Science.gov

Sample records for air health effects

  1. Health Effects of Air Pollution

    MedlinePlus

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  2. Health Effects of Air Pollution.

    ERIC Educational Resources Information Center

    Environmental Education Report and Newsletter, 1985

    1985-01-01

    Summarizes health hazards associated with air pollution, highlighting the difficulty in establishing acceptable thresholds of exposure. Respiratory disease, asthma, cancer, cardiovascular disease, and other problems are addressed. Indicates that a wide range of effects from any one chemical exists and that there are differences in sensitivity to…

  3. Adverse health effects of outdoor air pollutants.

    PubMed

    Curtis, Luke; Rea, William; Smith-Willis, Patricia; Fenyves, Ervin; Pan, Yaqin

    2006-08-01

    Much research on the health effects of outdoor air pollution has been published in the last decade. The goal of this review is to concisely summarize a wide range of the recent research on health effects of many types of outdoor air pollution. A review of the health effects of major outdoor air pollutants including particulates, carbon monoxide, sulfur and nitrogen oxides, acid gases, metals, volatile organics, solvents, pesticides, radiation and bioaerosols is presented. Numerous studies have linked atmospheric pollutants to many types of health problems of many body systems including the respiratory, cardiovascular, immunological, hematological, neurological and reproductive/ developmental systems. Some studies have found increases in respiratory and cardiovascular problems at outdoor pollutant levels well below standards set by such agencies as the US EPA and WHO. Air pollution is associated with large increases in medical expenses, morbidity and is estimated to cause about 800,000 annual premature deaths worldwide [Cohen, A.J., Ross Alexander, H., Ostro, B., Pandey, K.D., Kryzanowski, M., Kunzail, N., et al., 2005. The global burden of disease due to outdoor air pollution. J Toxicol Environ Health A. 68: 1-7.]. Further research on the health effects of air pollution and air pollutant abatement methods should be very helpful to physicians, public health officials, industrialists, politicians and the general public. PMID:16730796

  4. Health effects of outdoor air pollution

    PubMed Central

    Abelsohn, Alan; Stieb, Dave M.

    2011-01-01

    Abstract Objective To inform family physicians about the health effects of air pollution and to provide an approach to counseling vulnerable patients in order to reduce exposure. Sources of information MEDLINE was searched using terms relevant to air pollution and its adverse effects. We reviewed English-language articles published from January 2008 to December 2009. Most studies provided level II evidence. Main message Outdoor air pollution causes substantial morbidity and mortality in Canada. It can affect both the respiratory system (exacerbating asthma and chronic obstructive pulmonary disease) and the cardiovascular system (triggering arrhythmias, cardiac failure, and stroke). The Air Quality Health Index (AQHI) is a new communication tool developed by Health Canada and Environment Canada that indicates the level of health risk from air pollution on a scale of 1 to 10. The AQHI is widely reported in the media, and the tool might be of use to family physicians in counseling high-risk patients (such as those with asthma, chronic obstructive pulmonary disease, or cardiac failure) to reduce exposure to outdoor air pollution. Conclusion Family physicians can use the AQHI and its health messages to teach patients with asthma and other high-risk patients how to reduce health risks from air pollution. PMID:21841106

  5. [Airport related air pollution and health effects].

    PubMed

    Iavicoli, Ivo; Fontana, Luca; Ancona, Carla; Forastiere, Francesco

    2014-01-01

    Airport is an extremely complex emission source of airborne pollutants that can have a significant impact on the environment. Indeed, several airborne chemicals emitted during airport activities may significantly get worse air quality and increase exposure level of both airport workers and general population living nearby the airports. In recent years airport traffic has increased and consequently several studies investigated the association between airport-related air pollution and occurrence of adverse health effects, particularly on respiratory system, in exposed workers and general population resident nearby. In this context, we carried out a critical evaluation of the studies that investigated this correlation in order to obtain a deeper knowledge of this issue and to identify the future research needs. Results show that the evidence of association between airport-related air pollution and health effects on workers and residents is still limited. PMID:25115476

  6. [Airport related air pollution and health effects].

    PubMed

    Iavicoli, Ivo; Fontana, Luca; Ancona, Carla; Forastiere, Francesco

    2014-01-01

    Airport is an extremely complex emission source of airborne pollutants that can have a significant impact on the environment. Indeed, several airborne chemicals emitted during airport activities may significantly get worse air quality and increase exposure level of both airport workers and general population living nearby the airports. In recent years airport traffic has increased and consequently several studies investigated the association between airport-related air pollution and occurrence of adverse health effects, particularly on respiratory system, in exposed workers and general population resident nearby. In this context, we carried out a critical evaluation of the studies that investigated this correlation in order to obtain a deeper knowledge of this issue and to identify the future research needs. Results show that the evidence of association between airport-related air pollution and health effects on workers and residents is still limited.

  7. Human health effects of air pollution.

    PubMed

    Kampa, Marilena; Castanas, Elias

    2008-01-01

    Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO(2)), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O(3)), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed.

  8. The Air Toxics Health Effects Database (ATHED)

    SciTech Connect

    Woodall, George M. Smith, Roy L.

    2008-11-15

    The Air Toxics Health Effects Database (ATHED) is currently used by the EPA's Office of Air Quality Planning and Standards (OAQPS) to support risk assessments for the Residual Risk Program. An assessment of the residual risk is required to be performed at a specified time (typically 8years) following the promulgation of a technology-based Maximum Achievable Control Technologies (MACT) standard. The goal of the Residual Risk Program is to assure that the risk that remains after MACT standards are implemented (i.e., the 'residual risk') is acceptable, and if not, to propose additional regulations to mitigate those risks. ATHED maintains all available reference values for each chemical as separate data records, and includes values for all exposure durations (acute, short-term, subchronic and chronic). These values are used as benchmarks to determine acceptable exposure levels to the hazardous air pollutants (HAPs) listed in Section 112 of the Clean Air Act. ATHED also provides useful background information on the uncertainty and/or modifying factors that were applied in the derivation of each reference value, as well as the point of departure and the critical study/studies. To facilitate comparisons across durations for a specific chemical, ATHED data can be graphically presented.

  9. Health effects of particulate air pollution: time for reassessment?

    PubMed Central

    Pope, C A; Bates, D V; Raizenne, M E

    1995-01-01

    Numerous studies have observed health effects of particulate air pollution. Compared to early studies that focused on severe air pollution episodes, recent studies are more relevant to understanding health effects of pollution at levels common to contemporary cities in the developed world. We review recent epidemiologic studies that evaluated health effects of particulate air pollution and conclude that respirable particulate air pollution is likely an important contributing factor to respiratory disease. Observed health effects include increased respiratory symptoms, decreased lung function, increased hospitalizations and other health care visits for respiratory and cardiovascular disease, increased respiratory morbidity as measured by absenteeism from work or school or other restrictions in activity, and increased cardiopulmonary disease mortality. These health effects are observed at levels common to many U.S. cities including levels below current U.S. National Ambient Air Quality Standards for particulate air pollution. Images Figure 1. PMID:7656877

  10. Health effects of particulate air pollution: time for reassessment?

    PubMed

    Pope, C A; Bates, D V; Raizenne, M E

    1995-05-01

    Numerous studies have observed health effects of particulate air pollution. Compared to early studies that focused on severe air pollution episodes, recent studies are more relevant to understanding health effects of pollution at levels common to contemporary cities in the developed world. We review recent epidemiologic studies that evaluated health effects of particulate air pollution and conclude that respirable particulate air pollution is likely an important contributing factor to respiratory disease. Observed health effects include increased respiratory symptoms, decreased lung function, increased hospitalizations and other health care visits for respiratory and cardiovascular disease, increased respiratory morbidity as measured by absenteeism from work or school or other restrictions in activity, and increased cardiopulmonary disease mortality. These health effects are observed at levels common to many U.S. cities including levels below current U.S. National Ambient Air Quality Standards for particulate air pollution.

  11. Indoor air pollution: Acute adverse health effects and host susceptibility

    SciTech Connect

    Zummo, S.M.; Karol, M.H.

    1996-01-01

    Increased awareness of the poor quality of indoor air compared with outdoor air has resulted in a significant amount of research on the adverse health effects and mechanisms of action of indoor air pollutants. Common indoor air agents are identified, along with resultant adverse health effects, mechanisms of action, and likely susceptible populations. Indoor air pollutants range from biological agents (such as dust mites) to chemical irritants (such as nitrogen dioxide, carbon monoxide, sulfur dioxide, formaldehyde, and isocyanates). These agents may exert their effects through allergic as well as nonallergic mechanisms. While the public does not generally perceive poor indoor air quality as a significant health risk, increasing reports of illness related to indoor air and an expanding base of knowledge on the health effects of indoor air pollution are likely to continue pushing the issue to the forefront.

  12. The health effects of exercising in air pollution.

    PubMed

    Giles, Luisa V; Koehle, Michael S

    2014-02-01

    The health benefits of exercise are well known. Many of the most accessible forms of exercise, such as walking, cycling, and running often occur outdoors. This means that exercising outdoors may increase exposure to urban air pollution. Regular exercise plays a key role in improving some of the physiologic mechanisms and health outcomes that air pollution exposure may exacerbate. This problem presents an interesting challenge of balancing the beneficial effects of exercise along with the detrimental effects of air pollution upon health. This article summarizes the pulmonary, cardiovascular, cognitive, and systemic health effects of exposure to particulate matter, ozone, and carbon monoxide during exercise. It also summarizes how air pollution exposure affects maximal oxygen consumption and exercise performance. This article highlights ways in which exercisers could mitigate the adverse health effects of air pollution exposure during exercise and draws attention to the potential importance of land use planning in selecting exercise facilities.

  13. Health effects of air pollution and the Japanese compensation law

    SciTech Connect

    Namekata, T.; Duv Florey, C.

    1987-01-01

    The contents of this book are: Part 1. Individual Presentations: I. Gas Cooking and Respiratory Disease in Children, II. Health Effects of Fossil Fuel Combustion Compared With Effects of Energy Shortages, III. Daily Symptoms of Lung Function in Relation to Air Pollution: A Study in West Berlin 1982/83, IV. Studies of the Acute Effects of London Smog, and Their Relevance to Present-Day Conditions, V. Epidemiological Issues on Air Pollution in the Japanese Pollution-Related Health Damage Compensation Law. Part 2. Panel Discussion: Epidemiological Issues on Air Pollution in the Japanese Pollution-Related Health Damage Compensation Law; Problems in Air Pollution Epidemiology; Exposure Criteria for Compensation; Problems in the Use of Respiratory Symptoms Questionnaires; Legal and Policy Issues in the Japanes Compensation Law. Part 3. Background Information: I. Legal and Policy Issues in the Japanese Compensation Law. II. Reappraisal of Air Pollution/Health Effects Studies in Japan.

  14. Characterization of air freshener emission: the potential health effects.

    PubMed

    Kim, Sanghwa; Hong, Seong-Ho; Bong, Choon-Keun; Cho, Myung-Haing

    2015-01-01

    Air freshener could be one of the multiple sources that release volatile organic compounds (VOCs) into the indoor environment. The use of these products may be associated with an increase in the measured level of terpene, such as xylene and other volatile air freshener components, including aldehydes, and esters. Air freshener is usually used indoors, and thus some compounds emitted from air freshener may have potentially harmful health impacts, including sensory irritation, respiratory symptoms, and dysfunction of the lungs. The constituents of air fresheners can react with ozone to produce secondary pollutants such as formaldehyde, secondary organic aerosol (SOA), oxidative product, and ultrafine particles. These pollutants then adversely affect human health, in many ways such as damage to the central nervous system, alteration of hormone levels, etc. In particular, the ultrafine particles may induce severe adverse effects on diverse organs, including the pulmonary and cardiovascular systems. Although the indoor use of air freshener is increasing, deleterious effects do not manifest for many years, making it difficult to identify air freshener-associated symptoms. In addition, risk assessment recognizes the association between air fresheners and adverse health effects, but the distinct causal relationship remains unclear. In this review, the emitted components of air freshener, including benzene, phthalate, and limonene, were described. Moreover, we focused on the health effects of these chemicals and secondary pollutants formed by the reaction with ozone. In conclusion, scientific guidelines on emission and exposure as well as risk characterization of air freshener need to be established. PMID:26354370

  15. UNDERSTANDING THE EFFECTS OF AIR POLLUTION ON HUMAN HEALTH

    EPA Science Inventory

    Modern air pollution regulation is first and foremost motivated by concerns about the effects of air pollutants on human health and secondarily by concerns about its effects on ecosystems, cultural artifacts, and quality of life values such as visibility. This order of priority ...

  16. Effects on health of air pollution: a narrative review.

    PubMed

    Mannucci, Pier Mannuccio; Harari, Sergio; Martinelli, Ida; Franchini, Massimo

    2015-09-01

    Air pollution is a complex and ubiquitous mixture of pollutants including particulate matter, chemical substances and biological materials. There is growing awareness of the adverse effects on health of air pollution following both acute and chronic exposure, with a rapidly expanding body of evidence linking air pollution with an increased risk of respiratory (e.g., asthma, chronic obstructive pulmonary disease, lung cancer) and cardiovascular disease (e.g., myocardial infarction, heart failure, cerebrovascular accidents). Elderly subjects, pregnant women, infants and people with prior diseases appear especially susceptible to the deleterious effects of ambient air pollution. The main diseases associated with exposure to air pollutants will be summarized in this narrative review.

  17. "Air pollution in Delhi: Its Magnitude and Effects on Health".

    PubMed

    Rizwan, Sa; Nongkynrih, Baridalyne; Gupta, Sanjeev Kumar

    2013-01-01

    Air pollution is responsible for many health problems in the urban areas. Of late, the air pollution status in Delhi has undergone many changes in terms of the levels of pollutants and the control measures taken to reduce them. This paper provides an evidence-based insight into the status of air pollution in Delhi and its effects on health and control measures instituted. The urban air database released by the World Health Organization in September 2011 reported that Delhi has exceeded the maximum PM10 limit by almost 10-times at 198 μg/m3. Vehicular emissions and industrial activities were found to be associated with indoor as well as outdoor air pollution in Delhi. Studies on air pollution and mortality from Delhi found that all-natural-cause mortality and morbidity increased with increased air pollution. Delhi has taken several steps to reduce the level of air pollution in the city during the last 10 years. However, more still needs to be done to further reduce the levels of air pollution.

  18. Health effects of air quality regulations in Delhi, India

    NASA Astrophysics Data System (ADS)

    Foster, Andrew; Kumar, Naresh

    2011-03-01

    This, the first systematic study, quantifies the health effects of air quality regulations in Delhi, which adopted radical measures to improve air quality, including, for example, the conversion of all commercial vehicles to compressed natural gas (CNG), and the closure of polluting industries in residential areas from 2000 to 2002. Air pollution data, collected at 113 sites (spread across Delhi and its neighboring areas) from July-December 2003, were used to compute exposure at the place of residence of 3989 subjects. A socio-economic and respiratory health survey was administered in 1576 households. This survey collected time-use, residence histories, demographic information, and direct measurements of lung function with subjects. The optimal interpolation methods were used to link air pollution and respiratory health data at the place of their residence. Resident histories, in combination with secondary data, were used to impute cumulative exposure prior to the air-quality interventions, and the effects of recent air quality measures on lung function were then evaluated. Three important findings emerge from the analysis. First, the interventions were associated with a significant improvement in respiratory health. Second, the effect of these interventions varied significantly by gender and income. Third, consistent with a causal interpretation of these results, effects were the strongest among those individuals who spend a disproportionate share of their time out-of-doors.

  19. Health Effects of Air Quality Regulations in Delhi, India

    PubMed Central

    Foster, Andrew; Kumar, Naresh

    2011-01-01

    This, the first systematic study, quantifies the health effects of air quality regulations in Delhi, which adopted radical measures to improve air quality, including, for example, the conversion of all commercial vehicles to compressed natural gas (CNG), and the closure of polluting industries in residential areas from 2000 to 2002. Air pollution data, collected at 113 sites (spread across Delhi and its neighboring areas) from July-December 2003, were used to compute exposure at the place of residence of 3,989 subjects. A socio-economic and respiratory health survey was administered in 1,576 households. This survey collected time-use, residence histories, demographic information, and direct measurements of lung function with subjects. The optimal interpolation methods were used to link air pollution and respiratory health data at the place of their residence. Resident histories, in combination with secondary data, were used to impute cumulative exposure prior to the air-quality interventions, and the effects of recent air quality measures on lung function were then evaluated. Three important findings emerge from the analysis. First, the interventions were associated with a significant improvement in respiratory health. Second, the effect of these interventions varied significantly by gender and income. Third, consistent with a causal interpretation of these results, effects were the strongest among those individuals who spend a disproportionate share of their time out-of-doors. PMID:21461142

  20. Health effects of SRS non-radiological air emissions

    SciTech Connect

    Stewart, J.

    1997-06-16

    This report examines the potential health effects of non radiological emissions to the air resulting from operations at the Savannah River Site (SRS). The scope of this study was limited to the 55 air contaminants for which the US Environmental Protection Agency (EPA) has quantified risk by determining unit risk factors (excess cancer risks) and/or reference concentrations (deleterious non cancer risks). Potential health impacts have been assessed in relation to the maximally exposed individual. This is a hypothetical person who resides for a lifetime at the SRS boundary. The most recent (1994) quality assured SRS emissions data available were used. Estimated maximum site boundary concentrations of the air contaminants were calculated using air dispersion modeling and 24-hour and annual averaging times. For the emissions studied, the excess cancer risk was found to be less than the generally accepted risk level of 1 in 100,000 and, in most cases, was less than 1 in 1,000,000. Deleterious non cancer effects were also found to be very unlikely.

  1. Effects of air pollution on children’s pulmonary health

    NASA Astrophysics Data System (ADS)

    Tabaku, Afrim; Bejtja, Gazmend; Bala, Silvana; Toci, Ervin; Resuli, Jerina

    2011-12-01

    IntroductionMany reports regarding the effects of air pollution on children's respiratory health have appeared in the scientific literature. Some investigators found increases in persistent cough and phlegm, bronchitis, and early respiratory infections in communities with poor air quality. The purpose of this survey was to compare the pulmonary function of children living in urban area of Tirana city with children living in suburban area of the city. Material and methodsThis survey is carried out during 2004-2005 period on 238 children living in urban area and in 72 children living in suburban area, measuring dynamic pulmonary function. A questionnaire was used to collect data on sex, current respiratory symptoms, allergy diagnosed by the physician, parent education and smoking habit of parents, presence of animals, synthetic carpets and moulds in their houses. The selection of schools, and children included in this survey was done by randomized method. Also, we have measured and classic air pollutants. ResultsComparing the results of values of pulmonary function of two groups of children, we have shown that differences were significant ( p 0.001), whereas comparing symptoms were for cough ( p 0.011) and for phlegm ( p 0.032). The level of particulate matter (PM10) and total suspended matter (TSP) were over the recommended limit values, whereas the levels of other pollutants have resulted within recommended levels of World Health Organization (WHO) ConclusionsThe results of this survey suggest that air pollution is associated with respiratory health of children causing a slight decrease in values of pulmonary function in children of urban area compared with those of suburban area.

  2. Effect of air pollution on athlete health and performance.

    PubMed

    Rundell, Kenneth William

    2012-05-01

    Unfavourable effects on the respiratory and the cardiovascular systems from short-term and long-term inhalation of air pollution are well documented. Exposure to freshly generated mixed combustion emissions such as those observed in proximity to roadways with high volumes of traffic and those from ice-resurfacing equipment are of particular concern. This is because there is a greater toxicity from freshly generated whole exhaust than from its component parts. The particles released from emissions are considered to cause oxidative damage and inflammation in the airways and the vascular system, and may be related to decreased exercise performance. However, few studies have examined this aspect. Several papers describe deleterious effects on health from chronic and acute air pollution exposure. However, there has been no research into the effects of long-term exposure to air pollution on athletic performance and a paucity of studies that describe the effects of acute exposure on exercise performance. The current knowledge of exercising in the high-pollution environment and the consequences that it may have on athlete performance are reviewed.

  3. The effects of air pollution on the health of children

    PubMed Central

    Buka, Irena; Koranteng, Samuel; Osornio-Vargas, Alvaro R

    2006-01-01

    The present article is intended to inform paediatricians about the associations between ambient air pollution and adverse health outcomes in children within the context of current epidemiological evidence. The majority of the current literature pertains to adverse respiratory health outcomes, including asthma, other respiratory symptoms, and deficits in lung function and growth, as well as exposure to ambient levels of criteria air pollutants. In addition to the above, the present article highlights mortality, pregnancy outcomes, vitamin D deficiency and alteration in the immune system of children. Some of the data on the impact of improved air quality on children’s health are provided, including the reduction of air pollution in former East Germany following the reunification of Germany, as well as the reduction in the rates of childhood asthma events during the 1996 Summer Olympics in Atlanta, Georgia, due to a reduction in local motor vehicle traffic. However, there are many other toxic air pollutants that are regularly released into the air. These pollutants, which are not regularly monitored and have not been adequately researched, are also potentially harmful to children. Significant morbidity and mortality is attributed to ambient air pollution, resulting in a significant economic cost to society. As Canada’s cities grow, air pollution issues need to be a priority in order to protect the health of children and support sustainable development for future generations. PMID:19030320

  4. The effects of air pollution on the health of children.

    PubMed

    Buka, Irena; Koranteng, Samuel; Osornio-Vargas, Alvaro R

    2006-10-01

    The present article is intended to inform paediatricians about the associations between ambient air pollution and adverse health outcomes in children within the context of current epidemiological evidence.The majority of the current literature pertains to adverse respiratory health outcomes, including asthma, other respiratory symptoms, and deficits in lung function and growth, as well as exposure to ambient levels of criteria air pollutants. In addition to the above, the present article highlights mortality, pregnancy outcomes, vitamin D deficiency and alteration in the immune system of children.Some of the data on the impact of improved air quality on children's health are provided, including the reduction of air pollution in former East Germany following the reunification of Germany, as well as the reduction in the rates of childhood asthma events during the 1996 Summer Olympics in Atlanta, Georgia, due to a reduction in local motor vehicle traffic. However, there are many other toxic air pollutants that are regularly released into the air. These pollutants, which are not regularly monitored and have not been adequately researched, are also potentially harmful to children.Significant morbidity and mortality is attributed to ambient air pollution, resulting in a significant economic cost to society. As Canada's cities grow, air pollution issues need to be a priority in order to protect the health of children and support sustainable development for future generations. PMID:19030320

  5. Applying policy and health effects of air pollution in South Korea: focus on ambient air quality standards

    PubMed Central

    Ha, Jongsik

    2014-01-01

    Objectives South Korea’s air quality standards are insufficient in terms of establishing a procedure for their management. The current system lacks a proper decision-making process and prior evidence is not considered. The purpose of this study is to propose a measure for establishing atmospheric environmental standards in South Korea that will take into consideration the health of its residents. Methods In this paper, the National Ambient Air Quality Standards (NAAQS) of the US was examined in order to suggest ways, which consider health effects, to establish air quality standards in South Korea. Up-to-date research on the health effects of air pollution was then reviewed, and tools were proposed to utilize the key results. This was done in an effort to ensure the reliability of the standards with regard to public health. Results This study showed that scientific research on the health effects of air pollution and the methodology used in the research have contributed significantly to establishing air quality standards. However, as the standards are legally binding, the procedure should take into account the effects on other sectors. Realistically speaking, it is impossible to establish standards that protect an entire population from air pollution. Instead, it is necessary to find a balance between what should be done and what can be done. Conclusions Therefore, establishing air quality standards should be done as part of an evidence-based policy that identifies the health effects of air pollution and takes into consideration political, economic, and social contexts. PMID:25300297

  6. Health effects of particulate air pollution and airborne desert dust

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  7. Clearing the air: a review of the effects of particulate matter air pollution on human health.

    PubMed

    Anderson, Jonathan O; Thundiyil, Josef G; Stolbach, Andrew

    2012-06-01

    The World Health Organization estimates that particulate matter (PM) air pollution contributes to approximately 800,000 premature deaths each year, ranking it the 13th leading cause of mortality worldwide. However, many studies show that the relationship is deeper and far more complicated than originally thought. PM is a portion of air pollution that is made up of extremely small particles and liquid droplets containing acids, organic chemicals, metals, and soil or dust particles. PM is categorized by size and continues to be the fraction of air pollution that is most reliably associated with human disease. PM is thought to contribute to cardiovascular and cerebrovascular disease by the mechanisms of systemic inflammation, direct and indirect coagulation activation, and direct translocation into systemic circulation. The data demonstrating PM's effect on the cardiovascular system are strong. Populations subjected to long-term exposure to PM have a significantly higher cardiovascular incident and mortality rate. Short-term acute exposures subtly increase the rate of cardiovascular events within days of a pollution spike. The data are not as strong for PM's effects on cerebrovascular disease, though some data and similar mechanisms suggest a lesser result with smaller amplitude. Respiratory diseases are also exacerbated by exposure to PM. PM causes respiratory morbidity and mortality by creating oxidative stress and inflammation that leads to pulmonary anatomic and physiologic remodeling. The literature shows PM causes worsening respiratory symptoms, more frequent medication use, decreased lung function, recurrent health care utilization, and increased mortality. PM exposure has been shown to have a small but significant adverse effect on cardiovascular, respiratory, and to a lesser extent, cerebrovascular disease. These consistent results are shown by multiple studies with varying populations, protocols, and regions. The data demonstrate a dose

  8. Air Pollution and Its Effects on an Individual's Health and Exercise Performance.

    ERIC Educational Resources Information Center

    Singh, A. I. Clifford

    1988-01-01

    Air Pollution is a common environmental stressor affecting the training and competitive performance of athletes, commonly irritating the eyes, nose, and throat. The health and exercise effects of such primary and secondary air pollutants as carbon monoxide, sulfur dioxide, air particulates, ozone, and nitrogen dioxide are discussed. (CB)

  9. Health effects of air pollution in southern Europe: are there interacting factors?

    PubMed Central

    Katsouyanni, K

    1995-01-01

    Recent results suggest that adverse health effects of air pollution exist at levels of pollutants around or even below air quality standards set by national and international institutions. Furthermore, there are indications that air pollution effects on health may be partly determined by specific mixtures of air pollutants and may be altered by other environmental, behavioral, and social patterns. Southern European countries share some common characteristics in terms of climate, geography, and life activity patterns. Results from studies undertaken in France, Greece, Italy, Portugal, and Spain investigating short- and long-term air pollution health effects are presented and their consistency demonstrated. These results provide adequate evidence that health effects--particularly short-term--of the currently measured urban air pollution levels exist. However, information available so far does not allow an assessment of regional differences in the health effects of air pollution as far as the Mediterranean region of Europe is concerned. It is suggested that the interaction between the traditional pollution (mainly characterized by high levels of black smoke and SO2) and photochemical pollution must be investigated in this area, as well as the possible interaction between air pollution and high temperature and other meteorologic factors. In addition, measurements of individual exposure to different pollutants, affected by the pollutant's levels in specific micro-environments and the individual's time-activity pattern, must be undertaken for a better understanding of the air pollution-health link. Finally, the importance of the reported air pollution health effects in terms of public health must be addressed more closely. PMID:7614942

  10. Comprehensive national database of tree effects on air quality and human health in the United States.

    PubMed

    Hirabayashi, Satoshi; Nowak, David J

    2016-08-01

    Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and urban areas in every county in the conterminous United States. The results populated a national database of annual air pollutant removal, concentration changes, and reductions in adverse health incidences and costs for NO2, O3, PM2.5 and SO2. The developed database enabled a first order approximation of air quality and associated human health benefits provided by trees with any forest configurations anywhere in the conterminous United States over time. Comprehensive national database of tree effects on air quality and human health in the United States was developed.

  11. Comprehensive national database of tree effects on air quality and human health in the United States.

    PubMed

    Hirabayashi, Satoshi; Nowak, David J

    2016-08-01

    Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and urban areas in every county in the conterminous United States. The results populated a national database of annual air pollutant removal, concentration changes, and reductions in adverse health incidences and costs for NO2, O3, PM2.5 and SO2. The developed database enabled a first order approximation of air quality and associated human health benefits provided by trees with any forest configurations anywhere in the conterminous United States over time. Comprehensive national database of tree effects on air quality and human health in the United States was developed. PMID:27176764

  12. Tree and forest effects on air quality and human health in the United States.

    PubMed

    Nowak, David J; Hirabayashi, Satoshi; Bodine, Allison; Greenfield, Eric

    2014-10-01

    Trees remove air pollution by the interception of particulate matter on plant surfaces and the absorption of gaseous pollutants through the leaf stomata. However, the magnitude and value of the effects of trees and forests on air quality and human health across the United States remains unknown. Computer simulations with local environmental data reveal that trees and forests in the conterminous United States removed 17.4 million tonnes (t) of air pollution in 2010 (range: 9.0-23.2 million t), with human health effects valued at 6.8 billion U.S. dollars (range: $1.5-13.0 billion). This pollution removal equated to an average air quality improvement of less than one percent. Most of the pollution removal occurred in rural areas, while most of the health impacts and values were within urban areas. Health impacts included the avoidance of more than 850 incidences of human mortality and 670,000 incidences of acute respiratory symptoms.

  13. Air Travel Health Tips

    MedlinePlus

    MENU Return to Web version Air Travel Health Tips Air Travel Health Tips How can I improve plane travel? Most people don't have any problems when ... and dosages of all of your medicines. The air in airplanes is dry, so drink nonalcoholic, decaffeinated ...

  14. Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children's Health Study.

    PubMed

    Chen, Zhanghua; Salam, Muhammad T; Eckel, Sandrah P; Breton, Carrie V; Gilliland, Frank D

    2015-01-01

    Outdoor air pollution is one of the leading contributors to adverse respiratory health outcomes in urban areas around the world. Children are highly sensitive to the adverse effects of air pollution due to their rapidly growing lungs, incomplete immune and metabolic functions, patterns of ventilation and high levels of outdoor activity. The Children's Health Study (CHS) is a continuing series of longitudinal studies that first began in 1993 and has focused on demonstrating the chronic impacts of air pollution on respiratory illnesses from early childhood through adolescence. A large body of evidence from the CHS has documented that exposures to both regional ambient air and traffic-related pollutants are associated with increased asthma prevalence, new-onset asthma, risk of bronchitis and wheezing, deficits of lung function growth, and airway inflammation. These associations may be modulated by key genes involved in oxidative-nitrosative stress pathways via gene-environment interactions. Despite successful efforts to reduce pollution over the past 40 years, air pollution at the current levels still brings many challenges to public health. To further ameliorate adverse health effects attributable to air pollution, many more toxic pollutants may require regulation and control of motor vehicle emissions and other combustion sources may need to be strengthened. Individual interventions based on personal susceptibility may be needed to protect children's health while control measures are being implemented.

  15. Urban air carcinogens and their effects on health

    SciTech Connect

    Lechner, J.F.

    1994-11-01

    Airborne carcinogens may be relevant especially in metropolitan regions with extreme smog as a primary cause of lung cancer. Lung cancer is most common in urban environs and the incidence directly correlates with the size of the city. In addition, several, but not all formal epidemiological studies also suggest a positive correlation between lung cancer incidence and the intensity of air pollution exposure. There is further support for a role of air pollution; as of 1993, 4.4% of all of the bronchogenic adenocarcinoma cancer cases among Mexicans living in industrialized cities are under 40 years of age. It is plausible that chronic inhalation of automobile combustion products, factory emissions, and/or radon is at least partially responsible for the higher incidence of lung cancer exemplified by the never-smoking urban residents. The exceptionally high incidence of lung cancer cases among never-smokers living in highly industrialized Mexican cities offers a unique opportunity to use molecular epidemiology to test whether chronic inhalation of atmospheric pollutants increases the risk for this disease. Overall, the analysis of the genetic alterations in two cancer genes, and possibly the hprt locus should give new insight as to whether the urban never-smokers developed their cancers because of exposure to environmental pollutants.

  16. Noise Effects on Health in the Context of Air Pollution Exposure

    PubMed Central

    Stansfeld, Stephen A.

    2015-01-01

    For public health policy and planning it is important to understand the relative contribution of environmental noise on health compared to other environmental stressors. Air pollution is the primary environmental stressor in relation to cardiovascular morbidity and mortality. This paper reports a narrative review of studies in which the associations of both environmental noise and air pollution with health have been examined. Studies of hypertension, myocardial infarction, stroke, mortality and cognitive outcomes were included. Results suggest independent effects of environmental noise from road traffic, aircraft and, with fewer studies, railway noise on cardiovascular outcomes after adjustment for air pollution. Comparative burden of disease studies demonstrate that air pollution is the primary environmental cause of disability adjusted life years lost (DALYs). Environmental noise is ranked second in terms of DALYs in Europe and the DALYs attributed to noise were more than those attributed to lead, ozone and dioxins. In conclusion, in planning and health impact assessment environmental noise should be considered an independent contributor to health risk which has a separate and substantial role in ill-health separate to that of air pollution. PMID:26473905

  17. Noise Effects on Health in the Context of Air Pollution Exposure.

    PubMed

    Stansfeld, Stephen A

    2015-10-14

    For public health policy and planning it is important to understand the relative contribution of environmental noise on health compared to other environmental stressors. Air pollution is the primary environmental stressor in relation to cardiovascular morbidity and mortality. This paper reports a narrative review of studies in which the associations of both environmental noise and air pollution with health have been examined. Studies of hypertension, myocardial infarction, stroke, mortality and cognitive outcomes were included. Results suggest independent effects of environmental noise from road traffic, aircraft and, with fewer studies, railway noise on cardiovascular outcomes after adjustment for air pollution. Comparative burden of disease studies demonstrate that air pollution is the primary environmental cause of disability adjusted life years lost (DALYs). Environmental noise is ranked second in terms of DALYs in Europe and the DALYs attributed to noise were more than those attributed to lead, ozone and dioxins. In conclusion, in planning and health impact assessment environmental noise should be considered an independent contributor to health risk which has a separate and substantial role in ill-health separate to that of air pollution.

  18. Noise Effects on Health in the Context of Air Pollution Exposure.

    PubMed

    Stansfeld, Stephen A

    2015-10-01

    For public health policy and planning it is important to understand the relative contribution of environmental noise on health compared to other environmental stressors. Air pollution is the primary environmental stressor in relation to cardiovascular morbidity and mortality. This paper reports a narrative review of studies in which the associations of both environmental noise and air pollution with health have been examined. Studies of hypertension, myocardial infarction, stroke, mortality and cognitive outcomes were included. Results suggest independent effects of environmental noise from road traffic, aircraft and, with fewer studies, railway noise on cardiovascular outcomes after adjustment for air pollution. Comparative burden of disease studies demonstrate that air pollution is the primary environmental cause of disability adjusted life years lost (DALYs). Environmental noise is ranked second in terms of DALYs in Europe and the DALYs attributed to noise were more than those attributed to lead, ozone and dioxins. In conclusion, in planning and health impact assessment environmental noise should be considered an independent contributor to health risk which has a separate and substantial role in ill-health separate to that of air pollution. PMID:26473905

  19. Identifying and managing adverse environmental health effects: 2. Outdoor air pollution

    PubMed Central

    Abelsohn, Alan; Stieb, David; Sanborn, Margaret D.; Weir, Erica

    2002-01-01

    AIR POLLUTION CONTRIBUTES TO PREVENTABLE ILLNESS AND DEATH. Subgroups of patients who appear to be more sensitive to the effects of air pollution include young children, the elderly and people with existing chronic cardiac and respiratory disease such as chronic obstructive pulmonary disease and asthma. It is unclear whether air pollution contributes to the development of asthma, but it does trigger asthma episodes. Physicians are in a position to identify patients at particular risk of health effects from air pollution exposure and to suggest timely and appropriate actions that these patients can take to protect themselves. A simple tool that uses the CH2OPD2 mnemonic (Community, Home, Hobbies, Occupation, Personal habits, Diet and Drugs) can help physicians take patients' environmental exposure histories to assess those who may be at risk. As public health advocates, physicians contribute to the primary prevention of illness and death related to air pollution in the population. In this article we review the origins of air pollutants, the pathophysiology of health effects, the burden of illness and the clinical implications of smog exposure using the illustrative case of an adolescent patient with asthma. PMID:12000251

  20. Identifying and managing adverse environmental health effects: 2. Outdoor air pollution.

    PubMed

    Abelsohn, Alan; Stieb, David; Sanborn, Margaret D; Weir, Erica

    2002-04-30

    Air pollution contributes to preventable illness and death. Subgroups of patients who appear to be more sensitive to the effects of air pollution include young children, the elderly and people with existing chronic cardiac and respiratory disease such as chronic obstructive pulmonary disease and asthma. It is unclear whether air pollution contributes to the development of asthma, but it does trigger asthma episodes. Physicians are in a position to identify patients at particular risk of health effects from air pollution exposure and to suggest timely and appropriate actions that these patients can take to protect themselves. A simple tool that uses the CH2OPD2 mnemonic (Community, Home, Hobbies, Occupation, Personal habits, Diet and Drugs) can help physicians take patients' environmental exposure histories to assess those who may be at risk. As public health advocates, physicians contribute to the primary prevention of illness and death related to air pollution in the population. In this article we review the origins of air pollutants, the pathophysiology of health effects, the burden of illness and the clinical implications of smog exposure using the illustrative case of an adolescent patient with asthma. PMID:12000251

  1. Health effects of metropolitan traffic-related air pollutants on street vendors

    NASA Astrophysics Data System (ADS)

    Kongtip, P.; Thongsuk, W.; Yoosook, W.; Chantanakul, S.

    Traffic-related air pollutants are a commonly important source of air pollution. Research on the effects of multiple traffic-related air pollutants on street vendors is scarce. This study evaluated the health effect of traffic-related air pollutants in street vendors. It was designed as a panel study, covering 61 d of data collection, on the daily concentration of air pollutants and daily percentage of respiratory and other health symptoms reported. An adjusted odds ratio was used to estimate the risk of developing respiratory and other adverse health symptoms for street vendors exposed to multiple air pollutants, fine particulate (PM 2.5), nitrogen dioxide (NO 2), ozone (O 3), carbon monoxide (CO) and total volatile organic chemicals (VOCs), after controlling for confounding factors. In the first model, significant associations were found with the adjusted odds ratios of 1.022 and 1.027 for eye irritation and dizziness for PM 2.5 respectively. The adjusted odds ratio of total VOCs was 1.381 for phlegm, 4.840 for chest tightness and 1.429 for upper respiratory symptoms, and the adjusted odds ratio for CO was 1.748 for a sore throat and 1.880 for a cold and 1.655 for a cough. In the second model, the effect of PM 2.5, total VOCs and CO gave a slightly lower effect with the symptoms. The results clearly show the health effects of traffic-related air pollutants on street vendors, and imply suggestions about how to reduce exposure of street vendors.

  2. [Quality of interior air: biological contaminants and their effects on health; bioaerosols and gathering techniques].

    PubMed

    Bălan, Gabriela

    2007-01-01

    Indoor Air Quality: biological contaminants and health effects; airborne organisms and sampling instruments. Biological contaminants include bacteria, molds, viruses, animal dander and cat saliva, house dust, mites, cockroaches and pollen. Symptoms of health problems caused by biological pollutants include sneezing, watery eyes, coughing, shortness of breath, dizziness, lethargy, fevers. Children, elderly people with breathing problems, allergies and lung diseases are particularly susceptible to disease-causing biological agents in the indoor air. It is convenient to consider microbiological samplers for collecting organisms in air as falling into several broad categories. Many popular microbiological air samplers use the principle of impaction to trap the organisms by impacting them directly on to agar. Further distinct groups are the impingers, which operate by impinging organisms into liquid. PMID:18441954

  3. Health effects associated with passenger vehicles: monetary values of air pollution.

    PubMed

    Marzouk, Mohamed; Madany, Magdy

    2012-01-01

    Air pollution is regarded as one of the highest priorities in environmental protection in both developed and developing countries. High levels of air pollution have adverse effects on human health that might cause premature death. This study presents the monetary value estimates for the adverse human health effects resulted from ambient air pollution. It aids decision makers to set priorities in the public health relevance of pollution abatement. The main driver of policymaker is the need to reduce the avoidable cardiopulmonary morbidity and mortality from pollutant exposures. The monetary valuation involves 2 steps: (i) relate levels of pollutants to mortality and morbidity (concentration-response relationships) and (ii) apply unit economic values. Cost of air pollution associated with passenger vehicles running over a major traffic bridge (6th of October Elevated Highway) is presented as a case study to demonstrate the use of monetary value of air pollution. The study proves that the cost of air pollution is extremely high and should not be overlooked.

  4. Association of particulate air pollution with daily mortality: the China Air Pollution and Health Effects Study.

    PubMed

    Chen, Renjie; Kan, Haidong; Chen, Bingheng; Huang, Wei; Bai, Zhipeng; Song, Guixiang; Pan, Guowei

    2012-06-01

    China is one of the few countries with some of the highest particulate matter levels in the world. However, only a small number of particulate matter health studies have been conducted in China. The study objective was to examine the association of particulate matter with an aerodynamic diameter of less than 10 μm (PM(10)) with daily mortality in 16 Chinese cities between 1996 and 2008. Two-stage Bayesian hierarchical models were applied to obtain city-specific and national average estimates. Poisson regression models incorporating natural spline smoothing functions were used to adjust for long-term and seasonal trends of mortality, as well as other time-varying covariates. The averaged daily concentrations of PM(10) in the 16 Chinese cities ranged from 52 μg/m(3) to 156 μg/m(3). The 16-city combined analysis showed significant associations of PM(10) with mortality: A 10-μg/m(3) increase in 2-day moving-average PM(10) was associated with a 0.35% (95% posterior interval (PI): 0.18, 0.52) increase of total mortality, 0.44% (95% PI: 0.23, 0.64) increase of cardiovascular mortality, and 0.56% (95% PI: 0.31, 0.81) increase of respiratory mortality. Females, older people, and residents with low educational attainment appeared to be more vulnerable to PM(10) exposure. Conclusively, this largest epidemiologic study of particulate air pollution in China suggests that short-term exposure to PM(10) is associated with increased mortality risk.

  5. PLANNING OF HEALTH EFFECTS RESEARCH ON HAZARDOUS AIR POLLUTANTS AND APPLICATION TO RISK ASSESSMENT PROBLEMS

    EPA Science Inventory

    The Clean Air Act Amendment of 1990 designated a set of compounds as hazardous air pollutants or "air toxics" which may be released into the air from a variety of sources including stationary, mobile and indoor air sources. Determination of the risks to human health from exposur...

  6. Evaluation of health effects of air pollution in the Chestnut Ridge area

    SciTech Connect

    Gruhl, J.; Schweppe, F.C.

    1980-01-01

    This project involves several tasks designed to take advantage of a very extensive air pollution monitoring system that is operating in the Chestnut Ridge region of Western Pennsylvania and the very well developed analytic dispersion models that have been previously fine-tuned to this particular area. The major task in this project is to establish, through several distinct epidemiologic approaches, health data to be used to test hypotheses about relations of air pollution exposures to morbidity and mortality rates in this region. This project affords a cost-effective opportunity for state-of-the-art techniques to be used in both costly areas of air pollution and health effects data collection. The closely spaced network of monitors, plus the dispersion modeling capabilities, allow for the investigation of health impacts of various pollutant gradients in neighboring geographic areas, thus minimizing the confounding effects of social, ethnic, and economic factors. The pollutants that are monitored in this network include total gaseous sulfur, sulfates, total suspended particulates, NOx, NO, ozone/oxidants, and coefficient of haze. In addition to enabling the simulation of exposure profiles between monitors, the air quality modeling, along with extensive source and background inventories, will allow for upgrading the quality of the monitored data as well as simulating the exposure levels for about 25 additional air pollutants. Another important goal of this project is to collect and test the many available models for associating health effects with air pollution, to determine their predictive validity and their usefulness in the choice and siting of future energy facilities.

  7. Economic evaluation of the air pollution effect on public health in China's 74 cities.

    PubMed

    Li, Li; Lei, Yalin; Pan, Dongyan; Yu, Chen; Si, Chunyan

    2016-01-01

    Air deterioration caused by pollution has harmed public health. The existing studies on the economic loss caused by a variety of air pollutants in multiple cities are lacking. To understand the effect of different pollutants on public health and to provide the basis of the environmental governance for governments, based on the dose-response relation and the willingness to pay, this paper used the latest available data of the inhalable particulate matter (PM10) and sulphur dioxide (SO2) from January 2015 to June 2015 in 74 cities by establishing the lowest and the highest limit scenarios. The results show that (1) in the lowest and highest limit scenario, the health-related economic loss caused by PM10 and SO2 represented 1.63 and 2.32 % of the GDP, respectively; (2) For a single city, in the lowest and the highest limit scenarios, the highest economic loss of the public health effect caused by PM10 and SO2 was observed in Chongqing; the highest economic loss of the public health effect per capita occurred in Hebei Baoding. The highest proportion of the health-related economic loss accounting for GDP was found in Hebei Xingtai. The main reason is that the terrain conditions are not conducive to the spread of air pollutants in Chongqing, Baoding and Xingtai, and the three cities are typical heavy industrial cities that are based on coal resources. Therefore, this paper proposes to improve the energy structure, use the advanced production process, reasonably control the urban population growth, and adopt the emissions trading system in order to reduce the economic loss caused by the effects of air pollution on public health.

  8. Economic evaluation of the air pollution effect on public health in China's 74 cities.

    PubMed

    Li, Li; Lei, Yalin; Pan, Dongyan; Yu, Chen; Si, Chunyan

    2016-01-01

    Air deterioration caused by pollution has harmed public health. The existing studies on the economic loss caused by a variety of air pollutants in multiple cities are lacking. To understand the effect of different pollutants on public health and to provide the basis of the environmental governance for governments, based on the dose-response relation and the willingness to pay, this paper used the latest available data of the inhalable particulate matter (PM10) and sulphur dioxide (SO2) from January 2015 to June 2015 in 74 cities by establishing the lowest and the highest limit scenarios. The results show that (1) in the lowest and highest limit scenario, the health-related economic loss caused by PM10 and SO2 represented 1.63 and 2.32 % of the GDP, respectively; (2) For a single city, in the lowest and the highest limit scenarios, the highest economic loss of the public health effect caused by PM10 and SO2 was observed in Chongqing; the highest economic loss of the public health effect per capita occurred in Hebei Baoding. The highest proportion of the health-related economic loss accounting for GDP was found in Hebei Xingtai. The main reason is that the terrain conditions are not conducive to the spread of air pollutants in Chongqing, Baoding and Xingtai, and the three cities are typical heavy industrial cities that are based on coal resources. Therefore, this paper proposes to improve the energy structure, use the advanced production process, reasonably control the urban population growth, and adopt the emissions trading system in order to reduce the economic loss caused by the effects of air pollution on public health. PMID:27047728

  9. The effect of future outdoor air pollution on human health and the contribution of climate change

    NASA Astrophysics Data System (ADS)

    Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.

    2013-12-01

    At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.

  10. The effects of outdoor air pollution on the respiratory health of Canadian children: A systematic review of epidemiological studies

    PubMed Central

    Rodriguez-Villamizar, Laura A; Magico, Adam; Osornio-Vargas, Alvaro; Rowe, Brian H

    2015-01-01

    BACKGROUND: Outdoor air pollution is a global problem with serious effects on human health, and children are considered to be highly susceptible to the effects of air pollution. OBJECTIVE: To conduct a comprehensive and updated systematic review of the literature reporting the effects of outdoor air pollution on the respiratory health of children in Canada. METHODS: Searches of four electronic databases between January 2004 and November 2014 were conducted to identify epidemiological studies evaluating the effect of exposure to outdoor air pollutants on respiratory symptoms, lung function measurements and the use of health services due to respiratory conditions in Canadian children. The selection process and quality assessment, using the Newcastle-Ottawa Scale, were conducted independently by two reviewers. RESULTS: Twenty-seven studies that were heterogeneous with regard to study design, population, respiratory outcome and air pollution exposure were identified. Overall, the included studies reported adverse effects of outdoor air pollution at concentrations that were below Canadian and United States standards. Heterogeneous effects of air pollutants were reported according to city, sex, socioeconomic status and seasonality. The present review also describes trends in research related to the effect of air pollution on Canadian children over the past 25 years. CONCLUSION: The present study reconfirms the adverse effects of outdoor air pollution on the respiratory health of children in Canada. It will help researchers, clinicians and environmental health authorities identify the available evidence of the adverse effect of outdoor air pollution, research gaps and the limitations for further research. PMID:25961280

  11. Health effects from breathing air near CAFOs for feeder cattle or hogs.

    PubMed

    Von Essen, Susanna G; Auvermann, Brent W

    2005-01-01

    There is concern that livestock operations for fattening cattle and raising hogs known as concentrated animal feeding operations (CAFOs) release substances into the air that have negative effects on the health of persons living nearby. These substances include dust containing endotoxin and other microbial products as well as ammonia, hydrogen sulfide and a variety of volatile organic compounds. Odors from these farms are considered offensive by some neighbors. A variety of medical complaints are reported to be more common in those people who live near CAFOs for raising hogs than in people without this exposure. Respiratory health effects, including symptoms of pulmonary disease and lung function test result abnormalities, have been described in workers employed in CAFOs where hogs are raised. Health effects after inhalation exposure of neighbors to substances released into the ambient air from these farms is less well characterized. It must be noted that CAFO workers may differ from neighbors in terms of their exposures and general health status. The presence of dust and other substances from cattle feedlots also causes some neighbors to voice concerns about the impact on their health but this exposure has been studied less extensively than exposure to substances released from CAFOs where hogs are raised. Further research needs to be done to look for measurable health effects attributable to living near all CAFOs in order to better understand the impact of these farms. PMID:16702123

  12. Application environmental epidemiology to vehicular air pollution and health effects research

    PubMed Central

    Patil, Rajan R.; Chetlapally, Satish Kumar; Bagvandas, M.

    2015-01-01

    Vehicular pollution is one of the major contributors to the air pollution in urban areas and perhaps and accounts for the major share of anthropogenic green-house gases such as carbon dioxide, carbon monoxide, nitrogen oxides. Knowledge of human health risks related to environmental exposure to vehicular pollution is a current concern. Analyze the range health effects are attributed varied constituents of vehicular air pollution examine evidence for a causal association to specific health effect. In many instances scenario involves exposure to very low doses of putative agents for extended periods, sometimes the period could mean over a lifetime of an individual and yet may result in small increase in health risk that may be imperceptible. Secondary data analysis and literature review. In environmental exposures, traditional epidemiological approaches evaluating mortality and morbidity indicators display many limiting factors such as nonspecificity of biological effects latency time between exposure and magnitude of the effect. Long latency period between exposure and resultant disease, principally for carcinogenic effects and limitation of epidemiological studies for detecting small risk increments. The present paper discusses the methodological challenges in studying vehicular epidemiology and highlights issues that affect the validity of epidemiological studies in vehicular pollution. PMID:26023265

  13. Application environmental epidemiology to vehicular air pollution and health effects research.

    PubMed

    Patil, Rajan R; Chetlapally, Satish Kumar; Bagvandas, M

    2015-01-01

    Vehicular pollution is one of the major contributors to the air pollution in urban areas and perhaps and accounts for the major share of anthropogenic green-house gases such as carbon dioxide, carbon monoxide, nitrogen oxides. Knowledge of human health risks related to environmental exposure to vehicular pollution is a current concern. Analyze the range health effects are attributed varied constituents of vehicular air pollution examine evidence for a causal association to specific health effect. In many instances scenario involves exposure to very low doses of putative agents for extended periods, sometimes the period could mean over a lifetime of an individual and yet may result in small increase in health risk that may be imperceptible. Secondary data analysis and literature review. In environmental exposures, traditional epidemiological approaches evaluating mortality and morbidity indicators display many limiting factors such as nonspecificity of biological effects latency time between exposure and magnitude of the effect. Long latency period between exposure and resultant disease, principally for carcinogenic effects and limitation of epidemiological studies for detecting small risk increments. The present paper discusses the methodological challenges in studying vehicular epidemiology and highlights issues that affect the validity of epidemiological studies in vehicular pollution.

  14. Metropolitan New York in the greenhouse: Air quality and health effects

    SciTech Connect

    Kleinman, L.I.; Lipfert, F.

    1996-01-01

    A variety of potential effects on human health resulting from climate change have been identified in several assessments. According to an international panel{sup 1} they include direct effects of extreme temperatures on cardiovascular deaths, secondary effects due to vector-borne diseases or crop yields, and tertiary effects such as those that might arise from conflicts over freshwater supplies. To this fist we add the secondary effects of increased air pollution, which may result either directly from climate change or indirectly from increased air conditioning loads and the corresponding pollutant emissions from electric utilities. Higher ozone concentrations have been linked to increased ambient temperatures by both theory and observations of monitoring data. A similar association with particulate matter has been limited to observations, thus far. The pollution-heat linkage has been recognized before` but health effects have not been evaluated in terms of predictions of the joint effects of both agents. This paper has been prepared in two sections. First, we discuss the ozone situation with special reference to the Northeast Corridor and New York. In the second section, we present estimates of the health effects of climate change on New York and discuss some mitigation options.

  15. Future Tree Effects on Air Quality and Human Health in the United States

    NASA Astrophysics Data System (ADS)

    Hirabayashi, S.; Nowak, D.

    2014-12-01

    Trees are critical green infrastructure for mitigating adverse effects associated with human population, land use, and climate change (e.g. urban heat island, greenhouse gasses, air pollution, and floods). i-Tree (www.itreetools.org) is a suite of software tools developed by the USDA Forest Service and The Davey Institute that allows users to assess urban forest structure and the ecosystem services provided. Using i-Tree, the annual effects of trees on air quality and human health in urban and rural areas of counties across the conterminous United States have been quantified for 2010 (Nowak et al. 2014). Here, we extended the study to incorporate future forest structure scenarios using a model that accounts for tree growth, mortality and new plantings. Computer simulations using local environmental data and the possible leaf area index (LAI) for deciduous or evergreen tree covers were performed in urban and rural areas of counties across the conterminous United States. The result is a tree effects database on air pollutant removal (CO, NO2, O3, PM10, PM2.5 and SO2), biogenic emission of volatile organic compounds (VOCs), and monetary values associated with human health quantified per unit tree cover area with deciduous or evergreen trees and LAI ranging from 0 to 18 within each modeling domain. With these data, the potential annual effects that trees have on air quality and human health under future scenarios of urban forest extent can be readily derived for anywhere in the conterminous United States. The developed database will be integrated into i-Tree's suite in 2015 to enhance its functionality in estimating tree effects under the future scenarios.

  16. Effects of air pollution on the respiratory health of children: a cross-sectional study

    SciTech Connect

    Spinaci, S.; Arossa, W.; Bugiani, M.; Natale, P.; Bucca, C.; de Candussio, G.

    1985-09-01

    To investigate the effects of air pollution on the respiratory health of children, a subject of some controversy, a comparative study was undertaken of 2,385 school children who lived in central urban, peripheral urban, and suburban areas. Daily monitoring of sulfur dioxide and total suspended particle concentrations in all areas showed that pollutant concentrations in central and peripheral urban areas were above commonly accepted safety levels for respiratory health, while concentrations in the suburban area were within acceptable limits. A questionnaire administered to each mother assessed environmental exposure to pollutants in the household, the occurrence of respiratory symptoms as well as lung diseases as diagnosed by a physician, and general information. Children were interviewed about smoking habits and any acute respiratory symptoms. Children also performed standard lung function tests. Results showed that children from both urban areas had lessened pulmonary function and a higher prevalence of bronchial secretion with common colds than did those from the suburban area. These differences persisted after corrections for exposure to indoor pollutants, active or passive smoking, socioeconomic status, and sex. Parental cigarette smoking was related to a fall in forced expiratory volume in 1 second and an increased incidence of acute respiratory illnesses and chronic cough in children. Although boys had higher lung volumes and lower air flow, regression analysis showed no significant influence of the interactions sex-geographic area and sex-smoking on lung function. It was concluded that air pollution has a significant effect on the respiratory health of children.

  17. Effect of ambient winter air pollution on respiratory health of children with chronic respiratory symptoms.

    PubMed

    Roemer, W; Hoek, G; Brunekreef, B

    1993-01-01

    The acute respiratory effects of ambient air pollution were studied in a panel of 73 children with chronic respiratory symptoms in the winter of 1990 to 1991. The participating children were selected from all children aged 6 to 12 yr in Wageningen and Bennekom, two small, nonindustrial towns in the east of the Netherlands. Peak flow was measured twice daily with MiniWright meters. A diary was used to register the occurrence of acute respiratory symptoms and medication use by the children. Exposure to air pollution was characterized by the ambient concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), black smoke (BS), and particulate matter less than 10 microns (PM10). Associations between air pollution concentrations and health outcomes were analyzed using time series analysis. During the study period an air pollution episode occurred, with moderately elevated concentrations of PM10 and SO2. There were 6 days with 24-h average PM10 concentrations in excess of the WHO suggested lowest observed effect level of 110 micrograms/m3. After adjustment for ambient temperature, there were small but statistically significant negative associations of PM10, BS, and SO2 with both morning and evening PEF. There was a consistent positive association between PM10, BS, and SO2 with the prevalence of wheeze and bronchodilator use. Overall, the observed associations suggest a mild to moderate response to these moderately elevated levels of air pollution in a group of potentially sensitive children.

  18. From Good Intentions to Proven Interventions: Effectiveness of Actions to Reduce the Health Impacts of Air Pollution

    PubMed Central

    Giles, Luisa V.; Barn, Prabjit; Künzli, Nino; Romieu, Isabelle; Mittleman, Murray A.; van Eeden, Stephan; Allen, Ryan; Carlsten, Chris; Stieb, Dave; Noonan, Curtis; Smargiassi, Audrey; Kaufman, Joel D.; Hajat, Shakoor; Kosatsky, Tom; Brauer, Michael

    2011-01-01

    Background Associations between air pollution and a multitude of health effects are now well established. Given ubiquitous exposure to some level of air pollution, the attributable health burden can be high, particularly for susceptible populations. Objectives An international multidisciplinary workshop was convened to discuss evidence of the effectiveness of actions to reduce health impacts of air pollution at both the community and individual level. The overall aim was to summarize current knowledge regarding air pollution exposure and health impacts leading to public health recommendations. Discussion During the workshop, experts reviewed the biological mechanisms of action of air pollution in the initiation and progression of disease, as well as the state of the science regarding community and individual-level interventions. The workshop highlighted strategies to reduce individual baseline risk of conditions associated with increased susceptibility to the effects of air pollution and the need to better understand the role of exposure duration in disease progression, reversal, and adaptation. Conclusion We have identified two promising and largely unexplored strategies to address and mitigate air pollution–related health impacts: reducing individual baseline risk of cardiovascular disease and incorporating air pollution–related health impacts into land-use decisions. PMID:20729178

  19. [Air pollution and its health effects on residents in Taiwanese communities].

    PubMed

    Ko, Y C

    1996-12-01

    The are a number of particular features of air pollution in Taiwan, as described below: (1) In Taiwan area, the air load of pollutants is more serious than previously reported. (2) There exists severe air pollution throughout the island. (3) Industry is the major source of pollution. (4) No demarcation exists between plants and residential quarters. (5) There is a high concentration of pollutants indoors/outdoors. The influence of air pollution spreads over all aspects of physical health, primarily on the respiratory tract, causing lung cancer and exaggerating cardiovascular diseases. A few Taiwanese studies are reviewed below which deserve more elaboration. (1) Use PM10 for indexing health effect. The annual average value of PM10 in Taiwan has been around 70 micrograms/m3 in 1994. Dr. Schwarz indicated that no safety margin could be derived; for each additional 10 micrograms/ m3 of PM10, the death number could be increased by 1% on the basis of Western studies. (2) Research with reference to lung cancer cases in the Kaohsiung Medical College Hospital. Living within 3 km of industrial district counted for 9% of cases and caused a 6-fold increase in the risk of disease for people living more than 20 years in the case control study for lung cancer. (3) Death due to cancer of inhabitants close to petroleum and petrochemical industries. For youths and children below 20 years, cancers related to brain tumors were 2-4 fold of what was expected deaths. Analysis of another petrochemical complex in Chienchen, Kaohsiung, revealed the inhabitants within 1 km showed a higher standardized mortality ratio for cancers of the lung, kidney, urinary bladder, and leukemia than was to be expected. (4) Lower lung function and higher incidence of respiratory diseases among residents near a coal-fired power plant (within 3 Km) compared to residents who lived further away from the plant (3-11 Km). (5) Lead contamination around a kindergarten near a battery recycling plant. There was

  20. Linking environmental effects to health impacts: a computer modelling approach for air pollution

    PubMed Central

    Mindell, J.; Barrowcliffe, R.

    2005-01-01

    Study objective and Setting: To develop a computer model, using a geographical information system (GIS), to quantify potential health effects of air pollution from a new energy from waste facility on the surrounding urban population. Design: Health impacts were included where evidence of causality is sufficiently convincing. The evidence for no threshold means that annual average increases in concentration can be used to model changes in outcome. The study combined the "contours" of additional pollutant concentrations for the new source generated by a dispersion model with a population database within a GIS, which is set up to calculate the product of the concentration increase with numbers of people exposed within each enumeration district exposure response coefficients, and the background rates of mortality and hospital admissions for several causes. Main results: The magnitude of health effects might result from the increased PM10 exposure is small—about 0.03 deaths each year in a population of 3 500 000, with 0.04 extra hospital admissions for respiratory disease. Long term exposure might bring forward 1.8–7.8 deaths in 30 years. Conclusions: This computer model is a feasible approach to estimating impacts on human health from environmental effects but sensitivity analyses are recommended. Relevance to clinical or professional practice: The availability of GIS and dispersion models on personal computers enables quantification of health effects resulting from the additional air pollution new industrial development might cause. This approach could also be used in environmental impact assessment. Care must be taken in presenting results to emphasise methodological limitations and uncertainties in the numbers. PMID:16286501

  1. Adverse environmental health effects of ultra-low relative humidity indoor air.

    PubMed

    Sato, Mikiya; Fukayo, Shingo; Yano, Eiji

    2003-03-01

    In Japan, relative humidity (RH) shows the lowest achievement rate among the various general air quality standards for work environment. It has been mainly contributed by airtight design of modern buildings and occurrence of dry outdoor air in winter. Furthermore, an ultra-dry air environment of nearly 0% RH is often required in sophisticated industries. In order to assess the adverse health effects of the ultra-dry air environment, using a self-reported questionnaire, we have undertaken a study of over 200 employees of a high-tech device developing laboratory having a room at 2.5% RH (ultra-dry room). Those who worked in the ultra-dry room were identified and the prevalence of symptoms was compared with the other workers. Analysis was performed by Wilcoxon's test and Fisher's exact test. In the ultra-dry room, all the twelve workers covered their skin with long-sleeve clothes, paper caps, paper masks and latex gloves. They reported skin symptoms more often (p<0.05) than the other workers (N=143). The prevalence of atopic dermatitis was also higher in the exposed workers (p<0.05). The complaints of workers in the ultra-dry environment were similar to preceding reports concerning moderately dry environmental exposures. The current precautions to protect the workers from the adverse effects of ultra-low RH appear to be insufficient, indicating that additional measures such as selection of appropriate clothing to mere skin coverage should be considered.

  2. CRITICAL HEALTH ISSUES OF CRITERIA AIR POLLUTANTS

    EPA Science Inventory

    This chapter summarizes the key health information on ubiquitous outdoor air pollutants that can cause adverse health effects at current or historical ambient levels in the United States. Of the thousands of air pollutants, very few meet this definition. The Clean Air Act (CA...

  3. Air Pollution Affects Community Health

    ERIC Educational Resources Information Center

    Shy, Carl M.; Finklea, John F.

    1973-01-01

    Community Health and Environmental Surveillance System (CHESS), a nationwide program relating community health to environmental quality, is designed to evaluate existing environmental standards, obtain health intelligence for new standards, and document health benefits of air pollution control. (BL)

  4. Solid Waste, Air Pollution and Health

    ERIC Educational Resources Information Center

    Kupchik, George J.; Franz, Gerald J.

    1976-01-01

    This article examines the relationships among solid waste disposal, air pollution, and human disease. It is estimated that solid waste disposal contributes 9.7 percent of the total air pollution and 9.9 percent of the total air pollution health effect. Certain disposal-resource recovery systems can be implemented to meet air quality standards. (MR)

  5. Valuation of social and health effects of transport-related air pollution in Madrid (Spain).

    PubMed

    Monzón, Andrés; Guerrero, María-José

    2004-12-01

    Social impacts of pollutants from mobile sources are a key element in urban design and traffic planning. One of the most relevant impacts is health effects associated with high pollution periods. Madrid is a city that suffers chronic congestion levels and some periods of very stable atmospheric conditions; as a result, pollution levels exceed air quality standards for certain pollutants. This paper focuses on the social evaluation of transport-related emissions. A new methodology to evaluate those impacts in monetary terms has been designed and applied to Madrid. The method takes into account costs associated with losses in working time, mortality and human suffering; calculated using an impact pathway approach linked to CORINAIR emissions. This also allows the calculation of social costs associated with greenhouse gas impacts. As costs have been calculated individually by effect and mode of transport, they can be used to design pricing policies based on real social costs. This paper concludes that the health and social costs of transport-related air pollution in Madrid is 357 Meuro. In these circumstances, the recent public health tax applied in Madrid is clearly correct and sensible with a fair pricing policy on car use. PMID:15504528

  6. Public Health and Air Pollution in Asia (PAPA): A Multicity Study of Short-Term Effects of Air Pollution on Mortality

    PubMed Central

    Wong, Chit-Ming; Vichit-Vadakan, Nuntavarn; Kan, Haidong; Qian, Zhengmin

    2008-01-01

    Background and objectives Although the deleterious effects of air pollution from fossil fuel combustion have been demonstrated in many Western nations, fewer studies have been conducted in Asia. The Public Health and Air Pollution in Asia (PAPA) project assessed the effects of short-term exposure to air pollution on daily mortality in Bangkok, Thailand, and in three cities in China: Hong Kong, Shanghai, and Wuhan. Methods Poisson regression models incorporating natural spline smoothing functions were used to adjust for seasonality and other time-varying covariates that might confound the association between air pollution and mortality. Effect estimates were determined for each city and then for the cities combined using a random effects method. Results In individual cities, associations were detected between most of the pollutants [nitrogen dioxide, sulfur dioxide, particulate matter ≤ 10 μm in aerodynamic diameter (PM10), and ozone] and most health outcomes under study (i.e., all natural-cause, cardiovascular, and respiratory mortality). The city-combined effects of the four pollutants tended to be equal or greater than those identified in studies conducted in Western industrial nations. In addition, residents of Asian cities are likely to have higher exposures to air pollution than those in Western industrial nations because they spend more time outdoors and less time in air conditioning. Conclusions Although the social and environmental conditions may be quite different, it is reasonable to apply estimates derived from previous health effect of air pollution studies in the West to Asia. PMID:18795163

  7. Acute effects of summer air pollution on respiratory health of asthmatic children.

    PubMed

    Gielen, M H; van der Zee, S C; van Wijnen, J H; van Steen, C J; Brunekreef, B

    1997-06-01

    In the early summer of 1995, the acute respiratory effects of ambient air pollution were studied in a panel of 61 children, ages 7 to 13 yr, of whom 77% were taking asthma medication. Peak flow was measured twice daily with MiniWright meters at home and the occurrence of acute respiratory symptoms and medication use was registered daily by the parents in a diary. Exposure to air pollution was characterized by the ambient concentrations of ozone, PM10, and black smoke. During the study period, maximal 1-h ozone concentrations never exceeded 130 microg/m3, and 24-h black smoke and PM10 concentrations were never higher than 41 and 60 microg/m3 respectively. Associations of air pollution and health outcomes were evaluated using time series analysis. After adjusting for pollen, time trend, and day of the week, black smoke in particular was associated with acute respiratory symptoms and with medication use. Less strong associations were found for PM10 and ozone. These results suggest that in this panel of children, most of whom had asthma, relatively low levels of particulate matter and ozone in ambient air are able to increase symptoms and medication use.

  8. Air quality trends and potential health effects - Development of an aggregate risk index

    NASA Astrophysics Data System (ADS)

    Sicard, Pierre; Lesne, Olivia; Alexandre, Nicolas; Mangin, Antoine; Collomp, Rémy

    2011-02-01

    The "Provence Alpes Côte d'Azur" (PACA) region, in the South East of France, is one of Europe's regions most influenced by the atmospheric pollution. During the last 15 years, the industrial emissions decrease caused an evolution of the atmospheric pollution nature. Nowadays, atmospheric pollution is more and more influenced by the road traffic, the dominating pollution source in urban zones for the PACA region. Combined with this intense road traffic, the strong hot season of the Mediterranean climate contributes to the region bad air quality; it is known to be one of the worse in Europe. The recognized air pollution effects over public health include increased risk of hospital admissions and mortality by respiratory or cardiovascular diseases. The combination of these serious pollution related health hazards with senior and children vulnerabilities leads to serious sanitary concerns. Over the 1990-2005 period, we obtained, using the non-parametric Mann-Kendall test from annual mortality dataset (CépiDC), decreasing trends for Asthma (-5.00% year -1), Cardiovascular (-0.73% year -1), Ischemic (-0.69% year -1) and cerebrovascular diseases (-3.10% year -1). However, for "Other heart diseases" (+0.10% year -1) and "Respiratory" (+0.10% year -1) an increase was observed. The development of an adequate tool to understand impacts of pollution levels is of utmost importance. Different pollutants have different health endpoints, information may be lost through the use of a single index consequently, in this study we present the modified formula of air quality index, based on Cairncross's concept the Aggregate Risk Index (ARI). ARI is based on the relative risk of the well-established increased daily mortality, or morbidity, enabling an assessment of additive effects of short-term exposure to the main air pollutants: PM 2.5, PM 10, SO 2, O 3 and NO 2 in order to account for the reality of the multiple exposures impacts of chemical agents. The ARI, developed per pathology

  9. Applicability of the Environmental Relative Moldiness Index for Quantification of Residential Mold Contamination in an Air Pollution Health Effects Study

    EPA Science Inventory

    As part of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) investigating the respiratory health impacts of traffic-related air pollutants on asthmatic children in Detroit, Michigan, residential dust samples were collected to quantify mold exposure. Sett...

  10. Acute health effects of ambient air pollution: the ultrafine particle hypothesis.

    PubMed

    Utell, M J; Frampton, M W

    2000-01-01

    A strong and consistent association has been observed between adjusted mortality rates and ambient particle concentration. The strongest associations are seen for respiratory and cardiac deaths, particularly among the elderly. Particulate air pollution is also associated with asthma exacerbations, increased respiratory symptoms, decreased lung function, increased medication use, and increased hospital admissions. The U.S. Environmental Protection Agency (EPA) has recently promulgated a new national ambient air quality standard for fine particles, and yet the mechanisms for health effects at such low particle mass concentrations remain unclear. Hypotheses to identify the responsible particles have focused on particle acidity, particle content of transition metals, bioaerosols, and ultrafine particles. Because ultrafine particles are efficiently deposited in the respiratory tract and may be important in initiating airway inflammation, we have initiated clinical studies with ultrafine carbon particles in healthy subjects. These studies examine the role of ultrafines in: (1) the induction of airway inflammation; (2) expression of leukocyte and endothelial adhesion molecules in blood; (3) the alteration of blood coagulability; and (4) alteration in cardiac electrical activity. These events could lead to exacerbation of underlying cardiorespiratory disease. For example, airway inflammation may activate endothelium and circulating leukocytes, and induce a systemic acute phase response with transient hypercoagulability; this could explain the epidemiologic linkages between pollutant exposures and cardiovascular events. These approaches should be useful in identifying mechanisms for pollutant-induced respiratory and systemic effects, and in providing data for determining appropriate air quality standards.

  11. The Effects of Urban Form on Ambient Air Pollution and Public Health Risk: A Case Study in Raleigh, North Carolina

    PubMed Central

    Rodriguez, Daniel A.; Huegy, Joseph; Gibson, Jacqueline MacDonald

    2014-01-01

    Since motor vehicles are a major air pollution source, urban designs that decrease private automobile use could improve air quality and decrease air pollution health risks. Yet, the relationships among urban form, air quality, and health are complex and not fully understood. To explore these relationships, we model the effects of three alternative development scenarios on annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health risks from PM2.5 exposure in North Carolina’s Raleigh-Durham-Chapel Hill area. We integrate transportation demand, land-use regression, and health risk assessment models to predict air quality and health impacts for three development scenarios: current conditions, compact development, and sprawling development. Compact development slightly decreases (−0.2%) point estimates of regional annual average PM2.5 concentrations, while sprawling development slightly increases (+1%) concentrations. However, point estimates of health impacts are in opposite directions: compact development increases (+39%) and sprawling development decreases (−33%) PM2.5-attributable mortality. Further, compactness increases local variation in PM2.5 concentrations and increases the severity of local air pollution hotspots. Hence, this research suggests that while compact development may improve air quality from a regional perspective, it may also increase the concentration of PM2.5 in local hotspots and increase population exposure to PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are spatially co-located. We conclude that compactness alone is an insufficient means of reducing the public health impacts of transportation emissions in automobile-dependent regions. Rather, additional measures are needed to decrease automobile dependence and the health risks of transportation emissions. PMID:25490890

  12. Indoor air quality and health

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  13. Effect of Air Pollution and Rural-Urban Difference on Mental Health of the Elderly in China

    PubMed Central

    TIAN, Tao; CHEN, Yuhuai; ZHU, Jing; LIU, Pengling

    2015-01-01

    Background: China has become an aging society, and the mental health problem of the elderly is increasingly becoming prominent. This paper aimed to analyze the effect of air pollution and rural-urban difference on mental health of the elderly in China. Methods: Using the data from the China Health and Retirement Longitudinal Survey (CHARLS, 2013), after controlling the social demography variable via Tobit and Probit, a regression analysis of the effect of air pollution and rural-urban difference on mental health and psychological disorder was conducted on 6,630 old people (≧60 yr old) of China from February to April 2015. Mental health and psychological disorder of the elderly were measured by the CES-D score of respondents. Air pollution degree of counties and cities (n=123) were measured by SO2 emission. Results: 27.8% of old people had psychological disorders. Air pollution significantly influenced the mental health of the elderly, showing a positive “U-shaped” curve (P<0.001). In China, the urban elderly had better psychological status than the rural elderly had. The female elderly had more serious mental health problems. Marriage, education, and social activities had positive effects on the mental health of the elderly. Conclusion: China’s local governments should consider the influence of air pollution on the mental health of the elderly during economic development. This paper recommends paying attention to the difference in mental health between the urban and rural elderly when making public health policies. Governments could improve the mental health of the elderly by enriching social activities and increasing employment opportunities of the elderly. PMID:26587472

  14. Effects of Outdoor and Indoor Air Pollution on Respiratory Health of Chinese Children from 50 Kindergartens

    PubMed Central

    Liu, Miao-Miao; Wang, Da; Zhao, Yang; Liu, Yu-Qin; Huang, Mei-Meng; Liu, Yang; Sun, Jing; Ren, Wan-Hui; Zhao, Ya-Dong; He, Qin-Cheng; Dong, Guang-Hui

    2013-01-01

    Background Concentrations of ambient air pollution and pollutants in China have changed considerably during the last decade. However, few studies have evaluated the effects of current ambient air pollution on the health of kindergarten children. Methods We studied 6730 Chinese children (age, 3–7 years) from 50 kindergartens in 7 cities of Northeast China in 2009. Parents or guardians completed questionnaires that asked about the children’s histories of respiratory symptoms and risk factors. Three-year concentrations of particles with an aerodynamic diameter ≤10 µm (PM10), sulfur dioxide (SO2), and nitrogen dioxides (NO2) were calculated at monitoring stations in 25 study districts. A 2-stage regression approach was used in data analyses. Results The prevalence of respiratory symptoms was higher among children living near a busy road, those living near chimneys or a factory, those having a coal-burning device, those living with smokers, and those living in a home that had been recently renovated. Among girls, PM10 was associated with persistent cough (odds ratio [OR]PM10 = 1.44; 95% CI, 1.18–1.77), persistent phlegm (ORPM10 = 1.36; 95% CI, 1.02–1.81), and wheezing (ORPM10 = 1.31; 95% CI, 1.04–1.65). NO2 concentration was associated with increased prevalence of allergic rhinitis (OR = 1.96; 95% CI, 1.27–3.02) among girls. In contrast, associations of respiratory symptoms with concentrations of PM10, SO2, and NO2 were not statistically significant among boys. Conclusions Air pollution is particularly important in the development of respiratory morbidity among children. Girls may be more susceptible than boys to air pollution. PMID:23728483

  15. Health Effects of a Mixture of Indoor Air Volatile Organics, Their Ozone Oxidation Products, and Stress

    PubMed Central

    Fiedler, Nancy; Laumbach, Robert; Kelly-McNeil, Kathie; Lioy, Paul; Fan, Zhi-Hua; Zhang, Junfeng; Ottenweller, John; Ohman-Strickland, Pamela; Kipen, Howard

    2005-01-01

    In our present study we tested the health effects among women of controlled exposures to volatile organic compounds (VOCs), with and without ozone (O3), and psychological stress. Each subject was exposed to the following three conditions at 1-week intervals (within-subject factor): VOCs (26 mg/m3), VOCs + O3 (26 mg/m3 + 40 ppb), and ambient air with a 1-min spike of VOCs (2.5 mg/m3). As a between-subjects factor, half the subjects were randomly assigned to perform a stressor. Subjects were 130 healthy women (mean age, 27.2 years; mean education, 15.2 years). Health effects measured before, during, and after each 140-min exposure included symptoms, neurobehavioral performance, salivary cortisol, and lung function. Mixing VOCs with O3 was shown to produce irritating compounds including aldehydes, hydrogen peroxide, organic acids, secondary organic aerosols, and ultrafine particles (particulate matter with aerodynamic diameter < 0.1 μm). Exposure to VOCs with and without O3 did not result in significant subjective or objective health effects. Psychological stress significantly increased salivary cortisol and symptoms of anxiety regardless of exposure condition. Neither lung function nor neurobehavioral performance was compromised by exposure to VOCs or VOCs + O3. Although numerous epidemiologic studies suggest that symptoms are significantly increased among workers in buildings with poor ventilation and mixtures of VOCs, our acute exposure study was not consistent with these epidemiologic findings. Stress appears to be a more significant factor than chemical exposures in affecting some of the health end points measured in our present study. PMID:16263509

  16. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    NASA Astrophysics Data System (ADS)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  17. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons.

    PubMed

    Lv, Jinze; Zhu, Lizhong

    2013-03-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p < 0.05), and the slopes (1.2-4.54) indicated that ventilating like the model supermarket increased the potential health risks from low molecular weight PAHs. During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket. PMID:23923426

  18. Medication use modifies the health effects of particulate sulfate air pollution in children with asthma.

    PubMed Central

    Peters, A; Dockery, D W; Heinrich, J; Wichmann, H E

    1997-01-01

    Previous controlled studies have indicated that asthma medication modifies the adverse effects of sulfur dioxide (SO2) on lung function and asthma symptoms. The present report analyzed the role of medication use in a panel study of children with mild asthma. Children from Sokolov (n = 82) recorded daily peak expiratory flow (PEF) measurements, symptoms, and medication use in a diary. Linear and logistic regression analyses estimated the impact of concentrations of sulfate particles with diameters less than 2.5 microns, adjusting for linear trend, mean temperature, weekend (versus weekday), and prevalence of fever in the sample. Fifty-one children took no asthma medication, and only 31 were current medication users. Most children were treated with theophylline; only nine used sprays containing beta-agonist. For the nonmedicated children, weak associations between a 5-day mean of sulfates and respiratory symptoms were observed. Medicated children, in contrast, increased their beta-agonist use in direct association with an increase in 5-day mean of sulfates, but medication use did not prevent decreases in PEF and increases in the prevalence of cough attributable to particulate air pollution. Medication use was not a confounder but attenuated the associations between particulate air pollution and health outcomes. Images Figure 1. Figure 1. Figure 2. A Figure 2. B PMID:9189709

  19. Effective strategies for population studies of acute air pollution health effects

    SciTech Connect

    Lippmann, M. )

    1989-05-01

    A series of field studies involving repetitive functional measurements in relatively small populations of healthy children and adults engaged in normal outdoor activities has shown that significant decrements in respiratory function are associated with exposures to ozone (O3) at concentrations below the national ambient air quality standard. The ability to detect such effects can be attributed, at least in part, to the study design criteria used, which emphasized maximization of signal-to-noise ratios. Locations were selected to ensure relatively high exposures to relatively uniformly distributed secondary pollutants, with minimal exposure to local sources of primary pollutants. Populations were selected that would be engaged in active recreation out of doors. Populations of healthy persons were used to minimize variability in baseline function. We found that the magnitude of the O{sub 3}-associated decrements in respiratory function was dependent on the variability in sensitivity to O{sub 3} among the population, the minute ventilation during outdoor activity, and the duration of the outdoor exposure. We also concluded that the O{sub 3}-associated responses were potentiated by the presence of other air pollutants.

  20. Case-Crossover Analysis of Air Pollution Health Effects: A Systematic Review of Methodology and Application

    PubMed Central

    Carracedo-Martínez, Eduardo; Taracido, Margarita; Tobias, Aurelio; Saez, Marc; Figueiras, Adolfo

    2010-01-01

    Background Case-crossover is one of the most used designs for analyzing the health-related effects of air pollution. Nevertheless, no one has reviewed its application and methodology in this context. Objective We conducted a systematic review of case-crossover (CCO) designs used to study the relationship between air pollution and morbidity and mortality, from the standpoint of methodology and application. Data sources and extraction A search was made of the MEDLINE and EMBASE databases. Reports were classified as methodologic or applied. From the latter, the following information was extracted: author, study location, year, type of population (general or patients), dependent variable(s), independent variable(s), type of CCO design, and whether effect modification was analyzed for variables at the individual level. Data synthesis The review covered 105 reports that fulfilled the inclusion criteria. Of these, 24 addressed methodological aspects, and the remainder involved the design’s application. In the methodological reports, the designs that yielded the best results in simulation were symmetric bidirectional CCO and time-stratified CCO. Furthermore, we observed an increase across time in the use of certain CCO designs, mainly symmetric bidirectional and time-stratified CCO. The dependent variables most frequently analyzed were those relating to hospital morbidity; the pollutants most often studied were those linked to particulate matter. Among the CCO-application reports, 13.6% studied effect modification for variables at the individual level. Conclusions The use of CCO designs has undergone considerable growth; the most widely used designs were those that yielded better results in simulation studies: symmetric bidirectional and time-stratified CCO. However, the advantages of CCO as a method of analysis of variables at the individual level are put to little use. PMID:20356818

  1. The 1997 haze disaster in Indonesia: its air quality and health effects.

    PubMed

    Kunii, Osamu; Kanagawa, Shuzo; Yajima, Iwao; Hisamatsu, Yoshiharu; Yamamura, Sombo; Amagai, Takashi; Ismail, Ir T Sachrul

    2002-01-01

    In this study, the authors assessed air quality and health effects of the 1997 haze disaster in Indonesia. The authors measured carbon monoxide, carbon dioxide, sulfur dioxide, nitrogen dioxide, ozone, particulate matter with diameters less than or equal to 10 microm, inorganic ions, and polycyclic aromatic hydrocarbons. The authors also interviewed 543 people and conducted lung-function tests and determined spirometric values for these individuals. Concentrations of carbon monoxide and particulate matter with diameters less than or equal to 10 microm reached "very unhealthy" and "hazardous" levels, as defined by the Pollution Standards Index. Concentrations of the polycyclic aromatic hydrocarbons were 6-14 times higher than levels in the unaffected area. More than 90% of the respondents had respiratory symptoms, and elderly individuals suffered a serious deterioration of overall health. In multivariate analysis, the authors determined that gender, history of asthma, and frequency of wearing a mask were associated with severity of respiratory problems. The results of our study demonstrate the need for special care of the elderly and for care of those with a history of asthma. In addition, the use of a proper mask may afford protection.

  2. Health effects of outdoor air pollution. Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society.

    PubMed

    1996-01-01

    Particles, SOx, and acid aerosols are a complex group of distinct pollutants that have common sources and usually covary in concentration. During the past two decades, the chemical characteristics and the geographic distribution of sulfur oxide and particulate pollution have been altered by control strategies, specifically taller stacks for power plants, put in place in response to air pollution regulations adopted in the early 1970s. While the increasing stack heights have lowered local ambient levels, the residence time of SOx and particles in the air have been increased, thereby promoting transformation to various particulate sulfate compounds, including acidic sulfates. These sulfate particles constitute a large fraction of the total mass of smaller particles (< 3 microns in aerodynamic diameter). Epidemiologic studies have consistently provided evidence of adverse health effects of these air pollutants. Particulate and SO2 pollution were strongly implicated in the acute morbidity and mortality associated with the severe pollution episodes in Donora (Pennsylvania), London, and New York in the 1940s, 1950s, and 1960s. There is new evidence that even current ambient levels of PM10 (30 to 150 micrograms/m3) are associated with increases in daily cardiorespiratory mortality and in total mortality, excluding accidental and suicide deaths. These associations have been shown in many different communities, as widely different in particle composition and climate as Philadelphia, St. Louis, Utah Valley, and Santa Clara County, California. It has recently been shown in a long-term prospective study of adults in the United States that chronic levels of higher PM10 pollution are associated with increased mortality after adjusting for several individual risk factors. Daily fluctuations in PM10 levels have also been shown to be related to acute respiratory hospital admissions in children, to school and kindergarten absences, to decrements in peak flow rates in normal children

  3. EFFECTS OF AIR POLLUTION ON RESPIRATORY HEALTH OF ADULTS IN THREE CHINESE CITIES.

    EPA Science Inventory

    The authors examined potential associations between air-pollution exposures and respiratory symptoms and illnesses of 4,108 adults who resided in 4 districts of 3 large, distinct Chinese cities. Data on respiratory health outcomes and relevant risk factors for parents and childre...

  4. Effective strategies for population studies of acute air-pollution health effects

    SciTech Connect

    Lippman, M.

    1989-01-01

    A series of field studies involving repetitive functional measurements in relatively small populations of healthy children and adults engaged in normal outdoor activities has shown that significant decrements in respiratory function are associated with exposures to ozone (O3) at concentrations below the national ambient air quality standard. The ability to detect such effects can be attributed, at least in part, to the study design criteria used, which emphasized maximization of signal-to-noise ratios. Locations were selected to ensure relatively high exposures to relatively uniformly distributed secondary pollutants, with minimal exposure to local sources of primary pollutants. Populations were selected that would be engaged in active recreation out of doors. Populations of healthy persons were used to minimize variability in baseline function. It was found that the magnitude of the O{sub 3}-associated decrements in respiratory function was dependent on the variability in sensitivity to O{sub 3} among the population, the minute ventilation during outdoor activity, and the duration of the outdoor exposure.

  5. [The direct health effects of air pollution in Vratsa in 1991].

    PubMed

    Tabakova, S; Koleva, Ts; Petrov, P; Simeonov, G

    1993-01-01

    The effect of air pollution in the town of Vratsa on the daily morbidity of the population has been studied during the first half of 1991. Studies are performed on the correlation between the daily dynamics in the pollution according to specific for the town indices ammonia, hydrogen sulfide, sulphur dioxide, nitric oxides, dust, meteorological parameters temperature of the air, relative humidity, air velocity, barometric pressure and some respiratory and allergic diseases among the population. It is already established that the level of the air pollution in the town of Vratsa, among which dominate ammonia and hydrogen sulfide, have a direct effect on the acute respiratory morbidity, more expressed among the children. This influence is traced both in episodes of increased pollution, and in the course of several days afterwards and is conductive by the combination of unfavourable meteorological conditions, hindering the dispersion of the atmospheric pollutants.

  6. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed Central

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-01-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects. PMID:11359687

  7. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-05-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects.

  8. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-05-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects. PMID:11359687

  9. Caution: Air May Be Hazardous to Health

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    A conference convened by the American Medical Association in December 1974 heard the latest research findings on the effect of airborne substances on the body's defense mechanisms, hypersensitive reactions to various air pollutants, heart and respiratory diseases and illnesses in children. Air pollution is still a health problem. (BT)

  10. Respiratory health effects of air pollution: update on biomass smoke and traffic pollution.

    PubMed

    Laumbach, Robert J; Kipen, Howard M

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels, primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time because of varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory tract diseases. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions.

  11. Respiratory Health Effects of Air Pollution: Update on Biomass Smoke and Traffic Pollution

    PubMed Central

    Laumbach, Robert J.; Kipen, Howard M.

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases including asthma, chronic obstructive pulmonary disease, pneumonia and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time due to varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory disease. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. PMID:22196520

  12. Air Pollution Exposure Model for Individuals (EMI) in Health Studies

    EPA Science Inventory

    In health studies, traffic-related air pollution is associated with adverse respiratory effects. Due to cost and participant burden of personal measurements, health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect ...

  13. ACUTE RESPIRATORY HEALTH EFFECTS OF AIR POLLUTION ON ASTHMATIC CHILDREN IN US INNER CITIES

    EPA Science Inventory

    BACKGROUND: Children with asthma in inner-city communities may be particularly vulnerable to adverse effects of air pollution because of their airways disease and exposure to relatively high levels of motor vehicle emissions. OBJECTIVE: To investigate the association between fluc...

  14. [Air transport, aeronautic medicine, health].

    PubMed

    Cupa, Michel

    2009-10-01

    There were 3.2 billion airline passengers in 2006, compared to only 30 million in 1950. Intercontinental health disparities create a risk of pandemics such as SARS and so-called bird flu. Precautions are now being implemented both in airports and in aircraft, in addition to measures intended to prevent the spread of malaria and arboviral diseases, such as vector eradication, elimination of stagnant water, malaria prophylaxis, vaccination, and use of repellents. These measures are dealt with in international health regulations, which have existed since 1851 and were last updated on 15 June 2007. Flying on an airliner also carries a risk of hypobaria (cabin pressure at 2000 m), which can aggravate respiratory problems. Other problems include relative hypoxia, gas expansion, air dryness, ozone, cosmic rays, airsickness, jet lag, the effects of alcohol and tobacco, and, more recently, deep vein thrombosis (DVT) and pulmonary embolism (PE), collectively known as "coach class syndrome". A new type of medicine has appeared, in the form of on-board medical assistance. The European Civil Aviation Committee has recommended first-aid training for cabin crews and onboard medical equipment such as first-aid kits and defibrillators. Airline statistics show that one in-flight medical incident occurs per 20 000 passengers, as well as one death per 5 million passengers and one medical reroute per 20 000 flights (40% of reroutes turn out to be unjustified). More than 80% of long-haul flights have a physician travelling on board. However, depending on his or her specialty, problems of competence and legal responsibility may arise. Ground-based medical centers can provide help via satellite telephone, but this implies the need for airline staff training. International cooperation is the only way to minimize the health risks associated with the growth in global air travel.

  15. [Air transport, aeronautic medicine, health].

    PubMed

    Cupa, Michel

    2009-10-01

    There were 3.2 billion airline passengers in 2006, compared to only 30 million in 1950. Intercontinental health disparities create a risk of pandemics such as SARS and so-called bird flu. Precautions are now being implemented both in airports and in aircraft, in addition to measures intended to prevent the spread of malaria and arboviral diseases, such as vector eradication, elimination of stagnant water, malaria prophylaxis, vaccination, and use of repellents. These measures are dealt with in international health regulations, which have existed since 1851 and were last updated on 15 June 2007. Flying on an airliner also carries a risk of hypobaria (cabin pressure at 2000 m), which can aggravate respiratory problems. Other problems include relative hypoxia, gas expansion, air dryness, ozone, cosmic rays, airsickness, jet lag, the effects of alcohol and tobacco, and, more recently, deep vein thrombosis (DVT) and pulmonary embolism (PE), collectively known as "coach class syndrome". A new type of medicine has appeared, in the form of on-board medical assistance. The European Civil Aviation Committee has recommended first-aid training for cabin crews and onboard medical equipment such as first-aid kits and defibrillators. Airline statistics show that one in-flight medical incident occurs per 20 000 passengers, as well as one death per 5 million passengers and one medical reroute per 20 000 flights (40% of reroutes turn out to be unjustified). More than 80% of long-haul flights have a physician travelling on board. However, depending on his or her specialty, problems of competence and legal responsibility may arise. Ground-based medical centers can provide help via satellite telephone, but this implies the need for airline staff training. International cooperation is the only way to minimize the health risks associated with the growth in global air travel. PMID:20669640

  16. Panel discussion review: Session two - Interpretation of Observed Associations between Multiple Ambient Air Pollutants and Health Effects in Epidemiologic Analysis

    EPA Science Inventory

    Air pollution epidemiologic research has often utilized ambient air concentrations measured from centrally located monitors as a surrogate measure of exposure to these pollutants. Associations between these ambient concentrations and health outcomes such as lung function, hospita...

  17. Disability-adjusted life years in the assessment of health effects of traffic-related air pollution.

    PubMed

    Adamkiewicz, Ł; Badyda, A J; Gayer, A; Mucha, D

    2015-01-01

    Traffic-related air pollutants have an impact on human health and have been recognized as one of the main stressors that cause mortality and morbidity in urban areas. Research confirms that citizens living in the vicinity of main roads are strongly exposed to high concentrations of numerous air pollutants. In the present study the measurements of traffic-related parameters such as density, velocity, and structure were performed for cross-sections of selected street canyons in Warsaw, the capital city of Poland. In addition, the results of the general traffic measurements were used to describe the number of cars crossing the border of the city. Vehicle emissions of PM10 were calculated for the whole city area and changes of the PM10 concentration were modeled to present the exposure to this pollutant that could be attributable to traffic. The principles of the environmental burden of disease (EBD) were used. The assessment of the impact of traffic-related air pollutants on human health was made. The results, presented in disability-adjusted life years (DALY), were based on the outcomes of the study conducted in 2008-2012 in Warsaw, one the most congested agglomerations in Europe, and included the health damage effect of the exposure to high concentrations of air pollutants. DALY calculations were performed in accordance to the methodologies used in renowned international scientific research on EBD.

  18. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    PubMed

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.

  19. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects Among Children with Asthma in Detroit, Michigan

    PubMed Central

    Batterman, Stuart; Ganguly, Rajiv; Isakov, Vlad; Burke, Janet; Arunachalam, Saravanan; Snyder, Michelle; Robins, Thomas; Lewis, Toby

    2015-01-01

    Vehicular traffic is a major source of ambient air pollution in urban areas. Traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter less than 2.5 μm in diameter, and diesel exhaust emissions, have been associated with adverse human health effects, especially in areas near major roads. In addition to emissions from vehicles, ambient concentrations of air pollutants include contributions from stationary sources and background (or regional) sources. Although dispersion models have been widely used to evaluate air quality strategies and policies and can represent the spatial and temporal variation in environments near roads, the use of these models in health studies to estimate air pollutant exposures has been relatively limited. This paper summarizes the modeling system used to estimate exposures in the Near-Roadway Exposure and Urban Air Pollutant Study, an epidemiological study that examined 139 children with asthma or symptoms consistent with asthma, most of whom lived near major roads in Detroit, Michigan. Air pollutant concentrations were estimated with a hybrid modeling framework that included detailed inventories of mobile and stationary sources on local and regional scales; the RLINE, AERMOD, and CMAQ dispersion models; and monitored observations of pollutant concentrations. The temporal and spatial variability in emissions and exposures over the 2.5-year study period and at more than 300 home and school locations was characterized. The paper highlights issues with the development and understanding of the significance of traffic-related exposures through the use of dispersion models in urban-scale exposure assessments and epidemiology studies. PMID:26139957

  20. The costs, air quality, and human health effects of meeting peak electricity demand with installed backup generators.

    PubMed

    Gilmore, Elisabeth A; Lave, Lester B; Adams, Peter J

    2006-11-15

    Existing generators installed for backup during blackouts could be operated during periods of peak electricity demand, increasing grid reliability and supporting electricity delivery. Many generators, however, have non-negligible air emissions and may potentially damage air quality and harm human health. To evaluate using these generators, we compare the levelized private and social (health) costs of diesel internal combustion engines (ICE) with and without diesel particulate filters (DPF), natural gas ICEs, and microturbines to a new peaking plant in New York, NY. To estimate the social cost, first we calculate the upper range emissions for each generator option from producing 36,000 megawatt-hours (MWh) of electricity over 3 days. We then convert the emissions into ambient concentrations with a 3-D chemical transport model, PMCAMx, and Gaussian dispersion plumes. Using a Monte Carlo approach to incorporate the uncertainties, we calculate the health endpoints using concentration-response functions and multiply the response by its economic value. While uncontrolled diesel ICEs would harm air quality and health, a generator with a DPF has a social cost, comparable to natural gas options. We conclude on a full cost basis that backup generators, including controlled diesel ICEs, are a cost-effective method of meeting peak demand. PMID:17153991

  1. Benzo(a)pyrene in Europe: Ambient air concentrations, population exposure and health effects.

    PubMed

    Guerreiro, C B B; Horálek, J; de Leeuw, F; Couvidat, F

    2016-07-01

    This study estimated current benzo(a)pyrene (BaP) concentration levels, population exposure and potential health impacts of exposure to ambient air BaP in Europe. These estimates were done by combining the best available information from observations and chemical transport models through the use of spatial interpolation methods. Results show large exceedances of the European target value for BaP in 2012 over large areas, particularly in central-eastern Europe. Results also show large uncertainties in the concentration estimates in regions with a few or no measurement stations. The estimation of the population exposure to BaP concentrations and its health impacts was limited to 60% of the European population, covering only the modelled areas which met the data quality requirement for modelling of BaP concentrations set by the European directive 2004/107/EC. The population exposure estimate shows that 20% of the European population is exposed to BaP background ambient concentrations above the EU target value and only 7% live in areas with concentrations under the estimated acceptable risk level of 0.12 ng m(-3). This exposure leads to an estimated 370 lung cancer incidences per year, for the 60% of the European population included in the estimation. Emissions of BaP have increased in the last decade with the increase in emissions from household combustion of biomass. At the same time, climate mitigation policies are promoting the use of biomass burning for domestic heating. The current study shows that there is a need for more BaP measurements in areas of low measurement density, particularly where high concentrations are expected, e.g. in Romania, Bulgaria, and other Balkan states. Furthermore, this study shows that the health risk posed by PAH exposure calls for better coordination between air quality and climate mitigation policies in Europe.

  2. IMPACTS OF TRAFFIC ON AIR QUALITY AND HEALTH EFFECTS NEAR MAJOR ROADWAYS

    EPA Science Inventory

    A growing number of epidemiological studies conducted in Europe, Asia, and North America have identified an increase in occurrence of adverse health effects for populations living near major roads. However, the biological mechanism(s) leading to the adverse effects have not been...

  3. How robust are the estimated effects of air pollution on health? Accounting for model uncertainty using Bayesian model averaging.

    PubMed

    Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H

    2016-08-01

    The long-term impact of air pollution on human health can be estimated from small-area ecological studies in which the health outcome is regressed against air pollution concentrations and other covariates, such as socio-economic deprivation. Socio-economic deprivation is multi-factorial and difficult to measure, and includes aspects of income, education, and housing as well as others. However, these variables are potentially highly correlated, meaning one can either create an overall deprivation index, or use the individual characteristics, which can result in a variety of pollution-health effects. Other aspects of model choice may affect the pollution-health estimate, such as the estimation of pollution, and spatial autocorrelation model. Therefore, we propose a Bayesian model averaging approach to combine the results from multiple statistical models to produce a more robust representation of the overall pollution-health effect. We investigate the relationship between nitrogen dioxide concentrations and cardio-respiratory mortality in West Central Scotland between 2006 and 2012.

  4. How robust are the estimated effects of air pollution on health? Accounting for model uncertainty using Bayesian model averaging.

    PubMed

    Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H

    2016-08-01

    The long-term impact of air pollution on human health can be estimated from small-area ecological studies in which the health outcome is regressed against air pollution concentrations and other covariates, such as socio-economic deprivation. Socio-economic deprivation is multi-factorial and difficult to measure, and includes aspects of income, education, and housing as well as others. However, these variables are potentially highly correlated, meaning one can either create an overall deprivation index, or use the individual characteristics, which can result in a variety of pollution-health effects. Other aspects of model choice may affect the pollution-health estimate, such as the estimation of pollution, and spatial autocorrelation model. Therefore, we propose a Bayesian model averaging approach to combine the results from multiple statistical models to produce a more robust representation of the overall pollution-health effect. We investigate the relationship between nitrogen dioxide concentrations and cardio-respiratory mortality in West Central Scotland between 2006 and 2012. PMID:27494960

  5. Traffic-related air pollution: Exposure and health effects in Copenhagen street cleaners and cemetery workers

    SciTech Connect

    Raaschou-Nielsen, O.; Nielsen, M.L.; Gehl, J.

    1995-05-01

    This questionaire-based study found a significantly higher prevalence of chronic bronchitis, asthma, and several other symptoms in 116 Copenhagen street cleaners who were exposed to traffic-related air pollution at levels that were slightly lower than the 1987 World Health Organization-recommended threshold values, compared with 115 Copenhagen cemetery workers exposed to lower pollution levels. Logistic regression analysis, controlling for age and smoking, was conducted, and odds ratios and 95% confidence intervals were calculated to be 2.5 for chronic bronchitis (95% confidence interval = 1.2-5.1), 2.3 for asthma (95% confidence interval = 1.0-5.1), and 1.8-7.9 for other symptoms (95% confidence interval = 1.0-28.2). Except for exposure to air pollution, the two groups were comparable, i.e., they had similar terms of employment and working conditions. the exposure ranges during an 8-h work day, averaged from readings taken at five monitored street positions, were: 41-257 ppb nitric oxide (1-h max: 865 ppb); 23-43 ppb nitrogen dioxide (1-h max: 208 ppb); 1.0-4.3 ppm carbon monoxide (8-h max: 7.1 ppm); 14-28 ppb sulfur dioxide (1-h max; 112 ppb); and 10-38 ppb ozone (1-h max: 72 ppb). 33 refs., 7 tabs.

  6. A review of air quality, biological indicators and health effects of second-hand waterpipe smoke exposure

    PubMed Central

    Kumar, Sumit R; Davies, Shelby; Weitzman, Michael; Sherman, Scott

    2015-01-01

    Objective There has been a rapid increase in the use of waterpipe tobacco and non-tobacco based shisha in many countries. Understanding the impact and effects of second-hand smoke (SHS) from cigarette was a crucial factor in reducing cigarette use, leading to clean indoor air laws and smoking bans. This article reviews what is known about the effects of SHS exposure from waterpipes. Data sources We used PubMed and EMBASE to review the literature. Articles were grouped into quantitative measures of air quality and biological markers, health effects, exposure across different settings, different types of shisha and use in different countries. Study selection Criteria for study selection were based on the key words related to SHS: waterpipe, hookah, shisha and third-hand smoke. Data extraction Independent extraction with two reviewers was performed with inclusion criteria applied to articles on SHS and waterpipe/hookah/shisha. We excluded articles related to pregnancy or prenatal exposure to SHS, animal studies, and non-specific source of exposure as well as articles not written in English. Data synthesis A primary literature search yielded 54 articles, of which only 11 were included based on relevance to SHS from a waterpipe/hookah/shisha. Conclusions The negative health consequences of second-hand waterpipe exposure have major implications for clean indoor air laws and for occupational safety. There exists an urgent need for public health campaigns about the effects on children and household members from smoking waterpipe at home, and for further development and implementation of regulations to protect the health of the public from this rapidly emerging threat. PMID:25480544

  7. The modifying effect of socioeconomic status on the relationship between traffic, air pollution and respiratory health in elementary schoolchildren.

    PubMed

    Cakmak, Sabit; Hebbern, Christopher; Cakmak, Jasmine D; Vanos, Jennifer

    2016-07-15

    The volume and type of traffic and exposure to air pollution have been found to be associated with respiratory health, but few studies have considered the interaction with socioeconomic status at the household level. We investigated the relationships of respiratory health related to traffic type, traffic volume, and air pollution, stratifying by socioeconomic status, based on household income and education, in 3591 schoolchildren in Windsor, Canada. Interquartile range changes in traffic exposure and pollutant levels were linked to respiratory symptoms and objective measures of lung function using generalised linear models for three levels of income and education. In 95% of the relationships among all cases, the odds ratios for reported respiratory symptoms (a decrease in measured lung function), based on an interquartile range change in traffic exposure or pollutant, were greater in the lower income/education groups than the higher, although the odds ratios were in most cases not significant. However, in up to 62% of the cases, the differences between high and low socioeconomic groups were statistically significant, thus indicating socioeconomic status (SES) as a significant effect modifier. Our findings indicate that children from lower socioeconomic households have a higher risk of specific respiratory health problems (chest congestion, wheezing) due to traffic volume and air pollution exposure.

  8. The modifying effect of socioeconomic status on the relationship between traffic, air pollution and respiratory health in elementary schoolchildren.

    PubMed

    Cakmak, Sabit; Hebbern, Christopher; Cakmak, Jasmine D; Vanos, Jennifer

    2016-07-15

    The volume and type of traffic and exposure to air pollution have been found to be associated with respiratory health, but few studies have considered the interaction with socioeconomic status at the household level. We investigated the relationships of respiratory health related to traffic type, traffic volume, and air pollution, stratifying by socioeconomic status, based on household income and education, in 3591 schoolchildren in Windsor, Canada. Interquartile range changes in traffic exposure and pollutant levels were linked to respiratory symptoms and objective measures of lung function using generalised linear models for three levels of income and education. In 95% of the relationships among all cases, the odds ratios for reported respiratory symptoms (a decrease in measured lung function), based on an interquartile range change in traffic exposure or pollutant, were greater in the lower income/education groups than the higher, although the odds ratios were in most cases not significant. However, in up to 62% of the cases, the differences between high and low socioeconomic groups were statistically significant, thus indicating socioeconomic status (SES) as a significant effect modifier. Our findings indicate that children from lower socioeconomic households have a higher risk of specific respiratory health problems (chest congestion, wheezing) due to traffic volume and air pollution exposure. PMID:27064731

  9. Applicability of the environmental relative moldiness index for quantification of residential mold contamination in an air pollution health effects study.

    PubMed

    Kamal, Ali; Burke, Janet; Vesper, Stephen; Batterman, Stuart; Vette, Alan; Godwin, Christopher; Chavez-Camarena, Marina; Norris, Gary

    2014-01-01

    The Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) investigated the impact of exposure to traffic-related air pollution on the respiratory health of asthmatic children in Detroit, Michigan. Since indoor mold exposure may also contribute to asthma, floor dust samples were collected in participants homes (n = 112) to assess mold contamination using the Environmental Relative Moldiness Index (ERMI). The repeatability of the ERMI over time, as well as ERMI differences between rooms and dust collection methods, was evaluated for insights into the application of the ERMI metric. ERMI values for the standard settled floor dust samples had a mean ± standard deviation of 14.5 ± 7.9, indicating high levels of mold contamination. ERMI values for samples collected from the same home 1 to 7 months apart (n = 52) were consistent and without systematic bias. ERMI values for separate bedroom and living room samples were highly correlated (r = 0.69, n = 66). Vacuum bag dust ERMI values were lower than for floor dust but correlated (r = 0.58, n = 28). These results support the use of the ERMI to evaluate residential mold exposure as a confounder in air pollution health effects studies.

  10. Applicability of the Environmental Relative Moldiness Index for Quantification of Residential Mold Contamination in an Air Pollution Health Effects Study

    PubMed Central

    Kamal, Ali; Vesper, Stephen; Batterman, Stuart; Godwin, Christopher; Chavez-Camarena, Marina; Norris, Gary

    2014-01-01

    The Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) investigated the impact of exposure to traffic-related air pollution on the respiratory health of asthmatic children in Detroit, Michigan. Since indoor mold exposure may also contribute to asthma, floor dust samples were collected in participants homes (n = 112) to assess mold contamination using the Environmental Relative Moldiness Index (ERMI). The repeatability of the ERMI over time, as well as ERMI differences between rooms and dust collection methods, was evaluated for insights into the application of the ERMI metric. ERMI values for the standard settled floor dust samples had a mean ± standard deviation of 14.5 ± 7.9, indicating high levels of mold contamination. ERMI values for samples collected from the same home 1 to 7 months apart (n = 52) were consistent and without systematic bias. ERMI values for separate bedroom and living room samples were highly correlated (r = 0.69, n = 66). Vacuum bag dust ERMI values were lower than for floor dust but correlated (r = 0.58, n = 28). These results support the use of the ERMI to evaluate residential mold exposure as a confounder in air pollution health effects studies. PMID:25431602

  11. Indoor air pollution: Health effects. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning health hazards associated with indoor pollutants. Pollutants discussed include carbon dioxides, nitrogen oxides, particulates, formaldehydes, carbon monoxides, paints, pesticides, solvents, smoke, sealants, soils, adhesives, aerosols, dusts, cleaners, and moisture. The citations address effects such as simple discomfort, sick building syndrome, Legionnaires` disease, and cancer.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Non-auditory health effects among air force crew chiefs exposed to high level sound.

    PubMed

    Jensen, Anker; Lund, Søren Peter; Lücke, Thorsten Høgh; Clausen, Ole Voldum; Svendsen, Jørgen Torp

    2009-01-01

    The possibility of non-auditory health effects in connection with occupational exposure to high level sound is supposed by some researchers, but is still debated. Crew chiefs on airfields are exposed to high-level aircraft sound when working close to aircraft with running engines. We compared their health status with a similar control group who were not subject to this specific sound exposure. Health records of 42 crew chiefs were compared to health records of 42 aircraft mechanics and 17 former crew chiefs. The specific sound exposure of crew chiefs was assessed. The number of reported disease cases was generally small, but generally slightly higher among mechanics than among crew chiefs. Diseases of the ear were more frequent among crew chiefs (not significant). Former crew chiefs reported fewer diseases of the ear and more airways infections (both significant). The sound exposure during launch was up to 144 dB (peak) and 124 dB (L(eq) ), but for limited time. The study did not reveal a higher disease frequency in general among crew chiefs. However, it did reveal a tendency to ear diseases, possibly due to their exposure to high-level sound.

  13. Health effects of air pollution due to coal combustion in the Chestnut Ridge region of Pennsylvania

    SciTech Connect

    Batterman, S.; Golomb, D.

    1985-08-01

    This study used the seventeen monitor air quality network in the Chestnut Ridge region of Pennsylvania to evaluate the effect of pollutant trends and representations on measures of exposure. Data consisted of four and five years of SO/sub 2/ and TSP measurements, respectively, and were considered in deriving exposure models. A cross-sectional study of 4071 children aged 6 to 11 years of age was conducted in the spring of 1979. Standardized children's questionnaires were distributed to the parents and returned by the children to school, where spirometry was performed. The region was divided into low, moderate and high pollution areas on the basis of the 1974-1978, 3 h, 24 h, and annual averages for SO/sub 2/. After adjusting the respiratory symptom response outcomes and the pulmonary function levels for known predictors, no significant association was noted for level of SO/sub 2/. 65 refs., 16 figs., 19 tabs.

  14. The air quality and human health effects of integrating utility-scale batteries into the New York State electricity grid

    NASA Astrophysics Data System (ADS)

    Gilmore, Elisabeth A.; Apt, Jay; Walawalkar, Rahul; Adams, Peter J.; Lave, Lester B.

    In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5) result in a benefit of 4.5 ¢ kWh -1 and 17 ¢ kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3) concentrations increase due to decreases in nitrogen oxide (NO x) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At 20 per tonne of CO 2, the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated strategy from a

  15. Understanding the relationships between air quality and human health

    SciTech Connect

    S.T. Rao

    2006-09-15

    Although there has been substantial progress in improving ambient air quality in the United States, atmospheric concentrations of ozone and fine particulate matter (PM2.5) continue to exceed the National Ambient Air Quality Standards in many locations. Consequently, a large portion of the U.S. population continues to be exposed to unhealthful levels of ozone and fine particles. This issue of EM, entitled 'Understanding the relationships between air quality and human health' presents a series of articles that focus on the relationships between air quality and human health - what we know so far and the challenges that remain. Their titles are: Understanding the effects of air pollution on human health; Assessing population exposures in studies of human health effects of PM2.5; Establishing a national environmental public health tracking network; Linking air quality and exposure models; and On alert: air quality forecasting and health advisory warnings.

  16. [Air pollution and population health].

    PubMed

    Kristoforović-Ilić, Miroslava; Ilić, Miroslav

    2006-10-01

    In the last few decades, there has been increased population concern for quality of environment, for it is, after life style, the second risk factor of disease development. Particular problem is that a large majority of serious impairments of health is manifested only after a long latent period, so it is not always possible to establish clear association with environmental factors. It is considered today that around 40% of lethal cases are caused by polluted environment in various ways, while environment is the most important etiologic factor in 5% of disease incidence. Problems arising due to environment pollution are most frequently related to air pollution. The World Resource Institute, Washington, has developed the indicators for evaluation of risk of environment pollution to population health. There is one common indicator both for developed and developing countries--air pollution. EPA recommended new standards for some polluting substances. The document reviewed these standards and their implementation in our community. New Law on Environment Protection ("Official Gazette of RS" No. 135/2004) from December 20th, 2004, followed by relevant documents on air quality, should be beneficial to experts at the level of subtle diagnostics and proposal of adequate measures with a view to improve the quality of life.

  17. [Air pollution and population health].

    PubMed

    Kristoforović-Ilić, Miroslava; Ilić, Miroslav

    2006-10-01

    In the last few decades, there has been increased population concern for quality of environment, for it is, after life style, the second risk factor of disease development. Particular problem is that a large majority of serious impairments of health is manifested only after a long latent period, so it is not always possible to establish clear association with environmental factors. It is considered today that around 40% of lethal cases are caused by polluted environment in various ways, while environment is the most important etiologic factor in 5% of disease incidence. Problems arising due to environment pollution are most frequently related to air pollution. The World Resource Institute, Washington, has developed the indicators for evaluation of risk of environment pollution to population health. There is one common indicator both for developed and developing countries--air pollution. EPA recommended new standards for some polluting substances. The document reviewed these standards and their implementation in our community. New Law on Environment Protection ("Official Gazette of RS" No. 135/2004) from December 20th, 2004, followed by relevant documents on air quality, should be beneficial to experts at the level of subtle diagnostics and proposal of adequate measures with a view to improve the quality of life. PMID:18172966

  18. Air pollution and children's health.

    PubMed

    Schwartz, Joel

    2004-04-01

    Children's exposure to air pollution is a special concern because their immune system and lungs are not fully developed when exposure begins, raising the possibility of different responses than seen in adults. In addition, children spend more time outside, where the concentrations of pollution from traffic, powerplants, and other combustion sources are generally higher. Although air pollution has long been thought to exacerbate minor acute illnesses, recent studies have suggested that air pollution, particularly traffic-related pollution, is associated with infant mortality and the development of asthma and atopy. Other studies have associated particulate air pollution with acute bronchitis in children and demonstrated that rates of bronchitis and chronic cough declined in areas where particle concentrations have fallen. More mixed results have been reported for lung function. Overall, evidence for effects of air pollution on children have been growing, and effects are seen at concentrations that are common today. Although many of these associations seem likely to be causal, others require and warrant additional investigation.

  19. Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles

    PubMed Central

    Yacobi, Nazanin R.; Fazllolahi, Farnoosh; Kim, Yong Ho; Sipos, Arnold; Borok, Zea; Kim, Kwang-Jin

    2014-01-01

    Studies on the health effects of air-pollution particles suggest that injury may result from inhalation of airborne ultrafine particles (<100 nm in diameter). Engineered nanomaterials (<100 nm in at least one dimension) may also be harmful if inhaled. Nanomaterials deposited on the respiratory epithelial tract are thought to cross the air-blood barrier, especially via the expansive alveolar region, into the systemic circulation to reach end organs (e.g., myocardium, liver, pancreas, kidney, and spleen). Since ambient ultrafine particles are difficult to track, studies of defined engineered nanomaterials have been used to obtain valuable information on how nanomaterials interact with and traffic across the air-blood barrier of mammalian lungs. Since specific mechanistic information on how nanomaterials interact with the lung is difficult to obtain using in vivo or ex vivo lungs due to their complex anatomy, in vitro alveolar epithelial models have been of considerable value in determining nanomaterial-lung interactions. In this review, we provide information on mechanisms underlying lung alveolar epithelial injury caused by various nanomaterials and on nanomaterial trafficking across alveolar epithelium that may lead to end-organ injury. PMID:25568662

  20. Ambient air pollution exposure and the incidence of related health effects among racial/ethnic minorities

    SciTech Connect

    Nieves, L.A.; Wernette, D.R.

    1997-02-01

    Differences among racial and ethnic groups in morbidity and mortality rates for diseases, including diseases with environmental causes, have been extensively documented. However, documenting the linkages between environmental contaminants, individual exposures, and disease incidence has been hindered by difficulties in measuring exposure for the population in general and for minority populations in particular. After briefly discussing research findings on associations of common air pollutants with disease incidence, the authors summarize recent studies of radial/ethnic subgroup differences in incidence of these diseases in the US. They then present evidence of both historic and current patterns of disproportionate minority group exposure to air pollution as measured by residence in areas where ambient air quality standards are violated. The current indications of disproportionate potential exposures of minority and low-income populations to air pollutants represent the continuation of a historical trend. The evidence of linkage between disproportionate exposure to air pollution of racial/ethnic minorities and low-income groups and their higher rates of some air pollution-related diseases is largely circumstantial. Differences in disease incidence and mortality rates among racial/ethnic groups are discussed for respiratory diseases, cancers, and lead poisoning. Pollutants of concern include CO, Pb, SO{sub 2}, O{sub 3}, and particulates.

  1. The avoidable health effects of air pollution in three Latin American cities: Santiago, São Paulo, and Mexico City.

    PubMed

    Bell, Michelle L; Davis, Devra L; Gouveia, Nelson; Borja-Aburto, Víctor H; Cifuentes, Luis A

    2006-03-01

    Urban centers in Latin American often face high levels of air pollution as a result of economic and industrial growth. Decisions with regard to industry, transportation, and development will affect air pollution and health both in the short term and in the far future through climate change. We investigated the pollution health consequences of modest changes in fossil fuel use for three case study cities in Latin American: Mexico City, Mexico; Santiago, Chile; and São Paulo, Brazil. Annual levels of ozone and particulate matter were estimated from 2000 to 2020 for two emissions scenarios: (1) business-as-usual based on current emissions patterns and regulatory trends and (2) a control policy aimed at lowering air pollution emissions. The resulting air pollution levels were linked to health endpoints through concentration-response functions derived from epidemiological studies, using local studies where available. Results indicate that the air pollution control policy would have vast health benefits for each of the three cities, averting numerous adverse health outcomes including over 156,000 deaths, 4 million asthma attacks, 300,000 children's medical visits, and almost 48,000 cases of chronic bronchitis in the three cities over the 20-year period. The economic value of the avoided health impacts is roughly 21 to 165 billion Dollars (US). Sensitivity analysis shows that the control policy yields significant health and economic benefits even with relaxed assumptions with regard to population growth, pollutant concentrations for the control policy, concentration-response functions, and economic value of health outcomes. This research demonstrates the health and economic burden from air pollution in Latin American urban centers and the magnitude of health benefits from control policies.

  2. Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008.

    PubMed

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Crosby, Frederick L; Crosby, Vickie L

    2010-01-01

    In 2008, the Kilauea Volcano on the island of Hawai'i increased eruption activity and emissions of sulfurous volcanic air pollution called vog. The purpose of this study was to promptly assess for a relative increase in cases of medically diagnosed acute illnesses in an exposed Hawaiian community. Using a within-clinic retrospective cohort design, comparisons were made for visits of acute illnesses during the 14 wk prior to the increased volcanic emissions (low exposure) to 14 wk of high vog exposure when ambient sulfur dioxide was threefold higher and averaged 75 parts per billion volume per day. Logistic regression analysis estimated effect measures between the low- and high-exposure cohorts for age, gender, race, and smoking status. There were statistically significant positive associations between high vog exposure and visits for medically diagnosed cough, headache, acute pharyngitis, and acute airway problems. More than a sixfold increase in odds was estimated for visits with acute airway problems, primarily experienced by young Pacific Islanders. These findings suggest that the elevated volcanic emissions in 2008 were associated with increased morbidity of acute illnesses in age and racial subgroups of the general Hawaiian population. Continued investigation is crucial to fully assess the health impact of this natural source of sulfurous air pollution. Culturally appropriate primary- and secondary-level health prevention initiatives are recommended for populations in Hawai'i and volcanically active areas worldwide. PMID:20818536

  3. [Uncertainty in estimating short-term health effects of air pollution in small- and medium-size cities].

    PubMed

    Giannini, Simone; Zauli Sajani, Stefano; De Girolamo, Gianfranco; Goldoni, Carlo Alberto; Lauriola, Paolo

    2016-01-01

    Over the years, a growing number of small- and medium-size cities have been included in meta-analytic studies on short-term health effects of air pollution in order to increase the statistical power of these studies. This has produced an increase in the precision of meta-analytic estimates, but also a growing interest in city-specific results. As a consequence, relevant differences in the estimates have been frequently found, even for nearby cities with similar environmental and sociodemographic characteristics. This article aims at showing the variability of effect estimates for small- to medium-size cities in relation to the extent of the considered time frame, highlighting quantitatively the caution that must be taken in interpreting and communicating the results derived from short time series of data. The study was based on the analysis of the data from two cities in Emilia-Romagna Region (Northern Italy): Ravenna and Reggio Emilia. PMID:27436256

  4. Air pollution ranks as largest health risk

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    The World Health Organization (WHO) reports that 7 million people died in 2012 from air-pollution-related sicknesses, marking air pollution as the single largest environmental health risk. This finding, a result of better knowledge and assessment of the diseases, is more than double previous estimates of the risk of death from air pollution.

  5. DETERMINANTS OF HUMAN EXPOSURES TO AIR TOXICS AND ASSOCIATED HEALTH EFFECTS

    EPA Science Inventory

    Individuals are exposed to wide variety of air toxics in various indoor and outdoor microenvironments during the course of their daily activities. Sources of emissions include a wide variety of indoor and outdoor sources, including stationary and mobile sources, building material...

  6. Monitoring the effect of air pollution episodes on health care consultations and ambulance call-outs in England during March/April 2014: A retrospective observational analysis.

    PubMed

    Elliot, Alex J; Smith, Sue; Dobney, Alec; Thornes, John; Smith, Gillian E; Vardoulakis, Sotiris

    2016-07-01

    There is an increasing body of evidence illustrating the negative health effects of air pollution including increased risk of respiratory, cardiac and other morbid conditions. During March and April 2014 there were two air pollution episodes in England that occurred in close succession. We used national real-time syndromic surveillance systems, including general practitioner (GP) consultations, emergency department attendances, telehealth calls and ambulance dispatch calls to further understand the impact of these short term acute air pollution periods on the health seeking behaviour of the general public. Each air pollution period was comparable with respect to particulate matter concentrations (PM10 and PM2.5), however, the second period was longer in duration (6 days vs 3 days) and meteorologically driven 'Sahara dust' contributed to the pollution. Health surveillance data revealed a greater impact during the second period, with GP consultations, emergency department attendances and telehealth (NHS 111) calls increasing for asthma, wheeze and difficulty breathing indicators, particularly in patients aged 15-64 years. Across regions of England there was good agreement between air quality levels and health care seeking behaviour. The results further demonstrate the acute impact of short term air pollution episodes on public health and also illustrate the potential role of mass media reporting in escalating health care seeking behaviour.

  7. Monitoring the effect of air pollution episodes on health care consultations and ambulance call-outs in England during March/April 2014: A retrospective observational analysis.

    PubMed

    Elliot, Alex J; Smith, Sue; Dobney, Alec; Thornes, John; Smith, Gillian E; Vardoulakis, Sotiris

    2016-07-01

    There is an increasing body of evidence illustrating the negative health effects of air pollution including increased risk of respiratory, cardiac and other morbid conditions. During March and April 2014 there were two air pollution episodes in England that occurred in close succession. We used national real-time syndromic surveillance systems, including general practitioner (GP) consultations, emergency department attendances, telehealth calls and ambulance dispatch calls to further understand the impact of these short term acute air pollution periods on the health seeking behaviour of the general public. Each air pollution period was comparable with respect to particulate matter concentrations (PM10 and PM2.5), however, the second period was longer in duration (6 days vs 3 days) and meteorologically driven 'Sahara dust' contributed to the pollution. Health surveillance data revealed a greater impact during the second period, with GP consultations, emergency department attendances and telehealth (NHS 111) calls increasing for asthma, wheeze and difficulty breathing indicators, particularly in patients aged 15-64 years. Across regions of England there was good agreement between air quality levels and health care seeking behaviour. The results further demonstrate the acute impact of short term air pollution episodes on public health and also illustrate the potential role of mass media reporting in escalating health care seeking behaviour. PMID:27179935

  8. Air pollution and health effects: A study of medical visits among children in Santiago, Chile.

    PubMed Central

    Ostro, B D; Eskeland, G S; Sanchez, J M; Feyzioglu, T

    1999-01-01

    Many epidemiological studies conducted in the last several years have reported associations between exposure to airborne particulate matter, measured as PM10 (<10 microm in diameter), and daily morbidity and mortality. However, much of the evidence involves effects on the elderly population; there is less evidence about the effects of particulates on children, especially those under 2 years of age. To examine these issues, we conducted time-series analyses of 2 years of daily visits to primary health care clinics in Santiago, Chile, where counts were computed for either upper or lower respiratory symptoms and for cohorts of children 3-15 years of age and below age 2. Daily PM10 and ozone measurements and meteorological variables were available from instruments located in downtown Santiago. The multiple regression analysis indicates a statistically significant association between PM10 and medical visits for lower respiratory symptoms in children ages 3-15 and in children under age 2. PM10 is also associated with medical visits related to upper respiratory symptoms in the older cohort, while ozone is associated with visits related to both lower and upper respiratory symptoms in the older cohort. For children under age 2, a 50- microg/m3 change in PM10 (the approximate interquartile range) is associated with a 4-12% increase in lower respiratory symptoms. For children 3-15 years of age, the increase in lower respiratory symptoms ranges from 3 to 9% for a 50- microg/m3 change in PM10 and 5% per 50 ppb change in ozone. These magnitudes are similar to results from studies of children undertaken in Western industrial nations. PMID:9872719

  9. Health effects of tropospheric ozone: review of recent research findings and their implications to ambient air quality standards.

    PubMed

    Lippmann, M

    1993-01-01

    The U.S. Environmental Protection Agency (EPA) Administrator proposed (on August 3, 1992) to retain the current National Ambient Air Quality Standard (NAAQS) for ozone (O3) on the basis of data assembled in a draft Criteria Document (1986) and its Addendum (1988) which, together with a draft Staff Paper (1988), received public comment and review comments by the EPA's Clean Air Scientific Advisory Committee (CASAC). This paper summarizes and discusses research findings presented since 1988 which, based on the author's experience as a Chairman of CASAC, are most relevant to the promulgation of a primary (health based) NAAQS for O3. These newer findings include substantial evidence from controlled chamber exposure studies and field studies in natural settings that the current NAAQS contains no margin of safety against short-term effects that the EPA has considered to be adverse. They also include evidence from epidemiologic studies that current ambient exposures are associated with reduced baseline lung function, exacerbation of asthma and premature mortality, as well as evidence from chronic animal exposure studies at concentrations within current ambient peak levels that indicate progressive and persistent lung function and structural abnormalities. The current NAAQS, if retained, may therefore also be inadequate to protect the public from effects resulting from chronic exposure to O3.

  10. Epidemiologic investigation to identify chronic health effects of ambient air pollutants in Southern California. Phase 2. Final report

    SciTech Connect

    Peters, J.M.

    1997-09-01

    The Phase II cross-sectional study was conducted to provide early information on the possible chronic effects of air pollution in Southern California children and to determine, if effects are found, which pollutant (or pollutants) is responsible. Annual questionnaires were completed on these children which covered health history (including history of wheezing, asthma, bronchitis, pneumonia and other respiratory conditions), residential history, housing characteristics (such as heating and air conditioning practices), and history of exposure to other possibly harmful agents, such as tobacco smoke (both active and passive smoking). In addition, the usual physical and outdoor/indoor activity of each subject was ascertained. The lung function of each subject was assessed annually to determine ventilatory capacity. School absenses were recorded to determine frequency and severity of respiratory illnesses. After the development and deployment of the instrumentation, monitoring for air pollutants was conducted for the twelve communities, the schools and a sample of the subject`s residences. Ozone, PM{sub 10}, PM{sub 2.5}, NO{sub 2}, and acid vapor concentrations were determined at the community level, and indoor ozone concentrations were measured at schools. A sample of homes was measured for indoor ozone, PM{sub 10}, PM{sub 2.5}, acid and formaldehyde. The information from the questionnaire on residential history allowed for the construction of an estimated life-time exposure level for the different pollutants based on existing data. The information collected at schools and homes allowed for adjustments for exposures based on whether the subjects were indoors or outdoors.

  11. Health issues of air travel.

    PubMed

    DeHart, Roy L

    2003-01-01

    at least one physician on 85% of all its flights. Both passenger and cargo aircraft have proven to be vectors of disease in that they transport humans, mosquitoes, and other insects and animals who, in turn, transmit disease. Transmission to other passengers has occurred with tuberculosis and influenza. Vectors for yellow fever, malaria, and dengue have been identified on aircraft. Although there are numerous health issues associated with air travel they pale in comparison to the enormous benefits to the traveler, to commerce, to international affairs, and to the public's health.

  12. Application of utility theory to the valuing of air pollution-related health effects: Three proposed pilot studies on subjective judgments of asthma. Final report

    SciTech Connect

    Johnston, A.C.

    1991-04-01

    Utility under uncertainty is a field of decision theory that has received increasing attention in the field of health. The report reviews its uses during the past decade and suggests its possible use in national air quality standard setting procedures. It is common practice in standard setting to assess the likelihood of air pollution effects on sensitive populations. One such poplation, asthmatics, is selected in the report and the relationship between air pollution and asthma is reviewed. In addition, three possible pilot studies are suggested which use aspects of utility under uncertainty theory to elicit values concerning asthma health effects. The results of such studies would provide the US EPA with information for their ambient air quality standard setting and increase the awareness of the possible uses of utility theory in such applications.

  13. Knowledge of the Effects of Indoor Air Quality on Health among Women in Jordan

    ERIC Educational Resources Information Center

    Madanat, Hala; Barnes, Michael D.; Cole, Eugene C.

    2008-01-01

    Objective: To assess the extent of knowledge about symptoms relating to respiratory illnesses and home environments among a random sample of 200 urban Jordanian women. Method: This customized, validated, cross-sectional questionnaire evaluated the knowledge of these women about the association between the indoor environment and health, the…

  14. Air Pollution and Health: Emerging Information on Susceptible Populations

    EPA Science Inventory

    Outdoor air pollution poses risks to human health in communities around the world, and research on populations who are most susceptible continues to reveal new insights. Human susceptibility to adverse health effects from exposure to air pollution can be related to underlying dis...

  15. Health Effects

    MedlinePlus

    ... Chapter . Additional information regarding the health effects of climate change and references to supporting literature can be found ... globalchange.gov/engage/activities-products/NCA3/technical-inputs . Climate change, together with other natural and human-made health ...

  16. The Green Heart Initiative: Using Air Quality Information to Reduce Adverse Health Effects in Patients with Heart and Vascular Disease

    EPA Science Inventory

    The Green Heart Initiatives designed to raise public awareness about the role outdoor air pollution plays in cardiovascular health. Developed by the U.S. Environmental Protection Agency (EPA) to complement the national Million Hearts” initiative1, Green Heart seeks to teach healt...

  17. Household Smoking Behavior: Effects on Indoor Air Quality and Health of Urban Children with Asthma

    PubMed Central

    Butz, Arlene M.; Breysse, Patrick; Rand, Cynthia; Curtin-Brosnan, Jean; Eggleston, Peyton; Diette, Gregory B.; Williams, D'Ann; Bernert, John T.; Matsui, Elizabeth C.

    2011-01-01

    The goal of the study was to examine the association between biomarkers and environmental measures of second hand smoke (SHS) with caregiver, i.e. parent or legal guardian, report of household smoking behavior and morbidity measures among children with asthma. Baseline data were drawn from a longitudinal intervention for 126 inner city children with asthma, residing with a smoker. Most children met criteria for moderate to severe persistent asthma (63%) versus mild intermittent (20%) or mild persistent (17%). Household smoking behavior and asthma morbidity were compared with child urine cotinine and indoor measures of air quality including fine particulate matter (PM2.5) and air nicotine (AN). Kruskal–Wallis, Wilcoxon rank-sum and Spearman rho correlation tests were used to determine the level of association between biomarkers of SHS exposure and household smoking behavior and asthma morbidity. Most children had uncontrolled asthma (62%). The primary household smoker was the child's caregiver (86/126, 68%) of which 66 (77%) were the child's mother. Significantly higher mean PM2.5, AN and cotinine concentrations were detected in households where the caregiver was the smoker (caregiver smoker: PM2.5 μg/m3: 44.16, AN: 1.79 μg/m3, cotinine: 27.39 ng/ml; caregiver non-smoker: PM2.5: 28.88 μg/m3, AN: 0.71 μg/m3, cotinine:10.78 ng/ml, all P ≤ 0.01). Urine cotinine concentrations trended higher in children who reported 5 or more symptom days within the past 2 weeks (>5 days/past 2 weeks, cotinine: 28.1 ng/ml vs. <5 days/past 2 weeks, cotinine: 16.2 ng/ml; P = 0.08). However, environmental measures of SHS exposures were not associated with asthma symptoms. Urban children with persistent asthma, residing with a smoker are exposed to high levels of SHS predominantly from their primary caregiver. Because cotinine was more strongly associated with asthma symptoms than environmental measures of SHS exposure and is independent of the site of exposure, it remains the gold

  18. Effects of air pollution on the respiratory health of asthmatic children living in Mexico City.

    PubMed

    Romieu, I; Meneses, F; Ruiz, S; Sienra, J J; Huerta, J; White, M C; Etzel, R A

    1996-08-01

    The relation between air pollution and the exacerbation of childhood asthma was studied in a panel of 71 children (aged 5 to 7 yr) with mild asthma who resided in the northern part of mexico City. During the follow-up, ambient measures of particulate matter less than 10 microns (PM10, 24-h average) and ozone (1-h maximum) frequently exceeded the Mexican standards for these contaminants. The peak expiratory flow rate (PEFR) was strongly associated with PM10 levels and marginally with ozone levels. Respiratory symptoms (coughing, phlegm production, wheezing, and difficulty breathing) were associated with both PM10 and ozone levels. An increase of 20 micrograms/m3 of PM10 was related to an 8% increase in lower respiratory illness (LRI) among children on the same day (95% confidence interval [CI] = 1.04-1.15), and an increase of 10 micrograms/m3 in the weekly mean of particulate matter less than 2.5 microns (PM2.5) was related to a 21% increase in LRI (95% CI = 1.08-1.35). A 50 parts per billion (ppb) increase in ozone was associated with a 9% increase in LRI (95% CI = 1.03-1.15) on the same day. We concluded that children with mild asthma are affected by the high ambient levels of particulate matter and ozone observed in the northern part of Mexico City.

  19. Civil aviation, air pollution and human health

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Masiol, Mauro; Vardoulakis, Sotiris

    2015-04-01

    Air pollutant emissions from aircraft have been subjected to less rigorous control than road traffic emissions, and the rapid growth of global aviation is a matter of concern in relation to human exposures to pollutants, and consequent effects upon health. Yim et al (2015 Environ. Res. Lett. 3 034001) estimate exposures globally arising from aircraft engine emissions of primary particulate matter, and from secondary sulphates and ozone, and use concentration-response functions to calculate the impact upon mortality, which is monetised using the value of statistical life. This study makes a valuable contribution to estimating the magnitude of public health impact at various scales, ranging from local, near airport, regional and global. The results highlight the need to implement future mitigation actions to limit impacts of aviation upon air quality and public health. The approach adopted in Yim et al only accounts for the air pollutants emitted by aircraft engine exhausts. Whilst aircraft emissions are often considered as dominant near runways, there are a number of other sources and processes related to aviation that still need to be accounted for. This includes impacts of nitrate aerosol formed from NOx emissions, but probably more important, are the other airport-related emissions from ground service equipment and road traffic. By inclusion of these, and consideration of non-fatal impacts, future research will generate comprehensive estimates of impact related to aviation and airports.

  20. NMVOCs speciated emissions from mobile sources and their effect on air quality and human health in the metropolitan area of Buenos Aires, Argentina

    NASA Astrophysics Data System (ADS)

    D'Angiola, Ariela; Dawidowski, Laura; Gomez, Dario; Granier, Claire

    2014-05-01

    Since 2007, more than half of the world's population live in urban areas. Urban atmospheres are dominated by pollutants associated with vehicular emissions. Transport emissions are an important source of non-methane volatile organic compounds (NMVOCs) emissions, species of high interest because of their negative health effects and their contribution to the formation of secondary pollutants responsible for photochemical smog. NMVOCs emissions are generally not very well represented in emission inventories and their speciation presents a high level of uncertainty. In general, emissions from South American countries are still quite unknown for the international community, and usually present a high degree of uncertainty due to the lack of available data to compile emission inventories. Within the Inter-American Institute for Global Change Research (IAI, www.iai.int) projects, UMESAM (Urban Mobile Emissions in South American Megacities) and SAEMC (South American Emissions, Megacities and Climate, http://saemc.cmm.uchile.cl/), the effort was made to compute on-road transport emission inventories for South American megacities, namely Bogota, Buenos Aires, Lima, Sao Paulo and Santiago de Chile, considering megacities as urban agglomerations with more than 5 million inhabitants. The present work is a continuation of these projects, with the aim to extend the calculated NMVOCs emissions inventory into the individual species required by CTMs. The on-road mobile sector of the metropolitan area of Buenos Aires (MABA), Argentina, accounted for 70 Gg of NMVOCs emissions for 2006, without considering two-wheelers. Gasoline light-duty vehicles were responsible for 64% of NMVOCs emissions, followed by compressed natural gas (CNG) light-duty vehicles (22%), diesel heavy-duty vehicles (11%) and diesel light-duty vehicles (7%). NMVOCs emissions were speciated according to fuel and technology, employing the European COPERT (Ntziachristos & Samaras, 2000) VOCs speciation scheme for

  1. Indoor Air Pollution from Biomass Combustion and its Adverse Health Effects in Central India: An Exposure-Response Study

    PubMed Central

    Sukhsohale, Neelam D; Narlawar, Uday W; Phatak, Mrunal S

    2013-01-01

    Background: Some of the highest exposures to air pollutants in developing countries occur inside homes where biofuels are used for daily cooking. Inhalation of these pollutants may cause deleterious effects on health. Objectives: To assess the respiratory and other morbidities associated with use of various types of cooking fuels in rural area of Nagpur and to study the relationship between the duration of exposure (exposure index [EI]) and various morbidities. Materials and Methods: A total of 760 non-smoking, non-pregnant women aged 15 years and above (mean age 32.51 ΁ 14.90 years) exposed to domestic smoke from cooking fuels from an early age, working in poorly ventilated kitchen were selected and on examination presented with various health problems. Exposure was calculated as the average hours spent daily for cooking multiplied by the number of years. Symptoms were enquired by means of a standard questionnaire adopted from that of the British Medical Research Council. Lung function was assessed by the measurement of peak expiratory flow rate (PEFR). PEFR less than 80% of the predicted was considered as abnormal pulmonary function. Results and Conclusions: Symptoms like eye irritation, headache, and diminution of vision were found to be significantly higher in biomass users (P < 0.05). Abnormal pulmonary function, chronic bronchitis, and cataract in biomass users was significantly higher than other fuel users (P < 0.05). Moreover an increasing trend in prevalence of symptoms/morbid conditions was observed with increase in EI. The presence of respiratory symptoms/morbid conditions was associated with lower values of both observed and percent predicted PEFR (P < 0.05 to 0.001). Thus women exposed to biofuels smoke suffer more from health problems and respiratory illnesses when compared with other fuel users. PMID:24019602

  2. Abatement of tropospheric ozone: effects of strategies to improve air quality on public health and other sectors.

    PubMed

    Guest, C S; Morgan, P; Moss, J R; Woodward, A J; McMichael, A J

    1996-06-01

    The National Health and Medical Research Council's air quality goal for ozone in the troposphere (near the earth's surface) is 0.12 parts per million (ppm), averaged over one hour, similar to the United States standard, but less stringent than the guideline for Europe. We aimed to identify the environmental, economic and social changes that would be associated with changing the goal. Methods included literature review, economic assessments and group interviews. The group to benefit from lower exposures may include outdoor workers, school children and people not in regular day-time work indoors, because ozone is most prevalent during the daylight hours of the warmer months. A lower level could improve the yield of some crops. The causes and effects of tropospheric ozone are not appreciated except among groups with relevant commercial, industrial or scientific experience. However, the consultations identified frustration about the social problems caused by dependence on private motor vehicles. Short-term costs of compliance with a more stringent goal would fall principally on the users of transport. The value of the benefits was enough for many to support making the ozone goal more stringent, but those who required a demonstration of financial benefit (even including savings of health care costs) did not support any change to the goal. Based primarily on averted detriment to health, we recommend the more stringent level of 0.08 ppm (one-hour average) as the goal for the year 2005 in Australia and elsewhere. The addition of a goal with longer averaging time is also proposed.

  3. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    PubMed

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants.

  4. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    PubMed

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants. PMID:26906006

  5. Air Pollution and Health: Bridging the Gap from Health Outcomes: Conference Summary

    EPA Science Inventory

    Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes,” an international specialty conference sponsored by the American Association for Aerosol Research, was held to address key uncertainties in our understanding of adverse health effects related to air po...

  6. Improved population exposure factors in the meta-analysis of air pollution health effects

    EPA Science Inventory

    Numerous time-series studies have reported significant associations between ambient PM2.5 levels and increased mortality and morbidity. A recent mortality study conducted by Franklin et al. 2007 in 27 U.S. cities has reported significant heterogeneity among city-specific effect e...

  7. Health effects of air pollutants: Sulfuric acid, the old and the new

    SciTech Connect

    Amdur, M.O. )

    1989-05-01

    Data from exposure of experimental animals and human subjects to sulfuric acid presents a consistent picture of its toxicology. Effects on airway resistance in asthmatic subjects were well predicted by data obtained on guinea pigs. Sulfuric acid increases the irritant response to ozone in both rats and man. In donkeys, rabbits, and human subjects, sulfuric acid alters clearance of particles from the lung in a similar manner. These changes resemble those produced by cigarette smoke and could well lead to chronic bronchitis. Data obtained on guinea pigs indicate that very small amounts of sulfuric acid on the surface of ultrafine metal oxide aerosols produce functional, morphological, and biochemical pulmonary effects. Such particles are typical of those emitted from coal combustion and smelting operations. Sulfate is an unsatisfactory surrogate in existing epidemiology studies. Sulfuric acid measurement is a critical need in such studies. 31 references.

  8. Health effects of air pollutants: sulfuric acid, the old and the new.

    PubMed Central

    Amdur, M O

    1989-01-01

    Data from exposure of experimental animals and human subjects to sulfuric acid presents a consistent picture of its toxicology. Effects on airway resistance in asthmatic subjects were well predicted by data obtained on guinea pigs. Sulfuric acid increases the irritant response to ozone in both rats and man. In donkeys, rabbits, and human subjects, sulfuric acid alters clearance of particles from the lung in a similar manner. These changes resemble those produced by cigarette smoke and could well lead to chronic bronchitis. Data obtained on guinea pigs indicate that very small amounts of sulfuric acid on the surface of ultrafine metal oxide aerosols produce functional, morphological, and biochemical pulmonary effects. Such particles are typical of those emitted from coal combustion and smelting operations. Sulfate is an unsatisfactory surrogate in existing epidemiology studies. Sulfuric acid measurement is a critical need in such studies. PMID:2667973

  9. Air Pollution and Human Health

    ERIC Educational Resources Information Center

    Lave, Lester B.; Seskin, Eugene P.

    1970-01-01

    Reviews studies statistically relating air pollution to mortality and morbidity rates for respiratory, and cardiovascular diseases, cancer and infant mortality. Some data recalculated. Estimates 50 percent air pollution reduction will save 4.5 percent (2080 million dollars per year) of all economic loss (hospitalization, income loss) associated…

  10. Health impact of air pollution to children.

    PubMed

    Sram, Radim J; Binkova, Blanka; Dostal, Miroslav; Merkerova-Dostalova, Michaela; Libalova, Helena; Milcova, Alena; Rossner, Pavel; Rossnerova, Andrea; Schmuczerova, Jana; Svecova, Vlasta; Topinka, Jan; Votavova, Hana

    2013-08-01

    Health impact of air pollution to children was studied over the last twenty years in heavily polluted parts of the Czech Republic during. The research program (Teplice Program) analyzed these effects in the polluted district Teplice (North Bohemia) and control district Prachatice (Southern Bohemia). Study of pregnancy outcomes for newborns delivered between 1994 and 1998 demonstrated that increase in intrauterine growth retardation (IUGR) was associated with PM10 and c-PAHs exposure (carcinogenic polycyclic aromatic hydrocarbons) in the first month of gestation. Morbidity was followed in the cohort of newborns (N=1492) up to the age of 10years. Coal combustion in homes was associated with increased incidence of lower respiratory track illness and impaired early childhood skeletal growth up to the age of 3years. In preschool children, we observed the effect of increased concentrations of PM2.5 and PAHs on development of bronchitis. The Northern Moravia Region (Silesia) is characterized by high concentrations of c-PAHs due to industrial air pollution. Exposure to B[a]P (benzo[a]pyrene) in Ostrava-Radvanice is the highest in the EU. Children from this part of the city of Ostrava suffered higher incidence of acute respiratory diseases in the first year of life. Gene expression profiles in leukocytes of asthmatic children compared to children without asthma were evaluated in groups from Ostrava-Radvanice and Prachatice. The results suggest the distinct molecular phenotype of asthma bronchiale in children living in polluted Ostrava region compared to children living in Prachatice. The effect of exposure to air pollution to biomarkers in newborns was analyzed in Prague vs. Ceske Budejovice, two locations with different levels of pollution in winter season. B[a]P concentrations were higher in Ceske Budejovice. DNA adducts and micronuclei were also elevated in cord blood in Ceske Budejovice in comparison to Prague. Study of gene expression profiles in the cord blood showed

  11. Assessment of source-specific health effects associated with an unknown number of major sources of multiple air pollutants: a unified Bayesian approach.

    PubMed

    Park, Eun Sug; Hopke, Philip K; Oh, Man-Suk; Symanski, Elaine; Han, Daikwon; Spiegelman, Clifford H

    2014-07-01

    There has been increasing interest in assessing health effects associated with multiple air pollutants emitted by specific sources. A major difficulty with achieving this goal is that the pollution source profiles are unknown and source-specific exposures cannot be measured directly; rather, they need to be estimated by decomposing ambient measurements of multiple air pollutants. This estimation process, called multivariate receptor modeling, is challenging because of the unknown number of sources and unknown identifiability conditions (model uncertainty). The uncertainty in source-specific exposures (source contributions) as well as uncertainty in the number of major pollution sources and identifiability conditions have been largely ignored in previous studies. A multipollutant approach that can deal with model uncertainty in multivariate receptor models while simultaneously accounting for parameter uncertainty in estimated source-specific exposures in assessment of source-specific health effects is presented in this paper. The methods are applied to daily ambient air measurements of the chemical composition of fine particulate matter ([Formula: see text]), weather data, and counts of cardiovascular deaths from 1995 to 1997 for Phoenix, AZ, USA. Our approach for evaluating source-specific health effects yields not only estimates of source contributions along with their uncertainties and associated health effects estimates but also estimates of model uncertainty (posterior model probabilities) that have been ignored in previous studies. The results from our methods agreed in general with those from the previously conducted workshop/studies on the source apportionment of PM health effects in terms of number of major contributing sources, estimated source profiles, and contributions. However, some of the adverse source-specific health effects identified in the previous studies were not statistically significant in our analysis, which probably resulted because we

  12. [Evaluation of air hygiene in health resorts].

    PubMed

    Wunderlich, H G

    1990-10-01

    Concerning the maintenance and restoration of health in patients being subjected to health resort treatment, the spas play an important role. Therefore, legal provisions in this field establish the elimination of unfavourable environmental conditions, as air pollution, for instance. The geographical situation of a health resort exercises influences on its air quality considered in terms of hygiene. This is linked with different atmospheric and bioclimatic conditions in various regions. The major source of air pollution in a health resort is represented by housing and the communal area, by traffic on the roads and partly by industry. Instructions for measuring and evaluating of pollutants are given. Furthermore, various possibilities for improving the air quality in health resorts are mentioned.

  13. Rat Models of Cardiometabolic Diseases: Baseline Clinical Chemistries, and Rationale for their Use in Examining Air Pollution Health Effects

    EPA Science Inventory

    This is the first of a series of 8 papers examining susceptibility of various rodent cardiometabolic disease models to ozone induced health effects. Individuals with cardiovascular and metabolic diseases (CVD) are shown to be more susceptible to adverse health effects o...

  14. Review of recent studies from central and eastern Europe associating respiratory health effects with high levels of exposure to {open_quotes}traditional{close_quotes} air pollutants

    SciTech Connect

    Jedrychowski, W.

    1995-03-01

    The serious environmental problems caused by decades of Communist mismanagement of natural resources in countries of Central and Eastern Europe have been brought to light in recent years. All environmental media, including air, water, food, and soil have been burdened with toxic chemicals. Large segments of the population have been, and are now being exposed to air pollution levels exceeding guidelines established by western countries and by international health organizations. This review focuses on epidemiologic evidence regarding health effects of poor air quality in Central and Eastern Europe. It appears that short-term high levels of air pollutants (primarily particulates and SO{sub 2}) may increase mortality in sensitive parts of the population. Associations were also seen between air pollution levels and prevalence of respiratory diseases as well as lung function disturbances in adults and children. One study indicated that urban air pollution increased the risk of lung cancer. Several investigations pointed to strong interactions between risk factors. The poor scientific standard of the studies often makes it difficult to evaluate the findings. Several steps should be taken to develop environmental epidemiology in Central and Eastern Europe, including international collaboration in research projects and training. 30 refs., 1 fig., 11 tabs.

  15. Quality of indoor residential air and health

    PubMed Central

    Dales, Robert; Liu, Ling; Wheeler, Amanda J.; Gilbert, Nicolas L.

    2008-01-01

    About 90% of our time is spent indoors where we are exposed to chemical and biological contaminants and possibly to carcinogens. These agents may influence the risk of developing nonspecific respiratory and neurologic symptoms, allergies, asthma and lung cancer. We review the sources, health effects and control strategies for several of these agents. There are conflicting data about indoor allergens. Early exposure may increase or may decrease the risk of future sensitization. Reports of indoor moulds or dampness or both are consistently associated with increased respiratory symptoms but causality has not been established. After cigarette smoking, exposure to environmental tobacco smoke and radon are the most common causes of lung cancer. Homeowners can improve the air quality in their homes, often with relatively simple measures, which should provide health benefits. PMID:18625986

  16. Recognizing the impact of ambient air pollution on skin health.

    PubMed

    Mancebo, S E; Wang, S Q

    2015-12-01

    Ambient air pollution is a known public health hazard that negatively impacts non-cutaneous organs; however, our knowledge regarding the effects on skin remains limited. Current scientific evidence suggests there are four mechanisms by which ambient air pollutants cause adverse effects on skin health: (i) generation of free radicals, (ii) induction of inflammatory cascade and subsequent impairment of skin barrier, (iii) activation of the aryl hydrocarbon receptor (AhR) and (iv) alterations to skin microflora. In this review, we provide a comprehensive overview on ambient air pollutants and their relevant sources, and highlight current evidence of the effects on skin.

  17. Methodological issues in studies of air pollution and reproductive health

    EPA Science Inventory

    In the past decade there have been an increasing number of scientific studies describing possible effects of air pollution on perinatal health. These papers have mostly focused on commonly monitored air pollutants, primarily ozone (O3), particulate matter (PM), sulfur dioxide (S...

  18. Effect of air pollution and racism on ethnic differences in respiratory health among adolescents living in an urban environment.

    PubMed

    Astell-Burt, Thomas; Maynard, Maria J; Lenguerrand, Erik; Whitrow, Melissa J; Molaodi, Oarabile R; Harding, Seeromanie

    2013-09-01

    Recent studies suggest that stress can amplify the harm of air pollution. We examined whether experience of racism and exposure to particulate matter with an aerodynamic diameter of less than 2.5 µm and 10 µm (PM2.5 and PM10) had a synergistic influence on ethnic differences in asthma and lung function across adolescence. Analyses using multilevel models showed lower forced expiratory volume (FEV1), forced vital capacity (FVC) and lower rates of asthma among some ethnic minorities compared to Whites, but higher exposure to PM2.5, PM10 and racism. Racism appeared to amplify the relationship between asthma and air pollution for all ethnic groups, but did not explain ethnic differences in respiratory health.

  19. Effect of air pollution and racism on ethnic differences in respiratory health among adolescents living in an urban environment☆

    PubMed Central

    Astell-Burt, Thomas; Maynard, Maria J.; Lenguerrand, Erik; Whitrow, Melissa J.; Molaodi, Oarabile R.; Harding, Seeromanie

    2013-01-01

    Recent studies suggest that stress can amplify the harm of air pollution. We examined whether experience of racism and exposure to particulate matter with an aerodynamic diameter of less than 2.5 µm and 10 µm (PM2.5 and PM10) had a synergistic influence on ethnic differences in asthma and lung function across adolescence. Analyses using multilevel models showed lower forced expiratory volume (FEV1), forced vital capacity (FVC) and lower rates of asthma among some ethnic minorities compared to Whites, but higher exposure to PM2.5, PM10 and racism. Racism appeared to amplify the relationship between asthma and air pollution for all ethnic groups, but did not explain ethnic differences in respiratory health. PMID:23933797

  20. Effect of air pollution and racism on ethnic differences in respiratory health among adolescents living in an urban environment.

    PubMed

    Astell-Burt, Thomas; Maynard, Maria J; Lenguerrand, Erik; Whitrow, Melissa J; Molaodi, Oarabile R; Harding, Seeromanie

    2013-09-01

    Recent studies suggest that stress can amplify the harm of air pollution. We examined whether experience of racism and exposure to particulate matter with an aerodynamic diameter of less than 2.5 µm and 10 µm (PM2.5 and PM10) had a synergistic influence on ethnic differences in asthma and lung function across adolescence. Analyses using multilevel models showed lower forced expiratory volume (FEV1), forced vital capacity (FVC) and lower rates of asthma among some ethnic minorities compared to Whites, but higher exposure to PM2.5, PM10 and racism. Racism appeared to amplify the relationship between asthma and air pollution for all ethnic groups, but did not explain ethnic differences in respiratory health. PMID:23933797

  1. Health, wealth, and air pollution: advancing theory and methods.

    PubMed Central

    O'Neill, Marie S; Jerrett, Michael; Kawachi, Ichiro; Levy, Jonathan I; Cohen, Aaron J; Gouveia, Nelson; Wilkinson, Paul; Fletcher, Tony; Cifuentes, Luis; Schwartz, Joel

    2003-01-01

    The effects of both ambient air pollution and socioeconomic position (SEP) on health are well documented. A limited number of recent studies suggest that SEP may itself play a role in the epidemiology of disease and death associated with exposure to air pollution. Together with evidence that poor and working-class communities are often more exposed to air pollution, these studies have stimulated discussion among scientists, policy makers, and the public about the differential distribution of the health impacts from air pollution. Science and public policy would benefit from additional research that integrates the theory and practice from both air pollution and social epidemiologies to gain a better understanding of this issue. In this article we aim to promote such research by introducing readers to methodologic and conceptual approaches in the fields of air pollution and social epidemiology; by proposing theories and hypotheses about how air pollution and socioeconomic factors may interact to influence health, drawing on studies conducted worldwide; by discussing methodologic issues in the design and analysis of studies to determine whether health effects of exposure to ambient air pollution are modified by SEP; and by proposing specific steps that will advance knowledge in this field, fill information gaps, and apply research results to improve public health in collaboration with affected communities. PMID:14644658

  2. Heat waves observed in 2007 in Athens, Greece: synoptic conditions, bioclimatological assessment, air quality levels and health effects.

    PubMed

    Theoharatos, George; Pantavou, Katerina; Mavrakis, Anastasios; Spanou, Anastasia; Katavoutas, George; Efstathiou, Panos; Mpekas, Periklis; Asimakopoulos, Dimosthenis

    2010-02-01

    Heat waves are considered to be increasing in frequency and intensity whereas they comprise a significant weather-related cause of deaths in several countries. Two heat waves occurred in Greece in summer 2007. These severe heat waves are assessed by analyzing the prevailing synoptic conditions, evaluating human thermal discomfort, through the Heat Load Index (HL), as well as investigating its interrelation of air pollutant concentrations, and the daily air quality stress index (AQSI), in the greater region of Athens (Attica), Greece. Furthermore, the relation of HL values and the number of heatstroke and heat exhaustion events recorded in public hospitals operating within the Greek National Health System is examined. Data included radiosonde measurements from the Athens airport station (LGAT), NCEP/NCAR reanalysis data in order to obtain the position of the Subtropical Jet Stream (STJ), GDAS meteorological data for back-trajectory calculation, 10-min meteorological data from 10 Hydro-Meteorological stations and mean hourly values of nitric dioxide (NO(2)), sulphur dioxide (SO(2)) and ozone (O(3)) concentrations, measured at 7 different sites, for the last 10-day period of June and July 2007. Spearman's rank correlation test was used to observe any possible correlation between HL values and air pollutant concentrations, and AQSI values. The results demonstrated different synoptic characteristics for the heat waves of June and July. In the heat wave of June, higher ambient temperatures were recorded and greater HL values were calculated. Extreme discomfort conditions were identified in both heat waves during both day-time and night-time hours. The air pollution analysis showed poor air quality conditions for the heat wave of July, while a significant correlation was found between HL values and average hourly concentrations of O(3), NO(2) and SO(2). The number of heat-affected patients reported during the June heat wave was larger. PMID:20060520

  3. Heat waves observed in 2007 in Athens, Greece: synoptic conditions, bioclimatological assessment, air quality levels and health effects.

    PubMed

    Theoharatos, George; Pantavou, Katerina; Mavrakis, Anastasios; Spanou, Anastasia; Katavoutas, George; Efstathiou, Panos; Mpekas, Periklis; Asimakopoulos, Dimosthenis

    2010-02-01

    Heat waves are considered to be increasing in frequency and intensity whereas they comprise a significant weather-related cause of deaths in several countries. Two heat waves occurred in Greece in summer 2007. These severe heat waves are assessed by analyzing the prevailing synoptic conditions, evaluating human thermal discomfort, through the Heat Load Index (HL), as well as investigating its interrelation of air pollutant concentrations, and the daily air quality stress index (AQSI), in the greater region of Athens (Attica), Greece. Furthermore, the relation of HL values and the number of heatstroke and heat exhaustion events recorded in public hospitals operating within the Greek National Health System is examined. Data included radiosonde measurements from the Athens airport station (LGAT), NCEP/NCAR reanalysis data in order to obtain the position of the Subtropical Jet Stream (STJ), GDAS meteorological data for back-trajectory calculation, 10-min meteorological data from 10 Hydro-Meteorological stations and mean hourly values of nitric dioxide (NO(2)), sulphur dioxide (SO(2)) and ozone (O(3)) concentrations, measured at 7 different sites, for the last 10-day period of June and July 2007. Spearman's rank correlation test was used to observe any possible correlation between HL values and air pollutant concentrations, and AQSI values. The results demonstrated different synoptic characteristics for the heat waves of June and July. In the heat wave of June, higher ambient temperatures were recorded and greater HL values were calculated. Extreme discomfort conditions were identified in both heat waves during both day-time and night-time hours. The air pollution analysis showed poor air quality conditions for the heat wave of July, while a significant correlation was found between HL values and average hourly concentrations of O(3), NO(2) and SO(2). The number of heat-affected patients reported during the June heat wave was larger.

  4. Efficiency of automotive cabin air filters to reduce acute health effects of diesel exhaust in human subjects

    PubMed Central

    Rudell, B.; Wass, U.; Horstedt, P.; Levin, J. O.; Lindahl, R.; Rannug, U.; Sunesson, A. L.; Ostberg, Y.; Sandstrom, T.

    1999-01-01

    OBJECTIVES: To evaluate the efficiency of different automotive cabin air filters to prevent penetration of components of diesel exhaust and thereby reduce biomedical effects in human subjects. Filtered air and unfiltered diluted diesel exhaust (DDE) were used as negative and positive controls, respectively, and were compared with exposure to DDE filtered with four different filter systems. METHODS: 32 Healthy non- smoking subjects (age 21-53) participated in the study. Each subject was exposed six times for 1 hour in a specially designed exposure chamber: once to air, once to unfiltered DDE, and once to DDE filtered with the four different cabin air filters. Particle concentrations during exposure to unfiltered DDE were kept at 300 micrograms/m3. Two of the filters were particle filters. The other two were particle filters combined with active charcoal filters that might reduce certain gaseous components. Subjective symptoms were recorded and nasal airway lavage (NAL), acoustic rhinometry, and lung function measurements were performed. RESULTS: The two particle filters decreased the concentrations of diesel exhaust particles by about half, but did not reduce the intensity of symptoms induced by exhaust. The combination of active charcoal filters and a particle filter significantly reduced the symptoms and discomfort caused by the diesel exhaust. The most noticable differences in efficacy between the filters were found in the reduction of detection of an unpleasant smell from the diesel exhaust. In this respect even the two charcoal filter combinations differed significantly. The efficacy to reduce symptoms may depend on the abilities of the filters investigated to reduce certain hydrocarbons. No acute effects on NAL, rhinometry, and lung function variables were found. CONCLUSIONS: This study has shown that the use of active charcoal filters, and a particle filter, clearly reduced the intensity of symptoms induced by diesel exhaust. Complementary studies on vehicle

  5. Over-fitting Time Series Models of Air Pollution Health Effects: Smoothing Tends to Bias Non-Null Associations Towards the Null.

    EPA Science Inventory

    Background: Simulation studies have previously demonstrated that time-series analyses using smoothing splines correctly model null health-air pollution associations. Methods: We repeatedly simulated season, meteorology and air quality for the metropolitan area of Atlanta from cyc...

  6. AIR POLLUTION AND INFANT HEALTH: LESSONS FROM NEW JERSEY*

    PubMed Central

    Currie, Janet; Neidell, Matthew; Schmieder, Johannes

    2009-01-01

    We examine the impact of three “criteria” air pollutants on infant health in New Jersey in the 1990s by combining information about mother’s residential location from birth certificates with information from air quality monitors. Our work offers three important innovations: First, we use the exact addresses of mothers to select those closest to air monitors to improve the accuracy of air quality exposure. Second, we include maternal fixed effects to control for unobserved characteristics of mothers. Third, we examine interactions of air pollution with smoking and other risk factors for poor infant health outcomes. We find consistently negative effects of exposure to carbon monoxide, both during and after birth, with effects considerably larger for smokers and older mothers. Since automobiles are the main source of carbon monoxide emissions, our results have important implications for regulation of automobile emissions. PMID:19328569

  7. The Outdoor Air Pollution and Brain Health Workshop

    PubMed Central

    Block, Michelle L.; Elder, Alison; Auten, Rick L.; Bilbo, Staci D.; Chen, Honglei; Chen, Jiu-Chiuan; Cory-Slechta, Deborah A.; Costa, Daniel; Diaz-Sanchez, David; Dorman, David C.; Gold, Diane; Gray, Kimberly; Jeng, Hueiwang Anna; Kaufman, Joel D.; Kleinman, Michael T.; Kirshner, Annette; Lawler, Cindy; Miller, David S.; Nadadur, Sri; Ritz, Beate; Semmens, Erin O.; Tonelli, Leonardo H.; Veronesi, Bellina; Wright, Robert O.; Wright, Rosalind

    2013-01-01

    Accumulating evidence suggests that outdoor air pollution may have a significant impact on central nervous system (CNS) health and disease. To address this issue, the National Institute of Environmental Health Sciences/National Institute of Health convened a panel of research scientists that was assigned the task of identifying research gaps and priority goals essential for advancing this growing field and addressing an emerging human health concern. Here, we review recent findings that have established the effects of inhaled air pollutants in the brain, explore the potential mechanisms driving these phenomena, and discuss the recommended research priorities/approaches that were identified by the panel. PMID:22981845

  8. Review of the US Consumer Product Safety Commission's health effects and exposure assessment documents on nitrogen dioxide. Report of the Clean Air Scientific Advisory Committee. Final report

    SciTech Connect

    Not Available

    1988-05-09

    At the request of the Consumer Product Safety Commission, the Clean Air Scientific Advisory Committee conducted a review on the potential health hazards associated with exposure to 0.1 to 1.0 ppm nitrogen dioxide generated by unvented indoor combustion sources. The committee concluded that: (1) repeated peak exposures at concentrations of 0.3 ppm of nitrogen dioxide may cause health effects in some individuals; (2) the population groups that appear most sensitive to nitrogen dioxide exposure include children, chronic bronchitics, asthmatics, and individuals with emphysema; and (3) the most direct evidence regarding lung damage associated with nitrogen dioxide is obtained from animal studies.

  9. "What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health".

    PubMed

    West, J Jason; Cohen, Aaron; Dentener, Frank; Brunekreef, Bert; Zhu, Tong; Armstrong, Ben; Bell, Michelle L; Brauer, Michael; Carmichael, Gregory; Costa, Dan L; Dockery, Douglas W; Kleeman, Michael; Krzyzanowski, Michal; Künzli, Nino; Liousse, Catherine; Lung, Shih-Chun Candice; Martin, Randall V; Pöschl, Ulrich; Pope, C Arden; Roberts, James M; Russell, Armistead G; Wiedinmyer, Christine

    2016-05-17

    Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies. PMID:27010639

  10. "What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health".

    PubMed

    West, J Jason; Cohen, Aaron; Dentener, Frank; Brunekreef, Bert; Zhu, Tong; Armstrong, Ben; Bell, Michelle L; Brauer, Michael; Carmichael, Gregory; Costa, Dan L; Dockery, Douglas W; Kleeman, Michael; Krzyzanowski, Michal; Künzli, Nino; Liousse, Catherine; Lung, Shih-Chun Candice; Martin, Randall V; Pöschl, Ulrich; Pope, C Arden; Roberts, James M; Russell, Armistead G; Wiedinmyer, Christine

    2016-05-17

    Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies.

  11. Survey of indoor air monitoring services: is there a private demand for healthful indoor air quality

    SciTech Connect

    Sexton, K.

    1985-06-01

    It is becoming increasingly evident that indoor air quality in nonindustrial environments is often less healthful than outdoor air quality. The short- and long-term health consequences of indoor exposures are not well defined, yet private citizens and organizations are becoming more concerned about potential adverse health effects. Questions and complaints about indoor environmental hazards are an expanding problem for federal, state, and local health agencies. This paper describes findings from a national survey of fee-for-service companies which make indoor air measurements in nonindustrial settings. Information is presented on the makeup of these firms, the types and numbers of buildings which have been investigated, typical contaminant measurements, and associated costs. Results indicate that a substantial private demand exists for goods and services which aid building occupants in evaluating and improving indoor air quality.

  12. Impact of air quality on lung health: myth or reality?

    PubMed Central

    Marino, Elisa; Caruso, Massimo; Campagna, Davide

    2015-01-01

    The respiratory system is a primary target of the harmful effects of key air pollutants of health concern. Several air pollutants have been implicated including particulate matter (PM), ozone (O3), nitrogen dioxide (NO2) polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). It is well known that episodes of exposure to high concentrations of outdoor air pollutants can cause acute respiratory exacerbations. However, there is now increasing evidence suggesting that significant exposure to outdoor air pollutants may be also associated with development of lung cancer and with incident cases of chronic obstructive pulmonary disease (COPD) and respiratory allergies. Here we provide a critical appraisal of the impact of air pollution on respiratory diseases and discuss strategies for preventing excessive exposure to harmful air pollutants. However, the evidence that significant exposure to air pollutants is causing COPD, lung cancer or respiratory allergies is not conclusive and therefore regulators must be aware that execution of clean air policies may not be that cost-effective and may lead to unintended consequences. Addressing the lung health effects of air pollution must be considered work in progress. PMID:26336597

  13. Impact of air quality on lung health: myth or reality?

    PubMed

    Marino, Elisa; Caruso, Massimo; Campagna, Davide; Polosa, Riccardo

    2015-09-01

    The respiratory system is a primary target of the harmful effects of key air pollutants of health concern. Several air pollutants have been implicated including particulate matter (PM), ozone (O3), nitrogen dioxide (NO2) polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). It is well known that episodes of exposure to high concentrations of outdoor air pollutants can cause acute respiratory exacerbations. However, there is now increasing evidence suggesting that significant exposure to outdoor air pollutants may be also associated with development of lung cancer and with incident cases of chronic obstructive pulmonary disease (COPD) and respiratory allergies. Here we provide a critical appraisal of the impact of air pollution on respiratory diseases and discuss strategies for preventing excessive exposure to harmful air pollutants. However, the evidence that significant exposure to air pollutants is causing COPD, lung cancer or respiratory allergies is not conclusive and therefore regulators must be aware that execution of clean air policies may not be that cost-effective and may lead to unintended consequences. Addressing the lung health effects of air pollution must be considered work in progress.

  14. Impact of air quality on lung health: myth or reality?

    PubMed

    Marino, Elisa; Caruso, Massimo; Campagna, Davide; Polosa, Riccardo

    2015-09-01

    The respiratory system is a primary target of the harmful effects of key air pollutants of health concern. Several air pollutants have been implicated including particulate matter (PM), ozone (O3), nitrogen dioxide (NO2) polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). It is well known that episodes of exposure to high concentrations of outdoor air pollutants can cause acute respiratory exacerbations. However, there is now increasing evidence suggesting that significant exposure to outdoor air pollutants may be also associated with development of lung cancer and with incident cases of chronic obstructive pulmonary disease (COPD) and respiratory allergies. Here we provide a critical appraisal of the impact of air pollution on respiratory diseases and discuss strategies for preventing excessive exposure to harmful air pollutants. However, the evidence that significant exposure to air pollutants is causing COPD, lung cancer or respiratory allergies is not conclusive and therefore regulators must be aware that execution of clean air policies may not be that cost-effective and may lead to unintended consequences. Addressing the lung health effects of air pollution must be considered work in progress. PMID:26336597

  15. Methodology for assessing exposure and impacts of air pollutants in school children: Data collection, analysis and health effects - A literature review

    NASA Astrophysics Data System (ADS)

    Mejía, Jaime F.; Choy, Samantha Low; Mengersen, Kerrie; Morawska, Lidia

    2011-02-01

    -school-based exposures and co-morbidities, the air pollutant dose intake is affected by daily patterns of physical and traffic activity during and outside school hours which make it difficult to compare the contribution of school-based and non-school-based exposures to the health effect under investigation. Finally, there is strong evidence that low socioeconomic level is highly correlated with the proximity of the school to pollution sources, yet this area of socioeconomic research has been largely unexplored in the assessment of traffic emission exposure.

  16. Effects of Exposure Measurement Error in the Analysis of Health Effects from Traffic-Related Air Pollution

    PubMed Central

    Baxter, Lisa K.; Wright, Rosalind J.; Paciorek, Christopher J.; Laden, Francine; Suh, Helen H.; Levy, Jonathan I.

    2011-01-01

    In large epidemiological studies, many researchers use surrogates of air pollution exposure such as geographic information system (GIS)-based characterizations of traffic or simple housing characteristics. It is important to evaluate quantitatively these surrogates against measured pollutant concentrations to determine how their use affects the interpretation of epidemiological study results. In this study, we quantified the implications of using exposure models derived from validation studies, and other alternative surrogate models with varying amounts of measurement error, on epidemiological study findings. We compared previously developed multiple regression models characterizing residential indoor nitrogen dioxide (NO2), fine particulate matter (PM2.5), and elemental carbon (EC) concentrations to models with less explanatory power that may be applied in the absence of validation studies. We constructed a hypothetical epidemiological study, under a range of odds ratios, and determined the bias and uncertainty caused by the use of various exposure models predicting residential indoor exposure levels. Our simulations illustrated that exposure models with fairly modest R2 (0.3 to 0.4 for the previously developed multiple regression models for PM2.5 and NO2) yielded substantial improvements in epidemiological study performance, relative to the application of regression models created in the absence of validation studies or poorer-performing validation study models (e.g. EC). In many studies, models based on validation data may not be possible, so it may be necessary to use a surrogate model with more measurement error. This analysis provides a technique to quantify the implications of applying various exposure models with different degrees of measurement error in epidemiological research. PMID:19223939

  17. Indoor Air Pollution (Environmental Health Student Portal)

    MedlinePlus

    ... Gases Impact on Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters Drinking Water ... Gases Impact on Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters ...

  18. Effects of commuting mode on air pollution exposure and cardiovascular health among young adults in Taipei, Taiwan.

    PubMed

    Liu, Wen-Te; Ma, Chih-Ming; Liu, I-Jung; Han, Bor-Cheng; Chuang, Hsiao-Chi; Chuang, Kai-Jen

    2015-05-01

    The association between traffic-related air pollution and adverse cardiovascular effects has been well documented; however, little is known about whether different commuting modes can modify the effects of air pollution on the cardiovascular system in human subjects in urban areas with heavy traffic. We recruited 120 young, healthy subjects in Taipei, Taiwan. Each participant was classified with different commuting modes according to his/her own commuting style. Three repeated measurements of heart rate variability (HRV) indices {standard deviation of NN intervals (SDNN) and the square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD)}, particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM2.5), temperature, humidity and noise level were conducted for each subject during 1-h morning commutes (0900-1000 h) in four different commuting modes, including an electrically powered subway, a gas-powered bus, a gasoline-powered car, and walking. Linear mixed-effects models were used to investigate the association of PM2.5 with HRV indices. The results showed that decreases in the HRV indices were associated with increased levels of PM2.5. The personal exposure levels to PM2.5 were the highest in the walking mode. The effects of PM2.5 on cardiovascular endpoints were the lowest in the subway mode compared to the effects in the walking mode. The participants in the car and bus modes had reduced effects on their cardiovascular endpoints compared to the participants in the walking mode. We concluded that traffic-related PM2.5 is associated with autonomic alteration. Commuting modes can modify the effects of PM2.5 on HRV indices among young, healthy subjects. PMID:25638696

  19. Effects of commuting mode on air pollution exposure and cardiovascular health among young adults in Taipei, Taiwan.

    PubMed

    Liu, Wen-Te; Ma, Chih-Ming; Liu, I-Jung; Han, Bor-Cheng; Chuang, Hsiao-Chi; Chuang, Kai-Jen

    2015-05-01

    The association between traffic-related air pollution and adverse cardiovascular effects has been well documented; however, little is known about whether different commuting modes can modify the effects of air pollution on the cardiovascular system in human subjects in urban areas with heavy traffic. We recruited 120 young, healthy subjects in Taipei, Taiwan. Each participant was classified with different commuting modes according to his/her own commuting style. Three repeated measurements of heart rate variability (HRV) indices {standard deviation of NN intervals (SDNN) and the square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD)}, particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM2.5), temperature, humidity and noise level were conducted for each subject during 1-h morning commutes (0900-1000 h) in four different commuting modes, including an electrically powered subway, a gas-powered bus, a gasoline-powered car, and walking. Linear mixed-effects models were used to investigate the association of PM2.5 with HRV indices. The results showed that decreases in the HRV indices were associated with increased levels of PM2.5. The personal exposure levels to PM2.5 were the highest in the walking mode. The effects of PM2.5 on cardiovascular endpoints were the lowest in the subway mode compared to the effects in the walking mode. The participants in the car and bus modes had reduced effects on their cardiovascular endpoints compared to the participants in the walking mode. We concluded that traffic-related PM2.5 is associated with autonomic alteration. Commuting modes can modify the effects of PM2.5 on HRV indices among young, healthy subjects.

  20. a Survey on Health Effects due to Aircraft Noise on Residents Living around Kadena Air Base in the Ryukyus

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Yamamoto, T.; Taira, K.; Ito, A.; Nakasone, T.

    1997-08-01

    Results are reported of a questionnaire survey relating to a scale for general health, the Todai Health Index, in a town, bordering on a large U.S. airbase in the Ryukyus. The level of aircraft noise exposure, in the town, expressed by WECPNL, ranges from 75 to 95 or more. The sample size was 1200, including a 200 person “control” group. Results of the analysis of the responses in terms of the noise exposure suggest that the exposed residents suffer psychosomatic effects, especially perceived psychological disorders, due to the noise exposure to military aircraft, and that such responses increase with the level of noise exposure.

  1. Respiratory effects of indoor air pollution

    SciTech Connect

    Samet, J.M.; Marbury, M.C.; Spengler, J.D.

    1987-05-01

    Since the early 1970s, the health effects of indoor air pollution have been investigated with increasing intensity. A large body of literature is now available on diverse aspects of indoor air pollution: sources, concentrations, health effects, engineering, and policy. This article provides a selective summary of this new information with an emphasis on health effects relevant to health care practitioners concerned primarily with immunologically mediated respiratory diseases. We address exposures associated with acute and chronic respiratory effects: tobacco smoke, nitrogen dioxide, wood smoke, and formaldehyde. The article also describes the diverse health problems experienced by workers in newer sealed office buildings. The importance of indoor concentrations in determining personal exposures to pollutants is emphasized.

  2. Indoor air quality. [Health hazards due to energy conservation measures

    SciTech Connect

    Hollowell, C.D.

    1981-06-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced ventilation in buildings may significantly increase exposure to indoor air pollution and perhaps have adverse effects on occupant health and comfort. Preliminary findings suggest that reduced ventilation may adversely affect indoor air quality unless appropriate control strategies are undertaken. The strategies used to control indoor air pollution depend on the specific pollutant or class of pollutants encountered, and differ somewhat depending on whether the application is to an existing building or a new building under design and construction. Whenever possible, the first course of action is prevention or reduction of pollutant emissions at the source. In most buildings, control measures involve a combination of prevention, removal, and suppression. Common sources of indoor air pollution in buildings, the specific pollutants emitted by each source, the potential health effects, and possible control techniques are discussed.

  3. Health effects of acute exposure to air pollution. Part I: Healthy and asthmatic subjects exposed to diesel exhaust.

    PubMed

    Holgate, Stephen T; Sandström, Thomas; Frew, Anthony J; Stenfors, Nikolai; Nördenhall, Charlotta; Salvi, Sundeep; Blomberg, Anders; Helleday, Ragnberth; Söderberg, Margaretha

    2003-12-01

    The purpose of this study was to assess the impact of short-term exposure to diluted diesel exhaust on inflammatory parameters in human airways. We previously exposed control subjects for 1 hour to a high ambient concentration of diesel exhaust (particle concentration 300 pg/m3--a level comparable with that found in North Sea ferries, highway underpasses, etc). Although these exposures did not have any measurable effect on standard indices of lung function, there was a marked neutrophilic inflammatory response in the airways accompanied by increases in blood neutrophil and platelet counts. Endothelial adhesion molecules were upregulated, and the expression of interleukin 8 messenger RNA (IL-8 mRNA*) was increased in a pattern consistent with neutrophilia. Individuals with asthma have inflamed airways and are clinically more sensitive to air pollutants than are control subjects. The present study was designed to assess whether this clinical sensitivity can be explained by acute neutrophilic inflammation or an increase in allergic airway inflammation resulting from diesel exhaust exposure. For this study, we used a lower concentration of diesel exhaust (100 microg/m3 PM10) for a 2-hour exposure. At this concentration, both the control subjects and those with asthma demonstrated a modest but statistically significant increase in airway resistance following exposure to diesel exhaust. This increase in airway resistance was associated with an increased number of neutrophils in the bronchial wash (BW) fluid obtained from control subjects (median after diesel exhaust 22.0 vs median after air 17.2; P = 0.015), as well as an increase in lymphocytes obtained through bronchoalveolar lavage (BAL) (15.0% after diesel exhaust vs 12.3% after air; P = 0.017). Upregulation of the endothelial adhesion molecule P-selectin was noted in bronchial biopsy tissues from control subjects (65.4% of vessels after diesel exhaust vs 52.5% after air). There was also a significant increase in IL

  4. Climate Change, Air Pollution, and the Economics of Health Impacts

    NASA Astrophysics Data System (ADS)

    Reilly, J.; Yang, T.; Paltsev, S.; Wang, C.; Prinn, R.; Sarofim, M.

    2003-12-01

    Climate change and air pollution are intricately linked. The distinction between greenhouse substances and other air pollutants is resolved at least for the time being in the context of international negotiations on climate policy through the identification of CO2, CH4, N2O, SF6 and the per- and hydro- fluorocarbons as substances targeted for control. Many of the traditional air pollutant emissions including for example CO, NMVOCs, NOx, SO2, aerosols, and NH3 also directly or indirectly affect the radiative balance of the atmosphere. Among both sets of gases are precursors of and contributors to pollutants such as tropopospheric ozone, itself a strong greenhouse gas, particulate matter, and other pollutants that affect human health. Fossil fuel combustion, production, or transportation is a significant source for many of these substances. Climate policy can thus affect traditional air pollution or air pollution policy can affect climate. Health effects of acute or chronic exposure to air pollution include increased asthma, lung cancer, heart disease and bronchitis among others. These, in turn, redirect resources in the economy toward medical expenditures or result in lost labor or non-labor time with consequent effects on economic activity, itself producing a potential feedback on emissions levels. Study of these effects ultimately requires a fully coupled earth system model. Toward that end we develop an approach for introducing air pollution health impacts into the Emissions Prediction and Policy Analysis (EPPA) model, a component of the MIT Integrated Global Systems Model (IGSM) a coupled economics-chemistry-atmosphere-ocean-terrestrial biosphere model of earth systems including an air pollution model resolving the urban scale. This preliminary examination allows us to consider how climate policy affects air pollution and consequent health effects, and to study the potential impacts of air pollution policy on climate. The novel contribution is the effort to

  5. The effects of air pollution on respiratory health in susceptible populations: a multilevel study in Bucaramanga, Colombia.

    PubMed

    Rodriguez-Villamizar, Laura Andrea; Castro-Ortiz, Henry; Rey-Serrano, Juan Jose

    2012-04-01

    We conducted a cohort study to investigate the association between exposure to three different levels of outdoor air pollution and incidence of respiratory symptoms in a population with chronic cardiovascular and respiratory disease. We accompanied 756 participants for a period of six months through the maintenance of a daily record of symptoms and clinic visits. The symptoms with highest incidence rates were sneezing and hacking cough. Multivariate analysis showed that incidence of total symptoms was 60% and 74% lower in areas with medium and low levels of pollution compared to areas with high levels of pollution. These results suggest that negative respiratory effects occur at concentrations of particulate matter PM10 > 60 ug/m(3). PMID:22488320

  6. Indoor air and human health: major indoor air pollutants and their health implications

    SciTech Connect

    Not Available

    1984-01-01

    This publication is a collection of abstracts of papers presented at the Indoor Air and Human Health symposium. Session titles include: Radon, Microorganisms, Passive Cigarette Smoke, Combustion Products, Organics, and Panel and Audience Discussion.

  7. Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Air Pollution and Health: a European Approach.

    PubMed

    Atkinson, R W; Anderson, H R; Sunyer, J; Ayres, J; Baccini, M; Vonk, J M; Boumghar, A; Forastiere, F; Forsberg, B; Touloumi, G; Schwartz, J; Katsouyanni, K

    2001-11-15

    The APHEA 2 project investigated short-term health effects of particles in eight European cities. In each city associations between particles with an aerodynamic diameter of less than 10 microm (PM(10)) and black smoke and daily counts of emergency hospital admissions for asthma (0-14 and 15-64 yr), chronic obstructive pulmonary disease (COPD), and all-respiratory disease (65+ yr) controlling for environmental factors and temporal patterns were investigated. Summary PM(10) effect estimates (percentage change in mean number of daily admissions per 10 microg/m(3) increase) were asthma (0-14 yr) 1.2% (95% CI: 0.2, 2.3), asthma (15-64 yr) 1.1% (0.3, 1.8), and COPD plus asthma and all-respiratory (65+ yr) 1.0% (0.4, 1.5) and 0.9% (0.6, 1.3). The combined estimates for Black Smoke tended to be smaller and less precisely estimated than for PM(10). Variability in the sizes of the PM(10) effect estimates between cities was also investigated. In the 65+ groups PM(10) estimates were positively associated with annual mean concentrations of ozone in the cities. For asthma admissions (0-14 yr) a number of city-specific factors, including smoking prevalence, explained some of their variability. This study confirms that particle concentrations in European cities are positively associated with increased numbers of admissions for respiratory diseases and that some of the variation in PM(10) effect estimates between cities can be explained by city characteristics.

  8. Effect of Traffic-Related Air Pollution on Allergic Disease: Results of the Children's Health and Environmental Research

    PubMed Central

    Jung, Dal-Young; Kim, Hwan-Cheol; Kim, Jeong-Hee; Hwang, Seung-Sik; Lee, Ji-Young; Kim, Byoung-Ju; Hong, Yun-Chul; Hong, Soo-Jong; Kwon, Ho-Jang

    2015-01-01

    Purpose This study evaluated the relationship of living near to main roads to allergic diseases, airway hyperresponsiveness (AHR), allergic sensitization, and lung function in Korean children. Methods A total of 5,443 children aged 6-14 years from 33 elementary schools in 10 cities during 2005-2006 were included in a baseline survey of the Children's Health and Environmental Research. We assessed association of traffic-related air pollution (TAP) exposure with the distance to the nearest main road, total road length of main roads and the proportion of the main road area within the 200-m home area. Results Positive exposure-response relationships were found between the length of the main road within the 200-m home area and lifetime wheeze (adjusted prevalence ratio [PR] for comparison of the longest to the shortest length categories=1.24; 95% CIs, 1.04-1.47; P for trend=0.022) and diagnosed asthma (PR=1.42; 95% CIs, 1.08-1.86; P for trend=0.011). Living less than 75 m from the main road was significantly associated with lifetime allergic rhinitis (AR), past-year AR symptoms, diagnosed AR, and treated AR. The distance to the main road (P for trend=0.001), the length of the main road (P for trend=0.041), and the proportion of the main road area (P for trend=0.006) had an exposure-response relationship with allergic sensitization. A strong inverse association was observed between residential proximity to the main load and lung function, especially FEV1, FEV1/FVC, and FEF25-75. The length of the main road and the proportion of the main road area were associated with reduced FEV1 in schoolchildren. Conclusions The results of this study suggest that exposure to traffic-related air pollution may be associated with increased risk of asthma, AR, and allergic sensitization, and with reduced lung function in schoolchildren. PMID:25936911

  9. Chronic Effects of Air Pollution are Probably Overestimated.

    PubMed

    Boffetta, Paolo; La Vecchia, Carlo; Moolgavkar, Suresh

    2015-05-01

    Inappropriate measures of exposure, including inadequate consideration of latency in the analysis of chronic effects of air pollution, may lead to overestimation of the impact of air pollution on health effects. A relatively simple way to check the plausibility of results on chronic effects of air pollution would be to report in parallel the smoking-associated risks.

  10. Long-term health effects of particulate and other ambient air pollution: research can progress faster if we want it to.

    PubMed Central

    Künzli, N; Tager, I B

    2000-01-01

    There is need for the assessment of long-term effects of outdoor air pollution. In fact, a considerable part of the large amount of U.S. research money that has been dedicated to investigate effects of ambient particulate pollution should be invested to address long-term effects. Studies that follow the health status of large numbers of subjects across long periods of time (i.e., cohort studies) should be considered the key research approach to address these questions. However, these studies are time consuming and expensive. We propose efficient strategies to address these questions in less time. Apart from long-term continuation of the few ongoing air pollution cohort studies in the United States, data from large cohorts that were established decades ago may be efficiently used to assess cardiorespiratory effects and to target research on detection of the most susceptible subgroups in the population, which may be related to genetic, molecular, behavioral, societal, and/or environmental factors. This approach will be efficient only if the available air pollution monitoring data will be used to spatially model long-term outdoor pollution concentrations across a given country for each year with available pollution data. Such concentration maps will allow researchers to impute outdoor air pollution levels at any residential location, independent of the location of monitors. Exposure imputation may be based on residential location(s) of participants in long-standing cardiorespiratory cohort studies, which can be matched to pollutant levels using geographic information systems. As shown in European impact assessment studies, such maps may be derived relatively quickly. PMID:11049809

  11. Air pollution threatens the health of children in China

    SciTech Connect

    Millman, A.; Tang, D.L.; Perera, F.P.

    2008-09-15

    China's rapid economic development has come at the cost of severe environmental degradation, most notably from coal combustion. Outdoor air pollution is associated with >300 000 deaths, 20 million cases of respiratory illness, and a health cost of >500 billion renminbi (>3% of gross domestic product) annually. The young are particularly susceptible to air pollution, yet there has been only limited recognition of its effects on children's health and development. To fill this gap, we reviewed relevant published environmental studies, biomedical and molecular/epidemiologic research, and economic and policy analyses. China relies on coal for about 70% to 75% of its energy needs, consuming 1.9 billion tons of coal each year. In addition to CO{sub 2}, the major greenhouse gas, coal burning in China emits vast quantities of particulate matter, polycyclic aromatic hydrocarbons, sulfur dioxide, arsenic, and mercury. Seventy percent of Chinese households burn coal or biomass for cooking and heating, which contaminates indoor air. Adverse effects of combustion-related air pollution include reduced fetal and child growth, pulmonary disease including asthma, developmental impairment, and increased risk of cancer. A prospective molecular epidemiologic study of newborns in Chongqing has demonstrated direct benefits to children's health and development from the elimination of a coal-burning plant. Recognition of the full health and economic cost of air pollution to Chinese children and the benefits of pollution reduction should spur increased use of renewable energy, energy efficiency, and clean-fuel vehicles. This is a necessary investment for China's future.

  12. The Air Force health study: an epidemiologic retrospective.

    PubMed

    Buffler, Patricia A; Ginevan, Michael E; Mandel, Jack S; Watkins, Deborah K

    2011-09-01

    In 1979, the U.S. Air Force announced that an epidemiologic study would be undertaken to determine whether the Air Force personnel involved in Operation Ranch Hand-the program responsible for herbicide spraying in Vietnam-had experienced adverse health effects as a result of that service. In January 1982 the Air Force Health Study (AFHS) protocol was approved and the 20 year matched cohort study consisting of independent mortality, morbidity and reproductive health components was initiated. This controversial study has been criticized regarding the study's potential scientific limitations as well as some of the administrative aspects of its conduct. Now, almost 30 years since the implementation of the AFHS and nearly a decade since the final follow up examinations, an appraisal of the study indicates that the results of the AFHS do not provide evidence of disease in the Ranch Hand veterans caused by their elevated levels of exposure to Agent Orange. PMID:21441038

  13. Urban air pollution and health inequities: a workshop report.

    PubMed Central

    2001-01-01

    Over the past three decades, an array of legislation with attendant regulations has been implemented to enhance the quality of the environment and thereby improve the public's health. Despite the many beneficial changes that have followed, there remains a disproportionately higher prevalence of harmful environmental exposures, particularly air pollution, for certain populations. These populations most often reside in urban settings, have low socioeconomic status, and include a large proportion of ethnic minorities. The disparities between racial/ethnic minority and/or low-income populations in cities and the general population in terms of environmental exposures and related health risks have prompted the "environmental justice" or "environmental equity" movement, which strives to create cleaner environments for the most polluted communities. Achieving cleaner environments will require interventions based on scientific data specific to the populations at risk; however, research in this area has been relatively limited. To assess the current scientific information on urban air pollution and its health impacts and to help set the agenda for immediate intervention and future research, the American Lung Association organized an invited workshop on Urban Air Pollution and Health Inequities held 22-24 October 1999 in Washington, DC. This report builds on literature reviews and summarizes the discussions of working groups charged with addressing key areas relevant to air pollution and health effects in urban environments. An overview was provided of the state of the science for health impacts of air pollution and technologies available for air quality monitoring and exposure assessment. The working groups then prioritized research needs to address the knowledge gaps and developed recommendations for community interventions and public policy to begin to remedy the exposure and health inequities. PMID:11427385

  14. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects among Children with Asthma in Detroit, Michigan

    EPA Science Inventory

    Vehicular traffic is a major source of ambient air pollution in urban areas, and traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter under 2.5 microns in diameter (PM2.5) and diesel exhaust emissions, have been associated with...

  15. [Short-term modeling of the effect of air pollution on health. Example: SO2 and total mortality, Paris 1987-1999].

    PubMed

    Le Tertre, A; Quénel, P; Medina, S; Le Moullec, Y; Festy, B; Ferry, R; Dab, W

    1998-09-01

    Since 1990, many epidemiological time series studies have provided evidence that ambient air pollution levels have adverse health effects. The ERPURS study (Evaluation des Risques de la Pollution Urbaine pour la Santé) has permitted to quantify this impact in the Paris region. This study was based on an ecological time series approach. We present, step by step, the method used, illustrated by an example: association between SO2 levels and total mortality (excluding external causes), 1987-1990. Mortality modelling has taken trend into account by a linear term, seasons by trigonometrics functions sum, day of the week effects by 6 dummy variables, temperature peak by a dummy variable, influenza epidemics by appropriate variables, mean temperature by linear and quadratic terms, relative humidity by a linear term. SO2 1 day lag was introduced in the model by a linear term. The central issue is the control of seasonal variations and long term trend. An inadequate control can lead to some spurious results. The relationship between mortality and weather variables is generally nonlinear. The use of statistical and graphical diagnostics, are necessary at each step. Time series analysis are important tools to study short term relationship between air pollutants and health indicators. The method applied in the ERPURS study is only one of the possible approaches. Whatever the method used, it is important to understand the underlying process of the data and to control for confounding factors with the appropriate method for the temporal structure of the data. PMID:9805736

  16. A review of low-level air pollution and adverse effects on human health: implications for epidemiological studies and public policy

    PubMed Central

    Olmo, Neide Regina Simões; do Nascimento Saldiva, Paulo Hilário; Braga, Alfésio Luís Ferreira; Lin, Chin An; de Paula Santos, Ubiratan; Pereira, Luiz Alberto Amador

    2011-01-01

    The aim of this study was to review original scientific articles describing the relationship between atmospheric pollution and damage to human health. We also aimed to determine which of these studies mentioned public policy issues. Original articles relating to atmospheric pollution and human health published between 1995 and 2009 were retrieved from the PubMed database and analyzed. This study included only articles dealing with atmospheric pollutants resulting primarily from vehicle emissions. Three researchers were involved in the final selection of the studies, and the chosen articles were approved by at least two of the three researchers. Of the 84 non-Brazilian studies analyzed, 80 showed an association between atmospheric pollution and adverse effects on human health. Moreover, 66 showed evidence of adverse effects on human health, even at levels below the permitted emission standards. Three studies mentioned public policies aimed at changing emission standards. Similarly, the 29 selected Brazilian studies reported adverse associations with human health, and 27 showed evidence of adverse effects even at levels below the legally permitted emission standards. Of these studies, 16 mentioned public policies aimed at changing emission standards. Based on the Brazilian and non-Brazilian scientific studies that have been conducted, it can be concluded that, even under conditions that are compliant with Brazilian air quality standards, the concentration of atmospheric pollutants in Brazil can negatively affect human health. However, as little discussion of this topic has been generated, this finding demonstrates the need to incorporate epidemiological evidence into decisions regarding legal regulations and to discuss the public policy implications in epidemiological studies. PMID:21655765

  17. Does air pollution pose a public health problem for New Zealand?

    PubMed

    Scoggins, Amanda

    2004-02-01

    Air pollution is increasingly documented as a threat to public health and a major focus of regulatory activity in developed and developing countries. Air quality indicators suggest New Zealand has clean air relative to many other countries. However, media releases such as 'Christchurch wood fires pump out deadly smog' and 'Vehicle pollution major killer' have sparked public health concern regarding exposure to ambient air pollution, especially in anticipation of increasing emissions and population growth. Recent evidence is presented on the effects of air quality on health, which has been aided by the application of urban airshed models and Geographic Information Systems (GIS). Future directions for research into the effects of air quality on health in New Zealand are discussed, including a national ambient air quality management project: HAPINZ--Health and Air Pollution in New Zealand. PMID:15108741

  18. Does air pollution pose a public health problem for New Zealand?

    PubMed

    Scoggins, Amanda

    2004-02-01

    Air pollution is increasingly documented as a threat to public health and a major focus of regulatory activity in developed and developing countries. Air quality indicators suggest New Zealand has clean air relative to many other countries. However, media releases such as 'Christchurch wood fires pump out deadly smog' and 'Vehicle pollution major killer' have sparked public health concern regarding exposure to ambient air pollution, especially in anticipation of increasing emissions and population growth. Recent evidence is presented on the effects of air quality on health, which has been aided by the application of urban airshed models and Geographic Information Systems (GIS). Future directions for research into the effects of air quality on health in New Zealand are discussed, including a national ambient air quality management project: HAPINZ--Health and Air Pollution in New Zealand.

  19. Air Quality Index (AQI) -- A Guide to Air Quality and Your Health

    MedlinePlus

    ... the AQI value, the greater the level of air pollution and the greater the health concern. For example, ... to 50. Air quality is considered satisfactory, and air pollution poses little or no risk. "Moderate" AQI is ...

  20. Exposures and health outcomes from outdoor air pollutants in China.

    PubMed

    Chen, Bingheng; Hong, Chuanjie; Kan, Haidong

    2004-05-20

    China's economy has developed rapidly in the recent two decades. Economic development is usually linked with increase in energy consumption and consumption emissions, which in turn leads to worsening of air quality. Due to the adoption of various control measures, the ambient air quality in a number of large cities in China has actually improved. The ambient air TSP and SO(2) levels in China have been decreasing in the last decade. However, ambient air NO(x) level has been increasing due to the increased number of motor vehicles. Coal has been and is still the major source of energy in China. Ambient air pollution in large cities has changed from the conventional coal combustion type to the mixed coal combustion/motor vehicle emission type. A series of epidemiological studies on air pollution and health effects ranging from mortality, morbidity to functional changes have been conducted in China. The results showed that ambient air pollution had acute and chronic effects on mortality, morbidity, hospital admissions, clinical symptoms, lung function changes, etc. The exposure-response relationship between air pollutants and daily mortality, morbidity, hospital admissions, and lung function has been established accordingly.

  1. Urban city transportation mode and respiratory health effect of air pollution: a cross-sectional study among transit and non-transit workers in Nigeria

    PubMed Central

    Ekpenyong, Chris E; Ettebong, E O; Akpan, E E; Samson, T K; Daniel, Nyebuk E

    2012-01-01

    Objectives To assess the respiratory health effect of city ambient air pollutants on transit and non-transit workers and compare such effects by transportation mode, occupational exposure and sociodemographic characteristics of participants. Design Cross-sectional, randomised survey. Setting A two primary healthcare centre survey in 2009/2010 in Uyo metropolis, South-South Nigeria. Participants Of the 245 male participants recruited, 168 (50 taxi drivers, 60 motorcyclists and 58 civil servants) met the inclusion criteria. These include age 18–35 years, a male transit worker or civil servant who had worked within Uyo metropolis for at least a year prior to the study, and had no history of respiratory disorders/impairment or any other debilitating illness. Main outcome measure The adjusted ORs for respiratory function impairment (force vital capacity (FVC) and/or FEV1<80% predicted or FEV1/FVC<70% predicted) using Global Initiative for Chronic Obstructive Lung Diseases (GOLD) and National Institute for Health and Clinical Excellence (NICE) criteria were calculated. In order to investigate specific occupation-dependent respiratory function impairment, a comparison was made between the ORs for respiratory impairment in the three occupations. Adjustments were made for some demographic variables such as age, BMI, area of residence, etc. Results Exposure to ambient air pollution by occupation and transportation mode was independently associated with respiratory functions impairment and incident respiratory symptoms among participants. Motorcyclists had the highest effect, with adjusted OR 3.10, 95% CI 0.402 to 16.207 for FVC<80% predicted and OR 1.71, 95% CI 0.61 to 4.76 for FEV1/FVC<70% predicted using GOLD and NICE criteria. In addition, uneducated, currently smoking transit workers who had worked for more than 1 year, with three trips per day and more than 1 h transit time per trip were significantly associated with higher odds for respiratory function

  2. Survey of Ambient Air Pollution Health Risk Assessment Tools.

    PubMed

    Anenberg, Susan C; Belova, Anna; Brandt, Jørgen; Fann, Neal; Greco, Sue; Guttikunda, Sarath; Heroux, Marie-Eve; Hurley, Fintan; Krzyzanowski, Michal; Medina, Sylvia; Miller, Brian; Pandey, Kiran; Roos, Joachim; Van Dingenen, Rita

    2016-09-01

    Designing air quality policies that improve public health can benefit from information about air pollution health risks and impacts, which include respiratory and cardiovascular diseases and premature death. Several computer-based tools help automate air pollution health impact assessments and are being used for a variety of contexts. Expanding information gathered for a May 2014 World Health Organization expert meeting, we survey 12 multinational air pollution health impact assessment tools, categorize them according to key technical and operational characteristics, and identify limitations and challenges. Key characteristics include spatial resolution, pollutants and health effect outcomes evaluated, and method for characterizing population exposure, as well as tool format, accessibility, complexity, and degree of peer review and application in policy contexts. While many of the tools use common data sources for concentration-response associations, population, and baseline mortality rates, they vary in the exposure information source, format, and degree of technical complexity. We find that there is an important tradeoff between technical refinement and accessibility for a broad range of applications. Analysts should apply tools that provide the appropriate geographic scope, resolution, and maximum degree of technical rigor for the intended assessment, within resources constraints. A systematic intercomparison of the tools' inputs, assumptions, calculations, and results would be helpful to determine the appropriateness of each for different types of assessment. Future work would benefit from accounting for multiple uncertainty sources and integrating ambient air pollution health impact assessment tools with those addressing other related health risks (e.g., smoking, indoor pollution, climate change, vehicle accidents, physical activity).

  3. Use of health information in air pollution health research: past successes and emerging needs.

    PubMed

    Thurston, George D; Bekkedal, Marni Y V; Roberts, Eric M; Ito, Kazuhiko; Pope, C Arden; Glenn, Barbara S; Ozkaynak, Halûk; Utell, Mark J

    2009-01-01

    In September 2006, the US Environmental Protection Agency and the US Centers for Disease Control (CDC) co-organized a symposium on "Air Pollution Exposure and Health." The main objective of this symposium was to identify opportunities for improving the use of exposure and health information in future studies of air pollution health effects. This paper deals with the health information needs of such studies. We begin with a selected review of different types of health data and how they were used in previous epidemiologic studies of health effects of ambient particulate matter (PM). We then examine the current and emerging information needs of the environmental health community, dealing with PM and other air pollutants of health concern. We conclude that the past use of routinely collected health data proved to be essential for activities to protect public health, including the identification and evaluation of health hazards by air pollution research, setting standards for criteria pollutants, surveillance of health outcomes to identify incidence trends, and the more recent CDC environmental public health tracking program. Unfortunately, access to vital statistics records that have informed such pivotal research has recently been curtailed sharply, threatening the continuation of the type of research necessary to support future standard setting and research on emerging exposure and health problems (e.g. asthma, multiple sclerosis, diabetes, and others), as well as our ability to evaluate the efficacy of regulatory and other prevention activities. A comprehensive devoted effort, perhaps new legislation, will be needed to address the standardization, centralization, and sharing of data sets, as well as to harmonize the interpretation of confidentiality and privacy protections across jurisdictions. These actions, combined with assuring researchers and public health practitioners appropriate access to data for evaluation of environmental risks, will be essential for the

  4. Particulate air pollution and health effects for cardiovascular and respiratory causes in Temuco, Chile: a wood-smoke-polluted urban area.

    PubMed

    Sanhueza, Pedro A; Torreblanca, Monica A; Diaz-Robles, Luis A; Schiappacasse, L Nicolas; Silva, Maria P; Astete, Teresa D

    2009-12-01

    Temuco is one of the most highly wood-smoke-polluted cities in the world. Its population in 2004 was 340,000 inhabitants with 1587 annual deaths, of which 24% were due to cardiovascular and 11% to respiratory causes. For hospital admissions, cardiovascular diseases represented 6% and respiratory diseases 13%. Emergency room visits for acute respiratory infections represented 28%. The objective of the study presented here was to determine the relationship between air pollution from particulate matter less than or equal to 10 microm in aerodynamic diameter (PM10; mostly PM2.5, or particulate matter <2.5 microm in aerodynamic diameter) and health effects measured as the daily number of deaths, hospital admissions, and emergency room visits for cardiovascular, respiratory, and acute respiratory infection (ARI) diseases. The Air Pollution Health Effects European Approach (APHEA2) protocol was followed, and a multivariate Poisson regression model was fitted, controlling for trend, seasonality, and confounders for Temuco during 1998-2006. The results show that PM10 had a significant association with daily mortality and morbidity, with the elderly (population >65 yr of age) being the group that presented the greatest risk. The relative risk for respiratory causes, with an increase of 100 microg/m3 of PM10, was 1.163 with a 95% confidence interval (CI) of 1.057-1.279 for mortality, 1.137 (CI 1.096-1.178) for hospital admissions, and 1.162 for ARI (CI 1.144-1.181). There is evidence in Temuco of positive relationships between ambient particulate levels and mortality, hospital admissions, and ARI for cardiovascular and respiratory diseases. These results are consistent with those of comparable studies in other similar cities where wood smoke is the most important air pollution problem.

  5. Epidemiologic investigation of health effects in Air Force personnel following exposure to herbicides. Summary mortality update, 1989. Interim report 1979-1987

    SciTech Connect

    Wolfe, W.H.; Michalek, J.E.; Miner, J.C.

    1989-04-17

    The purpose of the Air Force Health Study is to determine whether those individuals involved in the spraying of herbicides in Vietnam during the Ranch Hand operation have experienced any adverse health effects as a result of their participation in that program. The study is designed to evaluate both the mortality (death) and morbidity (disease) in these individuals over a 20-year beginning in 1982. The Baseline Mortality Report was released in June 1983, the Baseline Morbidity Report in February 1984. Follow-up mortality reports were released in 1984, 1985, and 1986. This study has not demonstrated health effects which can be conclusively attributed to herbicide or dioxin exposure. This report contains analyses of cumulative deaths occurring up to 31 December 1987. The overall cumulative mortality of the Ranch Hands remains statistically indistinguishable from that of both their matched Comparisons and the entire Comparison, population, although there is a statistically significant increasing trend in post-1983 death rates among Ranch Hand flying officers and a statistically significant increase in Ranch Hand digestive system deaths relative to the Comparison population; these findings are not suggestive of a herbicide effect. Ranch Hands are equivalent to all Comparisons in cumulative accidental, malignant neoplasm and circulatory system mortality.

  6. [Air pollution and health - counselling options for physicians].

    PubMed

    Künzli, Nino; Kutlar, Meltem

    2013-12-01

    While air quality is usually an environmental condition patients can little do about, there are a few options and decisions that modify the personal exposure and risk. Location - in particular the residence - time and activity are the key determinants of personal exposure. Traffic-related primary pollutants such as ultrafine particles or diesel soot are highly concentrated along busy roads but reach urban background concentrations already some 100 - 200 meters off. Morbidity and mortality follow this spatial pattern, which is usually attributed to these pollutants. Depending on ventilation systems, indoor exposure can be substantially lower. Studies done in China confirm that the use of face masks in extremely polluted cities can reduce exposure, resulting in lower inflammatory and cardiovascular responses. A diet rich in antioxidants appears to also reduce some of the oxidative and inflammatory effects of air pollution and treatments such as leucotrien receptor antagonists or statins pay interfere with some of the adverse effects of pollution. However, the benefits, if any, are unlikely to be large. A quantitative comparison of the various pollution related health effects - namely from smoking, passive smoking and air pollution - reveal a typical paradox to be well understood: the individual risks related to air pollution and that one may reduce through personal decisions are rather small. However, given the large number of people exposed (i. e. in essence the entire population), the overall air pollution related health burden is rather substantial. This underscores that sustained clean air policies are indeed the most important and efficient solution to reduce the air pollution related health effects.

  7. Indoor air quality and health in schools*

    PubMed Central

    Ferreira, Ana Maria da Conceição; Cardoso, Massano

    2014-01-01

    Objective: To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. Methods: We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. Results: In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Conclusions: Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations. PMID:25029649

  8. Ambient air quality and the effects of air pollutants on otolaryngology in Beijing.

    PubMed

    Zhang, Fengying; Xu, Jin; Zhang, Ziying; Meng, Haiying; Wang, Li; Lu, Jinmei; Wang, Wuyi; Krafft, Thomas

    2015-08-01

    To investigate temporal patterns, pollution concentrations and the health effects of air pollutants in Beijing we carried out time-series analyses on daily concentrations of ambient air pollutants and daily numbers of outpatient visits for otolaryngology over 2 years (2011-2012) to identify possible health effects of air pollutants. The results showed that PM10 was the major air pollutant in Beijing and that air quality was slightly better in 2012 than in 2011. Seasonal differences were apparent for SO2 and NO2. Both the background and urban areas of Beijing experienced particulate matter pollution in 2011. In addition to local air pollution, Beijing was also affected by pollutants transported from other regions, especially during heavy air pollution episodes. PM10, NO2, and SO2 concentrations showed positive associations with numbers of outpatient visits for otolaryngology during winter. NO2 and SO2 also had adverse ear, nose, and throat health effects outside of winter. The ear, nose, and throat health risks caused by air pollutants were higher during the winter than during the summer. NO2 had stronger influence on increased the likelihood of outpatient visits than SO2. The findings provide additional information about air quality and health effects of air pollution in Beijing.

  9. Air Pollutants and Health: An Epidemiologic Approach

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1977-01-01

    A ten year study, being conducted by the Harvard School of Public Health in six cities since 1974, is a survey of children and adults for the health effects of pollutant levels. The environment is being monitored for: (1) sulfur dioxide, (2) sulfates, and (3) respirable particulates. (BT)

  10. Health effects of acute exposure to air polllution. Part II: Healthy subjects exposed to cencentrated ambient particles

    EPA Science Inventory

    The purpose of this study was to assess the impact of short-term exposure to concentrated ambient particles (CAPs*) on lung function and on inflammatory parameters in blood and airways of healthy human subjects. Particles were concentrated from the ambient air in Chapel Hill, Nor...

  11. What can individuals do to reduce personal health risks from air pollution?

    PubMed

    Laumbach, Robert; Meng, Qingyu; Kipen, Howard

    2015-01-01

    In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or

  12. What can individuals do to reduce personal health risks from air pollution?

    PubMed Central

    Laumbach, Robert; Meng, Qingyu

    2015-01-01

    In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or

  13. Clearing the air and breathing freely: the health politics of air pollution and asthma.

    PubMed

    Brown, Phil; Mayer, Brian; Zavestoski, Stephen; Luebke, Theo; Mandelbaum, Joshua; McCormick, Sabrina

    2004-01-01

    This study examines the growing debate around environmental causes of asthma in the context of federal regulatory disputes, scientific controversy, and environmental justice activism. A multifaceted form of social discovery of the effect of air pollution on asthma has resulted from multipartner and multiorganizational approaches and from intersectoral policy that deals with social inequality and environmental justice. Scientists, activists, health voluntary organizations, and some government agencies and officials have identified various elements of the asthma and air pollution connection. To tackle these issues, they have worked through a variety of collaborations and across different sectors of environmental regulation, public health, health services, housing, transportation, and community development. The authors examine the role of activist groups in discovering the increased rates of asthma and framing it as a social and environmental issue; give an overview of the current knowledge base on air pollution and asthma, and the controversies within science; and situate that science in the regulatory debate, discussing the many challenges to the air quality researchers. They then examine the implications of the scientific and regulatory controversies over linking air pollution to increases in asthma. The article concludes with a discussion of how alliances between activists and scientists lead to new research strategies and innovations. PMID:15088672

  14. Clearing the air and breathing freely: the health politics of air pollution and asthma.

    PubMed

    Brown, Phil; Mayer, Brian; Zavestoski, Stephen; Luebke, Theo; Mandelbaum, Joshua; McCormick, Sabrina

    2004-01-01

    This study examines the growing debate around environmental causes of asthma in the context of federal regulatory disputes, scientific controversy, and environmental justice activism. A multifaceted form of social discovery of the effect of air pollution on asthma has resulted from multipartner and multiorganizational approaches and from intersectoral policy that deals with social inequality and environmental justice. Scientists, activists, health voluntary organizations, and some government agencies and officials have identified various elements of the asthma and air pollution connection. To tackle these issues, they have worked through a variety of collaborations and across different sectors of environmental regulation, public health, health services, housing, transportation, and community development. The authors examine the role of activist groups in discovering the increased rates of asthma and framing it as a social and environmental issue; give an overview of the current knowledge base on air pollution and asthma, and the controversies within science; and situate that science in the regulatory debate, discussing the many challenges to the air quality researchers. They then examine the implications of the scientific and regulatory controversies over linking air pollution to increases in asthma. The article concludes with a discussion of how alliances between activists and scientists lead to new research strategies and innovations.

  15. Geographical information system and environmental epidemiology: a cross-sectional spatial analysis of the effects of traffic-related air pollution on population respiratory health

    PubMed Central

    2011-01-01

    Background Traffic-related air pollution is a potential risk factor for human respiratory health. A Geographical Information System (GIS) approach was used to examine whether distance from a main road (the Tosco-Romagnola road) affected respiratory health status. Methods We used data collected during an epidemiological survey performed in the Pisa-Cascina area (central Italy) in the period 1991-93. A total of 2841 subjects participated in the survey and filled out a standardized questionnaire on health status, socio-demographic information, and personal habits. A variable proportion of subjects performed lung function and allergy tests. Highly exposed subjects were defined as those living within 100 m of the main road, moderately exposed as those living between 100 and 250 m from the road, and unexposed as those living between 250 and 800 m from the road. Statistical analyses were conducted to compare the risks for respiratory symptoms and diseases between exposed and unexposed. All analyses were stratified by gender. Results The study comprised 2062 subjects: mean age was 45.9 years for men and 48.9 years for women. Compared to subjects living between 250 m and 800 m from the main road, subjects living within 100 m of the main road had increased adjusted risks for persistent wheeze (OR = 1.76, 95% CI = 1.08-2.87), COPD diagnosis (OR = 1.80, 95% CI = 1.03-3.08), and reduced FEV1/FVC ratio (OR = 2.07, 95% CI = 1.11-3.87) among males, and for dyspnea (OR = 1.61, 95% CI = 1.13-2.27), positivity to skin prick test (OR = 1.83, 95% CI = 1.11-3.00), asthma diagnosis (OR = 1.68, 95% CI = 0.97-2.88) and attacks of shortness of breath with wheeze (OR = 1.67, 95% CI = 0.98-2.84) among females. Conclusion This study points out the potential effects of traffic-related air pollution on respiratory health status, including lung function impairment. It also highlights the added value of GIS in environmental health research. PMID:21362158

  16. Investigating the role of transportation models in epidemiologic studies of traffic related air pollution and health effects.

    PubMed

    Shekarrizfard, Maryam; Valois, Marie-France; Goldberg, Mark S; Crouse, Dan; Ross, Nancy; Parent, Marie-Elise; Yasmin, Shamsunnahar; Hatzopoulou, Marianne

    2015-07-01

    In two earlier case-control studies conducted in Montreal, nitrogen dioxide (NO2), a marker for traffic-related air pollution was found to be associated with the incidence of postmenopausal breast cancer and prostate cancer. These studies relied on a land use regression model (LUR) for NO2 that is commonly used in epidemiologic studies for deriving estimates of traffic-related air pollution. Here, we investigate the use of a transportation model developed during the summer season to generate a measure of traffic emissions as an alternative to the LUR model. Our traffic model provides estimates of emissions of nitrogen oxides (NOx) at the level of individual roads, as does the LUR model. Our main objective was to compare the distribution of the spatial estimates of NOx computed from our transportation model to the distribution obtained from the LUR model. A secondary objective was to compare estimates of risk using these two exposure estimates. We observed that the correlation (spearman) between our two measures of exposure (NO2 and NOx) ranged from less than 0.3 to more than 0.9 across Montreal neighborhoods. The most important factor affecting the "agreement" between the two measures in a specific area was found to be the length of roads. Areas affected by a high level of traffic-related air pollution had a far better agreement between the two exposure measures. A comparison of odds ratios (ORs) obtained from NO2 and NOx used in two case-control studies of breast and prostate cancer, showed that the differences between the ORs associated with NO2 exposure vs NOx exposure differed by 5.2-8.8%.

  17. Indoor air and human health revisited: A recent IAQ symposium

    SciTech Connect

    Gammage, R.B.

    1994-12-31

    Indoor Air and Human Health Revisited was a speciality symposium examining the scientific underpinnings of sensory and sensitivity effects, allergy and respiratory disease, neurotoxicity and cancer. An organizing committee selected four persons to chain the sessions and invite experts to give state-of-the-art presentations that will be published as a book. A summary of the presentations is made and some critical issues identified.

  18. LINKING PUBLIC HEALTH AND AIR QUALITY DATA FOR ACCOUNTABILITY

    EPA Science Inventory

    Program Area: Environmental Health

    Topic Area: Linking Public Health Data into Action

    Title of Presentation: Linking Public Health and Air Quality Data for Accountability

    Background and Significance

    Tracking environmental exposures to air pollutan...

  19. AICE Survey of USSR Air Pollution Literature, Volume 15: A Third Compilation of Technical Reports on the Biological Effects and the Public Health Aspects of Atmospheric Pollutants.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y.

    Ten papers were translated: Maximum permissible concentrations of noxious substances in the atmospheric air of populated areas; Some aspects of the biological effect of microconcentrations of two chloroisocyanates; The toxicology of low concentrations of aromatic hydrocarbons; Chronic action of low concentrations of acrolein in air on the…

  20. Can the Air Pollution Index be used to communicate the health risks of air pollution?

    PubMed

    Li, Li; Lin, Guo-Zhen; Liu, Hua-Zhang; Guo, Yuming; Ou, Chun-Quan; Chen, Ping-Yan

    2015-10-01

    The validity of using the Air Pollution Index (API) to assess health impacts of air pollution and potential modification by individual characteristics on air pollution effects remain uncertain. We applied distributed lag non-linear models (DLNMs) to assess associations of daily API, specific pollution indices for PM10, SO2, NO2 and the weighted combined API (APIw) with mortality during 2003-2011 in Guangzhou, China. An increase of 10 in API was associated with a 0.88% (95% confidence interval (CI): 0.50, 1.27%) increase of non-accidental mortality at lag 0-2 days. Harvesting effects appeared after 2 days' exposure. The effect estimate of API over lag 0-15 days was statistically significant and similar with those of pollutant-specific indices and APIw. Stronger associations between API and mortality were observed in the elderly, females and residents with low educational attainment. In conclusion, the API can be used to communicate health risks of air pollution.

  1. Can the Air Pollution Index be used to communicate the health risks of air pollution?

    PubMed

    Li, Li; Lin, Guo-Zhen; Liu, Hua-Zhang; Guo, Yuming; Ou, Chun-Quan; Chen, Ping-Yan

    2015-10-01

    The validity of using the Air Pollution Index (API) to assess health impacts of air pollution and potential modification by individual characteristics on air pollution effects remain uncertain. We applied distributed lag non-linear models (DLNMs) to assess associations of daily API, specific pollution indices for PM10, SO2, NO2 and the weighted combined API (APIw) with mortality during 2003-2011 in Guangzhou, China. An increase of 10 in API was associated with a 0.88% (95% confidence interval (CI): 0.50, 1.27%) increase of non-accidental mortality at lag 0-2 days. Harvesting effects appeared after 2 days' exposure. The effect estimate of API over lag 0-15 days was statistically significant and similar with those of pollutant-specific indices and APIw. Stronger associations between API and mortality were observed in the elderly, females and residents with low educational attainment. In conclusion, the API can be used to communicate health risks of air pollution. PMID:26057478

  2. Indoor air pollution in rural China: Cooking fuels, stoves, and health status

    SciTech Connect

    Peabody, J.W.; Riddell, T.J.; Smith, K.R.; Liu, Y.P.; Zhao, Y.Y.; Gong, J.H.; Milet, M.; Sinton, J.E.

    2005-03-15

    Solid fuels are a major source of indoor air pollution, but in less developed countries the short-term health effects of indoor air pollution are poorly understood. The authors conducted a large cross-sectional study of rural Chinese households to determine associations between individual health status and domestic cooking as a source of indoor air pollution. The study included measures of health status as well as measures of indoor air-pollution sources, such as solid cooking fuels and cooking stoves. Compared with other fuel types, coal was associated with a lower health status, including negative impacts on exhaled carbon monoxide level, forced vital capacity, lifetime prevalence of chronic obstructive pulmonary disease and asthma, and health care utilization. Decreasing household coal use, increasing use of improved stove technology, and increasing kitchen ventilation may decrease the short-term health effects of indoor air pollution.

  3. Air quality standards must protect public health

    SciTech Connect

    Norman Edelman

    2006-06-15

    Leading medical and public health organizations are deeply concerned about the proposed revisions to the National Ambient Air Quality Standard (NAAQS) that the US Environmental Protection Agency (EPA) announced in December 2005. Led by the American Lung Association (ALA), these groups are fighting to force EPA to finalize stricter standards for fine and coarse particles when the final decision is announced in September 2006. The ALA disagrees strongly with the proposal to exempt coarse particles from agriculture and mining sources, and to exclude communities with populations fewer than 100,000 from protection and monitoring requirements. ALA urges EPA to set the following health-based NAAQS for PM: Annual average PM2.5 standard of 12 {mu}mg/m{sup 3}; 24 hour average PM2.5 standard of 25 {mu}mg.m{sup 3} (99th percentile); 24-hour average PM10-2.5 standard of 25-30 {mu}g/m{sup 3} (99th percentile), applied equally to all areas of the country and to all types of particles. 72 refs., 2 figs., 1 tab.

  4. Air control system providing healthful enclosed environment

    SciTech Connect

    Rhodes, J.A.

    1991-08-27

    This patent describes an environmentally controlled building. It comprises an outer wall defining an outer building perimeter and having at least one fenestration therethrough for passage of personnel; a roof supported by and cooperating with the outer wall to define a building exterior and interior; and an environmental control system for controlling the environment within the building interior, the environmental control system including a heating and air conditioning unit, having an air inlet, for controlling the temperature of air drawing into the air control system; a humidity control unit, having an inlet connected to the heating and air conditioning unit, for controlling the humidity of air within the air control system; an air blower for forcing air from the environmental control system into the building interior; and an air filtering system having an inlet connected to the humidity control unit and an outlet connected to the blower.

  5. EFFECTS OF INHALATION OF METALLIC CONSTITUENTS OF PARTICULATE MATTER AIR POLLUTION ON CARDIOPULMONARY AND THERMOREGULATORY PARAMETERS IN HEALTH AND COMPROMISED RATS

    EPA Science Inventory


    EFFECTS OF INHALATION OF METALLIC CONSTITUENTS OF PARTICULATE MATTER AIR POLLUTION ON CARDIOPULMONARY AND THERMOREGULATORY PARAMETERS IN HEALTHY AND COMPROMISED RATS. Watkinson, WP, Campen, MJ, Wichers, LB, Nolan, JP, Kodavanti, UP, Schladweiler, MCJ, Evansky, PA, Lappi, ER,...

  6. Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects

    EPA Science Inventory

    Ozone (03) is a criteria air pollutant that is associated with numerous adverse health effects, including altered respiratory immune responses. Despite its deleterious health effects, possible epigenetic mechanisms underlying 03-induced health effects remain understudied. MicroRN...

  7. Health effects of indoor odorants.

    PubMed Central

    Cone, J E; Shusterman, D

    1991-01-01

    People assess the quality of the air indoors primarily on the basis of its odors and on their perception of associated health risk. The major current contributors to indoor odorants are human occupant odors (body odor), environmental tobacco smoke, volatile building materials, bio-odorants (particularly mold and animal-derived materials), air fresheners, deodorants, and perfumes. These are most often present as complex mixtures, making measurement of the total odorant problem difficult. There is no current method of measuring human body odor, other than by human panel studies of expert judges of air quality. Human body odors have been quantitated in terms of the "olf" which is the amount of air pollution produced by the average person. Another quantitative unit of odorants is the "decipol," which is the perceived level of pollution produced by the average human ventilated by 10 L/sec of unpolluted air or its equivalent level of dissatisfaction from nonhuman air pollutants. The standard regulatory approach, focusing on individual constituents or chemicals, is not likely to be successful in adequately controlling odorants in indoor air. Besides the current approach of setting minimum ventilation standards to prevent health effects due to indoor air pollution, a standard based on the olf or decipol unit might be more efficacious as well as simpler to measure. PMID:1821378

  8. Health effects of indoor odorants.

    PubMed

    Cone, J E; Shusterman, D

    1991-11-01

    People assess the quality of the air indoors primarily on the basis of its odors and on their perception of associated health risk. The major current contributors to indoor odorants are human occupant odors (body odor), environmental tobacco smoke, volatile building materials, bio-odorants (particularly mold and animal-derived materials), air fresheners, deodorants, and perfumes. These are most often present as complex mixtures, making measurement of the total odorant problem difficult. There is no current method of measuring human body odor, other than by human panel studies of expert judges of air quality. Human body odors have been quantitated in terms of the "olf" which is the amount of air pollution produced by the average person. Another quantitative unit of odorants is the "decipol," which is the perceived level of pollution produced by the average human ventilated by 10 L/sec of unpolluted air or its equivalent level of dissatisfaction from nonhuman air pollutants. The standard regulatory approach, focusing on individual constituents or chemicals, is not likely to be successful in adequately controlling odorants in indoor air. Besides the current approach of setting minimum ventilation standards to prevent health effects due to indoor air pollution, a standard based on the olf or decipol unit might be more efficacious as well as simpler to measure.

  9. Air pollution, avoidance behaviour and children's respiratory health: evidence from England.

    PubMed

    Janke, Katharina

    2014-12-01

    Despite progress in air pollution control, concerns remain over the health impact of poor air quality. Governments increasingly issue air quality information to enable vulnerable groups to avoid exposure. Avoidance behaviour potentially biases estimates of the health effects of air pollutants. But avoidance behaviour imposes a cost on individuals and therefore may not be taken in all circumstances. This paper exploits panel data at the English local authority level to estimate the relationship between children's daily hospital emergency admissions for respiratory diseases and common air pollutants, while allowing for avoidance behaviour in response to air pollution warnings. A 1% increase in nitrogen dioxide or ozone concentrations increases hospital admissions by 0.1%. For the subset of asthma admissions - where avoidance is less costly - there is evidence of avoidance behaviour. Ignoring avoidance behaviour, however, does not result in statistically significant underestimation of the health effect of air pollution.

  10. Associations between short-term exposure to nitrogen dioxide and mortality in 17 Chinese cities: the China Air Pollution and Health Effects Study (CAPES).

    PubMed

    Chen, Renjie; Samoli, Evangelia; Wong, Chit-Ming; Huang, Wei; Wang, Zongshuang; Chen, Bingheng; Kan, Haidong

    2012-09-15

    Few multi-city studies in Asian developing countries have examined the acute health effects of ambient nitrogen dioxide (NO(2)). In the China Air Pollution and Health Effects Study (CAPES), we investigated the short-term association between NO(2) and mortality in 17 Chinese cities. We applied two-stage Bayesian hierarchical models to obtain city-specific and national average estimates for NO(2). In each city, we used Poisson regression models incorporating natural spline smoothing functions to adjust for long-term and seasonal trend of mortality, as well as other time-varying covariates. We examined the associations by age, gender and education status. We combined the individual-city estimates of the concentration-response curves to get an overall NO(2)-mortality association in China. The averaged daily concentrations of NO(2) in the 17 Chinese cities ranged from 26 μg/m(3) to 67 μg/m(3). In the combined analysis, a 10-μg/m(3) increase in two-day moving averaged NO(2) was associated with a 1.63% [95% posterior interval (PI), 1.09 to 2.17], 1.80% (95% PI, 1.00 to 2.59) and 2.52% (95% PI, 1.44 to 3.59) increase of total, cardiovascular, and respiratory mortality, respectively. These associations remained significant after adjustment for ambient particles or sulfur dioxide (SO(2)). Older people appeared to be more vulnerable to NO(2) exposure. The combined concentration-response curves indicated a linear association. Conclusively, this largest epidemiologic study of NO(2) in Asian developing countries to date suggests that short-term exposure to NO(2) is associated with increased mortality risk.

  11. Predicted health impacts of urban air quality management

    PubMed Central

    Mindell, J; Joffe, M

    2004-01-01

    Study objective: The 1995 UK Environment Act required local authorities to review air quality and, where UK National Air Quality Strategy objectives (except ozone) are likely to be exceeded in 2005, to declare local air quality management areas and prepare action plans. This study modelled the impacts on health of reductions from current levels of PM10 to these objectives. Design: The framework for conducting quantified health impact assessment assessed causality, then, if appropriate, examined the shape and magnitude of the exposure-response relations. The study modelled declines in pollution to achieve the objectives, then modelled the numbers of deaths and admissions affected if air pollution declined from existing levels to meet the objectives, using routine data. Setting: Westminster, central London. Main results: Attaining the 2004 PM10 24 hour objective in Westminster results in 1–21 lives no longer shortened in one year (annual deaths 1363). Reducing exceedences from 35 to seven almost doubles the estimates. The 2009 objective for the annual mean requires a substantial reduction in PM10, which would delay 8–20 deaths. About 20 respiratory and 14–20 circulatory admissions would be affected and around 5% of emergency hospital attendances for asthma by attaining the lower annual mean target. The effects of long term exposure to particulates may be an order of magnitude higher: models predict about 24 deaths are delayed by reaching the 2004 annual target (40 µg/m3[gravimetric]) and a hundred deaths by reducing annual mean PM10 to 20 µg/m3[gravimetric]. Conclusions: Modelling can be used to estimate the potential health impacts of air quality management programmes. PMID:14729886

  12. THE DETROIT CHILDREN'S HEALTH STUDY: AN EXAMINATION OF THE EFFECTS OF AMBIENT AIR EXPOSURE ON THE RESPIRATORY HEALTH OF ASHMATIC CHILDREN

    EPA Science Inventory

    The United States has experienced a significant increase in childhood asthma since the late 1980s. EPA's Office of Children's Health Protection estimates that one out of every fifteen children under 18 years of age has asthma. In children under 5 years of age, asthma rates have i...

  13. THE DETROIT CHILDREN'S HEALTH STUDY: AN EXAMINATION OF THE EFFECTS OF AMBIENT AIR EXPOSURE ON THE RESPIRATORY HEALTH OF ASTHMATIC CHILDREN

    EPA Science Inventory

    The United States has experienced a significant increase in childhood asthma since the late 1980s. EPA's Office of Children's Health Protection estimates that one out of every fifteen children under 18 years of age has asthma. In children under 5 years of age, asthma rates have i...

  14. Linking Meteorology, Air Quality Models and Observations to Characterize Human Exposures in Support of the Environmental Health Studies

    EPA Science Inventory

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air polluta...

  15. An innovative approach for determination of air quality health index.

    PubMed

    Gorai, Amit Kumar; Kanchan; Upadhyay, Abhishek; Tuluri, Francis; Goyal, Pramila; Tchounwou, Paul B

    2015-11-15

    Fuzzy-analytical hierarchical process (F-AHP) can be extended to determine fuzzy air quality health index (FAQHI) for deducing health risk associated with local air pollution levels, and subjective parameters. The present work aims at determining FAQHI by considering five air pollutant parameters (SO2, NO2, O3, CO, and PM10) and three subjective parameters (population sensitivity, population density and location sensitivity). Each of the individual pollutants has varying impacts. Hence the combined health effects associated with the pollutants were estimated by aggregating the pollutants with different weights. Global weights for each evaluation alternatives were determined using fuzzy-AHP method. The developed model was applied to determine FAQHI in Howrah City, India from daily-observed concentrations of air pollutants over the three-year period between 2009 and 2011. The FAQHI values obtained through this method in Howrah City range from 1 to 3. Since the permissible value of FAQHI (as calculated for NAAQS) for residential areas is 1.78, higher index values are of public health concern to the exposed individuals. During the period of study, the observed FAQHI values were found to be higher than 1.78 in most of the day in the months of January to March, and October to December. However, the index values were below the recommended limit during rest of the months. In conclusion, FAQHI in Howrah city was above permissible limit in winter months and within acceptable values in summer and rainy months. Diurnal variations of FAQHI showed a similar trend during the three-year period of assessment.

  16. PUBLIC HEALTH AIR SURVEILLANCE EVALUATION (PHASE): BACKGROUND AND AIR QUALITY ASPECT

    EPA Science Inventory

    NERL's Human Exposure and Atmospheric Sciences Division and other participants in the Public Health Air Surveillance Evaluation (PHASE) project will be discussing their results with the New York State Departments of Health and Environmental Conservation. The PHASE project is a ...

  17. Health Effects of UV Radiation

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  18. Air pollutants and health outcomes: Assessment of confounding by influenza

    NASA Astrophysics Data System (ADS)

    Thach, Thuan-Quoc; Wong, Chit-Ming; Chan, King-Pan; Chau, Yuen-Kwan; Neil Thomas, G.; Ou, Chun-Quan; Yang, Lin; Peiris, Joseph S. M.; Lam, Tai-Hing; Hedley, Anthony J.

    2010-04-01

    We assessed confounding of associations between short-term effects of air pollution and health outcomes by influenza using Hong Kong mortality and hospitalization data for 1996-2002. Three measures of influenza were defined: (i) intensity: weekly proportion of positive influenza viruses, (ii) epidemic: weekly number of positive influenza viruses ≥4% of the annual number for ≥2 consecutive weeks, and (iii) predominance: an epidemic period with co-circulation of respiratory syncytial virus <2% of the annual positive isolates for ≥2 consecutive weeks. We examined effects of influenza on associations between nitrogen dioxide (NO 2), sulfur dioxide (SO 2), particulate matter with aerodynamic diameter ≤10 μm (PM 10) and ozone (O 3) and health outcomes including all natural causes mortality, cardiorespiratory mortality and hospitalization. Generalized additive Poisson regression model with natural cubic splines was fitted to control for time-varying covariates to estimate air pollution health effects. Confounding with influenza was assessed using an absolute difference of >0.1% between unadjusted and adjusted excess risks (ER%). Without adjustment, pollutants were associated with positive ER% for all health outcomes except asthma and stroke hospitalization with SO 2 and stroke hospitalization with O 3. Following adjustment, changes in ER% for all pollutants were <0.1% for all natural causes mortality, but >0.1% for mortality from stroke with NO 2 and SO 2, cardiac or heart disease with NO 2, PM 10 and O 3, lower respiratory infections with NO 2 and O 3 and mortality from chronic obstructive pulmonary disease with all pollutants. Changes >0.1% were seen for acute respiratory disease hospitalization with NO 2, SO 2 and O 3 and acute lower respiratory infections hospitalization with PM 10. Generally, influenza does not confound the observed associations of air pollutants with all natural causes mortality and cardiovascular hospitalization, but for some pollutants

  19. INTEGRATING AIR QUALITY DATA TO INFORM HUMAN HEALTH DECISIONS

    EPA Science Inventory

    The August 1-2, 2005 EPA-NIEHS workshop is addressing the linkages between air quality and human health. My presentation will discuss the strengths and limitations of various databases for relating air quality to health impacts. Specifically, the need for fusing ground-based, s...

  20. Alternative ozone metrics and daily mortality in Suzhou: the China Air Pollution and Health Effects Study (CAPES).

    PubMed

    Yang, Chunxue; Yang, Haibing; Guo, Shu; Wang, Zongshuang; Xu, Xiaohui; Duan, Xiaoli; Kan, Haidong

    2012-06-01

    Controversy remains regarding the relationship between various metrics of ozone (O(3)) and mortality. In China, the largest developing country, there have been few studies investigating the acute effect of O(3) on death. We used three exposure metrics of O(3) (1-hour maximum, maximum 8-hour average and 24-hour average) to examine its short-term association with daily mortality in Suzhou, China. We used a Generalized Additive Model (GAM) with penalized splines to analyze the mortality, O(3), and covariate data. We examined the association by season, age group, sex and educational level. We found that the current level of O(3) in Suzhou is associated with death rates from all causes and cardiovascular diseases. Among various metrics of O(3), maximum 8-hour average and 1-hour maximum concentrations seem to be more strongly associated with increased mortality rate compared to 24-hour average concentrations. Using maximum 8-hour average, an inter-quartile range increase of 2-day average O(3) (lag 01) corresponds to 2.15% (95%CI, 0.36 to 3.93), 4.47% (95%CI, 1.43 to 7.51), -1.85% (95%CI, -6.91 to 3.22) increase in all-cause, cardiovascular, and respiratory mortality, respectively. The associations between O(3) and daily mortality appeared to be more evident in the cool season than in the warm season. In conclusion, maximum 8-hour average and 1-hour maximum concentrations of O(3) are associated with daily mortality in Suzhou. Our analyses strengthen the rationale for further limiting levels of O(3) pollution in the city. PMID:22521098

  1. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.

    PubMed

    Park, Eun Sug; Symanski, Elaine; Han, Daikwon; Spiegelman, Clifford

    2015-06-01

    .5 speciation data from 1995-1997. The Houston data included respiratory mortality data and 24-hour PM2.5 speciation data sampled every six days from a region near the Houston Ship Channel in years 2002-2005. We also developed a Bayesian spatial multivariate receptor modeling approach that, while simultaneously dealing with the unknown number of sources and identifiability conditions, incorporated spatial correlations in the multipollutant data collected from multiple sites into the estimation of source profiles and contributions based on the discrete process convolution model for multivariate spatial processes. This new modeling approach was applied to 24-hour ambient air concentrations of 17 volatile organic compounds (VOCs) measured at nine monitoring sites in Harris County, Texas, during years 2000 to 2005. Simulation results indicated that our methods were accurate in identifying the true model and estimated parameters were close to the true values. The results from our methods agreed in general with previous studies on the source apportionment of the Phoenix data in terms of estimated source profiles and contributions. However, we had a greater number of statistically insignificant findings, which was likely a natural consequence of incorporating uncertainty in the estimated source contributions into the health-effects parameter estimation. For the Houston data, a model with five sources (that seemed to be Sulfate-Rich Secondary Aerosol, Motor Vehicles, Industrial Combustion, Soil/Crustal Matter, and Sea Salt) showed the highest posterior model probability among the candidate models considered when fitted simultaneously to the PM2.5 and mortality data. There was a statistically significant positive association between respiratory mortality and same-day PM2.5 concentrations attributed to one of the sources (probably industrial combustion). The Bayesian spatial multivariate receptor modeling approach applied to the VOC data led to a highest posterior model probability for a

  2. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.

    PubMed

    Park, Eun Sug; Symanski, Elaine; Han, Daikwon; Spiegelman, Clifford

    2015-06-01

    .5 speciation data from 1995-1997. The Houston data included respiratory mortality data and 24-hour PM2.5 speciation data sampled every six days from a region near the Houston Ship Channel in years 2002-2005. We also developed a Bayesian spatial multivariate receptor modeling approach that, while simultaneously dealing with the unknown number of sources and identifiability conditions, incorporated spatial correlations in the multipollutant data collected from multiple sites into the estimation of source profiles and contributions based on the discrete process convolution model for multivariate spatial processes. This new modeling approach was applied to 24-hour ambient air concentrations of 17 volatile organic compounds (VOCs) measured at nine monitoring sites in Harris County, Texas, during years 2000 to 2005. Simulation results indicated that our methods were accurate in identifying the true model and estimated parameters were close to the true values. The results from our methods agreed in general with previous studies on the source apportionment of the Phoenix data in terms of estimated source profiles and contributions. However, we had a greater number of statistically insignificant findings, which was likely a natural consequence of incorporating uncertainty in the estimated source contributions into the health-effects parameter estimation. For the Houston data, a model with five sources (that seemed to be Sulfate-Rich Secondary Aerosol, Motor Vehicles, Industrial Combustion, Soil/Crustal Matter, and Sea Salt) showed the highest posterior model probability among the candidate models considered when fitted simultaneously to the PM2.5 and mortality data. There was a statistically significant positive association between respiratory mortality and same-day PM2.5 concentrations attributed to one of the sources (probably industrial combustion). The Bayesian spatial multivariate receptor modeling approach applied to the VOC data led to a highest posterior model probability for a

  3. Overview of Issues in Health, Air Pollution, and Climate

    NASA Astrophysics Data System (ADS)

    Holloway, T.; McKinley, G.

    2003-12-01

    Air pollution contributes to mortality and respiratory disease worldwide, with developing countries at highest risk. The World Health Organization estimates that between 1.4 and 6 million people die each year from air pollution, and in some populations up to 30 % of all respiratory disease may be linked to air pollution. As the climate changes, increasing temperatures and changing precipitation patterns are expected to yield new health challenges and may worsen existing risks. This talk provides an overview of issues linking health impacts of air pollution and climate change, as an introduction for the session. Increasingly, health-driven projects are employing state-of-the-art modeling and measurement methodologies. We discuss how quantitative assessment methodologies have been used to understand the connections between health, air pollution and climate.

  4. Epidemiologic investigation of health effects in Air Force personnel following exposure to herbicides: Extract reproductive outcomes. Executive summary, introduction, and conclusions. Interim report, 1985-1992

    SciTech Connect

    Wolfe, W.H.; Michalek, J.E.; Miner, J.C.; Rahe, A.J.

    1992-08-31

    The Air Force is conducting a 20-year prospective study of veterans of Operation Ranch Hand, the unit responsible for aerial spraying of herbicides in Vietnam from 1962 to 1971. A comparison group of Air Force veterans who served in Southeast Asia (SEA) during the same period who were not occupationally exposed to herbicides was selected. The study, called the Air Force Health Study (AFHS), is in its tenth year and is designed to determine whether exposure to the herbicides or their contaminant, 2,3,37,8-tetrachlorodibenzo-p-dioxin (dioxin), has adversely affected the health, survival or reproductive outcomes of Ranch Hands. This report summarizes the findings of an investigation of reproductive outcomes of the 791 Ranch Hands and 942 Comparisons for whom a dioxin level had been determined by August, 1991. These men have fathered 5,489 pregnancies including 4,514 live births. These men are a subset of all Ranch Hands (n=1,098) and Comparisons (n=1,549) who have fathered 8,263 pregnancies and 6,792 live births. All data in this report have been verified by review of birth certificates, newborn clinic records, health records and death certificates. The birth defect status of each child was verified through the age of 18.

  5. Ground cloud air quality effects

    NASA Technical Reports Server (NTRS)

    Brubaker, K. L.

    1980-01-01

    The effects of the ground cloud associated with launching of a large rocket on air quality are discussed. The ground cloud consists of the exhaust emitted by the rocket during the first 15 to 25 seconds following ignition and liftoff, together with a large quantity of entrained air, cooling water, dust and other debris. Immediately after formation, the ground cloud rises in the air due to the buoyant effect of its high thermal energy content. Eventually, at an altitude typically between 0.7 and 3 km, the cloud stabilizes and is carried along by the prevailing wind at that altitude. For the use of heavy lift launch vehicles small quantities of nitrogen oxides, primarily nitric oxide and nitrogen dioxide, are expected to be produced from a molecular nitrogen impurity in the fuel or liquid oxygen, or from entrainment and heating of ambient air in the hot rocket exhaust. In addition, possible impurities such as sulfur in the fuel would give rise to a corresponding amount of oxidation products such as sulfur dioxide.

  6. [Indoor air pollution and health: study of various problems].

    PubMed

    Viala, A

    1994-01-01

    Human beings are living between 70 and 90% inside of premises, where numerous air pollutants are existing: some of them have outdoor sources (industry, domestic burning, car traffic), some are produced indoors by human activities and equipment, by animals, or by various materials, products and furniture. According to their nature, they are listed as biological, physical or chemical pollutants. About health, serious poisonings and acute effects attributed to indoor air pollutants, and even short term effects (like sick building syndrome, infectious illness, pneumopathies,...), can be relatively easy to distinguish. Inversely the involvement of these pollutants in long term effects (like chronic bronchitis, asthma, cancers,...) is more difficult to establish. During the last 15 years we carried out several studies, which allowed us to separate the chemical air contaminants into two categories: those produced outdoors (sulphur dioxide, lead, chromium, nickel, nitrates), of whom we calculated the penetration coefficients, and those from both origin, outside and inside (nitrogen oxides, carbon monoxide, ammonia, aldehydes, particles, cadmium, vanadium, sulphates, ammonium salts). Aldehydes, which present important health risks, were especially investigated: in an office where several cigarettes were burning the measured concentrations were high in comparison with the threshold values existing in some foreign countries; in a cafeteria they were relatively low. To estimate the impregnation of non smokers by environmental tobacco smoke, we also determined, during same spaces of time, on the one hand nicotine in air, on the other hand nicotine and its metabolites excreted in the urine of exposed people. We thus observed that, in "real" situations, this impregnation is as a general rule extremely low.

  7. Joint Effects of Ambient Air Pollutants on Pediatric Asthma Emergency Department Visits in Atlanta, 1998–2004

    EPA Science Inventory

    Background: Because ambient air pollution exposure occurs in the form of mixtures, consideration of joint effects of multiple pollutants may advance our understanding of air pollution health effects. Methods: We assessed the joint effect of selected ambient air pollutant com...

  8. What do we know about effects of desert dust on air quality and human health in West Africa compared to other regions?

    PubMed

    De Longueville, Florence; Hountondji, Yvon-Carmen; Henry, Sabine; Ozer, Pierre

    2010-12-01

    This study aims to compare, on the one hand, the geographical distribution of the desert dust source areas, their contribution to quantities emitted into the atmosphere, the trajectories and the quantities deposited, with on the other hand the areas of research interest focused on the desert dust impacts on air quality and/or human health. Based on a systematic review of the literature using the ISI Web of Knowledge database, we found 231 articles published over the last decade on the desert dust impacts on air quality. Of these, 48% concerned Asian dust and 39% Saharan dust, with the remaining 13% divided between the other dust source areas. However, only one of these studies addressed the worsening air pollution in West Africa, even though it is very close to the Sahara, the greatest contributor to the global dust budget. Moreover, there have been very few studies (41) looking at the direct links between desert dust and human health; in this context too, no interest has been shown in West Africa. Yet this region is also among the areas in which morbidity rates have been noted to be far higher than those found in other regions of the world, and where respiratory infections alone account for more than 20% of the causes of infant mortality. This survey highlights a clear imbalance between those areas most exposed to dust and the most studied areas in terms of dust impacts. Given these findings and the often alarming results published about other regions of the world, we advocate a revival of interest in research on West Africa in order to achieve a better understanding of the desert dust impacts on air quality and health among the populations of this region.

  9. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  10. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  11. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  12. Characterization of ambient air pollution for stochastic health models

    SciTech Connect

    Batterman, S.A.

    1981-08-01

    This research is an analysis of various measures of ambient air pollution useful in cross-sectional epidemiological investigations and rick assessments. The Chestnut Ridge area health effects investigation, which includes a cross-sectional study of respiratory symptoms in young children, is used as a case study. Four large coal-fired electric generating power plants are the dominant pollution sources in this area of western Pennsylvania. The air pollution data base includes four years of sulfur dioxide and five years of total suspended particulate concentrations at seventeen monitors. Some 70 different characterizations of pollution are constructed and tested. These include pollutant concentrations at various percentiles and averaging times, exceedence measures which show the amount of time a specified threshold concentration is exceeded, and several dosage measures which transform non-linear dose-response relationships onto pollutant concentrations.

  13. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    PubMed

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home.

  14. Air quality as respiratory health indicator: a critical review.

    PubMed

    Moshammer, Hanns; Wallner, Peter

    2011-09-01

    As part of the European Public Health project IMCA II validity and practicability of "air pollution" as a respiratory health indicator were analyzed. The definitions of air quality as an indicator proposed by the WHO project ECOEHIS and by IMCA I were compared. The public availability of the necessary data was checked through access to web-based data-bases. Practicability and interpretation of the indicator were discussed with project partners and external experts. Air quality serves as a kind of benchmark for the good health-related environmental policy. In this sense, it is a relevant health indicator. Although air quality is not directly in the responsibility of health policy, its vital importance for the population's health should not be neglected. In principle, data is available to calculate this IMCA indicator for any chosen area in Europe. The indicator is relevant and informative, but calculation and interpretation need input from local expert knowledge. The European health policy is well advised to take air quality into account. To that end, an interdisciplinary approach is warranted. The proposed definition of air quality as a (respiratory) health indicator is workable, but correct interpretation depends on expert and local knowledge.

  15. The Outdoor Air Pollution and Brain Health Workshop

    EPA Science Inventory

    Accumulating evidence suggests that air pollution may have a significant impact on central nervous system (CNS) health and disease. To address this issue, the National Institute of Environmental Health Sciences/National Institute of Health convened a panel of research scientists...

  16. Air pollution and public health: emerging hazards and improved understanding of risk.

    PubMed

    Kelly, Frank J; Fussell, Julia C

    2015-08-01

    Despite past improvements in air quality, very large parts of the population in urban areas breathe air that does not meet European standards let alone the health-based World Health Organisation Air Quality Guidelines. Over the last 10 years, there has been a substantial increase in findings that particulate matter (PM) air pollution is not only exerting a greater impact on established health endpoints, but is also associated with a broader number of disease outcomes. Data strongly suggest that effects have no threshold within the studied range of ambient concentrations, can occur at levels close to PM2.5 background concentrations and that they follow a mostly linear concentration-response function. Having firmly established this significant public health problem, there has been an enormous effort to identify what it is in ambient PM that affects health and to understand the underlying biological basis of toxicity by identifying mechanistic pathways-information that in turn will inform policy makers how best to legislate for cleaner air. Another intervention in moving towards a healthier environment depends upon the achieving the right public attitude and behaviour by the use of optimal air pollution monitoring, forecasting and reporting that exploits increasingly sophisticated information systems. Improving air quality is a considerable but not an intractable challenge. Translating the correct scientific evidence into bold, realistic and effective policies undisputedly has the potential to reduce air pollution so that it no longer poses a damaging and costly toll on public health.

  17. The role of air quality management programs in improving public health: a brief synopsis.

    PubMed

    Vandenberg, John J

    2005-02-01

    Observations of adverse effects of air pollution on public health, illustrated by the London smog events in the 1950s, led to legislation in the United States requiring development of federal, state, and local air quality management programs. The implementation of management programs has resulted in significant reductions in air pollutant emissions from stationary and mobile sources and hence their ambient concentrations and associated health risks. Evidence of benefits from improvements in air quality can be identified from studies in which rapid changes in air quality have occurred. Health risk assessment and benefits estimates also can be predictive, resulting in mean estimates of avoided mortality in excess of many thousands of cases per year as a result of implementation of air quality management programs in the United States. PMID:15696091

  18. Impact of Climate Change on Air Quality and Public Health in Urban Areas.

    PubMed

    Hassan, Noor Artika; Hashim, Zailina; Hashim, Jamal Hisham

    2016-03-01

    This review discusses how climate undergo changes and the effect of climate change on air quality as well as public health. It also covers the inter relationship between climate and air quality. The air quality discussed here are in relation to the 5 criteria pollutants; ozone (O3), carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM). Urban air pollution is the main concern due to higher anthropogenic activities in urban areas. The implications on health are also discussed. Mitigating measures are presented with the final conclusion.

  19. Impact of Climate Change on Air Quality and Public Health in Urban Areas.

    PubMed

    Hassan, Noor Artika; Hashim, Zailina; Hashim, Jamal Hisham

    2016-03-01

    This review discusses how climate undergo changes and the effect of climate change on air quality as well as public health. It also covers the inter relationship between climate and air quality. The air quality discussed here are in relation to the 5 criteria pollutants; ozone (O3), carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM). Urban air pollution is the main concern due to higher anthropogenic activities in urban areas. The implications on health are also discussed. Mitigating measures are presented with the final conclusion. PMID:26141092

  20. A new model for investigating the mortality effects of multiple air pollutants in air pollution mortality time-series studies.

    PubMed

    Roberts, Steven

    2006-03-01

    Because the U.S. Environmental Protection Agency regulates air pollutants independently, the majority of time-series studies on air pollution and mortality have focused on estimating the adverse health effects of a single pollutant. However, due to the sometimes high correlation between air pollutants, the results from studies that focus on a single air pollutant can be difficult to interpret. In addition, the high correlation between air pollutants can produce problems of interpretation for the standard method of investigating the adverse health effects due to multiple air pollutants. The standard method involves simultaneously including the multiple air pollutants in a single statistical model. Because of this, the development of new models to concurrently estimate the adverse health effects of multiple air pollutants has recently been identified as an important area of future research. In this article, a new model for disentangling the joint effects of multiple air pollutants in air pollution mortality time-series studies is introduced. This new model uses the time-series data to assign each air pollutant a weight that indicates the pollutant's contribution to the air pollution mixture that affects mortality and to estimate the effect of this air pollution mixture on mortality. This model offers an improvement in statistical estimation precision over the standard method. It also avoids problems of interpretation that can occur if the standard method is used. This new model is then illustrated by applying it to time-series data from two U.S. counties.

  1. The public health relevance of air pollution abatement.

    PubMed

    Künzli, N

    2002-07-01

    Assuming a causal relationship between current levels of air pollution and morbidity/mortality, it is crucial to estimate the public health relevance of the problem. The derivation of air pollution attributable cases faces inherent uncertainties and requires influential assumptions. Based on the results of the trinational impact assessment study of Austria, France, and Switzerland, where prudent estimates of the air pollution attributable cases (mortality, chronic bronchitis incidence, hospital admissions, acute bronchitis among children, restricted activity days, asthma attacks) have been made, influential uncertainties are quantified in this review. The public health impact of smoking, environmental tobacco smoke, and air pollution on the prevalence of chronic cough/phlegm are outlined. Despite all methodological caveats, impact assessment studies clearly suggest that public health largely benefits from better air quality. The studies are selective underestimates as they are strongly driven by mortality, but do not include full quantification of the impact on morbidity and their consequences on quality of life among the diseased and the caregivers. Air pollution abatement strategies are usually political in nature, targeting at polities, regulation and technology in mobile or stationary sources rather than at individuals. It is of note that key clean air strategies converge into abatement of climate change. In general, energy consumption is very closely related to both air pollution and greenhouse gases. The dominant causes of both problems are the excessive and inefficient combustion of fossil fuel. Thus, for many policy options, the benefit of air pollution abatement will go far beyond what prudent health-impact assessments may derive. From a climate change and air pollution perspective, improved energy efficiency and a strong and decisive departure from the "fossil fuel" combustion society is a science-based must. Health professionals must raise their voices

  2. Air pollution, athletic health and performance at the Olympic Games.

    PubMed

    Fitch, Ken

    2016-01-01

    The objective of this study was to briefly review air pollution and its effects on athletes' health and performance and to examine air quality (AQ) at specific Olympic Summer Games between 1964 and 2008. It will focus on any attempts made by the cities hosting these Olympics to improve AQ for the Games and if undertaken, how successful these were. The author had a medical role at five of the seven Olympic Games that will be examined and hence has personal experiences. Information was obtained from the readily accessible official reports of the Olympic Games, relevant published papers and books and the internet. For each of these seven Olympic Games, monitoring AQ was far below current acceptable standards and for the majority, minimal or no data on major pollutants was available. From what can be ascertained, at these Games, AQ varied but was less than optimal in most if not all. Nevertheless, there were few reported or known unfavorable effects on the health of Olympic athletes. To date, there have been few reported consequences of sub-optimal AQ at Olympic Games. The focus on AQ at Olympic Games has gradually increased over the past five decades and is expected to continue into the future.

  3. PUBLIC HEALTH AIR SURVEILLANCE EVALUATION (PHASE) - A SUMMARY

    EPA Science Inventory

    NERL's Human Exposure and Atmospheric Sciences Division and other participants in the Public Health Air Surveillance Evaluation (PHASE) project will be discussing their results with European Commission, Directorate General Environment, and

    French Agency for Environment an...

  4. Evaluating the application of multipollutant exposure metrics in air pollution health studies

    EPA Science Inventory

    Background: Health effects associated with air pollution are typically evaluated using a single-pollutant approach, yet people are exposed to mixtures consisting of multiple pollutants that may have independent or combined effects on human health. Development of metrics that re...

  5. Evaluation of Nationwide Health Costs of Air Pollution and Cigarette Smoking

    ERIC Educational Resources Information Center

    Williams, J. R.; Justus, C. G.

    1974-01-01

    The findings of this study indicate cigarette smoking causes more respiratory diseases than does air pollution. The 1970 nationwide health cost of respiratory diseases is estimated at $6.22 billion. The effect of air pollution accounts for between 1 and 5 percent of this total cost while cigarette smoking represents 68 percent. (MLB)

  6. Current State of the Evidence: Air Pollution Impacts on Human Health

    EPA Science Inventory

    Epidemiologic studies have demonstrated a consistent association between ambient levels of air pollution and adverse human health effects, including mortality and morbidity. Many of these studies have relied on the US Air Quality System (AQS) for exposure assessment. The AQS is a...

  7. Using GIS to study the health impact of air emissions

    SciTech Connect

    Dent, A.L.; Fowler, D.A.; Kaplan, B.M.; Zarus, G.M.

    1999-07-01

    Geographical Information Systems (GIS) is a fast-developing technology with an ever-increasing number of applications. Air dispersion modeling is a well-established discipline that can produce results in a spatial context. The marriage of these two application is optimal because it leverages the predictive capacity of modeling with the data management, analysis, and display capabilities of GIS. In the public health arena, exposure estimation techniques are invaluable. The utilization of air emission data, such as US EPA Toxic Release Inventory (TRI) data, and air dispersion modeling with GIS enable public health professionals to identify and define the potentially exposed population, estimate the health risk burden of that population, and determine correlations between point-based health outcome results with estimated health risk.

  8. [Environment of high temperature or air particle matter pollution, and health promotion of exercise].

    PubMed

    Zhao, Jie-xiu; Xu, Min-xiao; Wu, Zhao-zhao

    2014-10-01

    It is important to keep human health in special environment, since the special environment has different effects on health. In this review, we focused on high temperature and air particle matter environment, and health promotion of exercise. Exercise and high temperature are the main non-pharmacological therapeutic interventions of insulin resistance (IR). PGC-1α is key regulatory factor in health promotion of exercise and high temperature. The novel hormone Irisin might be the important pathway through which heat and exercise could have positive function on IR. Air particle matter (PM) is associated with onset of many respiratory diseases and negative effects of exerciser performance. However, regular exercise plays an important role in improving health of respiratory system and lowering the risk induced by PM. Furthermore, free radicals and inflammatory pathways are included in the possible mechanisms of positive physiological effects induced by exercise in air particle matter environment.

  9. The Adverse Effects of Air Pollution on the Nervous System

    PubMed Central

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  10. Review of air pollution and health impacts in Malaysia.

    PubMed

    Afroz, Rafia; Hassan, Mohd Nasir; Ibrahim, Noor Akma

    2003-06-01

    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.

  11. Public's Health Risk Awareness on Urban Air Pollution in Chinese Megacities: The Cases of Shanghai, Wuhan and Nanchang.

    PubMed

    Liu, Xiaojun; Zhu, Hui; Hu, Yongxin; Feng, Sha; Chu, Yuanyuan; Wu, Yanyan; Wang, Chiyu; Zhang, Yuxuan; Yuan, Zhaokang; Lu, Yuanan

    2016-08-25

    This study assessed the public's health risk awareness of urban air pollution triggered by three megacities in China, and the data are the responses from a sample size of 3868 megacity inhabitants from Shanghai, Nanchang and Wuhan. Descriptive analyses were used to summarize the respondents' demographics, perceived health risks from air pollution and sources of health-related knowledge on urban air pollution. Chi-square tests were used to examine if participants' demographics were associated with participant's general attitudes towards current air quality and the three perceived highest health risks due to urban air pollution. We found low rate of satisfaction of current urban air quality as well as poor knowledge of air pollution related indicator. Participants' gender, age and travel experience were found to be associated with the satisfaction of current air quality. The knowledge of air pollution related indicator was significantly affected by respondents' education, monthly income, health status, and sites of study. As many as 46.23% of the participants expressed their feelings of anxiety when exposed to polluted air, especially females, older adults and those with poor health conditions. Most participants believed that coughs/colds, eye problems and skin allergies were the three highest health risks due to urban air pollution based on public education through television/radio, internet and newspaper/magazine. Further public health education is needed to improve public awareness of air pollution and its effects.

  12. Public's Health Risk Awareness on Urban Air Pollution in Chinese Megacities: The Cases of Shanghai, Wuhan and Nanchang.

    PubMed

    Liu, Xiaojun; Zhu, Hui; Hu, Yongxin; Feng, Sha; Chu, Yuanyuan; Wu, Yanyan; Wang, Chiyu; Zhang, Yuxuan; Yuan, Zhaokang; Lu, Yuanan

    2016-01-01

    This study assessed the public's health risk awareness of urban air pollution triggered by three megacities in China, and the data are the responses from a sample size of 3868 megacity inhabitants from Shanghai, Nanchang and Wuhan. Descriptive analyses were used to summarize the respondents' demographics, perceived health risks from air pollution and sources of health-related knowledge on urban air pollution. Chi-square tests were used to examine if participants' demographics were associated with participant's general attitudes towards current air quality and the three perceived highest health risks due to urban air pollution. We found low rate of satisfaction of current urban air quality as well as poor knowledge of air pollution related indicator. Participants' gender, age and travel experience were found to be associated with the satisfaction of current air quality. The knowledge of air pollution related indicator was significantly affected by respondents' education, monthly income, health status, and sites of study. As many as 46.23% of the participants expressed their feelings of anxiety when exposed to polluted air, especially females, older adults and those with poor health conditions. Most participants believed that coughs/colds, eye problems and skin allergies were the three highest health risks due to urban air pollution based on public education through television/radio, internet and newspaper/magazine. Further public health education is needed to improve public awareness of air pollution and its effects. PMID:27571088

  13. Public’s Health Risk Awareness on Urban Air Pollution in Chinese Megacities: The Cases of Shanghai, Wuhan and Nanchang

    PubMed Central

    Liu, Xiaojun; Zhu, Hui; Hu, Yongxin; Feng, Sha; Chu, Yuanyuan; Wu, Yanyan; Wang, Chiyu; Zhang, Yuxuan; Yuan, Zhaokang; Lu, Yuanan

    2016-01-01

    This study assessed the public’s health risk awareness of urban air pollution triggered by three megacities in China, and the data are the responses from a sample size of 3868 megacity inhabitants from Shanghai, Nanchang and Wuhan. Descriptive analyses were used to summarize the respondents’ demographics, perceived health risks from air pollution and sources of health-related knowledge on urban air pollution. Chi-square tests were used to examine if participants’ demographics were associated with participant’s general attitudes towards current air quality and the three perceived highest health risks due to urban air pollution. We found low rate of satisfaction of current urban air quality as well as poor knowledge of air pollution related indicator. Participants’ gender, age and travel experience were found to be associated with the satisfaction of current air quality. The knowledge of air pollution related indicator was significantly affected by respondents’ education, monthly income, health status, and sites of study. As many as 46.23% of the participants expressed their feelings of anxiety when exposed to polluted air, especially females, older adults and those with poor health conditions. Most participants believed that coughs/colds, eye problems and skin allergies were the three highest health risks due to urban air pollution based on public education through television/radio, internet and newspaper/magazine. Further public health education is needed to improve public awareness of air pollution and its effects. PMID:27571088

  14. Impact of traffic-related air pollution on health.

    PubMed

    Jakubiak-Lasocka, J; Lasocki, J; Siekmeier, R; Chłopek, Z

    2015-01-01

    Road transport contributes significantly to air quality problems through vehicle emissions, which have various detrimental impacts on public health and the environment. The aim of this study was to assess the impact of traffic-related air pollution on health of Warsaw citizens, following the basics of the Health Impact Assessment (HIA) method, and evaluate its social cost. PM10 was chosen as an indicator of traffic-related air pollution. Exposure-response functions between air pollution and health impacts were employed. The value of statistical life (VSL) approach was used for the estimation of the cost of mortality attributable to traffic-related air pollution. Costs of hospitalizations and restricted activity days were assessed basing on the cost of illness (COI) method. According to the calculations, about 827 Warsaw citizens die in a year as a result of traffic-related air pollution. Also, about 566 and 250 hospital admissions due to cardiovascular and respiratory diseases, respectively, and more than 128,453 restricted activity days can be attributed to the traffic emissions. From the social perspective, these losses generate the cost of 1,604 million PLN (1 EUR-approx. 4.2 PLN). This cost is very high and, therefore, more attention should be paid for the integrated environmental health policy.

  15. Impact of traffic-related air pollution on health.

    PubMed

    Jakubiak-Lasocka, J; Lasocki, J; Siekmeier, R; Chłopek, Z

    2015-01-01

    Road transport contributes significantly to air quality problems through vehicle emissions, which have various detrimental impacts on public health and the environment. The aim of this study was to assess the impact of traffic-related air pollution on health of Warsaw citizens, following the basics of the Health Impact Assessment (HIA) method, and evaluate its social cost. PM10 was chosen as an indicator of traffic-related air pollution. Exposure-response functions between air pollution and health impacts were employed. The value of statistical life (VSL) approach was used for the estimation of the cost of mortality attributable to traffic-related air pollution. Costs of hospitalizations and restricted activity days were assessed basing on the cost of illness (COI) method. According to the calculations, about 827 Warsaw citizens die in a year as a result of traffic-related air pollution. Also, about 566 and 250 hospital admissions due to cardiovascular and respiratory diseases, respectively, and more than 128,453 restricted activity days can be attributed to the traffic emissions. From the social perspective, these losses generate the cost of 1,604 million PLN (1 EUR-approx. 4.2 PLN). This cost is very high and, therefore, more attention should be paid for the integrated environmental health policy. PMID:25310941

  16. The effectiveness of a heated air curtain

    NASA Astrophysics Data System (ADS)

    Frank, Daria

    2014-11-01

    Air curtains are high-velocity plane turbulent jets which are installed in the doorway in order to reduce the heat and the mass exchange between two environments. The air curtain effectiveness E is defined as the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. In the present study, we investigate the effects of an opposing buoyancy force on the air curtain effectiveness. Such an opposing buoyancy force arises for example if a downwards blowing air curtain is heated. We conducted small-scale experiments using water as the working fluid with density differences created by salt and sugar. The effectiveness of a downwards blowing air curtain was measured for situations in which the initial density of the air curtain was less than both the indoor and the outdoor fluid density, which corresponds to the case of a heated air curtain. We compare the effectiveness of the heated air curtain to the case of the neutrally buoyant air curtain. It is found that the effectiveness starts to decrease if the air curtain is heated beyond a critical temperature. Furthermore, we propose a theoretical model to describe the dynamics of the buoyant air curtain. Numerical results obtained from solving this model corroborate our experimental findings.

  17. Remote Sensing, Air Quality, and Public Health

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Rickman, Douglas; Mohammad, Al-Hamdan; Crosson, William; Estes, Maurice, Jr.; Limaye, Ashutosh; Qualters, Judith

    2008-01-01

    HELIX-Atlanta was developed to support current and future state and local EPHT programs to implement data linking demonstratio'n projects which could be part of the EPHT Network. HELIX-Atlanta is a pilot linking project in Atlanta for CDC to learn about the challenges the states will encounter. NASA/MSFC and the CDC are partners in linking environmental and health data to enhance public health surveillance. The use of NASA technology creates value - added geospatial products from existing environmental data sources to facilitate public health linkages. Proving the feasibility of the approach is the main objective

  18. RELATING AIR QUALITY AND ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

    EPA Science Inventory

    Initiated in February 2004, the Public Health Air Surveillance Evaluation (PHASE) Project is a multi-disciplinary collaboration between the Centers for Disease Control and Prevention (CDC), the U.S Environmental Protection Agency (EPA), and three Environmental Public Health Track...

  19. Ambient air pollution, climate change, and population health in China.

    PubMed

    Kan, Haidong; Chen, Renjie; Tong, Shilu

    2012-07-01

    As the largest developing country, China has been changing rapidly over the last three decades and its economic expansion is largely driven by the use of fossil fuels, which leads to a dramatic increase in emissions of both ambient air pollutants and greenhouse gases (GHGs). China is now facing the worst air pollution problem in the world, and is also the largest emitter of carbon dioxide. A number of epidemiological studies on air pollution and population health have been conducted in China, using time-series, case-crossover, cross-sectional, cohort, panel or intervention designs. The increased health risks observed among Chinese population are somewhat lower in magnitude, per amount of pollution, than the risks found in developed countries. However, the importance of these increased health risks is greater than that in North America or Europe, because the levels of air pollution in China are very high in general and Chinese population accounts for more than one fourth of the world's totals. Meanwhile, evidence is mounting that climate change has already affected human health directly and indirectly in China, including mortality from extreme weather events; changes in air and water quality; and changes in the ecology of infectious diseases. If China acts to reduce the combustion of fossil fuels and the resultant air pollution, it will reap not only the health benefits associated with improvement of air quality but also the reduced GHG emissions. Consideration of the health impact of air pollution and climate change can help the Chinese government move forward towards sustainable development with appropriate urgency.

  20. Assessment of urban air pollution and it's probable health impact.

    PubMed

    Barman, S C; Kumar, N; Singh, R; Kisku, G C; Khan, A H; Kidwai, M M; Murthy, R C; Negi, M P S; Pandey, P; Verma, A K; Jain, G; Bhargava, S K

    2010-11-01

    The present study deals with the quantitative effect of vehicular emission on ambient air quality during May 2006 in urban area of Lucknow city. In this study SPM, RSPM, SO2, NOx and 7 trace metals associated with RSPM were estimated at 10 representative locations in urban area and one village area for control. Beside this, air quality index (AQI), health effects of different metals and mortality were assessed. The 24 hr average concentration of SPM, RSPM, SO2 and NOx was found to be 382.3, 171.5, 24.3 and 33.8 microg m(-3) respectively in urban area and these concentrations were found to be significantly (p < 0.01) higher by 94.8, 134.8, 107.4 and 129.6% than control site respectively The 24 hr mean of SPM and RSPM at each location of urban area were found to be higher than prescribed limit of National Ambient Air Quality Standard (NAAQS) except SPM for industrial area. The 24 hr mean concentration of metals associated with RSPM was found to be higher than the control site by 52.3, 271.8, 408.9, 75.81, 62.7, 487.54 and 189.5% for Fe, Cu, Pb, Zn, Ni, Mn and Cr respectively. The inter correlation of metals Pb with Mn, Fe and Cr; Zn with Ni and Cr; Ni with Cr; Mn with Fe and Cu with Cr showed significant positive relation either at p < 0.05 or p < 0.01 level. Metals Pb, Mn and Cr (p < 0.01) and Cu (p < 0.05) showed significant positive correlation with RSPM. These results indicate that ambient air quality in the urban area is affected adversely due to emission and accumulation of SPM, RSPM, SO2, NOx and trace metals. These pollutants may pose detrimental effect on human health, as exposure of these are associated with cardiovascular and respiratory diseases, neurological impairments, increased risk of preterm birth and even mortality and morbidity. PMID:21506475

  1. Air pollution and human health: a review and reanalysis.

    PubMed Central

    Thibodeau, L A; Reed, R B; Bishop, Y M; Kammerman, L A

    1980-01-01

    Since 1970, Lave and Seskin have published a series of articles dealing with the question, "Does air pollution shorten lives?" Their recent book reports revised and extended analyses of their previous studies emphasizing policy implications. We have undertaken a review of Lave and Seskin's book to evaluate the methodology used and hence gain some insight into the strength of the conclusions reached. This review concentrates on methodology and its application to establishing and quantifying the association between air quality and health. Beyond simply reviewing the analyses reported in Lave and Seskin's book, we have duplicated and expanded two of the reported analyses. Our detailed reanalysis is presented both to verify reported results, and to illustrate the difficulties encountered in such an analysis. Our overall conclusion is that Lave and Seskin have done a thorouth job of reporting and interpreting the various analyses that they performed. Lave and Seskin have made a pioneering effort in showing an association between mortality rates and air pollution. We do not disagree with the conclusion of the existence of an association but have some reservations about their methods of estimating its magnitude. We were particularly concerned that Lave and Seskin did not fully investigate how well their models fit these data. Our reanalysis results in estimated effects which differ considerably from the values reported by Lave and Seskin. Thus, we conclude that the regression coefficients are quite unstable and so must be used with care. Assessing the relative costs and benefits of reducing air pollution without extensive sensitivity analysis could, therefore, be misleading. PMID:7389683

  2. Use of air quality modeling results as exposure estimates in health studies

    NASA Astrophysics Data System (ADS)

    Holmes, H. A.; Ivey, C.; Friberg, M.; Zhai, X.; Balachandran, S.; Hu, Y.; Russell, A. G.; Mulholland, J. A.; Tolbert, P. E.; Sarnat, S. E.

    2013-12-01

    Air pollutant measurements from regulatory monitoring networks are commonly utilized in combination with spatial averaging techniques to develop air quality metrics for use in epidemiologic studies. While these data provide useful indicators for air pollution in a region, their temporal and spatial information are limited. The growing availability of spatially resolved health data sets (i.e., resident and county level patient records) provides an opportunity to develop and apply corresponding spatially resolved air quality metrics as enhanced exposure estimates when investigating the impact of air pollution on health outcomes. Additionally, the measured species concentrations from monitoring networks cannot directly identify specific emission sources or characterize pollutant mixtures. However, these observations in combination with chemical transport models (e.g., CMAQ) and source apportionment methods (e.g., CMB and PMF) can be used to characterize pollutant mixtures, sources and species impacting both individual locations and wider areas. Extensive analysis using a combination of air quality modeling approaches and observations may be beneficial for health studies whose goal is to assess the health impacts of pollutant mixtures, in both spatially resolved and time-series health analyses. As part of the Southeastern Center for Air Pollution and Epidemiology (SCAPE) unique methods have been developed to effectively analyze air pollution and air quality modeling data to better understand how emission sources combine to impact air quality and to provide air quality metrics for use in health assessments. This presentation will discuss the air quality modeling techniques being utilized in SCAPE investigations that are aimed at providing enhanced exposure metrics for use in spatially resolved (state of Georgia) and time-series epidemiologic analyses (St. Louis and Atlanta). To generate spatially resolved daily air quality estimates of species concentrations and source

  3. Air pollution and health risks due to vehicle traffic.

    PubMed

    Zhang, Kai; Batterman, Stuart

    2013-04-15

    Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed-volume relationship, the California Line Source Dispersion Model, an empirical NO2-NOx relationship, estimated travel time changes during congestion, and concentration-response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, "U" shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2-NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion must

  4. Health and environmental benefits from air pollution reductions in Hungary.

    PubMed

    Aunan, K; Pátzay, G; Asbjørn Aaheim, H; Martin Seip, H

    1998-04-01

    The aim of this study was to assess the cost and benefit of the implementation of a specific energy saving program in Hungary. We have considered the possible reduced damage to public health, building materials and agricultural crops that may be obtained from reducing emissions of important air pollutants and also how the program contributes to reduced emissions of greenhouse gases. The measures are described in the National Energy Efficiency Improvement and Energy Conservation Programs (NEEIECP), elaborated by the Hungarian Ministry of Industry and Trade and accepted by the Government in 1994. The energy saving expected from the program is approximately 64 PJ/year. The benefits were estimated using monitoring data and population/recipient data from urban and rural areas in Hungary together with exposure-response functions and valuation estimates mainly from western studies. Our analysis indicates that the main benefit from reducing the concentrations of pollutants relates to public health and that reduced prevalence of chronic respiratory diseases is an important effect. Reduced premature mortality is also important and the estimated attributable risk of air pollution to excess mortality at present is approximately 6%. The estimated annual benefit of improved health conditions alone is likely to exceed the investments needed to implement the program. In addition there are significant benefits due to reduced replacement and maintenance costs for building materials (30-35 million US$ annually in Budapest only). The damage to crops due to ozone is large, but a significant improvement in Hungary depends upon concerted actions in several countries. PMID:9573631

  5. Acute Health Impact of Air Pollution in China

    NASA Astrophysics Data System (ADS)

    Feng, T.; Zhao, Y.; Zheng, M.

    2014-12-01

    Air pollution not only has long term health impact, but can affect health through acute exposure. This paper, using air pollution index (API) as overall evaluation of air quality, blood pressure and vital capacity as health outcomes, focuses on the acute health impact of air pollution in China. Current result suggests that after controlling smoking history, occupational exposure, income and education, API is positively associated with blood pressure and negatively associated with vital capacity. The associations became stronger for people with hypertension or pulmonary functional diseases, which indicates that these people are more sensitive to air pollution. Among three pollutants which API measures, that is inhalable particles (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2), PM10 is most statistically associated with blood pressure increase and vital capacity decrease. Further study will focusing on the following two questions. The first question is how various time lags affect the associations among API, blood pressure and vital capacity. The second question is how differently people in various cohorts reacts to acute exposure to air pollution. The differences in reactions of blood pressure and vital capacity between people in urban and rural areas, genders, various age cohorts, distinct income and education groups will be further studied.

  6. Population Dynamics and Air Pollution: The Impact of Demographics on Health Impact Assessment of Air Pollution

    PubMed Central

    Bønløkke, Jakob; Brønnum-Hansen, Henrik

    2013-01-01

    Objective. To explore how three different assumptions on demographics affect the health impact of Danish emitted air pollution in Denmark from 2005 to 2030, with health impact modeled from 2005 to 2050. Methods. Modeled air pollution from Danish sources was used as exposure in a newly developed health impact assessment model, which models four major diseases and mortality causes in addition to all-cause mortality. The modeling was at the municipal level, which divides the approximately 5.5 M residents in Denmark into 99 municipalities. Three sets of demographic assumptions were used: (1) a static year 2005 population, (2) morbidity and mortality fixed at the year 2005 level, or (3) an expected development. Results. The health impact of air pollution was estimated at 672,000, 290,000, and 280,000 lost life years depending on demographic assumptions and the corresponding social costs at 430.4 M€, 317.5 M€, and 261.6 M€ through the modeled years 2005–2050. Conclusion. The modeled health impact of air pollution differed widely with the demographic assumptions, and thus demographics and assumptions on demographics played a key role in making health impact assessments on air pollution. PMID:23762084

  7. An evaluation of air pollution health impacts and costs in São Paulo, Brazil.

    PubMed

    Miraglia, Simone Georges El Khouri; Saldiva, Paulo Hilário Nascimento; Böhm, György Miklós

    2005-05-01

    The need to determine cost estimates of the hazardous effects of diseases is important in order to establish the priorities of actions for prevention and health management. The evaluation of air pollution impacts on health, based on expenditures, has been carried out, but there are obvious comparison difficulties among countries, as the health-per-capita investment varies enormously. In order to achieve a standard indicator, we applied the Disability-Adjusted Life Years (DALY) method to estimate the health burden and cost estimate due to air pollution in São Paulo, Brazil. The basic methodology was the utilization of dose-response curves of epidemiological studies conducted in São Paulo to assess air pollution and its health effects. DALY attributable to air pollution in São Paulo added up to 28,212 years annually. An indirect health cost attributable to air pollution resulted in 3,222,676 US dollars. This estimate refers to the children and the elderly population. These results give a preliminary and underestimated value of the burden of diseases promoted by air pollution.

  8. Biomarker as a Research Tool in Linking Exposure to Air Particles and Respiratory Health

    PubMed Central

    2015-01-01

    Some of the environmental toxicants from air pollution include particulate matter (PM10), fine particulate matter (PM2.5), and ultrafine particles (UFP). Both short- and long-term exposure could result in various degrees of respiratory health outcomes among exposed persons, which rely on the individuals' health status. Methods. In this paper, we highlight a review of the studies that have used biomarkers to understand the association between air particles exposure and the development of respiratory problems resulting from the damage in the respiratory system. Data from previous epidemiological studies relevant to the application of biomarkers in respiratory system damage reported from exposure to air particles are also summarized. Results. Based on these analyses, the findings agree with the hypothesis that biomarkers are relevant in linking harmful air particles concentrations to increased respiratory health effects. Biomarkers are used in epidemiological studies to provide an understanding of the mechanisms that follow airborne particles exposure in the airway. However, application of biomarkers in epidemiological studies of health effects caused by air particles in both environmental and occupational health is inchoate. Conclusion. Biomarkers unravel the complexity of the connection between exposure to air particles and respiratory health. PMID:25984536

  9. Air pollution and human health: perspectives for the '90s and beyond.

    PubMed

    Lipfert, F W

    1997-04-01

    This paper considers the health effects of air pollution from three perspectives: historical, statistical, and public policy, and also as depicted by the recent epidemiology, primarily mortality studies. The historical perspectives establish the reality of population-based health effects, and they provide data with which to evaluate more recent evidence. Statistical perspectives imply that, while there is strong evidence that associations between air quality and health persist, many details of these relationships remain obscure, especially as to the existence of concentration thresholds that might define safe exposure levels. Additional major questions include the effects of uncertainties in actual pollution exposures, the degree of prematurity of "excess" deaths, and whether the development of new cases of chronic disease is associated with air pollution. Public policy issues center around interpreting the new epidemiological studies in the light of these uncertainties and the analysis and management of the concomitant health risks. PMID:9202486

  10. Adverse respiratory effects of outdoor air pollution in the elderly.

    PubMed

    Bentayeb, M; Simoni, M; Baiz, N; Norback, D; Baldacci, S; Maio, S; Viegi, G; Annesi-Maesano, I

    2012-09-01

    Compared to the rest of the population, the elderly are potentially highly susceptible to the effects of outdoor air pollution due to normal and pathological ageing. The purpose of the present review was to gather data on the effects on respiratory health of outdoor air pollution in the elderly, on whom data are scarce. These show statistically significant short-term and chronic adverse effects of various outdoor air pollutants on cardiopulmonary morbidity and mortality in the elderly. When exposed to air pollution, the elderly experience more hospital admissions for asthma and chronic obstructive pulmonary disease (COPD) and higher COPD mortality than others. Previous studies also indicate that research on the health effects of air pollution in the elderly has been affected by methodological problems in terms of exposure and health effect assessments. Few pollutants have been considered, and exposure assessment has been based mostly on background air pollution and more rarely on objective measurements and modelling. Significant progress needs to be made through the development of 'hybrid' models utilising the strengths of information on exposure in various environments to several air pollutants, coupled with daily activity exposure patterns. Investigations of chronic effects of air pollution and of multi-pollutant mixtures are needed to better understand the role of air pollution in the elderly. Lastly, smoking, occupation, comorbidities, treatment and the neighbourhood context should be considered as confounders or modifiers of such a role. In this context, the underlying biological, physiological and toxicological mechanisms need to be explored to better understand the phenomenon through a multidisciplinary approach. PMID:22871325

  11. Ambient air pollution and children’s health: A systematic review of Canadian epidemiological studies

    PubMed Central

    Koranteng, Samuel; Vargas, Alvaro R Osornio; Buka, Irena

    2007-01-01

    BACKGROUND There is growing concern about the health effects of ambient air pollution (AP) in children. The present article summarizes and compares local information regarding the adverse effects of AP on the health of Canadian children with reports from elsewhere. METHODS PUBMED, MEDLINE and EMBASE databases were searched for epidemiological studies, published between January 1989 and December 2004, on the adverse health effects of criteria air pollutants among Canadian children. RESULTS Eleven studies investigated the association between AP and various respiratory health outcomes, while one study assessed the effect of AP on sudden infant death syndrome. Another study examined the effects of AP on pregnancy outcomes. Most of the available information was from Ontario and British Columbia. Despite inconsistencies among study results and data from elsewhere, evidence from Canadian studies suggest that AP may cause adverse respiratory health effects in children and adverse pregnancy outcomes, and may contribute to infant mortality in Canada. INTERPRETATION AP has detrimental health effects among Canadian children. Paediatricians and other health care workers with an interest in child health should encourage parents and children to adhere to smog (AP) advisories. Existing regulatory practices should be reviewed to reduce current levels of ambient air pollutants in Canada. PMID:19030365

  12. Exploration of health risks related to air pollution and temperature in three Latin American cities.

    PubMed

    Romero-Lankao, Patricia; Qin, Hua; Borbor-Cordova, Mercy

    2013-04-01

    This paper explores whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards. PMID:23434119

  13. Exploration of health risks related to air pollution and temperature in three Latin American cities

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, P.; Borbor Cordova, M.; Qin, H.

    2013-12-01

    We explore whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards.

  14. Exploration of health risks related to air pollution and temperature in three Latin American cities.

    PubMed

    Romero-Lankao, Patricia; Qin, Hua; Borbor-Cordova, Mercy

    2013-04-01

    This paper explores whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards.

  15. Urban air pollution, poverty, violence and health--Neurological and immunological aspects as mediating factors.

    PubMed

    Kristiansson, Marianne; Sörman, Karolina; Tekwe, Carmen; Calderón-Garcidueñas, Lilian

    2015-07-01

    Rapid rural-urban migration has created overcrowded areas characterized by concentrated poverty and increases in indoor and outdoor air pollutants. These "hotspots" constitute an increased risk of violence and disease outbreaks. We hypothesize that the effects of poverty and associated air pollution-related stress on impaired cognitive skills are mediated by inflammatory cytokines. A research framework is proposed, encompassing (i) an epidemiological investigation of associations between poverty, high concentrations of air pollutants, violence and health, (ii) a longitudinal follow-up of working memory capacities and inflammatory markers, and (iii) intervention programs aiming to strengthen employability and decreased exposures to toxic air pollutants.

  16. Respiratory effects of air pollution on children.

    PubMed

    Goldizen, Fiona C; Sly, Peter D; Knibbs, Luke D

    2016-01-01

    A substantial proportion of the global burden of disease is directly or indirectly attributable to exposure to air pollution. Exposures occurring during the periods of organogenesis and rapid lung growth during fetal development and early post-natal life are especially damaging. In this State of the Art review, we discuss air toxicants impacting on children's respiratory health, routes of exposure with an emphasis on unique pathways relevant to young children, methods of exposure assessment and their limitations and the adverse health consequences of exposures. Finally, we point out gaps in knowledge and research needs in this area. A greater understanding of the adverse health consequences of exposure to air pollution in early life is required to encourage policy makers to reduce such exposures and improve human health.

  17. [Influence of industrial pollution of ambient air on health of workers engaged into open air activities in cold conditions].

    PubMed

    Chashchin, V P; Siurin, S A; Gudkov, A B; Popova, O N; Voronin, A Iu

    2014-01-01

    The article presents the results of a study on assessment of occupational exposure to air pollutants and related health effects in3792 outdoor workers engaged in operations performed in the vicinity of non-ferrous metallurgical facilities in Far North. Findings are that during cold season repeated climate and weather conditions are associated with higher level of chemical hazards and dust in surface air. At the air temperature below -17 degrees C, maximal single concentrations of major pollutants can exceed MAC up to 10 times. With that, transitory disablement morbidity parameters and occupational accidents frequency increase significantly. The workers with long exposure to cooling meteorological factors and air pollution demonstrate significantly increased prevalence of respiratory and circulatory diseases, despite relatively low levels of sculpture dioxide and dust in the air, not exceeding the occupational exposure limits. It has been concluded that severe cold is to be considered asa factor increasing occupational risk at air polluted outdoor worksites dueto more intense air pollution, higher traumatism risk and lower efficiency of filter antidust masks respiratory PPE and due to modification of the toxic effects.

  18. Respiratory health outcomes and air pollution in the Eastern Mediterranean Region: a systematic review.

    PubMed

    Abdo, Nour; Khader, Yousef S; Abdelrahman, Mostafa; Graboski-Bauer, Ashley; Malkawi, Mazen; Al-Sharif, Munjed; Elbetieha, Ahmad M

    2016-06-01

    Exposure to air pollution can cause detrimental health and be an economic burden. With newly developed equipment, monitoring of different air pollutants, identifying the sources, types of air pollutants and their corresponding concentrations, and applying mitigation intervention techniques became a crucial step in public health protection. Countries in the Eastern Mediterranean Region (EMR) are highly exposed to dust storms, have high levels of particulate matter (PM) concentrations, and have a unique climatic as well as topographic and socio-economic structure. This is the first study conducted to systemically and qualitatively assess the health impacts of air pollution in the EMR, identify susceptible populations, and ascertain research and knowledge gaps in the literature to better inform decisions by policy makers. We screened relevant papers and reports published between 2000 and 2014 in research databases. A total of 36 published studies met the inclusion criteria. A variety of indoor and outdoor exposures associated with various acute and chronic respiratory health outcomes were included. Respiratory health outcomes ranged in severity, from allergies and general respiratory complaints to lung cancer and mortality. Several adverse health outcomes were positively associated with various indoor/outdoor air pollutants throughout the EMR. However, epidemiological literature concerning the EMR is limited to a few studies in a few countries. More research is needed to elucidate the health outcomes of air pollution. Standardized reliable assessments on the national level for various air pollutants in different regions should be implemented and made publically available for researchers to utilize in their research. Moreover, advancing and utilizing more sound epidemiological designs and studies on the effect of air pollution on the respiratory health outcomes is needed to portray the actual situation in the region.

  19. Handle With Care: An Air Pollution Module for Sixth, Seventh, and Eighth Grade Teachers of Health Education, Science, and Other Subject Areas.

    ERIC Educational Resources Information Center

    Guerin, Dolores

    Presented is a module on air pollution for sixth through eighth graders. Six subsections address the many aspects of air and air pollution: (1) sensory awareness, (2) the nature of the atmosphere, (3) air pollution's effects on health and property, (4) values conflicts, (5) air quality control, and (6) individual responsibility. Learning…

  20. Which ornamental plant species effectively remove benzene from indoor air?

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  1. Summary and findings of the EPA and CDC symposium on air pollution exposure and health.

    PubMed

    Ozkaynak, Halûk; Glenn, Barbara; Qualters, Judith R; Strosnider, Heather; McGeehin, Michael A; Zenick, Harold

    2009-01-01

    The U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) co-organized a symposium on "Air Pollution Exposure and Health" at Research Triangle Park, North Carolina on September 19-20, 2006. The symposium brought together health and environmental scientists to discuss the state of the science and the cross-jurisdictional and methodological challenges in conducting air pollution epidemiology, environmental public health tracking and accountability research. The symposium was held over 2 days and consisted of technical presentations and breakout group discussions on each of the three principal themes of this meeting: (1) monitoring and exposure modeling information, (2) health effects data and (3) linkage of air quality and health data for research, tracking and accountability. This paper summarizes the symposium presentations and the conclusions and recommendations developed during the meeting. The accompanying two papers, which appear in this issue of the Journal, provide more in-depth discussion of issues pertinent to obtaining and analyzing air pollution exposure and health information. The symposium succeeded in identifying areas where there are critical gaps of knowledge in existing air pollution exposure and health information and in discovering institutional or programmatic barriers, which impede accessing and linking disparate data sets. Several suggestions and recommendations emerged from this meeting, directed toward (1) improving the utility of air monitoring data for exposure quantification, (2) improving access to and the quality of health data, (3) studying emerging air quality and health issues, (4) exploring improved or novel methods for linking data and (5) developing partnerships, building capacity and facilitating interdisciplinary communication. The meeting was successful in promoting an interdisciplinary dialogue around these issues and in formulating strategies to support these recommended activities. Finally

  2. Dirty air, dirty power. Mortality and health damage due to air pollution from power plants

    SciTech Connect

    Schneider, Conrad G.; Padian, M.

    2004-06-15

    The Clean Air Task Force commissioned Abt Associates, the consulting firm relied upon by US EPA to assess the health benefits of many of the agency's air regulatory programs. The report documents the asthma attacks, hospitalisations, lost work and school days, and premature deaths linked to pollution from power plants. A first report was released in 2000. The 2004 report documents for the first time the number of heart attacks and lung cancer deaths that would be caused by power plants in 2010 and 2020. It compares the premature deaths that would result under the Bush administration's air pollution plan, the existing US Clean Air Act, and a proposal sponsored by Senator Jim Jeffords to strengthen the Clean Air Act. In general it was found that the administration's plan would produce the fewest benefits. The full study is available from the EPA, abstracted separately on the Coal Abstracts database. 65 refs., 2 apps.

  3. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2012-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  4. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2013-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  5. Air Pollution Exposure and Physical Activity in China: Current Knowledge, Public Health Implications, and Future Research Needs

    PubMed Central

    Lü, Jiaojiao; Liang, Leichao; Feng, Yi; Li, Rena; Liu, Yu

    2015-01-01

    Deteriorating air quality in China has created global public health concerns in regard to health and health-related behaviors. Although emerging environmental regulations address ambient air pollution in China, the level of enforcement and long-term impact of these measures remain unknown. Exposure to air pollution has been shown to lead to multiple adverse health outcomes, including increased rates of heart disease and mortality. However, a lesser-known but increasingly significant concern is the relationship between air pollution and its effects on outdoor exercise. This is especially important in China, which has a culturally rooted lifestyle that encourages participation in outdoor physical activity. This article evaluates the intersection of air pollution and outdoor exercise and provides a discussion of issues related to its public health impact in China, where efforts to promote a healthy lifestyle may be adversely affected by the ambient air pollution that has accompanied rapid economic development and urbanization. PMID:26610539

  6. Air Pollution Exposure and Physical Activity in China: Current Knowledge, Public Health Implications, and Future Research Needs.

    PubMed

    Lü, Jiaojiao; Liang, Leichao; Feng, Yi; Li, Rena; Liu, Yu

    2015-11-20

    Deteriorating air quality in China has created global public health concerns in regard to health and health-related behaviors. Although emerging environmental regulations address ambient air pollution in China, the level of enforcement and long-term impact of these measures remain unknown. Exposure to air pollution has been shown to lead to multiple adverse health outcomes, including increased rates of heart disease and mortality. However, a lesser-known but increasingly significant concern is the relationship between air pollution and its effects on outdoor exercise. This is especially important in China, which has a culturally rooted lifestyle that encourages participation in outdoor physical activity. This article evaluates the intersection of air pollution and outdoor exercise and provides a discussion of issues related to its public health impact in China, where efforts to promote a healthy lifestyle may be adversely affected by the ambient air pollution that has accompanied rapid economic development and urbanization.

  7. Human health risks in megacities due to air pollution

    NASA Astrophysics Data System (ADS)

    Gurjar, B. R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A. S.; Lelieveld, J.

    2010-11-01

    This study evaluates the health risks in megacities in terms of mortality and morbidity due to air pollution. A new spreadsheet model, Risk of Mortality/Morbidity due to Air Pollution (Ri-MAP), is used to estimate the excess numbers of deaths and illnesses. By adopting the World Health Organization (WHO) guideline concentrations for the air pollutants SO 2, NO 2 and total suspended particles (TSP), concentration-response relationships and a population attributable-risk proportion concept are employed. Results suggest that some megacities like Los Angeles, New York, Osaka Kobe, Sao Paulo and Tokyo have very low excess cases in total mortality from these pollutants. In contrast, the approximate numbers of cases is highest in Karachi (15,000/yr) characterized by a very high concentration of total TSP (˜670 μg m -3). Dhaka (7000/yr), Beijing (5500/yr), Karachi (5200/yr), Cairo (5000/yr) and Delhi (3500/yr) rank highest with cardiovascular mortality. The morbidity (hospital admissions) due to Chronic Obstructive Pulmonary Disease (COPD) follows the tendency of cardiovascular mortality. Dhaka and Karachi lead the rankings, having about 2100/yr excess cases, while Osaka-Kobe (˜20/yr) and Sao Paulo (˜50/yr) are at the low end of all megacities considered. Since air pollution is increasing in many megacities, and our database of measured pollutants is limited to the period up to 2000 and does not include all relevant components (e.g. O 3), these numbers should be interpreted as lower limits. South Asian megacities most urgently need improvement of air quality to prevent excess mortality and morbidity due to exceptionally high levels of air pollution. The risk estimates obtained from Ri-MAP present a realistic baseline evaluation for the consequences of ambient air pollution in comparison to simple air quality indices, and can be expanded and improved in parallel with the development of air pollution monitoring networks.

  8. An integrated Bayesian model for estimating the long-term health effects of air pollution by fusing modelled and measured pollution data: A case study of nitrogen dioxide concentrations in Scotland.

    PubMed

    Huang, Guowen; Lee, Duncan; Scott, Marian

    2015-01-01

    The long-term health effects of air pollution can be estimated using a spatio-temporal ecological study, where the disease data are counts of hospital admissions from populations in small areal units at yearly intervals. Spatially representative pollution concentrations for each areal unit are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over grid level concentrations from an atmospheric dispersion model. We propose a novel fusion model for estimating spatially aggregated pollution concentrations using both the modelled and monitored data, and relate these concentrations to respiratory disease in a new study in Scotland between 2007 and 2011. PMID:26530824

  9. An integrated Bayesian model for estimating the long-term health effects of air pollution by fusing modelled and measured pollution data: A case study of nitrogen dioxide concentrations in Scotland.

    PubMed

    Huang, Guowen; Lee, Duncan; Scott, Marian

    2015-01-01

    The long-term health effects of air pollution can be estimated using a spatio-temporal ecological study, where the disease data are counts of hospital admissions from populations in small areal units at yearly intervals. Spatially representative pollution concentrations for each areal unit are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over grid level concentrations from an atmospheric dispersion model. We propose a novel fusion model for estimating spatially aggregated pollution concentrations using both the modelled and monitored data, and relate these concentrations to respiratory disease in a new study in Scotland between 2007 and 2011.

  10. Carcinogenic Air Toxics Exposure and Their Cancer-Related Health Impacts in the United States

    PubMed Central

    Zhou, Ying; Li, Chaoyang; Huijbregts, Mark A. J.; Mumtaz, M. Moiz

    2015-01-01

    Public health protection from air pollution can be achieved more effectively by shifting from a single-pollutant approach to a multi-pollutant approach. To develop such multi-pollutant approaches, identifying which air pollutants are present most frequently is essential. This study aims to determine the frequently found carcinogenic air toxics or hazardous air pollutants (HAPs) combinations across the United States as well as to analyze the health impacts of developing cancer due to exposure to these HAPs. To identify the most commonly found carcinogenic air toxics combinations, we first identified HAPs with cancer risk greater than one in a million in more than 5% of the census tracts across the United States, based on the National-Scale Air Toxics Assessment (NATA) by the U.S. EPA for year 2005. We then calculated the frequencies of their two-component (binary), and three-component (ternary) combinations. To quantify the cancer-related health impacts, we focused on the 10 most frequently found HAPs with national average cancer risk greater than one in a million. Their cancer-related health impacts were calculated by converting lifetime cancer risk reported in NATA 2005 to years of healthy life lost or Disability-Adjusted Life Years (DALYs). We found that the most frequently found air toxics with cancer risk greater than one in a million are formaldehyde, carbon tetrachloride, acetaldehyde, and benzene. The most frequently occurring binary pairs and ternary mixtures are the various combinations of these four air toxics. Analysis of urban and rural HAPs did not reveal significant differences in the top combinations of these chemicals. The cumulative annual cancer-related health impacts of inhaling the top 10 carcinogenic air toxics included was about 1,600 DALYs in the United States or 0.6 DALYs per 100,000 people. Formaldehyde and benzene together contribute nearly 60 percent of the total cancer-related health impacts. Our study shows that although there are many

  11. Carcinogenic Air Toxics Exposure and Their Cancer-Related Health Impacts in the United States.

    PubMed

    Zhou, Ying; Li, Chaoyang; Huijbregts, Mark A J; Mumtaz, M Moiz

    2015-01-01

    Public health protection from air pollution can be achieved more effectively by shifting from a single-pollutant approach to a multi-pollutant approach. To develop such multi-pollutant approaches, identifying which air pollutants are present most frequently is essential. This study aims to determine the frequently found carcinogenic air toxics or hazardous air pollutants (HAPs) combinations across the United States as well as to analyze the health impacts of developing cancer due to exposure to these HAPs. To identify the most commonly found carcinogenic air toxics combinations, we first identified HAPs with cancer risk greater than one in a million in more than 5% of the census tracts across the United States, based on the National-Scale Air Toxics Assessment (NATA) by the U.S. EPA for year 2005. We then calculated the frequencies of their two-component (binary), and three-component (ternary) combinations. To quantify the cancer-related health impacts, we focused on the 10 most frequently found HAPs with national average cancer risk greater than one in a million. Their cancer-related health impacts were calculated by converting lifetime cancer risk reported in NATA 2005 to years of healthy life lost or Disability-Adjusted Life Years (DALYs). We found that the most frequently found air toxics with cancer risk greater than one in a million are formaldehyde, carbon tetrachloride, acetaldehyde, and benzene. The most frequently occurring binary pairs and ternary mixtures are the various combinations of these four air toxics. Analysis of urban and rural HAPs did not reveal significant differences in the top combinations of these chemicals. The cumulative annual cancer-related health impacts of inhaling the top 10 carcinogenic air toxics included was about 1,600 DALYs in the United States or 0.6 DALYs per 100,000 people. Formaldehyde and benzene together contribute nearly 60 percent of the total cancer-related health impacts. Our study shows that although there are many

  12. Interaction between Chronic Obstructive Pulmonary Disease (COPD) and other important health conditions and measurable air pollution

    NASA Astrophysics Data System (ADS)

    Blagev, D. P.; Mendoza, D. L.; Rea, S.; Sorensen, J.

    2015-12-01

    Adverse health effects have been associated with urban pollutant exposure arising from close proximity to highly-emitting sources and atmospheric mixing. The relative air pollution exposure dose and time effects on various diseases remains unknown. This study compares the increased risk of health complications when patients are exposed to short term high-levels of air pollution vs. longer term exposure to lower levels of air pollution. We used the electronic medical record of an integrated hospital system based in Utah, Intermountain Healthcare, to identify a cohort of patients with Chronic Obstructive Pulmonary Disease (COPD) who were seen between 2009-2014. We determined patient demographics as well as comorbidity data and healthcare utilization. To determine the approximate air pollution dose and time exposure, we used the Hestia highly-resolved emissions inventory for Salt Lake County, Utah in conjunction with emissions based on the National Emissions Inventory (NEI). Hourly emissions of CO2 and criteria air pollutants were gridded at a 0.002o x 0.002o resolution for the study years. The resulting emissions were transported using the CALPUFF and AERMOD dispersion models to estimate air pollutant concentrations at an hourly 0.002o x 0.002oresolution. Additionally, pollutant concentrations were estimated at each patient's home and work address to estimate exposure. Multivariate analysis adjusting for patient demographics, comorbidities and severity of COPD was performed to determine association between air pollution exposure and the risk of hospitalization or emergency department (ED) visit for COPD exacerbation and an equivalency estimate for air pollution exposure was developed. We noted associations with air pollution levels for each pollutant and hospitalizations and ED visits for COPD and other patient comorbidities. We also present an equivalency estimate for dose of air pollution exposure and health outcomes. This analysis compares the increased risk of

  13. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions

    SciTech Connect

    Zhang, J.J.; Smith, K.R.

    2007-06-15

    Nearly all China's rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. We reviewed approximately 200 publications in both Chinese- and English language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of 'Poisonous' coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China's indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector.

  14. Health status of air force veterans occupationally exposed to herbicides in Vietnam: I. Physical health

    SciTech Connect

    Wolfe, W.H.; Michalek, J.E.; Miner, J.C. ); Rahe, A. ); Silva, J. ); Thomas, W.F.; Lustik, M.B.; Grubbs, W.D.; Roegner, R.H. ); Karrison, T.G. ); Williams, D.E. )

    1990-10-10

    The Air Force Health Study is a 20-year comprehensive assessment of the health of Air Force veterans of Operation Ranch Hand, the unit responsible for aerial spraying of herbicides in Vietnam. The study compares the health and noncombat mortality of Ranch Hand veterans with a comparison group of Air Force veterans primarily involved with cargo missions in Southeast Asia but who were not exposed to herbicides. This report summarizes the health of these veterans as determined at the third in a series of physical examinations. Nine hundred ninety-five Ranch Hands and 1,299 comparison subjects attended the second follow-up examination in 1987. The two groups were similar in reported health problems, diagnosed skin conditions, and hepatic, cardiovascular, and immune profiles. Ranch Hands have experienced significantly more basal cell carcinomas than comparison subjects. The two groups were not different with respect to melanoma and systemic cancer.

  15. U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation.

    PubMed

    Garcia-Menendez, Fernando; Saari, Rebecca K; Monier, Erwan; Selin, Noelle E

    2015-07-01

    We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O3) and fine particulate matter (PM2.5) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts, and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to cobenefits from reductions to coemitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050 and 2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses.

  16. Air Pollution and Exercise: A REVIEW OF THE CARDIOVASCULAR IMPLICATIONS FOR HEALTH CARE PROFESSIONALS.

    PubMed

    Giorgini, Paolo; Rubenfire, Melvyn; Bard, Robert L; Jackson, Elizabeth A; Ferri, Claudio; Brook, Robert D

    2016-01-01

    Although regular aerobic exercise improves overall health, increased physical activity can lead to heightened exposures to a variety of air pollutants. As such, the cardiovascular health benefits of exercise may be abrogated to some degree by the harmful actions of inhaled pollutants. This review aims to provide an up-to-date summary for health professionals of the cardiovascular responses as well as the risks of exercising in air pollution. Aerobic exercise augments the overall inhaled air pollution dose, potentiates the diffusion of pollutants into circulating blood, and augments oxidative stress and inflammation. The inhalation of particulate matter during exercise can raise blood pressure, impair vascular function, and unfavorably affect autonomic balance. Several studies suggest that air pollutants can increase ischemic symptoms and signs during exercise and can even be capable of impairing exercise performance in some scenarios. The overall evidence supports that the risk-to-benefit ratio generally favors that health care providers continue to strongly encourage their patients to perform regular aerobic exercise. Nevertheless, a greater effort should be made to educate patients about the risks of air pollutant exposures during exercise, particularly those at heightened cardiovascular risk. Although no strategy has been directly tested to reduce morbidity and mortality rate, several prudent actions can be taken to lessen the degree of exposures during exercise which may thereby help mitigate the adverse effects of air pollutants on exercise performance and cardiovascular risk. PMID:26378494

  17. U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation.

    PubMed

    Garcia-Menendez, Fernando; Saari, Rebecca K; Monier, Erwan; Selin, Noelle E

    2015-07-01

    We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O3) and fine particulate matter (PM2.5) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts, and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to cobenefits from reductions to coemitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050 and 2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses. PMID:26053628

  18. AIR POLLUTION EFFECTS ON SEMEN QUALITY

    EPA Science Inventory

    The potential impact of exposure to periods of high air pollution on male reproductive health was examined within the framework of an international project conducted in the Czech Republic. Semen quality was evaluated in young men (age 18) living in the Teplice District who are ex...

  19. Modifications of health behaviour in response to air pollution notifications in Copenhagen.

    PubMed

    Skov, T; Cordtz, T; Jensen, L K; Saugman, P; Schmidt, K; Theilade, P

    1991-01-01

    Ambient air quality is a major issue today in large cities all over the world. On the theoretical background of the health belief model and the health locus of control model, we studied the knowledge and beliefs about air pollution and the modifications of health behaviour brought about by information to the public about projected levels of air pollution, with special emphasis on reduction of outdoor activity and avoidance of car driving. Data were collected with a questionnaire among a sample of residents in the Copenhagen area. The respondents were almost universally knowledgeable about the prime emission source and concerned about the possible health effects of the air pollution in the area. Avoidance of outdoor activity was associated with personal experiences of symptoms ascribed to the air pollution, employment status, and with female sex, but not with knowledge or beliefs about the degree or health implications of the air pollution. The willingness to avoid car driving was positively associated with the belief that one can oneself influence one's health and with female sex. Lung diseased respondents were generally more prone to protect themselves than the healthy, both by avoiding outdoor activity and by being less willing to avoid car driving. The present study was conducted in an only moderately polluted city, and it is not clear whether the findings and conclusions can be generalized to more polluted cities. The study partly supported the underlying theories of the determinants of health behaviour, but also indicated a need for a broader theoretical framework, incorporating aspects of the respondents' life situation and personal experience which would be relevant to the specific type of health behaviour under study.

  20. Health benefits of improving air quality in Taiyuan, China.

    PubMed

    Tang, Deliang; Wang, Cuicui; Nie, Jiesheng; Chen, Renjie; Niu, Qiao; Kan, Haidong; Chen, Bingheng; Perera, Frederica

    2014-12-01

    Since 2000, the government in Shanxi province has mounted several initiatives and mandated factory shutdowns with the goal of reducing coal burning emissions and the environmental impacts of industrialization. We estimated the health benefits associated with air quality improvement from 2001 to 2010 in Taiyuan, Shanxi Province, using disability-adjusted life years (DALYs) and monetized the health benefits using value of statistical life (VOSL). Data were collected on annual average concentrations of particulate matter less than 10 μm in aerodynamic diameter (PM10) and relevant health outcomes in Taiyuan from 2001 to 2010. Selected exposure-response functions were used to calculate the cases of death or disease attributable to PM10 annually over a 10-year period. These were summed to calculate the DALYs lost and their monetary value associated with PM10 each year between 2001 and 2010. Air quality improvement from 2001 to 2010 was estimated to have prevented 2810 premature deaths, 951 new cases of chronic bronchitis, 141,457 cases of outpatient visits, 969 cases of emergency-room visits and 31,810 cases of hospital admissions. The DALYs (VOSL) decreased by 56.92% (52.68%) from 52,937 (7274 million Yuan) in 2001 to 22,807 (3442 million Yuan) in 2010. Premature deaths accounted for almost 95% of the total DALYs. Our analysis demonstrates that air pollution abatement during the last decade in Taiyuan has generated substantial health benefits. PMID:25168129

  1. Environment and air pollution: health services bequeath to grotesque menace.

    PubMed

    Qureshi, Muhammad Imran; Rasli, Amran Md; Awan, Usama; Ma, Jian; Ali, Ghulam; Faridullah; Alam, Arif; Sajjad, Faiza; Zaman, Khalid

    2015-03-01

    The objective of the study is to establish the link between air pollution, fossil fuel energy consumption, industrialization, alternative and nuclear energy, combustible renewable and wastes, urbanization, and resulting impact on health services in Malaysia. The study employed two-stage least square regression technique on the time series data from 1975 to 2012 to possibly minimize the problem of endogeniety in the health services model. The results in general show that air pollution and environmental indicators act as a strong contributor to influence Malaysian health services. Urbanization and nuclear energy consumption both significantly increases the life expectancy in Malaysia, while fertility rate decreases along with the increasing urbanization in a country. Fossil fuel energy consumption and industrialization both have an indirect relationship with the infant mortality rate, whereas, carbon dioxide emissions have a direct relationship with the sanitation facility in a country. The results conclude that balancing the air pollution, environment, and health services needs strong policy vistas on the end of the government officials.

  2. Environment and air pollution: health services bequeath to grotesque menace.

    PubMed

    Qureshi, Muhammad Imran; Rasli, Amran Md; Awan, Usama; Ma, Jian; Ali, Ghulam; Faridullah; Alam, Arif; Sajjad, Faiza; Zaman, Khalid

    2015-03-01

    The objective of the study is to establish the link between air pollution, fossil fuel energy consumption, industrialization, alternative and nuclear energy, combustible renewable and wastes, urbanization, and resulting impact on health services in Malaysia. The study employed two-stage least square regression technique on the time series data from 1975 to 2012 to possibly minimize the problem of endogeniety in the health services model. The results in general show that air pollution and environmental indicators act as a strong contributor to influence Malaysian health services. Urbanization and nuclear energy consumption both significantly increases the life expectancy in Malaysia, while fertility rate decreases along with the increasing urbanization in a country. Fossil fuel energy consumption and industrialization both have an indirect relationship with the infant mortality rate, whereas, carbon dioxide emissions have a direct relationship with the sanitation facility in a country. The results conclude that balancing the air pollution, environment, and health services needs strong policy vistas on the end of the government officials. PMID:25242593

  3. Air bubble bursting effect of lotus leaf.

    PubMed

    Wang, Jingming; Zheng, Yongmei; Nie, Fu-Qiang; Zhai, Jin; Jiang, Lei

    2009-12-15

    In this paper, a phenomenon of air bubbles quickly bursting within several milliseconds on a "self-cleaning" lotus leaf was described. This observation prompted the synthesis of artificial surfaces similar to that of the lotus leaf. The artificial leaf surfaces, prepared by photolithography and wet etching, showed a similar air bubble bursting effect. Smooth and rough silicon surfaces with an ordered nanostructure or patterned microstructure were utilized to study the contribution of the micro/nano hierarchical structures to this phenomenon of air bubble bursting. Air bubbles were found to burst on some superhydrophobic surfaces with microstructure (within 220 ms). However, air bubbles burst much more rapidly (within 13 ms) on similar surfaces with micro/nanostructure. The height, width, and spacing of hierarchical structures could also affect air bubble bursting, and the effect of the height was more obvious. When the height of hierarchical structures was around the height found in natural lotus papillae, the width and spacing were significant for air bubble bursting. An original model was proposed to further evaluate the reason why the micro/nano hierarchical rough structures had an excellent air bubble bursting effect, and the validity of the model was theoretically demonstrated.

  4. The health benefits of reducing air pollution in Sydney, Australia.

    PubMed

    Broome, Richard A; Fann, Neal; Cristina, Tina J Navin; Fulcher, Charles; Duc, Hiep; Morgan, Geoffrey G

    2015-11-01

    Among industrialised countries, fine particle (PM2.5) and ozone levels in the Sydney metropolitan area of Australia are relatively low. Annual mean PM2.5 levels have historically remained below 8 μg/m(3) while warm season (November-March) ozone levels occasionally exceed the Australian guideline value of 0.10 ppm (daily 1 h max). Yet, these levels are still below those seen in the United States and Europe. This analysis focuses on two related questions: (1) what is the public health burden associated with air pollution in Sydney; and (2) to what extent would reducing air pollution reduce the number of hospital admissions, premature deaths and number of years of life lost (YLL)? We addressed these questions by applying a damage function approach to Sydney population, health, PM2.5 and ozone data for 2007 within the BenMAP-CE software tool to estimate health impacts and economic benefits. We found that 430 premature deaths (90% CI: 310-540) and 5800 YLL (95% CI: 3900-7600) are attributable to 2007 levels of PM2.5 (about 2% of total deaths and 1.8% of YLL in 2007). We also estimate about 630 (95% CI: 410-840) respiratory and cardiovascular hospital admissions attributable to 2007 PM2.5 and ozone exposures. Reducing air pollution levels by even a small amount will yield a range of health benefits. Reducing 2007 PM2.5 exposure in Sydney by 10% would, over 10 years, result in about 650 (95% CI: 430-850) fewer premature deaths, a gain of 3500 (95% CI: 2300-4600) life-years and about 700 (95% CI: 450-930) fewer respiratory and cardiovascular hospital visits. These results suggest that substantial health benefits are attainable in Sydney with even modest reductions in air pollution.

  5. The health benefits of reducing air pollution in Sydney, Australia.

    PubMed

    Broome, Richard A; Fann, Neal; Cristina, Tina J Navin; Fulcher, Charles; Duc, Hiep; Morgan, Geoffrey G

    2015-11-01

    Among industrialised countries, fine particle (PM2.5) and ozone levels in the Sydney metropolitan area of Australia are relatively low. Annual mean PM2.5 levels have historically remained below 8 μg/m(3) while warm season (November-March) ozone levels occasionally exceed the Australian guideline value of 0.10 ppm (daily 1 h max). Yet, these levels are still below those seen in the United States and Europe. This analysis focuses on two related questions: (1) what is the public health burden associated with air pollution in Sydney; and (2) to what extent would reducing air pollution reduce the number of hospital admissions, premature deaths and number of years of life lost (YLL)? We addressed these questions by applying a damage function approach to Sydney population, health, PM2.5 and ozone data for 2007 within the BenMAP-CE software tool to estimate health impacts and economic benefits. We found that 430 premature deaths (90% CI: 310-540) and 5800 YLL (95% CI: 3900-7600) are attributable to 2007 levels of PM2.5 (about 2% of total deaths and 1.8% of YLL in 2007). We also estimate about 630 (95% CI: 410-840) respiratory and cardiovascular hospital admissions attributable to 2007 PM2.5 and ozone exposures. Reducing air pollution levels by even a small amount will yield a range of health benefits. Reducing 2007 PM2.5 exposure in Sydney by 10% would, over 10 years, result in about 650 (95% CI: 430-850) fewer premature deaths, a gain of 3500 (95% CI: 2300-4600) life-years and about 700 (95% CI: 450-930) fewer respiratory and cardiovascular hospital visits. These results suggest that substantial health benefits are attainable in Sydney with even modest reductions in air pollution. PMID:26414085

  6. Can air pollution negate the health benefits of cycling and walking?

    PubMed

    Tainio, Marko; de Nazelle, Audrey J; Götschi, Thomas; Kahlmeier, Sonja; Rojas-Rueda, David; Nieuwenhuijsen, Mark J; de Sá, Thiago Hérick; Kelly, Paul; Woodcock, James

    2016-06-01

    Active travel (cycling, walking) is beneficial for the health due to increased physical activity (PA). However, active travel may increase the intake of air pollution, leading to negative health consequences. We examined the risk-benefit balance between active travel related PA and exposure to air pollution across a range of air pollution and PA scenarios. The health effects of active travel and air pollution were estimated through changes in all-cause mortality for different levels of active travel and air pollution. Air pollution exposure was estimated through changes in background concentrations of fine particulate matter (PM2.5), ranging from 5 to 200μg/m3. For active travel exposure, we estimated cycling and walking from 0 up to 16h per day, respectively. These refer to long-term average levels of active travel and PM2.5 exposure. For the global average urban background PM2.5 concentration (22μg/m3) benefits of PA by far outweigh risks from air pollution even under the most extreme levels of active travel. In areas with PM2.5 concentrations of 100μg/m3, harms would exceed benefits after 1h 30min of cycling per day or more than 10h of walking per day. If the counterfactual was driving, rather than staying at home, the benefits of PA would exceed harms from air pollution up to 3h 30min of cycling per day. The results were sensitive to dose-response function (DRF) assumptions for PM2.5 and PA. PA benefits of active travel outweighed the harm caused by air pollution in all but the most extreme air pollution concentrations.

  7. Can air pollution negate the health benefits of cycling and walking?

    PubMed

    Tainio, Marko; de Nazelle, Audrey J; Götschi, Thomas; Kahlmeier, Sonja; Rojas-Rueda, David; Nieuwenhuijsen, Mark J; de Sá, Thiago Hérick; Kelly, Paul; Woodcock, James

    2016-06-01

    Active travel (cycling, walking) is beneficial for the health due to increased physical activity (PA). However, active travel may increase the intake of air pollution, leading to negative health consequences. We examined the risk-benefit balance between active travel related PA and exposure to air pollution across a range of air pollution and PA scenarios. The health effects of active travel and air pollution were estimated through changes in all-cause mortality for different levels of active travel and air pollution. Air pollution exposure was estimated through changes in background concentrations of fine particulate matter (PM2.5), ranging from 5 to 200μg/m3. For active travel exposure, we estimated cycling and walking from 0 up to 16h per day, respectively. These refer to long-term average levels of active travel and PM2.5 exposure. For the global average urban background PM2.5 concentration (22μg/m3) benefits of PA by far outweigh risks from air pollution even under the most extreme levels of active travel. In areas with PM2.5 concentrations of 100μg/m3, harms would exceed benefits after 1h 30min of cycling per day or more than 10h of walking per day. If the counterfactual was driving, rather than staying at home, the benefits of PA would exceed harms from air pollution up to 3h 30min of cycling per day. The results were sensitive to dose-response function (DRF) assumptions for PM2.5 and PA. PA benefits of active travel outweighed the harm caused by air pollution in all but the most extreme air pollution concentrations. PMID:27156248

  8. Air Pollution, Economic Development of Communities, and Health Status Among the Elderly in Urban China

    PubMed Central

    Gu, Danan

    2008-01-01

    In Western societies, the impact of air pollution on residents' health is higher in less wealthy communities. However, it is not clear whether such an interaction effect applies to developing countries. The authors examine how the level of community development modifies the impact of air pollution on health outcomes of the Chinese elderly using data from the third wave of the Chinese Longitudinal Health Longevity Survey in 2002, which includes 7,358 elderly residents aged 65 or more years from 735 districts in 171 cities. The results show that, compared with a 1-point increase in the air pollution index in urban areas with a low gross domestic product, a similar increase in the air pollution index in areas with a high gross domestic product is associated with more difficulties in activities of daily living (odds ratio = 1.41, 95% confidence interval (CI): 1.09, 1.83), instrumental activities of daily living (linear coefficient = 0.98, 95% CI: 0.58, 1.37), and cognitive function (linear coefficient = 2.67, 95% CI: 1.97, 3.36), as well as a higher level of self-rated poor health (odds ratio = 2.20, 95% CI: 1.68, 2.86). Contrary to what has been found in the West, Chinese elderly who live in more developed urban areas are more susceptible to the effect of air pollution than are their counterparts living in less developed areas. PMID:18936437

  9. Air pollution, economic development of communities, and health status among the elderly in urban China.

    PubMed

    Sun, Rongjun; Gu, Danan

    2008-12-01

    In Western societies, the impact of air pollution on residents' health is higher in less wealthy communities. However, it is not clear whether such an interaction effect applies to developing countries. The authors examine how the level of community development modifies the impact of air pollution on health outcomes of the Chinese elderly using data from the third wave of the Chinese Longitudinal Health Longevity Survey in 2002, which includes 7,358 elderly residents aged 65 or more years from 735 districts in 171 cities. The results show that, compared with a 1-point increase in the air pollution index in urban areas with a low gross domestic product, a similar increase in the air pollution index in areas with a high gross domestic product is associated with more difficulties in activities of daily living (odds ratio = 1.41, 95% confidence interval (CI): 1.09, 1.83), instrumental activities of daily living (linear coefficient = 0.98, 95% CI: 0.58, 1.37), and cognitive function (linear coefficient = 2.67, 95% CI: 1.97, 3.36), as well as a higher level of self-rated poor health (odds ratio = 2.20, 95% CI: 1.68, 2.86). Contrary to what has been found in the West, Chinese elderly who live in more developed urban areas are more susceptible to the effect of air pollution than are their counterparts living in less developed areas.

  10. Air pollution, economic development of communities, and health status among the elderly in urban China.

    PubMed

    Sun, Rongjun; Gu, Danan

    2008-12-01

    In Western societies, the impact of air pollution on residents' health is higher in less wealthy communities. However, it is not clear whether such an interaction effect applies to developing countries. The authors examine how the level of community development modifies the impact of air pollution on health outcomes of the Chinese elderly using data from the third wave of the Chinese Longitudinal Health Longevity Survey in 2002, which includes 7,358 elderly residents aged 65 or more years from 735 districts in 171 cities. The results show that, compared with a 1-point increase in the air pollution index in urban areas with a low gross domestic product, a similar increase in the air pollution index in areas with a high gross domestic product is associated with more difficulties in activities of daily living (odds ratio = 1.41, 95% confidence interval (CI): 1.09, 1.83), instrumental activities of daily living (linear coefficient = 0.98, 95% CI: 0.58, 1.37), and cognitive function (linear coefficient = 2.67, 95% CI: 1.97, 3.36), as well as a higher level of self-rated poor health (odds ratio = 2.20, 95% CI: 1.68, 2.86). Contrary to what has been found in the West, Chinese elderly who live in more developed urban areas are more susceptible to the effect of air pollution than are their counterparts living in less developed areas. PMID:18936437

  11. The Altitude Effect on Air Speed Indicators

    NASA Technical Reports Server (NTRS)

    Hersey, M D; Hunt, F L; Eaton, H N

    1921-01-01

    The object of this report is to present the results of a theoretical and experimental study of the effect, on the performance of air speed indicators, of the different atmospheric conditions experienced at various altitudes.

  12. Climate change, extreme weather events, air pollution and respiratory health in Europe.

    PubMed

    De Sario, M; Katsouyanni, K; Michelozzi, P

    2013-09-01

    Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.

  13. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. Th...

  14. Toxic effects of air freshener emissions.

    PubMed

    Anderson, R C; Anderson, J H

    1997-01-01

    To evaluate whether emissions of a commercial air freshener produced acute toxic effects in a mammalian species, the authors allowed male Swiss-Webster mice to breathe the emissions of one commercial-brand solid air freshener for 1 h. Sensory irritation and pulmonary irritation were evaluated with the ASTM-E-981 test. A computerized version of this test measured the duration of the break at the end of inspiration and the duration of the pause at the end of expiration--two parameters subject to alteration via respiratory effects of airborne toxins. Measurements of expiratory flow velocity indicated changes in airflow limitation. The authors then subjected mice to a functional observational battery, the purpose of which was to probe for changes in nervous system function. Emissions of this air freshener at several concentrations (including concentrations to which many individuals are actually exposed) caused increases in sensory and pulmonary irritation, decreases in airflow velocity, and abnormalities of behavior measured by the functional observational battery score. The test atmosphere was subjected to gas chromatography/mass spectroscopy, and the authors noted the presence of chemicals with known irritant and neurotoxic properties. The Material Safety Data Sheet for the air freshener indicated that there was a potential for toxic effects in humans. The air freshener used in the study did not diminish the effect of other pollutants tested in combination. The results demonstrated that the air freshener may have actually exacerbated indoor air pollution via addition of toxic chemicals to the atmosphere.

  15. Respiratory effects of air pollution on allergic disease

    SciTech Connect

    Pierson, W.E.; Koenig, J.Q. )

    1992-10-01

    Allergic patients have an increased susceptibility to the adverse effects of both natural and man-made air pollutants. This goes for both indoor and outdoor air pollutants and manifests itself with biochemical, cellular, and pathophysiologic expressions of adverse health effects in allergic individuals. Also occupationally induced allergic diseases will remain very important. This area has been reviewed recently by Cullen et al. Since allergic patients comprise somewhere between 15% and 20% of the population, this increased susceptibility is of crucial importance not only for medical care and research but for legislative and regulatory consideration to protect these vulnerable individuals.108 references.

  16. The health and visibility cost of air pollution: a comparison of estimation methods.

    PubMed

    Delucchi, Mark A; Murphy, James J; McCubbin, Donald R

    2002-02-01

    Air pollution from motor vehicles, electricity-generating plants, industry, and other sources can harm human health, injure crops and forests, damage building materials, and impair visibility. Economists sometimes analyze the social cost of these impacts, in order to illuminate tradeoffs, compare alternatives, and promote efficient use of scarce resource. In this paper, we compare estimates of the health and visibility costs of air pollution derived from a meta-hedonic price analysis, with an estimate of health costs derived from a damage-function analysis and an estimate of the visibility cost derived from contingent valuation. We find that the meta-hedonic price analysis produces an estimate of the health cost that lies at the low end of the range of damage-function estimates. This is consistent with hypotheses that on the one hand, hedonic price analysis does not capture all of the health costs of air pollution (because individuals may not be fully informed about all of the health effects), and that on the other hand, the value of mortality used in the high-end damage function estimates is too high. The analysis of the visibility cost of air pollution derived from a meta-hedonic price analysis produces an estimate that is essentially identical to an independent estimate based on contingent valuation. This close agreement lends some credence to the estimates. We then apply the meta hedonic-price model to estimate the visibility cost per kilogram of motor vehicle emissions.

  17. Ocular surface adverse effects of ambient levels of air pollution.

    PubMed

    Torricelli, André Augusto Miranda; Novaes, Priscila; Matsuda, Monique; Alves, Milton Ruiz; Monteiro, Mário Luiz Ribeiro

    2011-01-01

    It is widely recognized today that outdoor air pollution can affect human health. Various chemical components that are present in ambient pollution may have an irritant effect on the mucous membranes of the body, particularly those of the respiratory tract. Much less attention has been focused on the adverse effect on the ocular surface, despite the fact that this structure is even more exposed to air pollution than the respiratory mucosa since only a very thin tear film separates the corneal and conjunctival epithelia from the air pollutants. So far, clinical data are the more widespread tools used by ophthalmologists for assessing possible aggression to the ocular surface; however, clinical findings alone appears not to correlate properly with the complaints presented by the patients pointing out the need for further clinical and laboratory studies on the subject. The purpose of this study is to review signs and symptoms associated with chronic long-term exposure to environmental air pollutants on the ocular structures currently defined as the ocular surface and to review clinical and laboratory tests used to investigate the adverse effects of air pollutants on such structures. We also review previous studies that investigated the adverse effects of air pollution on the ocular surface and discuss the need for further investigation on the subject.

  18. Health Impacts of Air Pollution Under a Changing Climate

    NASA Astrophysics Data System (ADS)

    Kinney, P. L.; Knowlton, K.; Rosenthal, J.; Hogrefe, C.; Rosenzweig, C.; Solecki, W.

    2003-12-01

    Outdoor air pollution remains a serious public health problem in cities throughout the world. In the US, despite considerable progress in reducing emissions over the past 30 years, as many as 50,000 premature deaths each year have been attributed to airborne particulate matter alone. Tropospheric ozone has been associated with increased daily mortality and hospitalization rates, and with a variety of related respiratory problems. Weather plays an important role in the transport and transformation of air pollution. In particular, a warming climate is likely to promote the atmospheric reactions that are responsible for ozone and secondary aerosol production, as well as increasing emissions of many of their volatile precursors. Increasingly, efforts to address urban air pollution problems throughout the world will be complicated by trends and variability in climate. The New York Climate and Health Project (NYCHP) is developing and applying tools for integrated assessment of health impacts from air pollution and heat associated with climate and land-use changes in the New York City metropolitan region. Global climate change is modeled over the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) A2 greenhouse gas emissions scenario using the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model (GCM). Meteorological fields are downscaled to a 36 km grid over the eastern US using the Penn State/NCAR MM5 mesoscale meteorological model. MM5 results are then used as input to the Community Multiscale Air Quality (CMAQ) model for simulating air quality, with emissions based on the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE). To date, simulations have been performed for five summer seasons each during the 1990s and the 2050s. An evaluation of the present-day climate and air quality predictions indicates that the modeling system largely captures the observed climate-ozone system. Analysis of future-year predictions

  19. Health Effects of Exposures to Mercury

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  20. [Estimation of arsenic accumulative intake and residents' health effects in an air pollution area--relationship between arsenic accumulative intake level and arsenicism prevalence].

    PubMed

    Shang, Qi; Ren, Xiuqin; Li, Jinrong

    2002-10-01

    This paper reports the results of epidemiological survey on health effects of residents exposed to arsenic in a pollution area and estimation of arsenic accumulative intake level (EAAIL) based on calculating accumulative rice consumption and via inhalation way. 795 persons were sampled randomly from the polluted area, among whom 674 persons and 83 persons were diagnosed with Chronic Arsenic Absorption (CAA) and Chronic Arsenicism (CA) according to the National Diagnose Standard respectively. There were 60.98% CAA in 30 years old and younger age-groups and 97.59% CA in 30 years old and older age-groups. The one youngest case of CA occurred in 15 years old age group, while its EAAIL was at 1846.47 mg. The highest EAAIL was at 8706.47 mg. The rate of CA had gone obviously up at 30 years old age group. Its EAAIL was at 3833.42 mg. One equation of relationship between the rate of CA (%) and EAAIL (mg) was fitted by means of curve fitting, its is followed: Y = X1.843/e12.694 -2.866, r2 = 0.945.

  1. Relative effects of Fossil-Fuel Soot, Biofuel Soot and Gases, and Methane on Climate, Arctic Ice, and Air Pollution Health (Invited)

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2009-12-01

    This study quantifies the effects of fossil-fuel soot (FS) versus biofuel soot and gases (BSG) and methane on global and Arctic temperatures, cloudiness, and precipitation. Climate response simulations suggest a globally-averaged near-surface warming due to FS of ~0.4 (0.3-0.45) K (18% of gross global warming), to FS+BSG (FSBSG) of ~0.5 (0.4-0.55) K (23% of gross warming), and to CH4 of ~0.4 (0.3-0.45) K (18% of gross warming). Warming above the Arctic Circle was ~1.2 K for FS, ~1.7 K for FSBSG, and ~0.8 K for CH4, decreasing preindustrial sea ice area by ~3%, ~5.2%, and ~2% respectively. The results supports the hypothesis that FSBSG may be the second-leading cause of global warming after CO2 and that control of either FS or FSBSG will slow global and Arctic warming and Arctic ice loss faster than will control of CH4 or CO2 although controls of all warming agents are needed The results also suggest that FS is a stronger contributed to warming per unit mass emission than BSG due primarily to the difference in composition and hygroscopicity of emissions. However, human mortality due to BSG may be eight times greater than that due to FS because BSG is emitted primarily in densely-populated areas. The global e-folding lifetime of emitted BC (from all fossil sources) against internal mixing by coagulation was ~3 hours and that of all BC against dry plus wet removal was ~4.5 days. Of all wet and dry removal of BC, ~70% and ~92% was wet in the emitted and internally-mixed aerosol size distributions, respectively. The surface temperature response per unit continuous emissions of component X relative to the same for CO2 (STRE - similar to global warming potentials - GWPs) of BC in FS were ~6100 and ~2700-3900 over 20 and 100 years, respectively; those of BC in BSG were ~2500 and ~860-1250, respectively; and those of CH4 were ~86 and ~29-43, respectively. Each gram of ambient BC in FS warmed the air ~1.5-2.1 million times more than did each gram of ambient CO2-C and ~70

  2. Air pollution holiday effect in metropolitan Kaohsiung

    NASA Astrophysics Data System (ADS)

    Tan, P.; Chen, P. Y.

    2014-12-01

    Different from Taipei, the metropolitan Kaohsiung which is a coastal and industrial city has the major pollution sources from stationary sources such as coal-fired power plants, petrochemical facilities and steel plants, rather than mobile sources. This study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods, over the Kaohsiung metropolitan area. We documented evidence of a "holiday effect", where concentrations of NOx, CO, NMHC, SO2 and PM10 were significantly different between holidays and non-holidays, in the Kaohsiung metropolitan area from daily surface measurements of seven air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods of 1994-2010. Concentrations of the five pollutants were lower in the CNY than in the NCNY period, however, that of O3 was higher in the CNY than in the NCNY period and had no holiday effect. The exclusion of the bad air quality day (PSI > 100) and the Lantern Festival Day showed no significant effects on the holiday effects of air pollutants. Ship transportation data of Kaohsiung Harbor Bureau showed a statistically significant difference in the CNY and NCNY period. This difference was consistent with those found in air pollutant concentrations of some industrial and general stations in coastal areas, implying the possible impact of traffic activity on the air quality of coastal areas. Holiday effects of air pollutants over the Taipei metropolitan area by Tan et al. (2009) are also compared.

  3. Using Portable Samplers to Determine the Effect of Roadside Vegetation on Near-Road Air Quality

    EPA Science Inventory

    Growing evidence exists that populations spending significant amounts of time near major roads face increased risks for several adverse health effects.1 These effects may be attributable to increased exposure to particulate matter (PM), gaseous criteria pollutants, and air toxic...

  4. Air pollutant effects on fetal and early postnatal development.

    PubMed

    Wang, Lei; Pinkerton, Kent E

    2007-09-01

    Numerical research on the health effects of air pollution has been published in the last decade. Epidemiological studies have shown that children's exposure to air pollutants during fetal development and early postnatal life is associated with many types of health problems including abnormal development (low birth weight [LBW], very low birth weight [VLBW], preterm birth [PTB], intrauterine growth restriction [IUGR], congenital defects, and intrauterine and infant mortality), decreased lung growth, increased rates of respiratory tract infections, childhood asthma, behavioral problems, and neurocognitive decrements. This review focuses on the health effects of major outdoor air pollutants including particulates, carbon monoxide (CO), sulfur and nitrogen oxides (SO(2), NOx), ozone, and one common indoor air pollutant, environmental tobacco smoke (ETS). Animal data is presented that demonstrate perinatal windows of susceptibility to sidestream smoke, a surrogate for ETS, resulting in altered airway sensitivity and cell type frequency. A study of neonatal monkeys exposed to sidestream smoke during the perinatal period and/or early postnatal period that resulted in an altered balance of Th1-/Th2-cytokine secretion, skewing the immune response toward the allergy-associated Th2 cytokine phenotype, is also discussed. PMID:17963272

  5. The Covariance between Air Pollution Annoyance and Noise Annoyance, and Its Relationship with Health-Related Quality of Life.

    PubMed

    Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason

    2016-01-01

    Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution. PMID:27509512

  6. The Covariance between Air Pollution Annoyance and Noise Annoyance, and Its Relationship with Health-Related Quality of Life.

    PubMed

    Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason

    2016-08-06

    Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution.

  7. The Covariance between Air Pollution Annoyance and Noise Annoyance, and Its Relationship with Health-Related Quality of Life

    PubMed Central

    Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason

    2016-01-01

    Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution. PMID:27509512

  8. Air-driven Brazil nut effect

    NASA Astrophysics Data System (ADS)

    Naylor, M.; Swift, Michael; King, P.

    2003-07-01

    A large heavy object may rise to the top of a bed of smaller particles under the influence of vertical vibration, the “Brazil nut effect.” Recently it has been noted that interstitial air can influence the Brazil nut rise time. Here we report that the air movement induced by vertical vibration produces a very strong Brazil nut effect for fine granular beds. We use a porous-bottomed box to investigate the mechanism responsible for this effect and to demonstrate that it is related to the piling of fine beds, first reported by Chladni and studied by Faraday. Both effects are due to the strong interaction of the fine particles with the air, as it is forced through the bed by the vibration.

  9. Modeling exposures to traffic-related air pollutants for the NEXUS respiratory health study of asthmatic children in Detroit, MI

    EPA Science Inventory

    The Near-Road EXposures and Effects of Urban Air Pollutants Study (NEXUS) was designed to investigate associations between exposure to traffic-related air pollution and the respiratory health of asthmatic children living near major roadways in Detroit, MI. A combination of modeli...

  10. Co-benefits of Global Greenhouse Gas Mitigation for Future Air Quality and Human Health.

    PubMed

    West, J Jason; Smith, Steven J; Silva, Raquel A; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zachariah; Fry, Meridith M; Anenberg, Susan; Horowitz, Larry W; Lamarque, Jean-Francois

    2013-10-01

    Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies(1-6) typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants(7-9), long-term demographic changes, and the influence of climate change on air quality(10-12). Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter(13) and ozone(14), global modeling methods(15), and new future scenarios(16). Relative to a reference scenario, global GHG mitigation avoids 0.5±0.2, 1.3±0.5, and 2.2±0.8 million premature deaths in 2030, 2050, and 2100. Global average marginal co-benefits of avoided mortality are $50-380 (ton CO2)(-1), which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.

  11. Co-benefits of Global Greenhouse Gas Mitigation for Future Air Quality and Human Health.

    PubMed

    West, J Jason; Smith, Steven J; Silva, Raquel A; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zachariah; Fry, Meridith M; Anenberg, Susan; Horowitz, Larry W; Lamarque, Jean-Francois

    2013-10-01

    Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies(1-6) typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants(7-9), long-term demographic changes, and the influence of climate change on air quality(10-12). Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter(13) and ozone(14), global modeling methods(15), and new future scenarios(16). Relative to a reference scenario, global GHG mitigation avoids 0.5±0.2, 1.3±0.5, and 2.2±0.8 million premature deaths in 2030, 2050, and 2100. Global average marginal co-benefits of avoided mortality are $50-380 (ton CO2)(-1), which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future. PMID:24926321

  12. Air pollutants effects on forest ecosystems

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on the effects of acid rain on forests. The conference was sponsored by the National Acid Precipitation Assessment Program (NAPAP). Topics considered at the conference included the status of US research on acid deposition and its effects contributing factors to the decline of forests, evidence for effects on ecosystems, the effects of air pollutants on forest ecosystems in North America and Europe, forest management, and future scientific research programs and management approaches.

  13. The effects of air leaks on solar air heating systems

    NASA Technical Reports Server (NTRS)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  14. Environmental health in China: challenges to achieving clean air and safe water

    PubMed Central

    Zhang, Junfeng (Jim); Mauzerall, Denise L.; Zhu, Tong; Liang, Song; Ezzati, Majid; Remais, Justin

    2014-01-01

    The health effects of environmental risks, especially those of air and water pollution, remain a major source of morbidity and mortality in China. Biomass fuel and coal are routinely burned for cooking and heating in almost all rural and many urban households resulting in severe indoor air pollution that contributes greatly to the burden of disease. Many communities lack access to safe drinking water and santiation, and thus the risk of waterborne disease in many regions remains high. At the same time, China is rapidly industrializing with associated increases in energy use and industrial waste. While economic growth resulting from industrialization has improved health and quality of life indicators in China, it has also increased the incidence of environmental disasters and the release of chemical toxins into the environment, with severe impacts on health. Air quality in China's cities is among the worst in the world and industrial water pollution has become a widespread health hazard. Moreover, emissions of climate-warming greenhouse gases from energy use are rapidly increasing. Global climate change will inevitably intensify China's environmental health problems, with potentially catastrophic outcomes from major shifts in temperature and precipitation. Facing the overlap of traditional, modern, and emerging environmental problems, China has committed substantial resources to environmental improvement. China has the opportunity to both address its national environmental health challenges and to assume a central role in the international effort to improve the global environment. PMID:20346817

  15. Health and productivity benefits of improved indoor air quality

    SciTech Connect

    Dorgan, C.B.; Dorgan, C.E.; Kanarek, M.S.; Willman, A.J.

    1998-10-01

    This paper is a summary of two studies completed for a national contractor`s association on the health costs and productivity benefits of improved IAQ. The original study documented the general health costs and productivity benefits of improved IAQ. The second study expanded the scope to include medical cost reductions for specific illnesses from improved IAQ. General information on the objectives, assumptions, definitions, and results of the studies are presented, followed by detailed information on research methodology, building inventory and wellness categories, health and medical effects of poor IAQ, health cost benefits, productivity benefits, recommended improvements, and conclusions and future improvements.

  16. The health risks of incense use in the home: an underestimated source of indoor air pollution?

    PubMed

    Roberts, Debbie; Pontin, David

    2016-03-01

    The health impact of indoor air pollution is a growing area of interest for public health professionals. People typically spend up to 90 per cent of their time indoors, particularly women, young children and elders. Although the adverse health effects of second-hand tobacco smoke are well recognised, the impact of burning incense in the home has received little attention in Western literature. Incense burning in the home is common in a number of cultures (particularly Asian, North African or Arabic). Many health visitors (HVs) work with communities who use incense regularly for religious/cultural reasons and it is a neglected area of study and research.The literature suggests that home incense use can have significant adverse health effects, particularly on cardiopulmonary morbidity and mortality. Further research is needed to identify which individuals are most susceptible, which types of incense are most harmful, and whether any actions can be taken to minimise exposure.

  17. The health risks of incense use in the home: an underestimated source of indoor air pollution?

    PubMed

    Roberts, Debbie; Pontin, David

    2016-03-01

    The health impact of indoor air pollution is a growing area of interest for public health professionals. People typically spend up to 90 per cent of their time indoors, particularly women, young children and elders. Although the adverse health effects of second-hand tobacco smoke are well recognised, the impact of burning incense in the home has received little attention in Western literature. Incense burning in the home is common in a number of cultures (particularly Asian, North African or Arabic). Many health visitors (HVs) work with communities who use incense regularly for religious/cultural reasons and it is a neglected area of study and research.The literature suggests that home incense use can have significant adverse health effects, particularly on cardiopulmonary morbidity and mortality. Further research is needed to identify which individuals are most susceptible, which types of incense are most harmful, and whether any actions can be taken to minimise exposure. PMID:27111977

  18. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    SciTech Connect

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  19. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    SciTech Connect

    Stenner, Robert D; Hadley, Donald L; Armstrong, Peter R; Buck, John W; Hoopes, Bonnie L

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly ''demo'' accompanies this report to allow the reader the opportunity for a ''hands on'' review of the prototype system's capability.

  20. Integrated Assessment of Health-related Economic Impacts of U.S. Air Pollution Policy

    NASA Astrophysics Data System (ADS)

    Saari, R. K.; Rausch, S.; Selin, N. E.

    2012-12-01

    We examine the environmental impacts, health-related economic benefits, and distributional effects of new US regulations to reduce smog from power plants, namely: the Cross-State Air Pollution Rule. Using integrated assessment methods, linking atmospheric and economic models, we assess the magnitude of economy-wide effects and distributional consequences that are not captured by traditional regulatory impact assessment methods. We study the Cross-State Air Pollution Rule, a modified allowance trading scheme that caps emissions of nitrogen oxides and sulfur dioxide from power plants in the eastern United States and thus reduces ozone and particulate matter pollution. We use results from the regulatory regional air quality model, CAMx (the Comprehensive Air Quality Model with extensions), and epidemiologic studies in BenMAP (Environmental Benefits Mapping and Analysis Program), to quantify differences in morbidities and mortalities due to this policy. To assess the economy-wide and distributional consequences of these health impacts, we apply a recently developed economic and policy model, the US Regional Energy and Environmental Policy Model (USREP), a multi-region, multi-sector, multi-household, recursive dynamic computable general equilibrium economic model of the US that provides a detailed representation of the energy sector, and the ability to represent energy and environmental policies. We add to USREP a representation of air pollution impacts, including the estimation and valuation of health outcomes and their effects on health services, welfare, and factor markets. We find that the economic welfare benefits of the Rule are underestimated by traditional methods, which omit economy-wide impacts. We also quantify the distribution of benefits, which have varying effects across US regions, income groups, and pollutants, and we identify factors influencing this distribution, including the geographic variation of pollution and population as well as underlying

  1. Effects of air emissions on wildlife resources. Air pollution and acid rain report No. 1

    SciTech Connect

    Newman, J.R.

    1980-05-01

    This publication describes in general the pathways of contamination, direct and indirect effects of air emissions on wildlife resources, and the potential use of wildlife as biological indicators of air quality degradation. Also included in the report are summaries of air pollution incidents involving wildlife, responses of wildlife to air pollution, major target systems of selected air pollutants, and information on the capacity of some air pollutants to accumulate in body tissues.

  2. Quantifying the health impacts of air pollution under a changing climate—a review of approaches and methodology

    NASA Astrophysics Data System (ADS)

    Sujaritpong, Sarunya; Dear, Keith; Cope, Martin; Walsh, Sean; Kjellstrom, Tord

    2014-03-01

    Climate change has been predicted to affect future air quality, with inevitable consequences for health. Quantifying the health effects of air pollution under a changing climate is crucial to provide evidence for actions to safeguard future populations. In this paper, we review published methods for quantifying health impacts to identify optimal approaches and ways in which existing challenges facing this line of research can be addressed. Most studies have employed a simplified methodology, while only a few have reported sensitivity analyses to assess sources of uncertainty. The limited investigations that do exist suggest that examining the health risk estimates should particularly take into account the uncertainty associated with future air pollution emissions scenarios, concentration-response functions, and future population growth and age structures. Knowledge gaps identified for future research include future health impacts from extreme air pollution events, interactions between temperature and air pollution effects on public health under a changing climate, and how population adaptation and behavioural changes in a warmer climate may modify exposure to air pollution and health consequences.

  3. Health Impact Assessment of Air Pollution in São Paulo, Brazil.

    PubMed

    Abe, Karina Camasmie; Miraglia, Simone Georges El Khouri

    2016-07-11

    Epidemiological research suggests that air pollution may cause chronic diseases, as well as exacerbation of related pathologies such as cardiovascular and respiratory morbidity and mortality. This study evaluates air pollution scenarios considering a Health Impact Assessment approach in São Paulo, Brazil. We have analyzed abatement scenarios of Particulate Matter (PM) with an aerodynamic diameter <10 μm (PM10), <2.5 μm (PM2.5) and ozone concentrations and the health effects on respiratory and cardiovascular morbidity and mortality in the period from 2009 to 2011 through the APHEKOM tool, as well as the associated health costs. Considering World Health Organization (WHO) standards of PM2.5 (10 μg/m³), São Paulo would avoid more than 5012 premature deaths (equivalent to 266,486 life years' gain) and save US$15.1 billion annually. If São Paulo could even diminish the mean of PM2.5 by 5 μg/m³, nearly 1724 deaths would be avoided, resulting in a gain of US$ 4.96 billion annually. Reduced levels of PM10, PM2.5 and ozone could save lives and an impressive amount of money in a country where economic resources are scarce. Moreover, the reduced levels of air pollution would also lower the demand for hospital care, since hospitalizations would diminish. In this sense, Brazil should urgently adopt WHO air pollution standards in order to improve the quality of life of its population.

  4. Communicating air pollution-related health risks to the public: an application of the Air Quality Health Index in Shanghai, China.

    PubMed

    Chen, Renjie; Wang, Xi; Meng, Xia; Hua, Jing; Zhou, Zhijun; Chen, Bingheng; Kan, Haidong

    2013-01-01

    The Air Quality Health Index (AQHI) was originally developed in Canada. However, little is known about its validity in communicating morbidity risks. We aimed to establish the AQHI in Shanghai, China, and to compare the associations of AQHI and existing Air Pollution Index (API) with daily mortality and morbidity. We constructed the AQHI as the sum of excess total mortality associated with individual air pollutants, and then adjusted it to an arbitrary scale (0-10), according to a time-series analysis of air pollution and mortality in Shanghai from 2001 to 2008. We examined the associations of AQHI with daily mortality and morbidity, and compared these associations with API from 2005 to 2008. The coefficients of short-term associations of total mortality with particulate matter with an aerodynamic diameter less than 10 μm (PM(10)), PM(2.5) and nitrogen dioxide (NO(2)) were used in the establishment of AQHI. During 2005-2008, the AQHI showed linear non-threshold positive associations with daily mortality and morbidity. A unit increase of the PM(10)-AQHI was associated with a 0.90% [95% (confidence interval, CI), 0.43 to 1.37], 1.04% (95%CI, 0.04 to 2.04), 1.62% (95%CI, 0.39 to 2.85) and 0.51% (95%CI, 0.09 to 0.93) increase of current-day total mortality, hospital admissions, outpatient visits and emergency room visits, respectively. The PM(2.5)-AQHI showed quite similar effect estimates with the PM(10)-AQHI. In contrast, the associations for API were much weaker and generally statistically insignificant. The AQHI, compared with the existing API, provided a more effective tool to communicate the air pollution-related health risks to the public.

  5. Health effects of air pollution due to coal combustion in the Chestnut Ridge region of Pennsylvania: cross-section survey of children

    SciTech Connect

    Schenker, M.B.; Vedal, S.; Batterman, S.; Samet, J.; Speizer, F.E.

    1986-03-01

    A cross-sectional study of 4071 children aged 6-11 yr of age from a rural region of Western Pennsylvania was conducted in spring of 1979. Standardized children's questionnaires were distributed to the parents and returned by the children to school, where spirometry was performed. The region was divided into low-, moderate-, and high-pollution areas on the basis of the 1974-1978, 3-hr, 24-hr, and annual averages for sulfur dioxide (SO/sub 2/). Seventeen monitoring stations in the region and a triangulation procedure were used to estimate centroid levels in each geographic residence area. After adjusting the respiratory symptom response outcomes and the pulmonary function levels for known predictors, no significant association was noted for level of SO/sub 2/. However, the highest exposure categories were only slightly above the present annual and 24-hr National Air Quality Standards for SO/sub 2/. We conclude that at levels of exposure to which these children were exposed, only by study of potentially sensitive subsets or measures of acute response would it be possible to detect respiratory outcomes associated with ambient air pollution.

  6. Cost Effective Analysis of New Markets: First Steps of Enrollment Management for Nursing and Allied Health Programs. AIR 1997 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Coyne, Thomas J.; Nordone, Ronald; Donovan, Joseph W.; Thygeson, William

    This paper describes the initial analyses needed to help institutions of higher education plan majors in nursing and allied health as institutions look for new markets based on demographic and employment factors. Twelve variables were identified and weighted to describe an ideal recruitment market. Using a three-phase process, potential U.S.…

  7. The impact of European measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S.; Butt, E. W.; Richardson, T.; Mann, G.; Forster, P.; Haywood, J. M.; Crippa, M.; Janssens-Maenhout, G. G. A.; Johnson, C.; Bellouin, N.; Spracklen, D. V.; Carslaw, K. S.; Reddington, C.

    2015-12-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, resulting in improved air quality and benefits to human health but also an unintended impact on regional climate. Here we used a coupled chemistry-climate model and a new policy relevant emission scenario to determine the impact of air pollutant emission reductions over Europe. The emission scenario shows that a combination of technological improvements and end-of-pipe abatement measures in the energy, industrial and road transport sectors reduced European emissions of sulphur dioxide, black carbon and organic carbon by 53%, 59% and 32% respectively. We estimate that these emission reductions decreased European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, black carbon (BC) by 56% and particulate organic matter (POM) by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 107,000 (40,000-172,000, 5-95% confidence intervals) premature deaths annually from cardiopulmonary disease and lung cancer across the EU member states. The decrease in aerosol concentrations caused a positive all-sky aerosol radiative forcing at the top of atmosphere over Europe of 2.3±0.06 W m-2 and a positive clear-sky forcing of 1.7±0.05 W m-2. Additionally, the amount of solar radiation incident at the surface over Europe increased by 3.3±0.07 W m-2 under all-sky and by 2.7±0.05 W m-2 under clear-sky conditions. Reductions in BC concentrations caused a 1 Wm-2 reduction in atmospheric absorption. We use an energy budget approximation to show that the aerosol induced radiative changes caused both temperature and precipitation to increase globally and over Europe. Our results show that the implementation of European legislation to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as altered the regional radiative balance and climate.

  8. Air pollution toxicology--a brief review of the role of the science in shaping the current understanding of air pollution health risks.

    PubMed

    Stanek, Lindsay Wichers; Brown, James S; Stanek, John; Gift, Jeff; Costa, Daniel L

    2011-03-01

    Human and animal toxicology has had a profound impact on our historical and current understanding of air pollution health effects. Early animal toxicological studies of air pollution had distinctively military or workplace themes. With the discovery that ambient air pollution episodes led to excess illness and death, there became an emergence of toxicological studies that focused on industrial air pollution encountered by the general public. Not only did the pollutants investigated evolve from ambient mixtures to individual pollutants but also the endpoints and outcomes evaluated became more sophisticated, resulting in our present state of the science. Currently, a large toxicological database exists for the effects of particulate matter and ozone, and we provide a focused review of some of the major contributions to the biological understanding for these two "criteria" air pollutants. A limited discussion of the toxicological advancements in the scientific knowledge of two hazardous air pollutants, formaldehyde and phosgene, is also included. Moving forward, the future challenge of air pollution toxicology lies in the health assessment of complex mixtures and their interactions, given the projected impacts of climate change and altered emissions on ambient conditions. In the coming years, the toxicologist will need to be flexible and forward thinking in order to dissect the complexity of the biological system itself, as well as that of air pollution in all its varied forms.

  9. Confronting environmental pressure, environmental quality and human health impact indicators of priority air emissions

    NASA Astrophysics Data System (ADS)

    Geelen, Loes M. J.; Huijbregts, Mark A. J.; den Hollander, Henri; Ragas, Ad M. J.; van Jaarsveld, Hans. A.; de Zwart, Dick

    This paper evaluates the ranking of 21 priority air pollutants with three indicator schemes: environmental pressure indicator (EPI), environmental quality indicator (EQI), and human health effect indicator (HEI). The EPI and EQI compare the emissions and concentrations with the target emissions and target concentrations, respectively. The HEI comprehends the steps from cause (i.e. national emissions) to effect (i.e. human health effects), and is the total human health burden, expressed in Disability Adjusted Life Years per year of exposure (DALYs year -1). We estimated a health burden in the Netherlands of 41 × 10 3 DALYs year -1 caused by Dutch air emissions of PM10 and its precursors in the year 2003. The burden due to 17 carcinogenic substances emitted to air, was much lower (140 DALYs year -1). In contrast, when the same substances were evaluated regarding environmental pressure and environmental quality, carbon tetrachloride (pressure) and benzo[ a]pyrene (quality) were of highest importance, whereas the importance of PM10 was substantially lower. This result is remarkable, because for the majority of substances evaluated, the target concentrations and target emissions are based on preventing human health damage. The differences in relevance are explained by the different weighting of interests in the indicators. The HEI is based on concentration-response relations, whereas the EPI and EQI also depend on other, policy-based, principles and on technical feasibility. Therefore, to effectively prioritize emission reduction measures in policy-making, substances should not only be evaluated as to whether emission targets and environmental quality targets are reached, but they should be evaluated regarding their human health impact as well. In this context, the HEI is a suitable indicator to evaluate the human health impact.

  10. Serum 2,3,7,8-tetrachlorodibenzo-p-dioxin levels in Air Force health study participants - preliminary report

    SciTech Connect

    Not Available

    1988-06-24

    In 1978, the US Air Force responded to a congressional mandate to initiate an epidemiologic study of the possible health effects of exposure to herbicides and their 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) contaminants in Air Force veterans who served in the Ranch Hand defoliation operation during the Vietnam conflict. Accordingly, the Air Force conducted a nonconcurrent prospective study, the Air Force Health Study, of all 1267 members of the Ranch Hand unit and a series of matched controls. This phase of the Air Force study focused on measuring serum TCDD levels in 150 Ranch Hand veterans and 50 controls. All participants were enlisted men; the Ranch Hand veterans had been either herbicide loaders or herbicide specialists in Vietnam. The demographic and health characteristics of Ranch Hand personnel and controls were similar; however, their serum TCDD levels differed markedly.

  11. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    SciTech Connect

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  12. Prediction of asthma exacerbations among children through integrating air pollution, upper atmosphere, and school health surveillances.

    PubMed

    Jayawardene, Wasantha Parakrama; Youssefagha, Ahmed Hassan; Lohrmann, David Kurt; El Afandi, Gamal Salah

    2013-01-01

    Climatic factors and air pollution are important in predicting asthma exacerbations among children. This study was designed to determine if a relationship exists between asthma exacerbations among elementary school children and the combined effect of daily upper atmosphere observations (temperature, relative humidity, dew point, and mixing ratio) and daily air pollution (particulate matter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone) and, if so, to predict asthma exacerbations among children using a mathematical model. Using an ecological study design, school health records of 168,825 students in elementary schools enrolled in "Health eTools for Schools" within 49 Pennsylvania counties were analyzed. Data representing asthma exacerbations were originally recorded by school nurses as the type of treatment given to a student during a clinic visit on a particular day. Daily upper atmosphere measurements from ground level to the 850-mb pressure level and air pollution measurements were obtained. A generalized estimating equation model was used to predict the occurrence of >48 asthma exacerbations, the daily mean for 2008-2010. The greatest occurrence of asthma among school children was in the fall, followed by summer, spring, and winter. Upper atmosphere temperature, dew point, mixing ratio, and six air pollutants as well as their interactions predicted the probability of asthma exacerbations occurring among children. Monitoring of upper atmosphere observation data and air pollutants over time can be a reliable means for predicting increases of asthma exacerbations among elementary school children. Such predictions could help parents and school officials implement effective precautionary measures.

  13. Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions

    PubMed Central

    Zhang, Junfeng (Jim); Smith, Kirk R.

    2007-01-01

    Objective Nearly all China’s rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. Data sources We reviewed approximately 200 publications in both Chinese- and English-language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Conclusions Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of “poisonous” coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China’s indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector. PMID:17589590

  14. Health and Household Air Pollution from Solid Fuel Use: The Need for Improved Exposure Assessment

    PubMed Central

    Peel, Jennifer L.; Balakrishnan, Kalpana; Breysse, Patrick N.; Chillrud, Steven N.; Naeher, Luke P.; Rodes, Charles E.; Vette, Alan F.; Balbus, John M.

    2013-01-01

    Background: Nearly 3 billion people worldwide rely on solid fuel combustion to meet basic household energy needs. The resulting exposure to air pollution causes an estimated 4.5% of the global burden of disease. Large variability and a lack of resources for research and development have resulted in highly uncertain exposure estimates. Objective: We sought to identify research priorities for exposure assessment that will more accurately and precisely define exposure–response relationships of household air pollution necessary to inform future cleaner-burning cookstove dissemination programs. Data Sources: As part of an international workshop in May 2011, an expert group characterized the state of the science and developed recommendations for exposure assessment of household air pollution. Synthesis: The following priority research areas were identified to explain variability and reduce uncertainty of household air pollution exposure measurements: improved characterization of spatial and temporal variability for studies examining both short- and long-term health effects; development and validation of measurement technology and approaches to conduct complex exposure assessments in resource-limited settings with a large range of pollutant concentrations; and development and validation of biomarkers for estimating dose. Addressing these priority research areas, which will inherently require an increased allocation of resources for cookstove research, will lead to better characterization of exposure–response relationships. Conclusions: Although the type and extent of exposure assessment will necessarily depend on the goal and design of the cookstove study, without improved understanding of exposure–response relationships, the level of air pollution reduction necessary to meet the health targets of cookstove interventions will remain uncertain. Citation: Clark ML, Peel JL, Balakrishnan K, Breysse PN, Chillrud SN, Naeher LP, Rodes CE, Vette AF, Balbus JM. 2013. Health

  15. Satellite Models for Global Environmental Change in the NASA Health and Air Quality Programs

    NASA Astrophysics Data System (ADS)

    Haynes, J.; Estes, S. M.

    2015-12-01

    Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. Health and Air Quality providers and researchers are effective by the global environmental changes that are occurring and they need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. This presentation maintains a diverse constellation of Earth observing research satellites and sponsors research in developing satellite data applications across a wide spectrum of areas including environmental health; infectious disease; air quality standards, policies, and regulations; and the impact of climate change on health and air quality. Successfully providing predictions with the accuracy and specificity required by decision makers will require advancements over current capabilities in a number of interrelated areas. These areas include observations, modeling systems, forecast development, application integration, and the research to operations transition process. This presentation will highlight many projects on which NASA satellites have been a primary partner with local, state, Federal, and international operational agencies over the past twelve years in these areas. Domestic and International officials have increasingly recognized links between environment and health. Health providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the health research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Health Models to provide a method for bridging gaps of environmental

  16. Environmental health in China: progress towards clean air and safe water.

    PubMed

    Zhang, Junfeng; Mauzerall, Denise L; Zhu, Tong; Liang, Song; Ezzati, Majid; Remais, Justin V

    2010-03-27

    Environmental risk factors, especially air and water pollution, are a major source of morbidity and mortality in China. Biomass fuel and coal are burned for cooking and heating in almost all rural and many urban households, resulting in severe indoor air pollution that contributes greatly to the burden of disease. Many communities lack access to safe drinking water and sanitation, and thus the risk of waterborne disease in many regions is high. At the same time, China is rapidly industrialising with associated increases in energy use and industrial waste. Although economic growth from industrialisation has improved health and quality of life indicators, it has also increased the release of chemical toxins into the environment and the rate of environmental disasters, with severe effects on health. Air quality in China's cities is among the worst in the world, and industrial water pollution has become a widespread health hazard. Moreover, emissions of climate-warming greenhouse gases from energy use are rapidly increasing. Global climate change will inevitably intensify China's environmental health troubles, with potentially catastrophic outcomes from major shifts in temperature and precipitation. Facing the overlap of traditional, modern, and emerging environmental dilemmas, China has committed substantial resources to environmental improvement. The country has the opportunity to address its national environmental health challenges and to assume a central role in the international effort to improve the global environment.

  17. Environmental health in China: progress towards clean air and safe water.

    PubMed

    Zhang, Junfeng; Mauzerall, Denise L; Zhu, Tong; Liang, Song; Ezzati, Majid; Remais, Justin V

    2010-03-27

    Environmental risk factors, especially air and water pollution, are a major source of morbidity and mortality in China. Biomass fuel and coal are burned for cooking and heating in almost all rural and many urban households, resulting in severe indoor air pollution that contributes greatly to the burden of disease. Many communities lack access to safe drinking water and sanitation, and thus the risk of waterborne disease in many regions is high. At the same time, China is rapidly industrialising with associated increases in energy use and industrial waste. Although economic growth from industrialisation has improved health and quality of life indicators, it has also increased the release of chemical toxins into the environment and the rate of environmental disasters, with severe effects on health. Air quality in China's cities is among the worst in the world, and industrial water pollution has become a widespread health hazard. Moreover, emissions of climate-warming greenhouse gases from energy use are rapidly increasing. Global climate change will inevitably intensify China's environmental health troubles, with potentially catastrophic outcomes from major shifts in temperature and precipitation. Facing the overlap of traditional, modern, and emerging environmental dilemmas, China has committed substantial resources to environmental improvement. The country has the opportunity to address its national environmental health challenges and to assume a central role in the international effort to improve the global environment. PMID:20346817

  18. Quantifying the human health benefits of curbing air pollution in Shanghai.

    PubMed

    Li, Jia; Guttikunda, Sarath K; Carmichael, Gregory R; Streets, David G; Chang, Young-Soo; Fung, Virginia

    2004-01-01

    Urban development in the mega-cities of Asia has caused detrimental effects on the human health of its inhabitants through air pollution. However, averting these health damages by investing in clean energy and industrial technologies and measures can be expensive. Many cities do not have the capital to make such investments or may prefer to invest that capital elsewhere. In this article, we examine the city of Shanghai, China, and perform an illustrative cost/benefit analysis of air pollution control. Between 1995 and 2020 we expect that Shanghai will continue to grow rapidly. Increased demands for energy will cause increased use of fossil fuels and increased emissions of air pollutants. In this work, we examine emissions of particles smaller than 10 microm in diameter (PM10), which have been associated with inhalation health effects. We hypothesize the establishment of a new technology strategy for coal-fired power generation after 2010 and a new industrial coal-use policy. The health benefits of pollution reduction are compared with the investment costs for the new strategies. The study shows that the benefit-to-cost ratio is in the range of 1-5 for the power-sector initiative and 2-15 for the industrial-sector initiative. Thus, there appear to be considerable net benefits for these strategies, which could be very large depending on the valuation of health effects in China today and in the future. This study therefore provides economic grounds for supporting investments in air pollution control in developing cities like Shanghai.

  19. Evaluating the Impact of Air Pollution on Human Health in China: the Price of Clean Air

    NASA Astrophysics Data System (ADS)

    Wang, X.; Mauzerall, D. L.; Hu, Y.; Russell, A. G.; Woo, J.; Streets, D. G.

    2003-12-01

    Population growth, rapid urbanization and economic development are contributing to increased energy consumption in China. One of the unintended consequences is poor air quality due to a lack of environmental controls. The coal dependent energy structure in China only worsens the situation. Quantification of the environmental costs resulting from air pollution is needed in order to provide a mechanism for making strategic energy policy that accounts for the life-cycle cost of energy use. However, few such studies have been conducted for China that examine the entire energy system. Here we examine the extent to which public health has been compromised due to elevated air pollution and how China could incorporate environmental costs into future energy and environmental policies. Taking the Shandong region in eastern China as a case study, we develop a high-resolution regional inventory for anthropogenic emissions of NOx, CO, PM2.5, PM10, VOCs, NH3 and SO2. SMOKE (Sparse Matrix Operator Kernel Emissions Modeling System) is used to process spatial and temporal distributions and chemical speciation of the regional emissions, MM5 (the Fifth-Generation NCAR/Penn State Meso-scale Model, Version 3) is used to generate meteorology and Models3/CMAQ (Community Multi-scale Air Quality Modeling System) is used to simulate ambient concentrations of particulates and other gaseous species in this region. We then estimate the mortality and morbidity in this region resulting from exposure to these air pollutants. We also estimate the monetary values associated with the resulting mortality and morbidity and quantify the contributions from various economic sectors (i.e. power generation, transportation, industry, residential and others). Finally, we examine the potential health benefits that adoption of best available or advanced energy (coal-based, in particular) and environmental technologies in different sectors could bring about. The results of these analyses are intended to provide

  20. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac cattheterization.

    EPA Science Inventory

    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease.OBJECTIVES: To investigate short-term temperature effects on metabol...

  1. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health

    SciTech Connect

    West, Jason; Smith, Steven J.; Silva, Raquel; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zacariah; Fry, Meridith M.; Anenberg, Susan C.; Horowitz, L.; Lamarque, Jean-Francois

    2013-10-01

    Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.5±0.2, 1.3±0.6, and 2.2±1.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range of costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.

  2. Health effects associated with energy conservation measures in commercial buildings

    SciTech Connect

    Stenner, R.D.; Baechler, M.C.

    1990-09-01

    Indoor air quality can be impacted by hundreds of different chemicals. More than 900 different organic compounds alone have been identified in indoor air. Health effects that could arise from exposure to individual pollutants or mixtures of pollutants cover the full range of acute and chronic effects, including largely reversible responses, such as rashes and irritations, to the irreversible toxic and carcinogenic effects. These indoor contaminants are emitted from a large variety of materials and substances that are widespread components of everyday life. Pacific Northwest Laboratory conducted a search of the peer-reviewed literature on health effects associated with indoor air contaminants for the Bonneville Power Administration to aid the agency in the preparation of environmental documents. Results are reported in two volumes. Volume 1 summarizes the results of the search of the peer-reviewed literature on health effects associated with a selected list of indoor air contaminants. In addition, the report discusses potential health effects of polychlorinated biphenyls and chlorofluorocarbons. All references to the literature reviewed are found in this document Volume 2. Volume 2 provides detailed information from the literature reviewed, summarizes potential health effects, reports health hazard ratings, and discusses quantitative estimates of carcinogenic risk in humans and animals. Contaminants discussed in this report are those that; have been measured in the indoor air of a public building; have been measured (significant concentrations) in test situations simulating indoor air quality (as presented in the referenced literature); and have a significant hazard rating. 38 refs., 7 figs., 23 tabs.

  3. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.

    2016-02-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human

  4. OH-radical specific addition to the antioxidant glutathione S-atom at the air-water interface - Relevance to the redox balance of the lung epithelial lining fluid and the causality of adverse health effects induced by air pollution

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Hoffmann, M. R.

    2015-12-01

    Inhalation of oxidant pollutants upsets the redox balance (RB) of the lung epithelial lining fluid (ELF) by triggering the formation of reactive OH-radicals therein. RB is deemed to be controlled by the equilibrium between the most abundant ELF protective antioxidant glutathione (GSH) and its putative disulfide GSSG oxidation product. The actual species produced from the oxidation of GSH initiated by ·OH in ELF interfacial layers exposed to air, i.e., under realistic ELF conditions, however, were never identified. Here we report the online electrospray mass spectrometric detection of sulfenate (GSO-), sulfinate (GSO2-) and sulfonate (GSO3-) on the surface of aqueous GSH solutions collided with ·OH(g). We show that these products arise from ·OH specific additions to S-atoms, rather than via H-abstraction from GS-H. The remarkable specificity of ·OH in interfacial water vis-a-vis its lack of selectivity in bulk water implicates an unprecedented steering process during ·OH-GSH encounters at water interfaces. A non-specific systemic immune response to inhaled oxidants should be expected if they were initially converted into a common ·OH intermediate on the ELF (e.g., via fast Fenton chemistry) and oxidative stress signaled by the [GSH]/[GSOH] ratio.

  5. Epidemiologic approaches for assessing health risks from complex mixtures in indoor air.

    PubMed Central

    Samet, J M; Lambert, W E

    1991-01-01

    Indoor air may be contaminated by diverse gaseous and particulate pollutants that may adversely affect health. As a basis for controlling adverse health effects of indoor air pollution, the presence of a hazard needs to be confirmed, and the quantitative relationship between exposure and response needs to be described. Toxicological, clinical, and epidemiological studies represent complementary approaches for obtaining the requisite evidence. The assessment of the effects of complex mixtures poses a difficult challenge for epidemiologists. Understanding the effects of exposure may require accurate assessment of concentrations and personal exposures to multiple agents and analytical approaches that can identify independent effects of single agents and the synergistic or antagonistic effects that may occur in mixtures. The array of epidemiological study designs for this task includes descriptive studies, cohort studies, and case-control studies, each having potential advantages and disadvantages for studying complex mixtures. This presentation considers issues related to exposure assessment and study design for addressing the effects of complex mixtures in indoor air. PMID:1821382

  6. Air Quality in Lanzhou, a Major Industrial City in China: Characteristics of Air Pollution and Review of Existing Evidence from Air Pollution and Health Studies

    PubMed Central

    Zhang, Yaqun; Li, Min; Bravo, Mercedes A.; Jin, Lan; Nori-Sarma, Amruta; Xu, Yanwen; Guan, Donghong; Wang, Chengyuan; Chen, Mingxia; Wang, Xiao; Tao, Wei; Qiu, Weitao; Zhang, Yawei

    2015-01-01

    Air pollution contributes substantially to global health burdens; however, less is known about pollution patterns in China and whether they differ from those elsewhere. We evaluated temporal and spatial heterogeneity of air pollution in Lanzhou, an urban Chinese city (April 2009–December 2012), and conducted a systematic review of literature on air pollution and health in Lanzhou. Average levels were 141.5, 42.3, and 47.2 µg/m3 for particulate matter with an aerodynamic diameter ≤10 µm (PM10), NO2, and SO2, respectively. Findings suggest some seasonality, particularly for SO2, with higher concentrations during colder months relative to warmer months, although a longer time frame of data is needed to evaluate seasonality fully. Correlation coefficients generally declined with distance between monitors, while coefficients of divergence increased with distance. However, these trends were not statistically significant. PM10 levels exceeded Chinese and other health-based standards and guidelines. The review identified 13 studies on outdoor air pollution and health. Although limited, the studies indicate that air pollution is associated with increased risk of health outcomes in Lanzhou. These studies and the high air pollution levels suggest potentially serious health consequences. Findings can provide guidance to future epidemiological studies, monitor placement programs, and air quality policies. PMID:25838615

  7. Health Effects of Climate Change

    MedlinePlus

    ... For example, existing investments in research on air pollution and respiratory disease; characteristics of vector range; and effects of acute and chronic exposure to agricultural chemicals are yielding important research advances that may ...

  8. Biomedical Science, Unit I: Respiration in Health and Medicine. Respiratory Anatomy, Physiology and Pathology; The Behavior of Gases; Introductory Chemistry; and Air Pollution. Student Text. Revised Version, 1975.

    ERIC Educational Resources Information Center

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This student text deals with the human respiratory system and its relation to the environment. Topics include the process of respiration, the relationship of air to diseases of the respiratory system, the chemical and physical properties of gases, the impact on air quality of human activities and the effect of this air pollution on health.…

  9. Health and Cellular Impacts of Air Pollutants: From Cytoprotection to Cytotoxicity

    PubMed Central

    Andreau, Karine; Leroux, Melanie; Bouharrour, Aida

    2012-01-01

    Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively. PMID:22550588

  10. A Framework for Examining Social Stress and Susceptibility to Air Pollution in Respiratory Health

    PubMed Central

    Clougherty, Jane E.; Kubzansky, Laura D.

    2009-01-01

    Objective There is growing interest in disentangling the health effects of spatially clustered social and physical environmental exposures and in exploring potential synergies among them, with particular attention directed to the combined effects of psychosocial stress and air pollution. Both exposures may be elevated in lower-income urban communities, and it has been hypothesized that stress, which can influence immune function and susceptibility, may potentiate the effects of air pollution in respiratory disease onset and exacerbation. In this paper, we attempt to synthesize the relevant research from social and environmental epidemiology, toxicology, immunology, and exposure assessment to provide a useful framework for environmental health researchers aiming to investigate the health effects of environmental pollution in combination with social or psychological factors. Data synthesis We review the existing epidemiologic and toxicologic evidence on synergistic effects of stress and pollution, and then describe the physiologic effects of stress and key issues related to measuring and evaluating stress as it relates to physical environmental exposures and susceptibility. Finally, we identify some of the major methodologic challenges ahead as we work toward disentangling the health effects of clustered social and physical exposures and accurately describing the interplay among these exposures. Conclusions There is still tremendous work to be done toward understanding the combined and potentially synergistic health effects of stress and pollution. As this research proceeds, we recommend careful attention to the relative temporalities of stress and pollution exposures, to nonlinearities in their independent and combined effects, to physiologic pathways not elucidated by epidemiologic methods, and to the relative spatial distributions of social and physical exposures at multiple geographic scales. PMID:19750097

  11. Human Health Effects, Task Force Assessment, Preliminary Report.

    ERIC Educational Resources Information Center

    Aronow, Wilbert S.; And Others

    Presented in this preliminary report is one of seven assessments conducted by a special task force of Project Clean Air, the Human Health Effects Task Force. The reports summarize assessments of the state of knowledge on various air pollution problems, particularly in California, and make tentative recommendations as to what the University of…

  12. Health impact assessment of air pollution in Valladolid, Spain

    PubMed Central

    Cárdaba Arranz, Mario; Muñoz Moreno, María Fe; Armentia Medina, Alicia; Alonso Capitán, Margarita; Carreras Vaquer, Fernando; Almaraz Gómez, Ana

    2014-01-01

    Objective To estimate the attributable and targeted avoidable deaths (ADs; TADs) of outdoor air pollution by ambient particulate matter (PM10), PM2.5 and O3 according to specific WHO methodology. Design Health impact assessment. Setting City of Valladolid, Spain (around 300 000 residents). Data sources Demographics; mortality; pollutant concentrations collected 1999–2008. Main outcome measures Attributable fractions; ADs and TADs per year for 1999–2008. Results Higher TADs estimates (shown here) were obtained when assuming as ‘target’ concentrations WHO Air Quality Guidelines instead of Directive 2008/50/EC. ADs are considered relative to pollutant background levels. All-cause mortality associated to PM10 (all ages): 52 ADs (95% CI 39 to 64); 31 TADs (95% CI 24 to 39).All-cause mortality associated to PM10 (<5 years): 0 ADs (95% CI 0 to 1); 0 TADs (95% CI 0 to 1). All-cause mortality associated to PM2.5 (>30 years): 326 ADs (95% CI 217 to 422); 231 TADs (95% CI 153 to 301). Cardiopulmonary and lung cancer mortality associated to PM2.5 (>30 years): ▸ Cardiopulmonary: 186 ADs (95% CI 74 to 280); 94 TADs (95% CI 36 to 148). ▸ Lung cancer : 51 ADs (95% CI 21 to 73); 27 TADs (95% CI 10 to 41).All-cause, respiratory and cardiovascular mortality associated to O3 (all ages): ▸ All-cause: 52ADs (95% CI 25 to 77) ; 31 TADs (95% CI 15 to 45). ▸ Respiratory: 5ADs (95% CI −2 to 13) ; 3 TADs (95% CI −1 to 8). ▸ Cardiovascular: 30 ADs (95% CI 8 to 51) ; 17 TADs (95% CI 5 to 30). Negative estimates which should be read as zero were obtained when pollutant concentrations were below counterfactuals or assumed risk coefficients were below one. Conclusions Our estimates suggest a not negligible negative impact on mortality of outdoor air pollution. The implementation of WHO methodology provides critical information to distinguish an improvement range in air pollution control. PMID:25326212

  13. Estimating the health benefit of reducing indoor air pollution in a randomized environmental intervention

    PubMed Central

    Peng, Roger D.; Butz, Arlene M.; Hackstadt, Amber J.; Williams, D'Ann L.; Diette, Gregory B.; Breysse, Patrick N.; Matsui, Elizabeth C.

    2016-01-01

    Recent intervention studies targeted at reducing indoor air pollution have demonstrated both the ability to improve respiratory health outcomes and to reduce particulate matter (PM) levels in the home. However, these studies generally do not address whether it is the reduction of PM levels specifically that improves respiratory health. In this paper we apply the method of principal stratification to data from a randomized air cleaner intervention designed to reduce indoor PM in homes of children with asthma. We estimate the health benefit of the intervention amongst study subjects who would experience a substantial reduction in PM in response to the intervention. For those subjects we find an increase in symptom-free days that is almost three times as large as the overall intention-to-treat effect. We also explore the presence of treatment effects amongst those subjects whose PM levels would not respond to the air cleaner. This analysis demonstrates the usefulness of principal stratification for environmental intervention trials and its potential for much broader application in this area. PMID:27695203

  14. Estimating the health benefit of reducing indoor air pollution in a randomized environmental intervention

    PubMed Central

    Peng, Roger D.; Butz, Arlene M.; Hackstadt, Amber J.; Williams, D'Ann L.; Diette, Gregory B.; Breysse, Patrick N.; Matsui, Elizabeth C.

    2016-01-01

    Recent intervention studies targeted at reducing indoor air pollution have demonstrated both the ability to improve respiratory health outcomes and to reduce particulate matter (PM) levels in the home. However, these studies generally do not address whether it is the reduction of PM levels specifically that improves respiratory health. In this paper we apply the method of principal stratification to data from a randomized air cleaner intervention designed to reduce indoor PM in homes of children with asthma. We estimate the health benefit of the intervention amongst study subjects who would experience a substantial reduction in PM in response to the intervention. For those subjects we find an increase in symptom-free days that is almost three times as large as the overall intention-to-treat effect. We also explore the presence of treatment effects amongst those subjects whose PM levels would not respond to the air cleaner. This analysis demonstrates the usefulness of principal stratification for environmental intervention trials and its potential for much broader application in this area.

  15. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution.

    PubMed

    Péter, Szabolcs; Holguin, Fernando; Wood, Lisa G; Clougherty, Jane E; Raederstorff, Daniel; Antal, Magda; Weber, Peter; Eggersdorfer, Manfred

    2015-12-10

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors-including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)-as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions.

  16. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution

    PubMed Central

    Péter, Szabolcs; Holguin, Fernando; Wood, Lisa G.; Clougherty, Jane E.; Raederstorff, Daniel; Antal, Magda; Weber, Peter; Eggersdorfer, Manfred

    2015-01-01

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors—including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)—as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions. PMID:26690474

  17. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution.

    PubMed

    Péter, Szabolcs; Holguin, Fernando; Wood, Lisa G; Clougherty, Jane E; Raederstorff, Daniel; Antal, Magda; Weber, Peter; Eggersdorfer, Manfred

    2015-12-01

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors-including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)-as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions. PMID:26690474

  18. Low-carbon energy policy and ambient air pollution in Shanghai, China: a health-based economic assessment.

    PubMed

    Chen, Changhong; Chen, Bingheng; Wang, Bingyan; Huang, Cheng; Zhao, Jing; Dai, Yi; Kan, Haidong

    2007-02-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM10-related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis.

  19. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  20. Impacts of Air Pollution on Health in Eastern China: Implications for future air pollution and energy policies

    NASA Astrophysics Data System (ADS)

    Wang, X.; Mauzerall, D.

    2004-12-01

    Our objective is to establish the link between energy consumption and technologies, air pollution and resulting impacts on public health in eastern China. We quantify the impacts that air pollution in the Shandong region of eastern China has on public health in 2000 and quantify the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual, through the implementation of new energy technology. We first develop a highly-resolved emission inventory for the year 2000 for the Shandong region of China including emissions from large point, area, mobile and biogenic sources. We use the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) to process emissions from this inventory for use in the Community Multi-scale Air Quality modeling system (CMAQ) which we drive with the NCAR/PSU MM5 meso-scale meteorology model. We evaluate the inventory by comparing CMAQ results with available measurements of PM10 and SO2 from air pollution indices (APIs) reported in various Chinese municipalities during 2002-2004. We use epidemiological dose-response functions to quantify health impacts and values of a statistical life (VSL) and years-of-life-lost (YLL) to establish a range for the monetary value of these impacts. To examine health impacts and their monetary value, we focus explicitly on Zaozhuang, a coal-intensive city in the Shandong region of eastern China, and quantify the mortalities and morbidities resulting from air pollutants emitted from this city in 2000, and in 2020 using business-as-usual, best-available control technology, and advanced coal gasification technology scenarios. In all scenarios most health damages arise from exposure to particulate matter. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang accounted for 4-10% of its GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have doubled. With no new

  1. Health benefits from improved outdoor air quality and intervention in China.

    PubMed

    Li, Shanshan; Williams, Gail; Guo, Yuming

    2016-07-01

    China is at its most critical stage of outdoor air quality management. In order to prevent further deterioration of air quality and to protect human health, the Chinese government has made a series of attempts to reduce ambient air pollution. Unlike previous literature reviews on the widespread hazards of air pollution on health, this review article firstly summarized the existing evidence of human health benefits from intermittently improved outdoor air quality and intervention in China. Contents of this paper provide concrete and direct clue that improvement in outdoor air quality generates various health benefits in China, and confirm from a new perspective that it is worthwhile for China to shift its development strategy from economic growth to environmental economic sustainability. Greater emphasis on sustainable environment design, consistently strict regulatory enforcement, and specific monitoring actions should be regarded in China to decrease the health risks and to avoid long-term environmental threats. PMID:27061471

  2. Health benefits from improved outdoor air quality and intervention in China.

    PubMed

    Li, Shanshan; Williams, Gail; Guo, Yuming

    2016-07-01

    China is at its most critical stage of outdoor air quality management. In order to prevent further deterioration of air quality and to protect human health, the Chinese government has made a series of attempts to reduce ambient air pollution. Unlike previous literature reviews on the widespread hazards of air pollution on health, this review article firstly summarized the existing evidence of human health benefits from intermittently improved outdoor air quality and intervention in China. Contents of this paper provide concrete and direct clue that improvement in outdoor air quality generates various health benefits in China, and confirm from a new perspective that it is worthwhile for China to shift its development strategy from economic growth to environmental economic sustainability. Greater emphasis on sustainable environment design, consistently strict regulatory enforcement, and specific monitoring actions should be regarded in China to decrease the health risks and to avoid long-term environmental threats.

  3. Health impact metrics for air pollution management strategies.

    PubMed

    Martenies, Sheena E; Wilkins, Donele; Batterman, Stuart A

    2015-12-01

    Health impact assessments (HIAs) inform policy and decision making by providing information regarding future health concerns, and quantitative HIAs now are being used for local and urban-scale projects. HIA results can be expressed using a variety of metrics that differ in meaningful ways, and guidance is lacking with respect to best practices for the development and use of HIA metrics. This study reviews HIA metrics pertaining to air quality management and presents evaluative criteria for their selection and use. These are illustrated in a case study where PM2.5 concentrations are lowered from 10 to 8μg/m(3) in an urban area of 1.8 million people. Health impact functions are used to estimate the number of premature deaths, unscheduled hospitalizations and other morbidity outcomes. The most common metric in recent quantitative HIAs has been the number of cases of adverse outcomes avoided. Other metrics include time-based measures, e.g., disability-adjusted life years (DALYs), monetized impacts, functional-unit based measures, e.g., benefits per ton of emissions reduced, and other economic indicators, e.g., cost-benefit ratios. These metrics are evaluated by considering their comprehensiveness, the spatial and temporal resolution of the analysis, how equity considerations are facilitated, and the analysis and presentation of uncertainty. In the case study, the greatest number of avoided cases occurs for low severity morbidity outcomes, e.g., asthma exacerbations (n=28,000) and minor-restricted activity days (n=37,000); while DALYs and monetized impacts are driven by the severity, duration and value assigned to a relatively low number of premature deaths (n=190 to 230 per year). The selection of appropriate metrics depends on the problem context and boundaries, the severity of impacts, and community values regarding health. The number of avoided cases provides an estimate of the number of people affected, and monetized impacts facilitate additional economic analyses

  4. Effects of particulate air pollution on asthmatics

    SciTech Connect

    Perry, G.B.; Chai, H.; Dickey, D.W.; Jones, R.H.; Kinsman, R.A.; Morrill, C.G.; Spector, S.L.; Weiser, P.C.

    1983-01-01

    Twenty-four asthmatic subjects in Denver were followed from January through March 1979, a three-month period in which Denver air pollution levels are generally high and variable. Dichotomous, virtual impactor samplers provided daily measurements (micrograms/m3) of inhaled particulate matter (total mass, sulfates, and nitrates) for coarse (2.5--15 micrograms in aerodynamic diameter) and fine fractions (less than 2.5 micrometers). Carbon monoxide, sulfur dioxide, ozone, temperature, and barometric pressure were also measured. Twice daily measurements of each subject's peak expiratory flow rates, use of as-needed aerosolized bronchodilators, and report of airways obstruction symptoms characteristic of asthma were tested for relationships to air pollutants using a random effects model across subjects. During the time actually observed, there were very few days in which high levels of suspended particulates were recorded. Of the environmental variables studied, only fine nitrates were associated with increased symptom reports and increased aerosolized bronchodilator usage.

  5. Indoor air pollution and respiratory health of children in the developing world.

    PubMed

    Nandasena, Sumal; Wickremasinghe, Ananda Rajitha; Sathiakumar, Nalini

    2013-05-01

    Indoor air pollution (IAP) is a key contributor to the global burden of disease mainly in developing countries. The use of solid fuel for cooking and heating is the main source of IAP in developing countries, accounting for an estimated 3.5 million deaths and 4.5% of Disability-Adjusted Life Years in 2010. Other sources of IAP include indoor smoking, infiltration of pollutants from outdoor sources and substances emitted from an array of human utilities and biological materials. Children are among the most vulnerable groups for adverse effects of IAP. The respiratory system is a primary target of air pollutants resulting in a wide range of acute and chronic effects. The spectrum of respiratory adverse effects ranges from mild subclinical changes and mild symptoms to life threatening conditions and even death. However, IAP is a modifiable risk factor having potential mitigating interventions. Possible interventions range from simple behavior change to structural changes and from shifting of unclean cooking fuel to clean cooking fuel. Shifting from use of solid fuel to clean fuel invariably reduces household air pollution in developing countries, but such a change is challenging. This review aims to summarize the available information on IAP exposure during childhood and its effects on respiratory health in developing countries. It specifically discusses the common sources of IAP, susceptibility of children to air pollution, mechanisms of action, common respiratory conditions, preventive and mitigating strategies.

  6. Indoor air pollution and respiratory health of children in the developing world

    PubMed Central

    Nandasena, Sumal; Wickremasinghe, Ananda Rajitha; Sathiakumar, Nalini

    2013-01-01

    Indoor air pollution (IAP) is a key contributor to the global burden of disease mainly in developing countries. The use of solid fuel for cooking and heating is the main source of IAP in developing countries, accounting for an estimated 3.5 million deaths and 4.5% of Disability-Adjusted Life Years in 2010. Other sources of IAP include indoor smoking, infiltration of pollutants from outdoor sources and substances emitted from an array of human utilities and biological materials. Children are among the most vulnerable groups for adverse effects of IAP. The respiratory system is a primary target of air pollutants resulting in a wide range of acute and chronic effects. The spectrum of respiratory adverse effects ranges from mild subclinical changes and mild symptoms to life threatening conditions and even death. However, IAP is a modifiable risk factor having potential mitigating interventions. Possible interventions range from simple behavior change to structural changes and from shifting of unclean cooking fuel to clean cooking fuel. Shifting from use of solid fuel to clean fuel invariably reduces household air pollution in developing countries, but such a change is challenging. This review aims to summarize the available information on IAP exposure during childhood and its effects on respiratory health in developing countries. It specifically discusses the common sources of IAP, susceptibility of children to air pollution, mechanisms of action, common respiratory conditions, preventive and mitigating strategies. PMID:25254169

  7. MY 20 YEARS EXPERIENCE IN CONDUCTING ENVIRONMENTAL HEALTH STUDIES IN CHINA: (1) STUDIES ON LUNG CANCER AND INDOOR AIR POLLUTION IN YUNNAN AND (2) HEALTH EFFECTS OF ARSENIC EXPOSURE VIA DRINKING WATER IN INNER MONGOLIA

    EPA Science Inventory

    As a research health scientist at U.S. Environmental Protection Agency, I have been very fortunate to have opportunities to work as a principal investigator for two major environmental health research projects. The first study was conducted in 1983-1996 under a formal U.S.-China ...

  8. Modifying effect of the County Level Health Indices on Cardiopulmonary Effects Associated with Wildfire Exposure

    EPA Science Inventory

    Background and Aims: Socioeconomic status (SES) is a known risk factor for cardiopulmonary health and some studies suggest SES may be an effect modifier for health effects associated with exposure to air pollution. We investigated the synergistic impact of health disparities on ...

  9. Exemptions for hookah bars in clean indoor air legislation: a public health concern.

    PubMed

    Noonan, Devon

    2010-01-01

    Popularity of waterpipe smoking or hookah smoking in the United States has been growing for some time now among youth and young adults. Currently, many cities and states have exemptions that allow hookah bars to remain in operation despite the passage of clean indoor air legislation. From a public health perspective this is concerning for many reasons. One public health concern with the increase in popularity of this type of tobacco use is the associated health effects. Another concern is that hookah smoke produces a sweet smelling aroma making it less obvious that patrons and employees of hookah bars are inhaling noxious fumes from mainstream smoke, as well as the toxins from the charcoal that is used to heat the tobacco. The purpose of this paper is to discuss smoke-free air legislation in relation to hookah use, the public health implications of exempting hookah bars from current smoke-free legislation, and implications for the public health nurse in protecting the public from the dangers of second-hand smoke, and limiting this new form of tobacco use.

  10. A novel approach for mental health disease management: the Air Force Medical Service's interdisciplinary model.

    PubMed

    Runyan, Christine N; Fonseca, Vincent P; Meyer, John G; Oordt, Mark S; Talcott, G Wayne

    2003-01-01

    Mental health disorders are one of the most substantial public health problems affecting society today, accounting for roughly 15% of the overall burden of disease from all causes in the United States. Although primary care (PC) has the potential to be the frontline for recognition and management of behavioral health conditions, this has been a challenge historically. In order to more effectively address the broad scope of behavioral health needs, the Air Force Medical Service (AFMS) established a new model of behavioral health care. Through a series of coordinated steps, the AFMS ultimately placed trained behavioral health providers into PC clinics to serve as consultants to PC providers (PCPs). Behavioral Health Consultants (BHCs) provide focused assessments, present healthcare options to patients, and deliver brief collaborative interventions in the PC setting. BHCs see patients at the request of the PCP, in 15-30-min appointments. In the pilot study, patients averaged 1.6 visits to the BHC. Over 70% of patients fell into six categories of presenting problems: situational reactions, depressive disorders, adjustment disorders, anxiety disorders, health promotion, and obesity. Patient data (n = 76) suggest 97% of patients seen were either "satisfied" or "very satisfied" with BHC services, and 100% of the PCPs (n = 23, 68% response rate) were highly satisfied and indicated they would "definitely recommend" others use BHC services for their patients. Both the implications and the limitations of this pilot study are discussed.

  11. THE INDOOR-OUTDOOR AIR-POLLUTION CONTINUUM AND THE BURDEN OF CARDIOVASCULAR DISEASE: AN OPPORTUNITY FOR IMPROVING GLOBAL HEALTH.

    PubMed

    Rajagopalan, Sanjay; Brook, Robert D

    2012-09-01

    Current understanding of the association between household air-pollution (HAP) and cardiovascular disease is primarily derived from outdoor air-pollution studies. The lack of accurate information on the contribution of HAP to cardiovascular events has prevented inclusion of such data in global burden of disease estimates with consequences in terms of health care allocation and national/international priorities. Understanding the health risks, exposure characterization, epidemiology and economics of the association between HAP and cardiovascular disease represents a pivotal unmet public health need. Interventions to reduce exposure to air-pollution in general, and HAP in particular are likely to yield large benefits and may represent a cost-effective and economically sustainable solution for many parts of the world. A multi-disciplinary effort that provides economically feasible technologic solutions in conjunction with experts that can assess the health, economic impact and sustainability are urgently required to tackle this problem.

  12. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Mauzerall, Denise L.

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the "willingness-to-pay" metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution controls and particularly from the

  13. Environment and air pollution like gun and bullet for low-income countries: war for better health and wealth.

    PubMed

    Zou, Xiang; Azam, Muhammad; Islam, Talat; Zaman, Khalid

    2016-02-01

    The objective of the study is to examine the impact of environmental indicators and air pollution on "health" and "wealth" for the low-income countries. The study used a number of promising variables including arable land, fossil fuel energy consumption, population density, and carbon dioxide emissions that simultaneously affect the health (i.e., health expenditures per capita) and wealth (i.e., GDP per capita) of the low-income countries. The general representation for low-income countries has shown by aggregate data that consist of 39 observations from the period of 1975-2013. The study decomposes the data set from different econometric tests for managing robust inferences. The study uses temporal forecasting for the health and wealth model by a vector error correction model (VECM) and an innovation accounting technique. The results show that environment and air pollution is the menace for low-income countries' health and wealth. Among environmental indicators, arable land has the largest variance to affect health and wealth for the next 10-year period, while air pollution exerts the least contribution to change health and wealth of low-income countries. These results indicate the prevalence of war situation, where environment and air pollution become visible like "gun" and "bullet" for low-income countries. There are required sound and effective macroeconomic policies to combat with the environmental evils that affect the health and wealth of the low-income countries.

  14. Environment and air pollution like gun and bullet for low-income countries: war for better health and wealth.

    PubMed

    Zou, Xiang; Azam, Muhammad; Islam, Talat; Zaman, Khalid

    2016-02-01

    The objective of the study is to examine the impact of environmental indicators and air pollution on "health" and "wealth" for the low-income countries. The study used a number of promising variables including arable land, fossil fuel energy consumption, population density, and carbon dioxide emissions that simultaneously affect the health (i.e., health expenditures per capita) and wealth (i.e., GDP per capita) of the low-income countries. The general representation for low-income countries has shown by aggregate data that consist of 39 observations from the period of 1975-2013. The study decomposes the data set from different econometric tests for managing robust inferences. The study uses temporal forecasting for the health and wealth model by a vector error correction model (VECM) and an innovation accounting technique. The results show that environment and air pollution is the menace for low-income countries' health and wealth. Among environmental indicators, arable land has the largest variance to affect health and wealth for the next 10-year period, while air pollution exerts the least contribution to change health and wealth of low-income countries. These results indicate the prevalence of war situation, where environment and air pollution become visible like "gun" and "bullet" for low-income countries. There are required sound and effective macroeconomic policies to combat with the environmental evils that affect the health and wealth of the low-income countries. PMID:26493298

  15. Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications.

    PubMed

    Mirowsky, Jaime; Gordon, Terry

    2015-01-01

    Human exposure studies, compared with cell and animal models, are heavily relied upon to study the associations between health effects in humans and air pollutant inhalation. Human studies vary in exposure methodology, with some work conducted in controlled settings, whereas other studies are conducted in ambient environments. Human studies can also vary in the health metrics explored, as there exists a myriad of health effect end points commonly measured. In this review, we compiled mini reviews of the most commonly used noninvasive health effect end points that are suitable for panel studies of air pollution, broken into cardiovascular end points, respiratory end points, and biomarkers of effect from biological specimens. Pertinent information regarding each health end point and the suggested methods for mobile collection in the field are assessed. In addition, the clinical implications for each health end point are summarized, along with the factors identified that can modify each measurement. Finally, the important research findings regarding each health end point and air pollutant exposures were reviewed. It appeared that most of the adverse health effects end points explored were found to positively correlate with pollutant levels, although differences in study design, pollutants measured, and study population were found to influence the magnitude of these effects. Thus, this review is intended to act as a guide for researchers interested in conducting human exposure studies of air pollutants while in the field, although there can be a wider application for using these end points in many epidemiological study designs. PMID:25605444

  16. Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications.

    PubMed

    Mirowsky, Jaime; Gordon, Terry

    2015-01-01

    Human exposure studies, compared with cell and animal models, are heavily relied upon to study the associations between health effects in humans and air pollutant inhalation. Human studies vary in exposure methodology, with some work conducted in controlled settings, whereas other studies are conducted in ambient environments. Human studies can also vary in the health metrics explored, as there exists a myriad of health effect end points commonly measured. In this review, we compiled mini reviews of the most commonly used noninvasive health effect end points that are suitable for panel studies of air pollution, broken into cardiovascular end points, respiratory end points, and biomarkers of effect from biological specimens. Pertinent information regarding each health end point and the suggested methods for mobile collection in the field are assessed. In addition, the clinical implications for each health end point are summarized, along with the factors identified that can modify each measurement. Finally, the important research findings regarding each health end point and air pollutant exposures were reviewed. It appeared that most of the adverse health effects end points explored were found to positively correlate with pollutant levels, although differences in study design, pollutants measured, and study population were found to influence the magnitude of these effects. Thus, this review is intended to act as a guide for researchers interested in conducting human exposure studies of air pollutants while in the field, although there can be a wider application for using these end points in many epidemiological study designs.

  17. Health Impact Assessment of Air Pollution in São Paulo, Brazil.

    PubMed

    Abe, Karina Camasmie; Miraglia, Simone Georges El Khouri

    2016-01-01

    Epidemiological research suggests that air pollution may cause chronic diseases, as well as exacerbation of related pathologies such as cardiovascular and respiratory morbidity and mortality. This study evaluates air pollution scenarios considering a Health Impact Assessment approach in São Paulo, Brazil. We have analyzed abatement scenarios of Particulate Matter (PM) with an aerodynamic diameter <10 μm (PM10), <2.5 μm (PM2.5) and ozone concentrations and the health effects on respiratory and cardiovascular morbidity and mortality in the period from 2009 to 2011 through the APHEKOM tool, as well as the associated health costs. Considering World Health Organization (WHO) standards of PM2.5 (10 μg/m³), São Paulo would avoid more than 5012 premature deaths (equivalent to 266,486 life years' gain) and save US$15.1 billion annually. If São Paulo could even diminish the mean of PM2.5 by 5 μg/m³, nearly 1724 deaths would be avoided, resulting in a gain of US$ 4.96 billion annually. Reduced levels of PM10, PM2.5 and ozone could save lives and an impressive amount of money in a country where economic resources are scarce. Moreover, the reduced levels of air pollution would also lower the demand for hospital care, since hospitalizations would diminish. In this sense, Brazil should urgently adopt WHO air pollution standards in order to improve the quality of life of its population. PMID:27409629

  18. Health Impact Assessment of Air Pollution in São Paulo, Brazil

    PubMed Central

    Abe, Karina Camasmie; Miraglia, Simone Georges El Khouri

    2016-01-01

    Epidemiological research suggests that air pollution may cause chronic diseases, as well as exacerbation of related pathologies such as cardiovascular and respiratory morbidity and mortality. This study evaluates air pollution scenarios considering a Health Impact Assessment approach in São Paulo, Brazil. We have analyzed abatement scenarios of Particulate Matter (PM) with an aerodynamic diameter <10 μm (PM10), <2.5 μm (PM2.5) and ozone concentrations and the health effects on respiratory and cardiovascular morbidity and mortality in the period from 2009 to 2011 through the APHEKOM tool, as well as the associated health costs. Considering World Health Organization (WHO) standards of PM2.5 (10 μg/m3), São Paulo would avoid more than 5012 premature deaths (equivalent to 266,486 life years’ gain) and save US$15.1 billion annually. If São Paulo could even diminish the mean of PM2.5 by 5 μg/m3, nearly 1724 deaths would be avoided, resulting in a gain of US$ 4.96 billion annually. Reduced levels of PM10, PM2.5 and ozone could save lives and an impressive amount of money in a country where economic resources are scarce. Moreover, the reduced levels of air pollution would also lower the demand for hospital care, since hospitalizations would diminish. In this sense, Brazil should urgently adopt WHO air pollution standards in order to improve the quality of life of its population. PMID:27409629

  19. Effect of climate change on air quality

    NASA Astrophysics Data System (ADS)

    Jacob, Daniel J.; Winner, Darrell A.

    Air quality is strongly dependent on weather and is therefore sensitive to climate change. Recent studies have provided estimates of this climate effect through correlations of air quality with meteorological variables, perturbation analyses in chemical transport models (CTMs), and CTM simulations driven by general circulation model (GCM) simulations of 21st-century climate change. We review these different approaches and their results. The future climate is expected to be more stagnant, due to a weaker global circulation and a decreasing frequency of mid-latitude cyclones. The observed correlation between surface ozone and temperature in polluted regions points to a detrimental effect of warming. Coupled GCM-CTM studies find that climate change alone will increase summertime surface ozone in polluted regions by 1-10 ppb over the coming decades, with the largest effects in urban areas and during pollution episodes. This climate penalty means that stronger emission controls will be needed to meet a given air quality standard. Higher water vapor in the future climate is expected to decrease the ozone background, so that pollution and background ozone have opposite sensitivities to climate change. The effect of climate change on particulate matter (PM) is more complicated and uncertain than for ozone. Precipitation frequency and mixing depth are important driving factors but projections for these variables are often unreliable. GCM-CTM studies find that climate change will affect PM concentrations in polluted environments by ±0.1-1 μg m -3 over the coming decades. Wildfires fueled by climate change could become an increasingly important PM source. Major issues that should be addressed in future research include the ability of GCMs to simulate regional air pollution meteorology and its sensitivity to climate change, the response of natural emissions to climate change, and the atmospheric chemistry of isoprene. Research needs to be undertaken on the effect of climate

  20. A framework for examining social stress and susceptibility to air pollution in respiratory health.

    PubMed

    Clougherty, Jane Ellen; Kubzansky, Laura Diane

    2010-07-01

    There is growing interest in disentangling the health effects of spatially clustered social and physical environmental exposures and in exploring potential synergies among them, with particular attention directed to the combined effects of psychosocial stress and air pollution. Both exposures may be elevated in lower-income urban communities, and it has been hypothesized that stress, which can influence immune function and susceptibility, may potentiate the effects of air pollution in respiratory disease onset and exacerbation. In this paper, we review the existing epidemiologic and toxicologic evidence on synergistic effects of stress and pollution, and describe the physiologic effects of stress and key issues related to measuring and evaluating stress as it relates to physical environmental exposures and susceptibility. Finally, we identify some of the major methodologic challenges ahead as we work toward disentangling the health effects of clustered social and physical exposures and accurately describing the interplay among these exposures. As this research proceeds, we recommend careful attention to the relative temporalities of stress and pollution exposures, to nonlinearities in their independent and combined effects, to physiologic pathways not elucidated by epidemiologic methods, and to the relative spatial distributions of social and physical exposures at multiple geographic scales. PMID:20694328

  1. A framework for examining social stress and susceptibility to air pollution in respiratory health.

    PubMed

    Clougherty, Jane Ellen; Kubzansky, Laura Diane

    2010-07-01

    There is growing interest in disentangling the health effects of spatially clustered social and physical environmental exposures and in exploring potential synergies among them, with particular attention directed to the combined effects of psychosocial stress and air pollution. Both exposures may be elevated in lower-income urban communities, and it has been hypothesized that stress, which can influence immune function and susceptibility, may potentiate the effects of air pollution in respiratory disease onset and exacerbation. In this paper, we review the existing epidemiologic and toxicologic evidence on synergistic effects of stress and pollution, and describe the physiologic effects of stress and key issues related to measuring and evaluating stress as it relates to physical environmental exposures and susceptibility. Finally, we identify some of the major methodologic challenges ahead as we work toward disentangling the health effects of clustered social and physical exposures and accurately describing the interplay among these exposures. As this research proceeds, we recommend careful attention to the relative temporalities of stress and pollution exposures, to nonlinearities in their independent and combined effects, to physiologic pathways not elucidated by epidemiologic methods, and to the relative spatial distributions of social and physical exposures at multiple geographic scales.

  2. Asthma and Air Quality in the Presence of Fires - A Foundation for Public Health Policy in Florida

    NASA Technical Reports Server (NTRS)

    Crosson, William; Al-Hamdan, Mohammad; Estes, Maurice, Jr.; Estes, Sue; Luvall, Jeffrey; Sifford, Cody; Young, Linda

    2012-01-01

    Outdoor air quality and its associated impacts on respiratory problems in Florida are of public health significance. Air quality in Florida can be poor during the extended wildfire season, threatening persons with compromised respiratory systems each year. Studies have demonstrated that particulate matter, which is generally elevated in the vicinity of wildfires, is associated with increases in hospital admissions and occurrences of acute asthma exacerbations. However, few studies have examined the modifying effect of socio-demographic characteristics of cities or regional areas on the relationship between air quality and health outcomes. In an ongoing university/multi-agency project, asthma hospital/emergency room (patient) data are being used to create a health outcome indicator of human response to environmental air quality. Environmental data are derived from satellite measurements, with special attention being given to the effect of wildfires and prescribed burns on air quality. This presentation will focus on the environmental data sets particulate matter, location of fires, smoke plumes that are being collected and processed for linkage with health data. After this linkage has been performed, space-time models of asthma rates as a function of air quality data and socio-demographic variables will be developed and validated. The Florida Department of Health (FDOH) will work with county health department staff and representatives from the medical community to establish a protocol with triggers for issuing public health advisories/alerts based on the developed and validated health outcome indicators. From this effort, a science-based policy for issuing public health advisories/alerts for asthma relating to air quality will be developed, giving FDOH the ability to (1) predict, with stated levels of uncertainty, case load of hospital admissions based on air quality, (2) reduce asthma exacerbations by forewarning asthmatics to limit outside activities on poor air

  3. [Influence of smoking and industrial air pollutants on respiratory health of nickel industry workers].

    PubMed

    Shilov, V V; Siurin, S A

    2015-01-01

    Studies covered respiratory health of 1530 workers of nickel industry, among which were 796 (52.0%) smokers. Findings are that tobacco smoke combined with nickel industry hazards cause potentized negative effects in respiratory organs, with earlier and more frequent chronic bronchitis. For isolated influence of these factors, chronic bronchitis risk is higher from exposure to tobacco smoke vs. occupational hazards (OR = 2.48; DI 1.49-4.13). Chronic obstructive lung disease development in nickel industry workers is caused by smoking. Industrial air pollutants appeared to have no potentizing effect on COLD formation, as well as on toxic pneumosclerosis formation.

  4. [Sugar cane burning in Brazil: respiratory health effects].

    PubMed

    Ribeiro, Helena

    2008-04-01

    The article aimed to update scientific literature information about respiratory health effects caused by sugarcane burning, considering the expansion of sugarcane plantations in Brazil and in the state of São Paulo. Articles published between 1996 and 2006, which deal with the health effects of sugarcane burning and/or air pollutants originating from this burning, were discussed. These studies suggest that part of the population--especially the elderly, children and asthmatics--suffers health effects of sugarcane burning. As a result, these people require health care, thus affecting health services and their families.

  5. [Prevention and control of air pollution needs to strengthen further study on health damage caused by air pollution].

    PubMed

    Wu, T C

    2016-08-01

    Heath issues caused by air pollution such as particulate matter (PM) are much concerned and focused among air, water and soil pollutions because human breathe air for whole life span. Present comments will review physical and chemical characteristics of PM2.5 and PM10; Dose-response associations of PM10, PM2.5 and their components with mortality and risk of cardiopulmonary diseases, early health damages such as the decrease of lung functions and heart rate variability, DNA damage; And the roles of genetic variations and epigenetic changes in lung functions and heart rate variability, DNA damage related to PMs and their components. This comments list some limitations and perspectives about the associations of air pollution with health.

  6. [Prevention and control of air pollution needs to strengthen further study on health damage caused by air pollution].

    PubMed

    Wu, T C

    2016-08-01

    Heath issues caused by air pollution such as particulate matter (PM) are much concerned and focused among air, water and soil pollutions because human breathe air for whole life span. Present comments will review physical and chemical characteristics of PM2.5 and PM10; Dose-response associations of PM10, PM2.5 and their components with mortality and risk of cardiopulmonary diseases, early health damages such as the decrease of lung functions and heart rate variability, DNA damage; And the roles of genetic variations and epigenetic changes in lung functions and heart rate variability, DNA damage related to PMs and their components. This comments list some limitations and perspectives about the associations of air pollution with health. PMID:27539517

  7. Real-time dissemination of air quality information using data streams and Web technologies: linking air quality to health risks in urban areas.

    PubMed

    Davila, Silvije; Ilić, Jadranka Pečar; Bešlić, Ivan

    2015-06-01

    This article presents a new, original application of modern information and communication technology to provide effective real-time dissemination of air quality information and related health risks to the general public. Our on-line subsystem for urban real-time air quality monitoring is a crucial component of a more comprehensive integrated information system, which has been developed by the Institute for Medical Research and Occupational Health. It relies on a StreamInsight data stream management system and service-oriented architecture to process data streamed from seven monitoring stations across Zagreb. Parameters that are monitored include gases (NO, NO2, CO, O3, H2S, SO2, benzene, NH3), particulate matter (PM10 and PM2.5), and meteorological data (wind speed and direction, temperature and pressure). Streamed data are processed in real-time using complex continuous queries. They first go through automated validation, then hourly air quality index is calculated for every station, and a report sent to the Croatian Environment Agency. If the parameter values exceed the corresponding regulation limits for three consecutive hours, the web service generates an alert for population groups at risk. Coupled with the Common Air Quality Index model, our web application brings air pollution information closer to the general population and raises awareness about environmental and health issues. Soon we intend to expand the service to a mobile application that is being developed. PMID:26110480

  8. Health Effects of Tsunamis

    MedlinePlus

    ... Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods PSAs Hurricanes Before a Hurricane ... Other Related Links Information for Professionals and Response Workers Health Care Professionals Response and Cleanup Workers Hurricanes PSAs ...

  9. Supplement to air pollutants, their transformation, transport, and effects. Volume VI

    SciTech Connect

    Stern, A.C.

    1986-01-01

    This book covers the following topics: the pollutants, the transformation pollutants; the transport of pollutants; air pollution effects on physical and economic systems; effects on vegetation, native crops, forests; effects of acidic deposition on aquatic ecosystems; and effects on human health.

  10. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk?

    PubMed Central

    Pope, C A

    2000-01-01

    This article briefly summarizes the epidemiology of the health effects of fine particulate air pollution, provides an early, somewhat speculative, discussion of the contribution of epidemiology to evaluating biologic mechanisms, and evaluates who's at risk or is susceptible to adverse health effects. Based on preliminary epidemiologic evidence, it is speculated that a systemic response to fine particle-induced pulmonary inflammation, including cytokine release and altered cardiac autonomic function, may be part of the pathophysiologic mechanisms or pathways linking particulate pollution with cardiopulmonary disease. The elderly, infants, and persons with chronic cardiopulmonary disease, influenza, or asthma are most susceptible to mortality and serious morbidity effects from short-term acutely elevated exposures. Others are susceptible to less serious health effects such as transient increases in respiratory symptoms, decreased lung function, or other physiologic changes. Chronic exposure studies suggest relatively broad susceptibility to cumulative effects of long-term repeated exposure to fine particulate pollution, resulting in substantive estimates of population average loss of life expectancy in highly polluted environments. Additional knowledge is needed about the specific pollutants or mix of pollutants responsible for the adverse health effects and the biologic mechanisms involved. PMID:10931790

  11. Effects of oxides of nitrogen on California air quality. Final report

    SciTech Connect

    Not Available

    1986-03-01

    The report was written because of California Air Resources Board concerns about the multiple effects of oxides of nitrogen (NOx) emissions on California air quality. The deleterious effects are expected to increase because NOx emissions are expected to increase in 1990's. The report discusses six major products of nitrogen oxide (NOx) emissions: nitrogen dioxide, ozone, particulate nitrates, acid deposition, visibility impairment, other nitrogen compounds. For each product, the report describes health and welfare effects, atmospheric chemistry by which NOx emissions are transformed into various air pollutants, relevant ambient air quality standards, ambient concentrations measured in California, and status in attaining ambient air standards. Because ozone is California's most severe air pollution problem, the report discusses in depth the relationship of NOx and ozone. In most areas of California, ozone strategies have reduced hydrocarbon emissions while maintaining NOx emissions. Evidence is increasing that reduction of NOx emissions also reduces ozone.

  12. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  13. Extended effects of air pollution on cardiopulmonary mortality in Vienna

    NASA Astrophysics Data System (ADS)

    Neuberger, Manfred; Rabczenko, Daniel; Moshammer, Hanns

    BackgroundCurrent standards for fine particulates and nitrogen dioxide are under revision. Patients with cardiovascular disease have been identified as the largest group which need to be protected from effects of urban air pollution. MethodsWe sought to estimate associations between indicators of urban air pollution and daily mortality using time series of daily TSP, PM 10, PM 2.5, NO 2, SO 2, O 3 and nontrauma deaths in Vienna (Austria) 2000-2004. We used polynomial distributed lag analysis adjusted for seasonality, daily temperature, relative humidity, atmospheric pressure and incidence of influenza as registered by sentinels. ResultsAll three particulate measures and NO 2 were associated with mortality from all causes and from ischemic heart disease and COPD at all ages and in the elderly. The magnitude of the effect was largest for PM 2.5 and NO 2. Best predictor of mortality increase lagged 0-7 days was PM 2.5 (for ischemic heart disease and COPD) and NO 2 (for other heart disease and all causes). Total mortality increase, lagged 0-14 days, per 10 μg m -3 was 2.6% for PM 2.5 and 2.9% for NO 2, mainly due to cardiopulmonary and cerebrovascular causes. ConclusionAcute and subacute lethal effects of urban air pollution are predicted by PM 2.5 and NO 2 increase even at relatively low levels of these pollutants. This is consistent with results on hospital admissions and the lack of a threshold. While harvesting (reduction of mortality after short increase due to premature deaths of most sensitive persons) seems to be of minor importance, deaths accumulate during 14 days after an increase of air pollutants. The limit values for PM 2.5 and NO 2 proposed for 2010 in the European Union are unable to prevent serious health effects.

  14. The air quality health index and emergency department visits for urticaria in Windsor, Canada.

    PubMed

    Kousha, Termeh; Valacchi, Giuseppe

    2015-01-01

    Ambient air pollution exposure has been associated with several health conditions, limited not only to respiratory and cardiovascular systems but also to cutaneous tissues. However, few epidemiological studies examined pollution exposure on skin problems. Basically, the common mechanism by which pollution may affect skin physiology is by induction of oxidative stress and inflammation. Urticaria is among the skin pathologies that have been associated with pollution. Based on the combined effects of three ambient air pollutants, ozone (O₃), nitrogen dioxide (NO₂), and fine particulate matter (PM) with a median aerodynamic diameter of less than 2.5 μm (PM(2.5)), on mortality, the Air Quality Health Index (AQHI) in Canada was developed. The aim of this study was to examine the associations of short-term changes in AQHI with emergency department (ED) visits for urticaria in Windsor-area hospitals in Canada. Diagnosed ED visits were retrieved from the National Ambulatory Care Reporting System (NACRS). A time-stratified case-crossover design was applied to 2905 ED visits (males = 1215; females = 1690) for urticaria from April 2004 through December 2010. Odds ratios (OR) and their corresponding 95% confidence intervals (95%CI) for ED visits associated with increase by one unit of risk index were calculated employing conditional logistic regression. Positive and significant results were observed between AQHI levels and OR for ED visits for urticaria in Windsor for lags 2 and 3 days. A distributed lag nonlinear model technique was applied to daily counts of ED visits for lags 0 to 10 and significant results were obtained from lag 2 to lag 5 and for lag 9. These findings demonstrated associations between ambient air pollution and urticarial confirming that air pollution affects skin conditions.

  15. The air quality health index and emergency department visits for urticaria in Windsor, Canada.

    PubMed

    Kousha, Termeh; Valacchi, Giuseppe

    2015-01-01

    Ambient air pollution exposure has been associated with several health conditions, limited not only to respiratory and cardiovascular systems but also to cutaneous tissues. However, few epidemiological studies examined pollution exposure on skin problems. Basically, the common mechanism by which pollution may affect skin physiology is by induction of oxidative stress and inflammation. Urticaria is among the skin pathologies that have been associated with pollution. Based on the combined effects of three ambient air pollutants, ozone (O₃), nitrogen dioxide (NO₂), and fine particulate matter (PM) with a median aerodynamic diameter of less than 2.5 μm (PM(2.5)), on mortality, the Air Quality Health Index (AQHI) in Canada was developed. The aim of this study was to examine the associations of short-term changes in AQHI with emergency department (ED) visits for urticaria in Windsor-area hospitals in Canada. Diagnosed ED visits were retrieved from the National Ambulatory Care Reporting System (NACRS). A time-stratified case-crossover design was applied to 2905 ED visits (males = 1215; females = 1690) for urticaria from April 2004 through December 2010. Odds ratios (OR) and their corresponding 95% confidence intervals (95%CI) for ED visits associated with increase by one unit of risk index were calculated employing conditional logistic regression. Positive and significant results were observed between AQHI levels and OR for ED visits for urticaria in Windsor for lags 2 and 3 days. A distributed lag nonlinear model technique was applied to daily counts of ED visits for lags 0 to 10 and significant results were obtained from lag 2 to lag 5 and for lag 9. These findings demonstrated associations between ambient air pollution and urticarial confirming that air pollution affects skin conditions. PMID:25849769

  16. Health Effects of Energy Resources

    USGS Publications Warehouse

    Orem, William; Tatu, Calin; Pavlovic, Nikola; Bunnell, Joseph; Kolker, Allan; Engle, Mark; Stout, Ben

    2010-01-01

    Energy resources (coal, oil, and natural gas) are among the cornerstones of modern industrial society. The exploitation of these resources, however, is not without costs. Energy materials may contain harmful chemical substances that, if mobilized into air, water, or soil, can adversely impact human health and environmental quality. In order to address the issue of human exposure to toxic substances derived from energy resources, the U.S. Geological Survey (USGS) Energy Resources Program developed a project entitled 'Impacts of Energy Resources on Human Health and Environmental Quality.' The project is intended to provide policymakers and the public with the scientific information needed to weigh the human health and environmental consequences of meeting our energy needs. This fact sheet discusses several areas where the USGS Energy Resources Program is making scientific advances in this endeavor.

  17. Supplement to the Second Addendum (1986) to Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982): Assessment of New Findings on Sulfur Dioxide and Acute Exposure Health Effects in Asthmatic Individuals (1994)

    EPA Science Inventory

    The present Supplement to the Second Addendum (1986) to the document Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982) focuses on evaluation of newly available controlled human exposure studies of acute (a\\1h) sulfur dioxide (SO2) exposure effects on pulmonary ...

  18. Modeling of an air-backed diaphragm in dynamic pressure sensors: Effects of the air cavity

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Olson, Douglas A.; Yu, Miao

    2014-12-01

    As the key structure of most dynamic pressure sensors, a diaphragm backed by an air cavity plays a critical role in the determination of sensor performance metrics. In this paper, we investigate the influence of air cavity length on the sensitivity and bandwidth. A continuum mechanics model neglecting the air viscous effect is first developed to capture the structural-acoustic coupling between a clamped circular diaphragm and a cylindrical backing air cavity. To facilitate sensor design, close-form approximations are obtained to calculate the static sensitivity and the fundamental natural frequency of the air-backed diaphragm. Parametric studies based on this analytical model show that the air cavity can change both the effective mass and the effective stiffness of the diaphragm. One new finding is that the natural frequency of the air-backed diaphragm behaves differently in three different cavity length ranges. In particular, due to the mass effect of the air cavity being dominant, it is shown for the first time that the natural frequency decreases when the cavity length decreases below a critical value in the short cavity range. Furthermore, a finite element method (FEM) model is developed to validate the continuum mechanics model and to study the damping effect of the air cavity. These results provide important design guidelines for dynamic pressure sensors with air-backed diaphragms.

  19. Air pollution in Delhi: Its Magnitude and Effects on Health”

    PubMed Central

    Rizwan, SA; Nongkynrih, Baridalyne; Gupta, Sanjeev Kumar

    2013-01-01

    Air pollution is responsible for many health problems in the urban areas. Of late, the air pollution status in Delhi has undergone many changes in terms of the levels of pollutants and the control measures taken to reduce them. This paper provides an evidence-based insight into the status of air pollution in Delhi and its effects on health and control measures instituted. The urban air database released by the World Health Organization in September 2011 reported that Delhi has exceeded the maximum PM10 limit by almost 10-times at 198 μg/m3. Vehicular emissions and industrial activities were found to be associated with indoor as well as outdoor air pollution in Delhi. Studies on air pollution and mortality from Delhi found that all-natural-cause mortality and morbidity increased with increased air pollution. Delhi has taken several steps to reduce the level of air pollution in the city during the last 10 years. However, more still needs to be done to further reduce the levels of air pollution. PMID:23559696

  20. Particulate air pollution and health inequalities: a Europe-wide ecological analysis

    PubMed Central

    2013-01-01

    Background Environmental disparities may underlie the unequal distribution of health across socioeconomic groups. However, this assertion has not been tested across a range of countries: an important knowledge gap for a transboundary health issue such as air pollution. We consider whether populations of low-income European regions were a) exposed to disproportionately high levels of particulate air pollution (PM10) and/or b) disproportionately susceptible to pollution-related mortality effects. Methods Europe-wide gridded PM10 and population distribution data were used to calculate population-weighted average PM10 concentrations for 268 sub-national regions (NUTS level 2 regions) for the period 2004–2008. The data were mapped, and patterning by mean household income was assessed statistically. Ordinary least squares regression was used to model the association between PM10 and cause-specific mortality, after adjusting for regional-level household income and smoking rates. Results Air quality improved for most regions between 2004 and 2008, although large differences between Eastern and Western regions persisted. Across Europe, PM10 was correlated with low household income but this association primarily reflected East–West inequalities and was not found when Eastern or Western Europe regions were considered separately. Notably, some of the most polluted regions in Western Europe were also among the richest. PM10 was more strongly associated with plausibly-related mortality outcomes in Eastern than Western Europe, presumably because of higher ambient concentrations. Populations of lower-income regions appeared more susceptible to the effects of PM10, but only for circulatory disease mortality in Eastern Europe and male respiratory mortality in Western Europe. Conclusions Income-related inequalities in exposure to ambient PM10 may contribute to Europe-wide mortality inequalities, and to those in Eastern but not Western European regions. We found some evidence that

  1. A theoretical basis for investigating ambient air pollution and children's respiratory health.

    PubMed

    Gilliland, F D; McConnell, R; Peters, J; Gong, H

    1999-06-01

    Acute respiratory health effects in children from exposure at current ambient levels of ozone are well documented; however, evidence for acute effects from other criteria pollutants such as nitrogen dioxide and respirable particles is inconsistent. Whether chronic effects result from long-term exposure to any of these pollutants during childhood is an important unresolved question. Establishing whether acute or chronic effects result from childhood exposure and identifying sensitive subgroups may require integration of biologic mechanisms of lung defenses, injury, and response into the study design and statistical models used in analyses. This review explores the theoretical basis for explaining such adverse effects in light of our contemporary understanding of mechanisms of lung injury and response at the cellular and molecular levels. The rapidly evolving understanding of the effects of air pollution on cellular and molecular levels presents an opportunity to develop and refine innovative biologically based hypotheses about the effects of childhood exposure. We hypothesize that children with low fruit and vegetable intake, low antioxidant levels, high polyunsaturated fat intake, or who have inherited certain alleles for genes involved in lung defenses and immune response regulation may be at increased risk for adverse effects. Because responses to air pollutants of interest are complex and involve a number of pathophysiologic processes, the magnitude of main effects of dietary factors, genes, and gene-environment interactions may be modest for individuals; however, each may make an important contribution to the population burden of preventable respiratory diseases.

  2. Health Effects of PCBs in Residences and Schools (HESPERUS): PCB – health Cohort Profile

    PubMed Central

    Bräuner, Elvira Vaclavik; Andersen, Zorana Jovanovic; Frederiksen, Marie; Specht, Ina Olmer; Hougaard, Karin Sørig; Ebbehøj, Niels; Bailey, Janice; Giwercman, Aleksander; Steenland, Kyle; Longnecker, Matthew Paul; Bonde, Jens Peter

    2016-01-01

    Polychlorinated-biphenyls (PCBs) were introduced in the late 1920s and used until the 1970s when they were banned in most countries due to evidence of environmental build-up and possible adverse health effects. However they still persist in the environment, indoors and in humans. Indoor air in contaminated buildings may confer airborne exposure markedly above background regional PCB levels. To date, no epidemiological studies have assessed the health effects from exposure to semi-volatile PCBs in the indoor environment. Indoor air PCBs are generally less chlorinated than PCBs that are absorbed via the diet, or via past occupational exposure; therefore their health effects require separate risk assessment. Two separate cohorts of individuals who have either attended schools (n = 66,769; 26% exposed) or lived in apartment buildings (n = 37,185; 19% exposed), where indoor air PCB concentrations have been measured were created. An individual estimate of long-term airborne PCB exposure was assigned based on measurements. The cohorts will be linked to eight different national data sources on mortality, school records, residential history, socioeconomic status, and chronic disease and reproductive outcomes. The linking of indoor air exposures with health outcomes provides a dataset unprecedented worldwide. We describe a project, called HESPERUS (Health Effects of PCBs in Residences and Schools), which will be the first study of the long term health effects of the lower-chlorinated, semi-volatile PCBs in the indoor environment. PMID:27090775

  3. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases.

  4. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases. PMID:26421944

  5. Improving Awareness of Health Hazards Associated with Air Pollution in Primary School Children: Design and Test of Didactic Tools

    ERIC Educational Resources Information Center

    Carducci, Annalaura; Casini, Beatrice; Donzelli, Gabriele; Verani, Marco; Bruni, Beatrice; Ceretti, Elisabetta; Zani, Claudia; Carraro, Elisabetta; Bonetta, Sara; Bagordo, Francesco; Grassi, Tiziana; Villarini, Milena; Bonizzoni, Silvia; Zagni, Licia; Gelatti, Umberto

    2016-01-01

    One of the objectives of the MAPEC-Life project is raising children's awareness on air quality and its health effects. To achieve this goal, we designed didactic tools for primary school students, including leaflets with more information for teachers, a cartoon, and three educational videogames. The tools were then tested with 266 children who…

  6. Sensitivity of health risk estimates to air quality adjustment procedure

    SciTech Connect

    Whitfield, R.G.

    1997-06-30

    This letter is a summary of risk results associated with exposure estimates using two-parameter Weibull and quadratic air quality adjustment procedures (AQAPs). New exposure estimates were developed for children and child-occurrences, six urban areas, and five alternative air quality scenarios. In all cases, the Weibull and quadratic results are compared to previous results, which are based on a proportional AQAP.

  7. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different scales; the Danish Eulerian Hemispheric Model to calculate the air pollution levels with a resolution down to 5.6 km x 5.6 km and the Urban Background Model to further calculate the air pollution at 1 km x 1 km resolution using results from DEHM as boundary conditions. Both the emission data as well as the population density has been represented in the model system with the same high resolution. Previous health impact assessments related to air pollution have been made on a lower resolution. In this study, the integrated model system, EVA, has been used to estimate the health impacts and related external cost for Denmark over a 20 year period (1990-2010) at a 1 km x 1 km resolution. Furthermore, a sensitivity study of the health impact using coarse and fine resolutions in the model system has been carried out to evaluate the effect of improved description of the geographical population distribution with respect to location of local emissions. Brandt, J., J. D. Silver, J. H. Christensen, M. S. Andersen, J. Bønløkke, T. Sigsgaard, C. Geels, A. Gross, A. B. Hansen, K. M. Hansen, G. B. Hedegaard, E. Kaas and L. M. Frohn, 2013. Contribution from the ten major emission sectors in Europe to the Health-Cost Externalities of Air Pollution using the EVA Model System - an integrated modelling approach. Atmospheric Chemistry and Physics, Vol. 13, pp. 7725-7746, 2013. Brandt, J., J. D. Silver, J. H. Christensen, M. S. Andersen, J. Bønløkke, T. Sigsgaard, C. Geels, A. Gross, A. B. Hansen, K. M. Hansen, G. B. Hedegaard, E. Kaas and L. M. Frohn, 2013. Assessment of Past, Present and Future Health-Cost Externalities of Air Pollution in Europe and the contribution from international ship traffic using the EVA Model System. Atmospheric Chemistry and Physics. Vol. 13, pp. 7747-7764, 2013.

  8. Effect of pollutant-exposure ambient air in childhood and adulthood. Final report

    SciTech Connect

    Wegman, D.H.

    1987-06-16

    This study explored multivariate modeling to describe the relationship between respiratory health and ambient air pollution in three Los Angeles communities using data of respiratory symptoms and pulmonary function collected for the UCLA Population Studies of Chronic Obstructive Respiratory Disease. The modeling approach focused on adult non-commuting females whose ambient-air exposures were best represented by air-quality monitoring stations in the community of residence. Multivariate analysis did not provide a clear model that improved on earlier analyses based upon residence. Effects of birthplace or current abnormal respiratory health as indicators or potential susceptibility to air pollution were not identified. The results were judged indicative of limits in the data available for estimating ambient air exposures for individual study subjects.

  9. Thermal effects on bacterial bioaerosols in continuous air flow.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Kim, Sang Soo

    2009-08-01

    Exposure to bacterial bioaerosols can have adverse effects on health, such as infectious diseases, acute toxic effects, and allergies. The search for ways of preventing and curing the harmful effects of bacterial bioaerosols has created a strong demand for the study and development of an efficient method of controlling bioaerosols. We investigated the thermal effects on bacterial bioaerosols of Escherichia coli and Bacillus subtilis by using a thermal electric heating system in continuous air flow. The bacterial bioaerosols were exposed to a surrounding temperature that ranged from 20 degrees C to 700 degrees C for about 0.3 s. Both E. coli and B. subtilis vegetative cells were rendered more than 99.9% inactive at 160 degrees C and 350 degrees C of wall temperature of the quartz tube, respectively. Although the data on bacterial injury showed that the bacteria tended to sustain greater damage as the surrounding temperature increased, Gram-negative E. coli was highly sensitive to structural injury but Gram-positive B. subtilis was slightly more sensitive to metabolic injury. In addition, the inactivation of E. coli endotoxins was found to range from 9.2% (at 200 degrees C) to 82.0% (at 700 degrees C). However, the particle size distribution and morphology of both bacterial bioaerosols were maintained, despite exposure to a surrounding temperature of 700 degrees C. Our results show that thermal heating in a continuous air flow can be used with short exposure time to control bacterial bioaerosols by rendering the bacteria and endotoxins to a large extent inactive. This result could also be useful for developing more effective thermal treatment strategies for use in air purification or sterilization systems to control bioaerosols.

  10. Air pollution effects on ventricular repolarization.

    PubMed

    Lux, Robert L; Pope, C Arden

    2009-05-01

    We conducted a retrospective study of a set of previously published electrocardiographic data to investigate the possible direct association between levels of particulate air pollution and changes in ventricular repolarization -- the cardiac electrophysiologic process that manifests itself as the T wave* of the electrocardiogram (ECG) and that is definitively linked to and responsible for increased arrhythmogenesis. The published findings from this data set demonstrated a clear cardiac effect, namely, a reduction in heart rate variability (HRV) parameter values with increased levels of particulate air pollution (Pope et al. 2004), suggesting possible arrhythmogenic effects. Given this positive finding and the well-established sensitivity of cardiac repolarization to physiologic, pharmacologic, and neurologic interventions, and in light of emerging novel tools for assessing repolarization, we hypothesized that high levels of particulate air pollution would alter repolarization independent of changes in heart rate and, consequently, would increase arrhythmogenic risk. The likely mechanism of any deleterious effects on repolarization would be alteration of sodium, calcium, and potassium channels. The channel's structure, function, and kinetics are responsible for generating the cellular action potentials, which, when summed over the entire heart, result in the waves recorded by the ECG. A positive finding would provide evidence that increased levels of air pollution may be directly linked to increases in arrhythmogenic risk and, potentially, sudden cardiac death. The study population consisted of 88 nonsmoking, elderly subjects in whom multiple, continuous, 24-hour, 2-channel ECG recordings were collected, along with blood samples to evaluate inflammatory mechanisms (not pursued in the current study). The concentration of fine particulate matter (PM2.5, particulate matter with an aerodynamic diameter < or = 2.5 microm) in daily samples was measured or estimated and

  11. Brownfields and health risks--air dispersion modeling and health risk assessment at landfill redevelopment sites.

    PubMed

    Ofungwu, Joseph; Eget, Steven

    2006-07-01

    Redevelopment of landfill sites in the New Jersey-New York metropolitan area for recreational (golf courses), commercial, and even residential purposes seems to be gaining acceptance among municipal planners and developers. Landfill gas generation, which includes methane and potentially toxic nonmethane compounds usually continues long after closure of the landfill exercise phase. It is therefore prudent to evaluate potential health risks associated with exposure to gas emissions before redevelopment of the landfill sites as recreational, commercial, and, especially, residential properties. Unacceptably high health risks would call for risk management measures such as limiting the development to commercial/recreational rather than residential uses, stringent gas control mechanisms, interior air filtration, etc. A methodology is presented for applying existing models to estimate residual landfill hazardous compounds emissions and to quantify associated health risks. Besides the toxic gas constituents of landfill emissions, other risk-related issues concerning buried waste, landfill leachate, and explosive gases were qualitatively evaluated. Five contiguously located landfill sites in New Jersey intended for residential and recreational redevelopment were used to exemplify the approach.

  12. Effects of Ambient Air Pollution Exposure on Olfaction: A Review

    PubMed Central

    Ajmani, Gaurav S.; Suh, Helen H.; Pinto, Jayant M.

    2016-01-01

    related olfactory impacts on the general population using measured pollution exposures and to link pollution exposure with olfactory dysfunction and related pathology. Citation: Ajmani GS, Suh HH, Pinto JM. 2016. Effects of ambient air pollution exposure on olfaction: a review. Environ Health Perspect 124:1683–1693; http://dx.doi.org/10.1289/EHP136 PMID:27285588

  13. The power of perception: Health risk attributed to air pollution in an urban industrial neighborhood

    SciTech Connect

    Elliott, S.J.; Cole, D.C.; Krueger, P.; Voorberg, N.; Wakefield, S.

    1999-08-01

    This paper describes a multi-stakeholder process designed to assess the potential health risks associated with adverse air quality in an urban industrial neighborhood. The paper briefly describes the quantitative health risk assessment conducted by scientific experts, with input by a grassroots community group concerned about the impacts of adverse air quality on their health and quality of life. In this case, rather than accept the views of the scientific experts, the community used their powers of perception to advantage by successfully advocating for a professionally conducted community health survey. This survey was designed to document, systematically and rigorously, the health risk perceptions community members associated with exposure to adverse air quality in their neighborhood. This paper describes the instructional and community contexts within which the research is situated as well as the design, administration, analysis, and results of the community health survey administered to 402 households living in an urban industrial neighborhood in Hamilton, Ontario, Canada. These survey results served to legitimate the community's concerns about air quality and to help broaden operational definitions of health. In addition, the results of both health risk assessment exercises served to keep issues of air quality on the local political agenda. Implications of these findings for their understanding of the environmental justice process as well as the ability of communities to influence environmental health policy are discussed.

  14. Indoor air pollution in developing countries: a major environmental and public health challenge.

    PubMed Central

    Bruce, N.; Perez-Padilla, R.; Albalak, R.

    2000-01-01

    Around 50% of people, almost all in developing countries, rely on coal and biomass in the form of wood, dung and crop residues for domestic energy. These materials are typically burnt in simple stoves with very incomplete combustion. Consequently, women and young children are exposed to high levels of indoor air pollution every day. There is consistent evidence that indoor air pollution increases the risk of chronic obstructive pulmonary disease and of acute respiratory infections in childhood, the most important cause of death among children under 5 years of age in developing countries. Evidence also exists of associations with low birth weight, increased infant and perinatal mortality, pulmonary tuberculosis, nasopharyngeal and laryngeal cancer, cataract, and, specifically in respect of the use of coal, with lung cancer. Conflicting evidence exists with regard to asthma. All studies are observational and very few have measured exposure directly, while a substantial proportion have not dealt with confounding. As a result, risk estimates are poorly quantified and may be biased. Exposure to indoor air pollution may be responsible for nearly 2 million excess deaths in developing countries and for some 4% of the global burden of disease. Indoor air pollution is a major global public health threat requiring greatly increased efforts in the areas of research and policy-making. Research on its health effects should be strengthened, particularly in relation to tuberculosis and acute lower respiratory infections. A more systematic approach to the development and evaluation of interventions is desirable, with clearer recognition of the interrelationships between poverty and dependence on polluting fuels. PMID:11019457

  15. Urban air

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Air pollution and the risk of potential health effects are not sufficiently convincing reasons for people to stop driving their cars, according to a study by the Population Reference Bureau (PRB) released on November 18.While sufficient levels of suspended particulate matter, carbon monoxide, and lead can present health concerns, the study found that many people surveyed for the study were not convinced of the clear linkage between air pollution and health.

  16. Air pollution: costs and paths to a solution in Hong Kong--understanding the connections among visibility, air pollution, and health costs in pursuit of accountability, environmental justice, and health protection.

    PubMed

    Hedley, Anthony J; McGhee, Sarah M; Barron, Bill; Chau, Patsy; Chau, June; Thach, Thuan Q; Wong, Tze-Wai; Loh, Christine; Wong, Chit-Ming

    2008-01-01

    Air quality has deteriorated in Hong Kong over more than 15 yr. As part of a program of public accountability, photographs on Poor and Better visibility days were used as representations of the relationships among visibility, air pollution, adverse health effects, and community costs for health care and lost productivity. Coefficients from time-series models and gazetted costs were used to estimate the health and economic impacts of different levels of pollution. In this population of 6.9 million, air quality improvement from the annual average to the lowest pollutant levels of Better visibility days, comparable to the World Health Organization air quality guidelines, would avoid 1335 deaths, 60,587 hospital bed days, and 6.7 million doctor visits for respiratory complaints each year. Direct costs and productivity losses avoided would be over US$240 million a year. The dissemination of these findings led to increased demands for pollution controls from the public and legislators, but denials of the need for urgent action arose from the government. The outcome demonstrates the need for more effective translation of the scientific evidence base into risk communication and public policy.

  17. Potential human health effects of acid rain

    SciTech Connect

    Not Available

    1984-01-01

    Adverse human health effects, namely acute and chronic respiratory effects, can occur from the pre-deposition phase of the acid rain phenomenon due to inhalation of acidic particles and gases. State-of-the-art methodology to evaluate these effects is just now being applied to this question. The major post-deposition effect of the acid rain phenomenon is to acidify water, increasing solubility and subsequent human exposure to mercury, lead, cadmium, and aluminum. Acidification increases bioconversion of mercury to methylmercury, a highly toxic compound, which accumulates in fish, increasing the risk to toxicity in people who eat fish. Increase in water and soil content of lead and cadmium increases human exposure to these metals which become additive to other sources presently under regulatory control. The potential adverse health effects of increased human exposure to aluminum is not known at the present time. Deficiencies in the identification of the contribution of pre-deposition of air pollutants and post-deposition mobilization of toxic metals to the recognized potential health effects of the involved toxic substances is due to the fact that scientists have not addressed these specific questions. 113 references, 4 figures, 2 tables.

  18. Summary review of the health effects associated with propylene oxide: health-issue assessment

    SciTech Connect

    Not Available

    1987-06-01

    This report provides a brief summary of the data available on the health effects of exposure to propylene oxide. Emphasis is placed on determining whether there is evidence to suggest that propylene oxide exerts effects on human health under conditions and at concentrations commonly experienced by the general public. Both acute and chronic effects are addressed, including general toxicity, teratogenicity, mutagenicity, and carcinogenicity. To place the health effects discussion in perspective, the report also summarizes air-quality aspects of propylene oxide in the United States, including sources, distribution, fate, and concentrations associated with certain point sources.

  19. Practical approaches for health care: Indoor air quality management

    SciTech Connect

    Turk, A.R.; Poulakos, E.M.

    1996-05-01

    The management of indoor air quality (IAQ) is of interest to building occupants, managers, owners, and regulators alike. Whether by poor design, improper attention, inadequate maintenance or the intent to save energy, many buildings today have significantly degraded IAQ levels. Acceptable IAQ is defined by the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) in Standard 62-1989 {open_quotes}Ventilation for Acceptable Indoor Air Quality{close_quotes} as {open_quotes}air in which there are no known contaminants at harmful concentrations as determined by cognizant authorities and with which a substantial majority (80 percent or more) of the people exposed do not express dissatisfaction.{close_quotes} ASHRAE`s definition not only addresses the chemical compounds that may be present in the air, but it also recognizes a need to address both physiological and psychosocial comfort. The second step is to conduct a performance review of the HVAC systems based on equipment design specifications and guidelines for acceptable IAQ. And the third step is to identify potential chemical, physical and biological sources that are known to contribute to adverse air quality. Upon completion of these three steps, you will able to identify the more significant contributors to IAQ problems and establish applications for prevention and mitigation.

  20. Epidemiological studies of the respiratory effects of air pollution.

    PubMed

    Lebowitz, M D

    1996-05-01

    Environmental epidemiological studies of the health effects of air pollution have been major contributors to the understanding of such effects. The chronic effects of atmospheric pollutants have been studied, but, except for the known respiratory effects of particulate matter (PM), they have not been studied conclusively. There are ongoing studies of the chronic effects of certain pollutant classes, such as ozone, acid rain, airborne toxics, and the chemical form of PM (including diesel exhaust). Acute effects on humans due to outdoor and indoor exposures to several gases/fumes and PM have been demonstrated in epidemiological studies. However, the effects of these environmental factors on susceptible individuals are not known conclusively. These acute effects are especially important because they increase the human burden of minor illnesses, increase disability, and are thought to decrease productivity. They may be related to the increased likelihood of chronic disease as well. Further research is needed in this latter area, to determine the contributions of the time-related activities of individuals in different microenvironments (outdoors, in homes, in transit). Key elements of further studies are the assessment of total exposure to the different pollutants (occurring from indoor and outdoor source) and the interactive effects of pollutants. Major research areas include determination of the contributions of indoor sources and of vehicle emissions to total exposure, how to measure such exposures, and how to measure human susceptibility and responses (including those at the cellular and molecular level). Biomarkers of exposures, doses and responses, including immunochemicals, biochemicals and deoxyribonucleic acid (DNA) adducts, are beginning to promote some basic knowledge of exposure-response, especially the mechanisms. These will be extremely useful additions to standard physiological, immunological, and clinical instruments, and the understanding of biological

  1. Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)

    NASA Astrophysics Data System (ADS)

    Isakov, V.

    2010-12-01

    Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features

  2. Air damping effect on the air-based CMUT operation

    NASA Astrophysics Data System (ADS)

    Cha, Bu-Sang; Kanashima, Takeshi; Lee, Seung-Mok; Okuyama, Masanori

    2015-08-01

    The vibration amplitude, damping ratio and viscous damping force in capacitive micromachinedultrasonic transducers (CMUTs) with a perforated membrane have been calculated theoretically and compared with the experimental data on its vibration behavior. The electrical bias of the DC and the AC voltages and the operation frequency conditions influence the damping effect because leads to variations in the gap height and the vibration velocity of the membrane. We propose a new estimation method to determine the damping ratio by the decay rate of the vibration amplitudes of the perforated membrane plate are measured using a laser vibrometer at each frequency, and the damping ratios were calculated from those results. The influences of the vibration frequency and the electrostatic force on the damping effect under the various operation conditions have been studied.

  3. A cost-efficiency and health benefit approach to improve urban air quality.

    PubMed

    Miranda, A I; Ferreira, J; Silveira, C; Relvas, H; Duque, L; Roebeling, P; Lopes, M; Costa, S; Monteiro, A; Gama, C; Sá, E; Borrego, C; Teixeira, J P

    2016-11-01

    When ambient air quality standards established in the EU Directive 2008/50/EC are exceeded, Member States are obliged to develop and implement Air Quality Plans (AQP) to improve air quality and health. Notwithstanding the achievements in emission reductions and air quality improvement, additional efforts need to be undertaken to improve air quality in a sustainable way - i.e. through a cost-efficiency approach. This work was developed in the scope of the recently concluded MAPLIA project "Moving from Air Pollution to Local Integrated Assessment", and focuses on the definition and assessment of emission abatement measures and their associated costs, air quality and health impacts and benefits by means of air quality modelling tools, health impact functions and cost-efficiency analysis. The MAPLIA system was applied to the Grande Porto urban area (Portugal), addressing PM10 and NOx as the most important pollutants in the region. Four different measures to reduce PM10 and NOx emissions were defined and characterized in terms of emissions and implementation costs, and combined into 15 emission scenarios, simulated by the TAPM air quality modelling tool. Air pollutant concentration fields were then used to estimate health benefits in terms of avoided costs (external costs), using dose-response health impact functions. Results revealed that, among the 15 scenarios analysed, the scenario including all 4 measures lead to a total net benefit of 0.3M€·y(-1). The largest net benefit is obtained for the scenario