Science.gov

Sample records for air heater htah

  1. MHD air heater development technology. Technical progress report, July 1-September 30, 1980

    SciTech Connect

    1980-11-01

    The technology development of the directly-fired high temperature air heater (HTAH) for MHD power plants is described. Progress is reported on the three tasks. The first task is materials selection, evaluation, and development. The objective of this task is to continue development of ceramic materials technology for the directly-fired HTAH. Task two is operability, performance, and materials testing. The objectives of this task are to demonstrate the technical feasibility of operating a directly-fired HTAH (including both the heater matrix and valves), to continue obtaining information on life and corrosion resistance of HTAH materials, and to obtain design information for full-scale studies and future design work. The objectives of the full-scale design task are to begin the identification of HTAH control requirements and control system needs, and to continue full-scale study efforts incorporating updated materials and design information in order to identify development needs for the HTAH development program. (WHK)

  2. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  3. MHD air heater development technology. Technical progress report, April 1, 1980-June 30, 1980

    SciTech Connect

    1980-07-01

    Technology development for the directly-fired high temperature air heater (HTAH) for MHD power plants is described. Work is being done under three tasks as described in the following. (1) materials selection, evaluation, and development: The objective of this task is to continue development of ceramic materials technology for the directly-fired HTAH. The scope of the work will include compilation of materials data, materials selection for testing and design studies, materials property determination, liaison with refractory manufacturers and other organizations to encourage development of materials and fabrication technology, establishment of preliminary HTAH material specifications, analyses of test materials, and development of criteria for thermal stress limits for crack-tolerant refractory materials. (2) operability, performance, and materials testing: The objectives of this task are to demonstrate the technical feasibility of operating a directly-fired HTAH (including both the heater matrix and valves), to continue obtaining information on life and corrosion resistance of HTAH materials, and to obtain design information for full-scale studies and future design work. (3) full-scale design concepts: The objectives of this task are to begin the identification of HTAH control requirements and control system needs, and to continue full-scale study efforts incorporating updated materials and design information in order to identify development needs for the HTAH development program. Progress is described. (WHK)

  4. MHD air heater development technology. Progress report, November 26, 1979-March 31, 1980

    SciTech Connect

    1980-05-01

    Work on the development of the directly-fired high temperature air heater (HTAH) for MHD power plants is reported. Progress is reported on three tasks: (1) materials selection, evaluation, and development, (2) operability, performance, and materials testing, and (3) full-scale design concepts. Under Task 1, efforts were carried out in several areas. Work on the computer data base for material properties was begun. Data were compiled for several HTAH materials. Materials selections for Valve Test 3 and full-scale studies were made. Test conditions were defined for and creep results obtained from Montana College of Mineral Science and Technology concerning candidate matrix and hot liner materials. Liaison efforts with refractory manufacturers were continued, and information was provided to Argonne National Laboratory and Babcock and Wilcox concerning the HRSR design. Analyses of materials samples from previous matrix and valve tests were completed. Finally, a thermal stress cycling experiment to be carried out at Montana Tech was designed. Under Task 2, efforts were directed toward running Valve Test 3. Problems were encountered with the VTF hot gas supply duct which necessitated two intermediate shutdowns without reaching the final test goal of 300 hours. Modifications necessary to complete the test were begun. Under Task 3, an example HTAH system was defined which will be used as a focal point for screening and definition of control systems and determination of operating methods. The system was defined using the size/cost and other HTAH computer codes. A layout of the system was made, and steady state performance was calculated with the SCAMP code. (WHK)

  5. Evaluation of a candidate material for a coal-fired magnetohydrodynamic (MHD) high temperature recuperative air heater

    SciTech Connect

    Winkler, J; Dahotre, N B; Boss, W

    1993-02-01

    In order to achieve the desired efficiency in the MHD cycle, one of two procedures must be employed. The first is to inject pure oxygen during combustion in order to achieve higher combustion temperatures which will yield better conversion efficiencies. The other is to preheat the combustor air through the use of high temperature air heaters (HTAH). A recuperative air heater heats the combustor air directly by passing it through tubes which are in the exhaust gas flow before sending it into the combustor. The procedure of passing air through the furnace requires a material for the tubes which will withstand the high temperatures and corrosive environment of the furnace and should have a high heat transfer coefficient. All of the necessary properties seem to exist in ceramic materials, so ceramics have begun to be studied for high temperature air heaters as well as other high temperature applications. The present project outlines one such effort to evaluate the performance of a ceramic composite tube in a coal fired MHD facility in order to determine any changes in the tube material after exposure to high temperature and a highly corrosive environment. A recuperative high temperature air heater (HTAH) would be positioned in the radiant furnace, because the radiant furnace provides conditions comparable to an actual MHD facility and is adequate for testing HTAH materials. The temperature conditions in the furnace range from approximately 1600{degree}C to 1890{degree}C, and velocities of approximately 12 m/s to 100 m/s have been measured depending on the location in the furnace. The evaluated tube was placed in the furnace in a reducing environment with approximately 14 m/s velocity, 1650{degree}C gas temperature, and 1230{degree}C tube temperature.

  6. Evaluation of a candidate material for a coal-fired magnetohydrodynamic (MHD) high temperature recuperative air heater

    NASA Astrophysics Data System (ADS)

    Winkler, J.; Dahotre, N. B.; Boss, W.

    In order to achieve the desired efficiency in the magnetohydrodynamic (MHD) cycle, one of two procedures must be employed. The first is to inject pure oxygen during combustion in order to achieve higher combustion temperatures which will yield better conversion efficiencies. The other is to preheat the combustor air through the use of high temperature air heaters (HTAH). A recuperative air heater heats the combustor air directly by passing it through tubes which are in the exhaust gas flow before sending it into the combustor. The procedure of passing air through the furnace requires a material for the tubes which will withstand the high temperatures and corrosive environment of the furnace and should have a high heat transfer coefficient. All of the necessary properties seem to exist in ceramic materials, so ceramics have begun to be studied for high temperature air heaters as well as other high temperature applications. One such effort to evaluate the performance of a ceramic composite tube in a coal fired MHD facility in order to determine any changes in the tube material after exposure to high temperature and a highly corrosive environment is outlined. A recuperative high temperature air heater (HTAH) would be positioned in the radiant furnace, because the radiant furnace provides conditions comparable to an actual MHD facility and is adequate for testing HTAH materials. The temperature conditions in the furnace range from approximately 1600 C to 1890 C, and velocities of approximately 12 m/s to 100 m/s were measured depending on the location in the furnace. The evaluated tube was placed in the furnace in a reducing environment with approximately 14 m/s velocity, 1650 C gas temperature, and 1230 C tube temperature.

  7. Regenerative air heater

    DOEpatents

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  8. Regenerative air heater

    DOEpatents

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  9. Build Your Own Solar Air Heater.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)

  10. Design data brochure: Solar hot air heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design, installation, performance, and application of a solar hot air heater for residential, commercial and industrial use is reported. The system has been installed at the Concho Indian School in El Reno, Oklahoma.

  11. Thermal performance of a new solar air heater

    SciTech Connect

    Tiris, C.; Ozbalta, N.; Tiris, M.; Dincer, I.

    1995-05-01

    A solar air heater, part of a food drying system using solar energy as a renewable energy source for heat, was developed and tested for several agricultural products (i.e., sultana grapes, green beans, sweet peppers, chili peppers). Drying processes were conducted in the chamber with forced natural air heated partly by solar energy. Solar air heater performances were discussed along with estimates of energy efficiency of the system. The obtained results indicate that the present system is efficiency and effective.

  12. Design of Solar Heat Sheet for Air Heaters

    NASA Astrophysics Data System (ADS)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  13. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Direct-fired intake air heaters. 75.341 Section 75.341 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.341 Direct-fired intake air heaters. (a) If any system used to...

  14. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Direct-fired intake air heaters. 75.341 Section 75.341 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.341 Direct-fired intake air heaters. (a) If any system used to...

  15. UNVENTED KEROSENE HEATER EMISSIONS FROM MOBILE HOMES: STUDIES ONINDOOR AIR PARTICLES, SEMI-VOLATILE ORGANICS, CARBON MONOXIDE, ANDMUTAGENICITY

    EPA Science Inventory

    This study was conducted to assess human exposure to air pollutantsresulting from the use of kerosene heaters in mobile homes. t hasbeen estimated that 15-17 million unvented kerosene heaters havebeen sold in the United States, and 33% of these heaters have beensold to mobile hom...

  16. UNVENTED KEROSENE HEATER EMISSIONS FROM MOBILE HOMES: STUDIES ON INDOOR AIR PARTICLES, SEMI-VOLATILE ORGANICS, CARBON MONOXIDE AND MUTAGENICITY

    EPA Science Inventory

    This study was conducted to assess human exposure to air pollutants resulting from the use of kerosene heaters in mobile homes. t has been estimated that 15-17 million unvented kerosene heaters have been sold in the United States, and 33% of these heaters have been sold to mobile...

  17. High-pressure ceramic air heater for indirectly fired gas turbine applications

    NASA Astrophysics Data System (ADS)

    Lahaye, P. G.; Briggs, G. F.; Vandervort, C. L.; Seger, J. L.

    The Externally-Fired Combined Cycle (EFCC) offers a method for operating high-efficiency gas and steam turbine combined cycles on coal. In the EFCC, an air heater replaces the gas turbine combustor so that the turbine can be indirectly fired. Ceramic materials are required for the heat exchange surfaces to accommodate the operating temperatures of modern gas turbines. The ceramic air heater or heat exchanger is the focus of this program, and the two primary objectives are (1) to demonstrate that a ceramic air heater can be reliably pressurized to a level of 225 psia (1.5 MPa); and (2) to show that the air heater can withstand exposure to the products of coal combustion at elevated temperatures. By replacing the gas turbine combustor with a ceramic air heater, the cycle can use coal or other ash-bearing fuels. Numerous programs have attempted to fuel high efficiency gas turbines directly with coal, often resulting in significant ash deposition upon turbine components and corrosion or erosion of turbine blades. This report will show that a ceramic air heater is significantly less susceptible to ash deposition or corrosion than a gas turbine when protected by rudimentary methods of gas-stream clean-up. A 25 x 10(sup 6) Btu/hr (7 MW) test facility is under construction in Kennebunk, Maine. It is anticipated that this proof of concept program will lead to commercialization of the EFCC by electric utility and industrial organizations. Applications are being pursued for power plants ranging from 10 to 100 megawatts.

  18. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Direct-fired intake air heaters. 75.341 Section 75.341 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... measurement of the carbon monoxide concentration at the bottom of each shaft, slope, or in the drift...

  19. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Direct-fired intake air heaters. 75.341 Section 75.341 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... measurement of the carbon monoxide concentration at the bottom of each shaft, slope, or in the drift...

  20. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Direct-fired intake air heaters. 75.341 Section 75.341 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... measurement of the carbon monoxide concentration at the bottom of each shaft, slope, or in the drift...

  1. ENVIRONMENTAL ASSESSMENT OF A CRUDE-OIL HEATER USING STAGED AIR LANCES FOR NOX REDUCTION. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    This volume of the report gives emission results from field tests of a crude-oil process heater burning a combination of oil and refinery gas. The heater had been modified by adding a system for injecting secondary air to reduce NOx emissions. One test was conducted with the stag...

  2. ETR COMPRESSOR BUILDING, TRA643. CAMERA FACES NORTH. AIR HEATERS LINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPRESSOR BUILDING, TRA-643. CAMERA FACES NORTH. AIR HEATERS LINE UP AGAINST WALL, TO BE USED IN CONNECTION WITH ETR EXPERIMENTS. EACH HAD A HEAT OUTPUT OF 8 MILLION BTU PER HOUR, OPERATED AT 1260 DEGREES F. AND A PRESSURE OF 320 PSI. NOTE METAL WALLS AND ROOF. INL NEGATIVE NO. 56-3709. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. ); Gerritsen, W.; Stewart, A.; Robinson, K. )

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  4. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G.; Gerritsen, W.; Stewart, A.; Robinson, K.

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  5. Comparative study of solar air heater performance with various shapes and configurations of obstacles

    NASA Astrophysics Data System (ADS)

    Kulkarni, Kishor; Kim, Kwang-Yong

    2016-02-01

    An investigation is performed to find an optimum shape of obstacles attached to a solar air heater using three-dimensional Reynolds-averaged Navier-Stokes analyses of heat transfer and fluid flow. The Reynolds number, which is based on the hydraulic diameter of the channel, is in the range of 6800-10,000. The Nusselt number and friction factor are used to measure the thermal and aerodynamic performances of the solar air heater, respectively. Four different obstacle shapes (U-shaped, rectangular, trapezoidal, and pentagonal) and three arrangements of obstacles were tested to determine their effects on performance of the solar air heater. The results show that the performance factor (defined by a ratio of thermal to aerodynamic performance) was above unity for all the cases tested, and the pentagonal obstacle shape indicates the highest performance regardless of the Reynolds number. Detailed analyses of the thermal and flow fields are performed in order to obtain a better understanding of the heat transfer characteristics.

  6. Thermography and Sonic Anemometry to Analyze Air Heaters in Mediterranean Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego L.; Molina-Aiz, Francisco; Peña, Araceli

    2012-01-01

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W·m−2) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C. PMID:23202025

  7. Magnetically Diffused Radial Electric-Arc Air Heater Employing Water-Cooled Copper Electrodes

    NASA Technical Reports Server (NTRS)

    Mayo, R. F.; Davis, D. D., Jr.

    1962-01-01

    A magnetically rotated electric-arc air heater has been developed that is novel in that an intense magnetic field of the order of 10,000 to 25,000 gauss is employed. This field is supplied by a coil that is connected in series with the arc. Experimentation with this heater has shown that the presence of an intense magnetic field transverse to the arc results in diffusion of the arc and that the arc has a positive effective resistance. With the field coil in series with the arc, highly stable arc operation is obtained from a battery power supply. External ballast is not required to stabilize the arc when it is operating at maximum power level. The electrode erosion rate is so low that the airstream contamination is no more than 0.07 percent and may be substantially less.

  8. COMPARISON OF AIR POLLUTANT EMISSIONS FROM VAPORIZING AND AIR ATOMIZING WASTE OIL HEATERS

    EPA Science Inventory

    The paper gives results of a characterization of gaseous and particulate emissions and vaporizing pot solid residues resulting from the combustion of waste crankcase oil in space heaters. Two types of waste oil burners were tested: a vaporizing oil burner rated at 35.2 kW, and an...

  9. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    PubMed Central

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  10. Flow distribution in unglazed transpired plate solar air heaters of large area

    SciTech Connect

    Gunnewiek, L.H.; Brundrett, E.; Hollands, K.G.T.

    1996-10-01

    Unglazed transpired plate solar air heaters have proven to be effective in heating outside air on a once-through basis for ventilation and drying applications. Outside air is sucked through unglazed plates having uniformly distributed perforations. The air is drawn into a plenum behind the plate and then supplied to the application by fans. Large collectors have been built that cover the sides of sizable buildings, and the problem of designing the system so that the air is sucked uniformly everywhere (or nearly so) has proven to be a challenging one. This article describes an analytical tool that has been developed to predict the flow distribution over the collector. It is based on modelling the flow-field in the plenum by means of a commercial CFD (computational fluid mechanics) code, incorporating a special set of boundary conditions to model the plate and the ambient air. The article presents the 2D version of the code, and applies it to the problem of predicting the flow distribution in still air (no wind) conditions, a situation well treated by a 2D code. Results are presented for a wide range of conditions, and design implications are discussed. An interesting finding of the study is that the heat transfer at the back of the plate can play an important role, and because of this heat transfer, the efficiency of a collector in nonuniform flow can actually be greater than that of the same collector in uniform flow. 15 refs., 7 figs.

  11. Energy use test facility: CAC-DOE solar air heater test report

    NASA Astrophysics Data System (ADS)

    1981-11-01

    The solar air heater testing demonstrated an attractive application for residential space heating, especially appealing to the do-it-yourself market. Simple improvements in construction, such as caulking of the glazing, could increase collector performance at little cost. The operating cost of the fan was insignificant, being less than $0.05/week. Tested in its as-shipped configuration at 96.1 cfm (3 cfm/ft (2)), the useful energy delivered averaged 20,000 Btu/day for six days in December. The electrical consumption of the fan was approximately 1 kWh. Doubling the flowrate did not increase collector performance appreciably. A TRNSYS computer simulation model for this solar air heater design was validated by comparing the measured test data on Jaunary 4, 1981 with calculated values. TRNSYS predicted that measured collector outlet temperatures within +- 1.20F and the energy delivered within +- 3%. The excellent agreement was obtained by adjusting the collector loss coefficient to an unrealistically low value; therefore, a parametric study is recommended to determine the model sensitivity to varying different parameters. A first-order collector efficiency curve was derived from the TRNSYS simulations which compared well with the curve defined by the clear-day measured data.

  12. Performance Analysis and Parametric Study of a Natural Convection Solar Air Heater With In-built Oil Storage

    NASA Astrophysics Data System (ADS)

    Dhote, Yogesh; Thombre, Shashikant

    2016-05-01

    This paper presents the thermal performance of the proposed double flow natural convection solar air heater with in-built liquid (oil) sensible heat storage. Unused engine oil was used as thermal energy storage medium due to its good heat retaining capacity even at high temperatures without evaporation. The performance evaluation was carried out for a day of the month March for the climatic conditions of Nagpur (India). A self reliant computational model was developed using computational tool as C++. The program developed was self reliant and compute the performance parameters for any day of the year and would be used for major cities in India. The effect of change in storage oil quantity and the inclination (tilt angle) on the overall efficiency of the solar air heater was studied. The performance was tested initially at different storage oil quantities as 25, 50, 75 and 100 l for a plate spacing of 0.04 m with an inclination of 36o. It has been found that the solar air heater gives the best performance at a storage oil quantity of 50 l. The performance of the proposed solar air heater is further tested for various combinations of storage oil quantity (50, 75 and 100 l) and the inclination (0o, 15o, 30o, 45o, 60o, 75o, 90o). It has been found that the proposed solar air heater with in-built oil storage shows its best performance for the combination of 50 l storage oil quantity and 60o inclination. Finally the results of the parametric study was also presented in the form of graphs carried out for a fixed storage oil quantity of 25 l, plate spacing of 0.03 m and at an inclination of 36o to study the behaviour of various heat transfer and fluid flow parameters of the solar air heater.

  13. Effect of gas and kerosene space heaters on indoor air quality: a study in homes of Santiago, Chile.

    PubMed

    Ruiz, Pablo A; Toro, Claudia; Cáceres, Jorge; López, Gianni; Oyola, Pedro; Koutrakis, Petros

    2010-01-01

    The impact of outdoor and indoor pollution sources on indoor air quality in Santiago, Chile was investigated. Toward this end, 16 homes were sampled in four sessions. Each session included an outdoor site and four homes using different unvented space heaters (electric or central heating, compressed natural gas, liquefied petroleum gas, and kerosene). Average outdoor fine particulate matter (PM2.5) concentrations were very high (55.9 microg x m(-3)), and a large fraction of these particles penetrated indoors. PM2.5 and several PM2.5 components (including sulfate, elemental carbon, organic carbon, metals, and polycyclic aromatic hydrocarbons) were elevated in homes using kerosene heaters. Nitrogen dioxide (NO2) and ultrafine particles (UFPs) were higher in homes with combustion heaters as compared with those with electric heaters or central heating. A regression model was used to assess the effect of heater use on continuous indoor PM2.5 concentrations when windows were closed. The model found an impact only for kerosene heaters (45.8 microg m(-3)). PMID:20102039

  14. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 1: Transmittal documents; Executive summary; Project summary

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described.

  15. Indoor air pollutants from unvented kerosene-heater emissions in mobile homes: Studies on particles, semivolatile organics, carbon monoxide, and mutagenicity

    SciTech Connect

    Mumford, J.L.; Williams, R.W.; Walsh, D.B.; Burton, R.M.; Svendsgaard, D.J.

    1991-01-01

    The study was conducted to assess human exposure to air pollutants resulting from the use of kerosene heaters in mobile homes. It has been estimated that 15-17 million unvented kerosene heaters have been sold in the United States, and 33% of these heaters have been sold to mobile home residents. The emissions from kerosene heaters can result in high pollutants levels in mobile homes that have a small air volume and low ventilation rate. Eight totally electric mobile homes with no smokers living in the homes were monitored for indoor air particles < 10 micrometer (PM10), semivolatile organics, carbon monoxide (CO), and mutagenicity of semivolatile and particle-phase organics in Salmonella typhimurium TA98 without S9 using a microsuspension reverse-mutation assay. Each home was monitored for an average of 6.5 h/day, 3 days/week, for 4 weeks (2 weeks with the heater on and 2 weeks with the heater off) during the heating season of 1989. Indoor air exchange rate, temperature, and humidity were measured. Chemical analyses, including polycyclic aromatic hydrocarbon (PAH) and nitro PAH, also were performed on the indoor air samples from a selected home with the kerosene heater on and off. Increases in CO and organic concentrations resulting from the use of kerosene heaters were found in most homes monitored. Chemical analysis data also suggested the presence of evaporated, unburned kerosene fuel present in semivolatile organics collected in the XAD samples. In comparison with the U.S. national ambient air standards, four out of the eight heaters investigated in the study emitted pollutants that exceeded the ambient air standards some days. These data suggested that emissions from unvented kerosene heaters can significantly impact indoor air quality in mobile homes and that these emissions contain carcinogenic compounds and can be potentially carcinogenic in humans.

  16. Infrared Heaters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  17. Heat flux: thermohydraulic investigation of solar air heaters used in agro-industrial applications

    NASA Astrophysics Data System (ADS)

    Rahmati Aidinlou, H.; Nikbakht, A. M.

    2016-07-01

    A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based on the constant roughness parameters such as relative roughness height (e/D), relative roughness pitch (P/e), angle of attack (α) and aspect ratio with Reynolds numbers ranging from 5000 to 19,000 in the fully developed region. Heat fluxes of 800, 900 and 1000 Wm-2 were provided. The enhancement in friction factor is observed to be 3.1656, 3.47 and 3.0856 times, and for the Nusselt number either, augmentation is calculated to be 1.4437, 1.4963 and 1.535 times, respectively, over the smooth duct for 800, 900 and 1000 Wm-2 heat fluxes. Thermohydraulic performance is plotted versus the Reynolds number based on the aforementioned roughness parameters at varying heat fluxes. The results show up that thermohydraulic performance is found to be maximum for 1000 Wm-2 at the average Reynolds number of 5151. Based on the results, we can verify that the introduced solar simulator can help analyzing and developing solar collector installations at the simulated heat fluxes.

  18. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 3: Appendix F through I

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  19. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  20. Development of a double-effect air conditioner-heater (deach) phase 2. Final report, January 1989-December 1989

    SciTech Connect

    De Vuono, A.C.; Landstrom, D.K.; Osborne, R.L.; Christensen, R.N.; Flanigan, L.

    1992-12-01

    The report describes the results of Phase II of a multi-phase project to develop a high-efficiency, gas-fired, residential size air-conditioner/heater based on a double-effect, absorption cycle using LiBr and water as working fluids. The results discussed include experimental and analytical analysis of various options for key components and subsystems including absorber, direct expansion evaporator, solution heat exchangers and burner/generator subsystem. The thermodynamic model used to evaluate various system design tradeoffs is also discussed. The results of the Phase II effort provided the basis for full-scale, integrated breadboard testing to be conducted in Phase III of the project.

  1. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  2. Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD

    SciTech Connect

    Karmare, S.V.; Tikekar, A.N.

    2010-03-15

    This paper presents the study of fluid flow and heat transfer in a solar air heater by using Computational Fluid Dynamics (CFD) which reduces time and cost. Lower side of collector plate is made rough with metal ribs of circular, square and triangular cross-section, having 60 inclinations to the air flow. The grit rib elements are fixed on the surface in staggered manner to form defined grid. The system and operating parameters studied are: e/D{sub h} = 0.044, p/e = 17.5 and l/s = 1.72, for the Reynolds number range 3600-17,000. To validate CFD results, experimental investigations were carried out in the laboratory. It is found that experimental and CFD analysis results give the good agreement. The optimization of rib geometry and its angle of attack is also done. The square cross-section ribs with 58 angle of attack give maximum heat transfer. The percentage enhancement in the heat transfer for square plate over smooth surface is 30%. (author)

  3. Transmission of Mycobacterium chimaera from Heater-Cooler Units during Cardiac Surgery despite an Ultraclean Air Ventilation System.

    PubMed

    Sommerstein, Rami; Rüegg, Christian; Kohler, Philipp; Bloemberg, Guido; Kuster, Stefan P; Sax, Hugo

    2016-06-01

    Heater-cooler units (HCUs) were recently identified as a source of Mycobacterium chimaera causing surgical site infections. We investigated transmission of this bacterium from HCUs to the surgical field by using a thermic anemometer and particle counter, videotape of an operating room equipped with an ultraclean laminar airflow ventilation system, and bacterial culture sedimentation plates in a nonventilated room. Smoke from the HCU reached the surgical field in 23 s by merging with ultraclean air. The HCU produced on average 5.2, 139, and 14.8 particles/min in the surgical field at positions Off, On/oriented toward, and On/oriented away, respectively. Culture plates were positive for M. chimaera <5 m from the HCU in the test room. These experiments confirm airborne transmission of M. chimaera aerosols from a contaminated HCU to an open surgical field despite ultraclean air ventilation. Efforts to mitigate infectious risks during surgery should consider contamination from water sources and airflow-generating devices. PMID:27070958

  4. Modeling and Simulation of Turbulent Flows through a Solar Air Heater Having Square-Sectioned Transverse Rib Roughness on the Absorber Plate

    PubMed Central

    Yadav, Anil Singh; Bhagoria, J. L.

    2013-01-01

    Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement. PMID:24222752

  5. Thermal performance predictions of flat-plate solar collector air heaters

    NASA Astrophysics Data System (ADS)

    Oneill, T. C.

    1980-03-01

    A computer program was written that models heat exchanges occurring within flat plate solar air collectors and which computes the incoming solar flux and heat losses to the environment. Internal collector temperatures and thermal efficiencies are predicted for either steady state or transient cases from finite difference solutions to a set of energy balance equations. These relations are written for thermal modes that are generated and linked together by the internal deck logic. The program was utilized in a study of three types of air collectors. The first two configurations employed crossflow impingement along the backside of their absorbers to augment heat transfer coefficients developed at those surfaces, while the third used a rock matrix absorber to expand its surface area for heat transfer. In addition, the first collector replaced the conventional stationary plate absorber of the second design by a traveling belt.

  6. Experimental study of heat transfer enhancement in solar air heater with different angle of attack of V-down continuous ribs

    NASA Astrophysics Data System (ADS)

    Istanto, Tri; Danardono, Dominicus; Yaningsih, Indri; Wijayanta, Agung Tri

    2016-06-01

    In this paper, an experimental study on the effect of angle attack in V-down continuous ribs on heat transfer and friction factor in an artificially roughened air heater duct is presented. The electric heater with a constant heat flux as a simulation of the indoor testing solar air heater is used to heat the roughened part of rectangular duct while other parts were insulated. The system and operating conditions were used to decide the range of parameters for the study. The ratio of the width to height of the duct (W/H) was 12, the relative roughness pitch (p/e) was 10, the relative roughness height (e/Dh) was 0.033 and the angle of attack of flow (α) was 30-80°. The air flow rate corresponded to Reynolds number between 3500 -10,000. The result of heat transfer and friction factor had been compared to those for smooth duct under similar flow and thermal boundary condition. The thermo-hydraulic performance also had been considered. As a result, the maximum enhancement of Nusselt number (Nu) and friction factor(f) were 2.34 and 2.45 times, respectively. For each variation of angle attack of flow, the thermo-hydraulic performance has been compared and the result shows that a V-down continuous rib with the angle of attack of flow as 60° gave the best thermo-hydraulic performance.

  7. MHD oxidant intermediate temperature ceramic heater study

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-01-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  8. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    SciTech Connect

    Not Available

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  9. Experimental investigations on decay heat removal in advanced nuclear reactors using single heater rod test facility: Air alone in the annular gap

    SciTech Connect

    Bopche, Santosh B.; Sridharan, Arunkumar

    2010-11-15

    During a loss of coolant accident in nuclear reactors, radiation heat transfer accounts for a significant amount of the total heat transfer in the fuel bundle. In case of heavy water moderator nuclear reactors, the decay heat of a fuel bundle enclosed in the pressure tube and outer concentric calandria tube can be transferred to the moderator. Radiation heat transfer plays a significant role in removal of decay heat from the fuel rods to the moderator, which is available outside the calandria tube. A single heater rod test facility is designed and fabricated as a part of preliminary investigations. The objective is to anticipate the capability of moderator to remove decay heat, from the reactor core, generated after shut down. The present paper focuses mainly on the role of moderator in removal of decay heat, for situation with air alone in the annular gap of pressure tube and calandria tube. It is seen that the naturally aspirated air is capable of removing the heat generated in the system compared to the standstill air or stagnant water situations. It is also seen that the flowing moderator is capable of removing a greater fraction of heat generated by the heater rod compared to a stagnant pool of boiling moderator. (author)

  10. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  11. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  12. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  13. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in which the engine exhaust gases are conducted into or through any space occupied by persons or any heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type... air, heated or to be heated, from the engine compartment or from direct contact with any portion...

  14. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in which the engine exhaust gases are conducted into or through any space occupied by persons or any heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type... air, heated or to be heated, from the engine compartment or from direct contact with any portion...

  15. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in which the engine exhaust gases are conducted into or through any space occupied by persons or any heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type... air, heated or to be heated, from the engine compartment or from direct contact with any portion...

  16. Heat Transfer Enhancement in a Solar Air Heater with Roughened Duct Having Arc-Shaped Elements as Roughness Element on the Absorber Plate

    NASA Astrophysics Data System (ADS)

    Singh, Anil Prakash; Goel, Varun; Vashishtha, Siddhartha; Kumar, Amit

    2016-07-01

    An experimental study has been carried out for the heat transfer and friction characteristics for arc shaped roughness element used in solar air heaters. Duct has an aspect ratio (W/H) of 11, relative roughness pitch (p/e) range of 4-16, relative roughness height (e/D) range of 0.027-0.045, Reynolds number ( Re) range of 2200-22,000 and arc angle (α) was kept constant at 60°. The effects of Re, relative roughness pitch (p/e) and relative roughness height (e/D) on heat transfer and friction factor have been discussed. The results obtained for Nusselt number and friction factor has been compared with smooth solar air heater to see the enhancement in heat transfer and friction factor and it is found out that considerable enhancement takes place in case of heat transfer as well as in friction factor. Correlations were also developed for Nusselt number and friction factor. Thermo-hydraulic performance parameter is also calculated for the same.

  17. Heat Transfer Enhancement in a Solar Air Heater with Roughened Duct Having Arc-Shaped Elements as Roughness Element on the Absorber Plate

    NASA Astrophysics Data System (ADS)

    Singh, Anil Prakash; Goel, Varun; Vashishtha, Siddhartha; Kumar, Amit

    2016-05-01

    An experimental study has been carried out for the heat transfer and friction characteristics for arc shaped roughness element used in solar air heaters. Duct has an aspect ratio (W/H) of 11, relative roughness pitch (p/e) range of 4-16, relative roughness height (e/D) range of 0.027-0.045, Reynolds number (Re) range of 2200-22,000 and arc angle (α) was kept constant at 60°. The effects of Re, relative roughness pitch (p/e) and relative roughness height (e/D) on heat transfer and friction factor have been discussed. The results obtained for Nusselt number and friction factor has been compared with smooth solar air heater to see the enhancement in heat transfer and friction factor and it is found out that considerable enhancement takes place in case of heat transfer as well as in friction factor. Correlations were also developed for Nusselt number and friction factor. Thermo-hydraulic performance parameter is also calculated for the same.

  18. Development of a Double-Effect Air-Conditioner Heater (DEACH). Phase 3 and final report, January 1990-December 1991. Phase 3, September 1987-December 1991. Overall project

    SciTech Connect

    De Vuono, A.C.; Hanna, W.T.; Osborne, R.L.; Ball, D.A.

    1992-04-01

    The report describes development efforts on a Double-Effect Air-Conditioner Heater (DEACH). Based on a double-effect LiBr/H2O absorption cycle, the DEACH was focused on residential applications with the primary objective being a low first-cost efficient gas-fired cooling system. The concept included compact integrated heat exchangers, direct heat rejection to outdoor air (no cooling tower), and ability to self-decrystallize. The performance goals of the system were essentially demonstrated in a full-scale (3 refrigeration ton), fully integrated breadboard. However, the projected manufacturing cost was somewhat above the original target and even further above that deemed competitive at the end of the project. Therefore, technical development was stopped in late 1991.

  19. CFD Analysis to Study Effect of Circular Vortex Generator Placed in Inlet Section to Investigate Heat Transfer Aspects of Solar Air Heater

    PubMed Central

    Gawande, Vipin B.; Dhoble, A. S.; Zodpe, D. B.

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251

  20. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater.

    PubMed

    Gawande, Vipin B; Dhoble, A S; Zodpe, D B

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251

  1. Particulate matter sensor with a heater

    DOEpatents

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  2. Packaged die heater

    SciTech Connect

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  3. Molded polymer solar water heater

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  4. Dampers for Natural Draft Heaters: Technical Report

    SciTech Connect

    Lutz, James D.; Biermayer, Peter; King, Derek

    2008-10-27

    Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.

  5. Infrared microradiometry of thermal ink jet heaters

    NASA Astrophysics Data System (ADS)

    Muller, Olaf; Drews, Reinhold E.

    1989-07-01

    Thermal inkjet heaters were studied by infrared microradiometry using an apparatus similar to that reported in the literature. An InSb infrared sensor is mounted on a modified Leitz microscope equipped with a 36X reflecting objective. The system looks at a spot on the heater about 14 μm in diameter. The locally emitted infrared output is used as a qualitative measure of the local temperature. The temperature distribution on the heater surface is studied by constructing two-dimensional temperature contour maps. Current pulsing is carried out in air or in the presence of a high boiling point liquid. Other variables include pulse width, frequency, voltage, and heater geometry. Temperature profiles obtained in this way are in good agreement with those obtained from modeling calculations. Cycling has been carried out with several different passivation coatings with an emphasis on Ta passivation. Microradiometry of Ta-passivated heaters is complicated by the formation of Ta2O5 under most pulsing conditions and Ta2O5 has a much higher emissivity than tantalum. Burn-in curves (infrared output versus time) are used to monitor this oxidation process. Since the Ta2O5 thickness is not uniform over the heater surface, an accurate interpretation of the temperature contour maps of Ta-covered heaters is not easy. Microradiometry data of oxidized Ta heaters are supplemented with data obtained using optical microscopy, SEM, and profilometry. By overstressing heaters, hot spots were generated and studied using temperature contour maps. Subsequently, failed heaters were studied using SEM, and from these data failure mechanisms are postulated.

  6. Grouped exposed metal heaters

    DOEpatents

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  7. Grouped exposed metal heaters

    SciTech Connect

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  8. 73. SECOND FLOOR, HEATER ROOM, BAY 31/5 SOUTH, WITH FANFORCED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. SECOND FLOOR, HEATER ROOM, BAY 31/5 SOUTH, WITH FAN-FORCED HOT AIR HEATER; TO SOUTHEAST - Ford Motor Company Edgewater Assembly Plant, Assembly Building, 309 River Road, Edgewater, Bergen County, NJ

  9. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air temperature exceeds safe... might accumulate within the combustion chamber or the heat exchanger. In addition— (1) Each part of any... for any individual heater must— (i) Be independent of components serving any other heater whose...

  10. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air temperature exceeds safe... might accumulate within the combustion chamber or the heat exchanger. In addition— (1) Each part of any... for any individual heater must— (i) Be independent of components serving any other heater whose...

  11. Explosives tester with heater

    DOEpatents

    Del Eckels, Joel; Nunes, Peter J.; Simpson, Randall L.; Whipple, Richard E.; Carter, J. Chance; Reynolds, John G.

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  12. 53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON EAST SIDE OF LAUNCH DECK. LAUNCHER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  14. Coaxial Electric Heaters

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2008-01-01

    Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings. A coaxial electric heater is essentially an axisymmetric coaxial cable, the outer conductor of which is deliberately made highly electrically resistive so that it can serve as a heating element. As in the cases of other axisymmetric coaxial cables, the equal magnitude electric currents flowing in opposite directions along the inner and outer conductors give rise to zero net magnetic field outside the outer conductor. Hence, a coaxial electric heater can be placed near an atomic-sample cell or other sensitive device. A coaxial electric heater can be fabricated from an insulated copper wire, the copper core of which serves as the inner conductor. For example, in one approach, the insulated wire is dipped in a colloidal graphite emulsion, then the emulsion-coated wire is dried to form a thin, uniform, highly electrically resistive film that serves as the outer conductor. Then the film is coated with a protective layer of high-temperature epoxy except at the end to be electrically connected to the power supply. Next, the insulation is stripped from the wire at that end. Finally, electrical leads from the heater power supply are attached to the exposed portions of the wire and the resistive film. The resistance of the graphite film can be tailored via its thickness. Alternatively, the film can be made from an electrically conductive paint, other than a colloidal graphite emulsion, chosen to impart the desired resistance. Yet another alternative is to tailor the resistance of a graphite film by exploiting the fact that its resistance

  15. Engineering support for magnetohydrodynamic power plant analysis and design studies

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.

    1980-01-01

    The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.

  16. Engineering support for magnetohydrodynamic power plant analysis and design studies

    NASA Astrophysics Data System (ADS)

    Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.

    1980-08-01

    The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.

  17. Hot gas engine heater head

    DOEpatents

    Berntell, John O.

    1983-01-01

    A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.

  18. Immersible solar heater for fluids

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  19. Arkansas Solar Retrofit Guide. Greenhouses, Air Heaters and Water Heaters.

    ERIC Educational Resources Information Center

    Skiles, Albert; Rose, Mary Jo

    Solar retrofits are devices of structures designed to be attached to existing buildings to augment their existing heating sources with solar energy. An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is the subject of this report. Following an introduction (section 1), section 2 focuses on…

  20. Solar Water Heater

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Skylab derived Heating System offers computerized control with an innovative voice synthesizer that literally allows the control unit to talk to the system user. It reports time of day, outside temperature and system temperature, and asks questions as to how the user wants the system programmed. Master Module collects energy from the Sun and either transfers it directly to the home water heater or stores it until needed.

  1. High Efficiency, Ultra-Low Emission, Integrated Process Heater System

    SciTech Connect

    Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

    2006-06-19

    The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution

  2. LOW EMISSION AND HIGH EFFICIENCY RESIDENTIAL PELLET-FIRED HEATERS

    EPA Science Inventory

    The paper gives results of air emissions testing and efficiency testing on new commercially available under-feed and top-feed residential heaters burning hardwood- and softwood-based pellets. The results were compared with data from earlier models. Reductions in air emissions w...

  3. Qualification of improved joint heaters

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Qualification testing of the Redesigned Solid Rocket Motor improved igniter-to-case joint and field joint heaters was conducted on the fired TEM-04 static test motor and was completed on 7 Sep. 1989. The purpose of the test was to certify the installation and performance of the improved joint heaters for use on flight motors. The changes incorporated in the improved heaters improve durability and should reduce handling damage. The igniter-to-case joint and field joint primary heater circuits were subjected to five 20-hr ON cycles. The heater redundant circuits were then subjected to one 20-hr ON cycle. Voltage, current, and temperature set point values were maintained within the specified limits for both heaters during each ON cycle. When testing was complete, both heaters were removed and inspected. No discolorations or any other anomalies were found on either of the heaters. Based on the successful completion of this test, it is recommended that the improved igniter-to-case joint and field joint heaters be used on future flight motors.

  4. Water heater control module

    DOEpatents

    Hammerstrom, Donald J

    2013-11-26

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  5. Experimental investigation of the effect of variously-shaped ribs on local heat transfer on the outer wall of the turning portion of a U-channel inside solar air heater

    NASA Astrophysics Data System (ADS)

    Salameh, Tareq; Alami, Abdul Hai; Sunden, Bengt

    2016-03-01

    In the present work, an experimental investigation of convective heat transfer and pressure drop was carried out for the turning portion of a U-channel where the outer wall was equipped with ribs. The shape of the ribs was varied. The investigation aims to give guidelines for improving the thermo-hydraulic performance of a solar air heater at the turning portion of a U-channel. Both the U-channel and the ribs were made in acrylic material to allow optical access for measuring the surface temperature by using a high-resolution technique based on narrow band thermochromic liquid crystals (TLC R35C5 W) and a CCD camera placed to face the turning portion of the U-channel. The uncertainties were estimated to 5 and 7 % for the Nusselt number and friction factor, respectively. The pressure drop was approximately the same for all the considered shapes of the ribs while the dimpled rib case gave the highest heat transfer coefficient while the grooved rib presented the highest performance index.

  6. Subsurface heaters with low sulfidation rates

    SciTech Connect

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  7. Immersible solar heater for fluids

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  8. Immersible solar heater for fluids

    DOEpatents

    Kronberg, J.W.

    1995-07-11

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  9. Visibly Transparent Heaters.

    PubMed

    Gupta, Ritu; Rao, K D M; Kiruthika, S; Kulkarni, Giridhar U

    2016-05-25

    Heater plates or sheets that are visibly transparent have many interesting applications in optoelectronic devices such as displays, as well as in defrosting, defogging, gas sensing and point-of-care disposable devices. In recent years, there have been many advances in this area with the advent of next generation transparent conducting electrodes (TCE) based on a wide range of materials such as oxide nanoparticles, CNTs, graphene, metal nanowires, metal meshes and their hybrids. The challenge has been to obtain uniform and stable temperature distribution over large areas, fast heating and cooling rates at low enough input power yet not sacrificing the visible transmittance. This review provides topical coverage of this important research field paying due attention to all the issues mentioned above. PMID:27176472

  10. Biobriefcase aerosol collector heater

    DOEpatents

    Bell, Perry M.; Christian, Allen T.; Bailey, Christopher G.; Willis, Ladona; Masquelier, Donald A.; Nasarabadi, Shanavaz L.

    2009-03-17

    A system for sampling air and collecting particles potentially including bioagents entrained in the air for detection. The system comprises collecting a sample of the air with the particles entrained in the air, directing the sample to a receiving surface, directing a liquid to the receiving surface thereby producing a liquid surface, wherein the particles potentially including bioagents become captured in the liquid, and heating the liquid wherein the particles potentially including bioagents become heated to lysis the bioagents.

  11. Dynamic heater for display elements

    NASA Astrophysics Data System (ADS)

    Dehmlow, Brian P.; Bishop, Gary D.; Steffensmeier, Martin J.; Sampica, James D.; Skarohlid, Mark C.

    1997-07-01

    Liquid crystal display (LCD) deliver optimal performance when the entire display surface is isothermal and at a controllable temperature. This condition creates uniform electro-optical properties within the liquid crystal layer. This paper describes a dynamic, multicontact heater system that actively compensates for uneven heat loads, thereby creating the desired isothermal condition. The heater system includes a uniform resistive sheet, with multiple electrical contacts around the perimeter. A switch network connects each heater contact to a power supply, ground potential, or a high impedance. A microprocessor monitors the display temperature, and detects non-uniformity, and selectively applies heat to cold areas of the display. The dynamic heater system employs a variety of heating patterns to create the desired isothermal condition.Heating patterns vary in duration, power applied, and location on the display face. The microprocessor control loop can also detect and isolate faulty drive elements, and compensate for non- uniformity in the heater itself. The heater prevents stress- induced delaminations, mechanical distortions, and stress- induced birefringence in optical components. Test results indicate that a dynamic heater can be beneficial in the thermal design of LCD products.

  12. Tuning The Laser Heater Undulator

    SciTech Connect

    Wolf, Zackary

    2010-12-03

    The laser heater undulator for the LCLS requires different tuning techniques than the main undulators. It is a pure permanent magnet (PPM) undulator, rather than the hybrid design of the main undulators. The PPM design allows analytic calculation of the undulator fields. The calculations let errors be introduced and correction techniques be derived. This note describes how the undulator was modelled, and the methods which were found to correct potential errors in the undulator. The laser heater undulator for the LCLS is a pure permanent magnet device requiring different tuning techniques than the main undulators. In this note, the laser heater undulator is modelled and tuning techniques to compensate various errors are derived.

  13. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  14. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  15. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  16. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  17. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  18. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... charcoal. Any stove or other heater employing solid fuel except wood charcoal. (6) Portable heaters... the vehicle or burning occupants by direct radiation. Wood charcoal heaters shall be enclosed within a... or on which it is mounted. Wood charcoal heaters shall be secured against relative motion within...

  19. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... charcoal. Any stove or other heater employing solid fuel except wood charcoal. (6) Portable heaters... the vehicle or burning occupants by direct radiation. Wood charcoal heaters shall be enclosed within a... or on which it is mounted. Wood charcoal heaters shall be secured against relative motion within...

  20. Methods for forming long subsurface heaters

    DOEpatents

    Kim, Dong Sub

    2013-09-17

    A method for forming a longitudinal subsurface heater includes longitudinally welding an electrically conductive sheath of an insulated conductor heater along at least one longitudinal strip of metal. The longitudinal strip is formed into a tubular around the insulated conductor heater with the insulated conductor heater welded along the inside surface of the tubular.

  1. Heat Pump Water Heaters and American Homes: A Good Fit?

    SciTech Connect

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  2. Heater head for stirling engine

    DOEpatents

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  3. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  4. ASSESSMENT OF NOX EMISSION FACTORS FOR DIRECT-FIRED HEATERS

    EPA Science Inventory

    The report gives results of a review of available data on emission factors for major categories of direct-fired heaters. Systematic studies were analyzed to develop emission factors for oxides of nitrogen (NOx) at various levels of combustion air preheat used in major energy-cons...

  5. Emissions Characterization of Residential Wood-Fired Hydronic Heater Technologies

    EPA Science Inventory

    Residential wood-fired hydronic heaters (RWHHs) can negatively impact the local ambient air quality and thus are of major environmental concern in wood burning areas of the U. S. Few studies have been conducted which characterize the emissions from RWHHs. To address the lack of e...

  6. Impact of kerosene heater usage on indoor NO/sub 2/ exposures in 50 East Tennessee homes

    SciTech Connect

    Dudney, C.S.; Hawthorne, A.R.; Monar, K.P.; Cohen, M.A.; Spengler, J.D.

    1988-01-01

    As part of a study of indoor air quality in 300 houses in Roane County, Tennessee, a special study was made on kerosene heater usage and indoor pollutant levels, with emphasis on NO/sub 2/. Owners of 45 homes with kerosene heaters deployed pairs of passive NO/sub 2/ monitors on a weekly basis for ten weeks and recorded the weekly amount of heater use. Without correcting for house-specific factors, such as air exchange rate, indoor NO/sub 2/ levels were found to increase about 0.3 ppB per h/week of homeowner-reported heater use. In the absence of heater use, NO/sub 2/ levels were about 10 ppB in houses with and without kerosene heaters. In four houses with kerosene heaters and one house without, continuous measurements were made of NO, NO/sub x/, SO/sub 2/, and CO. CO and SO/sub 2/ levels increased threefold and tenfold, respectively, when the heater was operated compared to when it was off. Mean SO/sub 2/ levels during heater operation were 57, 46, and 110 ppB in three houses with radiant heaters and 13.5 ppB in one house with a convective heater. 5 refs., 8 figs., 3 tabs.

  7. Porous absorber for solar air heaters

    SciTech Connect

    Finch, J.A.

    1980-09-10

    A general discussion of the factors affecting solar collector performance is presented. Bench scale tests done to try to determine the heat transfer characteristics of various screen materials are explained. The design, performance, and evaluation of a crude collector with a simple screen stack absorber is treated. The more sophisticated absorber concept, and its first experimental approximation is examined. A short summary of future plans for the collector concept is included. (MHR)

  8. An Evaluation of the Water Heater Load Potential for Providing Regulation Service

    SciTech Connect

    Kondoh, Junji; Lu, Ning; Hammerstrom, Donald J.

    2011-08-31

    This paper investigates the possibility of providing aggregated regulation services with small loads, such as water heaters or air conditioners. A direct-load control algorithm is presented to aggregate the water heater load for the purpose of regulation. A dual-element electric water heater model is developed, which accounts for both thermal dynamics and users’ water consumptions. A realistic regulation signal was used to evaluate the number of water heaters needed and the operational characteristics of a water heater when providing 2-MW regulation service. Modeling results suggest that approximately 33,333 water heaters are needed to provide a 2-MW regulation service 24 hours a day. However, if water heaters only provide regulation from 6:00 to 24:00, approximately 20,000 will be needed. Because the control algorithm has considered the thermal setting of the water heater, the customer comfort is obstructed little. Therefore, the aggregated regulation service provided by water heater loads can become a major source of revenue for load-service entities when the smart grid enables the direct load control.

  9. High Performance Diesel Fueled Cabin Heater

    SciTech Connect

    Butcher, Tom

    2001-08-05

    Recent DOE-OHVT studies show that diesel emissions and fuel consumption can be greatly reduced at truck stops by switching from engine idle to auxiliary-fired heaters. Brookhaven National Laboratory (BNL) has studied high performance diesel burner designs that address the shortcomings of current low fire-rate burners. Initial test results suggest a real opportunity for the development of a truly advanced truck heating system. The BNL approach is to use a low pressure, air-atomized burner derived form burner designs used commonly in gas turbine combustors. This paper reviews the design and test results of the BNL diesel fueled cabin heater. The burner design is covered by U.S. Patent 6,102,687 and was issued to U.S. DOE on August 15, 2000.The development of several novel oil burner applications based on low-pressure air atomization is described. The atomizer used is a pre-filming, air blast nozzle of the type commonly used in gas turbine combustion. The air pressure used can b e as low as 1300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. At very low firing rates the small passage sizes in pressure swirl nozzles lead to poor reliability and this factor has practically constrained these burners to firing rates over 14 kW. Air atomization can be used very effectively at low firing rates to overcome this concern. However, many air atomizer designs require pressures that can be achieved only with a compressor, greatly complicating the burner package and increasing cost. The work described in this paper has been aimed at the practical adaptation of low-pressure air atomization to low input oil burners. The objective of this work is the development of burners that can achieve the benefits of air atomization with air pressures practically achievable with a simple burner fan.

  10. Advanced Process Heater

    SciTech Connect

    Tom Briselden, Chris Parrish

    2005-03-07

    The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: Improved performance of high temperature materials; Improved methods for stabilizing low emission flames; Heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer. This Category I award entitled ''Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future'' met the technical feasibility goals of: (1) Doubling the heat transfer rates (2) Improving thermal efficiencies by 20%, (3) Improving temperature uniformity by 100 degrees F and (4) simultaneously reducing NOx and CO2 emissions. The APH address EERE's mission priority of increasing efficiency/reducing fuel usage in energy intensive industries. One component of the APH, the SpyroCorTM, was commercialized by STORM Development's partner, Spinworks LLC. Over 2000 SpyrCorsTM were sold in 2004 resulting in 480 million BTU's of energy savings, 20% reduction in NOx and CO2 levels, and 9 jobs in N.W. Pennsylvania. A second component, the HeatCorTM, a low-cost high-temperature heat exchanger will be demonstrated by Spinworks in 2005 in preparation for commercial sales in 2006. The project occurred in the 21st Congressional District of Pennsylvania. Once fully commercialized, the APH energy savings potential is 339 trillion BTUs annually in the U.S. and will process 1.5 million more tons annually without major capital equipment expenditures. Spinworks will commercialize the APH and add over 100 U.S. workers. To accomplish the objective, STORM Development LLC teamed with Penn State University, SyCore, Inc, Spinworks LLC, and Schunk-INEX, Inc. The project consisted of component engineering and integration of the APH followed by parametric testing. All components of the system were tested in a lab furnace that simulates a full scale industrial installation. The target areas for development include: (1) Scale up STORM

  11. Herbert Easterly auxiliary truck heater

    SciTech Connect

    Not Available

    1991-12-09

    The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle's primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work nine different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.

  12. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    SciTech Connect

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union's Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory's Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  13. Solar heater for swimming pools

    SciTech Connect

    Babcock, H.W.

    1984-12-04

    A solar heater for swimming pools is provided having one or more heating panels installable on a roof or the like and arranged to discharge into a pool equipped with an apron without need for disturbing or obstructing the apron. This is accomplished by the provision of an elevated bistable dumper adjacent the perimeter of the apron having a dispensing spout normally inclined upwardly but pivoting at intervals to discharge into the pool across the apron without obstructing it. Water to be heated is diverted from the pool filtering system to the solar heater via a pressure regulator and a solar responsive flow control.

  14. IR Imaging Study on Heater Performamnce of Outside Rearview Mirrors for Automobiles

    SciTech Connect

    Wang, Hsin; England, Todd W

    2006-01-01

    Adhesive bonded electrical heaters have been used in outside rearview mirrors of automobiles in order to act as defrosters. Entrapment of air pockets between the heater and the mirror can affects the performance and structural integrity of the mirror assembly. Since painting over the mirror is not an option in the production environment, the biggest challenge for IR imaging is to minimize surface reflection. Looking through a smooth, highly reflective first-surface mirror and a 2 mm thick glass without picking up other heat sources in the room, such as people, electronics equipment and the camera itself, requires careful planning and effective shielding. In this paper, we present our method of avoiding mirror reflection and IR images of the heated mirror in operation. Production heaters and heaters with artificial defect were studied. The IR imaging method has shown to be an effective tool for heater quality control and performance studies.

  15. Solar water heater design package

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  16. Solar Water Heater Installation Package

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  17. Sealed-in-quartz resistance heater

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    Electric resistance quartz heater operates at 1,400 F without developing excessively hot spots that can fail prematurely. Since resistance element is sealed in quartz, heater can be used in hostile environments. Sealed construction also keeps heater from contaminating heated object.

  18. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2014-10-01 2014-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  19. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2010-10-01 2010-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  20. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2011-10-01 2011-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  1. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2013-10-01 2013-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  2. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2012-10-01 2012-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  3. FIRED HEATERS: NITROGEN OXIDES EMISSIONS AND CONTROLS

    EPA Science Inventory

    The report gives results of a study of nitrogen oxide (NOx) emissions from, and controls for, fired heaters. The petroleum refining and chemical manufacturing industries account for most of fired-heater energy use with an estimated 4600 fired heaters in operation, in these two in...

  4. 14 CFR 27.833 - Heaters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heaters. 27.833 Section 27.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  5. 14 CFR 29.833 - Heaters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Heaters. 29.833 Section 29.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  6. 14 CFR 27.833 - Heaters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Heaters. 27.833 Section 27.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  7. 14 CFR 29.833 - Heaters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heaters. 29.833 Section 29.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  8. 21 CFR 884.5390 - Perineal heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Perineal heater. 884.5390 Section 884.5390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... Perineal heater. (a) Identification. A perineal heater is a device designed to apply heat directly...

  9. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  10. FFTF reactor immersion heaters. Revision 1

    SciTech Connect

    Romrell, D.M.

    1994-08-26

    This specification establishes requirements for design, testing, and quality assurance for electric heaters that will be used to maintain primary Sodium temperature in the Fast Test Facility (FFTF) reactor vessel. The Test Specification (WHC-SD-FF-SDS-003) has been revised to Rev. 1. This change modifies the fabrication of approximately 25 feet of the subject heater using ceramic insulators over the heater lead wire rather than compressed magnesium oxide. Also, 304 or 316 stainless steel can be used for the heater sheath. This change should simplify fabrication and improve the heater operational reliability.

  11. Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.

    2008-01-01

    Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.

  12. Welding shield for coupling heaters

    DOEpatents

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  13. Heater drain system transient monitoring

    SciTech Connect

    Voll, B.J.; Farsaci, C.D.

    1995-12-01

    Feedwater heater drain systems are susceptible to unstable, two phase flow conditions. These instabilities are difficult to predict and are dependent on plant-specific system designs and operating conditions. Therefore, significant vibrations and transient events can occur that the systems are not specifically designed for. This paper describes how heater drain system responses due to unanticipated transient events at a nuclear plant were captured and quantified using a digital data acquisition system. The setup of the data acquisition system, including the determination of what parameters to monitor and how to effectively capture potential transient events, is discussed. This paper also discusses the monitoring results and their relevance to system modification evaluations and root cause evaluations.

  14. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  15. Silicon photonic heater-modulator

    DOEpatents

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  16. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  17. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  18. Improved Air-Treatment Canister

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1982-01-01

    Proposed air-treatment canister integrates a heater-in-tube water evaporator into canister header. Improved design prevents water from condensing and contaminating chemicals that regenerate the air. Heater is evenly spiraled about the inlet header on the canister. Evaporator is brazed to the header.

  19. Adjusting alloy compositions for selected properties in temperature limited heaters

    DOEpatents

    Brady; Michael Patrick , Horton, Jr.; Joseph Arno , Vitek; John Michael

    2010-03-23

    Heaters for treating a subsurface formation are described herein. Such heaters can be obtained by using the systems and methods described herein. The heater includes a heater section including iron, cobalt, and carbon. The heater section has a Curie temperature less than a phase transformation temperature. The Curie temperature is at least 740.degree. C. The heater section provides, when time varying current is applied to the heater section, an electrical resistance.

  20. Joint used for coupling long heaters

    DOEpatents

    Menottie, James Louis

    2013-02-26

    Systems for coupling ends of elongated heaters and methods of using such systems to treat a subsurface formation are described herein. A system may include two elongated heaters with an end portion of one heater abutted or near to an end portion of the other heater and a core coupling material. The core coupling material may extend between the two elongated heaters. The elongated heaters may include cores and at least one conductor substantially concentrically surrounds the cores. The cores may have a lower melting point than the conductors. At least one end portion of the conductor may have a beveled edge. The gap formed by the beveled edge may be filled with a coupling material for coupling the one or more conductors. One end portion of at least one core may have a recessed opening and the core coupling material may be partially inside the recessed opening.

  1. Condensing Hybrid Water Heater Monitoring Field Evaluation

    SciTech Connect

    Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

    2011-10-01

    This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

  2. Resistance Heater Helps Stirling-Engine Research

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    Stirling engine heater head consists of 18 double-turn coils of tubing, each of which is tightly wrapped with resistance-heating element, through which working gas flows. Coils form a toroid about periphery of heater-head body. With new resistance heater, total circuit resistance can be selected independently of tube geometry by changing size of wires and/or number of wire wraps around each tube.

  3. Parallel heater system for subsurface formations

    DOEpatents

    Harris, Christopher Kelvin; Karanikas, John Michael; Nguyen, Scott Vinh

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  4. Combustion heater for oil shale

    DOEpatents

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  5. Combustion heater for oil shale

    DOEpatents

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  6. SINGLE HEATER TEST FINAL REPORT

    SciTech Connect

    J.B. Cho

    1999-05-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between

  7. SELECTED ORGANIC POLLUTANT EMISSIONS FROM UNVENTED KEROSENE HEATERS

    EPA Science Inventory

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emission rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emiss...

  8. Strategy Guideline: Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  9. Strategy Guideline. Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  10. "Starfish" Heater Head For Stirling Engine

    NASA Technical Reports Server (NTRS)

    Vitale, N.

    1993-01-01

    Proposed "starfish" heater head for Stirling engine enables safe use of liquid sodium as heat-transfer fluid. Sodium makes direct contact with heater head but does not come in contact with any structural welds. Design concept minimizes number of, and simplifies nonstructural thermal welds and facilitates inspection of such welds.

  11. Heater for Combustible-Gas Tanks

    NASA Technical Reports Server (NTRS)

    Ingle, Walter B.

    1987-01-01

    Proposed heater for pressurizing hydrogen, oxygen, or another combustible liquid or gas sealed in immersion cup in pressurized tank. Firmly supported in finned cup, coiled rod transfers heat through liquid metal to gas tank. Heater assembly welded or bolted to tank flange.

  12. Electric arc heater is self starting

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1966-01-01

    Remote method initiates an electric arc over a large range of gaps between two water-cooled electrodes of an arc-heated wind tunnel without disassembling the arc unit. This type of starting system can be used on both three-phase ac arc heaters and dc arc heaters.

  13. Subsurface connection methods for subsurface heaters

    DOEpatents

    Vinegar, Harold J.; Bass, Ronald Marshall; Kim, Dong Sub; Mason, Stanley Leroy; Stegemeier, George Leo; Keltner, Thomas Joseph; Carl, Jr., Frederick Gordon

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  14. D-Zero End Cap Calorimeter Inner Vessel Heater Documentation

    SciTech Connect

    Rucinski, R.; /Fermilab

    1990-06-15

    There will be 48 finned strip heaters installed in each end cap calorimeter vessel. The strip heaters were specified and the lowest bid vendor submitted a sample heater which was tested. This engineering note will document specifications of the heater, test procedure used, and results of the test. The finned strip heaters were of stainless steel construction. The lowest bid was $45.00 per heater from TEMPCO Electric Heater Corporation. A sample heater from TEMPCO was inspected, cold shocked tested to -320 F, and found to be acceptable.

  15. Extended range tankless water heater

    SciTech Connect

    Harris, J.A.

    1993-04-18

    In this research program, a laboratory test facility was built for the purpose of testing a gas-fired water heating appliance. This test facility can be used to examine the important performance characteristics of efficiency, dynamic response, and quality of combustion. An innovative design for a tankless water heater was built and then tested to determine its performance characteristics. This unit was tested over a 5:1 range in input (20,000 to 100,000 btuh heat input). The unit was then configured as a circulating hot water boiler, and a specially designed heat exchanger was used with it to generate domestic hot water. This unit was also tested, and was found to offer performance advantages with regard to low flow and temperature stability.

  16. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    NASA Technical Reports Server (NTRS)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  17. Temperature measurements from a horizontal heater test in G-Tunnel

    SciTech Connect

    Lin, Wunan; Ramirez, A.L.; Watwood, D.

    1991-10-01

    A horizontal heater test was conducted in G-Tunnel, Nevada Test Site, to study the hydrothermal response of the rock mass due to a thermal loading. The results of the temperature measurements are reported here. The measured temperatures agree well with a scoping calculation that was performed using a model which investigates the transport of water, vapor, air, and heat in fractured porous media. Our results indicate that the temperature field might be affected by the initial moisture content of the rock, the fractures in the rock, the distance from the free surface of the alcove wall, and the temperature distribution on the heater surface. Higher initial moisture content, higher fracture density, and cooling from the alcove wall tend to decrease the measured temperature. The temperature on top of the horizontal heater can was about 30{degrees}C greater than at the bottom throughout most of the heating phase, causing the rock temperatures above the heater to be greater than those below. Along a radius from the center of the heater, the heating created a dry zone, followed by a boiling zone and condensation zone. Gravity drainage of the condensed water in the condensation zone had a strong effect on the boiling process in the test region. The temperatures below and to the side of the heater indicated a region receiving liquid drainage from an overlying region of condensation. We verified that a thermocouple in a thin-wall tubing measures the same temperature as one grouted in a borehole.

  18. Development and operation of new arc heater technology for a large-scale scramjet propulsion test facility

    NASA Technical Reports Server (NTRS)

    Balboni, John; Atler, Doug

    1993-01-01

    An arc-heater technology development effort conducted at NASA-Ames has led to the creation of a 100 MW Huels arc heater which has been integrated into the hydrogen-fueled Direct Connect Arcjet Facility for long-duration, high Mach-number scramjet performance evaluation. This development effort has significantly advanced the design of vortex-stabilized arc heaters; air enthalpy levels of 2.8-7.5 MJ/kg, at stagnation pressures of up to 45 atm, are produced. The facility furnishes technology-development support that is critical to the definition of NASP-related propulsion systems.

  19. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  20. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  1. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  2. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  3. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  4. 49 CFR 179.12 - Interior heater systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Interior heater systems. 179.12 Section 179.12... Design Requirements § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved... each compartment. (b) Each interior heater system shall be hydrostatically tested at not less than...

  5. 49 CFR 179.12 - Interior heater systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Interior heater systems. 179.12 Section 179.12... § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved design and materials...) Each interior heater system shall be hydrostatically tested at not less than 13.79 bar (200 psig)...

  6. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with...

  7. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with...

  8. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  9. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  10. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  11. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  12. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  13. Heater head for a Stirling engine

    SciTech Connect

    Darooka, D.K.

    1988-09-06

    A heater head is described for a compound Stirling engine modules, each including a displacer cylinder coaxially aligned with the displacer cylinder of the other of the engine modules, a displacer piston mounted for reciprocation in the displacer cylinder.

  14. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    PubMed Central

    Spannhake, Jan; Schulz, Olaf; Helwig, Andreas; Krenkow, Angelika; Müller, Gerhard; Doll, Theodor

    2006-01-01

    Micromachined thermal heater platforms offer low electrical power consumption and high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR) gas- and liquid monitoring systems. In this paper, we report on investigations on silicon-on-insulator (SOI) based infrared (IR) emitter devices heated by employing different kinds of metallic and semiconductor heater materials. Our results clearly reveal the superior high-temperature performance of semiconductor over metallic heater materials. Long-term stable emitter operation in the vicinity of 1300 K could be attained using heavily antimony-doped tin dioxide (SnO2:Sb) heater elements.

  15. Slat Heater Boxes for Thermal Vacuum Testing

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene

    2003-01-01

    Slat heater boxes have been invented for controlling the sink temperatures of objects under test in a thermal vacuum chamber, the walls of which are cooled to the temperature of liquid nitrogen. A slat heater box (see Figure 1) includes a framework of struts that support electrically heated slats that are coated with a high-emissivity optically gray paint. The slats can be grouped together into heater zones for the purpose of maintaining an even temperature within each side. The sink temperature of an object under test is defined as the steady-state temperature of the object in the vacuum/ radiative environment during the absence of any internal heat source or sink. The slat heater box makes it possible to closely control the radiation environment to obtain a desired sink temperature. The slat heater box is placed inside the cold thermal vacuum chamber, and the object under test is placed inside (but not in contact with) the slat heater box. The slat heaters occupy about a third of the field of view from any point on the surface of the object under test, the remainder of the field of view being occupied by the cold chamber wall. Thus, the radiation environment is established by the combined effects of the slat heater box and the cold chamber wall. Given (1) the temperature of the chamber wall, (2) the fractions of the field of view occupied by the chamber wall and the slat heater box, and (3) the emissivities of the slats, chamber wall, and the surface of object under test, the slat temperature required to maintain a desired sink temperature can be calculated by solving the equations of gray-body radiation for the steady-state adiabatic case (equal absorption and emission by the object under test). Slat heater boxes offer an important advantage over the infrared lamps that have been previously used to obtain desired sink temperatures: In comparison with an infrared lamp, a slat heater box provides a greater degree of sink temperature uniformity for a test

  16. Varying properties along lengths of temperature limited heaters

    DOEpatents

    Vinegar, Harold J.; Xie, Xueying; Miller, David Scott; Ginestra, Jean Charles

    2011-07-26

    A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.

  17. Phase change material storage heater

    DOEpatents

    Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.

    1997-01-01

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  18. Diesel particulate filter with zoned resistive heater

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  19. PARTICULATE AND ORGANIC EMISSIONS FROM UNVENTED KEROSENE HEATERS, TEST HOUSE STUDY

    EPA Science Inventory

    The paper discusses a study of particulate and organic emissions from unvented kerosene heaters in a test house. Results from the test house are compared with those from large (room size) chambers, using EPA's indoor air quality (IAQ) model. In the test house, unvented kerosene h...

  20. JPS heater and sensor lightning qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  1. Intelligent annunciator for solar water heater

    NASA Astrophysics Data System (ADS)

    Chen, Xiao

    2009-07-01

    The solar water heater has advantages of low cost, no pollution, safety, energy conservation and is very suitable for users in rural area. But many now used solar water heater has no alarm device resulting water and resource wasting because of forgetting to turn off the valve after water sailing upstream. To overcome this defect, an intelligent annunciator for solar water heater installed at the end of the return pipe is presented and designed in order to remind the user. Firstly, the advantages and disadvantages of automatic and manual sailing upstream are compared concluding that manual sailing upstream is more trustiness. Then an annunciator for solar water heater is studied and ameliorated. Its principle, parameters index and functions are introduced. The annunciator uses CD4069 chip as the core circuit with very little assistant circuit. It can provide sound and light alarm at the same time. This annunciator for solar water heater water is very simple in production, low cost, the use of safe and convenient. The annunciator is applicable to all solar power products, including various types of early installation of solar power water heaters and water tanks without changing their structures. It can meet family and industrial environmental applications.

  2. AIR POLLUTION CONTROL TECHNOLOGIES (CHAPTER 65)

    EPA Science Inventory

    The chapter discusses the use of technologies for reducing air pollution emissions from stationary sources, with emphasis on the control of combustion gen-erated air pollution. Major stationary sources include utility power boilers, industrial boilers and heaters, metal smelting ...

  3. Heater test 1, Climax Stock granite, Nevada

    SciTech Connect

    Montan, D.N.; Bradkin, W.E.

    1984-10-01

    We conducted a series of in-situ tests in the Climax Stock, an intrusive granite formation at the Nevada Test Site, to validate the concept of housing a nuclear waste repository in granitic crystalline rock. The thermal properties of the granite were measured with resistance heaters and thermocouple frames that had been emplaced in drilled holes in the floor of a drift 420 m below the surface. Data analysis was performed primarily by comparing the measured and calculated temperature histories, varying conductivity and diffusivity in the calculations until reasonable agreement was achieved. The best-fit value for in-situ conductivity was approximately 3.1 W/m x K, and the deduced value for in-situ diffusivity was approximately 1.2 mm{sup 2}/s. Anisotropic effects in the thermal field were less than 10%. Permeability was determined by sealing off portions of the drilled holes, using inflatable rubber packers and an air-pressurization system. We then compared the resulting decay in pressure with analytic solutions of the pressure loss from a cylindrical source in an infinite isotropic medium, obtaining a permeability of approximately 1 nanodarcy (nD) at about 30{sup 0}C. As the temperature increased, the permeability decreased to about 0.2 nD at about 50{sup 0}C and became too small to measure (<0.02 nD) at higher temperatures. These tests provided new data on the in-situ properties of a granite typical of the Basin and Range province and significantly advanced our understanding of and ability to perform in-situ thermal and permeability measurements. This knowledge will be of considerable value for future spent-fuel tests.

  4. UDAF bioenvironmental noise data handbook. Volume 164: MD-1 heater, duct type, portable

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-05-01

    The MD-1 heater is an electric motor-driven, portable ground heater used primarily for cockpit and cabin temperature control. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at normal rated conditions. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors.

  5. Performance Study of Swimming Pool Heaters

    SciTech Connect

    McDonald, R.J.

    2009-01-01

    The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

  6. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  7. Parametric study of prospective early commercial MHD power plants (PSPEC). General Electric Company, task 1: Parametric analysis

    NASA Technical Reports Server (NTRS)

    Marston, C. H.; Alyea, F. N.; Bender, D. J.; Davis, L. K.; Dellinger, T. C.; Hnat, J. G.; Komito, E. H.; Peterson, C. A.; Rogers, D. A.; Roman, A. J.

    1980-01-01

    The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs.

  8. Applications of infrared thermography for petrochemical process heaters

    NASA Astrophysics Data System (ADS)

    Weigle, Robert K.

    2005-03-01

    Process heaters are a critical component in the refining of crude oil. Traditional means of monitoring these high temperature vessels have frequently been more art than science, often relying on highly subjective analyses and/or frequently inaccurate thermocouple data. By utilizing an imaging radiometer specifically designed for heater inspections, valuable performance information can be obtained for operating heaters. In the hands of a knowledgeable engineering team, accurate infrared data can be utilized to significantly increase heater throughput while helping to ensure safe operation of the heater. This paper discusses the use of infrared thermography for online monitoring of operating crude heaters and the special challenges associated with this application.

  9. Primary helium heater for propellant pressurization systems

    NASA Technical Reports Server (NTRS)

    Reichmuth, D. M.; Nguyen, T. V.; Pieper, J. L.

    1991-01-01

    The primary helium heater is a unique design that provides direct heating of pressurant gas for large pressure fed propulsion systems. It has been conceptually designed to supply a heated (800-1000 R) pressurization gas to both a liquid oxygen and an RP-1 propellant tank. This pressurization gas is generated within the heater by mixing super critical helium (40-300 R and 3000-1600 psi) with an appropriate amount of combustion products from a 4:1 throttling stoichiometric LO2/LH2 combustor. This simple, low cost and reliable mixer utilizes the large quantity of helium to provide stoichiometric combustor cooling, extend the throttling limits and enhance the combustion stability margin. Preliminary combustion, thermal, and CFD analyses confirm that this low-pressure-drop direct helium heater can provide the constant-temperature pressurant suitable for tank pressurization of both fuel and oxidizer tanks of large pressure fed vehicles.

  10. Bonded Invar Clip Removal Using Foil Heaters

    NASA Technical Reports Server (NTRS)

    Pontius, James T.; Tuttle, James G.

    2009-01-01

    A new process uses local heating and temperature monitoring to soften the adhesive under Invar clips enough that they can be removed without damaging the composite underneath or other nearby bonds. Two 1x1 in. (approx.2.5x2.5 cm), 10-W/sq in. (approx.1.6-W/sq cm), 80-ohm resistive foil Kapton foil heaters, with pressure-sensitive acrylic adhesive backing, are wired in parallel to a 50-V, 1-A limited power supply. At 1 A, 40 W are applied to the heater pair. The temperature is monitored in the clip radius and inside the tube, using a dual thermocouple readout. Several layers of aluminum foil are used to speed the heat up, allowing clips to be removed in less than five minutes. The very local heating via the foil heaters allows good access for clip removal and protects all underlying and adjacent materials.

  11. Substrate heater for thin film deposition

    DOEpatents

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  12. Electrical Resistive Heaters for Magnetically Sensitive Instruments

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael

    2014-05-01

    US Patent 8,138,760 ``Temperature System with Magnetic Field Suppression'' describes design concepts and examples for development of electrical resistive heaters and temperature detectors suitable for temperature control of the alkali vapor cells of magnetically sensitive atomic instruments such as spin-exchange relaxation free (SERF) magnetometers. This is achieved through careful manipulation of electromagnetic multi-pole moments in the design of these resistive heaters for substantial self-cancellation of electrically generated magnetic fields. The magnetic performance of electrical resistive heaters produced according to these design principles and directly attached to a rubidium vapor cell has been demonstrated to cause no measurable degradation of the performance of a SERF magnetometer exhibiting noise below 2 femto-Tesla per square root Hz.

  13. Economic analysis of residential solar water heaters

    SciTech Connect

    1980-09-23

    A typical residential solar water heater, and typical cost and performance information are described briefly. The monthly costs and savings of the typical system are discussed. Economic evaluations of solar water heaters are presented in increasingly complex levels of detail. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described. Methods for calculating the Payback Period for any non-typical solar water heater are described. This calculated Payback Period is then shown to be related to the effective interest rate that the puchaser of the system would receive for a typical set of economic conditions. A method is presented to calculate the effective interest rate that the solar system would provide. (MHR)

  14. Hollow cathode heater development for the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  15. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    NASA Astrophysics Data System (ADS)

    Morrison, L.; Swisher, J.

    1980-12-01

    The operation of a newly marketed dedicated heat pump water heater (HPWH) which utilizes an air to water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests, is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. A simulation was developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics were adapted (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas) and the system was simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. The water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio of the HPWH.

  16. Solar Air Collectors: How Much Can You Save?

    DOE R&D Accomplishments Database

    Newburn, J. D.

    1985-04-01

    A collector efficiency curve is used to determine the output of solar air collectors based on the testing of seven solar collectors sold in Iowa. In this application the solar heater is being used as a space heater for a house. The performance of the solar air heater was analyzed and an 8% savings in energy was achieved over a one year period using two 4 x 8 collectors in a typical house.

  17. Stirling engine external heat system design with heat pipe heater

    NASA Technical Reports Server (NTRS)

    Godett, Ted M.; Ziph, Benjamin

    1986-01-01

    This final report presents the conceptual design of a liquid fueled external heating system (EHS) and the preliminary design of a heat pipe heater for the STM-4120 Stirling cycle engine, to meet the Air Force mobile electric power (MEP) requirement for units in the range of 20 to 60 kW. The EHS design had the following constraints: (1) Packaging requirements limited the overall system dimensions to about 330 mm x 250 mm x 100 mm; (2) Heat flux to the sodium heat pipe evaporator was limited to an average of 100 kW/m and a maximum of 550 kW/m based on previous experience; and (3) The heat pipe operating temperature was specified to be 800 C based on heat input requirements of the STM4-120. An analysis code was developed to optimize the EHS performance parameters and an analytical development of the sodium heat pipe heater was performed; both are presented and discussed. In addition, construction techniques were evaluated and scale model heat pipe testing performed.

  18. Measure Guideline. Transitioning to a Tankless Water Heater

    SciTech Connect

    Brozyna, K.; Rapport, A.

    2012-09-01

    This measure guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters.

  19. Technology Solutions Case Study: Heat Pump Water Heater Retrofit

    SciTech Connect

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory studied heat pump water heaters, an efficient, cost-effective alternative to traditional electric resistance water heaters that can improve energy efficiency by up to 62%.

  20. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... that any represented value of the thermal efficiency or other measure of energy consumption of a...

  1. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... that any represented value of the thermal efficiency or other measure of energy consumption of a...

  2. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... that any represented value of the thermal efficiency or other measure of energy consumption of a...

  3. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  4. Materials for a Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Noble, J. E.; Lehmann, G. A.; Emigh, S. G.

    1990-01-01

    Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.

  5. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S.

    1984-01-01

    A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

  6. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  7. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  8. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  9. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  10. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  11. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... heater when any of the following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The... that might accumulate in the combustion chamber or the heat exchanger. In addition— (1) Each part of... serving any other heater whose heat output is essential for safe operation; and (ii) Keep the heater...

  12. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... heater when any of the following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The... that might accumulate in the combustion chamber or the heat exchanger. In addition— (1) Each part of... serving any other heater whose heat output is essential for safe operation; and (ii) Keep the heater...

  13. 7 CFR 58.215 - Pre-heaters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Pre-heaters. 58.215 Section 58.215 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....215 Pre-heaters. The pre-heaters shall be of stainless steel or other equally corrosion...

  14. Infrared heater arrays for warming grazingland field plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to study the likely effects of global warming on rangeland and other ecosystems in the future, we developed arrays of infrared heaters that can produce uniform warming across 3-m-diameter field plots. The efficiency of the heaters was higher than that of the heaters used in most previous in...

  15. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  16. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 29.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  17. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  18. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 25.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  19. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  20. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  1. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  2. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  3. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  4. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Boilers and process heaters....

  5. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Boilers and process heaters....

  6. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Boilers and process heaters....

  7. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Boilers and process heaters....

  8. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Boilers and process heaters....

  9. Single-heater test final report

    SciTech Connect

    Blair, S. C.; Buscheck, T. A.; DeLoach, L. D.; Lin, W.; Ramirez, A. I.

    1998-09-01

    The Single-Heater Test (SHT) was one phase of the field-scale thermal testing program of the Yucca Mountain Site Characterization Project. The primary purpose of the SHT was to study the thermomechanical (TM) behavior of the densely welded, non-lithophysal Topopah Spring tuff at the Exploratory Studies Facility. The SHT was also used as a shake-down for testing thermal-hydrologic-chemical-mechanical processes in situ, testing that will be conducted in the Drift-Scale Test. In the SHT, a line-heat source 5-m long was emplaced in a pillar and used to heat the pillar for approximately nine months. The thermal field was relatively cylindrical about the line-heat source. The heater was turned off after nine months of heating, and the rock mass was monitored during the cool-down for another nine months, until May 28, 1997, when the test was terminated.

  10. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  11. Electric heater for nuclear fuel rod simulators

    DOEpatents

    McCulloch, Reginald W.; Morgan, Jr., Chester S.; Dial, Ralph E.

    1982-01-01

    The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

  12. Water heaters subject to new regulations.

    PubMed

    Clarke, Alan

    2014-06-01

    On 26 September 2015 the Ecodesign and Energy Labelling Directives for water heaters (Lot 2) come into force, meaning that water-heating products sold in the UK and other countries in the European Economic Area will need to meet minimum energy performance criteria in order to be legally placed on the market, and will require an energy label. Here Alan Clarke, technical support manager at Heatrae Sadia, explains more. PMID:25004554

  13. Field Monitoring Protocol. Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, C. E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  14. Field Monitoring Protocol: Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  15. Tubular electric heater with a thermocouple assembly

    DOEpatents

    House, R.K.; Williams, D.E.

    1975-08-01

    This patent relates to a thermocouple or other instrumentation which is installed within the walls of a tubular sheath surrounding a process device such as an electric heater. The sheath comprises two concentric tubes, one or both of which have a longitudinal, concave crease facing the other tube. The thermocouple is fixedly positioned within the crease and the outer tube is mechanically reduced to form an interference fit onto the inner tube. (auth)

  16. (''Breadbox'' solar water heater). Final technical report

    SciTech Connect

    Shippee, P.

    1980-10-14

    Progress is reported on a project to study and construct a prototype bread box type solar water heater with movable insulation integral to a Trombe-Meinel cusp reflector. Performance tests were carried out to determine the all day heat gain, instantaneous efficiency at various tank temperatures, and heat loss coefficient of the cusp in the closed position. The same tank was tested with a black paint coating and then with a selective black coating of adhesive foil of etched nickel. (LEW)

  17. Cryostat including heater to heat a target

    DOEpatents

    Pehl, R.H.; Madden, N.W.; Malone, D.F.

    1990-09-11

    A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vessel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism. 2 figs.

  18. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S.; McDermott, Wayne T.; Givens, Edwin N.

    1985-01-01

    A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

  19. Solar-Powered Cooler and Heater for an Automobile Interior

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2006-01-01

    The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.

  20. Enhanced heat transfer tubes for film absorbers of absorption chiller/heater

    SciTech Connect

    Sasaki, Naoe; Nosetani, Tadashi; Furukawa, Masahiro; Kaneko, Toshiyuki

    1995-12-31

    Absorption chiller/heaters using non-CFC refrigerants are attracting attention as environmentally friendly energy systems. As the refrigerant/absorbent pair, the water/lithium bromide aqueous solution pair is preferably used for most absorption chiller/heaters in Japan. Absorption chiller/heaters, mainly used as water chillers and air-conditioners, are commercially available at least for unit cooling capacities above 60 kW. In absorption chiller/heaters, the absorber must be made compact, because the absorber has the largest heat transfer area of the four primary heat exchangers in the system: the evaporator, absorber, regenerator and condenser. Although a great amount of information is available on the evaporator and condenser, the same type of information concerning the absorber is lacking. This paper introduces two kinds of double fluted tubes called Arm tubs and Floral tubes for film absorbers. Arm tubes are manufactured using a two-pass drawbench process, while Floral tubes are made using a single pass drawbench process. The experiments using a lithium bromide aqueous solution with the addition of 250 ppm n-octyl alcohol as the surfactant showed that Arm tubes and Floral tubes had about 40% higher heat transfer performance than plain tubes. Therefore, Floral tubes are expected to realize a high performance at low cost. Furthermore, the optimization of the number of grooves on the outside of the tubes is also described here.

  1. Heater effects on cyclone performance for the separation of solids from high temperature and pressure effluents

    SciTech Connect

    Laspidou, C.S.; Lawler, D.F.; Gloyna, E.F.; Rittmann, B.E.

    1999-11-01

    A 25.4-mm diameter hydrocyclone with an underflow receiver was evaluated for its ability to achieve separation of fine particles from water at elevated temperatures and pressures relevant to supercritical oxidation. Temperature was varied from 25 C to 340 C, while pressure was maintained at 27.6 MPa. The particles studied were {alpha}-alumina. Particle-removal efficiency was affected by the separation capabilities of the hydrocyclone, deposition on the heater surface, and flocculation of the particles. Particle-size distributions and suspended solids analyses confirmed that cyclone, separation efficiency was controlled by the (density{sub particle}--density{sub water})/viscosity{sub water} ratio. Because this ratio is sensitive to temperature, especially in the neighborhood of the supercritical point, separation efficiencies sharply increased with temperature. Contrary to traditional air cyclone theory, removal efficiency was inversely correlated to flow rate. This result was caused by particle deposition and particle flocculation in the heater. Low flow rates increased heater detention times and, thus, opportunities for flocculation and particle deposition. Therefore, the performance of a hydrocyclone used in conjunction with supercritical oxidation depends on phenomena occurring in the heater and the hydrocyclone.

  2. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    SciTech Connect

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

    2012-07-01

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

  3. 40 CFR Table 2 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Particulate Matter Emission Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 14 2012-07-01 2011-07-01 true Operating Limits for Boilers and... Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters Pt. 63, Subpt. DDDDD, Table 2 Table 2 to Subpart DDDDD of Part 63—Operating Limits for Boilers and...

  4. 40 CFR Table 2 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Particulate Matter Emission Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Operating Limits for Boilers and... Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters Pt. 63, Subpt. DDDDD, Table 2 Table 2 to Subpart DDDDD of Part 63—Operating Limits for Boilers and...

  5. 40 CFR Table 2 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Particulate Matter Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 13 2011-07-01 2011-07-01 false Operating Limits for Boilers and... Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters Pt. 63, Subpt. DDDDD, Table 2 Table 2 to Subpart DDDDD of Part 63—Operating Limits for Boilers and...

  6. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  7. Automated robotic equipment for ultrasonic inspection of pressurizer heater wells

    DOEpatents

    Nachbar, Henry D.; DeRossi, Raymond S.; Mullins, Lawrence E.

    1993-01-01

    A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a prober assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

  8. Assessment of radioisotope heaters for remote terrestrial applications

    SciTech Connect

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

  9. Multi-step heater deployment in a subsurface formation

    SciTech Connect

    Mason, Stanley Leroy

    2012-04-03

    A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

  10. Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration

    DOEpatents

    Vinegar, Harold J.; Sandberg, Chester Ledlie

    2010-11-09

    A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

  11. Measure Guideline: Transitioning to a Tankless Water Heater

    SciTech Connect

    Brozyna, K.; Rapport, A.

    2012-09-01

    This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, both natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.

  12. Shipping device for heater unit assembly

    DOEpatents

    Blaushild, Ronald M.; Abbott, Stephan L.; Miller, Phillip E.; Shaffer, Robert

    1991-01-01

    A shipping device for a heater unit assembly (23), the heater unit assembly (23) including a cylindrical wall (25) and a top plate (31) secured to the cylindrical wall (25) and having a flange portion which projects radially beyond the outer surface of the cylindrical wall (25), and the shipping device including: a cylindrical container (3) having a closed bottom (13); a support member (47) secured to the container (3) and having an inwardly directed flange for supporting the flange portion of the top plate (31); a supplemental supporting system (1) for positioning the heater unit assembly (23) in the container (3) at a spaced relation from the inner surface and bottom wall (13) of the container (3); a cover (15) for closing the top of the container (3); and a container supporting structure (5,7,8) supporting the container (3) in a manner to permit the container (3) to be moved, relative to the supporting structure (5,7,8 ), between a vertical position for loading and unloading the assembly (23) and a horizontal position for transport of the assembly (23). A seal (57) is interposed between the container (3) and the cover (15) for sealing the interior of the container (3) from the environment. An abutment member (41) is mounted on the container supporting structure (5,7,8) for supporting the container bottom (13), when the container (3) is in the vertical position, to prevent the container (3) from moving past the vertical position in the direction away from the horizontal position, and a retainer member (55) is secured within the cover (15) for retaining the assembly top plate (31) in contact with the support member (47) when the cover (15) closes the top of the container (3).

  13. Slurry fired heater cold-flow modelling

    SciTech Connect

    Moujaes, S.F.

    1983-07-01

    This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

  14. Fast nanotopography imaging using a high speed cantilever with integrated heater-thermometer

    NASA Astrophysics Data System (ADS)

    Lee, Byeonghee; Somnath, Suhas; King, William P.

    2013-04-01

    This paper presents a high speed tapping cantilever with an integrated heater-thermometer for fast nanotopography imaging. The cantilever is much smaller and faster than previous heated cantilevers, with a length of 35 μm and a resonant frequency of 1.4 MHz. The mechanical response time is characterized by scanning over a backward-facing step of height 20 nm. The mechanical response time is 77 μs in air and 448 μs in water, which compares favorably to the fastest commercial cantilevers that do not have integrated heaters. The doped silicon cantilever is designed with an integrated heater that can heat and cool in about 10 μs and can operate in both air and water. We demonstrate standard laser-based topography imaging along with thermal topography imaging, when the cantilever is actuated via the piezoelectric shaker in an atomic force microscope system and when it is actuated by Lorentz forces. The cantilever can perform thermal topography imaging in tapping mode with an imaging resolution of 7 nm at a scan speed of 1.46 mm s-1.

  15. Assessing a novel contact heater as a new method of recovering explosives traces from porous surfaces.

    PubMed

    Yu, Holly A; Lewis, Simon W; Beardah, Matthew S; NicDaeid, Niamh

    2016-02-01

    It can be very challenging to recover explosives traces from porous surfaces, such as clothing and car seats, compared to non-porous surfaces. The contact heater has been developed as a novel instrument designed to recover explosives traces from porous surfaces. Samples are taken by heating and drawing air across a surface, with the air flowing through a sampling cartridge containing adsorbent polymer beads, which act to trap any recovered explosive material. Any collected explosive can then be eluted from this cartridge using a solvent, prior to analysis. This paper outlines work performed to evaluate the usefulness of the contact heater with regards to the recovery of explosives traces from porous materials. Ethylene glycol dinitrate (EGDN) and triacetone triperoxide (TATP) were chosen as two representative explosives for this study. Quantification was performed using GC-MS for EGDN and LC-MS/MS for TATP. Different sampling temperatures, sampling times and elution solvents were investigated. Recovery was trialled from leather, carpet and denim. Recoveries of up to 71% were obtained following optimisation. It was also possible to recover TATP from fabrics exposed to TATP vapour in a vapour-laden jar up to two hours after exposure. The contact heater therefore appears to be a very useful tool for the recovery of explosives traces from porous materials. PMID:26653508

  16. Static Characteristics of Absorption Chiller-Heater Supplying Cold and Hot Water Simultaneously

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Irie, Tomoyoshi

    Absorption chiller-heaters which can supply both chilled water and hot water at the same time, are used for cooling and heating air conditioning systems. In this paper, we classified absorption cold and hot water generating cycles and control methods, studied these absorption cycles by cycle simulation. In economizer cycle, condensed refrigerant which heats hot water is transported to cooling cycle and used effectively for cooling chilled water, Concerning with transported condensed refrigerant, there are two methods, all condensed refrigerant or required refrigerant for cooling are transported to cooling cycle, and required refrigerant method is better for energy saving. Adding improvement of solution control to this economizer cycle, simultaneous cold and hot water supplying chiller-heaters have good characteristics of energy saving in the all region.

  17. USAF Bioenvironmental Noise Data Handbook. Volume 165: MC-1 heater, duct type, portable

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-06-01

    The MC-1 heater is a gasoline-motor driven, portable ground heater used primarily for cockpit and cabin temperature control. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at normal rated conditions. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.

  18. Combined grate and hot water heater

    SciTech Connect

    Milano, E.

    1984-09-25

    A combined grate and hot water heater for a fireplace which can be easily fabricated using conventional parts, easily installed and easily used is disclosed. The combined grate and hot water heater includes a rectangular shaped cradle for holding combustible materials to be burned which is sized and configured to fit into the fire chamber of the fireplace and a set of supporting legs for supporting the cradle on the floor of the fire chamber in spaced apart relationship. The cradle is made of a plurality of longitudinally extending and laterally extending heavy duty cast iron pipes interconnected by suitable pipe couplings so as to be in fluid communication with one another. A water inlet pipe and a water outlet pipe are connected to and in fluid communication with the pipes in the cradle for supplying water to be heated into the pipes and then allowing exit of the water after it has circulated through the pipes and has been heated by the fire produced on burning of the combustible materials. An inverted U shaped pipe section also made of heavy duty cast iron is coupled in fluid communication with the pipes in the cradle and extends vertically upward into the flue of the fireplace to utilize the heat present in the flue to further heat the water circulated through the pipes.

  19. Radioisotopic heater units warm an interplanetary spacecraft

    SciTech Connect

    Franco-Ferreira, E.A.; Rinehart, G.H.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA`s last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini`s 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn`s atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft.

  20. Probe with integrated heater and thermocouple pack

    SciTech Connect

    McCulloch, Reg W.; Dial, Ralph E.; Finnell, Wilber K. R.

    1990-01-01

    A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocuple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

  1. Probe with integrated heater and thermocouple pack

    DOEpatents

    McCulloch, Reginald W.; Dial, Ralph E.; Finnell, Wilber K. R.

    1988-01-01

    A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocouple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

  2. Simulated Altitude Investigation of Stewart-Warner Model 906-B Combustion Heater

    NASA Technical Reports Server (NTRS)

    Ebersbach, Frederick R.; Cervenka, Adolph J.

    1947-01-01

    An investigation has been conducted to determine thermal and pressure-drop performance and the operational characteristics of a Stewart-Warner model 906-B combustion heater. The performance tests covered a range of ventilating-air flows from 500 to 3185 pounds per hour, combustion-air pressure drops from 5 to 35 inches of water, and pressure altitudes from sea level to 41,000 feet. The operational characteristics investigated were the combustion-air flows for sustained combustion and for consistent ignition covering fuel-air ratios ranging from 0.033 to 0.10 and pressure altitudes from sea level to 45,000 feet. Rated heat output of 50,000 Btu per hour was obtained at pressure altitudes up to 27,000 feet for ventilating-air flows greater than 800 pounds per hour; rated output was not obtained at ventilating-air flow below 800 pounds per hour at any altitude. The maximum heater efficiency was found to be 60.7 percent at a fuel-air ratio of 0.050, a sea-level pressure altitude, a ventilating-air temperature of 0 F, combustion-air temperature of 14 F, a ventilating-air flow of 690 pounds per hour, and a combustion-air flow of 72.7 pounds per hour. The minimum combustion-air flow for sustained combustion at a pressure altitude of 25,000 feet was about 9 pounds per hour for fuel-air ratios between 0.037 and 0.099 and at a pressure altitude of 45,000 feet increased to 18 pounds per hour at a fuel-air ratio of 0.099 and 55 pounds per hour at a fuel-air ratio of 0.036. Combustion could be sustained at combustion-air flows above values of practical interest. The maximum flow was limited, however, by excessively high exhaust-gas temperature or high pressure drop. Both maximum and minimum combustion-air flows for consistent ignition decrease with increasing pressure altitude and the two curves intersect at a pressure altitude of approximately 25,000 feet and a combustion-air flow of approximately 28 pounds per hour.

  3. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  4. 10 CFR 429.50 - Commercial unit heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Commercial unit heaters. 429.50 Section 429.50 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.50 Commercial unit heaters. (a) Sampling plan...

  5. 10 CFR 429.50 - Commercial unit heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Commercial unit heaters. 429.50 Section 429.50 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.50 Commercial unit heaters. (a) Sampling plan...

  6. 10 CFR 429.50 - Commercial unit heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Commercial unit heaters. 429.50 Section 429.50 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.50 Commercial unit heaters. (a) Sampling plan...

  7. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  8. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  9. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 29.859 Section 29.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection....

  10. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 25.859 Section 25.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection....

  11. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  12. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  13. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  14. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  15. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  16. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  17. INFRARED HEATER ARRAYS FOR WARMING ECOSYSTEM FIELD PLOTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TThere is a need for methodology to warm open-field plots in order to study the likely effects of global warming on ecosystems in the future. Herein, we describe the development of arrays of more powerful and efficient infrared heaters with ceramic heating elements. By tilting the heaters at 45 de...

  18. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  19. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  20. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  1. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  2. Transparent and Flexible Large-scale Graphene-based Heater

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee

    2011-03-01

    We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.

  3. Performance test plan for a space station toluene heater tube

    SciTech Connect

    Parekh, M.B.

    1987-10-01

    Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a toluene heater tube integral to a heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. This heat pipe is a subassembly of the heat receiver. The heat receiver, the heat absorption component of the ORC solar dynamic power system, consists of forty liquid metal heat pipes located circumferentially around the heat receiver`s outside diameter. Each heat pipe contains a toluene heater, two thermal energy storage (TES) canisters and potassium. The function of the heater tube is to heat the supercritical toluene to the required turbine inlet temperature. During the orbit of the space station, the heat receiver and thereby the heat pipe and heater tube will be subjected to variable heat input. The design of the heater must be such that it can accommodate the thermal and hydraulic variations that will be imposed upon it.

  4. Infrared transparent graphene heater for silicon photonic integrated circuits.

    PubMed

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed. PMID:27137229

  5. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase

  6. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    SciTech Connect

    Morrison, L.; Swisher, J.

    1980-12-01

    A description is given of the development and testing of the newly-marketed dedicated heat pump water heater (HPWH), and an analysis is presented of its performance and space conditioning impacts. This system utilizes an air-to-water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. Since a HPWH is usually installed indoors and extracts heat from the air, its operation is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. To investigate HPWH performance and a space conditioning impacts, a simulation has been developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three US geographical areas (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. In addition, the water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio (RPR) of the HPWH. The annual simulated RPRs range from 1.5 to 1.7, which indicate a substantial space heating penalty of HPWH operation in these cities.

  7. Heater utilizing copper-nickel alloy core

    SciTech Connect

    Van Egmond, C.F.H.

    1991-10-22

    This patent describes a well heater. It comprises: at least one heating section which is capable of extending for at least a hundred feet within a well borehole adjacent to an interval of subterranean earth formation to be heated, contains at least one electrical heating cable, and contains a combination of heating cable core resistance and core cross-sectional areas capable of producing temperatures between about 600[degrees]C and 1000[degrees]C within the subterranean earth formation, wherein the heating cable is an electrical resistance heating cable comprising: a core consisting essentially of 6 percent by weight nickel and 94 percent by weight copper; electrical insulation surrounding the core; and surrounding the electrical insulation, a metal sheath; and a means of supplying electrical power to the heating cable core.

  8. Demonstration of a heat pump water heater

    NASA Astrophysics Data System (ADS)

    Blevins, R. P.

    1982-03-01

    In the period between March 1979 and January 1980, 85 prototype heat pump water heaters were installed in single-family residences. Each system was monitored for a period of one year and total program monitoring was concluded at the end of December 1980. The field demonstration provided a total of 643 unit-months of usable operational data which showed an average OOP of 1.93, or an average 48% operating savings compared to resistance water heating. Average operating conditions were 73 gallons of 140 F water consumed each day with an average inlet water temperature of 71 F. Despite a high initial failure rate for the prototypes, which resulted in a protracted debugging period, consumer reaction to the system was extremely positive. The data suggests that the HPWH would save the average consumer in the test program 2917 kWh per year. Measurable impacts on heating/cooling systems were detected in only 8% of the test homes.

  9. Light-Weight Radioisotope Heater Unit

    SciTech Connect

    Schock, Alfred

    1981-04-01

    DOE is developing a new generation of radioisotope-fueled 1-watt heaters, for initial use on NASA's upcoming Galileo and International Solar-Polar Missions. Each heater must contain passive safety provisions to ensure fuel retention under all credible accident conditions. Initial design reviews raised some concern about the accuracy of the predicted peak reenetry temperature, and about the adequacy of the safety margin under certain unlikely - but not impossible-reentry modes. Of particular concern was the possile release of the accumulated helium inventory from the fuel during the reentry heat pulse, and the potential effect of enhanced heat conduction due to helium buildup in gaps. The latter problem had not been addressed in previous studies. Fairchild carried out a large number of reentry thermal analyses to resolve the analytical uncertainties, and proposed design changes to reduce the thermal coupling between the aeroshell and the fuel capsule. For the computed reentry temperature history of the modified design, the rate of helium buildup in the gaps was analyzed. The analysis accounted for temperature-dependent helium diffusion through the fuel pellet and for leakage to space through the permeable aeroshell. It showed that most of the helium inventory leaves the fuel during reentry, but that it never reaches a continuum pressure in the gaps, and therefore has no significant thermal effect. Under these conditions, the Fairchild-modified design provides ample safety margin against clad failure, even for very unlikely reenty trajectories. The modified design was successfully vibration-tested and was subsequently adopted by the project. Cross Reference CID #8517. There are two copies in the file.

  10. Fluid bed solids heater. Final technical report

    SciTech Connect

    Preuit, L. C.

    1980-01-01

    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  11. Development and the Implementation of High-Temperature Reliable Heaters in Plasma Spray Technology

    NASA Astrophysics Data System (ADS)

    Prudenziati, Maria

    2008-06-01

    Many problems have been encountered during development of reliable high-temperature heaters by means of atmospheric plasma spray and procedures commonly adopted in thermal spray technology, especially due to poor steel substrate corrosion resistance, notably affected by grit-blasting operations, but also deriving from contamination of insulating layers, dielectric arcs, and failures due to hot spots in the heating elements. While seeking the origin of these problems, a close scrutiny of every single step of the preparation process and analyses of the coatings were carried out using laser confocal scanning microscopy, optical and electronic microscopy, fluorescence analysis, X-ray diffraction, and ancillary techniques. The electrical properties of both alumina layers and metal strips prepared with Ni, NiCr, NiAl commercial powders for the heating elements were studied and cross-related to the failures in the heaters. The article reports the main results of these investigations, delineates the innovations introduced to overcome or circumvent the problems, and underlines the distinct characteristics of new heaters, whose reliability has been proven up to now with temperatures of up to 600 °C in air.

  12. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  13. Thin, Light, Flexible Heaters Save Time and Energy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Icing Branch at NASA's Glenn Research Center uses the Center's Icing Research Tunnel (IRT) and Icing Research Aircraft to research methods for evaluating and simulating the growth of ice on aircraft, the effects that ice may have on aircraft in flight, and the development and effectiveness of various ice protection and detection systems. EGC Enterprises Inc. (EGC), of Chardon, Ohio, used the IRT to develop thermoelectric thin-film heater technology to address in-flight icing on aircraft wings. Working with researchers at Glenn and the original equipment manufacturers of aircraft parts, the company tested various thin, flexible, durable, lightweight, and efficient heaters. Development yielded a thin-film heater technology that can be used in many applications in addition to being an effective deicer for aircraft. This new thermoelectric heater was dubbed the QoFoil Rapid Response Thin-Film Heater, or QoFoil, for short. The product meets all criteria for in-flight use and promises great advances in thin-film, rapid response heater technology for a broad range of industrial applications. Primary advantages include time savings, increased efficiency, and improved temperature uniformity. In addition to wing deicing, EGC has begun looking at the material's usefulness for applications including cooking griddles, small cabinet heaters, and several laboratory uses.

  14. Utilization of Heat Pump Water Heaters for Load Management

    SciTech Connect

    Boudreaux, Philip R; Jackson, Roderick K; Munk, Jeffrey D; Gehl, Anthony C; Lyne, Christopher T

    2014-01-01

    The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

  15. Simulation of Filament Heater for Uniform Emission from Dispenser Cathode

    NASA Astrophysics Data System (ADS)

    Singh, Narendra Kr.; Bhattacharya, Ranojoy; Khatun, Hasina; Singh, Udaybir; Sinha, A. K.

    2012-06-01

    This paper presents the design study of toroid shape filament heater for dispenser cathode.The filament heater will be used in cathode assembly of 200 kW 42 GHz gyrotron. A 3 D model of cathode assembly is designed using electromagnetic and thermal simulation software, ANSYS. The simulations are performed for optimizing the input filament heater power with respect to cathode surface temperature. The parametric study shows that the input power and cathode surface temperature depends strongly on the potting material, diameter of filament, number of turns, position and height of the filament heater with respect to cathode pellet. The design analyses are also carried out for two different filament heater materials i.e. tungsten and molybdenum. Further, the thermal, structural and transient analyses are also carried out to study the mechanical strength of the filament heater. It is concluded that the input heater power should be greater than 200 W to achieve cathode surface temperature greater than 1,000°C.

  16. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  17. Design, construction, operation and evaluation of a prototype culm combustion boiler/heater unit: site evaluation; socio-economic impact

    SciTech Connect

    Not Available

    1981-11-01

    It has been proposed to construct a fluidized bed culm combustion boiler/heater unit in the Shamokin, Pennsylvania area. The facility would burn culm from a nearby coal mine and provide steam to an industrial user. The environmental setting of the area prior to development is described, including climatology, air quality, ecology, hydrology, wastes, noise, land use, socioeconomics, and geology and subsurface conditions. The environmental impacts of the proposed action are then evaluated as related to air quality, ecology, hydrology, wastes, noise, and socioeconomics. Measures for mitigating impacts on air quality, wastes, and noise are briefly described, and possible environmental effects that cannot be avoided are briefly enumerated. (LEW)

  18. Implementation of heaters on thermally actuated spacecraft mechanisms

    NASA Technical Reports Server (NTRS)

    Busch, John D.; Bokaie, Michael D.

    1994-01-01

    This paper presents general insight into the design and implementation of heaters as used in actuating mechanisms for spacecraft. Problems and considerations that were encountered during development of the Deep Space Probe and Science Experiment (DSPSE) solar array release mechanism are discussed. Obstacles included large expected fluctuations in ambient temperature, variations in voltage supply levels outgassing concerns, heater circuit design, materials selection, and power control options. Successful resolution of these issues helped to establish a methodology which can be applied to many of the heater design challenges found in thermally actuated mechanisms.

  19. Design and Implementation of the MSL Cruise Propulsion Tank Heaters

    NASA Technical Reports Server (NTRS)

    Krylo, Robert; Mikhaylov, Rebecca; Cucullu, Gordon; Watkins, Brenda

    2008-01-01

    This slide presentation reviews the design and the implementation of the heaters for the Mars Science Laboratory (MSL). The pressurized tanks store hydrazine that freezes at 2 C, this means that heaters are required to keep the hydrazine and the helium at 36 C for the trip to Mars. Using the TMG software the heat loss was analyzed, and a thermal model simulates a half full tank which yielded a 13W heating requirement for each hemisphere. Views of the design, and the heater are included.

  20. Resistive substrate heater for film processing by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Rousseau, B.; De Barros, D.; La Manna, J.; Weiss, F.; Duneau, G.; Odier, P.; De Sousa Meneses, D.; Auger, Y.; Melin, P.; Echegut, P.

    2004-09-01

    We describe a simple and inexpensive resistive heater usable in the spray pyrolysis process. It is based on a resistively heated ceramic plate. By using such a heater substrate temperatures exceeding 900 °C are easily achieved on the substrate. The heater consists of a ceramic plate enclosed in a stainless steel box. A refractory wire woven in a regular frame inside the ceramic provides an excellent heating uniformity over the entire surface. Performances and parameters of the system are given. We apply this device to the preparation of thick films of HTc oxides such as (Hg,Re)Ba2Ca2Cu3O8+δ.

  1. Air Conditioner/Dehumidifier

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  2. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 14 2014-07-01 2014-07-01 false Are any boilers or process heaters not..., Commercial, and Institutional Boilers and Process Heaters What This Subpart Covers § 63.7491 Are any boilers or process heaters not subject to this subpart? The types of boilers and process heaters listed...

  3. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 14 2013-07-01 2013-07-01 false Are any boilers or process heaters not..., Commercial, and Institutional Boilers and Process Heaters What This Subpart Covers § 63.7491 Are any boilers or process heaters not subject to this subpart? The types of boilers and process heaters listed...

  4. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOEpatents

    Roth, Gregory T.; Sellnau, Mark C.

    2016-08-09

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder of the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.

  5. Measured data from the Avery Island Site C heater test

    SciTech Connect

    Waldman, H.; Stickney, R.G.

    1984-05-01

    Over the past six years, a comprehensive field testing program was conducted in the Avery Island salt mine. Three single canister heater tests were included in the testing program. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt to heating. These tests were in operation by June, 1978. One of the three heater tests, Site C, operated for a period of 1858 days and was decommissioned during July and August, 1983. This data report presents the temperature and displacement data gathered during the operation and decommissioning of the Site C heater test. The purpose of this data report is to transmit the data to the scientific community. Rigorous analysis and interpretation of the data are considered beyond the scope of a data report. 8 refs., 21 figs., 1 tab.

  6. Measured data from the Avery Island Site C heater test

    SciTech Connect

    Waldman, H.; Stickney, R.G.

    1984-11-01

    Over the past six years, a comprehensive field testing program was conducted in the Avery Island salt mine. Three single canister heater tests were included in the testing program. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt to heating. These tests were in operation by June 1978. One of the three heater tests, Site C, operated for a period of 1858 days and was decommissioned during July and August 1983. This data report presents the temperature and displacement data gathered during the operation and decommissioning of the Site C heater test. The purpose of this data report is to transmit the data to the scientific community. Rigorous analysis and interpretation of the data are considered beyond the scope of a data report. 6 references, 21 figures, 1 table.

  7. Corrosion-related failures in feedwater heaters. Final report

    SciTech Connect

    Beavers, J.A.; Agrawal, A.K.; Berry, W.E.

    1983-07-01

    A survey of the literature was performed for the Electric Power Research Institute on corrosion-related failures in feedwater heaters. The survey was directed toward failures in fossil and in pressurized water reactor (PWR) nuclear power plants, but includes some pertinent information related to failures in boiling water reactor (BWR) power plants. The survey was organized into sections on the commonly used feedwater heater materials; C steel, brasses, Cu-Ni alloys, MONEL Alloy 400, and Type 304 Stainless Steel. A section on Ti as a potential feedwater heater material also is given in the appendices. Each section is divided into subsections on field experience and laboratory studies tat relate to the field failures that have been observed. Appendices are given on a feedwater heater description, water quality in power plants, forms of corrosion, and failure analysis techniques.

  8. New Home Buyer Solar Water Heater Trade-Off Study

    SciTech Connect

    Symmetrics Marketing Corporation

    1999-08-18

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  9. Electron beam irradiated silver nanowires for a highly transparent heater

    NASA Astrophysics Data System (ADS)

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-12-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters.

  10. Thermometry of a high temperature high speed micro heater.

    PubMed

    Xu, M; Slovin, G; Paramesh, J; Schlesinger, T E; Bain, J A

    2016-02-01

    A high temperature high-speed tungsten micro heater was fabricated and tested for application in phase change switches to indirectly heat and transform phase change material. Time domain transmissometry was used to measure heater temperature transients for given electrical inputs. Finite element modeling results on heater temperature transients show a good consistency between experiments and simulations with 0.2% mismatch in the best case and 13.1% in the worst case. The heater described in this work can reliably reach 1664 K at a rate of 1.67 × 10(10) K/s and quench to room temperature with a thermal RC time constant (time for T to fall by a factor of e) of less than 40 ns. PMID:26931881

  11. Design of Cathode Heater Assembly for High Power Gyrotron

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ranajoy; Khatun, Hasina; Singh, Narendra Kr.; Singh, Udaybir; Sinha, A. K.

    2013-04-01

    A 3D model of dispenser cathode with toroid shape heater assembly is simulated using simulation software, ANSYS Multi-physics. The reported design study of cathode heater assembly of 1 MW 120 GHz gyrotron helps to optimize the input heater power with respect to cathode surface temperature. The simulation study shows that the input power depends strongly on the heater dimension as well as material properties including the potting material. The optimum input power helps to achieve desired current density (10 A/cm2) and cathode surface temperature (1000 °C). Further, the thermal and structural analyses are carried out to study the temperature distribution on the cathode assembly due to the heat dissipation and mechanical strength of the assembly.

  12. Electron beam irradiated silver nanowires for a highly transparent heater

    PubMed Central

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-01-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters. PMID:26639760

  13. Pool boiling on thin heaters: The role of thermal interaction among vapor stems

    SciTech Connect

    Sadasivan, P.; Unal, C.; Nelson, R.

    1993-10-01

    We examine the issue of thermal interactions within a heater as a possible explanation for conflicting critical heat flux data on thin heaters, as reported by various investigators. While heater thermal properties have been considered in previous studies, the focus of this study is the interaction between the thermal transport process within the heater and the distribution of nucleation sites on the heater surface. It is shown that the spatial distribution of stems on the heater surface, as well as the size distribution of these stems, can affect the average surface temperatures. Such interactions are greater as the heater thickness decreases.

  14. Numerical study of mixed convection heat transfer in an inclined rectangular channel with extruding discrete multiple heaters

    NASA Astrophysics Data System (ADS)

    Rafi, Araf Al; Tonmoy, Md. Tanvir Akhtar; Hasan, Mohammad Nasim

    2016-07-01

    A numerical investigation ofsteady two dimensional laminar mixed convection heat transfer phenomena in an inclined rectangular channel has been performed in the present study. The upper wall of the channel under consideration is maintained at constant low temperature while the lower wall is being provided with three extruding discrete heaters. The heaters are connected with adiabatic segments and the heater surfaces are assumed to operate at constant heat flux. At inlet, a uniform fluid flow with constant low temperature has been induced. In this study, air has been considered as working fluid. Results have been presented to show how various system parameters such as: Reynolds number, Grashof number, and channel inclination angle affect the resulting flow and thermal field inside the channel as well as the heat transfer performance of individual heater. It has been found that for the pure mixed convection case (Richardson number being equal to 1.0), the better cooling performance can be acheived with increasing the Reynold number forchannel inclination angle in range of 45°-90°.

  15. Light-weight radioisotope heater impact tests

    SciTech Connect

    Reimus, M.A.H.; Rinehart, G.H.; Herrera, A.

    1998-12-31

    The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  16. Thermo-Electron Ballistic Coolers or Heaters

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    2003-01-01

    Electronic heat-transfer devices of a proposed type would exploit some of the quantum-wire-like, pseudo-superconducting properties of single-wall carbon nanotubes or, optionally, room-temperature-superconducting polymers (RTSPs). The devices are denoted thermo-electron ballistic (TEB) coolers or heaters because one of the properties that they exploit is the totally or nearly ballistic (dissipation or scattering free) transport of electrons. This property is observed in RTSPs and carbon nanotubes that are free of material and geometric defects, except under conditions in which oscillatory electron motions become coupled with vibrations of the nanotubes. Another relevant property is the high number density of electrons passing through carbon nanotubes -- sufficient to sustain electron current densities as large as 100 MA/square cm. The combination of ballistic motion and large current density should make it possible for TEB devices to operate at low applied potentials while pumping heat at rates several orders of magnitude greater than those of thermoelectric devices. It may also enable them to operate with efficiency close to the Carnot limit. In addition, the proposed TEB devices are expected to operate over a wider temperature range

  17. Heater Applications for High Speed Jets

    NASA Astrophysics Data System (ADS)

    Rossetti, Jack; Berger, Zachary; Berry, Matthew; Hall, Andre; Glauser, Mark

    2013-11-01

    In this investigation, we study a high speed jet flow for noise reduction techniques. Here we specifically examine a heated jet for practical jet noise applications. Experiments are conducted in the Syracuse University anechoic chamber at the Skytop campus. This 206 m3 facility is lined with fiberglass wedges having a cutoff frequency of 150 Hz. Far-field microphones and near-field pressure sensors measure the acoustics and hydrodynamics, respectively. A 470 kW Chromalox heating unit is used to heat the flow to 1000°F at the nozzle exit. The controller for the heating unit has an associated time lag based on the Mach number and temperature. Therefore, this study will primarily focus on the heat transfer between the heating elements and the nozzle flow. Optimization of the heater's controller will allow for sufficient run time for data acquisition capabilities. Previous investigations at Syracuse University indicate significant differences between heated and cold jets, with regards to the acoustics and potential core characteristics (Hall et al. 2009).

  18. A comprehensive review of market research on solar water heaters

    SciTech Connect

    Ghent, P.; Keller, C.

    1999-11-01

    This is the second report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. The objective of this task is to identify key elements in previous studies on the marketing of solar water heaters in the new home industry. This review includes studies performed by FOCUS Marketing Services, the National Association of Home Builders Research Center, Symmetrics Marketing Corporation, and the California Energy Commission.

  19. Temperature limited heater utilizing non-ferromagnetic conductor

    DOEpatents

    Vinegar; Harold J. , Harris; Christopher Kelvin

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  20. Reliability-Based Life Assessment of Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Halford, Gary R.; Korovaichuk, Igor

    2004-01-01

    Onboard radioisotope power systems being developed and planned for NASA's deep-space missions require reliable design lifetimes of up to 14 yr. The structurally critical heater head of the high-efficiency Stirling power convertor has undergone extensive computational analysis of operating temperatures, stresses, and creep resistance of the thin-walled Inconel 718 bill of material. A preliminary assessment of the effect of uncertainties in the material behavior was also performed. Creep failure resistance of the thin-walled heater head could show variation due to small deviations in the manufactured thickness and in uncertainties in operating temperature and pressure. Durability prediction and reliability of the heater head are affected by these deviations from nominal design conditions. Therefore, it is important to include the effects of these uncertainties in predicting the probability of survival of the heater head under mission loads. Furthermore, it may be possible for the heater head to experience rare incidences of small temperature excursions of short duration. These rare incidences would affect the creep strain rate and, therefore, the life. This paper addresses the effects of such rare incidences on the reliability. In addition, the sensitivities of variables affecting the reliability are quantified, and guidelines developed to improve the reliability are outlined. Heater head reliability is being quantified with data from NASA Glenn Research Center's accelerated benchmark testing program.

  1. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  2. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  3. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.; White, J.B.; Jackson, M.D. )

    1988-01-01

    Scientists and engineers in the Indoor Air Brand of EPS'a Air and Energy Engineering Research Laboratory are conducting research to increase the state of knowledge concerning indoor air pollution factors. A three phase program is being implemented. The purpose of this paper is to show how their approach can be used to evaluate specific sources of indoor air pollution. Pollutants from two sources are examined: para-dichlorobenzene emissions from moth crystal cakes; and particulate emissions from unvented kerosene heaters.

  4. Emissions characterization of residential wood-fired hydronic heater technologies

    NASA Astrophysics Data System (ADS)

    Kinsey, John S.; Touati, Abderrahmane; Yelverton, Tiffany L. B.; Aurell, Johanna; Cho, Seung-Hyun; Linak, William P.; Gullett, Brian K.

    2012-12-01

    Residential wood-fired hydronic heaters (RWHHs) can negatively impact the local ambient air quality and thus are an environmental concern in wood burning areas of the U. S. Only a few studies have been conducted which characterize the emissions from RWHHs. To address the lack of emissions data, a study was conducted on four appliances of differing design using multiple fuel types to determine their thermal, boiler, and combustion efficiency as well as the emissions of carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), nitrous oxide (N2O), methane (CH4), total particulate matter (PM) mass, and particle number as well as particle size distribution (PSD). Three of these appliances were fired with split-log cordwood with the fourth unit using hardwood pellets. The measured thermal efficiencies for the appliances tested varied from 22 to 44% and the combustion efficiencies from 81 to 98%. Depending on appliance and fuel type, the emission factors ranged from about 1300 to 1800 g kg-1 dry fuel for CO2, 8-190 g kg-1 dry fuel for CO, <1-54 g kg-1 dry fuel for THC and 6-120 mg kg-1 for N2O. For the particle phase pollutants, the PM mass emission factors ranged from 0.31 to 47 g kg-1 dry fuel and the PM number emission factors from 8.5 × 1010 to 2.4 × 1014 particles kg-1 dry fuel, also depending on the appliance and fuel tested. The PSD for all four appliances indicated a well established accumulation mode with evidence of a nucleation mode present for Appliances A and B. The average median aerodynamic particle diameters observed for the four appliances ranged from 84 to 187 nm while burning red oak or pellets. In general, the pellet-burning appliance had the highest overall operating efficiency and lowest emissions of the four units tested.

  5. Microthruster with integrated platinum thin film resistance temperature detector (RTD), heater, and thermal insulation

    NASA Astrophysics Data System (ADS)

    Miyakawa, N.; Legner, W.; Ziemann, T.; Telitschkin, D.; Fecht, H.-J.; Friedberger, A.

    2011-06-01

    We have fabricated microthruster chip pairs - one chip with microthruster structures such as injection capillaries, combustion chamber and nozzle, the other chip with platinum thin film devices such as resistance temperature detectors (RTDs) and a heater. The platinum thin film was sputtered on thermally oxidized silicon wafers WITHOUT adhesion layer. The effects of anneal up to 1050°C on the surface morphology of platinum thin films with varied geometry as well as with / without PECVD-SiO2 coating were investigated in air and N2 and results will also be presented. Electrical characterization of sensors was carried out in a furnace tube in which the sensors' temperature was varied between room temperature and 1000°C with a ramp of +/-5Kmin-1 in air and N2. The experiments showed that the temperature-resistance characteristics of sensors had stabilized after the first heating up to 1000°C in N2. After stabilization the sensors underwent further 8 temperature cycles which correspond to over 28h of operation time between 800 - 1000°C. To reduce the loss of combustion heat, chip material around the microthruster structures was partially removed. The effects of thermal insulation were investigated with microthruster chip pairs which were clamped together mechanically. The heater power was varied up to 20W and the temperature distribution in the chip pairs with / without thermal insulation was monitored with 7 integrated thin film sensors.

  6. Effect of location on the predicted performance of a heat-pump water heater

    SciTech Connect

    Levins, W. P.

    1982-01-01

    A heat pump water heater (HPWH) extracts energy from the air in the environment. The question arises as to how this energy extraction would affect the house HVAC system if the HPWH were located in a conditioned space of a household. A second question concerns the savings obtained by locating the HPWH in an unconditioned space such as a garage or basement. A computer study of these effects was carried out. Since geography, house construction, type and efficiency of HVAC system, and hot water usage will all affect the effective performance, some of the variables were fixed and some were allowed to vary in the study. The effect of locating the HPWH in the conditioned spaces of houses with a high performance heat pump as well as resistance, gas, and oil heated houses with a high performance electric air conditioner was studied. Bin data for each of 18 US cities were used as input weather data. The monthly inlet supply water temperatures to the water heater f each of the 18 cities are given. Results of the calculations for the various combinations of HVAC systems are given. (MCW)

  7. Gasification of carbon-bearing raw materials in plasma-arc electric furnace with heater and risk of explosion in syngas mixtures

    NASA Astrophysics Data System (ADS)

    Anshakov, A. S.; Vasiliev, A. A.; Pinaev, A. V.; Faleev, V. A.

    2010-12-01

    Saw dust was gasified at combined and separated impact of the heater and arc discharge on the raw material. It is shown that because of combustion of a part of produced syngas in the heater the raw material can be gasified with power inputs reduced by 20-25 % in comparison with plasma gasification. Data on parameters of combustion and detonation of syngas mixtures with oxygen and air at a change in the ratio between fuel components CO and H2 and between fuel and oxidizer are shown for the first time.

  8. Engineering solutions for polymer composites solar water heaters production

    NASA Astrophysics Data System (ADS)

    Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.

    2016-06-01

    Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.

  9. Analysis of the performance and space conditioning impacts of dedicated heat pump water heaters

    NASA Astrophysics Data System (ADS)

    Morrison, L.; Swisher, J.

    The development and testing of the newly-marketed dedicated heat pump water heater (HPWH) are described. This system utilizes an air-to-water heat pump, costs about $1,000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. To investigate HPWH performance and space conditioning impacts, a simulation was developed to mode the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three U.S. geographical areas (Madison, Wisconsin; Washington, D.C.; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. The thermal network includes both a house node and a basement node so that the water heating equipment can be simulated in an unconditioned basement in Northern cities and in a conditioned first-floor utility room in Southern cities.

  10. Structural Benchmark Testing for Stirling Converter Heater Heads

    NASA Astrophysics Data System (ADS)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.

  11. Structural Benchmark Testing for Stirling Convertor Heater Heads

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.

  12. Topside sounders as mobile ionospheric heaters

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    2006-01-01

    There is evidence that satellite-borne RF sounders can act as mobile ionospheric heaters in addition to performing topside sounding. The main objective of topside sounding is to use sounder-generated electromagnetic (em) waves to obtain ionospheric topside vertical electron-density (N(sub e) profiles. These profiles are obtained from mathematical inversions of the frequency vs. delay-time ionospheric reflection traces. In addition to these em reflection traces, a number of narrowband intense signals are observed starting at zero delay times after the transmitted pulses. Some of these signals, termed plasma resonances, appear at characteristic frequencies of the ambient medium such as at the electron cyclotron frequency f(sub ce), the harmonics nf(sub ce), the electron plasma frequency f(sub pe) and the upper-hybrid frequency f(sub uh), where (f(sub uh))(exp 2) = (f(sub ce))(exp 2) + (f(sub pe))(exp 2) . These signals have been attributed to the oblique echoes of sounder-generated electrostatic (es) waves. These resonances provide accurate in situ f(sub pe) and f(sub ce) values which, in turn, lead to accurate N(sub e) and [B] values where B is the ambient magnetic field. Resonances are also observed between the nf(sub ce) harmonics both above and below f(sub uh). The former, known as the Qn plasma resonances, are mainly attributed to the matching of the wave group velocity of sounder-generated (Bernstein-mode) es waves to the satellite velocity. The frequency spectrum of these waves in the magnetosphere can be used to detect non-Maxwellian electron velocity-distributions. In addition, these resonances also exhibit components that appear to be the result of plasma emissions stimulated by the sounder pulses. The plasma resonances observed between the nf(sub ce) harmonics and below f(sub uh), known as the Dn plasma resonances, are entirely attributed to such sounder-stimulated plasma emissions. There are other sounder-stimulated plasma phenomena that also fall into

  13. Window-mounted auxiliary solar heater

    NASA Technical Reports Server (NTRS)

    Anthony, K. G.; Herndon, E. P.

    1977-01-01

    System uses hot-air collectors, no thermal storage, and fan with thermostat switches. At cost of heating efficiency, unit could be manufactured and sold at price allowing immediate entry to market as auxiliary heating system. Its simplicity allows homeowner installation, and maintenance is minimal.

  14. Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort

    SciTech Connect

    Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

    2014-07-21

    Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

  15. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    SciTech Connect

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  16. Preliminary Investigation of Cyclic De-Icing of an Airfoil Using an External Electric Heater

    NASA Technical Reports Server (NTRS)

    Lewis, James P.; Bowden, Dean T.

    1952-01-01

    An investigation was conducted in the NACA Lewis icing research tunnel to determine the characteristics and requirements of cyclic deicing of a 65,2-216 airfoil by use of an external electric heater. The present investigation was limited to an airspeed of 175 miles per hour. Data are presented to show the effects of variations in heat-on and heat-off periods, ambient air temperature, liquid-water content, angle of attack, and. heating distribution on the requirements for cyclic deicing. The external heat flow at various icing and heating conditions is also presented. A continuously heated parting strip at the airfoil leading edge was found necessary for quick, complete, and consistent ice removal. The cyclic power requirements were found to be primarily a function of the datum temperature and heat-on time, with the other operating and meteorological variables having a second-order effect. Short heat-on periods and high power densities resulted in the most efficient ice removal, the minimum energy input, and the minimum runback ice formations. The optimum chordwise heating distribution pattern was found to consist of a uniform distribution of cycled power density in the impingement region. Downstream of the impingement region the power density decreased to the limits of heating which, for the conditions investigated, extended from 5.7 percent chord on the upper surface of the airfoil to 8.9 percent chord on the lower surface. Ice removal did not take place at a heater surface temperature of 32 F; surface temperatures of approximately 50 to 100 F were required to effect removal. Better de-icing performance and greater energy savings would be possible with a heater having a higher thermal efficiency.

  17. Development of a cost effective microscope heater stage

    NASA Astrophysics Data System (ADS)

    Dugre, Joshua; Prayaga, Chandra; Wade, Aaron

    Utilizing 3D printing technology, a heater stage has been developed and implemented for microscopic systems. Due to the flexibility of 3D printing,the heater stage can be easily modified to fit any sample size with only slight modifications to the heating element being required. The sample in contact with the heating element can also easily be secured in a thermal insulator, such as aluminum foil. The thermal gradient of the heater stage has been recorded to be less than 1°C and has been compared to more expensive designs, and the cost effectiveness of the system has been determined. The system has been tested with a sample of the liquid crystal 8CB in order to determine the exact temperatures of the phase transitions of the crystal to verify that the system is applicable to a wide range of experimental physics. UWF Quality Enhancement Plan Award.

  18. Feedback regulated induction heater for a flowing fluid

    DOEpatents

    Migliori, Albert; Swift, Gregory W.

    1985-01-01

    A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

  19. Feedback regulated induction heater for a flowing fluid

    DOEpatents

    Migliori, A.; Swift, G.W.

    1984-06-13

    A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

  20. Herbert Easterly auxiliary truck heater. Final technical report

    SciTech Connect

    Not Available

    1991-12-09

    The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle`s primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work nine different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.

  1. Highly integrated synthesis of heterogeneous nanostructures on nanowire heater array

    NASA Astrophysics Data System (ADS)

    Jin, Chun Yan; Yun, Jeonghoon; Kim, Jung; Yang, Daejong; Kim, Dong Hwan; Ahn, Jae Hyuk; Lee, Kwang-Cheol; Park, Inkyu

    2014-11-01

    We have proposed a new method for the multiplexed synthesis of heterogeneous nanostructures using a top-down fabricated nanowire heater array. Hydrothermally synthesized nanostructures can be grown only on the heated nanowire through nanoscale temperature control using a Joule heated nanowire. We have demonstrated the selective synthesis of zinc oxide (ZnO) nanowires and copper oxide (CuO) nanostructures, as well as their surface modification with noble metal nanoparticles, using a nanowire heater array. Furthermore, we could fabricate an array of heterogeneous nanostructures via Joule heating of individual nanowire heaters and changing of the precursor solutions in a sequential manner. We have formed a parallel array of palladium (Pd) coated ZnO nanowires and gold (Au) coated ZnO nanowires, as well as a parallel array of ZnO nanowires and CuO nanospikes, in the microscale region by using the developed method.We have proposed a new method for the multiplexed synthesis of heterogeneous nanostructures using a top-down fabricated nanowire heater array. Hydrothermally synthesized nanostructures can be grown only on the heated nanowire through nanoscale temperature control using a Joule heated nanowire. We have demonstrated the selective synthesis of zinc oxide (ZnO) nanowires and copper oxide (CuO) nanostructures, as well as their surface modification with noble metal nanoparticles, using a nanowire heater array. Furthermore, we could fabricate an array of heterogeneous nanostructures via Joule heating of individual nanowire heaters and changing of the precursor solutions in a sequential manner. We have formed a parallel array of palladium (Pd) coated ZnO nanowires and gold (Au) coated ZnO nanowires, as well as a parallel array of ZnO nanowires and CuO nanospikes, in the microscale region by using the developed method. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04216f

  2. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    PubMed Central

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  3. Process for thermal imaging scanning of a swaged heater for an anode subassembly of a hollow cathode assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    A process for thermal imaging scanning of a swaged heater of an anode subassembly of a hollow cathode assembly, comprising scanning a swaged heater with a thermal imaging radiometer to measure a temperature distribution of the heater; raising the current in a power supply to increase the temperature of the swaged heater; and measuring the swaged heater temperature using the radiometer, whereupon the temperature distribution along the length of the heater shall be less than plus or minus 5 degrees C.

  4. Pyromat CSB{trademark} low emissions burner for boilers, steam generators and process heaters

    SciTech Connect

    Duret, M.J.; Minden, A.C.

    1995-08-01

    Alzeta has developed a low NO{sub x} burner for boiler and process heater applications that achieves very low emissions without complicated emissions controls such as flue gas recirculation or staged fuel and air. The Pyromat CSB burner is a semi-radiant, premixed, natural gas fired burner which uses a patented technique to form radiant and blue-flame zones adjacent to each other on a cylindrical porous metal surface. This new technology offers surface heat release rates that are 10 times greater than traditional surface combusters. Because the flame shape is constant over the entire range of operation, and is sized and shaped to meet the specific requirements of the heater, there is no change for flame impingement or nonuniform heating. In one application, thermally enhanced oil recovery, the Pyromat CSB burner is firing on low-Btu gas containing H{sub 2}S drawn from oil wells. Low NO{sub x} FGR burners cannot serve this application because the combustion products corrode the ducting. In addition, premixed burners can operate on low-Btu gases without supplemental natural gases which saves operating expenses. In another application, process heating of fragile fluids, flame impingement can overheat the heat transfer liquid and cause premature tube failure. The Pyromat CSB burner has a constant flame shape over its entire turndown ratio so there is no chance for flame impingement.

  5. Thermal injuries caused by ignition of volatile substances by gas water heaters.

    PubMed

    Rutan, R L; Desai, M H; Herndon, D N

    1993-01-01

    Based on the cumulative data of this tertiary care facility over the past 25 years, one out of every 70 pediatric patients admitted to our institution sustained their injuries during an explosive event instigated by the ignition of volatile substances from gas water heaters. The majority of injuries related to gas water heaters can be prevented by decreasing the temperature setpoint of the heater, by protecting the heater element itself, and by elevating the water heater to 18 inches above the floor. The first two issues have been adequately addressed; however, gas-fueled water heaters continue to be installed at floor level. Current national guidelines are too rigid and do not adequately address water-heater installation in private residences. Although general prevention campaigns target appropriate storage of volatile substances, they rarely address the explosive potential of gas water heaters in combination with combustible fumes. PMID:8501113

  6. Evaluation of Cathode Heater Assembly for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Singh, Narendra Kumar; Singh, Udaybir; Khatun, Hasina; Kumar, Nitin; Alaria, M. K.; Raju, R. S.; Jain, P. K.; Sinha, A. K.

    2014-09-01

    In this paper, the evaluation of cathode-heater assembly of magnetron injection gun (MIG) for 42 GHz, 200 kW gyrotron is presented. The cathode-heater assembly is purchased from M/S SEMICON.The cathode-heater assembly is experimentally studied in three different conditions; in a belljar system, during vacuum processing of MIG and during MIG testing to ensure the required rise of cathode surface temperature for pre-set heater power.

  7. CHARACTERIZATIONS OF POPULATION AND USAGE OF UNVENTED KEROSENE SPACE HEATERS

    EPA Science Inventory

    The report gives results of a study of the market penetration of unvented kerosene space heaters (UKSHs) in the residential sector, The study was aimed at gathering baseline information to help assess the magnitude and potential severity of a problem involving emissions from unve...

  8. CHARACTERIZATION OF POPULATION AND USAGE OF UNVENTED KEROSENE SPACE HEATERS

    EPA Science Inventory

    The report gives results of a study of the market penetration of unvented kerosene space heaters (UKSHs) in the residential sector, The study was aimed at gathering baseline information to help assess the magnitude and potential severity of a problem involving emissions from unve...

  9. Computer model of catalytic combustion/Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Chu, E. K.; Chang, R. L.; Tong, H.

    1981-01-01

    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.

  10. Electrothermal pumping with interdigitated electrodes and resistive heaters.

    PubMed

    Williams, Stuart J; Green, Nicolas G

    2015-08-01

    Interdigitated electrodes are used in electrokinetic lab-on-a-chip devices for dielectrophoretic trapping and characterization of suspended particles, as well as the production of field-induced fluid flow via AC electroosomosis and electrothermal mechanisms. However, the optimum design for dielectrophoresis, that if symmetrical electrodes, cannot induce bulk electrohydrodynamic pumping. In addition, the mechanism of intrinsic electrothermal pumping is affected by the properties of the fluid, with thermal fields being generated by Joule Heating. This work demonstrates the incorporation of an underlying thin film heater, electrically isolated from the interdigitated electrodes by an insulator layer, to enhance bulk electrothermal pumping. The use of integrated heaters allows the thermal field generation to be controlled independently of the electric field. Numerical simulations are performed to demonstrate the importance of geometrical arrangement of the heater with respect to the interdigitated electrodes, as well as electrode size, spacing, and arrangement. The optimization of such a system is a careful balance between electrokinetics, heat transfer, and fluid dynamics. The heater location and electrode spacing influence the rate of electrothermal pumping significantly more than electrode width and insulator layer thickness. This demonstration will aid in the development of microfluidic electrokinetic systems that want to utilize the advantages associated with electrothermal pumping while simultaneously applying other lab-on-a-chip electrokinetics like dielectrophoresis. PMID:26010255

  11. 7 CFR 58.215 - Pre-heaters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pre-heaters. 58.215 Section 58.215 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE...

  12. Preheating Water In The Covers Of Solar Water Heaters

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep

    1995-01-01

    Solar water heaters that include glass covers over absorber plates redesigned to increase efficiencies according to proposal. Redesign includes modification of single-layer glass cover into double-layer glass cover and addition of plumbing so cool water to be heated made to flow between layers of cover before entering absorber plate.

  13. Thermally tunable resonator using directly integrated metallic heater

    NASA Astrophysics Data System (ADS)

    Chen, Ruobing; Li, Xinbai; Deng, Qingzhong; Michel, Jurgen; Zhou, Zhiping

    2015-08-01

    A thermally tunable half-disk resonator (HDR) with directly-integrated metallic heater is presented. The proposed resonator is based on the structure of HDR, which allows direct electrical contacts in HDR region without causing extra loss. The metallic heater is designed to be directly integrated on the silicon devices, and single-mode operation can be retained simultaneously. Metallic heater deposited on inner side of the ring, which cannot realize before because of weakened light confinement resulting in substantial leakage and loss, guides most heat power to the waveguide. This thermal localization enhances tuning efficiency. The simulation result shows a wavelength shift of 0.855 nm under ultralow driving voltage of 0.02V, corresponding to high thermal tuning efficiency of 2.831 nm/mW. The structure possesses both the advantages of high thermal tuning efficiency and low resistance, hence requiring smaller voltage and energy to drive, desirable for optical interconnects applications. Moreover, the proposed structure also eliminates the need to use doped silicon slab for electrical contacts, as widely used in conventional directly integrated heaters. Undoped strip waveguide in HDR enables higher Q-factor and improves optical performance.

  14. Silicon microbench heater elements for packaging opto-electronic devices

    SciTech Connect

    Combs, R.; Keiser, P.; Kleint, K.; Pocha, M.; Patterson, F.; Strand, O.T.

    1995-09-01

    Examples are presented of the application of Lawrence Livermore National Laboratory`s expertise in photonics packaging. Several examples of packaged devices will be described. Particular attention is given to silicon microbenches incorporating heaters and their use in semiconductor optical amplifier fiber pigtailing and packaging.

  15. 12. INTERIOR OF FRONT BEDROOM SHOWING ELECTRICAL WALL HEATER ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR OF FRONT BEDROOM SHOWING ELECTRICAL WALL HEATER ON BACK WALL, OPEN FIVE-PANELED DOOR TO LIVING ROOM AT PHOTO LEFT, AND OPEN SOLID DOOR TO BATHROOM AT PHOTO CENTER. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  16. 11. INTERIOR OF LIVING ROOM SHOWING BACK WALL ELECTRICAL HEATER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR OF LIVING ROOM SHOWING BACK WALL ELECTRICAL HEATER, OPEN FIVE-PANELED DOOR TO BACK BEDROOM AT PHOTO RIGHT, AND OPEN DOOR TO KITCHEN AT PHOTO CENTER. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  17. 7 CFR 58.215 - Pre-heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Pre-heaters. 58.215 Section 58.215 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE...

  18. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incinerator for which the owner or operator has been issued a final permit under 40 CFR part 270 and complies with the requirements of 40 CFR part 264, subpart O, or has certified compliance with the interim status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design...

  19. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Hudon, K.; Christensen, D.

    2011-09-01

    This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

  20. DEVELOPMENT AND TESTING OF A WASTEWATER RECYCLER AND HEATER

    EPA Science Inventory

    The results of this program have demonstrated the feasibility of an automatic and self-contained appliance that can recover and store usable hot water from waste laundry water, using essentially the same amount of energy as an equivalent-capacity water heater. It has been shown b...

  1. Marketing and promoting solar water heaters to home builders

    SciTech Connect

    Keller, C.; Ghent, P.

    1999-12-06

    This is the final report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. This report outlines suggested marketing communication materials and other promotional tools focused on selling products to the new home builder. Information relevant to promoting products to the new home buyer is also included.

  2. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  3. HEATER'S HELPER OPERATING PUSHER. HOT BILLETS ON CONVEYOR MOVE TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HEATER'S HELPER OPERATING PUSHER. HOT BILLETS ON CONVEYOR MOVE TO OPENING AT THE HEAD OF THE 12" MILL. PUSHER (ELECTRICALLY OPERATED) MOVES BILLETS INTO READY POSITION FOR 12" MILL. - Cambria Iron Company, Gautier Works, 12" Mill, Clinton Street & Little Conemaugh River, Johnstown, Cambria County, PA

  4. Development of a Market Optimized Condensing Gas Water Heater

    SciTech Connect

    Peter Pescatore

    2006-01-11

    This program covered the development of a market optimized condensing gas water heater for residential applications. The intent of the program was to develop a condensing design that minimized the large initial cost premium associated with traditional condensing water heater designs. Equally important was that the considered approach utilizes design and construction methods that deliver the desired efficiency without compromising product reliability. Standard condensing water heater approaches in the marketplace utilize high cost materials such as stainless steel tanks and heat exchangers as well as expensive burner systems to achieve the higher efficiencies. The key in this program was to develop a water heater design that uses low-cost, available components and technologies to achieve higher efficiency at a modest cost premium. By doing this, the design can reduce the payback to a more reasonable length, increasing the appeal of the product to the marketplace. Condensing water heaters have been in existence for years, but have not been able to significantly penetrate the market. The issue has typically been cost. The high purchase price associated with existing condensing water heaters, sometimes as much as $2000, has been a very difficult hurdle to overcome in the marketplace. The design developed under this program has the potential to reduce the purchase price of this condensing design by as much as $1000 as compared to traditional condensing units. The condensing water heater design developed over the course of this program led to an approach that delivered the following performance attributes: 90%+ thermal efficiency; 76,000 Btu/hr input rate in a 50 gallon tank; First hour rating greater than 180 gph; Rapid recovery time; and Overall operating condition well matched to combination heat and hot water applications. Over the final three years of the program, TIAX worked very closely with A.O. Smith Water Products Company as our commercial partner to optimize

  5. Precise Heater Controller with rf-Biased Josephson Junctions

    NASA Technical Reports Server (NTRS)

    Green, Colin J.; Sergatskov, Dmitri A.; Duncan, R. V.

    2003-01-01

    Paramagnetic susceptibility thermometers used in fundamental physics experiments are capable of measuring temperature changes with a precision of a part in 2 x 10(exp 10). However, heater controllers are only able to control open-loop power dissipation to about a part in 10(exp 5). We used an array of rf-biased Josephson junctions to precisely control the electrical power dissipation in a heater resistor mounted on a thermally isolated cryogenic platform. Theoretically, this method is capable of controlling the electrical power dissipation to better than a part in 10(exp 12). However, this level has not yet been demonstrated experimentally. The experiment consists of a liquid helium cell that also functions as a high-resolution PdMn thermometer, with a heater resistor mounted on it. The cell is thermally connected to a temperature-controlled cooling stage via a weak thermal link. The heater resistor is electrically connected to the array of Josephson junctions using superconducting wire. An rf-biased array of capacitively shunted Josephson junctions drives the voltage across the heater. The quantized voltage across the resistor is Vn = nf(h/2e), where h is Planck's constant, f is the array biasing frequency, e is the charge of an electron, and n is the integer quantum state of the Josephson array. This results in an electrical power dissipation on the cell of Pn = (Vn)(sup 2/R), where R is the heater resistance. The change of the quantum state of the array changes the power dissipated in the heater, which in turn, results in the change of the cell temperature. This temperature change is compared to the expected values based on the known thermal standoff resistance of the cell from the cooling stage. We will present our initial experimental results and discuss future improvements. This work has been funded by the Fundamental Physics Discipline of the Microgravity Science Office of NASA, and supported by a no-cost equipment loan from Sandia National Laboratories.

  6. 78 FR 2340 - Energy Conservation Program: Test Procedures for Residential Water Heaters and Commercial Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... definition of a ``water heater'' and are, therefore, not covered equipment under EPCA. 75 FR 20112, 20126 and...-prescribed energy conservation standards for residential water heaters. 66 FR 4474. Compliance with the... conservation standards for residential water heaters for a second time. 75 FR 20112. Compliance with...

  7. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... household do-it-yourself used oil generators; (b) The heater is designed to have a maximum capacity of not... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.23 On-site burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that:...

  8. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... household do-it-yourself used oil generators; (b) The heater is designed to have a maximum capacity of not... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.23 On-site burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that:...

  9. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... household do-it-yourself used oil generators; (b) The heater is designed to have a maximum capacity of not... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.23 On-site burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that:...

  10. 49 CFR 392.67 - Heater, flame-producing; on commercial motor vehicle in motion.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Heater, flame-producing; on commercial motor... SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Prohibited Practices § 392.67 Heater, flame-producing; on commercial motor vehicle in motion. No open flame heater used in the loading or unloading...

  11. Heater improves cold-temperature capacity of silver-cadmium batteries

    NASA Technical Reports Server (NTRS)

    Webster, W. H., Jr.; Jackson, T. P.

    1975-01-01

    Eight heaters are included in 14-cell package to provide 14-Vdc. Each heater is 11-ohm self-adhesive strip placed across broad face of each pair of cells. They are installed before cells are wired. Heaters are in series and are connected through pair of redundant thermostats.

  12. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    SciTech Connect

    Butler, William P.; Buescher, Tom

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  13. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.23 On-site burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a... household do-it-yourself used oil generators; (b) The heater is designed to have a maximum capacity of...

  14. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Preparation of thermal fluid heater for inspection and... ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for inspection and test. For visual inspection, access plates and...

  15. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Preparation of thermal fluid heater for inspection and... ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for inspection and test. For visual inspection, access plates and...

  16. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Preparation of thermal fluid heater for inspection and... ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for inspection and test. For visual inspection, access plates and...

  17. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Preparation of thermal fluid heater for inspection and... ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for inspection and test. For visual inspection, access plates and...

  18. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Preparation of thermal fluid heater for inspection and... ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for inspection and test. For visual inspection, access plates and...

  19. Evaluation of the Demand Response Performance of Electric Water Heaters

    SciTech Connect

    Mayhorn, Ebony T.; Widder, Sarah H.; Parker, Steven A.; Pratt, Richard M.; Chassin, Forrest S.

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  20. An experimental investigation with artificial sunlight of a solar hot-water heater

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot-water heater in a solar simulator. The objective of the test was to determine basic performance characteristics of a traditional type of flat-plate collector, with and without side reflectors (to increase the solar flux). Due to the fact that collector testing in the solar simulator permits control of the variables that affect collector performance, it was possible to obtain information on each of the following: (1) the effect of flow and incidence angle on the efficiency of a flat-plate collector (but only without side reflectors), (2) transient performance under flow and nonflow conditions, (3) the effectiveness of reflectors in increasing collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning, and (4) the limits of applicability of a collector efficiency correlation based on the Hottel-Whillier equation (1958).

  1. An experimental investigation with artificial sunlight of a solar hot-water heater

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot water heater in a solar simulator to determine basic performance characteristics of a traditional type of flat plate collector, with and without side reflectors (to increase the solar flux). Information on each of the following was obtained; (1) the effect of flow and incidence angle on the efficiency of a flat plate collector (but only without side reflectors); (2) transient performance under flow and nonflow conditions; (3) the effectiveness of reflectors to increase collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning; and (4) the limits of applicability of a collector efficiency correlation based on the Hottel Whillier equation.

  2. Substrate heater for large area YBa 2Cu 3O x films growth without electrical feedthroughs

    NASA Astrophysics Data System (ADS)

    Vase, P.; Shen, Y. Q.; Holst, T.; Hagensen, M.; Freltoft, T.

    1994-12-01

    A new substrate heater based on an optical waveguide is demonstrated. The substrate heater is capable of heating a 2″ diameter substrate to 900°C with a temperature uniformity better than +/- 2°C. The substrate heater is ideal for use in reactive atmospheres because the heating source is placed outside the deposition chamber. The substrate heater is used in a laser ablation deposition system. To overcome the problem with the very narrow deposition profile typical for laser ablation, the substrate heater may be scanned 2″ by 2″.

  3. Three-phase heaters with common overburden sections for heating subsurface formations

    SciTech Connect

    Vinegar, Harold J.

    2012-02-14

    A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.

  4. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  5. Should Fermi Have Secured his Water Heater Against Earthquakes?

    NASA Astrophysics Data System (ADS)

    Brooks, E. M.; Diggory, M.; Gomez, E.; Salaree, A.; Schmid, M.; Saloor, N.; Stein, S. A.

    2015-12-01

    A common student response to quantitative questions in science with no obvious answer is "I have no idea." Often these questions can be addressed by Fermi estimation, in which an apparently difficult-to-estimate quantity for which one has little intuitive sense can be sensibly estimated by combining order of magnitude estimates of easier-to-estimate quantities. Although this approach is most commonly used for numerical estimates, it can also be applied to issues combining both science and policy. Either application involves dividing an issue into tractable components and addressing them separately. To learn this method, our natural hazard policy seminar considered a statement by the Illinois Emergency Management Agency that homeowners should secure water heaters to prevent them from being damaged by earthquakes. We divided this question into subtopics, researched each, and discussed them weekly to reach a synthesis. We used a simple model to estimate the net benefit, the difference between the expected value of damage and the cost of securing a water heater. This benefit is positive, indicating that securing is worthwhile, only if the probability of damage during the heater's life is relatively large, approximately 1 - 10%. To assess whether the actual probability is likely to be this high, we assume that major water heater damage is likely only for shaking with MMI intensity VIII ("heavy furniture overturned") or greater. Intensity data for the past 200 years of Illinois earthquakes show that this level was reached only in the very southernmost part of the state for the 1811-1812 New Madrid earthquakes. As expected, the highest known shaking generally decreases northward toward Chicago. This history is consistent with the fact that we find no known cases of earthquake-toppled water heaters in Illinois. We compared the rate of return on securing a water heater in Chicago to buying a lottery ticket when the jackpot is large, and found that the latter would be a

  6. An Active Heater Control Concept to Meet IXO Type Mirror Module Thermal-Structural Distortion Requirement

    NASA Technical Reports Server (NTRS)

    Choi, Michael

    2013-01-01

    Flight mirror assemblies (FMAs) of large telescopes, such as the International X-ray Observatory (IXO), have very stringent thermal-structural distortion requirements. The spatial temperature gradient requirement within a FMA could be as small as 0.05 C. Con ventionally, heaters and thermistors are attached to the stray light baffle (SLB), and centralized heater controllers (i.e., heater controller boards located in a large electronics box) are used. Due to the large number of heater harnesses, accommodating and routing them is extremely difficult. The total harness length/mass is very large. This innovation uses a thermally conductive pre-collimator to accommodate heaters and a distributed heater controller approach. It minimizes the harness length and mass, and reduces the problem of routing and accommodating them. Heaters and thermistors are attached to a short (4.67 cm) aluminum portion of the pre-collimator, which is thermally coupled to the SLB. Heaters, which have a very small heater power density, and thermistors are attached to the exterior of all the mirror module walls. The major portion (23.4 cm) of the pre-collimator for the middle and outer modules is made of thin, non-conductive material. It minimizes the view factors from the FMA and heated portion of the precollimator to space. It also minimizes heat conduction from one end of the FMA to the other. Small and multi-channel heater controllers, which have adjustable set points and internal redundancy, are used. They are mounted to the mechanical support structure members adjacent to each module. The IXO FMA, which is 3.3 m in diameter, is an example of a large telescope. If the heater controller boards are centralized, routing and accommodating heater harnesses is extremely difficult. This innovation has the following advantages. It minimizes the length/mass of the heater harness between the heater controllers and heater circuits. It reduces the problem of routing and accommodating the harness on the

  7. Actual performance and economic feasibility of residential solar water heaters

    NASA Astrophysics Data System (ADS)

    Anhalt, Jorgdieter; Ennes, Sergio Augusto Weigert

    1987-09-01

    Four residential water heaters currently available on the Brazilian market have been evaluated for their possible use in substituting for the common electric shower head. The tests were carried out with the solar systems mounted side by side on an artificial roof. The hot water demand was simulated following a consumer profile which represents an average Brazilian family. The data, which was collected automatically and presented in the form of graphs and tables, shows that an optimized solar water heater could save as much as 65 percent of the energy demand for residential water heating in the state of Sao Paulo. A study concludes that the installation and maintenance of such a solar system are economically feasible if long term financing is available.

  8. Convective polymerase chain reaction around micro immersion heater

    NASA Astrophysics Data System (ADS)

    Hennig, Martin; Braun, Dieter

    2005-10-01

    Polymerase chain reaction (PCR) is performed in the thermal convection created by a micro immersion heater. Instead of repetitive heating and cooling, the temperature gradient induces thermal convection which drives the reaction liquid between hot and cold parts of the chamber. The convection triggers DNA amplification as the DNA melts into two single strands in the hot region and replicates with the use of proteins into twice the amount in the cold region. The constant heater is simply dipped into the reaction solution. Compared to previous experiments, we demonstrate that convective PCR is possible in a robotically accessible open vessel. Our approach compares well with fast PCR cyclers and replicates DNA 500 000 fold within 20minutes. We reduce the necessary components for PCR to cheap, single-use components and therefore increasing the prospects of bringing PCR to point of care applications—even in third world countries.

  9. Development of Exhaust Gas Driven Absorption Chiller-Heater

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Waste heat from co-generation systems are usually recovered by hot water or steam, those are used to drive absorption refrigerators at cooling time, and those are used for heating via heat exchangers at heating time. However waste heat from micro gas turbines are discharged in the form of exhaust gas, it is simple that exhaust gas is directly supplied to absorption chiller-heaters. In the first report we studied cooling cycle, and this second paper, we evaluated various absorption heating cycles for exhaust gas driven absorption chiller-heaters, and adopted one of these cycles for the prototype machine. Also, we experimented with the prototype for wide range condition and got the heating characteristics. Based on the experimental data, we developed a simulation model of the static characteristics, and then studied how to increase the output by limited exhaust gas.

  10. Diesel-fired self-pumping water heater

    NASA Astrophysics Data System (ADS)

    Gertsmann, Joseph

    1994-07-01

    The object of this project was to study the feasibility of pumping and heating water by sustained oscillatory vaporization and condensation in a fired heat exchanger. Portable field liquid fueled water heaters would facilitate heating water for sanitation, personal hygiene, food service, laundry, equipment maintenance, and decontamination presently available only from larger, less portable, motorized pumping units. The technical tasks consisted of: development of an analytical model, operation of proof-of-principal prototypes, and determination of the thermal and mechanical relationships to evaluate operating range and control characteristics. Four successive pump models were analyzed and tested. The final analytical model gave reasonable agreement with the experimental results, indicating that the actual pumping effect was an order of magnitude lower than originally anticipated. It was concluded that a thermally-activated self pumping water heater based on the proposed principle is not feasible.

  11. Viscous dampers cut vibration in heater drain line

    SciTech Connect

    Mays, B.; Rencher, D. ); Keowen, R.S.; Hueffmann, G.K.

    1993-06-01

    This article discusses the control of unacceptable vibration levels that persisted for about two years in a 400 F heater drain piping system at Comanche Peak's 1100-MW Unit 1. The system in this PWR nuclear power plant is made up of approximately 300 ft of 8-in., Schedule 40 piping that runs from the steam generator heater to two 10-ft-diameter horizontal drain tanks. During start-up and shut-down operations, flashing of the 400 F water to steam occurs at the intakes of the tanks. This flashing caused severe vibration in the 8-in. piping from the tanks to about 80 ft upstream. Peak displacements of approximately three inches were measured. Viscous dampers were installed to solve the problem.

  12. Model for Aggregated Water Heater Load Using Dynamic Bayesian Networks

    SciTech Connect

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai; Kalsi, Karanjit

    2012-07-19

    The transition to the new generation power grid, or “smart grid”, requires novel ways of using and analyzing data collected from the grid infrastructure. Fundamental functionalities like demand response (DR), that the smart grid needs, rely heavily on the ability of the energy providers and distributors to forecast the load behavior of appliances under different DR strategies. This paper presents a new model of aggregated water heater load, based on dynamic Bayesian networks (DBNs). The model has been validated against simulated data from an open source distribution simulation software (GridLAB-D). The results presented in this paper demonstrate that the DBN model accurately tracks the load profile curves of aggregated water heaters under different testing scenarios.

  13. Chiller-heater unit nets building 2-yr payback

    SciTech Connect

    Duffy, J.

    1983-05-09

    A 500-ton double-absorption Hitachi Paraflow chiller-heater that switches from purchased steam to natural gas will reduce a Manhattan office building's energy costs by 55% and achieve a two-year payback. The new system replaces a steam-powered, single-stage absorption chiller. By reusing heat in a second-stage generator, the Hitachi unit uses only half as many Btus per ton as a conventional chiller. (DCK)

  14. Feedwater heater life optimization at Peach Bottom Atomic Power Station

    SciTech Connect

    Catapano, M.C.; Thomas, D.S.

    1995-12-01

    Many papers published over the last 15 years have strongly emphasized the need for an ongoing program of inspection and testing with subsequent failure cause analysis of feedwater heaters. With deregulation of the electric utility industry in various phases of implementation, utilities must decrease costs, both O&M and capital, while optimizing plant efficiency. In order to accomplish this coal, utility engineers must monitor feedwater heater performance in order to recognize degradation, correct/eliminate failure mechanisms, and prevent in-service failures while optimizing availability. Periodic tube plugging without complete analysis of the degraded/failed area resolves the immediate need for return for service, however, heater life will not be graded/failed area resolves optimized. This paper illustrates a complete inspection, testing, and maintenance program implemented at PECO Energy`s Peach Bottom Atomic Power Station (PBAPS). Concerns that tubes may have been too conservatively plugged due to insufficient data justified a program that included: (1) Removal of previously installed plugs. (2) Videoprobe inspection of failed areas. (3) Extraction of tube samples for further analysis. (4) Eddy current testing of selected tubes. (5) Evaluation of the condition of {open_quotes}insurance{close_quotes} plugged tubes for return to service. (6) Hydrostatic testing of selected tubes. (7) Final repair plan based on the results of the above program. This paper concludes that no single method of inspection or testing should solely be relied upon in establishing: (1) The extent of actual degraded conditions, (2) The source(s) of failure mechanisms, (3) The details of repair. It is a combination of all gathered data that affords the best chance in arresting problems and optimizing feedwater heater life.

  15. Field Performance of Heat Pump Water Heaters in the Northeast

    SciTech Connect

    Shapiro, C.; Puttagunta, S.

    2013-08-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  16. Permeability of Candidate Stirling Heater Head Materials Measured

    NASA Technical Reports Server (NTRS)

    Freedman, Marc R.; Singh, Mrityunjay

    2005-01-01

    Researchers at the NASA Glenn Research Center are evaluating high-temperature materials for Stirling heater heads for second- and third-generation Stirling radioisotope power systems that would help to increase the system efficiency to 30 to 35 percent and the system specific power to 8 to 10+ W/kg. Ceramic materials could make it possible for the convertor hot-end temperature to be increased to 1050 to 1200 C, in comparison to the current 650 C with an Inconel 718 heater head. A hermetically sealed Stirling heater head must retain a constant internal pressure of nearly 400-psi helium (He) throughout its useful life (120,000 hr) at the design operating temperature. Therefore, He permeability was measured for eight potential materials and compared with the permeability of the current heater head material, Inconel 718. The eight materials included silicon nitride (Si3N4), silicon dioxide (SiO2), both sintered and chemical vapor deposited (CVD) silicon carbide (SiC), alumina (Al2O3), two types of melt-infiltrated (MI) SiC/SiC composites, and a carbon/SiC composite (C/SiC). Glenn submitted samples of each material to Porous Materials, Inc., Ithaca, New York, for permeability analysis. At room temperature and 30-psi He, four materials--Si3N4, Al2O3, SiO2, and sintered SiC--demonstrated lower permeability than Inconel 718. The CVD SiC and all the composite materials were significantly more permeable to He than the baseline material.

  17. Microscale Heaters Detailed Boiling Behavior in Normal Gravity and Microgravity

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.

    2002-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. Conducting tests in microgravity, as well as lunar and Martian gravity, makes it possible to assess the effect of the density difference between the vapor and liquid phases on the overall boiling process and to assess the relative magnitude of these effects in comparison to other "forces" and phenomena, such as surface tension forces, liquid momentum forces, and microlayer evaporation. The microscale heater developed under a NASA Glenn Research Center grant serves as a unique tool to probe the fundamental mechanisms associated with pool boiling. An experimental package was designed and built by the University of Maryland and tested on the NASA Johnson Space Center KC-135 experimental aircraft and a NASA WFF Terrier Orion Sounding Rocket under NASA Grants NAG3-2228 and NCC3-783. A square array of 96 microscale heaters was constructed and installed into a special boiling chamber. A fluorinert, FC-72, was used as the test fluid. A variety of tests were conducted at different pressures, heater wall temperatures, bulk fluid temperatures, and gravity levels.

  18. The triggering of local substorm activity by HF SURA heater

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yuri; Parrot, Michel; Kovalev, Victor; Plastinin, Yuri; Kuznetsov, Vladimir; Vladimir Frolov, S.

    The results of analysis of helio-geophisical conditions of experiments 2007-2012 on local modification of ionosphere by powerful HF radio waves of SURA facility are presented. All experiment were conducted at sector of local time of Harang discontinuity for most probable influence of powerful HF pumping during the heater functioning on activation of natural processes at subauroral ionosphere - magnetosphere region. The peculiarity of these experiments was that all of these were executed with use of operative frequency, which was higher than upper hybrid frequency for background plasma of F2-layer maximum. It was obtained that, at least, in two experiments the observed substorm activity in zone northern SURA heater could be stimulated by its functionment.In the present study the ray tracing analysis clearly shows that ionosphere density decreasing (from DEMETER and IONEX data) at higher than SURA latitudes can redirect and refocused transmitter beam power in northward structure away from the beam center by refraction. By this way we have chance to participate by means of radiated SURA HF power in subauroral and auroral processes It is shown that results of groundbased, International Space Station and satellite DEMETER measurements as in vicinity a SURA location and in magnetic conjugated region support the conclusion (output) about reasons and possibility of substorm localization by action of SURA heater. The possible mechanisms of the local substorm activation are discussed.

  19. Electric Water Heater Modeling and Control Strategies for Demand Response

    SciTech Connect

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

  20. Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

    SciTech Connect

    Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa; Letschert, Virginie

    2010-11-24

    The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and condensing gas water heaters provide a lower LCC for homes with large rated volume water heaters.

  1. Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier

    SciTech Connect

    Ashdown, BG

    2005-01-11

    This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance

  2. Pool boiling heat transfer from vertical heater array in liquid nitrogen

    SciTech Connect

    Chui, C.J.; Sehmbey, M.S.; Chow, L.C.; Hahn, O.J.

    1995-04-01

    The heat transfer from an array of discrete sources is expected to differ from the behavior of a single heat source due to the interaction between the flow induced by individual heat sources. This study details the results from experiments conducted to study the pool boiling heat transfer characteristics from a vertical heater array with flush-mounted heat sources. The lower heaters were found to enhance the heat transfer from upper heaters. The bubble pumped convection due to the lower heaters enhanced the preboiling heat transfer coefficient at the upper heater by as much as 700%. The critical heat flux from the upper heaters was also enhanced up to 15%. Correlations are presented for both these effects. 21 refs.

  3. Computer simulation of heat transfer mechanism in SRC-I slurry fired heater

    SciTech Connect

    Mehta, D.C.; Fox, V.G.; Weimer, R.F.

    1984-05-01

    A computer simulation of the heat transfer mechanism was performed for the slurry fired heater in the SRC-I Demonstration Plant. The operating conditions were based on the fired heater design, and the data on pressure drop, slug characteristics, and heat transfer were obtained from the cold-flow modelling experiments at Creare, Inc. The computer program solves the partial differential equation describing heat transfer in the fired heater pipe. 7 references, 6 figures, 5 tables.

  4. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida. The housing units had their gas-fired tank type water heaters replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  5. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida.The gas-fired tank type water heaters in the housing units were replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  6. Evaluation of a Stirling engine heater bypass with the NASA Lewis nodal-analysis performance code

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.

    1986-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Research Center investigated whether bypassing the P-40 Stirling engine heater during regenerative cooling would improve engine performance. The Lewis nodal-analysis Stirling engine computer simulation was used for this investigation. Results for the heater-bypass concept showed no significant improvement in the indicated thermal efficiency for the P-40 Stirling engine operating at full-power and part-power conditions. Optimizing the heater tube length produced a small increase in the indicated thermal efficiency with the heater-bypass concept.

  7. Histochemical and immunohistochemical studies on the origin of the blue marlin heater cell phenotype.

    PubMed

    Tullis, A; Block, B A

    1997-12-01

    The superior rectus muscle fibers of marlins, swordfish, sailfish and spearfish are modified for heat production at the expense of contractile ability. Although 'heater cells' are a muscle derivative (Block, 1986, 1991), the myoblast origin and developmental pathway of these thermogenic cells is unknown. To gain insight into heater cell origins, we characterized blue marlin superior rectus muscle and its heater tissue derivative with histochemical and immunological techniques. We specifically employed myosin ATPase and succinate dehydrogenase histochemical assays, and myosin heavy chain immunohistochemistry. Results revealed that marlin superior rectus muscles contain at least six distinct fiber types, and suggested the presence of both twitch and tonic fibers. Immunological results indicate that myosin is present within the thermogenic cells but not in myofibrillar lattices. The antibodies that recognized myosin in heater cells also labeled myosin in the twitch fibers of swimming muscle. In contrast, antibodies that labeled histologically defined tonic fibers did not label heater cells. These results suggest that heater cells and twitch fibers express the same myosin isoform, and establish a phenotypic connection between heater cells and twitch fibers. This conclusion is discussed in the context of the muscle-to-heater trajectory and the muscle fiber-type origin of heater cells. PMID:9467927

  8. Zoned electrical heater arranged in spaced relationship from particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-11-15

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  9. High Efficiency R-744 Commercial Heat Pump Water Heaters

    SciTech Connect

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  10. Integral finned heater and cooler for stirling engines

    SciTech Connect

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  11. High temperature biowaste resistojets using electrically conducting ceramic heaters.

    NASA Technical Reports Server (NTRS)

    Halbach, C. R.; Page, R. J.; Short, R. A.

    1972-01-01

    Description of the experimental characteristics of a heater for advanced biowaste resistojets, potentially operable to material temperatures of 2400 K in the presence of all of the biowaste gases, with or without oxygen, or in a vacuum. A conservative operating chamber temperature of 2000 K is being considered to ensure a lifetime of thousands of hours. In the small biowaste resistojet sized for 25-mlb (.11 N) of thrust, specific impulses of 200 sec on CO2 and 275 sec on H2O are possible. Typical characteristics for 150 watts of electrical power are 120 V AC at 1.25 A, providing direct adaptability to the space station power systems.

  12. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.A.; White, J.B.; Jackson, M.D. )

    1990-04-01

    Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: (1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; (2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and (3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: (1) para-dichlorobenzene emissions from solid moth repellant; and (2) emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J.B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on sink surfaces.

  13. Electric water heaters: a new hazard for pediatric burns.

    PubMed

    Chuang, Shiow-Shuh; Yang, Jui-Yung; Tsai, Feng-Chou

    2003-09-01

    The electric water heater has recently become a popular household appliance replacing the hot water dispensing jug. This device provides hot water and potable cool water directly from the faucets thus removing the need to refill the container or boil water separately in a kettle. Along with the convenience of dispensing hot water immediately has come an increased incidence of pediatric burns. This paper presents a 6-year retrospective study of such pediatric scald burns from 1996 to 2001. Computer database records revealed that the incidence of pediatric scald burns caused by the electric water heater during the past 6 years was 6.4% (66/1028). The age of victims ranged 0-6 years (mean 1.5+/-1.1 years), most of the victims were in the 1-2-year-old group. In most common cases burn location was the trunk. The accidents often occurred during the cold months and in the living room of the house. From this retrospective study, it was seen that the etiology and incidence of scald burns among children have changed as people have modified their household practice for obtaining hot water in our country. This study aims to increase public awareness to the problem and suggest some prevention measures to reduce this type of scald injury. PMID:12927985

  14. Evaluation of Tube Wall Thickness of Feed Water Heater

    NASA Astrophysics Data System (ADS)

    Uchikura, Takahisa; Morisaki, Koichi; Hamada, Seiichi

    With regard to the high pressure (HP) feed water heater of thermal power plant at Tokyo Electric Power Company (TEPCO) sites, inspection of feed water (FW) tubes wall thickness are conducted whenever required such that frequent tube leak occurs. As a standard inspection methodology, FW heater is disassembled during planned outage, tube wall thickness is measured by the ultrasonic pulse techique (UT), then plugs are installed at the both ends of FW tube if its measured wall thickness is found below calculated threshold. However, the root causes of wall thinning of FW tube are various such as erosion and corrosion, based on wall thinning condition, the above threshold is not applied but utilizing the other technically well-grounded evaluation method is sometimes more rational. Therefore, TEPCO classified wall-thinning condition based on inspection data and established technically well-grounded and rational evaluation methodologies of FW tube wall thickness to suite each wall thinning condition. Moreover, with recent improvement of inspection technique, technology enabled faster, larger amount, and more accurate data acquisition, TEPCO has developed the systematized evaluation methodology that can transact data acquisition and evaluation simultaneously. This article introduces the logic of evaluation methods and examined algorithms to make them systematized.

  15. Eleana near-surface heater experiment final report

    SciTech Connect

    Lappin, A R; Thomas, R K; McVey, D F

    1981-04-01

    This report summarizes the results of a near-surface heater experiment operated at a depth of 23 m in argillite within the Eleana Formation on the Nevada Test Site (NTS). The test geometrically simulated emplacement of a single canister of High-Level Waste (HLW) and was operated at a power level of 2.5 kW for 21 days, followed by 3.8 kW to 250 days, when the power was turned off. Below 85 to 100{sup 0}C, there was good agreement between modeled and measured thermal results in the rock and in the emplacement hole, except for transient transport of water in the heater hole. Above 100{sup 0}C, modeled and measured thermal results increasingly diverged, indicating that the in-situ rock-mass thermal conductivity decreased as a result of dehydration more than expected on the basis of matrix properties. Correlation of thermomechanical modeling and field results suggests that this decrease was caused by strong coupling of thermal and mechanical behavior of the argillite at elevated temperatures. No hole-wall decrepitation was observed in the experiment; this fact and the codrrelation of modeled and measured results at lower temperatures indicate that there is no a priori reason to eliminate argillaceous rocks from further consideration as a host rock for nuclear wastes.

  16. A micro solar heater for portable energy generation

    NASA Astrophysics Data System (ADS)

    Zimmerman, Raúl; Morrison, Graham; The, Owen; Rosengarten, Gary

    2007-12-01

    This study presents a new concept that combines microtechnology with solar thermal energy to provide a free portable energy source. A water-methanol mixture flows through an array of parallel microchannels which are fabricated into a silicon matrix using conventional micro-fabrication techniques. A vacuum layer is interposed between the channels and the external surface to thermally insulate the channels from the ambient temperature. A selective coating is deposited on one of the vacuum walls to absorb the short wavelength incoming radiation and reduce the long wavelength radiation, hence reducing the heat losses. A geometry and material optimization is still being developed in order to obtain the highest possible efficiency for the micro-heater, while keeping a low pressure drop in the micro-channels. The methanol outlet temperature is predicted to be higher than 250°C. This temperature is required for hydrogen production in a methanol reforming micro-reactor. Therefore, it is envisaged that the micro-solar heater will supply the thermal energy needed for hydrogen generation, that can later be used as fuel for microfuel cells. Both technologies can be integrated in a portable device.

  17. Energy Factor Analysis for Gas Heat Pump Water Heaters

    SciTech Connect

    Gluesenkamp, Kyle R

    2016-01-01

    Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basis energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.

  18. An optimized periodic inspection program for condensers and feedwater heaters

    SciTech Connect

    Reinhart, E.R.; Kaminski, S.

    1996-12-31

    Tube failures in steam plant surface condensers and feedwater heaters are a significant reliability problem for the electric power industry. Tube failures can also result in an increase in replacement power costs. In addition, condenser leaks from failed tubes have potentially harmful effects on major components such as steam generators and turbines. To reduce the number of tube failures and consequent leakage, periodic maintenance programs have used the nondestructive evaluation (NDE) method of eddy-current testing (ET) to inspect the condition of the tubes from the water side. This NDE method can identify tubes that have experienced major degradation and should be plugged to prevent in-service failure. However, the use of NDE methods in plant maintenance of condensers and feedwater heaters is not standard practice and varies significantly throughout the utility industry. Variability of inspection results and difficulty in inspecting some types of tubing (monel, carbon steel) have caused many utility sites to question the value of in-service inspection of heat transfer tubing from the water side. Recognizing the above problem, advanced ET systems have been developed that use multi-frequency, remote field and digital data processing techniques to inspect a wide variety of tubing materials and produce on-site inspection reports. Recent field examination results will be presented.

  19. QUALITY ASSURANCE PROCEDURES: METHOD 28 CERTIFICATION AND AUDITING OF WOOD HEATERS

    EPA Science Inventory

    Quality assurance procedures are contained in this comprehensive document intended to be used as an aid for wood heater manufacturers and testing laboratories in performing particulate matter sampling of wood heaters according to EPA protocol, Method 28. These procedures may be u...

  20. 16 CFR Appendix D4 to Part 305 - Water Heaters-Instantaneous-Gas

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Instantaneous-Gas D4 Appendix... CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES...) Pt. 305, App. D4 Appendix D4 to Part 305—Water Heaters-Instantaneous-Gas Range Information...

  1. Design of an Improved Heater Array to Measure Microscale Wall Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Chng, Choon Ping; Kalkur, T. S.

    1996-01-01

    An improved array of microscale heaters is being developed to measure the heat transfer coefficient at many points underneath individual bubbles during boiling as a function of space and time. This heater array enables the local heat transfer from a surface during the bubble growth and departure process to be measured with very high temporal and spatial resolution, and should allow better understanding of the boiling heat transfer mechanisms by pin-pointing when and where in the bubble departure cycle large amounts of wall heat transfer occur. Such information can provide much needed data regarding the important heat transfer mechanisms during the bubble departure cycle, and can serve as benchmarks to validate many of the analytical and numerical models used to simulate boiling. The improvements to the heater array include using a silicon-on-quartz substrate to reduce thermal cross-talk between the heaters, decreased space between the heaters, increased pad sizes on the heaters, and progressive heater sizes. Some results using the present heater array are discussed.

  2. A theoretical model for flow boiling CHF from short concave heaters

    SciTech Connect

    Galloway, J.E.; Mudawar, I.

    1995-08-01

    Experiments were performed to enable the development of a new theoretical mode for the enhancement in CHF commonly observed with flow boiling on concave heater as compared to straight heaters. High-speed video imaging and photomicrography were employed to capture the trigger mechanism for CHF each type heater. A wavy vapor layer was observed to engulf the heater surface in each case, permitting liquid access to the surface only in regions where depressions (troughs) in the liquid vapor interface made contact with the surface. CHF in each case occurred when the pressure force exerted upon the wavy vapor-liquid inter ace in the contact region could no longer overcome the momentum of the vapor produced in these regional. Shorter interfacial wavelengths with greater curvature were measured on the curve, heater than on the straight heater, promoting a greater pressure force on the wave interface and a corresponding increase in CHF for the curved heater. A theoretics. CHF model is developed from these observations, based upon a new theory for hydrodynamic instability, along a curved interface. CHF data are predicted with good accuracy for both heaters. 23 refs., 9 figs.

  3. 150. ARAIII Reactor building (ARA608) Sections. Show highbay section, heater ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    150. ARA-III Reactor building (ARA-608) Sections. Show high-bay section, heater stack, and depth of reactor, piping, and heater pits. Aerojet-general 880-area/GCRE-608-A-3. Date: February 1958. Ineel index code no. 063-0608-00-013-102613. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  4. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    SciTech Connect

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.; Carmichael, Robert T.; Mayhorn, Ebony T.; Fisher, Andrew R.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  5. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... tentatively concluded that for residential water heaters, there is no need to amend the test procedures... applicable to water heaters, no amendment is required. (42 U.S.C. 6295(gg)(2)(A)(i)) A more complete...; #0; #0;#0;Federal Register / Vol. 75, No. 167 / Monday, August 30, 2010 / Proposed...

  6. 16 CFR Appendix D4 to Part 305 - Water Heaters-Instantaneous-Gas

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Water Heaters-Instantaneous-Gas D4 Appendix... CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES...) Pt. 305, App. D4 Appendix D4 to Part 305—Water Heaters-Instantaneous-Gas Link to an...

  7. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    SciTech Connect

    Murty, B.V.

    2000-03-21

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  8. 40 CFR Table 4 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 14 2013-07-01 2013-07-01 false Operating Limits for Boilers and...: Industrial, Commercial, and Institutional Boilers and Process Heaters Pt. 63, Subpt. DDDDD, Table 4 Table 4 to Subpart DDDDD of Part 63—Operating Limits for Boilers and Process Heaters As stated in §...

  9. 40 CFR Table 4 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 14 2014-07-01 2014-07-01 false Operating Limits for Boilers and...: Industrial, Commercial, and Institutional Boilers and Process Heaters Pt. 63, Subpt. DDDDD, Table 4 Table 4 to Subpart DDDDD of Part 63—Operating Limits for Boilers and Process Heaters As stated in §...

  10. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1), feedwater heaters must meet the requirements in this part or the requirements in part 54....

  11. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1), feedwater heaters must meet the requirements in this part or the requirements in part 54....

  12. 40 CFR 63.7499 - What are the subcategories of boilers and process heaters?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 14 2012-07-01 2011-07-01 true What are the subcategories of boilers..., and Institutional Boilers and Process Heaters Emission Limits and Work Practice Standards § 63.7499 What are the subcategories of boilers and process heaters? The subcategories of boilers and...

  13. 40 CFR 63.7499 - What are the subcategories of boilers and process heaters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are the subcategories of boilers..., and Institutional Boilers and Process Heaters Emission Limits and Work Practice Standards § 63.7499 What are the subcategories of boilers and process heaters? The subcategories of boilers and...

  14. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1), feedwater heaters must meet the requirements in this part or the requirements in part 54....

  15. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1), feedwater heaters must meet the requirements in this part or the requirements in part 54....

  16. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1), feedwater heaters must meet the requirements in this part or the requirements in part 54....

  17. 40 CFR 63.7499 - What are the subcategories of boilers and process heaters?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What are the subcategories of boilers..., and Institutional Boilers and Process Heaters Emission Limits and Work Practice Standards § 63.7499 What are the subcategories of boilers and process heaters? The subcategories of boilers and...

  18. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning...

  19. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOEpatents

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  20. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ...Where appropriate, the U.S. Department of Energy (DOE) is amending its test procedures for residential water heaters, direct heating equipment (DHE), and pool heaters to include provisions for measuring standby mode and off mode energy consumption, as required by the Energy Independence and Security Act of 2007 (EISA 2007). DOE has concluded that such amendments are necessary for direct......

  1. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Auxiliary, donkey, fired thermal fluid heater, and... (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-35 Auxiliary, donkey, fired thermal... requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler,...

  2. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Auxiliary, donkey, fired thermal fluid heater, and... (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-35 Auxiliary, donkey, fired thermal... requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler,...

  3. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Auxiliary, donkey, fired thermal fluid heater, and... (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-35 Auxiliary, donkey, fired thermal... requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler,...

  4. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Auxiliary, donkey, fired thermal fluid heater, and... (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-35 Auxiliary, donkey, fired thermal... requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler,...

  5. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Auxiliary, donkey, fired thermal fluid heater, and... (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-35 Auxiliary, donkey, fired thermal... requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler,...

  6. Development of a cogenerating thermophotovoltaic powered combination hot water heater/hydronic boiler

    NASA Astrophysics Data System (ADS)

    Kushch, Aleksandr S.; Skinner, Steven M.; Brennan, Richard; Sarmiento, Pedro A.

    1997-03-01

    A cogenerating thermophotovoltaic (TPV) device for hot water, hydronic space heating, and electric power generation was developed, designed, fabricated, and tested under a Department of Energy contracted program. The device utilizes a cylindrical ytterbia superemissive ceramic fiber burner (SCFB) and is designed for a nominal capacity of 80 kBtu/hr. The burner is fired with premixed natural gas and air. Narrow band emission from the SCFB is converted to electricity by single crystal silicon (Si) photovoltaic (PV) arrays arranged concentrically around the burner. A three-way mixing valve is used to direct heated water to either the portable water storage tank, radiant baseboard heaters, or both. As part of this program, QGI developed a microprocessor-based control system to address the safety issues, as well as photovoltaic power management. Flame sensing is accomplished via the photovoltaics, a technology borrowed from QGI's Quantum Control™ safety shut-off system. Device testing demonstrated a nominal photovoltaic power output of 200 W. Power consumed during steady state operation was 33 W, with power drawn from the combustion air blower, hydronic system pump, three-way switching valve, and the control system, resulting in a net power surplus of 142 W. Power drawn during the ignition sequence was 55 W, and a battery recharge time of 1 minute 30 seconds was recorded. System efficiency was measured and found to be more than 83%. Pollutant emissions at determined operating conditions were below the South Coast Air Quality Management District's (California) limit of 40 ng/J for NOx, and carbon monoxide emissions were measured at less than 50 dppm.

  7. Study on the Efficient Drive of a Desiccant Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Jeong, Jong-Soo; Saito, Kiyoshi; Kawai, Sunao

    This paper constructs the static simulation model of a desiccant air conditioning system and gives the guidelines for the efficient drive of the desiccant air conditioning system. The desiccant air conditioning system is composed of a desiccant wheel, a heat exchanger, two evaporative coolers and a heater. The process air and regeneration air are supplied to this system. The desiccant is Silica gel. In the simulation model, two-dimensional model in space is adopted for the desiccant wheel. As the simulation result, it is clarified that optimum outlet temperature of the regeneration air in the heater, rotational speed of the desiccant wheel, the rejected air flow rate of the regeneration air, the process and regeneration air flow rate that maximize COP exist. For example, in case that the regeneration temperature is 63°C and relative humidity is 55% maximum COP is about 0.62.

  8. Design of a substrate heater for calcium hydroxyapatite coating by pulsed laser ablation

    SciTech Connect

    Chang, T.; Havstad, M.A.

    1995-07-24

    Calcium hydroxyapatite (HA) is the main chemical constituent of bone. When replacement hip joints are coated with this chemical, the body may be more likely to accept the artificial joint, forming new bone that bonds the joint to the original leg bone. HA deposited by laser ablation in vacuum adheres to the substrate better at high temperatures of up to 700 C. This heater should be capable of uniformly heating to 700 C a silicon disk 150 mm in diameter. The heater consists of two wire heating coils brazed into a disk of stainless steel, with tantalum shields on top and at the sides of the heater to minimize radiation loss. Three spring-rotation clamps at the bottom of the heater hold the substrate disk in place. This report describes the heater and how it was developed, including design evolution and thermal modeling. Also, detailed information about parts is discussed.

  9. Low Power Phase Change Memory using Silicon Carbide as a Heater Layer

    NASA Astrophysics Data System (ADS)

    Aziz, M. S.; Yin, Y.; Hosaka, S.; Mohammed, Z.; Alip, R. I.

    2015-11-01

    The amorphous to crystalline transition of germanium-antimony-tellurium (GST) using two types heating element was investigated. With separate heater structure, simulation was done using COMSOL Multiphysic 5.0. Silicon carbide (SiC) and Titanium Sitride (TiSi3) has been selected as a heater and differences of them have been studied. The voltage boundary is 0.905V and temperature of the memory layer is 463K when using SIC as a heater. While the voltage boundary and temperature of memory layer when using TiSi3 are 1.103 V and 459K respectively. Based on the result of a simulation, the suitable material of heater layer for separate heater structure is Silicon carbide (SiC) compared with Titanium Sitride (TiSi3).

  10. Coupled THM analysis of the single-heater test at yucca mountain

    SciTech Connect

    Blair, S C; Buscheck, T A; Daily, W D; Lin, W; Ramirez, A L

    1999-01-25

    This paper presents a summary of results from the Single-Heater Test (SHT) at Yucca Mountain, Nevada. In the SHT, a horizontal, 5-m-long, line-heat source was used to heat a rock pillar for nine months. Moisture movement was monitored during and after heating using electrical-resistance tomography (ERT) and neutron-logging techniques. Results indicate drying in regions of the rock where temperature reached 60°C and above. The drying zone is asymmetric and is not centered on the heater, but has lobes extending above and to the sides of the heater. Predicted temperatures agreed well with observations. A cold- trap effect was predicted, in the heater borehole, that efficiently transfers heat along the heater borehole to the excavation wall. A simple thermomechanical analysis of the SHT shows that shear zones predicted for vertical fractures coincide with regions of increased moisture content derived from ERT measurements.

  11. High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots.

    PubMed

    Hudaya, Chairul; Jeon, Bup Ju; Lee, Joong Kee

    2015-01-14

    Facile production and novel transparent heaters consisting of fluorine-doped tin oxide (SnO2:F or FTO) thin films covered with three different scattered metal nanodots (Cr-nd, NiCr-nd and Ni-nd) prepared by plasma-enhanced sputtering system and electron cyclotron resonance-metal organic chemical vapor deposition are investigated. The heaters exhibit excellent optical transmittances of over 85% and superior saturated temperatures of more than 80 °C when a relatively low 12 V DC is supplied. The scattered metal nanodots FTO heaters successfully improve the specific power of bare FTO heater by 21, 15, and 12% for NiCr-nd FTO, Cr-nd FTO, and Ni-nd FTO, respectively. These results reveal that the FTO transparent heaters with scattered metal nanodots are the suitable heating materials that can be applied for various functional devices. PMID:25557013

  12. Heat Pump Water Heater Durabliltiy Testing - Phase II

    SciTech Connect

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10 years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed significantly higher

  13. First Results of the LCLS Laser-Heater System

    SciTech Connect

    Emma, P; Boyce, R.F.; Brachmann, A.; Carr, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Levashov, Y.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Poling, B.; Ratner, D.; Spampinati, S.; /SLAC

    2011-12-16

    The Linac Coherent Light Source (LCLS) is an x-ray Free-Electron Laser (FEL) project that has just achieved its first lasing at 1.5 {angstrom} radiation wavelength. The very bright electron beam required to drive this FEL is susceptible to a microbunching instability in the magnetic bunch compressors that may increase the slice energy spread beyond the FEL tolerance. To control the slice energy spread and to suppress the microbunching instability, a laser heater (LH) system is installed in the LCLS injector area at 135 MeV, right before the RF deflector that is used for the time-resolved electron diagnostics. This unique component is used to add a small level of intrinsic energy spread to the electron beam in order to Landau damp the microbunching instability before it potentially breaks up the high brightness electron beam. The system was fully installed and tested in the fall of 2008, and effects of heating on the electron beam and the x-ray FEL were studied during the 2009 commissioning period. The laser heater system is composed of a 4-dipole chicane; a 9-period, planar, permanent-magnet, adjustable-gap undulator at the center of the chicane; one OTR screen on each side of the undulator for electron/laser spatial alignment; and an IR laser (up to 15-MW power) which co-propagates with the electron beam inside the undulator generating a 758-nm energy modulation along the bunch. The final two dipoles of the 4-dipole chicane time-smear this modulation leaving only a thermal-like intrinsic energy spread within the bunch. Table 1 lists the main parameters for this system. The very bright electron beam required for an x-ray free-electron laser (FEL), such as the LCLS, is susceptible to a microbunching instability in the magnetic bunch compressors, prior to the FEL undulator. The uncorrelated electron energy spread in the LCLS can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the FEL performance. To

  14. Combination fence and solar heater for swimming pools

    SciTech Connect

    Divine, D.L.

    1981-07-28

    A combination fence and solar heater for swimming pools comprises a fence shaped for extending about the periphery of the pool to restrict ingress and egress therefrom. A tubular heat exchanger is formed in at least one section of the fence, includes an exterior surface adapted to absorb solar energy, and communicates with the water in the swimming pool. The number of heat exchanger fence sections can be varied in accordance with the climate in which the pool is located. A pump flows the water in the swimming pool through the heat exchanger fence sections during daylight hours, thereby simultaneously heating the water in the pool, and providing an attractive and protective safety barrier about the swimming pool.

  15. Feedwater heater life optimization at Peach Bottom Atomic Power Station

    SciTech Connect

    Thomas, D.S.; Catapano, M.C.

    1996-08-01

    This paper illustrates a complete inspection, testing, and maintenance program implemented at PECO Energy`s Peach Bottom Atomic Power Station (PBAPS). Concerns that tubes may have been too conservatively plugged due to insufficient data justified a program that included: removal of previously installed plugs; videoprobe inspection of failed areas; extraction of tube samples for further analysis; eddy current testing of selected tubes; evaluation of the condition of insurance plugged tubes for return to service; hydrostatic testing of selected tubes; final repair plan based on the results of the above program. This paper concludes that no single method of inspection or testing should be solely relied upon in establishing: the extent of actual degraded conditions; the source(s) of failure mechanisms; and the details of repair. It is a combination of all gathered data that affords the best chance in arresting problems and optimizing feedwater heater life.

  16. Extended range tankless water heater. Final technical report

    SciTech Connect

    Harris, J.A.

    1993-04-18

    In this research program, a laboratory test facility was built for the purpose of testing a gas-fired water heating appliance. This test facility can be used to examine the important performance characteristics of efficiency, dynamic response, and quality of combustion. An innovative design for a tankless water heater was built and then tested to determine its performance characteristics. This unit was tested over a 5:1 range in input (20,000 to 100,000 btuh heat input). The unit was then configured as a circulating hot water boiler, and a specially designed heat exchanger was used with it to generate domestic hot water. This unit was also tested, and was found to offer performance advantages with regard to low flow and temperature stability.

  17. 41 CFR 102-74.190 - Are portable heaters, fans and other such devices allowed in Government-controlled facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are portable heaters... § 102-74.190 Are portable heaters, fans and other such devices allowed in Government-controlled facilities? Federal agencies are prohibited from operating portable heaters, fans, and other such devices...

  18. 41 CFR 102-74.190 - Are portable heaters, fans and other such devices allowed in Government-controlled facilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Are portable heaters... § 102-74.190 Are portable heaters, fans and other such devices allowed in Government-controlled facilities? Federal agencies are prohibited from operating portable heaters, fans, and other such devices...

  19. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the water heater to the amount of energy consumed by the water heater as measured during the thermal... 10 Energy 3 2014-01-01 2014-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF...

  20. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the water heater to the amount of energy consumed by the water heater as measured during the thermal... 10 Energy 3 2012-01-01 2012-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF...

  1. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Water Heaters E Appendix E to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix E to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Water Heaters 1. Definitions 1.1Cut-in means the time when or water temperature at which a water heater...

  2. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-1994. The expression of fuel consumption for oil-fired pool heaters shall be in Btu. 4.2Average annual fossil fuel energy for pool heaters. The average annual fuel energy for pool heater, EF, is defined as... of pool operating hours=4464 h QIN=rated fuel energy input as defined according to 2.9.1 or 2.9.2...

  3. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-1994. The expression of fuel consumption for oil-fired pool heaters shall be in Btu. 4.2Average annual fossil fuel energy for pool heaters. The average annual fuel energy for pool heater, EF, is defined as... of pool operating hours=4464 h QIN=rated fuel energy input as defined according to 2.9.1 or 2.9.2...

  4. System for controlling air-fuel ratio

    SciTech Connect

    Morozumi, T.

    1982-09-14

    A system for controlling the air-fuel ratio for an internal combustion engine having an induction passage, an exhaust passage , a choke valve in the induction passage, an automatic choke device comprising a positive temperature coefficient (Ptc) heater and a bimetal element connected to the choke valve, a detector for detecting the concentration of a constituent of exhaust gases passing through the exhaust passage, an electronic control circuit, an on-off type electromagnetic valve actuated by the output signal from the electronic control circuit for correcting the air-fuel ratio of the air-fuel mixture supplied by an airfuel mixture supplier, and means for actuating the on-off type electromagnetic valve at a fixed duty ratio during cold engine operation. The electronic control circuit comprises a vacuum sensor for converting the amount of the induced air to an electric quantity, an engine temperature detector for converting the engine temperature to an electric quantity, a first calculating circuit for producing a proper desired air-fuel mixture ratio signal from the output signals of the vacuum sensor and of the engine temperature detector, and a second calculation circuit for producing an actual air-fuel ratio signal from output signals of the vacuum sensor and of the ptc heater. A summing circuit for summing the proper air-fuel ratio signal and the actual air-fuel ratio signal produces a pulse duty ratio correcting signal which is applied to the electronic control circuit for correcting the fixed duty ratio.

  5. GPU-based parallel method of temperature field analysis in a floor heater with a controller

    NASA Astrophysics Data System (ADS)

    Forenc, Jaroslaw

    2016-06-01

    A parallel method enabling acceleration of the numerical analysis of the transient temperature field in an air floor heating system is presented in this paper. An initial-boundary value problem of the heater regulated by an on/off controller is formulated. The analogue model is discretized using the implicit finite difference method. The BiCGStab method is used to compute the obtained system of equations. A computer program implementing simultaneous computations on CPUand GPU(GPGPUtechnology) was developed. CUDA environment and linear algebra libraries (CUBLAS and CUSPARSE) are used by this program. The time of computations was reduced eight times in comparison with a program executed on the CPU only. Results of computations are presented in the form of time profiles and temperature field distributions. An influence of a model of the heat transfer coefficient on the simulation of the system operation was examined. The physical interpretation of obtained results is also presented.Results of computations were verified by comparing them with solutions obtained with the use of a commercial program - COMSOL Mutiphysics.

  6. Experimental study on flat plate air solar collector using a thin sand layer

    NASA Astrophysics Data System (ADS)

    Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel

    2016-07-01

    A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.

  7. An energy equivalency analysis of trade-offs between thermal efficiency and standby loss requirements for commercial gas service water heaters

    SciTech Connect

    Somasundaram, S.; Jarnagin, R.E.; Keller, J.M.; Schliesing, J.S.

    1992-06-01

    The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) Standing Standard Project Committee 90.1 has approved an addendum (90.lb) to ASHRAE/IES Standard 90.1-1989. The addendum specifies an increase in the minimum thermal efficiency requirement (from 77% to 78%), accompanied by an easing of the standby loss requirements, for commercial gas-fired service water heaters. The Pacific Northwest Laboratory performed an energy equivalency analysis to assess the impact of trade-offs between the improved thermal efficiency and the less stringent standby loss requirements. The analysis objective was to estimate whether the energy savings during firing would offset the increased energy losses during standby periods. The primary focus of this report is to summarize the major results of the analysis and provide a recommendation for minimum energy-efficiency commercial gas-fired service water heaters. Limitations to the availability of detailed performance and energy-use data for these commercial water heaters are also pointed out.

  8. Careers for the 70's in Heating and Air Conditioning

    ERIC Educational Resources Information Center

    Toner, James P.

    1974-01-01

    In a trade encompassing all others in construction, installation foremen for heating/air conditioning firms spend a varied day (repairing a water heater, overseeing installation crews). Decision-makers who must think while using their hands, they rely heavily on preparation in math, mechanical drawing, blueprint reading, physics, and electicity.…

  9. Three-Dimensional Printable High-Temperature and High-Rate Heaters.

    PubMed

    Yao, Yonggang; Fu, Kun Kelvin; Yan, Chaoyi; Dai, Jiaqi; Chen, Yanan; Wang, Yibo; Zhang, Bilun; Hitz, Emily; Hu, Liangbing

    2016-05-24

    High temperature heaters are ubiquitously used in materials synthesis and device processing. In this work, we developed three-dimensional (3D) printed reduced graphene oxide (RGO)-based heaters to function as high-performance thermal supply with high temperature and ultrafast heating rate. Compared with other heating sources, such as furnace, laser, and infrared radiation, the 3D printed heaters demonstrated in this work have the following distinct advantages: (1) the RGO based heater can operate at high temperature up to 3000 K because of using the high temperature-sustainable carbon material; (2) the heater temperature can be ramped up and down with extremely fast rates, up to ∼20 000 K/second; (3) heaters with different shapes can be directly printed with small sizes and onto different substrates to enable heating anywhere. The 3D printable RGO heaters can be applied to a wide range of nanomanufacturing when precise temperature control in time, placement, and the ramping rate are important. PMID:27152732

  10. Heat transfer characteristics of a high temperature sensible heat storage water heater using cast iron as a storage material

    SciTech Connect

    Jotshi, C.K.; Goswami, D.Y.; Klausner, J.F.; Hsieh, C.K.; Leung, M.; Li, H.; Malakar, S.; Colacino, F.

    1996-12-31

    This paper describes the heat transfer characteristics of high temperature sensible heat storage in cast iron for water heating applications. An experimental setup consisting of a cast iron cylinder and a tube running through its center was fabricated and tested. The experimental data were compared with the theoretical model. It was observed that the contact resistance between the cast iron and the tube plays a dominant role in extracting the heat. An approximate contact resistance prediction was obtained by assuming the resistance due to the air gap modulated by a correction factor, which accounts for the contacting surface area. Based on the results from the experimental setup and theoretical modeling a prototype storage water heater using cast iron blocks as the storage material was designed, fabricated and tested.

  11. 76 FR 80597 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ...On March 21, 2011, the EPA promulgated national emission standards for the control of hazardous air pollutants from new and existing industrial, commercial, and institutional boilers and process heaters at major sources of hazardous air pollutants. On that same day, the EPA also published a notice announcing its intent to reconsider certain provisions of the final rule. The EPA subsequently......

  12. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    SciTech Connect

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it

  13. Forced-convection peak heat flux on cylindrical heaters in water and refrigerant 113

    NASA Technical Reports Server (NTRS)

    Cochran, T. H.; Andracchio, C. R.

    1974-01-01

    An investigation was conducted of the peak heat flux on cylindrical heaters in a fluid flowing perpendicular to the major axis of the heater. The test fluids were water and Refrigerant 113. Heaters of 0.049 to 0.181 cm diameter were tested over a fluid velocity range of 10.1 to 81.1 cm/sec. The experimental results were observed to fall within two regions based on the vapor removal geometry: jets or sheets. Mathematical models for each region successfully correlated the data for both fluids.

  14. Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters

    NASA Astrophysics Data System (ADS)

    Xiong, Feng; Liao, Albert; Pop, Eric

    2009-12-01

    Carbon nanotube (CNT) heaters with sub-5 nm diameter induce highly localized phase change in Ge2Sb2Te5 (GST) chalcogenide. A significant reduction in resistance of test structures is measured as the GST near the CNT heater crystallizes. Effective GST heating occurs at currents as low as 25 μA, significantly lower than in conventional phase change memory with metal electrodes (0.1-0.5 mA). Atomic force microscopy reveals nucleation sites associated with phase change in GST around the CNT heater. Finite element simulations confirm electrical characteristics consistent with the experiments, and reveal the current and phase distribution in GST.

  15. Evaluation of a Stirling engine heater bypass with the NASA Lewis nodal-analysis performance code

    SciTech Connect

    Sullivan, T.J.

    1986-05-01

    In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Research Center investigated whether bypassing the P-40 Stirling engine heater during regenerative cooling would improve the engine thermal efficiency. The investigation was accomplished by using the Lewis nodal-analysis Stirling engine computer model. Bypassing the P-40 Stirling engine heater at full power resulted in a rise in the indicated thermal efficiency from 40.6 to 41.0 percent. For the idealized (some losses not included) heater bypass that was analyzed, this benefit is not considered significant.

  16. High pressure coal-fired ceramic air heater for gas turbine applications. Second quarterly report, 1995

    SciTech Connect

    1997-07-01

    The manuscript of the paper presented at the Advanced Coal-Fired Power Systems `95 Review Meeting at DOE METC, June 27, was submitted for inclusion in the published proceedings. The paper focused on the building of the pilot plant in Kennebunk, Maine, and the proof of concept tests performed to date. Slide shows and tours of the Kennebunk Test Facility were held for local community leaders, many of whom were concerned about plant noise levels. The Kennebunk Rotary Club was addressed on July 18. On July 24, a town manager attended a demonstration of noise abatement measures Hague had taken to address complaints about the sound of the facility`s ID fan. This resulted in a favorable newspaper story published in the Biddeford - Saco Journal Tribune on July 26. Heat Exchanger Development Task 2.4.1 - Tube- String Development: Improve Tube Toughness: Evaluation of an improved containment system is proceeding. Several prototype samples fabricated some time ago have been tested. The first round of tests successfully demonstrated the containment concept. Tests are planned to evaluate the containment scheme using so called `high temperature` materials suitable for use in the CerHx.

  17. 40 CFR Table 3 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Mercury Emission Limits and Boilers and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Process Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With... Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With the... operating limits: If you demonstrate compliance with applicable mercury and/or total selected...

  18. 40 CFR Table 3 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Mercury Emission Limits and Boilers and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Process Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With... Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With the... operating limits: If you demonstrate compliance with applicable mercury and/or total selected...

  19. 40 CFR Table 3 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Mercury Emission Limits and Boilers and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Process Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With... Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With the... operating limits: If you demonstrate compliance with applicable mercury and/or total selected...

  20. Fuel switching for Clean Air Act compliance-boiler considerations

    SciTech Connect

    Warchol, J.J.; Kitto, B. Jr.; Kulig, J.S.

    1995-03-01

    Boiler considerations in fuel switching for Clean Air Act Compliance are outlined. The following topics are discussed: fuel switching options, major fuel characteristics, coal receiving and handling, dust control, grindability vs coal rank, pulverizers and burners, burning profiles, deposition zones in a coal-fired boiler, sootblower location, flues, ducts, and fans, air heaters, electrostatic precipitator (ESP), fly ash resistivity, potential ESP upgrades, ash handling system, auxiliary power system, economic factors, site considerations, and political issues. A summary and conclusion is presented.

  1. 70. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, LOOKING NORTH AT SOUTH CORNER. FAN ROOM WITH STEAM HEATER IN FOREGROUND RIGHT. COOPER ELBOW VENTS ON ROOF ARE FROM DRYING ROOMS. STEAM LINE IN FOREGROUND, POWDER WAS DRIED ON RACKS IN DRYING ROOMS VENTILATED WITH HOT AIR. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  2. Preparation of large-area double-walled carbon nanotube films and application as film heater

    NASA Astrophysics Data System (ADS)

    Wu, Zi Ping; Wang, Jian Nong

    2009-11-01

    Large-area (larger than 30×30 cm 2) double-walled carbon nanotube (DWCNT) films are prepared and application as a heating element for film heaters is demonstrated. A high heating efficiency is observed. Measurements indicate that the use of the DWCNT film heater would save energy consumption up to 20-30% when compared with a commercial film-like metal-based heater. Morphological analysis reveals that the special surface structure, appropriate electric and high thermal conductivities of the film formed by the network of entangled nanotube bundles may lead to the high heating performance. Considering large-area, shape flexibility, negligible weight and easy manipulation, the film exhibits promising potential applications as a film heater for thermal control in aircrafts, medical equipment, home appliances and other industrial fields at low temperature (below 400 °C).

  3. Analysis of quench properties of the Q3 magnets with and without open circuit heater elements

    SciTech Connect

    Lackey, Sharon; Marriner, John; Pfeffer, Howie; /Fermilab

    1995-11-01

    The Q3 magnets have 2 independent heater elements that are energized by the quench protection system. One heater element in the Q3 magnet at A4 became an open circuit after the initial cooldown. Recently the second element became an open circuit. The Q3 magnet at A4 is powered in series with a Q3 magnet at B1. The heaters in the magnet at B1 are still intact. The purpose of this study is to determine if the magnet circuit can be operated without undue risk of damage to the magnets. The risk of damage to the magnet at A4 is less of a concern since repairing the heaters is expected to be a major effort in any event. There is one spare Q3 magnet.

  4. Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.

    PubMed

    Ramette, Joshua; Kasprzack, Marie; Brooks, Aidan; Blair, Carl; Wang, Haoyu; Heintze, Matthew

    2016-04-01

    Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in the Advanced Laser Interferometer Gravitational-wave Observatory. PMID:27139664

  5. Self-regulating heater application to Shuttle/Centaur hydrazine fuel line thermal control

    NASA Technical Reports Server (NTRS)

    Unkrich, David B.

    1987-01-01

    The Shuttle/Centaur high energy upper stage vehicle thermal environments were more severe than previous Centaur vehicle thermal environments, creating need for a new hydrazine fuel line thermal control technique. Constant power heaters did not satisfy power dissipation requirements, because the power required to maintain fuel line thermal control during cold conditions exceeded the maximum power allowable during hot conditions. Therefore, a Raychem Thermolimit self-regulating heater was selected for this application, and was attached to the hydrazine fuel line with Kapton and aluminum foil tapes. Fuel line/heater thermal modeling and subsequent thermal vacuum chamber testing simulated heater thermal performance during all worst-case Shuttle/Centaur thermal environmental conditions. Fuel line temperatures were maintained between the 4C to 71C limits during all analytical and test cases. Finally, the thermal model predictions were correlated with the test data, thereby ensuring that the model would provide satisfactory predictions for future missions and/or vehicles.

  6. Swift BAT Thermal Recovery After Loop Heat Pipe #0 Secondary Heater Controller Failure in October 2015

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2016-01-01

    The Swift BAT LHP #0 primary heater controller failed on March 31, 2010. It has been disabled. On October 31, 2015, the secondary heater controller of this LHP failed. On November 1, 2015, the LHP #0 CC temperature increased to as 18.6 C, despite that the secondary heater controller set point was 8.8 C. It caused the average DM XA1 temperature to increase to 25.9 C, which was 5 C warmer than nominal. As a result, the detectors became noisy. To solve this problem, the LHP #1 secondary heater controller set point was decreased in 0.5 C decrements to 2.2 C. The set-point decrease restored the average DM XA1 temperature to a nominal value of 19.7 C on November 21.

  7. Wirelessly addressable heater array for centrifugal microfluidics and Escherichia coli sterilization.

    PubMed

    Chen, Xing; Song, Lele; Assadsangabi, Babak; Fang, Jie; Mohamed Ali, Mohamed Sultan; Takahata, Kenichi

    2013-01-01

    Localized temperature control and heater interface remain challenges in centrifugal microfluidics and integrated lab-on-a-chip devices. This paper presents a new wireless heating method that enables selective activation of micropatterned resonant heaters using external radiofrequency (RF) fields and its applications. The wireless heaters in an array are individually activated by modulating the frequency of the external field. Temperature of 93 °C is achieved in the heater when resonated with a 0.49-W RF output power. The wireless method is demonstrated to be fully effective for heating samples under spinning at high speeds, showing its applicability to centrifugal systems. Selective sterilization of Escherichia coli through the wireless heating is also demonstrated. Healthcare applications with a focus on wound sterilization are discussed along with preliminary experiments, showing promising results. PMID:24110983

  8. The influence of thin-film heater shape parameters on the electromigration

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Ding, Shanting; Li, Huajing

    2016-01-01

    Au heater is one of the core components of thermo optic effect devices. The reliability of Au heaters affects the lifetime of whole devices directly. In order to explore the influence of shape parameters on lifetime of Au heater, the accelerate life test (ALT) was designed and conducted. Samples with different shape parameters were prepared for the ALT in which the applied current was 500mA and the test temperature was 150°C. The results showed that failure mode of all the different samples was open circuit. The electromigration was found the reason for this kind of failure in test conditions. According to the experimental and finite element simulating results, the fusing break appeared in the transition arc area where temperature gradient was the maximum. It is also can be found that the larger the radius, the later the failure. In other words, lifetime of the thin-film heater with larger transition radius was longer.

  9. Radio-Frequency Driven Dielectric Heaters for Non-Nuclear Testing in Nuclear Core Development

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor); Godfroy, Thomas J. (Inventor); Bitteker, Leo (Inventor)

    2006-01-01

    Apparatus and methods are provided through which a radiofrequency dielectric heater has a cylindrical form factor, a variable thermal energy deposition through variations in geometry and composition of a dielectric, and/or has a thermally isolated power input.

  10. Efficient graphite ring heater suitable for diamond-anvil cells to 1300 K

    SciTech Connect

    Du Zhixue; Amulele, George; Lee, Kanani K. M.; Miyagi, Lowell

    2013-02-15

    In order to generate homogeneous high temperatures at high pressures, a ring-shaped graphite heater has been developed to resistively heat diamond-anvil cell (DAC) samples up to 1300 K. By putting the heater in direct contact with the diamond anvils, this graphite heater design features the following advantages: (1) efficient heating: sample can be heated to 1300 K while the DAC body temperature remains less than 800 K, eliminating the requirement of a special alloy for the DAC; (2) compact design: the sample can be analyzed with in situ measurements, e.g., x-ray, optical, and electrical probes are possible. In particular, the side access of the heater allows for radial x-ray diffraction (XRD) measurements in addition to traditional axial XRD.

  11. Radiant heater for vacuum furnaces offers high structural rigidity, low heat loss

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1964-01-01

    Some problems associated with high temperature heaters for vacuum furnaces have been eliminated by the use of shaped filaments of refractory metal. These filaments, supported in cylindrical array by ceramic spacers, operate with high voltage, low current power.

  12. Hybrid IR-Gas Heater for Automated Tow Placement

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, Norman J.; Tiwari, S. N.; Marchello, Joseph M.

    1998-01-01

    A hybrid infrared-hot gas heat source has been developed and tested for the NASA Langley Tow Placement Facility. The IR heat source provides supplemental heat to the nip region. The additional heat is intended to reduce the need for conduction heating by the compaction roller, which causes (he roller to stick to the panel surface. Initial bench scale testing was performed to identify the most effective means of focusing IR energy into the nip region. A compact lamp and reflector that placed the lamp as close to the nip point as possible was found to deliver the highest heat flux in the nip region. A prototype heater was installed on the NASA Langley tow placement robot. Panels placed with a 400 C (sticking) compaction roller gave DCB initiation toughness numbers comparable to those reported for autoclave processed panels but were found to have unexpectedly high void contents. Placement with compaction roller temperatures that prevented roller sticking resulted in mode I fracture toughness approximately 70% that reported for autoclave processed panels. The variability in strength among specimens placed with reduced roller temperature was found to be greatly reduced, which implies that use of supplemental nip point heat may improve the robustness of the tow placement process. Use of the IR heat source permitted placement with a compaction roller temperature that would have resulted in negligible interfacial strength with the hot gas torch alone. The roller temperature reductions eliminated the need for the robot operator to attend placement operations.

  13. ARCFLO analysis for high-enthalpy arc heaters

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.

    1991-01-01

    Feasibility, physical constraints, and preliminary design and operating envelope are calculated for a next-generation segmented arc heater with enthalpies of 70-90 MJ/kg, for simulation of fast lunar or Martian return trajectories. The ARCFLO computer program is modified for improved accuracy in high-enthalpy radiation-dominated flows. The ARCFLO band-radiation model is compared with the state-of-the-art spectral-radiation code NEQAIR. The band-radiation model is corrected, and band-absorption coefficients are reduced by up to 40 percent at high temperatures. Parametric studies show that, with conventional wall-heating limitations, high mass flow and high enthalpy are contradictory design goals owing to the increase of radiation losses with pressure, current density, and constrictor diameter. With existing hardware limitations, an enthalpy of 70 MJ/kg with a flow rate of 0.1 kg/s can be achieved in a constrictor with 5-6 cm diameter operating near 3-atm stagnation pressure. The total power is under 100 MW, but the current is very high: 14,000-18,000 amperes.

  14. Heat pump water heater and method of making the same

    DOEpatents

    Mei, Viung C.; Tomlinson, John J.; Chen, Fang C.

    2001-01-01

    An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.

  15. Heat pump water heater and storage tank assembly

    DOEpatents

    Dieckmann, John T.; Nowicki, Brian J.; Teagan, W. Peter; Zogg, Robert

    1999-09-07

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  16. Study of He II boiling flow field around a heater

    NASA Astrophysics Data System (ADS)

    Murakami, M.; Takada, S.; Nozawa, M.

    2015-12-01

    We studied boiling phenomena in He II based on the flow velocity measurement data by using a PIV (Particle Image Velocimeter). Noisy and silent film boiling modes together with non-boiling state were generated on/around a horizontal planar or a cylindrical heater. For PIV tracer particles, we used H2-D2 solid particles that were neutrally buoyant in He II. Video images showing the development and collapse of vapour bubble or film and the motions of tracer particles were PIV-analysed. We found the PIV velocity field was composed of AC and DC velocity components of the normal fluid. The AC component follows the dynamic behaviour of vapour, and the DC results primarily from the thermal counter flow and secondarily is induced by the asymmetric vapour bubble motion. We also investigated unsteady velocity component. The objective of this series of study is to compare the characteristic features of the flow field of He II film boiling states and peculiar He I boiling state in He II and to make clear the difference in the heat transfer performance of each boiling mode.

  17. THE DRIFT SCALE HEATER TEST AT YUCCA MOUNTAIN, NEVADA

    SciTech Connect

    Peters, Mark T.; Boyle, William J.; Datta, Robin N.; Elkins, Ned Z.; Yasek, Robert N.; Wagner, Ralph A.; Weaver, Douglas J.

    1998-01-30

    The Drift Scale Heater Test (DST) is an integral part of the program of testing and studies being conducted by the U.S. Department of Energy to evaluate the suitability of Yucca Mountain, Nevada as a site of a deep geologic repository for the permanent disposal of spent nuclear fuel and high-level nuclear waste. The DST is a large-scale, in situ thermal test to be conducted over nearly a decade in the Exploratory Studies Facility at Yucca Mountain (Figure 1). The overall objective of the DST is to acquire a more indepth understanding of the physical processes that will occur in the rock surrounding the emplaced waste. There are four principal processes of concern: thermal, mechanical, hydrological, and chemical. These processes will be intensified because of the decay heat from the emplaced waste and their interaction or coupling. An understanding of these coupled processes is essential for the assessment of the long-term (over thousands of years) performance of the repository.

  18. Experimental performance of an internal resistance heater for Langley 6-inch expansion tube driver

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.

    1972-01-01

    An experimental investigation of the heating characteristics of an internal resistance heating element was conducted in the driver of the Langley 6-inch expansion tube to obtain actual operating conditions, to compare these results to theory, and to determine whether any modification need be made to the heater element. The heater was operated in pressurized helium from 138. MN/sq m to 62.1 MN/sq m. This investigation revealed large temperature variations within the heater element caused primarily by area reductions at insulator locations. These large temperature variations were reduced by welding small tabs over all grooves. Previous predictions of heater element and driver gas temperature were unacceptable so new equations were derived. These equations predict element and gas temperature within 10 percent of the test data when either the constant power cycle or the interrupted power cycle is used. Visual observation of the heater element, when exposed to the atmosphere with power on, resulted in a decision to limit the heater element to 815 K. Experimental shock Mach numbers are in good agreement with theory.

  19. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    SciTech Connect

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  20. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    SciTech Connect

    Maguire, Jeff; Burch, Jay; Merrigan, Tim; Ong, Sean

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.