three space dimensions for several values of the dynamical exponent. Our calculations indicate that all the Lifshitz scale anomalies are trivial descents, called B-type in the terminology of conformal anomalies. However, not all the trivial descents are cohomologically non-trivial. We compare the conformal anomalies to Lifshitz scale anomalies with a dynamical exponent equal to one.

  10. High-resolution global and local lunar gravity field models using GRAIL mission data

    NASA Astrophysics Data System (ADS)

    Goossens, S. J.; Lemoine, F. G.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: (1) a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km; (2) an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and between 11-20 km through December 14. Both the primary and the extended mission data have been processed into global models of the lunar gravity field at NASA/GSFC using the GEODYN software. Here we present our latest global model, an expansion in spherical harmonics of degree and order 1080. We discuss this new solution in terms of its power spectrum, its free-air and Bouguer anomalies, its associated error spectrum, and its correlations with topography-induced gravity. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale and the south pole area. We express gravity in terms of anomalies, and estimate them with respect to a global background model. We apply neighbor-smoothing in our estimation procedure. We present a local solution over the south pole area in a resolution of 1/6 by 1/6 of a degree, equivalent to degree and order 1080, and we compare this local solution to our global model.

  11. Venus gravity

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  12. GRACE Gravity Data Target Possible Mega-impact in North Central Wilkes Land, Antarctica

    NASA Technical Reports Server (NTRS)

    vonFrese, Ralph R. B.; Wells, Stuart B.; Potts. Laramie V.; Gaya-Pique, Luis R.; Golynsky, Alexander V.; Hernandez, Orlando; Kim, Jeong Woo; Kim, Hyung Rae; Hwang, Jong Sun; Taylor, Patrick T.

    2005-01-01

    A prominent positive GRACE satellite-measured free-air gravity anomaly over regionally depressed subglacial topography may identify a mascon centered on (70 deg S, 120 deg E) between the Gamburtsev and Transantarctic Mountains of East Antarctica. Being more than twice the size of the Chicxulub crater, the inferred Wilkes Land impact crater is a strong candidate for a Gondwana source of the greatest extinction of life at the end of the Permian. Its ring structure intersects the coastline and thus may have strongly influenced the Cenozoic rifting of East Antarctica from Australia that resulted in the enigmatic lack of crustal thinning on the conjugate Australian block.

  13. Glacier mass balance in high-arctic areas with anomalous gravity

    NASA Astrophysics Data System (ADS)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were

  14. A primitive plume neon component in MORB: The Shona ridge-anomaly, South Atlantic (51-52°S)

    NASA Astrophysics Data System (ADS)

    Moreira, Manuel; Staudacher, Thomas; Sarda, Philippe; Schilling, Jean-Guy; Allègre, Claude Jean

    1995-07-01

    We report on He and Ne isotopes in basaltic glasses from eight dredge stations occupied over the Shona gravity and topographic anomaly high on the Mid-Atlantic Ridge around 51-52°S. The results indicate the presence of a primitive, little degassed, 3He-rich mantle component. 3He/4He ratios correlate positively with the bathymetric and gravity anomaly, with values ranging from 12.5 to 6.4 times the atmospheric ratio of 1.38 × 10 -6. The highest value is almost identical to that of the Bouvet and Réunion hotspots. Neon isotopic ratios in 20Ne/22Ne vs. 21Ne/22Ne isotope space indicate recent mixing between a primitive mantle plume component with near-solar Ne and the upper mantle MORB source; and again, the most solar-like Ne found over the Shona ridge-anomaly is similar to that found at the Réunion hotspot. For the first time, a negative trend pointing toward solar values is bridging the commonly observed MORB-air and the Hawaiian L-K-air mixing lines of positive slope. These results suggest that the source of the Shona ridge-anomaly has a similar origin to that of the 3He-rich Bouvet and Réunion plume sources in the deep mantle, which could define a particular noble gas signature in the South Atlantic and the Indian Ocean. It is also evident that the source of the Shona plume is distinct from the 4He-rich source of the Tristan and Gough family of plumes located further north.

  15. Topography of the Moho and earth crust structure beneath the East Vietnam Sea from 3D inversion of gravity field data

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhu; Nguyen, Thi

    2013-04-01

    The Moho depth, crustal thickness and fault systems of the East Vietnam Sea (EVS) are determined by 3D interpretation of satellite gravity. The Moho depth is calculated by 3D Parker inversion from residual gravity anomaly that is obtained by removing the gravity effects of seafloor and Pre-Cenozoic sediment basement topographies from the free air anomaly. The 3D inversion solution is constrained by power density spectrum of gravity anomaly and seismic data. The calculated Moho depths in the EVS vary from 30-31 km near the coast to 9 km in the Central Basin. A map of the lithosphere extension factor in the Cenozoic is constructed from Moho and Pre-Cenozoic sediment basement depths. The fault systems constructed by the maximum horizontal gradient approach include NE-SW, NW-SE, and N-S oriented faults. Based on the interpretation results, the EVS is sub-divided into five structural zones which demonstrated the different characteristics of the crustal structure.

  16. A New Search for Lunar Mascon Basins using Detrended Kaguya (SELENE) Gravity: Implications for GRAIL

    NASA Astrophysics Data System (ADS)

    Dombard, A. J.; Hauck, S. A.; Balcerski, J.

    2012-12-01

    The collection of GRAIL data and imminent release of its first gravity models will revolutionize understanding of the lunar interior, which motivates an assessment of the current state of knowledge. A primary goal of the GRAIL mission is to understand better mascon basins, large impact craters that display significant positive free-air and Bouguer gravity anomalies. Discovered in a handful of nearside basins during preparations for the Apollo landings and recently expanded by the global Kaguya (SELENE) gravity models, an important question is why is not every large crater a mascon basin, as less than half of the 41 impact basins > 300 km in diameter (minus South Pole-Aitken) have been previously determined to be mascons. An issue not generally considered in the identification of mascons is that the topography, and hence Bouguer gravity, display long-wavelength regional signals that might mask some mascons. Here, we use the SGM100i Kaguya gravity model and LRO's LOLA shape model to examine the free-air, topographic (arising solely from topography), and Bouguer gravity, detrended by omitting the first 5 spherical harmonic degrees from our expansions. In contrast to past studies, we find that most large basins (28 of 41) display characteristics of mascons (e.g., a strong positive Bouguer anomaly generally narrower than the surface rim). Negative annuli surrounding the central highs in the free-air gravity do not exist in the Bouguer gravity, with only 2 definitive exceptions. The fact that the majority of the Bouguer anomalies are narrower than the basin rim and that the negative free-air annulus appears to be a product of the surface topography has implications for the formation of the basins. We propose that beneath a forming large basin, the mantle uplifts in response to the large isostatic imbalance with the transient crater, while the surface topography forms from not only upward but inward collapse of the transient crater's rim wall and adjustment of the melt

  17. Gravity model studies of Newberry Volcano, Oregon

    SciTech Connect

    Gettings, M.E.; Griscom, A.

    1988-09-10

    Newberry, Volcano, a large Quaternary volcano located about 60 km east of the axis of the High Cascades volcanoes in central Oregon, has a coincident positive residual gravity anomaly of about 12 mGals. Model calculations of the gravity anomaly field suggest that the volcano is underlain by an intrusive complex of mafic composition of about 20-km diameter and 2-km thickness, at depths above 4 km below sea level. However, uplifted basement in a northwest trending ridge may form part of the underlying excess mass, thus reducing the volume of the subvolcanic intrusive. A ring dike of mafic composition is inferred to intrude to near-surface levels along the caldera ring fractures, and low-density fill of the caldera floor probably has a thickness of 0.7--0.9 km. The gravity anomaly attributable to the volcano is reduced to the east across a north-northwest trending gravity anomaly gradient through Newberry caldera and suggests that normal, perhaps extensional, faulting has occurred subsequent to caldera formation and may have controlled the location of some late-stage basaltic and rhyolitic eruptions. Significant amounts of felsic intrusive material may exist above the mafic intrusive zone but cannot be resolved by the gravity data.

  18. Gravity investigations

    SciTech Connect

    Healey, D.L.

    1983-12-31

    A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.

  19. Coronary artery anomalies.

    PubMed

    Earls, James P

    2006-12-01

    Coronary artery anomalies are uncommon findings but can be of significant clinical importance in a small number of individuals. Clinical presentation depends on the specific anomaly. Most coronary artery anomalies are benign and clinically insignificant, however, some anomalies are potentially significant and can lead to heart failure and even death. Noninvasive imaging has emerged as the preferred way to image coronary anomalies. Both electron beam computed tomography (EBCT) and magnetic resonance angiography (MRA) are useful for the diagnosis of anomalous coronary arteries. Recently, MDCT has also proven to be very useful in the detection and characterization of anomalous coronary arteries. This chapter will review the appearance of the most commonly encountered coronary anomalies on MDCT. PMID:17709086

  20. Familial Ebstein's anomaly.

    PubMed Central

    Rosenmann, A; Arad, I; Simcha, A; Schaap, T

    1976-01-01

    A family is described in which both a father and son are affected with Ebstein's anomaly, while several other family members manifest different cardiac malformations. Five additional instances of familial Ebstein's anomaly were found in the literature and compared with our family. Inspection of possible modes of inheritance in this group of families suggests that Ebstein's anomaly is probably inherited as a polygenic character with a threshold phenomenon. PMID:1018315

  1. Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault

    USGS Publications Warehouse

    Ben-Avraham, Z.; ten Brink, U.; Bell, R.; Reznikov, M.

    1996-01-01

    The Sea of Galilee (Lake Kinneret) is located at the northern portion of the Kinneret-Bet Shean basin, in the northern Dead Sea transform. Three hundred kilometers of continuous marine gravity data were collected in the lake and integrated with land gravity data to a distance of more than 20 km around the lake. Analyses of the gravity data resulted in a free-air anomaly map, a variable density Bouguer anomaly map, and a horizontal first derivative map of the Bouguer anomaly. These maps, together with gravity models of profiles across the lake and the area south of it, were used to infer the geometry of the basins in this region and the main faults of the transform system. The Sea of Galilee can be divided into two units. The southern half is a pull-apart that extends to the Kinarot Valley, south of the lake, whereas the northern half was formed by rotational opening and transverse normal faults. The deepest part of the basinal area is located well south of the deepest bathymetric depression. This implies that the northeastern part of the lake, where the bathymetry is the deepest, is a young feature that is actively subsiding now. The pull-apart basin is almost symmetrical in the southern part of the lake and in the Kinarot Valley south of the lake. This suggests that the basin here is bounded by strike-slip faults on both sides. The eastern boundary fault extends to the northern part of the lake, while the western fault does not cross the northern part. The main factor controlling the structural complexity of this area is the interaction of the Dead Sea transform with a subperpendicular fault system and rotated blocks.

  2. Taussig-Bing Anomaly

    PubMed Central

    Konstantinov, Igor E.

    2009-01-01

    Taussig-Bing anomaly is a rare congenital heart malformation that was first described in 1949 by Helen B. Taussig (1898–1986) and Richard J. Bing (1909–). Although substantial improvement has since been achieved in surgical results of the repair of the anomaly, management of the Taussig-Bing anomaly remains challenging. A history of the original description of the anomaly, the life stories of the individuals who first described it, and the current outcomes of its surgical management are reviewed herein. PMID:20069085

  3. Hyperbolic Orbits and the Planetary Flylby Anomaly

    NASA Technical Reports Server (NTRS)

    Wilson, T.L.; Blome, H.J.

    2009-01-01

    Space probes in the Solar System have experienced unexpected changes in velocity known as the flyby anomaly [1], as well as shifts in acceleration referred to as the Pioneer anomaly [2-4]. In the case of Earth flybys, ESA s Rosetta spacecraft experienced the flyby effect and NASA s Galileo and NEAR satellites did the same, although MESSENGER did not possibly due to a latitudinal property of gravity assists. Measurements indicate that both anomalies exist, and explanations have varied from the unconventional to suggestions that new physics in the form of dark matter might be the cause of both [5]. Although dark matter has been studied for over 30 years, there is as yet no strong experimental evidence supporting it [6]. The existence of dark matter will certainly have a significant impact upon ideas regarding the origin of the Solar System. Hence, the subject is very relevant to planetary science. We will point out here that one of the fundamental problems in science, including planetary physics, is consistency. Using the well-known virial theorem in astrophysics, it will be shown that present-day concepts of orbital mechanics and cosmology are not consistent for reasons having to do with the flyby anomaly. Therefore, the basic solution regarding the anomalies should begin with addressing the inconsistencies first before introducing new physics.

  4. Geophysical investigations of a geothermal anomaly at Wadi Ghadir, eastern Egypt

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Boulos, F. K.; Hennin, S. F.; El-Sherif, A. A.; El-Sayed, A. A.; Basta, N. Z.; Melek, Y. S.

    1984-01-01

    During regional heat flow studies a geothermal anomaly was discovered approximately 2 km from the Red Sea coast at Wadi Ghadir, in the Red Sea Hills of Eastern Egypt. A temperature gradient of 55 C/km was measured in a 150 m drillhole at this location, indicating a heat flow of approximately 175 mw/sqm, approximately four times the regional background heat flow for Egypt. Gravity and magnetic data were collected along Wadi Ghadir, and combined with offshore gravity data, to investigate the source of the thermal anomaly. Magnetic anomalies in the profile do not coincide with the thermal anomaly, but were observed to correlate with outcrops of basic rocks. Other regional heat flow and gravity data indicate that the transition from continental to oceanic type lithosphere occurs close to the Red Sea margin, and that the regional thermal anomaly is possibly related to the formation of the Red Sea.

  5. Standard model with gravity couplings

    NASA Astrophysics Data System (ADS)

    Chang, Lay Nam; Soo, Chopin

    1996-05-01

    In this paper we examine the coupling of matter fields to gravity within the framework of the standard model of particle physics. The coupling is described in terms of Weyl fermions of a definite chirality, and employs only (anti-)self-dual or left-handed spin connection fields. We review the general framework for introducing the coupling using these fields, and show that conditions ensuring the cancellation of perturbative chiral gauge anomalies are not disturbed. We also explore a global anomaly associated with the theory, and argue that its removal requires that the number of fundamental fermions in the theory must be multiples of 16. In addition, we investigate the behavior of the theory under discrete transformations P, C, and T, and discuss possible violations of these discrete symmetries, including CPT, in the presence of instantons and the Adler-Bell-Jackiw anomaly.

  6. Magnetic Anomalies in the Enderby Basin, the Southern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Nogi, Y.; Sato, T.; Hanyu, T.

    2013-12-01

    Magnetic anomalies in the Southern indian Ocean are vital to understanding initial breakup process of Gondwana. However, seafloor age estimated from magnetic anomalies still remain less well-defined because of the sparse observations in this area. To understand the seafloor spreading history related to the initial breakup process of Gondwana, vector magnetic anomaly data as well as total intensity magnetic anomaly data obtained by the R/V Hakuho-maru and the icebreaker Shirase in the Enderby Basin, Southern Indian Ocean, are used. The strikes of magnetic structures are deduced from the vector magnetic anomalies. Magnetic anomaly signals, most likely indicating Mesozoic magnetic anomaly sequence, are obtained almost parallel to the west of WNW-ESE trending lineaments just to the south of Conrad Rise inferred from satellite gravity anomalies. Most of the strikes of magnetic structures indicate NNE-SSW trends, and are almost perpendicular to the WNW-ESE trending lineaments. Mesozoic sequence magnetic anomalies with mostly WNW-ESE strikes are also observed along the NNE-SSW trending lineaments between the south of the Conrad Rise and Gunnerus Ridge. Magnetic anomalies originated from Cretaceous normal polarity superchron are found in these profiles, although magnetic anomaly C34 has been identified just to the north of the Conrad Rise. However Mesozoic sequence magnetic anomalies are only observed in the west side of the WNW-ESE trending lineaments just to the south of Conrad Rise and not detected to the east of Cretaceous normal superchron signals. These results show that counter part of Mesozoic sequence magnetic anomalies in the south of Conrad Rise would be found in the East Enderby Basin, off East Antarctica. NNE-SSW trending magnetic structures, which are similar to those obtained just to the south of Conrad Rise, are found off East Antarctica in the East Enderby Basin. However, some of the strikes show almost E-W orientations. These suggest complicated ridge

  7. First Release of Gravimetric Geoid Model over Saudi Arabia Based on Terrestrial Gravity and GOCE Satellite Data: KSAG01

    NASA Astrophysics Data System (ADS)

    Alothman, Abdulaziz; Elsaka, Basem

    2016-04-01

    A new gravimetric quasi-geoid, known as KSAG0, has been developed recently by Remove-Compute-Restore techniques (RCR), provided by the GRAVSOFT software, using gravimetric free air anomalies. The terrestrial gravity data used in this computations are: 1145 gravity field anomalies observed by ARAMCO (Saudi Arabian Oil Company) and 2470 Gravity measurements from BGI (Bureau Gravimétrique International). The computations were carried out implementing the least squares collocation method through the RCR techniques. The KSAG01 is based on merging in addition to the terrestrial gravity observations, GOCE satellite model (Eigen-6C4) and global gravity model (EGM2008) have been utilized in the computations. The long, medium and short wavelength spectrum of the height anomalies were compensated from Eigen-6C4 and EGM2008 geoid models truncated up to Degree and order (d/o) up to 2190. KSAG01 geoid covers 100 per cent of the kingdom, with geoid heights range from - 37.513 m in the southeast to 23.183 m in the northwest of the country. The accuracy of the geoid is governed by the accuracy, distribution, and spacing of the observations. The standard deviation of the predicted geoid heights is 0.115 m, with maximum errors of about 0.612 m. The RMS of geoid noise ranges from 0.019 m to 0.04 m. Comparison of the predicted gravimetric geoid with EGM, GOCE, and GPS/Levelling geoids, reveals a considerable improvements of the quasi-geoid heights over Saudi Arabia.

  8. Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM 2.5 forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei; Wu, Yonghua; Madhavan, B. L.; Gross, Barry; Moshary, Fred

    2011-12-01

    In this paper, the simulations of the Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) Models applied to the New York City (NYC) area are assessed with the aid of vertical profiling and column integrated remote sensing measurements. First, we find that when turbulent mixing processes are dominant, the WRF-derived planetary boundary layer (PBL) height exhibits a strong linear correlation ( R > 0.85) with lidar-derived PBL height. In these comparisons, we estimate the PBL height from the lidar measurements using a Wavelet Covariance Transform (WCT) approach that is modified to better isolate the convective layer from the residual layer (RL). Furthermore, the WRF-Lidar PBL height comparisons are made using different PBL parameterization schemes, including the Asymmetric Convective Model-version2 (ACM2) and the Modified Blackadar (BLK) scheme (which are both runs using hindcast data), as well as the Mellor-Yamada-Janjic (MYJ) scheme run in forecast mode. Our findings show that the correlations for these runs are high (>0.8), but the hindcast runs exhibit smaller overall dispersion (≈0.1) than the forecast runs. We also apply continuous 24-hour/7-day vertical ceilometer measurements to assess WRF-CMAQ model forecasts of surface PM 2.5 (particulate matter has aerodynamic diameter <2.5 μm). Strong overestimations in the surface PM 2.5 mass that are observed in the summer prior to sunrise are particularly shown to be strongly connected to underestimations of the PBL height and less to enhanced emissions. This interpretation is consistent with observations that TEOM (Tapered Element Oscillating MicroBalance) PM 2.5 measurements are better correlated to path-integrated CMAQ PM 2.5 than the near-surface measurements during these periods.

  9. Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM2.5forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei; Wu, Yonghua; Bomidi, L. M.; Gross, Barry; Moshary, Fred

    2011-11-01

    In this paper, the simulations of the Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) Models applied to the New York City (NYC) area are assessed with the aid of vertical profiling and column integrated remote sensing measurements. First, we find that when turbulent mixing processes are dominant, the WRFderived planetary boundary layer (PBL) height exhibits a strong linear correlation (R>0.85) with lidar-derived PBL height. In these comparisons, we estimate the PBL height from the lidar measurements using a Wavelet Covariance Transform (WCT) approach that is modified to better isolate the convective layer from the residual layer (RL). Furthermore, the WRF-Lidar PBL height comparisons are made using different PBL parameterization schemes, including the Asymmetric Convective Model-version2 (ACM2) and the Modified Blackadar (BLK) scheme (which are both runs using hindcast data), as well as the Mellor-Yamada-Janjic (MYJ) scheme run in forecast mode. Our findings show that the correlations for these runs are high (>0.8), but the hindcast runs exhibit smaller overall dispersion (~0.1) than the forecast runs. We also apply continuous 24-hour/7-day vertical ceilometer measurements to assess WRFCMAQ model forecasts of surface PM2.5 (particulate matter has aerodynamic diameter <2.5μm). Strong overestimations in the surface PM2.5 mass that are observed in the summer prior to sunrise are particularly shown to be strongly connected to underestimations of the PBL height and less to enhanced emissions. This interpretation is consistent with observations that TEOM (Tapered Element Oscillating MicroBalance) PM2.5 measurements are better correlated to pathintegrated CMAQ PM2.5 than the near-surface measurements during these periods.

  10. The alpine Swiss-French airborne gravity survey

    NASA Astrophysics Data System (ADS)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  11. Venus - Global gravity and topography

    NASA Astrophysics Data System (ADS)

    McNamee, J. B.; Borderies, N. J.; Sjogren, W. L.

    1993-05-01

    A new gravity field determination that has been produced combines both the Pioneer Venus Orbiter (PVO) and the Magellan Doppler radio data. Comparisons between this estimate, a spherical harmonic model of degree and order 21, and previous models show that significant improvements have been made. Results are displayed as gravity contours overlaying a topographic map. We also calculate a new spherical harmonic model of topography based on Magellan altimetry, with PVO altimetry included where gaps exist in the Magellan data. This model is also of degree and order 21, so in conjunction with the gravity model, Bouguer and isostatic anomaly maps can be produced. These results are very consistent with previous results, but reveal more spatial resolution in the higher latitudes.

  12. Competing Orders and Anomalies

    NASA Astrophysics Data System (ADS)

    Moon, Eun-Gook

    2016-08-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  13. Competing Orders and Anomalies.

    PubMed

    Moon, Eun-Gook

    2016-08-08

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  14. Competing Orders and Anomalies.

    PubMed

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  15. Competing Orders and Anomalies

    PubMed Central

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  16. Gravity's overdrive

    NASA Astrophysics Data System (ADS)

    Reichhardt, Tony

    1994-03-01

    Mariner 10 traveled to Mercury by using Venus' gravity to bend its course in toward the sun, a correction that would otherwise required vast amounts of rocket fuel. For the first time, an interplanetary spacecraft changed course not with rocket fuel but by using a planet's gravitational field. That maneuver stands, along with the development of the rocket engine, as one of the keys that opened the solar system for exploration. The Pioneer, Voyager, and Galileo missions all used gravity assist, and in fact would not have been possible otherwise. Gravity assist is the most efficient form of space propulsion known. Various aspects of the developmental history of the gravity assist technique and the dispute over who should receive credit for inventing the technique are discussed.

  17. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  18. Using Satellite Gravity to Map and Model Forearc Basins and Thickness of Trench Sediment Worldwide: Implications for Great Earthquakes

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Scholl, D. W.; Wells, R. E.; von Huene, R.; Barckhausen, U.

    2006-12-01

    There is growing evidence that historic great earthquakes (M>8) favor segments of subduction zones that exhibit key geologic factors, such as high sediment influx into the trench (e.g., Ruff, 1989), the presence of young accretionary prisms (von Huene and Scholl, 1991), the presence of trench-slope forearc basins (Wells et al., 2003; Song and Simons, 2003), and the mineralogical structure of the upper plate. The USGS Tsunami Sources Working Group (http://walrus.wr.usgs.gov/tsunami/workshop/index.html) recently described and quantified these factors for all eastern Pacific subduction margins. Although the level of knowledge of subduction zones world-wide is highly uneven, free-air gravity anomalies observed at satellite altitudes provide a consistent measure of some of these geologic factors. Satellite gravity demonstrates, for example, that regions of greatest slip during past megathrust earthquakes around the circum-Pacific spatially correlate with forearc basins and their associated deep-sea terrace gravity lows, with amplitudes typically >20 mGal. Basins may evolve because interseismic subsidence, possibly linked to basal erosion of the forearc by the subducting plate, does not fully recover after earthquakes. By inference, therefore, forearc basin gravity lows should be predictors of the location of large moment release during future great earthquakes. Moreover, great earthquakes have a statistical propensity to occur at trenches with excess sediments, in contrast to trenches dominated by horst-and-graben bathymetry. After removing the effects of bathymetric depth, low densities associated with trench fill are evident in satellite gravity anomalies and thus permit identification of trench segments with high sediment influx. Additional studies using satellite gravity anomalies may lead to new avenues in understanding the geologic processes that accompany great megathrust earthquakes, but we must confirm the ability of satellite gravity data to serve as a

  19. Arctic and N Atlantic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Alvey, Andy

    2014-05-01

    consistent with these basins being oceanic. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Crustal basement thicknesses of 10-15 km are predicted under the Laptev Sea which is interpreted as highly thinned continental crust formed at the eastward continuation of Eurasia Basin sea-floor spreading. Thin continental or oceanic crust of thickness 7 km or less is predicted under the North Chukchi Basin and has major implications for understanding the Mesozoic and Cenozoic plate tectonic history of the Siberian and Chukchi Amerasia Basin margins. Restoration of crustal thickness and continent-ocean boundary location from gravity inversion may be used to test and refine plate tectonic reconstructions. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory within the Arctic and N Atlantic basins. By restoring crustal thickness & continental lithosphere thinning maps of the Eurasia Basin & NE Atlantic to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. We interpret gravity inversion crustal thicknesses underneath Morris Jessop Rise & Yermak Plateau as continental crust which provided a barrier to the tectonic and palaeo-oceanic linkage between the Arctic & North Atlantic until the Oligocene. Before this time, we link the seafloor spreading within the Eurasia Basin to that in Baffin Bay.

  20. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  1. Evaluation of recent Earth's global gravity field models with terrestrial gravity data

    NASA Astrophysics Data System (ADS)

    Karpik, Alexander P.; Kanushin, Vadim F.; Ganagina, Irina G.; Goldobin, Denis N.; Kosarev, Nikolay S.; Kosareva, Alexandra M.

    2016-03-01

    In the context of the rapid development of environmental research technologies and techniques to solve scientific and practical problems in different fields of knowledge including geosciences, the study of Earth's gravity field models is still important today. The results of gravity anomaly modelling calculated by the current geopotential models data were compared with the independent terrestrial gravity data for the two territories located in West Siberia and Kazakhstan. Statistical characteristics of comparison results for the models under study were obtained. The results of investigations show that about 70% of the differences between the gravity anomaly values calculated by recent global geopotential models and those observed at the points in flat areas are within ±10 mGal, in mountainous areas are within ±20 mGal.

  2. Gravity field determination and error assessment techniques

    NASA Technical Reports Server (NTRS)

    Yuan, D. N.; Shum, C. K.; Tapley, B. D.

    1989-01-01

    Linear estimation theory, along with a new technique to compute relative data weights, was applied to the determination of the Earth's geopotential field and other geophysical model parameters using a combination of satellite ground-based tracking data, satellite altimetry data, and the surface gravimetry data. The relative data weights for the inhomogeneous data sets are estimated simultaneously with the gravity field and other geophysical and orbit parameters in a least squares approach to produce the University of Texas gravity field models. New techniques to perform calibration of the formal covariance matrix for the geopotential solution were developed to obtain a reliable gravity field error estimate. Different techniques, which include orbit residual analysis, surface gravity anomaly residual analysis, subset gravity solution comparisons and consider covariance analysis, were applied to investigate the reliability of the calibration.

  3. Behavioral economics without anomalies.

    PubMed Central

    Rachlin, H

    1995-01-01

    Behavioral economics is often conceived as the study of anomalies superimposed on a rational system. As research has progressed, anomalies have multiplied until little is left of rationality. Another conception of behavioral economics is based on the axiom that value is always maximized. It incorporates so-called anomalies either as conflicts between temporal patterns of behavior and the individual acts comprising those patterns or as outcomes of nonexponential time discounting. This second conception of behavioral economics is both empirically based and internally consistent. PMID:8551195

  4. Holographic trace anomaly and local renormalization group

    NASA Astrophysics Data System (ADS)

    Rajagopal, Srivatsan; Stergiou, Andreas; Zhu, Yechao

    2015-11-01

    The Hamilton-Jacobi method in holography has produced important results both at a renormalization group (RG) fixed point and away from it. In this paper we use the Hamilton-Jacobi method to compute the holographic trace anomaly for four- and six-dimensional boundary conformal field theories (CFTs), assuming higher-derivative gravity and interactions of scalar fields in the bulk. The scalar field contributions to the anomaly appear in CFTs with exactly marginal operators. Moving away from the fixed point, we show that the Hamilton-Jacobi formalism provides a deep connection between the holographic and the local RG. We derive the local RG equation holographically, and verify explicitly that it satisfies Weyl consistency conditions stemming from the commutativity of Weyl scalings. We also consider massive scalar fields in the bulk corresponding to boundary relevant operators, and comment on their effects to the local RG equation.

  5. Preparation of dynamic gravity testing system

    NASA Astrophysics Data System (ADS)

    Bowin, Carl

    Bowin's interest at WHOI is to obtain the most accurate gravity and gravity gradient measurements possible. The Navy's interest is to have the most accurate navigation possible. Neither can have one without the other. Through Zarak Corporation, Bowin has proposed to the Navy Air System Command to develop a dynamic navigational gravity/gravity gradient (NAV/GRAV) system utilizing superconducting squid gravity and tensor gravity gradient sensors for high precision performance. The proposed system development incorporates that inter-dependency, not only to provide the best estimates of both, but also to provide estimates of the quality of the results obtained. Zarak is pursuing funds for the development of superconducting gravity and gravity gradient sensors. Such sensors, when available, will then be utilized in this palletized system for higher accuracy navigation, gravity and gravity gradient determination. It is desired that initial testing utilize Vibrating String Accelerometers (VSA) gravity sensors and readout systems available at WHOI. This way the development and testing of the NAV/GRAV system can proceed using the VSA sensors while the superconducting gravity sensors are being fabricated. Initial dynamic systems tests will be in a van vehicle for convenience and practicality. The system units will be palletized, and therefore they shall be easily transferable, and thus also be usable in aircraft and ships. It is planned that WHOI will have loan of prototype systems for about two months each year for earth research use.

  6. Dual diaphragmatic anomalies.

    PubMed

    Padmanabhan, Arjun; Thomas, Abin Varghese

    2016-01-01

    Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well. PMID:27625457

  7. Dual diaphragmatic anomalies

    PubMed Central

    Padmanabhan, Arjun; Thomas, Abin Varghese

    2016-01-01

    Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well.

  8. Dual diaphragmatic anomalies

    PubMed Central

    Padmanabhan, Arjun; Thomas, Abin Varghese

    2016-01-01

    Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well. PMID:27625457

  9. SADM potentiometer anomaly investigations

    NASA Astrophysics Data System (ADS)

    Wood, Brian; Mussett, David; Cattaldo, Olivier; Rohr, Thomas

    2005-07-01

    During the last 3 years Contraves Space have been developing a Low Power (1-2kW) Solar Array Drive Mechanism (SADM) aimed at small series production. The mechanism was subjected to two test programmes in order to qualify the SADM to acceptable levels. During the two test programmes, anomalies were experienced with the Potentiometers provided by Eurofarad SA and joint investigations were undertaken to resolve why these anomalies had occurred. This paper deals with the lessons learnt from the failure investigation on the two Eurofarad (rotary) Potentiometer anomaly. The Rotary Potentiometers that were used were fully redundant; using two back to back mounted "plastic tracks". It is a pancake configuration mounted directly to the shaft of the Slip Ring Assembly at the extreme in-board end of the SADM. It has no internal bearings. The anomaly initially manifested itself as a loss of performance in terms of linearity, which was first detected during Thermal Vacuum testing. A subsequent anomaly manifested itself by the complete failure of the redundant potentiometer again during thermal vacuum testing. This paper will follow and detail the chain of events following this anomaly and identifies corrective measures to be applied to the potentiometer design and assembly process.

  10. BF gravity

    NASA Astrophysics Data System (ADS)

    Celada, Mariano; González, Diego; Montesinos, Merced

    2016-11-01

    BF gravity comprises all the formulations of gravity that are based on deformations of BF theory. Such deformations consist of either constraints or potential terms added to the topological BF action that turn some of the gauge degrees of freedom into physical ones, particularly giving rise to general relativity. The BF formulations have provided new and deep insights into many classical and quantum aspects of the gravitational field, setting the foundations for the approach to quantum gravity known as spinfoam models. In this review, we present a self-contained and unified treatment of the BF formulations of D-dimensional general relativity and other related models, focusing on the classical aspects of them and including some new results.

  11. Gravity and magnetic evidence for a granitic intrusion near Wahmonie Site, Nevada Test Site, Nevada

    SciTech Connect

    Ponce, D.A.

    1984-10-10

    Gravity and magnetic data outline a broad anomaly near Wahmonie Site, Nye County, Nevada. A positive 15-mGal gravity anomaly with a steep western gradient and a broad magnetic anomaly coincident with the gravity high characterize the area. Two-dimensional computer models of the gravity data were made using magnetic, seismic, and electric data as independent constraints. The models indicate the presence of a shallow, relatively high density body of 2.65 kg m{sup -3} buried near Wahmonie Site. Aeromagnetic and ground magnetic data also indicate the presence of a large, shallow body. Two smaller local magnetic highs that occur along a magnetic prominence extending northward from the broad anomaly directly correlate to granodiorite outcrops. This indicates that the main anomaly is produced by a large shallow intrusion.

  12. Crustal structure beneath the southern Appalachians: nonuniqueness of gravity modeling

    USGS Publications Warehouse

    Hutchinson, Deborah R.; Grow, John A.; Klitgord, Kim D.

    1983-01-01

    Gravity models computed for a profile across the long-wavelength paired negative-positive Bouguer anomalies of the southern Appalachian Mountains show that the large negative anomaly can be explained by a crustal root zone, whereas the steep gradient and positive anomaly east of the root may be explained equally well by three different geometries: a suture zone, a mantle upwarp, or a shallow body. Seismic data support the existence of a mountain root but are inadequate to resolve differences among the three possible geometries for the positive anomaly. The presence of outcropping mafic and ultramafic rocks in the southern Appalachians and the inferred tectonic history of the Appalachian orogen are most consistent with the suture-zone model. Crust similar to continental crust probably exists beneath the Coastal Plain and inner continental shelf where the gravity anomalies return to near-zero values.

  13. Gravity settling

    DOEpatents

    Davis, Hyman R.; Long, R. H.; Simone, A. A.

    1979-01-01

    Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.

  14. Simulating Gravity

    ERIC Educational Resources Information Center

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  15. Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2009-11-01

    The continuing search for quantum gravity and never ending attempts to unify gravity with other forces of nature represent tremendous waste of public and private funds directing students' energy towards non-creative manipulative work instead of learning from the scientific creativity in Einstein's 1919 paper that unifies gravity with nuclear force. It reflects Einstein's 1919 jump beyond his own 1915 theory of gravity, including that of Newton as implicitly demanded by Newton in 1686. Einstein corrected and retracted his 1917 introduction of cosmological constant in 1919. Dislike of the fact that Einstein did not use quantum mechanics to prove his point has no real value now, because we will use key ingredients (Planck scale and probabilistic aspect) of quantum mechanics and show that they reach the same conclusion. Newton explained the solar system known after Kepler. Likewise, our quantum mechanical approach explains the strong coupling as well the solar system and shows new horizons, otherwise unexplained. Explanation of unexplained observations need no prediction per Hawking, and obviously otherwise.

  16. Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage - Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes

    NASA Astrophysics Data System (ADS)

    Wright, Corwin J.; Hindley, Neil P.; Moss, Andrew C.; Mitchell, Nicholas J.

    2016-03-01

    Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely used gravity-wave-resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (Microwave Limb Sounder, MLS-Aura; HIgh Resolution Dynamics Limb Sounder, HIRDLS; Sounding of the Atmosphere using Broadband Emission Radiometry, SABER), the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS-RO constellation, a ground-based meteor radar, the Advanced Infrared Sounder (AIRS) infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity-wave packets from the lower troposphere to the edge of the lower thermosphere ( ˜ 100 km). Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically > 0.80 between any instrument pair. Meteor radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other data sets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Evidence of wave dissipation is seen, and varies strongly with season. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal

  17. Massive gravity

    NASA Astrophysics Data System (ADS)

    Mukohyama, Shinji

    2013-09-01

    The concept of mass has been central in many areas of physics. Gravitation is not an exception, and it has been one of the long-standing questions whether the graviton, a spin-2 particle that mediates gravity, can have a non-vanishing mass or not. This question is relevant from not only theoretical but also phenomenological viewpoints, since a nonzero graviton mass may lead to late-time acceleration of the universe and thus may be considered as an alternative to dark energy. In 2010, de Rham, Gabadadze and Tolley proposed the first example of a fully nonlinear massive gravity theory and showed that the so called Boulware-Deser ghost, which had been one of the major obstacles against a stable nonlinear theory of massive gravity since 1972, can be removed by construction. Since then, nonlinear massive gravity has been attracting significant interest among physicists and cosmologists. The nonlinear theory of massive gravity provides a theoretical framework in which properties of the remaining five physical degrees of freedom of massive gravity can be studied. As always with any low-energy effective theories, one of the first tasks would be to identify good and bad backgrounds. Depending on the choice of backgrounds, some of the five degrees of freedom may become strongly coupled, may exhibit instantaneous propagation, or may lead to ghost/gradient instabilities. A related subject is to seek interesting solutions such as those relevant for astrophysical objects and those describing self-accelerating cosmology. Those solutions will allow us to study phenomenological and cosmological implications of the theory. Yet another important task would be to seek a possible (partial) UV completion that can be applied beyond the regime of validity of the low-energy effective theory that we currently know of. We invited articles to cover those important subjects in massive gravity. Given the recent rapid developments in the field, however, it must be noted that this focus issue

  18. Astrometric solar system anomalies

    SciTech Connect

    Nieto, Michael Martin; Anderson, John D

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  19. Congenital Vascular Anomalies.

    PubMed

    Gravereaux, Edwin C.; Nguyen, Louis L.; Cunningham, Leslie D.

    2004-04-01

    Congenital vascular anomalies are rare. The cardiovascular specialist should nevertheless be aware of the more common types of vascular anomalies and understand the implications for patient treatment and the likelihood of associated morbidity. The presentation of congenital arteriovenous malformations can range from asymptomatic or cosmetic lesions, to those causing ischemia, ulceration, hemorrhage, or high-output congestive heart failure. Treatment of large, symptomatic arteriovenous malformations often requires catheter-directed embolization prior to the attempt at complete surgical excision. Later recurrence, due to collateral recruitment, is frequent. Graded compression stockings and leg elevation are the mainstays of treatment for the predominantly venous congenital vascular anomalies. Most congenital central venous disorders are clinically silent. An exception is the retrocaval ureter. Retroaortic left renal vein, circumaortic venous ring, and absent, left-sided or duplicated inferior vena cava are relevant when aortic or inferior vena cava procedures are planned. The treatment of the venous disorders is directed at prevention or management of symptoms. Persistent sciatic artery, popliteal entrapment syndrome, and aberrant right subclavian artery origin are congenital anomalies that are typically symptomatic at presentation. Because they mimic more common diseases, diagnosis is frequently delayed. Delay can result in significant morbidity for the patient. Failure to make the diagnosis of persistent sciatic artery and popliteal entrapment can result in critical limb ischemia and subsequent amputation. Unrecognized aberrant right subclavian artery origin associated with aneurysmal degeneration can rupture and result in death. The treatment options for large-vessel arterial anomalies are surgical, sometimes in combination with endovascular techniques.

  20. Imaging subsurface density distribution beneath Montserrat (West Indies) from Bouguer gravity data

    NASA Astrophysics Data System (ADS)

    Hautmann, S.; Camacho, A. G.; Gottsmann, J.; Odbert, H. M.; Syers, T.

    2012-12-01

    High resolution static gravity data allow to resolve for spatial inhomogeneities in the Earth's gravity field by providing information on the density distribution in the shallow subsurface. Images of the subsurface density distribution and identification of structural discontinuities in the ground are of particular interest in active volcanic regions, as they bear implications for fluid migration, edifice stability and the subsurface transmission of volcanically induced stresses. Although the persistently active Soufrière Hills Volcano (SHV; Montserrat, West Indies) is currently one of the most extensively studied actively erupting stratovolcanos, a local Bouguer anomaly map of the volcano and the island of Montserrat is missing to date. In June/July 2012 we conducted a static gravity survey on Montserrat. Using a Scintrex CG-5 Autograv a total of 160 new gravity data were collected on the entire island. Site positions and elevations were obtained via a TOPCON Hiperpro dual frequency GNSS receiver/antenna. Our Bouguer gravity network provides a dense coverage (distance of 200 m between adjacent sites) of the accessible regions of the older volcanic complexes Silver Hills and Centre Hills, while (due to operator's safety) the network coverage around the active SHV is more sparse with about 1 km distance between adjacent sites. The recorded gravity data were corrected for Solid Earth Tides and ocean loading and reduced for the effect of benchmark elevation (free-air effect) and latitude. The correction for topographic effects was done via an automated algorithm based on a digital elevation model and bathymetric data. In order to model our data we performed a non-linear inversion using the inversion package GROWTH 2.0. The inversion is based on a 3-D aggregation of M parallelepiped cells, which are filled, in a growth process, by means of prescribed positive and/or negative density contrasts. This methodology provides, via an automatic approach, a free 3-D geometry

  1. Global gravity field recovery from the ARISTOTELES satellite mission

    NASA Astrophysics Data System (ADS)

    Visser, P. N. A. M.; Wakker, K. F.; Ambrosius, B. A. C.

    1994-02-01

    One of the primary objectives of the future ARISTOTELES satellite mission is to map Earth's gravity field with high resolution and accuracy. In order to achieve this objective, the ARISTOTELES satellite will be equipped with a gravity gradiometer and a Global Positioning System (GPS) receiver. Global gravity field error analyses have been performed for several combinations of gradiometer and GPS observations. These analyses indicated that the bandwidth limitation of the gradiometer prevents a stable high-accuracy, high-resolution gravity solution if no additional information is available. However, with the addition of high-accuracy GPS observations, a stable gravity field solution can be obtained. A combination of the measurements acquired by the high-quality GPS receiver and the bandwidth-limited gradiometer on board ARISTOTELES will yield a global gravity field model with a resolution of less than 100 km and with an accuracy of better than 5 mGal for gravity anomalies and 10 cm for geoid undulations.

  2. Local Lunar Gravity Field Analysis over the South Pole-aitken Basin from SELENE Farside Tracking Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander Johannes; Ishihara, Yoshiaki; Matsumoto, Koji; Sasaki, Sho

    2012-01-01

    We present a method with which we determined the local lunar gravity field model over the South Pole-Aitken (SPA) basin on the farside of the Moon by estimating adjustments to a global lunar gravity field model using SELENE tracking data. Our adjustments are expressed in localized functions concentrated over the SPA region in a spherical cap with a radius of 45deg centered at (191.1 deg E, 53.2 deg S), and the resolution is equivalent to a 150th degree and order spherical harmonics expansion. The new solution over SPA was used in several applications of geophysical analysis. It shows an increased correlation with high-resolution lunar topography in the frequency band l = 40-70, and admittance values are slightly different and more leveled when compared to other, global gravity field models using the same data. The adjustments expressed in free-air anomalies and differences in Bouguer anomalies between the local solution and the a priori global solution correlate with topographic surface features. The Moho structure beneath the SPA basin is slightly modified in our solution, most notably at the southern rim of the Apollo basin and around the Zeeman crater

  3. Magnetic anomalies. [Magsat studies

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.

    1983-01-01

    The implications and accuracy of anomaly maps produced using Magsat data on the scalar and vector magnetic field of the earth are discussed. Comparisons have been made between the satellite maps and aeromagnetic survey maps, showing smoother data from the satellite maps and larger anomalies in the aircraft data. The maps are being applied to characterize the structure and tectonics of the underlying regions. Investigations are still needed regarding the directions of magnetization within the crust and to generate further correlations between anomaly features and large scale geological structures. Furthermore, an increased data base is recommended for the Pacific Ocean basin in order to develop a better starting model for Pacific tectonic movements. The Pacific basin was large farther backwards in time and subduction zones surround the basin, thereby causing difficulties for describing the complex break-up scenario for Gondwanaland.

  4. The Interpretation of Enceladus Gravity (Invited)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.; Iess, L.; Parisi, M.; Ducci, M.; Asmar, S. W.

    2013-12-01

    The determination of the gravity field by Cassini is challenging because of the small mass and short duration of the gravitational interaction, even with data from three encounters. E19 data have been successfully integrated into the multiarc analysis, providing a stable and consistent gravity field. This required inclusion of the effect of atmospheric drag due to Enceladus' plumes. This presentation will deal only with the interpretation of these data. The dominant features of the non-central gravity are large values for the harmonic coefficients J2 and C22 and a much smaller but statistically significant negative J3. The value of J2/C22=3.55×0.05 is moderately in excess of the value of 10/3 that applies to a synchronously rotating body with no lateral variation in material properties. Given the obvious latitudinal variation of Enceladus' physical characteristics, primarily expressed by the activity centered on the South Pole, it is plausible that the deviation from 10/3 arises primarily because of a positive anomaly in J2 rather than any anomaly in C22. However, applying Radau-Darwin to the value of C22/q (where q is the usual dimensionless measure of the centrifugal effect on gravity) implies that the moment of inertia is about 0.34MR^2. The high heat output and indirect inference for liquid water suggests a fully differentiated Enceladus. For the known mean density and any plausible mantle density, this would require an unreasonably low core density of 2.5 g/cc or less. A more realistic interpretation is that both J2 and C22 are modestly non-hydrostatic, but that J2 is affected more because of a negative mass anomaly in the Southern hemisphere, consistent with the observed negative J3. One non-unique way to reconcile the observed gravity with a realistic MOI of 0.32 to 0.33MR^2 is to assume that the rocky core of Enceladus has retained some memory of a previous faster rotational state. Even if the ice shell is perfectly relaxed, this reconciles the data for a

  5. Gravity Survey of the Carson Sink - Data and Maps

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high‐temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG‐5 gravimeter and a LaCoste and Romberg (L&R) Model‐G gravimeter. The CG‐5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill‐hole intercept values. Preliminary Interpretation of Results: The Carson Sink

  6. High-degree Gravity Models from GRAIL Primary Mission Data

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Goossens, Sander J.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Caprette, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2013-01-01

    We have analyzed Ka?band range rate (KBRR) and Deep Space Network (DSN) data from the Gravity Recovery and Interior Laboratory (GRAIL) primary mission (1 March to 29 May 2012) to derive gravity models of the Moon to degree 420, 540, and 660 in spherical harmonics. For these models, GRGM420A, GRGM540A, and GRGM660PRIM, a Kaula constraint was applied only beyond degree 330. Variance?component estimation (VCE) was used to adjust the a priori weights and obtain a calibrated error covariance. The global root?mean?square error in the gravity anomalies computed from the error covariance to 320×320 is 0.77 mGal, compared to 29.0 mGal with the pre?GRAIL model derived with the SELENE mission data, SGM150J, only to 140×140. The global correlations with the Lunar Orbiter Laser Altimeter?derived topography are larger than 0.985 between l = 120 and 330. The free?air gravity anomalies, especially over the lunar farside, display a dramatic increase in detail compared to the pre?GRAIL models (SGM150J and LP150Q) and, through degree 320, are free of the orbit?track?related artifacts present in the earlier models. For GRAIL, we obtain an a posteriori fit to the S?band DSN data of 0.13 mm/s. The a posteriori fits to the KBRR data range from 0.08 to 1.5 micrometers/s for GRGM420A and from 0.03 to 0.06 micrometers/s for GRGM660PRIM. Using the GRAIL data, we obtain solutions for the degree 2 Love numbers, k20=0.024615+/-0.0000914, k21=0.023915+/-0.0000132, and k22=0.024852+/-0.0000167, and a preliminary solution for the k30 Love number of k30=0.00734+/-0.0015, where the Love number error sigmas are those obtained with VCE.

  7. High‒degree gravity models from GRAIL primary mission data

    NASA Astrophysics Data System (ADS)

    Lemoine, Frank G.; Goossens, Sander; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Caprette, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2013-08-01

    have analyzed Ka‒band range rate (KBRR) and Deep Space Network (DSN) data from the Gravity Recovery and Interior Laboratory (GRAIL) primary mission (1 March to 29 May 2012) to derive gravity models of the Moon to degree 420, 540, and 660 in spherical harmonics. For these models, GRGM420A, GRGM540A, and GRGM660PRIM, a Kaula constraint was applied only beyond degree 330. Variance‒component estimation (VCE) was used to adjust the a priori weights and obtain a calibrated error covariance. The global root‒mean‒square error in the gravity anomalies computed from the error covariance to 320×320 is 0.77 mGal, compared to 29.0 mGal with the pre‒GRAIL model derived with the SELENE mission data, SGM150J, only to 140×140. The global correlations with the Lunar Orbiter Laser Altimeter‒derived topography are larger than 0.985 between ℓ=120 and 330. The free‒air gravity anomalies, especially over the lunar farside, display a dramatic increase in detail compared to the pre‒GRAIL models (SGM150J and LP150Q) and, through degree 320, are free of the orbit‒track‒related artifacts present in the earlier models. For GRAIL, we obtain an a posteriori fit to the S‒band DSN data of 0.13 mm/s. The a posteriori fits to the KBRR data range from 0.08 to 1.5 μm/s for GRGM420A and from 0.03 to 0.06 μm/s for GRGM660PRIM. Using the GRAIL data, we obtain solutions for the degree 2 Love numbers, k20=0.024615±0.0000914, k21=0.023915±0.0000132, and k22=0.024852±0.0000167, and a preliminary solution for the k30 Love number of k30=0.00734±0.0015, where the Love number error sigmas are those obtained with VCE.

  8. Petrologic and geophysical sources of long-wavelength crustal magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Schlinger, C. M.

    1984-01-01

    The magnetic mineralogy and magnetic properties of the deep crust are studied as they pertain to the interpretation of long wavelength, or regional, crustal magnetic anomalies in satellite magnetic data and near surface magnetic data. The conclusions have relevance to the understanding of regional magnetic anomalies in magnetic field measuring satellite missions data. There are two separable studies: (1) a synthesis of available information of regional magnetic anomalies and the magnetization of metamorphic and igneous rocks, and (2) a detailed field, analytical, and experimental study of in situ and laboratory specimens from a terrain that offers exposures of high grade granlite facies rocks that have associated regional magnetic and gravity anomalies.

  9. Geochemical and geophysical anomalies in the western part of the Sheep Creek Range, Lander County, Nevada

    USGS Publications Warehouse

    Gott, Garland Bayard; Zablocki, Charles J.

    1968-01-01

    Extensive geochemical anomalies are present along the west side of the Sheep Creek Range in Lander County, Nev. Anomalous concentrations of zinc, arsenic, mercury, silver, copper, lead, and to some extent gold, molybdenum, and antimony occur in iron-rich material along fracture planes and in quartz veins in Paleozoic formations. A magnetic anomaly occurs over a pediment at the southern part of the range, close to one of the geochemical anomalies. Gravity and electrical resistivity measurements suggest that the magnetic anomaly is caused by an intrusive igneous mass rather than by a block of downfaulted basalt. A limited amount of shallow drilling would clarify the geochemical and geophysical data.

  10. Expanding Gravity

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2005-04-01

    Newton's gravitational constant Gn and Laws of Gravity are based upon observations in our solar system. Mysteries appear when they are used far outside our solar system Apparently, Newton's gravitational constant can not be applied at large distances. Dark matter was needed to explain the observed flat rotational velocity curves of spiral galaxies (Rubin), and of groups of remote galaxies (Zwicky). Our expansion of Newton's gravitational constant Gn as a power series in distance r, is sufficient to explain these observations without using dark matter. This is different from the MOND theory of Milgrom involving acceleration. Also, our Expanded Gravitational Constant (EGC) can show the correct use of the red shift. In addition to the Doppler contribution, there are three other contributions and these depend only upon gravity. Thus, velocity observations only based on the red shift can not be used to support the concept of the expanding universe, the accelerating expansion, or dark energy. Our expanded gravity constant can predict and explain Olbers' paradox (dark sky), and the temperature of the CMB (cosmic microwave background). Thus, CMB may not support the big bang and inflation.

  11. Cosmological hints of modified gravity?

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph

    2016-01-01

    The recent measurements of cosmic microwave background (CMB) temperature and polarization anisotropies made by the Planck satellite have provided impressive confirmation of the Λ CDM cosmological model. However interesting hints of slight deviations from Λ CDM have been found, including a 95% C.L. preference for a "modified gravity" (MG) structure formation scenario. In this paper we confirm the preference for a modified gravity scenario from Planck 2015 data, find that modified gravity solves the so-called Alens anomaly in the CMB angular spectrum, and constrains the amplitude of matter density fluctuations to σ8=0.81 5-0.048+0.032 , in better agreement with weak lensing constraints. Moreover, we find a lower value for the reionization optical depth of τ =0.059 ±0.020 (to be compared with the value of τ =0.079 ±0.017 obtained in the standard scenario), more consistent with recent optical and UV data. We check the stability of this result by considering possible degeneracies with other parameters, including the neutrino effective number, the running of the spectral index and the amount of primordial helium. The indication for modified gravity is still present at about 95% C.L., and could become more significant if lower values of τ were to be further confirmed by future cosmological and astrophysical data. When the CMB lensing likelihood is included in the analysis the statistical significance for MG simply vanishes, indicating also the possibility of a systematic effect for this MG signal.

  12. Is nonrelativistic gravity possible?

    SciTech Connect

    Kocharyan, A. A.

    2009-07-15

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  13. QCD trace anomaly

    SciTech Connect

    Andersen, Jens O.; Leganger, Lars E.; Strickland, Michael; Su, Nan

    2011-10-15

    In this brief report we compare the predictions of a recent next-to-next-to-leading order hard-thermal-loop perturbation theory (HTLpt) calculation of the QCD trace anomaly to available lattice data. We focus on the trace anomaly scaled by T{sup 2} in two cases: N{sub f}=0 and N{sub f}=3. When using the canonical value of {mu}=2{pi}T for the renormalization scale, we find that for Yang-Mills theory (N{sub f}=0) agreement between HTLpt and lattice data for the T{sup 2}-scaled trace anomaly begins at temperatures on the order of 8T{sub c}, while treating the subtracted piece as an interaction term when including quarks (N{sub f}=3) agreement begins already at temperatures above 2T{sub c}. In both cases we find that at very high temperatures the T{sup 2}-scaled trace anomaly increases with temperature in accordance with the predictions of HTLpt.

  14. CHAMP Magnetic Anomalies of the Antarctic Crust

    NASA Technical Reports Server (NTRS)

    Kim, Hyung Rae; Gaya-Pique, Luis R.; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo

    2003-01-01

    Regional magnetic signals of the crust are strongly masked by the core field and its secular variations components and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated- behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar regions relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects. To help isolate regional lithospheric from core field components, the correlations between CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations can also be exploited.. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Orsted and noisier Magsat observations, the CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intracrustal magnetic features and crustal thickness variations of the Antarctic.

  15. Weyl anomaly and initial singularity crossing

    NASA Astrophysics Data System (ADS)

    Awad, Adel

    2016-04-01

    We consider the role of quantum effects, mainly, Weyl anomaly in modifying Friedmann-Lemaitre-Robertson-Walker (FLRW) model singular behavior at early times. Weyl anomaly corrections to FLRW models have been considered in the past, here we reconsider this model and show the following: The singularity of this model is weak according to Tipler and Krolak, therefore, the spacetime might admit a geodesic extension. Weyl anomaly corrections change the nature of the initial singularity from a big bang singularity to a sudden singularity. The two branches of solutions consistent with the semiclassical treatment form a disconnected manifold. Joining these two parts at the singularity provides us with a C1 extension to nonspacelike geodesics and leaves the spacetime geodesically complete. Using Gauss-Codazzi equations one can derive generalized junction conditions for this higher-derivative gravity. The extended spacetime obeys Friedmann and Raychaudhuri equations and the junction conditions. The junction does not generate Dirac delta functions in matter sources which keeps the equation of state unchanged.

  16. A major crustal feature in the southeastern United States inferred from the MAGSAT equivalent source anomaly field

    NASA Technical Reports Server (NTRS)

    Ruder, M. E.; Alexander, S. S.

    1985-01-01

    The MAGSAT equivalent-source anomaly field evaluated at 325 km altitude depicts a prominent anomaly centered over southeast Georgia, which is adjacent to the high-amplitude positive Kentucky anomaly. To overcome the satellite resolution constraint in studying this anomaly, conventional geophysical data were included in analysis: Bouguer gravity, seismic reflection and refraction, aeromagnetic, and in-situ stress-strain measurements. This integrated geophysical approach, infers more specifically the nature and extent of the crustal and/or lithospheric source of the Georgia MAGSAT anomaly. Physical properties and tectonic evolution of the area are all important in the interpretation.

  17. A 70th Degree Lunar Gravity Model (GLGM-2) from Clementine and other tracking data

    NASA Technical Reports Server (NTRS)

    Lemonie, Frank G. R.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.

    1997-01-01

    A spherical harmonic model of the lunar gravity field complete to degree and order 70 has been developed from S band Doppler tracking data from the Clementine mission, as well as historical tracking data from Lunar Orbiters 1-5 and the Apollo 15 and 16 subsatellites. The model combines 361,000 Doppler observations from Clementine with 347,000 historical observations. The historical data consist of mostly 60-s Doppler with a noise of 0.25 to several mm/s. The Clementine data consist of mostly 10-s Doppler data, with a data noise of 0.25 mm/s for the observations from the Deep Space Network, and 2.5 mm/s for the data from a naval tracking station at Pomonkey, Maryland. Observations provided Clementine, provide the strongest satellite constraint on the Moon's low-degree field. In contrast the historical data, collected by spacecraft that had lower periapsis altitudes, provide distributed regions of high-resolution coverage within +/- 29 deg of the nearside lunar equator. To obtain the solution for a high-degree field in the absence of a uniform distribution of observations, we applied an a priori power law constraint of the form 15 x 10(exp -5)/sq l which had the effect of limiting the gravitational power and noise at short wavelengths. Coefficients through degree and order 18 are not significantly affected by the constraint, and so the model permits geophysical analysis of effects of the major basins at degrees 10-12. The GLGM-2 model confirms major features of the lunar gravity field shown in previous gravitational field models but also reveals significantly more detail, particularly at intermediate wavelengths (10(exp 3) km). Free-air gravity anomaly maps derived from the new model show the nearside and farside highlands to be gravitationally smooth, reflecting a state of isostatic compensation. Mascon basins (including Imbrium, Serenitatis, Crisium, Smythii, and Humorum) are denoted by gravity highs first recognized from Lunar Orbiter tracking. All of the major

  18. Gravity survey in part of the Snake River Plain, Idaho - a preliminary report

    USGS Publications Warehouse

    Baldwin, Harry L.; Hill, David P.

    1960-01-01

    During the early summer of 1959, a total of 1,187 gravity stations were occupied on the western part of the Snake River plain in Idaho. An area of 2,000 square miles extending from Glenns Ferry, Idaho, to Caldwell, Idaho, was covered with a station density of one station per two square miles. An additional 1,200 square miles of surrounding area, mainly from Caldwell, Idaho, to the Oregon-Idaho state line, was covered with a density of one station per seven square miles. The mean reproducibility of the observed gravities of these stations was 0.05 milligal, with a maximum discrepancy of 0.2 milligal. Gravity data were reduced to simple Bouguer values using a combined free-air and Bouguer correction of 0.06 milligal per foot. The only anomalies found with closure in excess of 10 milligals are two elongated highs, orientated northwest-southeast, with the northwestern high offset to the northeast by 10 miles. The smaller of these highs extends from Meridian, Idaho, to Nyssa, Oregon, and the larger extends from Swan Falls, Idaho, to Glenns Ferry, Idaho. The maximum value recorded is a simple Bouguer value of -66.5 milligals with respect to the International Ellipsoid. Gradients on the sides of these highs are largest on the northeast sides, reaching six milligals per mile in places. Graticule interpretations of a profile across the southeastern high using a density contrast of 0.3 gm per cubic centimeter indicate an accumulation of lava reaching a thickness of at least 28,000 feet. The Snake River investigation was made for the purpose of searching out, defining, and interpreting gravity anomalies present on the western part of the Snake River lava plain in Idaho. In particular, it was desired to further define gradients associated with the gravity high shown by the regional work of Bonini and Lavin (1957). It was not planned to cover any specific area, but rather to let the observed anomalies determine the course of the field work. The study was undertaken as part of a

  19. Limitations on the resolution and suitability of global gravity and magnetic models for geological interpretation: A user health warning!

    NASA Astrophysics Data System (ADS)

    Fairhead, J. D.; Somerton, I. W.

    2011-12-01

    There have been major advances in the generation of global gravity and crustal magnetic models that are now down loadable from the Internet. All models have variable spatial resolution which is not always readily apparent when viewing these models. The global models include: 1) Free air gravity: EGM08 (5'), Danish DTU(1') and Sandwell and Smith V16.1 (1'). 2) TMI crustal magnetic: WDMAM (3') and EMAG3 (3'), where grid cell size is in arc minutes, where 1'≈ 2 km Both models can be spectrally divided into Long wavelength components: that are very well constrained and are derived from satellite observations. For Free air gravity: wavelengths > 150 km from Grace and for TMI crustal magnetic:wavlengths > 400 km from CHAMP MF6 Shorter wavelength components: The spatial resolution is very dependent on the data coverage of the terrestrial (ground, ship and airborne) surveys and are discussed below Gravity Model: The gravity model is expressed as the Free air gravity anomaly. For marine and large inland water areas the data used are derived from satellite altimeter measurements that generate a spatial gravity resolution of 15 to 20 km (full wavelength) from 3 to 4 km spaced orbital track data. For onshore areas the data coverage is highly variable from no data (e.g. interior Angola) to more than adequate coverage (e.g. Europe). To infill data gaps, free air correction values derived from the SRTM topography data were used. This results in a free air anomaly grid that appears to have full spectral content down to the resolution of the model. Locating where the data gaps exist is difficult, since the land gravity survey coverage for EGM08, used by all models, has not been released. A further resolution problem is that many large surveys used in EGM08 have been decimated to preserve their commercial value (e.g. GETECH input grids were decimated to at least 15' grid). TMI Crustal Magnetic Model: For marine areas these models suffer even larger problems in that the sparsity of

  20. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  1. Gravity and Magnetic Surveys Over the Santa Rita Fault System, Southeastern Arizona

    USGS Publications Warehouse

    Hegmann, Mary

    2001-01-01

    Gravity and magnetic surveys were performed in the northeast portion of the Santa Rita Experimental Range, in southeastern Arizona, to identify faults and gain a better understanding of the subsurface geology. A total of 234 gravity stations were established, and numerous magnetic data were collected with portable and truck-mounted proton precession magnetometers. In addition, one line of very low frequency electromagnetic data was collected together with magnetic data. Gravity anomalies are used to identify two normal faults that project northward toward a previously identified fault. The gravity data also confirm the location of a second previously interpreted normal fault. Interpretation of magnetic anomaly data indicates the presence of a higher-susceptibility sedimentary unit located beneath lowersusceptibility surficial sediments. Magnetic anomaly data identify a 1-km-wide negative anomaly east of these faults caused by an unknown source and reveal the high variability of susceptibility in the Tertiary intrusive rocks in the area.

  2. Gravity changes in mid-west Greenland from GOCE gravity model and gradient data using ground and airborne gravity.

    NASA Astrophysics Data System (ADS)

    Tscherning, Carl Christian; Herceg, Matija

    2014-05-01

    GOCE (ESA's Gravity and Ocean Circulation Explorer) TRF (terrestrial reference frame) vertical anomalous gradients (Tzz) from the periods winter 2009 and summer 2012 have been used to determine gravity anomalies in mid-west Greenland, where a large mass-loss has been detected using GRACE. As additional data were used the GOCE DIR-3 model and ground gravity at the coast on solid rock, where no mass loss is expected. The methods of Least-Squares Collocation (LSC) and the Reduced Point Mass (RPM) methods have been used, however only LSC included the ground data. The latter method also permits the computation of error-estimates, which range from 3 mgal at the coast to 19 mgal 75 km from the coast in Eastern direction towards the ice-cap. The gravity anomaly differences vary from -30 mgal to 30 mgal. It is negative (showing mass loss) around the Jacobshavn Isbrae (latitude 69o15', longitude 49o W-50oW, where the yearly mass-loss has been estimated to correspond to -2 mgal, i.e. about -7 mgal for the period considered. The computed change range from 0 to -10 mgal in the area, with the error estimated to increase from 4 mgal to 15 mgal from West to East. This shows the capability of using GOCE Tzz and ground gravity to determine mass changes. The GOCE DIR-3 model was also used to evaluate gravity values in the points of the Greenland airborne gravity survey performed in 1991 and 1992. The differences had a mean value of 0.9 and a standard deviation of 17.3 mgal for all of Greenland. In the South-West area the mean of the differences was 0.15 and the standard deviation 7.14. This indicate that possibly no total mass loss has occurred in Greenland from 1992 to 2012.

  3. Vascular Anomalies and Airway Concerns

    PubMed Central

    Clarke, Caroline; Lee, Edward I.; Edmonds, Joseph

    2014-01-01

    Vascular anomalies, both tumors and malformations, can occur anywhere in the body, including the airway, often without any external manifestations. However, vascular anomalies involving the airway deserve special consideration as proper recognition and management can be lifesaving. In this article, the authors discuss vascular anomalies as they pertains to the airway, focusing on proper diagnosis, diagnostic modalities, and therapeutic options. PMID:25045336

  4. Principal facts of gravity stations with gravity and magnetic profiles from the Southwest Nevada Test Site, Nye County, Nevada, as of January, 1982

    USGS Publications Warehouse

    Jansma, P.E.; Snyder, D.B.; Ponce, David A.

    1983-01-01

    Three gravity profiles and principal facts of 2,604 gravity stations in the southwest quadrant of the Nevada Test Site are documented in this data report. The residual gravity profiles show the gravity measurements and the smoothed curves derived from these points that were used in geophysical interpretations. The principal facts include station label, latitude, longitude, elevation, observed gravity value, and terrain correction for each station as well as the derived complete Bouguer and isostatic anomalies, reduced at 2.67 g/cm 3. Accuracy codes, where available, further document the data.

  5. Anisotropy in Gravity and Holography

    NASA Astrophysics Data System (ADS)

    Melby-Thompson, Charles Milton

    the relationship between Hořava-Lifshitz gravity and holographic duals for anisotropic systems. A holographic correspondence is one that posits an equivalence between a theory of gravity on a given spacetime background and a field theory living on the "boundary" of that spacetime, which resides at infinite spatial separation from the interior. It is a non-trivial problem how to define this boundary, but in the case of relativistic boundary field theories, there is a well-known definition due to Penrose of the boundary which produces the geometric structure required to make sense of the correspondence. However, the proposed dual geometries to anisotropic quantum field theories have a Penrose boundary that is incompatible with the assumed correspondence. We generalize Penrose's approach, using concepts from Hořava-Lifshitz gravity, to spacetimes with anisotropic boundary conditions, thereby arriving at the concept of anisotropic conformal infinity that is compatible with the holographic correspondence in these spacetimes. We then apply this work to understanding the structure of holography for anisotropic systems in more detail. In particular, we examine the structure of divergences of a certain theory of gravity on Lifshitz space. We find, using our construction of anisotropic conformal infinity, that the appropriate geometric structure of the boundary is that of a foliated spacetime with an anisotropic metric complex. We then perform holographic renormalization in these spacetimes, yielding a computation of the divergent part of the effective action, and find that it exhibits precisely the structure of a Hořava-Lifshitz action. Moreover, we find that, for dynamical exponent z = 2, the logarithmic divergence gives rise to a conformal anomaly in 2+1 dimensions, whose general form is precisely that of conformal Hořava-Lifshitz gravity with detailed balance.

  6. Could the Pioneer anomaly have a gravitational origin?

    SciTech Connect

    Tangen, Kjell

    2007-08-15

    If the Pioneer anomaly has a gravitational origin, it would, according to the equivalence principle, distort the motions of the planets in the Solar System. Since no anomalous motion of the planets has been detected, it is generally believed that the Pioneer anomaly can not originate from a gravitational source in the Solar System. However, this conclusion becomes less obvious when considering models that either imply modifications to gravity over long distances or gravitational sources localized to the outer Solar System, given the uncertainty in the orbital parameters of the outer planets. Following the general assumption that the Pioneer spacecraft move geodesically in a spherically symmetric space-time metric, we derive the metric disturbance that is needed in order to account for the Pioneer anomaly. We then analyze the residual effects on the astronomical observables of the three outer planets that would arise from this metric disturbance, given an arbitrary metric theory of gravity. Providing a method for comparing the computed residuals with actual residuals, our results imply that the presence of a perturbation to the gravitational field necessary to induce the Pioneer anomaly is in conflict with available data for the planets Uranus and Pluto, but not for Neptune. We therefore conclude that the motion of the Pioneer spacecraft must be nongeodesic. Since our results are model-independent within the class of metric theories of gravity, they can be applied to rule out any model of the Pioneer anomaly that implies that the Pioneer spacecraft move geodesically in a perturbed space-time metric, regardless of the origin of this metric disturbance.

  7. Circum-Arctic Magnetic Anomalies - Challenges of Compilation and the Value of Regional Interpretation in a Frontier Area

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Gaina, C.; Brown, P. J.

    2007-12-01

    to assist in the regional characterization of magnetic domains and boundaries. The frequency content, amplitudes, and patterns of regional magnetic anomalies provide a window into the tectonic character and structure of the crust. Continental, oceanic, and various types of transitional crust each have a distinctive magnetic anomaly signature that can be used to define a fundamental tectonic framework of the circum-arctic. Interpretation can be extended by including additional data such as regional bathymetry (an indicator of crustal buoyancy and isostatic equilibrium) and free air gravity (an independent indicator of crustal density balance and composition). Used together with magnetic domains these data reveal a composite geodynamic subdivision of the arctic. This subdivision provides a framework for investigations of mineral and energy resource potential, tectonic reconstruction, and long-term climate dynamics.

  8. Digital Isostatic Gravity Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Ponce, David A.; Mankinen, E.A.; Davidson, J.G.; Morin, R.L.; Blakely, R.J.

    2000-01-01

    An isostatic gravity map of the Nevada Test Site area was prepared from publicly available gravity data (Ponce, 1997) and from gravity data recently collected by the U.S. Geological Survey (Mankinen and others, 1999; Morin and Blakely, 1999). Gravity data were processed using standard gravity data reduction techniques. Southwest Nevada is characterized by gravity anomalies that reflect the distribution of pre-Cenozoic carbonate rocks, thick sequences of volcanic rocks, and thick alluvial basins. In addition, regional gravity data reveal the presence of linear features that reflect large-scale faults whereas detailed gravity data can indicate the presence of smaller-scale faults.

  9. Three-Dimensional Gravity and Magnetic Modelling Along the Peruvian Margin

    NASA Astrophysics Data System (ADS)

    Dehghani, A.; Sabetian, R.

    2015-12-01

    The gravity and magnetic models are constructed for three areas along the Peruvian margin between 7.25°S and 16.75°S and are based on the all available wide-angle seismic velocity models. The gravity and magnetic models image nearly the whole margin which has been only partly resolved with geophysical methods up to now. The continental margin is characterized by positive free-air anomalies of varying amplitudes, indicating that the margin has been shaped by the subduction of different features on the Nazca Plate. In the Yaquina Area (7.25°S to 11°S) gravity anomalies caused by the Trujillo Trough and the Mendaña Fracture Zone are successfully modelled with remarkable undulations in the layer geometry of the oceanic crust. Along the continental margin, especially in the Lima Area (10.50°S to 14.40°S), strong undulations of the lower continental crust influence the upper sedimentary layers and support the development of basins along the Peruvian margin. The theory stating that the Peruvian margin is uplifted by the subducting Nazca Ridge is supported by gravity modelling. Consequently the buoyant Nazca Ridge is, at least partly, responsible for the extended region of flat subduction. The thickened and slightly asymmetrical crust of the Nazca Ridge is envisaged in gravity modelling. In the Nazca Ridge Area (14.25°S to 16.75°S) no accretionary prism is modelled. We conclude that the ridge is eroding the continental margin; furthermore the subduction of eroded sediments is probable. Gravity modelling suggests that the Nazca Ridge has fractured the continental margin. North of the ridge, in the Lima Area, a rather uniform accretionary complex is observed. This indicates that, after the margin was eroded by the southwards moving Nazca Ridge, the prism rapidly reached its stable size. In the Yaquina Area an accretionary prism is modelled in the whole research area but local variations of its location and structure indicate the former erosive influence on the

  10. Waste Isolation Pilot Plant (WIPP) site gravity survey and interpretation

    SciTech Connect

    Barrows, L.J.; Fett, J.D.

    1983-04-01

    A portion of the WIPP site has been extensively surveyed with high-precision gravity. The main survey (in T22S, R31E) covered a rectangular area 2 by 4-1/3 mi encompassing all of WIPP site Zone II and part of the disturbed zone to the north of the site. Stations were at 293-ft intervals along 13 north-south lines 880 ft apart. The data are considered accurate to within a few hundredths of a milligal. Long-wavelength gravity anomalies correlate well with seismic time structures on horizons below the Castile Formation. Both the gravity anomalies and the seismic time structures are interpreted as resulting from related density and velocity variations within the Ochoan Series. Shorter wavelength negative gravity anomalies are interpreted as resulting from bulk density alteration in the vicinity of karst conduits. The WIPP gravity survey was unable to resolve low-amplitude, long-wavelength anomalies that should result from the geologic structures within the disturbed zone. It did indicate the degree and character of karst development within the surveyed area.

  11. Geopotential field anomalies and regional tectonic features - two case studies: southern Africa and Germany

    NASA Astrophysics Data System (ADS)

    Korte, Monika; Mandea, Mioara

    2016-05-01

    Maps of magnetic and gravity field anomalies provide information about physical properties of the Earth's crust and upper mantle, helpful in understanding geological conditions and tectonic structures. Depending on data availability, whether from the ground, airborne, or from satellites, potential field anomaly maps contain information on different ranges of spatial wavelengths, roughly corresponding to sources at different depths. Focussing on magnetic data, we compare amplitudes and characteristics of anomalies from maps based on various available data and as measured at geomagnetic repeat stations. Two cases are investigated: southern Africa, characterized by geologically old cratons and strong magnetic anomalies, and the smaller region of Germany with much younger crust and weaker anomalies. Estimating lithospheric magnetic anomaly values from the ground stations' time series (repeat station crustal biases) reveals magnetospheric field contributions causing time-varying offsets of several nT in the results. Similar influences might be one source of discrepancy when merging anomaly maps from different epochs. Moreover, we take advantage of recently developed satellite potential field models and compare magnetic and gravity gradient anomalies of ˜ 200 km resolution. Density and magnetization represent independent rock properties and thus provide complementary information on compositional and structural changes. Comparing short- and long-wavelength anomalies and the correlation of rather large-scale magnetic and gravity anomalies, and relating them to known lithospheric structures, we generally find a better agreement in the southern African region than the German region. This probably indicates stronger concordance between near-surface (down to at most a few km) and deeper (several kilometres down to Curie depth) structures in the former area, which can be seen to agree with a thicker lithosphere and a lower heat flux reported in the literature for the southern

  12. Gravity effect of sediment compaction: examples from the North Sea and the Rhine Graben

    NASA Astrophysics Data System (ADS)

    Cowie, Patience A.; Karner, Garry D.

    1990-07-01

    A Fourier domain expression for calculating the gravity effect of a continuously varying density structure is used to investigate the way in which sediment compaction modifies the shape of the gravity anomaly across a sedimentary basin. In general, sediment density increases with depth in a basin as the overburden thickness increases. The effect of the increase in sediment density is to reduce the gravity contribution from the density contrasts in the deeper parts of the basin relative to near surface contributions. For a theoretical uncompensated basin, the gravity effect of the sediments is calculated for a density-depth variation described by: (1) a simple exponential increase in sediment density with depth, and (2) an exponential modified to include a local density inversion representative of sediment overpressuring. It is shown that for both cases, the calculated gravity does not necessarily reflect the morphology of the sediment-basement interface. The gravity effect is most sensitive to the distribution of the youngest stratigraphic units within the basin. Results of modeling observed gravity anomalies across the Viking and Rhine Graben show that the small peak-to-trough amplitude of the gravity anomalies across these basins can be attributed to the increase in sediment density with depth rather than the compensation of the basin. For the Rhine Graben, it is further shown that the wavelength of the gravity anomaly is strongly controlled by the flexural strength of the lithosphere. Together these results suggest that while the amplitude of gravity anomalies across extensional basins may be primarily reflecting compaction of the sediment infill, the anomaly wavelength is more sensitive to the compensation mechanism.

  13. Artificial gravity.

    PubMed

    Scott, William B

    2005-04-25

    NASA's Artificial Gravity program consists of a team of researchers from Wyle Laboratories, NASA Johnson Space Center, and the University of Texas Medical Branch (UTMB). The short-radius centrifuge (SRC), built by Wyle Laboratories, will be integrated with UTMB's conducted bedrest studies, which mimic the detrimental effects of weightlessness (or microgravity). Bedrest subjects will be spun on the SRC at various accelerations and for various time periods, while being monitored medically. Parameters such as bone loss, muscle atrophy, balance control, and oxygen consumption will then be compared in order to research ways of mitigating the impact on astronauts' physiology. Other potential benefits from these studies extend to population groups on Earth, such as bedridden patients. PMID:15852559

  14. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  15. Induced gravity II: grand unification

    NASA Astrophysics Data System (ADS)

    Einhorn, Martin B.; Jones, D. R. Timothy

    2016-05-01

    As an illustration of a renormalizable, asymptotically-free model of induced gravity, we consider an SO(10) gauge theory interacting with a real scalar multiplet in the adjoint representation. We show that dimensional transmutation can occur, spontaneously breaking SO(10) to SU(5)⊗U(1), while inducing the Planck mass and a positive cosmological constant, all proportional to the same scale v. All mass ratios are functions of the values of coupling constants at that scale. Below this scale (at which the Big Bang may occur), the model takes the usual form of Einstein-Hilbert gravity in de Sitter space plus calculable corrections. We show that there exist regions of parameter space in which the breaking results in a local minimum of the effective action giving a positive dilaton (mass)2 from two-loop corrections associated with the conformal anomaly. Furthermore, unlike the singlet case we considered previously, some minima lie within the basin of attraction of the ultraviolet fixed point. Moreover, the asymptotic behavior of the coupling constants also lie within the range of convergence of the Euclidean path integral, so there is hope that there will be candidates for sensible vacua. Although open questions remain concerning unitarity of all such renormalizable models of gravity, it is not obvious that, in curved backgrounds such as those considered here, unitarity is violated. In any case, any violation that may remain will be suppressed by inverse powers of the reduced Planck mass.

  16. [First branchial cleft anomalies].

    PubMed

    Nikoghosyan, Gohar; Krogdahl, Annelise; Godballe, Christian

    2008-05-12

    First branchial cleft anomalies are congenital rare lesions that can sometimes be difficult to diagnose. During the normal embryonic development the outer ear canal derives from the first branchial cleft. Abnormal development can result in production of a cyst, sinus or fistula with recurring infections. Early and correct diagnosis is necessary for the correct choice of surgical set-up in which identification and preservation of the facial nerve is an important step. A case of first branchial cleft sinus is presented with further discussion of classification, diagnostics and treatment. PMID:18489895

  17. When do anomalies begin?

    NASA Astrophysics Data System (ADS)

    Lightman, Alan; Gingerich, Owen

    1992-02-01

    The present historical and methodological consideration of scientific anomalies notes that some of these are recognized as such, after long neglect, only after the emergence of compelling explanations for their presence in the given theory in view of an alternative conceptual framework. These cases of 'retrorecognition' are indicative not merely of a significant characteristic of the process of conceptual development and scientific discovery, but of the bases for such process in human psychology. Attention is given to the illustrative cases of the 'flatness problem' in big bang theory, the perigee-opposition problem in Ptolemaic astronomy, the continental-fit problem in geology, and the equality of inertial and gravitational mass.

  18. Satellite-Altitude Geopotential Study of the Kursk Magnetic Anomaly (KMA)

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Kim, Hyung Rae; vonFrese, Ralph R. B.; Potts, Laramie V.; Frawley, James J.

    2003-01-01

    With the successful launch of the Orsted, SAC-C and CHAMP satellites we are able to make both magnetic and gravity anomaly maps of the Earth's crust; magnetic from all three missions and gravity with CHAMP. We have used these data to study the KMA area of Russia. This is an important region for several reasons: (1) we have already made satellite magnetic anomaly maps of this region and they can be integrated with the gravity data from CHAMP for a comprehensive interpretation; (2) KMA contains the largest know reserves of iron-ore in the world; and (3) there are significant ground truth data available for this region from aeromagnetic, balloon surveys and geophysical mapping, including extensive rock magnetic/paleo-magnetic and geologic studies. Utilizing the gravity observations, collocated with the magnetic data enabled us to make a joint interpretation. While there is a high amplitude magnetic anomaly recorded over the KMA the gravity anomaly at satellite altitude revealed by CHAMP is only around 3-6 mGal but is not centered on the magnetic high. This would indicate that despite the fact that in the region of the KMA the rocks have a higher percentage of iron than in the surrounding formations the entire area is Archean-Proterozoic in age and therefore very dense.

  19. Climatology and ENSO-related interannual variability of gravity waves in the Southern Hemisphere subtropical stratosphere revealed by high-resolution AIRS observations

    NASA Astrophysics Data System (ADS)

    Sato, Kaoru; Tsuchiya, Chikara; Alexander, M. Joan; Hoffmann, Lars

    2016-07-01

    A new temperature retrieval from Atmospheric Infrared Sounder with a fine horizontal resolution of 13.5 km was used to examine gravity wave (GW) characteristics in the austral summer at an altitude of 39 km in the subtropical stratosphere over 8 years from 2003/2004 to 2010/2011. Using an S transform method, GW components were extracted, and GW variances, horizontal wave numbers, and their orientations were determined at each grid point and time. Both climatology and interannual variability of the GW variance were large in the subtropical South Pacific. About 70% of the interannual variation in the GW variance there was regressed to El Niño-Southern Oscillation (ENSO) index. The regression coefficient exhibits a geographical distribution similar to that of the precipitation. In contrast, the regression coefficient of the GW variance to the quasi-biennial oscillation of the equatorial lower stratosphere was not significant in the South Pacific. These results indicate that the interannual variability of GW variance in the South Pacific is controlled largely by the convective activity modulated by the ENSO. An interesting feature is that the GW variance is maximized slightly southward of the precipitation maximum. Possible mechanisms causing the latitudinal difference are (1) dense distribution of islands, which effectively radiate GWs with long vertical wavelengths, to the south of the precipitation maximum; (2) selective excitation of southward propagating GWs in the northward vertical wind shear in the troposphere; and (3) southward refraction of GWs in the latitudinal shear of background zonal wind in the stratosphere.

  20. Einstein, Entropy and Anomalies

    NASA Astrophysics Data System (ADS)

    Sirtes, Daniel; Oberheim, Eric

    2006-11-01

    This paper strengthens and defends the pluralistic implications of Einstein's successful, quantitative predictions of Brownian motion for a philosophical dispute about the nature of scientific advance that began between two prominent philosophers of science in the second half of the twentieth century (Thomas Kuhn and Paul Feyerabend). Kuhn promoted a monistic phase-model of scientific advance, according to which a paradigm driven `normal science' gives rise to its own anomalies, which then lead to a crisis and eventually a scientific revolution. Feyerabend stressed the importance of pluralism for scientific progress. He rejected Kuhn's model arguing that it fails to recognize the role that alternative theories can play in identifying exactly which phenomena are anomalous in the first place. On Feyerabend's account, Einstein's predictions allow for a crucial experiment between two incommensurable theories, and are an example of an anomaly that could refute the reigning paradigm only after the development of a competitor. Using Kuhn's specification of a disciplinary matrix to illustrate the incommensurability between the two paradigms, we examine the different research strategies available in this peculiar case. On the basis of our reconstruction, we conclude by rebutting some critics of Feyerabend's argument.

  1. The gravity field and crustal structure of the northwestern Arabian Platform in Jordan

    NASA Astrophysics Data System (ADS)

    Batayneh, A. T.; Al-Zoubi, A. S.

    2001-01-01

    The Bouguer gravity field over the northwestern Arabian Platform in Jordan is dominated by large variations, ranging from -132 to +4 mGal. A study of the Bouguer anomaly map shows that the gravity field maintains a general north-northeasterly trend in the Wadi Araba-Dead Sea-Jordan Riff, Northern Highlands and Northeast Jordanian Limestone Area, while the remainder of the area shows north-northwesterly-trending gravity anomalies. Results of 2-D gravity modeling of the Bouguer gravity field indicate that the crustal thickness in Jordan is ˜ 38 km, which is similar to crustal thicknesses obtained from refraction data in northern Jordan and Saudi Arabia, and from gravity data in Syria.

  2. Critique of the vertical gradient of gravity

    NASA Technical Reports Server (NTRS)

    Hammer, Sigmund

    1989-01-01

    Growing interest in high precision studies of the Earth's gravitational field warrant a critical review of precision requirements to yield useful results. Several problems are now under consideration. All of these problems involve, more or less, the precise value of the vertical gradients of gravity. The principle conclusion from this review is that the essential absence of Free Air Vertical Gravity Gradient control and actual values of gravimeter calibrations require serious attention. Large errors in high topography on official published gravity maps also cannot be ignored.

  3. Estimation of local planetary gravity fields using line of sight gravity data and an integral operator

    NASA Technical Reports Server (NTRS)

    Barriot, J. P.; Balmino, G.

    1992-01-01

    A novel method is presented for mapping line-of-sight gravity data (LOSGD) joining planetary probes and observers during Doppler tracking operations, with a view to geodetic and geophysical applications. LOSGD are in this case mapped as gravity anomalies along a radial direction, at constant altitude, using an inversion procedure in conjunction with a Tikhonov-Arsenine regularization method. The application of different regularization-parameter choices to a synthetic case is followed by application to the real case of Pioneer-Venus orbiter data for Venus' Gula Mons.

  4. Gravity Fields and Interiors of the Saturnian Satellites

    NASA Technical Reports Server (NTRS)

    Rappaport, N. J.; Armstrong, J. W.; Asmar, Sami W.; Iess, L.; Tortora, P.; Somenzi, L.; Zingoni, F.

    2006-01-01

    This viewgraph presentation reviews the Gravity Science Objectives and accomplishments of the Cassini Radio Science Team: (1) Mass and density of icy satellites (2) Quadrupole field of Titan and Rhea (3) Dynamic Love number of Titan (4) Moment of inertia of Titan (in collaboration with the Radar Team) (5) Gravity field of Saturn. The proposed measurements for the extended tour are: (1) Quadrupole field of Enceladus (2) More accurate measurement of Titan k2 (3) Local gravity/topography correlations for Iapetus (4) Verification/disproof of "Pioneer anomaly".

  5. Gravity and tectonic patterns of Mercury

    NASA Astrophysics Data System (ADS)

    Matsuyama, I.; Nimmo, F.

    2008-12-01

    We consider the effect of tidal deformation, spin-orbit resonance, non-zero eccentricity, despinning, and reorientation on the global-scale gravity, shape, and tectonic patterns of planetary bodies. Large variations of the gravity and shape coefficients from the synchronous rotation and zero eccentricity values, J2/C22=10/3 and (b-c)/(a-c)=1/4, arise due to non-synchronous rotation and non-zero eccentricity even in the absence of reorientation or despinning. Reorientation or despinning induce additional variations. As an illustration of this theory, we consider the specific example of Mercury. The large gravity coefficients estimated from the Mariner 10 flybys cannot be attributed to the Caloris basin alone since the required mass excess in this case would have caused Caloris to migrate to one of Mercury's hot poles. Similarly, a large remnant bulge due to a smaller semimajor axis and spin-orbit resonance can be dismissed since the required semimajor axis is unphysically small (< 0.1 AU). Reorientation of a large remnant bulge recording an epoch of faster rotation (without significant semimajor axis variations) can explain the large gravity coefficients. This requires initial rotation rates > 20 times the present value and a positive gravity anomaly associated with Caloris capable of driving 10-45° equatorward reorientation. The required gravity anomaly can be explained by infilling of the basin with material of thicknesses > 7 km, or an annulus of volcanic plains emplaced around the basin with annulus width ~ 1200 km and fill thicknesses > 2 km. The predicted tectonic pattern due to these despinning and reorientation scenarios and radial contraction is in good agreement with the observed lobate scarp pattern.

  6. Gravity and Flexure Modelling of Subducting Plates

    NASA Astrophysics Data System (ADS)

    Hunter, J. A.; Watts, A. B.; SO 215 Shipboard Scientific Party

    2012-04-01

    The long-term strength of the lithosphere is determined by its flexural rigidity, which is commonly expressed through the effective elastic thickness, Te. Flexure studies have revealed a dependence of Te on thermal age. In the oceans, loads formed on young (70 Ma) seafloor. In the continents, loads on young (1000 Ma) lithosphere. Recent studies have questioned the relationship of Te with age, especially at subduction zones, where oceanic and continental lithosphere are flexed downwards by up to ~6 km over horizontal distances of up to ~350 km. We have therefore used free-air gravity anomaly and topography profile data, combined with forward and inverse modelling techniques, to re-assess Te in these settings. Preliminary inverse modelling results from the Tonga-Kermadec Trench - Outer Rise system, where the Pacific plate is subducting beneath the Indo-Australian plate, show large spatial variations in Te that are unrelated to age. In contrast to the southern end of the system, where Te is determined by the depth to the 600° C and 900° C isotherms, the northern end of the system shows a reduction in strength. Results also suggest a reduction in Te trenchward of the outer rise that is coincident with a region of pervasive extensional faulting visible in swath bathymetry data. In a continental setting, the Ganges foreland basin has formed by flexure of the Indo-Australian plate in front of the migrating loads of the Himalaya. Preliminary forward modelling results, using the Himalaya as a known surface topographic load, suggest that Te is high - consistent with the great age of Indian cratonic lithosphere. However, results from inverse modelling that solves for unknown loads (vertical shear force and bending moment) show significant scatter and display trade-offs between Te and these driving loads.

  7. A gravity model for the Coso geothermal area, California

    SciTech Connect

    Feighner, M.A.; Goldstein, N.E.

    1990-08-01

    Two- and three-dimensional gravity modeling was done using gridded Bouguer gravity data covering a 45 {times} 45 km region over the Coso geothermal area in an effort to identify features related to the heat source and to seek possible evidence for an underlying magma chamber. Isostatic and terrain corrected Bouguer gravity data for about 1300 gravity stations were obtained from the US Geological Survey. After the data were checked, the gravity values were gridded at 1 km centers for the area of interest centered on the Coso volcanic field. Most of the gravity variations can be explained by two lithologic units: (1) low density wedges of Quarternary alluvium with interbedded thin basalts (2.4 g/cm{sup 3}) filling the Rose Valley and Coso Basin/Indian Wells Valley, and (2) low density cover of Tertiary volcanic rocks and intercalated Coso Formation (2.49 g/cm{sup 3}). A 3-D iterative approach was used to find the thicknesses of both units. The gravity anomaly remaining after effects from Units 1 and 2 are removed is a broad north-south-trending low whose major peak lies 5 km north of Sugarloaf Mountain, the largest of the less than 0.3 m.y. old rhyolite domes in the Coso Range. Most of this residual anomaly can be accounted for by a deep, low-density (2.47 g/cm{sup 3}) prismatic body extending from 8 to about 30 km below the surface. While some of this anomaly might be associated with fractured Sierran granitic rocks, its close correlation to a low-velocity zone with comparable geometry suggests that the residual anomaly is probably caused a large zone of partial melt underlying the rhyolite domes of the Coso Range. 12 refs., 9 figs.

  8. Results of Gravity Fieldwork Conducted in March 2008 in the Moapa Valley Region of Clark County, Nevada

    USGS Publications Warehouse

    Scheirer, Daniel S.; Andreasen, Arne Dossing

    2008-01-01

    In March 2008, we collected gravity data along 12 traverses across newly-mapped faults in the Moapa Valley region of Clark County, Nevada. In areas crossed by these faults, the traverses provide better definition of the gravity field and, thus, the density structure, than prior gravity observations. Access problems prohibited complete gravity coverage along all of the planned gravity traverses, and we added and adjusted the locations of traverses to maximize our data collection. Most of the traverses exhibit isostatic gravity anomalies that have gradients characteristic of exposed or buried faults, including several of the newly-mapped faults.

  9. Gravity Waves

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1985-01-01

    Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.

  10. Gravity wave transmission diagram

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  11. WF4 Anomaly Characterization

    NASA Astrophysics Data System (ADS)

    Biretta, John

    2005-07-01

    A serious anomaly has been found in images from the WF4 CCD in WFPC2. The WF4 CCD bias level appears to have become unstable, resulting in sporadic images with either low or zero bias level. The severity and frequency of the problem is rapidly increasing, and it is possible that WF4 will soon become unusable if no work-around is found. The other three CCDs {PC1, WF2, and WF3} appear to be unaffected and continue to operate properly. The impacts from "low" and "zero" bias are somewhat different, but in both cases the effects are immediately obvious. Images with low bias will tend to have horizontal {x-direction} streaks and stripes with an amplitude of ? about 0.5 DN in WF4. We believe these data should be mostly recoverable with some effort, though at a loss in the detectability of faint targets. "Zero bias" is a much more serious problem and is evidenced by images which are blank in WF4, except for showing occasional cosmic rays, bright targets, and negative pixels from dark subtraction. These images with zero bias are probably unusable for most purposes. Both the CCD gain settings of 7 and 14 are affected. The frequency of the anomaly is rapidly increasing. The first significant instances of low bias appear to have been in late 2004 when a few images were impacted. However, within the last few weeks over half the images are beginning to show the low bias problem. The more serious "zero bias" problem appears to have first occurred in Feb. 2005, but it is also increasing and now impacts 10% to 20% of WFPC2 images. At present there are still many images which appear fine and unaffected, but the situation is quickly evolving. We believe the science impact for most observers will be minimal. Targets are by default placed on either PC1 or WF3 which continue to operate properly. However, observers requiring the full field of view {survey projects, large targets, etc.} will potentially lose one-third of their imaging area. Our understanding of this anomaly is still

  12. Joint Inversion and Forward Modeling of Gravity and Magnetic Data in the Ismenius Region of Mars

    NASA Technical Reports Server (NTRS)

    Milbury, C. A.; Raymond, C. A.; Jewell, J. B.; Smrekar, S. E.; Schubert, G.

    2005-01-01

    The unexpected discovery of remanent crustal magnetism on Mars was one of the most intriguing results from the Mars Global Surveyor mission. The origin of the pattern of magnetization remains elusive. Correlations with gravity and geology have been examined to better understand the nature of the magnetic anomalies. In the area of the Martian dichotomy between 50 and 90 degrees E (here referred to as the Ismenius Area), we find that both the Bouguer and the isostatic gravity anomalies appear to correlate with the magnetic anomalies and a buried fault, and allow for a better constraint on the magnetized crust].

  13. Nolen-Schiffer anomaly

    SciTech Connect

    Pieper, S.C.; Wiringa, R.B.

    1995-08-01

    The Argonne v{sub 18} potential contains a detailed treatment of the pp, pn and nn electromagnetic potential, including Coulomb, vacuum polarization, Darwin Foldy and magnetic moment terms, all with suitable form factors and was fit to pp and pn data using the appropriate nuclear masses. In addition, it contains a nuclear charge-symmetry breaking (CSB) term adjusted to reproduce the difference in the experimental pp and nn scattering lengths. We have used these potential terms to compute differences in the binding energies of mirror isospin-1/2 nuclei (Nolen-Schiffer [NS] anomaly). Variational Monte Carlo calculations for the {sup 3}He-{sup 3}H system and cluster variational Monte Carlo for the {sup 15}O-{sup 15}N and {sup 17}F-{sup 17}O systems were made. In the first case, the best variational wave function for the A = 3 nuclei was used. However, because our {sup 16}O wave function does not reproduce accurately the {sup 16}O rms radius, to which the NS anomaly is very sensitive, we adjusted the A = 15 and A = 17 wave functions to reproduce the experimental density profiles. Our computed energy differences for these three systems are 0.757 {plus_minus} .001, 3.544 {plus_minus} .018 and 3.458 {plus_minus} .040 MeV respectively, which are to be compared with the experimental differences of 0.764, 3.537, and 3.544 MeV. Most of the theoretical uncertainties are due to uncertainties in the experimental rms radii. The nuclear CSB potential contributes 0.066, 0.188, and 0.090 MeV to these totals. We also attempted calculations for A = 39 and A = 41. However, in these cases, the experimental uncertainties in the rms radius make it impossible to extract useful information about the contribution of the nuclear CSB potential.

  14. Ebstein's anomaly in neonates.

    PubMed

    Moura, C; Guimarães, H; Areias, J C; Moreira, J

    2001-09-01

    Ebstein's anomaly is a rare congenital heart disease abnormality in which the tricuspid valve leaflets do not attach normally to the tricuspid valve annulus. The effective tricuspid valve orifice is displaced apically into the right ventricle (RV), near the junction of the inlet and the trabecular parts of the RV. The authors present a retrospective study of the patients with Ebstein's anomaly admitted to a neonatal intensive care unit, in the period between January 1993 and March 2000. There were ten patients, representing 0.24% of total neonates and 1.99% of total congenital heart disease admitted to the institution in the same period. Fifty per cent were male and only one case had prenatal diagnosis. Holosystolic murmur (100%) from tricuspid regurgitation and cyanosis (80%) were the most frequent clinical findings. Chest X-ray was abnormal in 90% of the neonates, with a "balloon-shaped" enlarged heart. The main electrocardiographic findings were right atrial enlargement (70%) and arrhythmias (40%). Apical displacement of the septal leaflet of the tricuspid valve, to a maximum of 20 mm, and leaflets tethering to underlying RV myocardium were found in all patients. Tricuspid valve regurgitation was found in 90% (severe form in four cases). An atrial intracardiac shunt, mostly right-to-left, was also found in 50%. Digoxin was used (40%) to restore sinus rhythm. Fifty per cent of the neonates received intravenous prostaglandins. Two patients required a surgical procedure. Two patients died in the neonatal period. During the follow-up period (range 0.3-74.6 months), only one episode of supraventricular tachycardia was recorded. At present seven patients are clinically stable, three of them on medication.

  15. Geyser's magma chamber, California: constraints from gravity data, density measurements, and well information

    USGS Publications Warehouse

    Blakely, Richard J.; Stanley, W.D.; ,

    1993-01-01

    A new crustal model based on isostatic residual gravity, geologic mapping, well information, and density measurements shows that the high-gradient parts of the residual gravity anomaly can be explained in terms of lithologic variations within the upper 7 km of the crust, consistent with the upper-crustal framework of the area. This conclusion does not rule out the presence of a magma chamber at lower crustal depths; the broad aspects of the gravity anomaly support the presence of low-density partial melting at 15 to 20 km depth, consistent with magnetotelluric soundings and other geophysical measurements.

  16. Comparison of surface and satellite gravity data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1978-01-01

    Satellite derived potential coefficients (GEM 9) are compared to terrestrial gravity data by degree in terms of coefficient differences and in terms of mean anomaly differences. The root mean square undulation difference (to degree 20) was 9 + or - m and the anomaly difference was + or - 7 mgals with GEM 9 commission errors of + or - 1.7 m and + or - 3.8 mgals. The standard deviations of the GEM 9 implied undulations increased from + or - 4 cm at degree 2 to + or - 53 cm at degree 20. The corresponding values implied by a recent (June 1978) terrestrial 5 deg field were + or - 2.53 m and + or - 0.38 m (at degree 20). Comparisons between Geos-3 altimeter derived anomalies and 1 deg X 1 Deg terrestrial data showed that + or - 6-8 mgals is a reasonable accuracy estimate for the altimeter derived anomalies. Anomalies derived from satellite to satellite tracking data indicate an accuracy of about + or - 6 mgals for the recovery of 5 deg equal area blocks.

  17. Evaluation of anomalies in GLDAS-1996 dataset.

    PubMed

    Zhou, Xinyao; Zhang, Yongqiang; Yang, Yonghui; Yang, Yanmin; Han, Shumin

    2013-01-01

    Global Land Data Assimilation System (GLDAS) data are widely used for land-surface flux simulations. Therefore, the simulation accuracy using GLDAS dataset is largely contingent upon the accuracy of the GLDAS dataset. It is found that GLDAS land-surface model simulated runoff exhibits strong anomalies for 1996. These anomalies are investigated by evaluating four GLDAS meteorological forcing data (precipitation, air temperature, downward shortwave radiation and downward longwave radiation) in six large basins across the world (Danube, Mississippi, Yangtze, Congo, Amazon and Murray-Darling basins). Precipitation data from the Global Precipitation Climatology Centre (GPCC) are also compared with GLDAS forcing precipitation data. Large errors and lack of monthly variability in GLDAS-1996 precipitation data are the main sources for the anomalies in the simulated runoff. The impact of the precipitation data on simulated runoff for 1996 is investigated with the Community Atmosphere Biosphere Land Exchange (CABLE) land-surface model in the Yangtze basin, for which area high-quality local precipitation data are obtained from the China Meteorological Administration (CMA). The CABLE model is driven by GLDAS daily precipitation data and CMA daily precipitation, respectively. The simulated daily and monthly runoffs obtained from CMA data are noticeably better than those obtained from GLDAS data, suggesting that GLDAS-1996 precipitation data are not so reliable for land-surface flux simulations. PMID:23579825

  18. Evaluation of anomalies in GLDAS-1996 dataset.

    PubMed

    Zhou, Xinyao; Zhang, Yongqiang; Yang, Yonghui; Yang, Yanmin; Han, Shumin

    2013-01-01

    Global Land Data Assimilation System (GLDAS) data are widely used for land-surface flux simulations. Therefore, the simulation accuracy using GLDAS dataset is largely contingent upon the accuracy of the GLDAS dataset. It is found that GLDAS land-surface model simulated runoff exhibits strong anomalies for 1996. These anomalies are investigated by evaluating four GLDAS meteorological forcing data (precipitation, air temperature, downward shortwave radiation and downward longwave radiation) in six large basins across the world (Danube, Mississippi, Yangtze, Congo, Amazon and Murray-Darling basins). Precipitation data from the Global Precipitation Climatology Centre (GPCC) are also compared with GLDAS forcing precipitation data. Large errors and lack of monthly variability in GLDAS-1996 precipitation data are the main sources for the anomalies in the simulated runoff. The impact of the precipitation data on simulated runoff for 1996 is investigated with the Community Atmosphere Biosphere Land Exchange (CABLE) land-surface model in the Yangtze basin, for which area high-quality local precipitation data are obtained from the China Meteorological Administration (CMA). The CABLE model is driven by GLDAS daily precipitation data and CMA daily precipitation, respectively. The simulated daily and monthly runoffs obtained from CMA data are noticeably better than those obtained from GLDAS data, suggesting that GLDAS-1996 precipitation data are not so reliable for land-surface flux simulations.

  19. Improved Airborne Gravity Results Using New Relative Gravity Sensor Technology

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2013-12-01

    Airborne gravity data has contributed greatly to our knowledge of subsurface geophysics particularly in rugged and otherwise inaccessible areas such as Antarctica. Reliable high quality GPS data has renewed interest in improving the accuracy of airborne gravity systems and recent improvements in the electronic control of the sensor have increased the accuracy and ability of the classic Lacoste and Romberg zero length spring gravity meters to operate in turbulent air conditions. Lacoste and Romberg type gravity meters provide increased sensitivity over other relative gravity meters by utilizing a mass attached to a horizontal beam which is balanced by a ';zero length spring'. This type of dynamic gravity sensor is capable of measuring gravity changes on the order of 0.05 milliGals in laboratory conditions but more commonly 0.7 to 1 milliGal in survey use. The sensor may have errors induced by the electronics used to read the beam position as well as noise induced by unwanted accelerations, commonly turbulence, which moves the beam away from its ideal balance position otherwise known as the reading line. The sensor relies on a measuring screw controlled by a computer which attempts to bring the beam back to the reading line position. The beam is also heavily damped so that it does not react to most unwanted high frequency accelerations. However this heavily damped system is slow to react, particularly in turns where there are very high Eotvos effects. New sensor technology utilizes magnetic damping of the beam coupled with an active feedback system which acts to effectively keep the beam locked at the reading line position. The feedback system operates over the entire range of the system so there is now no requirement for a measuring screw. The feedback system operates at very high speed so that even large turbulent events have minimal impact on data quality and very little, if any, survey line data is lost because of large beam displacement errors. Airborne testing

  20. Seismic data fusion anomaly detection

    NASA Astrophysics Data System (ADS)

    Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David

    2014-06-01

    Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.

  1. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry.

    PubMed

    Andrews-Hanna, Jeffrey C; Asmar, Sami W; Head, James W; Kiefer, Walter S; Konopliv, Alexander S; Lemoine, Frank G; Matsuyama, Isamu; Mazarico, Erwan; McGovern, Patrick J; Melosh, H Jay; Neumann, Gregory A; Nimmo, Francis; Phillips, Roger J; Smith, David E; Solomon, Sean C; Taylor, G Jeffrey; Wieczorek, Mark A; Williams, James G; Zuber, Maria T

    2013-02-01

    The earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere. Crosscutting relationships support a pre-Nectarian to Nectarian age, preceding the end of the heavy bombardment of the Moon. The distribution, orientation, and dimensions of the intrusions indicate a globally isotropic extensional stress state arising from an increase in the Moon's radius by 0.6 to 4.9 kilometers early in lunar history, consistent with predictions of thermal models.

  2. Utility of correlation techniques in gravity and magnetic interpretation

    NASA Technical Reports Server (NTRS)

    Chandler, V. W.; Koski, J. S.; Braice, L. W.; Hinze, W. J.

    1977-01-01

    Internal correspondence uses Poisson's Theorem in a moving-window linear regression analysis between the anomalous first vertical derivative of gravity and total magnetic field reduced to the pole. The regression parameters provide critical information on source characteristics. The correlation coefficient indicates the strength of the relation between magnetics and gravity. Slope value gives delta j/delta sigma estimates of the anomalous source. The intercept furnishes information on anomaly interference. Cluster analysis consists of the classification of subsets of data into groups of similarity based on correlation of selected characteristics of the anomalies. Model studies are used to illustrate implementation and interpretation procedures of these methods, particularly internal correspondence. Analysis of the results of applying these methods to data from the midcontinent and a transcontinental profile shows they can be useful in identifying crustal provinces, providing information on horizontal and vertical variations of physical properties over province size zones, validating long wavelength anomalies, and isolating geomagnetic field removal problems.

  3. Chiral gravity, log gravity, and extremal CFT

    SciTech Connect

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-03-15

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  4. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Astrophysics Data System (ADS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the

  5. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the

  6. Medical management of vascular anomalies.

    PubMed

    Trenor, Cameron C

    2016-03-01

    We have entered an exciting era in the care of patients with vascular anomalies. These disorders require multidisciplinary care and coordination and dedicated centers have emerged to address this need. Vascular tumors have been treated with medical therapies for many years, while malformations have been historically treated with endovascular and operative procedures. The recent serendipitous discoveries of propranolol and sirolimus for vascular anomalies have revolutionized this field. In particular, sirolimus responses are challenging the dogma that vascular malformations are not biologically active. While initially explored for lymphatic anomalies, sirolimus is now being used broadly throughout the spectrum of vascular anomalies. Whether medical therapies are reserved for refractory patients or used first line is currently dependent on the experience and availability of alternative therapies at each institution. On the horizon, we anticipate new drugs targeting genes and pathways involved in vascular anomalies to be developed. Also, combinations of medications and protocols combining medical and procedural approaches are in development for refractory patients. PMID:27607327

  7. System for closure of a physical anomaly

    DOEpatents

    Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S

    2014-11-11

    Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.

  8. Detailed Gravity and Magnetic Survey of the Taylorsville Triassic Basin

    SciTech Connect

    Leftwich, John; Nowroozi, Ali, A.

    1999-10-01

    This work reports the progress on collecting existing gravity data in a rectangular area covering the Richmond and Taylorsville Basins and its vicinity. The area covers one-degree latitude and one degree longitude, starting at 37 North, 77 West and ending at 38 North, 78 West. Dr. David Daniels of the United State Geological Survey supplied us with more than 4900 Bouguer gravity anomalies in this area. The purpose of this report is to present the data in form of several maps and discuss its relation to the geology of the Triassic Basins and its vicinity. Johnson and others (1985) also presented a map of the Bouguer gravity anomaly of this area. However, their map covers a smaller area, and it is based on smaller number of observations.

  9. Least squares collocation applied to local gravimetric solutions from satellite gravity gradiometry data

    NASA Technical Reports Server (NTRS)

    Robbins, J. W.

    1985-01-01

    An autonomous spaceborne gravity gradiometer mission is being considered as a post Geopotential Research Mission project. The introduction of satellite diometry data to geodesy is expected to improve solid earth gravity models. The possibility of utilizing gradiometer data for the determination of pertinent gravimetric quantities on a local basis is explored. The analytical technique of least squares collocation is investigated for its usefulness in local solutions of this type. It is assumed, in the error analysis, that the vertical gravity gradient component of the gradient tensor is used as the raw data signal from which the corresponding reference gradients are removed to create the centered observations required in the collocation solution. The reference gradients are computed from a high degree and order geopotential model. The solution can be made in terms of mean or point gravity anomalies, height anomalies, or other useful gravimetric quantities depending on the choice of covariance types. Selected for this study were 30 x 30 foot mean gravity and height anomalies. Existing software and new software are utilized to implement the collocation technique. It was determined that satellite gradiometry data at an altitude of 200 km can be used successfully for the determination of 30 x 30 foot mean gravity anomalies to an accuracy of 9.2 mgal from this algorithm. It is shown that the resulting accuracy estimates are sensitive to gravity model coefficient uncertainties, data reduction assumptions and satellite mission parameters.

  10. Time-Variable Gravity and Ocean Connections

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Au, Andrew; Cox, Christopher

    2003-01-01

    Any large mass transport in the Earth system produces changes in the gravity field. Low harmonic degree components of such gravity variations have been observed by the satellite-laser-ranging (SLR) technique for the past quarter century, particularly in 52, the Earth's dynamic oblateness. 52 undergoes a slight decrease due primarily to the post-glacial rebound of the mantle, but large interannual anomalies have been observed, notably during 1998-2002. Intriguing evidences for the cause of the latter have been found in the extratropical Pacific basins, especially related to the Pacific Decadal Oscillation, and perhaps in related land hydrology. We will examine the latest results based on ocean altimetry, sea-surface temperature, and ocean and hydrology model outputs. Without firm estimates for the steric effects (which have no gravity signal), we will point out possible underestimation of OGCMs with respect to temporal variabilities. Besides J2, SLR also derived time series for other low-degree gravity components. While the formal uncertainty of these terms is significantly higher, some of these series have significant signal that show correlation to various climatic signals. For example, there is a significant correlation of the sectoral S2,2 with the Southern Oscillation Index signifying the influence of El Nino/La Nina. Cases such as these demonstrate the utility of assessing the mass component of climate variations, and anticipate the utility of GRACE-type space gravity observations with much higher spatial resolution.

  11. High-Precise Gravity Observations at Archaeological Sites: How We Can Improve the Interpretation Effectiveness and Reliability?

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2015-04-01

    the Lesser Caucasus (western Azerbaijan) under conditions of rugged relief and complex geology. This deposit is well investigated by mining and drilling operations and therefore was used as a reference field polygon for testing this approach. A special scheme for obtaining the Bouguer anomalies has been employed to suppress the terrain relief effects dampening the anomaly effects from the objects of prospecting. The scheme is based on calculating the difference between the free-air anomaly and the gravity field determined from a 3D model of a uniform medium with a real topography. 3-D terrain relief model with an interval of its description of 80 km (the investigated 6 profiles of 800 m length are in the center of this interval) was employed to compute (by the use of GSFC software (Khesin et al., 1996)) the gravitational effect of the medium (σ = 2670 kg/m3). With applying such a scheme the Bouguer anomalies were obtained with accuracy in two times higher than that of TC received by the conventional methods. As a result, on the basis of the improved Bouguer gravity with the precise TC data, the geological structure of the deposit was defined (Khesin et al., 1996). Second approach Second approach was employed at the complex Katekh pyrite-polymetallic deposit, which is located at the southern slope of the Greater Caucasus (northern Azerbaijan). The main peculiarities of this area are very rugged topography of SW-NE trend, complex geology and severe tectonics. Despite the availability of conventional ΔgB (TC far zones were computed up to 200 km), for the enhanced calculation of surrounding terrain topography a digital terrain relief model was created (Eppelbaum and Khesin, 2004). The SW-NE regional topography trend in the area of the Katekh deposit occurrence was computed as a rectangular digital terrain relief model (DTRM) of 20 km long and 600 m wide (our interpretation profile with a length of 800 m was located in the geometrical center of the DTRM). As a whole

  12. On the variability of near-surface screen temperature anomalies in the 20 March 2015 solar eclipse.

    PubMed

    Clark, Matthew R

    2016-09-28

    Near-surface air temperature (NSAT) anomalies during the 20 March 2015 solar eclipse are investigated at 266 UK sites, using operational data. The high density of observing sites, together with the wide range of ambient meteorological conditions, provided an unprecedented opportunity for analysis of the spatial variability of NSAT anomalies under relatively uniform eclipse conditions. Anomalies ranged from -0.03°C to -4.23°C (median -1.02°C). The maximum (negative) anomaly lagged the maximum obscuration by 15 min on average. Cloud cover impacted strongly on NSAT anomalies, with larger anomalies in clear-sky situations (p<0.0001). Weaker, but statistically significant, correlations were found with wind speed (larger anomalies in weaker winds), proximity to coast (larger anomalies at inland sites), topography (larger anomalies in topographical low points) and land cover (larger anomalies over vegetated surfaces). In this mid-morning eclipse, the topographical influences on NSAT anomalies were apparently dominated by variations in residual nocturnal inversion strength, as suggested by significant correlations between post-sunrise temperature and NSAT anomaly at clear-sky sites (larger negative anomalies with lower post-sunrise temperatures). The largest NSAT anomaly occurred at a coastal site where flow transitioned from onshore to offshore during the eclipse, in a situation with large coastal temperature gradients associated with antecedent nocturnal cooling.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. PMID:27550765

  13. On the variability of near-surface screen temperature anomalies in the 20 March 2015 solar eclipse.

    PubMed

    Clark, Matthew R

    2016-09-28

    Near-surface air temperature (NSAT) anomalies during the 20 March 2015 solar eclipse are investigated at 266 UK sites, using operational data. The high density of observing sites, together with the wide range of ambient meteorological conditions, provided an unprecedented opportunity for analysis of the spatial variability of NSAT anomalies under relatively uniform eclipse conditions. Anomalies ranged from -0.03°C to -4.23°C (median -1.02°C). The maximum (negative) anomaly lagged the maximum obscuration by 15 min on average. Cloud cover impacted strongly on NSAT anomalies, with larger anomalies in clear-sky situations (p<0.0001). Weaker, but statistically significant, correlations were found with wind speed (larger anomalies in weaker winds), proximity to coast (larger anomalies at inland sites), topography (larger anomalies in topographical low points) and land cover (larger anomalies over vegetated surfaces). In this mid-morning eclipse, the topographical influences on NSAT anomalies were apparently dominated by variations in residual nocturnal inversion strength, as suggested by significant correlations between post-sunrise temperature and NSAT anomaly at clear-sky sites (larger negative anomalies with lower post-sunrise temperatures). The largest NSAT anomaly occurred at a coastal site where flow transitioned from onshore to offshore during the eclipse, in a situation with large coastal temperature gradients associated with antecedent nocturnal cooling.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  14. The use of Compton scattering in detecting anomaly in soil-possible use in pyromaterial detection

    NASA Astrophysics Data System (ADS)

    Abedin, Ahmad Firdaus Zainal; Ibrahim, Noorddin; Zabidi, Noriza Ahmad; Demon, Siti Zulaikha Ngah

    2016-01-01

    The Compton scattering is able to determine the signature of land mine detection based on dependency of density anomaly and energy change of scattered photons. In this study, 4.43 MeV gamma of the Am-Be source was used to perform Compton scattering. Two detectors were placed between source with distance of 8 cm and radius of 1.9 cm. Detectors of thallium-doped sodium iodide NaI(TI) was used for detecting gamma ray. There are 9 anomalies used in this simulation. The physical of anomaly is in cylinder form with radius of 10 cm and 8.9 cm height. The anomaly is buried 5 cm deep in the bed soil measured 80 cm radius and 53.5 cm height. Monte Carlo methods indicated the scattering of photons is directly proportional to density of anomalies. The difference between detector response with anomaly and without anomaly namely contrast ratio values are in a linear relationship with density of anomalies. Anomalies of air, wood and water give positive contrast ratio values whereas explosive, sand, concrete, graphite, limestone and polyethylene give negative contrast ratio values. Overall, the contrast ratio values are greater than 2 % for all anomalies. The strong contrast ratios result a good detection capability and distinction between anomalies.

  15. The characteristics of gravity and magnetic fields and the distribution of tight sandstone gas in the eastern Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Bingqiang; Zhang, Huaan; Zhang, Chunguan; Xu, Haihong; Yan, Yunkui

    2016-04-01

    In order to perform gas exploration and determine the distribution pattern of gas in the Yanchang Oil Field in the eastern part of the North Shaanxi Slope, Ordos Basin, China, gravity and magnetic survey data were systemically collated, processed and interpreted in combination with the drilling data and recent seismic data. The genesis of gravity and magnetic anomalies and the relationship between the characteristics of the gravity and magnetic fields and known gas distribution were explored in order to predict the favourable exploration targets for gas. Gravity anomalies resulted both from the lateral variation in density of the basement rock and lateral lithologic transformation in the sedimentary cover. The regional magnetic anomalies were mainly caused by the basement metamorphic rocks and the residual magnetic anomalies may reflect the amount and general location of the volcanic materials in the overlying strata. The residual gravity and magnetic anomalies generated by high-density sandstone and high content of volcanics in the gas reservoir of the upper Paleozoic distorted and deformed the anomaly curves when they were stacked onto the primary background anomaly. The gas wells were generally found to be located in the anomaly gradient zones, or the distorted part of contour lines, and the flanks of high and low anomalies, or the transitional zones between anomaly highs and lows. The characteristics of gravity and magnetic fields provide significant information that can be used for guidance when exploring the distribution of gas. Based on these characteristics, five favourable areas for gas exploration were identified; these are quasi-equally spaced like a strip extending from the southeast to the northwest.

  16. The effect of gravity on plant germination.

    PubMed

    Takakura, T; Goto, E; Tanaka, M

    1996-01-01

    An axis clinostat was constructed to create micro and negative gravity also a rotated flat disk was constructed with different rotation rates to give increased gravity, by centrifugal force up to 48 g. Rice seeds were grown on agar in tubes at the constant air temperature of 20 degrees C under an average light condition of 110 micromol/m2/sec(PPF). Humidity was not controlled but was maintained above 90%. Since the tube containers were not large enough for long cultivation, shoot and root growth were observed every 12 hours until the sixth day from seeding. The lengths of shoots and roots for each individual plant were measured on the last day. The stem lengths were increased by microgravity but the root lengths were not. Under the negative gravity, negative orthogeotropism and under microgravity, diageotropism was observed. No significant effect of increased gravity was observed on shoot and root growth.

  17. The effect of gravity on plant germination.

    PubMed

    Takakura, T; Goto, E; Tanaka, M

    1996-01-01

    An axis clinostat was constructed to create micro and negative gravity also a rotated flat disk was constructed with different rotation rates to give increased gravity, by centrifugal force up to 48 g. Rice seeds were grown on agar in tubes at the constant air temperature of 20 degrees C under an average light condition of 110 micromol/m2/sec(PPF). Humidity was not controlled but was maintained above 90%. Since the tube containers were not large enough for long cultivation, shoot and root growth were observed every 12 hours until the sixth day from seeding. The lengths of shoots and roots for each individual plant were measured on the last day. The stem lengths were increased by microgravity but the root lengths were not. Under the negative gravity, negative orthogeotropism and under microgravity, diageotropism was observed. No significant effect of increased gravity was observed on shoot and root growth. PMID:11538807

  18. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  19. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10‑23 Hz‑1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  20. An analysis of ridge axis gravity roughness and spreading rate

    NASA Technical Reports Server (NTRS)

    Small, Christopher; Sandwell, David T.

    1992-01-01

    Fast and slow spreading ridges have radically different morphologic and gravimetric characteristics. In this study, altimeter measurements from the Geosat Exact Repeat Mission are used to investigate spreading rate dependence of the ridge axis gravity field. Gravity roughness provides an estimate of the amplitude of the gravity anomaly and is robust to small errors in the location of the ridge axis. Gravity roughness as a weighted root mean square of the vertical deflection at 438 ridge crossings on the mid-ocean ridge system is computed. Ridge axis gravity anomalies show a decrease in amplitude with increasing spreading rate up to an intermediate rate of about 60-80 mm/yr and almost no change at higher rates; overall the roughness decreases by a factor of 10 between the lowest and highest rates. In addition to the amplitude decrease, the range of roughness values observed at a given spreading rate shows a similar order of magnitude decrease with transition between 60 and 80 mm/yr. The transition of ridge axis gravity is most apparent at three relatively unexplored locations on the Southeast Indian Ridge and the Pacific-Antarctic Rise; on these intermediate rate ridges the transition occurs abruptly across transform faults.

  1. Congenital uterine anomalies affecting reproduction.

    PubMed

    Reichman, David E; Laufer, Marc R

    2010-04-01

    The following review seeks to summarise the current data regarding reproductive outcomes associated with congenital uterine anomalies. Such malformations originate from adverse embryologic events ranging from agenesis to lateral and vertical fusion defects. Associated renal anomalies are common both for the symmetric and asymmetric malformations. While fertility is minimally impacted upon by müllerian anomalies in most cases, such malformations have historically been associated with poor obstetric outcomes such as recurrent miscarriage, second trimester loss, preterm delivery, malpresentation and intrauterine foetal demise (IUFD). The following review delineates the existing literature regarding such outcomes and indicates therapies, where applicable, to optimise the care of such patients.

  2. Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models

    USGS Publications Warehouse

    Kauahikaua, J.; Hildenbrand, T.; Webring, M.

    2000-01-01

    A simplified three-dimensional model for the island of Hawai'i, based on 3300 gravity measurements, provides new insights on magma pathways within the basaltic volcanoes. Gravity anomalies define dense cumulates and intrusions beneath the summits and known rift zones of every volcano. Linear gravity anomalies project southeast from Kohala and Mauna Kea summits and south from Huala??lai and Mauna Loa; these presumably express dense cores of previously unrecognized rift zones lacking surface expression. The gravity-modeled dense cores probably define tholeiitic shield-stage structures of the older volcanoes that are now veneered by late alkalic lavas. The three-dimensional gravity method is valuable for characterizing the magmatic systems of basaltic oceanic volcanoes and for defining structures related to landslide and seismic hazards.

  3. Simulation gravity modeling to spacecraft-tracking data - Analysis and application

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Sjogren, W. L.; Abbott, E. A.; Zisk, S. H.

    1978-01-01

    It is proposed that line-of-sight gravity measurements derived from spacecraft-tracking data can be used for quantitative subsurface density modeling by suitable orbit simulation procedures. Such an approach avoids complex dynamic reductions and is analogous to the modeling of conventional surface gravity data. This procedure utilizes the vector calculations of a given gravity model in a simplified trajectory integration program that simulates the line-of-sight gravity. Solutions from an orbit simulation inversion and a dynamic inversion on Doppler observables compare well (within 1% in mass and size), and the error sources in the simulation approximation are shown to be quite small. An application of this technique is made to lunar crater gravity anomalies by simulating the complete Bouguer correction to several large young lunar craters. It is shown that the craters all have negative Bouguer anomalies.

  4. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  5. Challenging Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Roveto, Jonathan

    2011-11-01

    A recent proposal by Erik Verlinde claims that gravity should be viewed not as a fundamental force, but an emergent thermodynamic phenomenon due to some yet undetermined microscopic theory. We present a challenge to this reformulation of gravity. Our claim is that a detailed derivation using Verlinde's proposed theory fails to correctly give Newton's laws or Einstein gravity.

  6. Investigation of urban faults in Shenzhen using wavelet multi-scale analysis and modeling of gravity observations

    NASA Astrophysics Data System (ADS)

    Xu, Chuang; Chen, Liang; Liu, Xi-kai

    2016-04-01

    Urban faults in Shenzhen are potential threat to the city security and sustainable development. To improve the knowledge of the Shenzhen fault zone, interpretation and inversion of gravity data were carried out. Bouguer gravity covering the whole Shenzhen city was calculated with a resolution of 1kmx1km. Wavelet multi-scale analysis (MSA) was applied to the Bouguer gravity data to obtain the multilayer residual anomalies corresponding to different depths. In addition, 2D gravity models were constructed along three profiles. The Bouguer gravity anomaly shows a NE-striking high-low-high pattern from northwest to southeast, strongly related to the main faults. According to the result of MSA, the correlation between gravity anomaly and faults is particularly significant from 4 to 12 km depth. The residual gravity with small amplitude in each layer indicates weak tectonic activity in the crust. In the upper layers, positive anomalies along most of faults reveal the upwelling of high-density materials during the past tectonic movements. The multilayer residual anomalies also implicate important information about the faults, such as the vertical extension and the dip direction. The maximum depth of the faults is about 20km. In general, NE-striking faults extend deeper than NW-striking Faults and have a larger dip angle. This study is supported by the National Natural Science Foundation of China (Grant No.41504015) and China Postdoctoral Science Foundation (Grant No.2015M572146).

  7. Geopotential Field Anomaly Continuation with Multi-Altitude Observations

    NASA Technical Reports Server (NTRS)

    Kim, Jeong Woo; Kim, Hyung Rae; vonFrese, Ralph; Taylor, Patrick; Rangelova, Elena

    2011-01-01

    Conventional gravity and magnetic anomaly continuation invokes the standard Poisson boundary condition of a zero anomaly at an infinite vertical distance from the observation surface. This simple continuation is limited, however, where multiple altitude slices of the anomaly field have been observed. Increasingly, areas are becoming available constrained by multiple boundary conditions from surface, airborne, and satellite surveys. This paper describes the implementation of continuation with multi-altitude boundary conditions in Cartesian and spherical coordinates and investigates the advantages and limitations of these applications. Continuations by EPS (Equivalent Point Source) inversion and the FT (Fourier Transform), as well as by SCHA (Spherical Cap Harmonic Analysis) are considered. These methods were selected because they are especially well suited for analyzing multi-altitude data over finite patches of the earth such as covered by the ADMAP database. In general, continuations constrained by multi-altitude data surfaces are invariably superior to those constrained by a single altitude data surface due to anomaly measurement errors and the non-uniqueness of continuation.

  8. Geopotential Field Anomaly Continuation with Multi-Altitude Observations

    NASA Technical Reports Server (NTRS)

    Kim, Jeong Woo; Kim, Hyung Rae; von Frese, Ralph; Taylor, Patrick; Rangelova, Elena

    2012-01-01

    Conventional gravity and magnetic anomaly continuation invokes the standard Poisson boundary condition of a zero anomaly at an infinite vertical distance from the observation surface. This simple continuation is limited, however, where multiple altitude slices of the anomaly field have been observed. Increasingly, areas are becoming available constrained by multiple boundary conditions from surface, airborne, and satellite surveys. This paper describes the implementation of continuation with multi-altitude boundary conditions in Cartesian and spherical coordinates and investigates the advantages and limitations of these applications. Continuations by EPS (Equivalent Point Source) inversion and the FT (Fourier Transform), as well as by SCHA (Spherical Cap Harmonic Analysis) are considered. These methods were selected because they are especially well suited for analyzing multi-altitude data over finite patches of the earth such as covered by the ADMAP database. In general, continuations constrained by multi-altitude data surfaces are invariably superior to those constrained by a single altitude data surface due to anomaly measurement errors and the non-uniqueness of continuation.

  9. GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region

    NASA Astrophysics Data System (ADS)

    Álvarez, Orlando; Gimenez, Mario; Braitenberg, Carla; Folguera, Andres

    2012-08-01

    Global gravity field models, derived from satellite measurements integrated with terrestrial observations, provide a model of the Earth's gravity field with high spatial resolution and accuracy. The Earth Gravity Model EGM08, a spherical harmonic expansion of the geopotential up to degree and order 2159, has been used to calculate two functionals of the geopotential: the gravity anomaly and the vertical gravity gradient applied to the South Central Andes area. The satellite-only field of the highest resolution has been developed with the observations of satellite GOCE, up to degree and order 250. The topographic effect, a fundamental quantity for the downward continuation and validation of satellite gravity gradiometry data, was calculated from a digital elevation model which was converted into a set of tesseroids. This data is used to calculate the anomalous potential and vertical gravity gradient. In the Southern Central Andes region the geological structures are very complex, but not well resolved. The processing and interpreting of the gravity anomaly and vertical gradients allow the comparison with geological maps and known tectonic structures. Using this as a basis, a few features can be clearly depicted as the contact between Pacific oceanic crust and the Andean fold and thrust belt, the seamount chains over the Oceanic Nazca Plate, and the Famatinian and Pampean Ranges. Moreover the contact between the Rio de la Plata craton and the Pampia Terrain is of great interest, since it represents a boundary that has not been clearly defined until now. Another great lineament, the Valle Fertil-Desaguadero mega-lineament, an expression of the contact between Cuyania and Pampia terranes, can also be clearly depicted. The authors attempt to demonstrate that the new gravity fields can be used for identifying geological features, and therefore serve as useful innovative tools in geophysical exploration.

  10. Global gravity field models and their use for geophysical modelling

    NASA Astrophysics Data System (ADS)

    Pail, R.

    2015-12-01

    During the last decade, the successful operation of the dedicated satellite missions GOCE and GRACE have revolutionized our picture of the Earth's gravity field. They delivered static global gravity field maps with high and homogeneous accuracy for spatial length-scales down to 70-80 km. The current satellite-only models of the fifth generation including GOCE data have reached accuracies of about 2 cm in geoid height and less than 0.7 mGal in gravity anomalies at 100 km spatial half-wavelength. However, the spatial resolution of gravity models derived from satellite data is limited. Since precise knowledge of the Earth's gravity field structure with very high resolution is essential in solid Earth applications such as lithospheric modelling, geological interpretation and exploration geophysics, satellite-only models are complemented by combined gravity field models, which contain very high-resolution gravity field information obtained by terrestrial gravity measurements over continents, and satellite altimetry over the oceans. To further increase the spatial resolution beyond 10-20 km, measured terrestrial and satellite data can also be augmented by high-resolution gravity field signals synthesized from topographic models. In this contribution an overview of the construction of satellite-only and combined global gravity field models is given. The specific characteristics of the individual input data and the resulting models will be assessed, and their impact for geophysical modelling will be discussed. On the basis of selected case studies, commission and omission errors and thus the contribution and impact of satellite gravity data on gravity field applications will be quantified, and the benefit of current satellite gravity data shall be investigated and demonstrated. Future gravity field missions beyond GRACE Follow-On will provide global gravity field information with further increased accuracy, spatial and temporal resolution. In an international initiative

  11. Establishment of National Gravity Base Network of Iran

    NASA Astrophysics Data System (ADS)

    Hatam Chavari, Y.; Bayer, R.; Hinderer, J.; Ghazavi, K.; Sedighi, M.; Luck, B.; Djamour, Y.; Le Moign, N.; Saadat, R.; Cheraghi, H.

    2009-04-01

    upward movement of lava. g. Producing precise mean gravity anomaly for precise geoid determination. Replacing precise spirit leveling by the GPS leveling using precise geoid model is one of the forth coming application of the precise geoid. A gravity base network of 28 stations established over Iran. The stations were built mainly at bedrocks. All stations were measured by an FG5 absolute gravimeter, at least 12 hours at each station, to obtain an accuracy of a few micro gals. Several stations were repeated several times during recent years to estimate the gravity changes.

  12. Genetics Home Reference: Peters anomaly

    MedlinePlus

    ... the anterior segment is abnormal, leading to incomplete separation of the cornea from the iris or the ... anomaly type I is characterized by an incomplete separation of the cornea and iris and mild to ...

  13. Classifying sex biased congenital anomalies

    SciTech Connect

    Lubinsky, M.S.

    1997-03-31

    The reasons for sex biases in congenital anomalies that arise before structural or hormonal dimorphisms are established has long been unclear. A review of such disorders shows that patterning and tissue anomalies are female biased, and structural findings are more common in males. This suggests different gender dependent susceptibilities to developmental disturbances, with female vulnerabilities focused on early blastogenesis/determination, while males are more likely to involve later organogenesis/morphogenesis. A dual origin for some anomalies explains paradoxical reductions of sex biases with greater severity (i.e., multiple rather than single malformations), presumably as more severe events increase the involvement of an otherwise minor process with opposite biases to those of the primary mechanism. The cause for these sex differences is unknown, but early dimorphisms, such as differences in growth or presence of H-Y antigen, may be responsible. This model provides a useful rationale for understanding and classifying sex-biased congenital anomalies. 42 refs., 7 tabs.

  14. Congenital Anomalies of the Limbs

    PubMed Central

    Gingras, G.; Mongeau, M.; Moreault, P.; Dupuis, M.; Hebert, B.; Corriveau, C.

    1964-01-01

    As a preparatory step towards the development of a complete habilitation program for children with congenital limb anomalies associated with maternal ingestion of thalidomide, the medical records of all patients with congenital limb anomalies referred to the Rehabilitation Institute of Montreal in the past decade were studied, and an examination and a thorough reassessment were made of 41 patients (21 males and 20 females). In this paper, Part I, the medical and prosthetic aspects are dealt with and a form of management is described for each type of anomaly. The conclusions are reached that prosthetic fitting and training should be initiated very early in life and that co-operation of the parent is essential to successful habilitation of a child with congenital limb anomalies. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7 PMID:14154297

  15. Detection of groundwater conduits in limestones with gravity surveys: data from the area of the Chicxulub Impact crater, Yucatan Peninsula, Mexico

    NASA Technical Reports Server (NTRS)

    Kinsland, G. L.; Hurtado, M.; Pope, K. O.; Ocampo, A. C. (Principal Investigator)

    2000-01-01

    Small negative gravity anomalies are found in gravity data from along the northwestern shoreline of the Yucatan Peninsula. These anomalies are shown to be due to elongate, shallow anomalous porosity zones in the Tertiary carbonates. These zones are caused primarily by groundwater solution and are presently active conduits for groundwater flow. The association of these small gravity anomalies with known topographic and structural features of the area, which partially overlies the Chicxulub Impact crater, indicates their development was influenced by structures, faults and/or fractures, within the Tertiary and pre-Tertiary carbonates.

  16. Boundary interpretation of gravity gradient tensor data by enhanced directional total horizontal derivatives

    NASA Astrophysics Data System (ADS)

    Yuan, Y.

    2015-12-01

    Boundary identification is a requested task in the interpretation of potential-field data, which has been widely used as a tool in exploration technologies for mineral resources. The main geological edges are fault lines and the borders of geological or rock bodies of different density, magnetic nature, and so on. Gravity gradient tensor data have been widely used in geophysical exploration for its large amount of information and containing higher frequency signals than gravity data, which can be used to delineate small scale anomalies. Therefore, combining multiple components of gradient tensor data to interpret gravity gradient tensor data is a challenge. This needs to develop new edge detector to process the gravity gradient tensor data. In order to make use of multiple components information, we first define directional total horizontal derivatives and enhanced directional total horizontal derivatives and use them to define new edge detectors. In order to display the edges of different amplitudes anomalies simultaneously, we present a normalization method. These methods have been tested on synthetic data to verify that the new methods can delineate the edges of different amplitude anomalies clearly and avoid bringing additional false edges when anomalies contain both positive and negative anomalies. Finally, we apply these methods to real full gravity gradient tensor data in St. Georges Bay, Canada, which get well results.

  17. Overgrowth syndromes with vascular anomalies.

    PubMed

    Blei, Francine

    2015-04-01

    Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations. PMID:25937473

  18. Aeromagnetic anomalies over faulted strata

    USGS Publications Warehouse

    Grauch, V.J.S.; Hudson, Mark R.

    2011-01-01

    High-resolution aeromagnetic surveys are now an industry standard and they commonly detect anomalies that are attributed to faults within sedimentary basins. However, detailed studies identifying geologic sources of magnetic anomalies in sedimentary environments are rare in the literature. Opportunities to study these sources have come from well-exposed sedimentary basins of the Rio Grande rift in New Mexico and Colorado. High-resolution aeromagnetic data from these areas reveal numerous, curvilinear, low-amplitude (2–15 nT at 100-m terrain clearance) anomalies that consistently correspond to intrasedimentary normal faults (Figure 1). Detailed geophysical and rock-property studies provide evidence for the magnetic sources at several exposures of these faults in the central Rio Grande rift (summarized in Grauch and Hudson, 2007, and Hudson et al., 2008). A key result is that the aeromagnetic anomalies arise from the juxtaposition of magnetically differing strata at the faults as opposed to chemical processes acting at the fault zone. The studies also provide (1) guidelines for understanding and estimating the geophysical parameters controlling aeromagnetic anomalies at faulted strata (Grauch and Hudson), and (2) observations on key geologic factors that are favorable for developing similar sedimentary sources of aeromagnetic anomalies elsewhere (Hudson et al.).

  19. Overgrowth syndromes with vascular anomalies.

    PubMed

    Blei, Francine

    2015-04-01

    Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations.

  20. Relation of Topography to Airborne Gravity in Afghanistan and the Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Jung, W.; Brozena, J. M.; Peters, M. F.

    2012-12-01

    As part of a multi-sensor, multi-disciplinary aerogeophysical survey, the US Naval Research Laboratory collected airborne gravity over most of Afghanistan in 2006 (http://pubs.usgs.gov/of/2008/1089/Afghan_grv.html). The data were measured using a pair of ZLS Corporation air-sea gravimeters 7 km altitude above mean sea level aboard an NP-3D Orion aircraft operated by the US Navy's Scientific Development Squadron One (VXS-1). Aircraft positions were determined from kinematic GPS measurements in the aircraft relative to five base stations using differential interferometric techniques. Track spacing was set to 4 km over much of Afghanistan, but was increased to 8 km in the northern block of the survey area. Aircraft ground speed averaged between 300 and 380 knots, faster than ideal for high resolution gravity, but enabled approximately 113,000-km of data tracks to be flown in 220 flight hours, covering more than 330000 km2. In this presentation, we investigate the implications of the airborne gravity data for the tectonic development history of Afghanistan. Afghanistan is described as comprising three different platforms (Wheeler et al., 2005): 1) the north Afghanistan platform north of the Hari-Rud fault (HRF), a part of the Eurasian plate for 250-350 my; 2) the accreted terranes south of the HRF including low flats, formed as island arcs and fragments of continental and oceanic crust collided with the Eurasian plate during the closure of the Tethys Ocean in the past 250 my; and 3) the transpressional plate in the east, formed as the Indian plate moves northward since Cretaceous. The Bouguer anomaly map reveals elongated negative values along the east-west striking HRF, which seems to manifest different tectonic developmental histories across the boundary. Over the southern flats in the accreted terranes platform, the Bouguer anomaly map appears to show a continuation of alternating southwest-northeast trending highs and lows like those over the northern high

  1. Dynamic topography, gravity and the role of lateral viscosity variations from inversion of global mantle flow

    NASA Astrophysics Data System (ADS)

    Yang, Ting; Gurnis, Michael

    2016-11-01

    Lateral viscosity variations (LVVs) in the mantle influence geodynamic processes and their surface expressions. With the observed long-wavelength geoid, free-air anomaly, gravity gradient in three directions and discrete, high-accuracy residual topography, we invert for depth- and temperature-dependent and tectonically regionalized mantle viscosity with a mantle flow model. The inversions suggest that long-wavelength gravitational and topographic signals are mainly controlled by the radial viscosity profile; the pre-Cambrian lithosphere viscosity is slightly (˜ one order of magnitude) higher than that of oceanic and Phanerozoic lithosphere; plate margins are substantially weaker than plate interiors; and viscosity has only a weak apparent, dependence on temperature, suggesting either a balancing between factors or a smoothing of actual higher amplitude, but short wavelength, LVVs. The predicted large-scale lithospheric stress regime (compression or extension) is consistent with the world stress map (thrust or normal faulting). Both recent compiled high-accuracy residual topography and the predicted dynamic topography yield ˜1 km amplitude long-wavelength dynamic topography, inconsistent with recent studies suggesting amplitudes of ˜100 to ˜500 m. Such studies use a constant, positive admittance (transfer function between topography and gravity), in contrast to the evidence which shows that the earth has a spatially and wavelength-dependent admittance, with large, negative admittances between ˜4000 and ˜104 km wavelengths.

  2. Structure of the southern Rio Grande rift from gravity interpretation

    NASA Technical Reports Server (NTRS)

    Daggett, P. H.; Keller, G. R.; Wen, C.-L.; Morgan, P.

    1986-01-01

    Regional Bouguer gravity anomalies in southern New Mexico have been analyzed by two-dimensional wave number filtering and poly-nomial trend surface analysis of the observed gravity field. A prominent, regional oval-shaped positive gravity anomaly was found to be associated with the southern Rio Grande rift. Computer modeling of three regional gravity profiles suggests that this anomaly is due to crustal thinning beneath the southern Rio Grande rift. These models indicate a 25 to 26-km minimum crustal thickness within the rift and suggest that the rift is underlain by a broad zone of anomalously low-density upper mantle. The southern terminus of the anomalous zone is approximately 50 km southwest of El Paso, Texas. A thinning of the rifted crust of 2-3 km relative to the adjacent Basin and Range province indicates an extension of about 9 percent during the formation of the modern southern Rio Grande rift. This extension estimate is consistent with estimates from other data sources. The crustal thinning and anomalous mantle is thought to result from magmatic activity related to surface volcanism and high heat flow in this area.

  3. The GRADIO spaceborne gravity gradiometer: Development and accommodation

    NASA Astrophysics Data System (ADS)

    Bernard, A.

    1989-06-01

    The European ARISTOTELES mission aims at the determination of the Earth's gravity field at short wavelength with a global coverage. Gravity gradient measurements will be achieved during six months by the GRADIO instrument onboard a dedicated satellite in a near dawn-dusk sun-synchronous orbit at an altitude of 200 km. The objective is an accuracy of better than 5 mgals for gravity anomalies, at ground level for blocks of 1 x 1 deg. According to present knowledge of the potential, the recovery of higher spherical harmonics (degree and order greater than 30) is of main importance. This leads to focus on the variations of the measured components T(sub ij) of the gravity gradient tensor, at frequencies greater than 5 x 10(exp -3) Hz. The resolution, required for the gradiometer is 10(exp -2) Eotvos (i.e., 10(exp -11)/s squared) with an averaging time of 4 s.

  4. The GRADIO spaceborne gravity gradiometer: Development and accommodation

    NASA Technical Reports Server (NTRS)

    Bernard, A.

    1989-01-01

    The European ARISTOTELES mission aims at the determination of the Earth's gravity field at short wavelength with a global coverage. Gravity gradient measurements will be achieved during six months by the GRADIO instrument onboard a dedicated satellite in a near dawn-dusk sun-synchronous orbit at an altitude of 200 km. The objective is an accuracy of better than 5 mgals for gravity anomalies, at ground level for blocks of 1 x 1 deg. According to present knowledge of the potential, the recovery of higher spherical harmonics (degree and order greater than 30) is of main importance. This leads to focus on the variations of the measured components T(sub ij) of the gravity gradient tensor, at frequencies greater than 5 x 10(exp -3) Hz. The resolution, required for the gradiometer is 10(exp -2) Eotvos (i.e., 10(exp -11)/s squared) with an averaging time of 4 s.

  5. Quantum Einstein Gravity and Asymptotic Safety

    NASA Astrophysics Data System (ADS)

    Forgács, Péter

    2006-06-01

    I review some of the salient points of the construction of a perturbative quantum theory of the dimensionally reduced pure Einstein gravity from 4 to 2 dimensions assuming that the 4 dimensional (4D) metrics admit two commuting Killing vectors. The dimensionally reduced theory corresponds to an O(1,2) symmetric σ-model coupled to two scalar fields in flat spacetime. It inherits the lack of standard perturbative renormalizability from 4D gravity, however, it turns out that strict cutoff independence can be achieved to all loop orders in a space of Lagrangians differing only by a field dependent conformal factor. The renormalization group flow possesses a unique non-Gaussian fixed point at which the trace anomaly vanishes. The existence of this non-Gaussian fixed point is compatible with Weinberg's "asymptotic safety" scenario.

  6. A Parallel Processing Algorithm for Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Frasheri, Neki; Bushati, Salvatore; Frasheri, Alfred

    2013-04-01

    The paper presents results of using MPI parallel processing for the 3D inversion of gravity anomalies. The work is done under the FP7 project HP-SEE (http://www.hp-see.eu/). The inversion of geophysical anomalies remains a challenge, and the use of parallel processing can be a tool to achieve better results, "compensating" the complexity of the ill-posed problem of inversion with the increase of volume of calculations. We considered the gravity as the simplest case of physical fields and experimented an algorithm based in the methodology known as CLEAN and developed by Högbom in 1974. The 3D geosection was discretized in finite cuboid elements and represented by a 3D array of nodes, while the ground surface where the anomaly is observed as a 2D array of points. Starting from a geosection with mass density zero in all nodes, iteratively the algorithm defines the 3D node that offers the best anomaly shape that approximates the observed anomaly minimizing the least squares error; the mass density in the best 3D node is modified with a prefixed density step and the related effect subtracted from the observed anomaly; the process continues until some criteria is fulfilled. Theoretical complexity of he algorithm was evaluated on the basis of iterations and run-time for a geosection discretized in different scales. We considered the average number N of nodes in one edge of the 3D array. The order of number of iterations was evaluated O(N^3); and the order of run-time was evaluated O(N^8). We used several different methods for the identification of the 3D node which effect offers the best least squares error in approximating the observed anomaly: unweighted least squares error for the whole 2D array of anomalous points; weighting least squares error by the inverted value of observed anomaly over each 3D node; and limiting the area of 2D anomalous points where least squares are calculated over shallow 3D nodes. By comparing results from the inversion of single body and two

  7. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle

    USGS Publications Warehouse

    Blakely, R.J.; Brocher, T.M.; Wells, R.E.

    2005-01-01

    Continental mantle in subduction zones is hydrated by release of water from the underlying oceanic plate. Magnetite is a significant byproduct of mantle hydration, and forearc mantle, cooled by subduction, should contribute to long-wavelength magnetic anomalies above subduction zones. We test this hypothesis with a quantitative model of the Cascadia convergent margin, based on gravity and aeromagnetic anomalies and constrained by seismic velocities, and find that hydrated mantle explains an important disparity in potential-field anomalies of Cascadia. A comparison with aeromagnetic data, thermal models, and earthquakes of Cascadia, Japan, and southern Alaska suggests that magnetic mantle may be common in forearc settings and thus magnetic anomalies may be useful in mapping hydrated mantle in convergent margins worldwide. ?? 2005 Geological Society of America.

  8. Integrating stations from the Nor