Science.gov

Sample records for air heating receiver

  1. Evaluation of solar-air-heating central-receiver concepts

    SciTech Connect

    Bird, S.P.; Drost, M.K.; Williams, T.A.; Brown, D.R.; Fort, J.A.; Garrett-Price, B.A.; Hauser, S.G.; McLean, M.A.; Paluszek, A.M.; Young, J.K.

    1982-06-01

    The potential of seven proposed air-heating central receiver concepts are evaluated based on an independent, uniform of each one's performance and cost. The concepts include: metal tubes, ceramic tubes, sodium heat pipes, ceramic matrix, ceramic domes, small particles, and volumetric heat exchange. The selection of design points considered in the analysis, the method and ground rules used in formulating the conceptual designs are discussed, and each concept design is briefly described. The method, ground rules, and models used in the performance evaluation and cost analysis and the results are presented. (LEW)

  2. Solar heat receiver

    DOEpatents

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  3. Air Brayton Solar Receiver, phase 2

    NASA Astrophysics Data System (ADS)

    Deanda, L. E.

    1981-12-01

    An air Brayton solar receiver (ABSR) is discussed. The ABSR consists of a cylindrical, insulated, offset plate fin heat exchanger which is mounted at the focal plane of a fully tracking parabolic solar collector. The receiver transfer heat from the concentrated solar radiation (which impinges on the inside walls of the heat exchanger) to the working fluid i.e., air. The hot air would then e used to drive a small Brayton cycle heat engine. The engine in turn drives a generator which produces electrical energy. Symmetrical and asymmetrical solar power input into the ABSR are analyzed. The symmetrical cases involve the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are obtained by reduced solar input from one half of the concentrator or by receiver offset of plus or minus 1 inch from the concentrator optical axis.

  4. Air Brayton Solar Receiver, phase 2

    NASA Technical Reports Server (NTRS)

    Deanda, L. E.

    1981-01-01

    An air Brayton solar receiver (ABSR) is discussed. The ABSR consists of a cylindrical, insulated, offset plate fin heat exchanger which is mounted at the focal plane of a fully tracking parabolic solar collector. The receiver transfer heat from the concentrated solar radiation (which impinges on the inside walls of the heat exchanger) to the working fluid i.e., air. The hot air would then e used to drive a small Brayton cycle heat engine. The engine in turn drives a generator which produces electrical energy. Symmetrical and asymmetrical solar power input into the ABSR are analyzed. The symmetrical cases involve the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are obtained by reduced solar input from one half of the concentrator or by receiver offset of plus or minus 1 inch from the concentrator optical axis.

  5. Two-dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar stirling engine

    SciTech Connect

    Makhkamov, K.K.; Ingham, D.B.

    1999-11-01

    A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.

  6. Solar dynamic heat receiver technology

    NASA Technical Reports Server (NTRS)

    Sedgwick, Leigh M.

    1991-01-01

    A full-size, solar dynamic heat receiver was designed to meet the requirements specified for electrical power modules on the U.S. Space Station, Freedom. The heat receiver supplies thermal energy to power a heat engine in a closed Brayton cycle using a mixture of helium-xenon gas as the working fluid. The electrical power output of the engine, 25 kW, requires a 100 kW thermal input throughout a 90 minute orbit, including when the spacecraft is eclipsed for up to 36 minutes from the sun. The heat receiver employs an integral thermal energy storage system utilizing the latent heat available through the phase change of a high-temperature salt mixture. A near eutectic mixture of lithium fluoride and calcium difluoride is used as the phase change material. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification. Fabrication of the receiver is complete and it was delivered to NASA for verification testing in a simulated low-Earth-orbit environment. This document reviews the receiver design and describes its fabrication history. The major elements required to operate the receiver during testing are also described.

  7. Requirements for high-temperature air-cooled central receivers

    SciTech Connect

    Wright, J.D.; Copeland, R.J.

    1983-12-01

    The design of solar thermal central receivers will be shaped by the end user's need for energy. This paper identifies the requirements for receivers supplying heat for industrial processes or electric power generation in the temperature range 540 to 1000/sup 0/C and evaluates the effects of the requirements on air-cooled central receivers. Potential IPH applications are identified as large baseload users that are located some distance from the receiver. In the electric power application, the receiver must supply heat to a pressurized gas power cycle. The difficulty in providing cost-effective thermal transport and thermal storage for air-cooled receivers is a critical problem.

  8. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as...

  9. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as...

  10. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as...

  11. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as...

  12. 29 CFR 1917.155 - Air receivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.155 Air receivers. (a) Application. This section applies to compressed air receivers and equipment used for operations such as...

  13. Development of an Air Brayton solar receiver

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Various receiver configurations and operating conditions were examined. The interface requirements between the receiver/concentrator/power module were addressed. Production cost estimates were obtained to determine the cost of the receiver during the 1980 timeframe. A conceptual design of an air Brayton solar receiver is presented based on the results. The following design goals were established: (1)peak thermal input power - 85 KWt; (2)receiver outlet air temperature - 1500 F; (3)receiver inlet air temperature - 1050 F; (4)design mass flow rate - 0.533 lb/sec; and (5)design receiver inlet pressure - 36.75 psia.

  14. Heat-Energy Analysis for Solar Receivers

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1982-01-01

    Heat-energy analysis program (HEAP) solves general heat-transfer problems, with some specific features that are "custom made" for analyzing solar receivers. Can be utilized not only to predict receiver performance under varying solar flux, ambient temperature and local heat-transfer rates but also to detect locations of hotspots and metallurgical difficulties and to predict performance sensitivity of neighboring component parameters.

  15. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  16. Forced air heat sink apparatus

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor)

    1989-01-01

    A high efficiency forced air heat sink assembly employs a split feed transverse flow configuration to minimize the length of the air flow path through at least two separated fin structures. Different embodiments use different fin structure material configurations including honeycomb, corrugated and serpentine. Each such embodiment uses a thermally conductive plate having opposed exterior surfaces; one for receiving a component to be cooled and one for receiving the fin structures. The serpentine structured fin embodiment employs a plurality of fin supports extending from the plate and forming a plurality of channels for receiving the fin structures. A high thermal conductivity bondant, such as metal-filled epoxy, may be used to bond the fin structures to either the plate or the fin supports. Dip brazing and soldering may also be employed depending upon the materials selected.

  17. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and equipment used on transportation vehicles such as steam railroad cars, electric railway cars, and... therein are easily accessible. Under no circumstances shall an air receiver be buried underground...

  18. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and equipment used on transportation vehicles such as steam railroad cars, electric railway cars, and... therein are easily accessible. Under no circumstances shall an air receiver be buried underground...

  19. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and equipment used on transportation vehicles such as steam railroad cars, electric railway cars, and... therein are easily accessible. Under no circumstances shall an air receiver be buried underground...

  20. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and equipment used on transportation vehicles such as steam railroad cars, electric railway cars, and... therein are easily accessible. Under no circumstances shall an air receiver be buried underground...

  1. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transportation vehicles such as steam railroad cars, electric railway cars, and automotive equipment. (2) New and... manholes therein are easily accessible. Under no circumstances shall an air receiver be buried...

  2. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transportation vehicles such as steam railroad cars, electric railway cars, and automotive equipment. (2) New and... manholes therein are easily accessible. Under no circumstances shall an air receiver be buried...

  3. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transportation vehicles such as steam railroad cars, electric railway cars, and automotive equipment. (2) New and... manholes therein are easily accessible. Under no circumstances shall an air receiver be buried...

  4. 29 CFR 1910.169 - Air receivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and equipment used on transportation vehicles such as steam railroad cars, electric railway cars, and... therein are easily accessible. Under no circumstances shall an air receiver be buried underground...

  5. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transportation vehicles such as steam railroad cars, electric railway cars, and automotive equipment. (2) New and... manholes therein are easily accessible. Under no circumstances shall an air receiver be buried...

  6. 29 CFR 1926.306 - Air receivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transportation vehicles such as steam railroad cars, electric railway cars, and automotive equipment. (2) New and... manholes therein are easily accessible. Under no circumstances shall an air receiver be buried...

  7. Solar Heat-Pipe Receiver Wick Modeling

    SciTech Connect

    Andraka, C.E.

    1998-12-21

    Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. In previous experimented work, we have demonstrated that a heat pipe receiver can significantly improve system performance-over a directly-illuminated heater head. The design and operating conditions of a heat pipe receiver differ significantly from typical laboratory heat pipes. New wick structures have been developed to exploit the characteristics of the solar generation system. Typically, these wick structures allow vapor generation within the wick. Conventional heat pipe models do not handle this enhancement yet it can more than double the performance of the wick. In this study, I develop a steady-state model of a boiling-enhanced wick for a solar heat pipe receiver. The model is used for design-point calculations and is written in FORTRAN90. Some limited comparisons have been made with actual test data.

  8. Air circuit with heating pump

    NASA Astrophysics Data System (ADS)

    Holik, H.; Bauder, H. J.; Brugger, H.; Reinhart, A.; Spott, K. H.

    1980-12-01

    A pump which draws energy from exhaust air from a paper drying process to heat up the blow air was studied. The use of a heat pump instead of a steam heated exchanger can reduce primary energy consumption for blown air heating by more than half and the costs for air heating up to half. The amortization times for the heat pump extend from 5 to 10 years. Since in the pulp and paper industry, amortization times of less than two years are required for such relatively small investments, the heat pump so far is only used to heat blown air under highly favorable conditions. The rising energy prices shorten the heat pump amortization time. The 100% fuel price increase brought the heat pump with diesel engine drive already to very favorable amortization times of 2 to 5 years. A 20% increase will make the heat pump economically advantageous with an amortization time between 1 and 2 years.

  9. Air Brayton Solar Receiver, phase 1

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1979-01-01

    A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.

  10. Advanced heat receiver conceptual design study

    NASA Technical Reports Server (NTRS)

    Kesseli, James; Saunders, Roger; Batchelder, Gary

    1988-01-01

    Solar Dynamic space power systems are candidate electrical power generating systems for future NASA missions. One of the key components of the solar dynamic power system is the solar receiver/thermal energy storage (TES) subsystem. Receiver development was conducted by NASA in the late 1960's and since then a very limited amount of work has been done in this area. Consequently the state of the art (SOA) receivers designed for the IOC space station are large and massive. The objective of the Advanced Heat Receiver Conceptual Design Study is to conceive and analyze advanced high temperature solar dynamic Brayton and Stirling receivers. The goal is to generate innovative receiver concepts that are half of the mass, smaller, and more efficient than the SOA. It is also necessary that these innovative receivers offer ease of manufacturing, less structural complexity and fewer thermal stress problems. Advanced Brayton and Stirling receiver storage units are proposed and analyzed in this study which can potentially meet these goals.

  11. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  12. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  13. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air receiver tanks. 57.13011 Section 57.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more...

  14. 30 CFR 57.13011 - Air receiver tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air receiver tanks. 57.13011 Section 57.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more...

  15. 30 CFR 56.13011 - Air receiver tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air receiver tanks. 56.13011 Section 56.13011... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13011 Air receiver tanks. Air receiver tanks shall be equipped with one or more automatic...

  16. The hybrid pressurized air receiver (HPAR) in the SUNDISC cycle

    NASA Astrophysics Data System (ADS)

    Heller, Lukas; Hoffmann, Jaap; Gauché, Paul

    2016-05-01

    Tubular metallic pressurized air solar receivers face challenges in terms of temperature distribution on the absorber tubes and the limited sustainable solar influx. The HPAR concept aims at mitigating these problems through a macro-volumetric design and a secondary non-pressurized air flow around the absorber elements. Here, a 360◦ manifestation of this concept for implementation in the dual-pressure SUNDISC cycle is presented. Computationally inexpensive models for the numerous heat flows were developed for use in parametric studies of a receiver's geometric layout. Initial findings are presented on the optical penetration of concentrated solar radiation into the absorber structure, blocking of thermal radiation from hot surfaces and the influence of the flow path through the heated tubes. In the basic design the heat transfer to the non-pressurized air stream is found to be insufficient and possible measures for its improvement are given. Their effect will be examined in more detailed models of external convection and thermal radiation to be able to provide performance estimates of the system.

  17. The development of an air Brayton and a steam Rankine solar receiver

    NASA Technical Reports Server (NTRS)

    Greeven, M. V.

    1980-01-01

    An air Brayton and a steam Rankine solar receiver now under development are described. These cavity receivers accept concentrated insolation from a single point focus, parabolic concentrator, and use this energy to heat the working fluid. Both receivers were designed for a solar input of 85 kw. The air Brayton receiver heats the air to 816 C. A metallic plate-fin heat transfer surface is used in this unit to effect the energy transfer. The steam Rankine receiver was designed as a once-through boiler with reheat. The receiver heats the water to 704 C to produce steam at 17.22 MPa in the boiler section. The reheat section operates at 1.2 MPA, reheating the steam to 704 C.

  18. A heat receiver design for solar dynamic space power systems

    NASA Technical Reports Server (NTRS)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  19. Trough Receiver Heat Loss Testing (Presentation)

    SciTech Connect

    Lewandowski, A.; Feik, C.; Hansen, R.; Phillips, S.; Bingham, C.; Netter, J.; Forristal, R.; Burkholder, F.; Meglan, B.; Wolfrum, E.

    2006-02-01

    This presentation describes the design, fabrication, and qualification of an experimental capability for thermal loss testing of full-size trough receiver elements; and the testing on a variety of receivers.

  20. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  1. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver considered in this study uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7 kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  2. Heat Pipe Solar Receiver for Oxygen Production of Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Hartenstine, John R.; Anderson, William G.; Walker, Kara L.; Ellis, Michael C.

    2009-03-01

    A heat pipe solar receiver operating in the 1050° C range is proposed for use in the hydrogen reduction process for the extraction of oxygen from the lunar soil. The heat pipe solar receiver is designed to accept, isothermalize and transfer solar thermal energy to reactors for oxygen production. This increases the available area for heat transfer, and increases throughput and efficiency. The heat pipe uses sodium as the working fluid, and Haynes 230 as the heat pipe envelope material. Initial design requirements have been established for the heat pipe solar receiver design based on information from the NASA In-Situ Resource Utilization (ISRU) program. Multiple heat pipe solar receiver designs were evaluated based on thermal performance, temperature uniformity, and integration with the solar concentrator and the regolith reactor(s). Two designs were selected based on these criteria: an annular heat pipe contained within the regolith reactor and an annular heat pipe with a remote location for the reactor. Additional design concepts have been developed that would use a single concentrator with a single solar receiver to supply and regulate power to multiple reactors. These designs use variable conductance or pressure controlled heat pipes for passive power distribution management between reactors. Following the design study, a demonstration heat pipe solar receiver was fabricated and tested. Test results demonstrated near uniform temperature on the outer surface of the pipe, which will ultimately be in contact with the regolith reactor.

  3. A Ceramic Heat Exchanger for Solar Receivers

    NASA Technical Reports Server (NTRS)

    Robertson Jr., C.; Stacy, L.

    1985-01-01

    Design intended for high-temperature service. Proposed ceramic-tube and header heat exchangers used for solar-concentrating collector operating in 25- to 150-KW power range at temperatures between 2,000 degrees and 3,000 degrees F (1,095 degrees and 1,650 degrees C).

  4. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    ERIC Educational Resources Information Center

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  5. A Brayton cycle solar dynamic heat receiver for space

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Nordwall, H. L.; Kaufmann, K. J.; Johnson, S. D.

    1989-01-01

    The detailed design of a heat receiver developed to meet the requirements of the Space Station Freedom, which will be assembled and operated in low earth orbit beginning in the mid-1990's, is described. The heat receiver supplies thermal energy to a nominal 25-kW closed-Brayton-cycle power conversion unit. The receiver employs an integral thermal energy storage system utilizing the latent heat of a eutectic-salt phase-change mixture to store energy for eclipse operation. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification.

  6. Design and fabrication of brayton cycle solar heat receiver

    NASA Technical Reports Server (NTRS)

    Mendelson, I.

    1971-01-01

    A detail design and fabrication of a solar heat receiver using lithium fluoride as the heat storage material was completed. A gas flow analysis was performed to achieve uniform flow distribution within overall pressure drop limitations. Structural analyses and allowable design criteria were developed for anticipated environments such as launch, pressure containment, and thermal cycling. A complete heat receiver assembly was fabricated almost entirely from the refractory alloy, niobium-1% zirconium.

  7. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  8. Heat Pipe Precools and Reheats Dehumidified Air

    NASA Technical Reports Server (NTRS)

    Koning, R. C.; Boggs, W. H.; Barnett, U. R.; Dinh, K.

    1986-01-01

    Precooling and reheating by heat pipe reduces operating costs of air-conditioning. Warm air returned from air-conditioned space and cooled air supplied are precooled and reheated, respectively, by each other through a heat pipe. Heat-pipe technology brought to bear on problem of conserving airconditioning energy in hot, humid environments. Any increase in the cost of equipment due to installation of heat-pipe heat exchangers expected to be recovered in energy savings during service period of 2 years or less.

  9. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 4: Functional specification for the prototype Automated Integrated Receive System (AIRS)

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1984-01-01

    The functional requirements for the performance, design, and testing for the prototype Automated Integrated Receive System (AIRS) to be demonstrated for the TDRSS S-Band Single Access Return Link are presented.

  10. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  11. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect

    Laing, D.; Reusch, M.

    1997-12-31

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  12. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis was conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  13. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis were conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  14. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  15. The effectiveness of a heated air curtain

    NASA Astrophysics Data System (ADS)

    Frank, Daria

    2014-11-01

    Air curtains are high-velocity plane turbulent jets which are installed in the doorway in order to reduce the heat and the mass exchange between two environments. The air curtain effectiveness E is defined as the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. In the present study, we investigate the effects of an opposing buoyancy force on the air curtain effectiveness. Such an opposing buoyancy force arises for example if a downwards blowing air curtain is heated. We conducted small-scale experiments using water as the working fluid with density differences created by salt and sugar. The effectiveness of a downwards blowing air curtain was measured for situations in which the initial density of the air curtain was less than both the indoor and the outdoor fluid density, which corresponds to the case of a heated air curtain. We compare the effectiveness of the heated air curtain to the case of the neutrally buoyant air curtain. It is found that the effectiveness starts to decrease if the air curtain is heated beyond a critical temperature. Furthermore, we propose a theoretical model to describe the dynamics of the buoyant air curtain. Numerical results obtained from solving this model corroborate our experimental findings.

  16. HEATING AND AIR CONDITIONING EDUCATIONAL PROGRAM.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Marshalltown, IA.

    INCREASED MOTIVATION, INCREASED INITIAL COMPREHENSION, AND INCREASED RETENTION ARE THE PRIME GOALS OF THE LENNOX HEATING AND AIR CONDITIONING EDUCATION PROGRAM. IT IS A COMPLETE PROGRAM WITH ALL THE TEACHING TOOLS REQUIRED TO PRODUCE A KNOWLEDGEABLE HEATING AND AIR-CONDITIONING INSTALLER OR SERVICE MAN. THIS INSTRUCTIONAL PROGRAM IS DESIGNED…

  17. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  18. Testing of Stirling engine solar reflux heat-pipe receivers

    SciTech Connect

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  19. Felt-metal-wick heat-pipe solar receiver

    SciTech Connect

    Andraka, C.E.; Adkins, D.R.; Moss, T.A.; Cole, H.M.; Andreas, N.H.

    1994-12-31

    Reflux heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while decoupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to higher system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 65 kW{sub t} power throughput. Several 25 to 30-kW{sub e} Stirling-cycle engines are under development, and will soon be incorporated in commercial dish-Stirling systems. These engines will require reflux receivers with power throughput limits reaching 90-kW{sub t}. The extension of heat pipe technology from 60 kW{sub t} to 100 kW{sub t} is not trivial. Current heat pipe wick technology is pushed to its limits. It is necessary to develop and test advanced wick structure technologies to perform this task. Sandia has developed and begun testing a Bekaert Corporation felt metal wick structure fabricated by Porous Metal Products Inc. This wick is about 95% porous, and has liquid permeability a factor of 2 to 8 times higher than conventional technologies for a given maximum pore radius. The wick has been successfully demonstrated in a bench-scale heat pipe, and a full-scale on-sun receiver has been fabricated. This report details the wick design, characterization and installation into a heat pipe receiver, and the results of the bench-scale tests are presented. The wick performance is modeled, and the model results are compared to test results.

  20. Felt-metal-wick heat-pipe solar receiver

    NASA Astrophysics Data System (ADS)

    Andraka, Charles E.; Adkins, Douglas R.; Moss, Timothy A.; Cole, Howard M.; Andreas, Nicos H.

    1994-09-01

    Reflux heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while decoupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to higher system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 65 kW(sub t) power throughput. Several 25 to 30 kW(sub e) Stirling-cycle engines are under development, and will soon be incorporated in commercial dish-Stirling systems. These engines will require reflux receivers with power throughput limits reaching 90 kW(sub t). The extension of heat pipe technology from 60 kW(sub t) to 100 kW(sub t) is not trivial. Current heat pipe wick technology is pushed to its limits. It is necessary to develop and test advanced wick structure technologies to perform this task. Sandia has developed and begun testing a Bekaert Corporation felt metal wick structure fabricated by Porous Metal Products Inc. This wick is about 95% porous, and has liquid permeability a factor of 2 to 8 times higher than conventional technologies for a given maximum pore radius. The wick has been successfully demonstrated in a bench-scale heat pipe, and a full-scale on-sun receiver has been fabricated. This report details the wick design, characterization and installation into a heat pipe receiver, and the results of the bench-scale tests are presented. The wick performance is modeled, and the model results are compared to test results.

  1. Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories

    SciTech Connect

    Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

    1999-01-08

    Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

  2. Air leakage in residential solar heating systems

    NASA Astrophysics Data System (ADS)

    Shingleton, J. G.; Cassel, D. E.; Overton, R. L.

    1981-02-01

    A series of computer simulations was performed to evaluate the effects of component air leakage on system thermal performance for a typical residential solar heating system, located in Madison, Wisconsin. Auxiliary energy required to supplement solar energy for space heating was determined using the TRNSYS computer program, for a range of air leakage rates at the solar collector and pebble bed storage unit. The effects of heat transfer and mass transfer between the solar equipment room and the heated building were investigated. The effect of reduced air infiltration into the building due to pressurized by the solar air heating system were determined. A simple method of estimating the effect of collector array air leakage on system thermal performance was evaluated, using the f CHART method.

  3. Maintenance requirements in solar air heating systems

    SciTech Connect

    Lof, G.O.G.; Junk, J.P.

    1983-06-01

    The maintenance requirements of a well designed and constructed solar air-heating system are comparable to those of conventional, forced warm air heating systems. One of the major reasons for this low maintenance is the absence of problems associated with corrosion, freezing, boiling, and leakage often encountered in solar liquid systems. Experience shows that most problems are due to overly complex designs, control problems, faulty installation, and adjustment of the moving parts in the system. Operational histories show negligible requirements for maintenance of air collectors, pebble-bed heat-storage bins, and system ducts and connections. Good quality control in the manufacture and installation of airtight collectors, heat-storage bins, and interconnecting ductwork is essential, however. The paper includes a description of solar air-heating systems and their characteristics, an evaluation of the various maintenance requirements, and several case histories illustrating the handling of solar air system maintenance.

  4. Determination of Thermal State of Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.

    1996-01-01

    The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.

  5. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  6. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    NASA Astrophysics Data System (ADS)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  7. Multistatic GNSS Receiver Array for Passive Air Surveillance

    NASA Astrophysics Data System (ADS)

    Wachtl, Stefan; Koch, Volker; Westphal, Robert; Schmidt, Lorenz-Peter

    2016-03-01

    The performance of a passive air surveillance sensor based on Global Navigation Satellite Systems (GNSS) is mainly limited by the receiver noise efficiency, the achievable signal processing gain and the radar cross section (RCS) of an airplane. For surveillance applications large detection ranges as well as a high probability of detection are crucial parameters. Due to the very low GNSS signal powers received on the earth's surface, high radar cross sections are mandatory to achieve detection ranges for airplanes at some kilometers distance. This paper will discuss a multistatic transmitter and receiver arrangement, which is indispensable to get a reasonable detection rate with respect to a hemispheric field of view. The strong performance dependency of such a sensor on the number of transmitters and receivers will be shown by means of some exemplary simulation results.

  8. Solar power generation by use of Stirling engine and heat loss analysis of its cavity receiver

    NASA Astrophysics Data System (ADS)

    Hussain, Tassawar

    Since concentrated power generation by Stirling engine has the highest efficiency therefore efficient power generation by concentrated systems using a Stirling engine was a primary motive of this research. A 1 kW Stirling engine was used to generate solar power using a Fresnel lens as a concentrator. Before operating On-Sun test, engine's performance test was conducted by combustion test. Propane gas with air was used to provide input heat to the Stirling Engine and 350W power was generated with 14% efficiency of the engine. Two kinds of receivers were used for On-Sun test, first type was the Inconel tubes with trapped helium gas and the second one was the heat pipe. Heat pipe with sodium as a working fluid is considered the best approach to transfer the uniform heat from the receiver to the helium gas in the heater head of the engine. A Number of On-Sun experiments were performed to generate the power. A minimum 1kW input power was required to generate power from the Stirling engine but it was concluded that the available Fresnel lens was not enough to provide sufficient input to the Stirling engine and hence engine was lagged to generate the solar power. Later on, for a high energy input a Beam Down system was also used to concentrate the solar light on the heater head of the Stirling engine. Beam down solar system in Masdar City UAE, constructed in 2009 is a variation of central receiver plant with cassegrainian optics. Around 1.5kW heat input was achieved from the Beam Down System and it was predicted that the engine receiver at beam down has the significant heat losses of about 900W. These high heat losses were the major hurdles to get the operating temperature (973K) of the heat pipes; hence power could not be generated even during the Beam Down test. Experiments were also performed to find the most suitable Cavity Receiver configuration for maximum solar radiation utilizations by engine receiver. Dimensionless parameter aperture ration (AR=d/D) and aperture

  9. Thermal State-of-Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie, A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  10. High-temperature ceramic heat exchanger element for a solar thermal receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study has been completed on the development of a high-temperature ceramic heat exchanger element to be integrated into a solar reciver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The ceramic shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  11. REGIONAL AIR POLLUTION STUDY: HEAT EMISSION INVENTORY

    EPA Science Inventory

    As part of the St. Louis Regional Air Pollution Study (RAPS), a heat emission inventory has been assembled. Heat emissions to the atmosphere originate, directly or indirectly, from the combustion of fossil fuels (there are no nuclear plants in the St. Louis AQCR). With the except...

  12. A high temperature ceramic heat exchanger element for a solar thermal receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.

  13. Heat transfer in a fluidized-bed solar thermal receiver

    SciTech Connect

    Bachovchin, D.M.; Archer, D.H.; Neale, D.H.

    1983-01-01

    The authors investigated the use of a fluidized bed as a solar thermal receiver. A 0.3 m diameter, quartz-walled bed was designed, built, and tested at a 325 kW, solar thermal test facility. Various large-particle bed materials were tested, and we found that strong temperature gradients existed in the fluidized bed exposed to concentrated solar radiation. A heat transfer analysis is presented and effective bed thermal conductivities are estimated.

  14. 5. PHOTOGRAPHIC COPY OF ORIGINAL DRAWINGS, ELECTRIC AIR AND HEATING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. PHOTOGRAPHIC COPY OF ORIGINAL DRAWINGS, ELECTRIC AIR AND HEATING UNIT, PLAN AND ELEVATION - Wyoming Air National Guard Base, Electric, Air & Heating Plant, Cheyenne Airport, Cheyenne, Laramie County, WY

  15. HEAP: Heat Energy Analysis Program, a computer model simulating solar receivers. [solving the heat transfer problem

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1979-01-01

    A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.

  16. Effects of vertically ribbed surface roughness on the forced convective heat losses in central receiver systems

    NASA Astrophysics Data System (ADS)

    Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas

    2016-05-01

    External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.

  17. High-temperature ceramic heat exchanger element for a solar thermal receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study was performed by AiResearch Manufacturing Company, a division of The Garrett Corporation, on the development a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F ar at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  18. Standardized Curriculum for Heating and Air Conditioning.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: heating and air conditioning I and II. The first course contains the following units: (1) orientation; (2) safety; (3) refrigeration gauges and charging cylinder; (4) vacuum pump service operations; (5) locating refrigerant leaks; (6)…

  19. Metrics for Air Conditioning & Refrigeration, Heating, Ventilating.

    ERIC Educational Resources Information Center

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of the air conditioning and refrigeration, heating and ventilating student, this instructional package is one of three for the construction occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already…

  20. Heating, ventilation and air conditioning systems

    SciTech Connect

    Kyle, D.M.; Sullivan, R.A.

    1993-02-01

    A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

  1. Simulation model air-to-air plate heat exchanger

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

  2. The cavity heat pipe Stirling receiver for space solar dynamics

    NASA Technical Reports Server (NTRS)

    Kesseli, James B.; Lacy, Dovie E.

    1989-01-01

    The receiver/storage unit for the low-earth-orbiting Stirling system is discussed. The design, referred to as the cavity heat pipe (CHP), has been optimized for minimum specific mass and volume width. A specific version of this design at the 7-kWe level has been compared to the space station Brayton solar dynamic design. The space station design utilizes a eutectic mixture of LiF and CaF2. Using the same phase change material, the CHP has been shown to have a specific mass of 40 percent and a volume of 5 percent of that of the space station Brayton at the same power level. Additionally, it complements the free-piston Stirling engine in that it also maintains a relatively flat specific mass down to at least 1 kWe. The technical requirements, tradeoff studies, critical issues, and critical technology experiments are discussed.

  3. Development of a 75-kW heat-pipe receiver for solar heat-engines

    SciTech Connect

    Adkins, D.R.; Andraka, C.E.; Moss, T.A.

    1995-05-01

    A program is now underway to develop commercial power conversion systems that use parabolic dish mirrors in conjunction with Stirling engines to convert solar energy to electric power. In early prototypes, the solar concentrator focused light directly on the heater tubes of the Stirling engine. Liquid-metal heat-pipes are now being developed to transfer energy from the focus of the solar concentrator to the heater tubes of the engine. The dome-shaped heat-pipe receivers are approximately one-half meters in diameter and up to 77-kW of concentrated solar energy is delivered to the absorber surface. Over the past several years, Sandia National Laboratories, through the sponsorship of the Department of Energy, has conducted a major program to explore receiver designs and identify suitable wick materials. A high-flux bench-scale system has been developed to test candidate wick designs, and full-scale systems have been tested on an 11-meter test-bed solar concentrator. Procedures have also been developed in this program to measure the properties of wick materials, and an extensive data-base on wick materials for high temperature heat pipes has been developed. This paper provides an overview of the receiver development program and results from some of the many heat-pipe tests.

  4. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  5. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  6. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  7. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  8. Reflux heat-pipe solar receivers for dish-electric systems

    NASA Astrophysics Data System (ADS)

    Andraka, Charles E.; Diver, Richard B.

    Electrical generation by solar means may be undertaken more efficiently through the use of a gravity-assisted 'reflux' heat pipe receiver combining a heat engine with a paraboloidal dish concentrator. In the reflux heat-pipe solar energy receiver, concentrated solar radiation causes a low melting-point liquid metal to evaporate; the vapor then flows to the engine interface heat exchanger, where it condenses and releases the latent heat. The condensate is returned to the receiver-absorber by gravity and distributed by capillary forces through a wick that lines the receiver.

  9. Solar assisted heat pump on air collectors: A simulation tool

    SciTech Connect

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis; Tsoutsos, Theocharis; Botzios-Valaskakis, Aristotelis

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  10. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    NASA Astrophysics Data System (ADS)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  11. Refrigeration, Heating & Air Conditioning. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Garrison, Joe C.; And Others

    This curriculum guide was designed for use in postsecondary refrigeration, heating and air conditioning education programs in Georgia. Its purpose is to provide for the development of entry level skills in refrigeration, heating, and air conditioning in the areas of air conditioning knowledge, theoretical structure, tool usage, diagnostic ability,…

  12. The heat transfer of cooling fins on moving air

    NASA Technical Reports Server (NTRS)

    Doetsch, Hans

    1935-01-01

    The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.

  13. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 2: Design and development

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; White, M. A.; Lindsey, W. C.; Davarian, F.; Dixon, R. C.

    1984-01-01

    Functional requirements and specifications are defined for an autonomous integrated receive system (AIRS) to be used as an improvement in the current tracking and data relay satellite system (TDRSS), and as a receiving system in the future tracking and data acquisition system (TDAS). The AIRS provides improved acquisition, tracking, bit error rate (BER), RFI mitigation techniques, and data operations performance compared to the current TDRSS ground segment receive system. A computer model of the AIRS is used to provide simulation results predicting the performance of AIRS. Cost and technology assessments are included.

  14. Heat pipe solar receiver with thermal energy storage

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  15. Heat Waves, Urban Vegetation, and Air Pollution

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Grote, R.; Butler, T. M.

    2014-12-01

    Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  16. Receivers

    NASA Astrophysics Data System (ADS)

    Donnelly, H.

    1983-07-01

    Before discussing Deep Space Network receivers, a brief description of the functions of receivers and how they interface with other elements of the Network is presented. Different types of receivers are used in the Network for various purposes. The principal receiver type is used for telemetry and tracking. This receiver provides the capability, with other elements of the Network, to track the space probe utilizing Doppler and range measurements, and to receive telemetry, including both scientific data from the onboard experiments and engineering data pertaining to the health of the probe. Another type of receiver is used for radio science applications. This receiver measures phase perturbations on the carrier signal to obtain information on the composition of solar and planetary atmospheres and interplanetary space. A third type of receiver utilizes very long baseline interferometry (VLBI) techniques for both radio science and spacecraft navigation data. Only the telemetry receiver is described in detail in this document. The integration of the Receiver-Exciter subsystem with other portions of the Deep Space Network is described.

  17. Receivers

    NASA Technical Reports Server (NTRS)

    Donnelly, H.

    1983-01-01

    Before discussing Deep Space Network receivers, a brief description of the functions of receivers and how they interface with other elements of the Network is presented. Different types of receivers are used in the Network for various purposes. The principal receiver type is used for telemetry and tracking. This receiver provides the capability, with other elements of the Network, to track the space probe utilizing Doppler and range measurements, and to receive telemetry, including both scientific data from the onboard experiments and engineering data pertaining to the health of the probe. Another type of receiver is used for radio science applications. This receiver measures phase perturbations on the carrier signal to obtain information on the composition of solar and planetary atmospheres and interplanetary space. A third type of receiver utilizes very long baseline interferometry (VLBI) techniques for both radio science and spacecraft navigation data. Only the telemetry receiver is described in detail in this document. The integration of the Receiver-Exciter subsystem with other portions of the Deep Space Network is described.

  18. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    SciTech Connect

    Ma, R.Y.

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  19. Selection of the air heat exchanger operating in a gas turbine air bottoming cycle

    NASA Astrophysics Data System (ADS)

    Chmielniak, Tadeusz; Czaja, Daniel; Lepszy, Sebastian

    2013-12-01

    A gas turbine air bottoming cycle consists of a gas turbine unit and the air turbine part. The air part includes a compressor, air expander and air heat exchanger. The air heat exchanger couples the gas turbine to the air cycle. Due to the low specific heat of air and of the gas turbine exhaust gases, the air heat exchanger features a considerable size. The bigger the air heat exchanger, the higher its effectiveness, which results in the improvement of the efficiency of the gas turbine air bottoming cycle. On the other hand, a device with large dimensions weighs more, which may limit its use in specific locations, such as oil platforms. The thermodynamic calculations of the air heat exchanger and a preliminary selection of the device are presented. The installation used in the calculation process is a plate heat exchanger, which is characterized by a smaller size and lower values of the pressure drop compared to the shell and tube heat exchanger. Structurally, this type of the heat exchanger is quite similar to the gas turbine regenerator. The method on which the calculation procedure may be based for real installations is also presented, which have to satisfy the economic criteria of financial profitability and cost-effectiveness apart from the thermodynamic criteria.

  20. Test bench HEATREC for heat loss measurement on solar receiver tubes

    NASA Astrophysics Data System (ADS)

    Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo

    2016-05-01

    In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.

  1. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    ERIC Educational Resources Information Center

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  2. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  3. Heat Transfer from Finned Metal Cylinders in an Air Stream

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold, E; Pinkel, Benjamin

    1935-01-01

    This report presents the results of tests made to supply design information for the construction of metal fins for the cooling of heated cylindrical surfaces by an air stream. A method is given for determining fin dimensions for a maximum heat transfer with the expenditure of a given amount of material for a variety of conditions of air flow and metals.

  4. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  5. Reflux heat-pipe solar receivers for dish-electric systems

    NASA Astrophysics Data System (ADS)

    Andraka, Charles E.; Diver, Richard B.

    1988-04-01

    The feasibility of competitive, modular bulk electric power from the sun may be greatly enhanced by the use of a reflux heat pipe receiver to combine a heat engine with a paraboloidal dish concentrator. This combination represents a potential improvement over previous successful demonstrations of dish-electric technology in terms of enhanced performance, lower cost, longer life, and greater flexibility in engine design. In the reflux (i.e., gravity assisted) heat pipe receiver, concentrated solar radiation causes liquid metal (sodium, potassium, or NaK) to evaporate. The vapor flows to the engine interface heat exchanger, where it condenses and releases the latent heat. The condensate is returned to the receiver absorber by gravity (refluxing), and distributed over the surface by gravity and/or capillary forces in a wick lining the receiver. It is essentially an adaptation of heat pipe technology to the peculiar requirements of concentrated solar flux, and provides many advantages over conventional heated tub receiver technology. This overview paper describes the current status and future plans for the U.S. Solar Thermal Program reflux receiver development program at Sandia National Laboratories. Current work includes conventional mesh wick receivers, sintered metal wicks, and pool boiler receivers. The relative design merits and concerns of the different approaches and technology development test plans are discussed.

  6. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 3: Performance and simulation

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; Su, Y. T.; Lindsey, W. C.; Koukos, J.

    1984-01-01

    The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed.

  7. Thermal evaluation of advanced solar dynamic heat receiver performance

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1989-01-01

    The thermal performance of a variety of concepts for thermal energy storage as applied to solar dynamic applications is discussed. It is recognized that designs providing large thermal gradients or large temperature swings during orbit are susceptible to early mechanical failure. Concepts incorporating heat pipe technology may encounter operational limitations over sufficiently large ranges. By reviewing the thermal performance of basic designs, the relative merits of the basic concepts are compared. In addition the effect of thermal enhancement and metal utilization as applied to each design provides a partial characterization of the performance improvements to be achieved by developing these technologies.

  8. The Impact of Winter Heating on Air Pollution in China

    PubMed Central

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004–2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating. PMID:25629878

  9. Solar augmentation for process heat with central receiver technology

    NASA Astrophysics Data System (ADS)

    Kotzé, Johannes P.; du Toit, Philip; Bode, Sebastian J.; Larmuth, James N.; Landman, Willem A.; Gauché, Paul

    2016-05-01

    Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.

  10. AIR EMISSIONS FROM RESIDENTIAL HEATING: THE WOOD HEATING OPTION PUT INTO ENVIRONMENTAL PERSPECTIVE

    EPA Science Inventory

    The paper compares the national scale (rather than local) air quality impacts of the various residential space heating options. Specifically, it compares the relative contribution of the space heating options to fine particulate emissions, greenhouse gas emissions, and acid preci...

  11. Development of a solar thermal central heat receiver using molten salt

    NASA Astrophysics Data System (ADS)

    Tracey, T. R.

    1981-06-01

    The development and test of a 5 MWth solar heat receiver using a molten nitrate salt (60 percent NaNO3, 40 percent KNaNO3) as the heat transfer fluid is described. The application of the receiver concept in a central receiver solar power system is explained. The advantages of using molten nitrate salts as the receiver heat transfer fluid and the storage fluid are discussed. The problems associated with the receiver development including the need for high temperatures and combinations of creep and fatigue in the receiver tubes are discussed. Our approach to scaling from the 5 MWth test receiver to commercial receivers in the range of 200 MWth to 500 MWth is defined. The 5 MWth test system is described including the instrumentation used. The test facility which has a 60 m tower and 222 heliostats is described. The test results are presented. The receiver was in test for 500 hr at temperature and heat flux levels expected in commercial receiver systems.

  12. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels shall be inspected by inspectors holding a valid National Board Commission and in accordance...

  13. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels shall be inspected by inspectors holding a valid National Board Commission and in accordance...

  14. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  15. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Astrophysics Data System (ADS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  16. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  17. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  18. The development of an advanced generic solar dynamic heat receiver thermal model

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Kohout, L.

    1988-01-01

    An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.

  19. The contrast model method for the thermodynamical calculation of air-air wet heat exchanger

    NASA Astrophysics Data System (ADS)

    Yuan, Xiugan; Mei, Fang

    1989-02-01

    The 'contrast model' method thermodynamic calculation of air-air crossflow wet heat exchangers with initial air condensation is presented. Contrast-model equations are derived from the actual heat exchanger equations as well as imaginary ones; it is then possible to proceed to a proof that the enthalpy efficiency of the contrast model equations is similar to the temperature efficiency of the dry heat exchanger. Conditions are noted under which it becomes possible to unify thermodynamic calculations for wet and dry heat exchangers.

  20. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, Richard L.

    1993-01-01

    A heat exchanger includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications.

  1. Balloons and Bottles: Activities on Air-Sea Heat Exchange.

    ERIC Educational Resources Information Center

    Murphree, Tom

    1998-01-01

    Presents an activity designed to demonstrate how heating and cooling an air mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)

  2. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  3. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  4. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  5. Heating, Ventilation, and Air Conditioning Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in heating, ventilation, and air conditioning. The guide outlines the tasks entailed in eight different duties typically required of employees in the following occupations: residential installer, domestic refrigeration technician, air conditioning and…

  6. Residential Heat and Air Conditioning. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    The program guide for residential heat and air conditioning courses in Florida identifies primary considerations for the organization, operation, and evaluation of a vocational education program. Following an occupational description for the job title for air-conditioning installer-servicer, window unit, and its Dictionary of Occupational Titles…

  7. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, R.L.

    1993-12-28

    A heat exchanger is described which includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications. 3 figures.

  8. Reflux heat-pipe solar receiver for a Stirling dish-electric system

    SciTech Connect

    Ziph, B.; Godett, T.M.; Diver, R.B.

    1987-01-01

    The feasibility of competitive, modular bulk electric power from the sun is enhanced by the use of a reflux heat-pipe receiver to combine a Stirling engine with a paraboloidal dish concentrator. This combination represents a potential improvement over previous successful demonstrations of Stirling dish-electric technology in terms of enhanced performance, lower cost, and longer life. In the reflux (i.e. gravity assisted) heat-pipe receiver, concentrated solar radiation causes liquid sodium to evaporate, the vapor flows to the Stirling engine heaters where it condenses on the heater tubes. The condensate is returned to and distributed over the receiver by gravity (refluxing) and by capillary forces in a wick lining the receiver. It is essentially an adaptation of sodium heat pipe technology to the peculiar requirements of concentrated solar flux and provides many potential advantages over conventional tube receiver technology. This paper describes the preliminary design of a reflux heat-pipe solar receiver to match the STM4-120 variable swashplate Stirling engine to a Test Bed Concentrator at Sandia National Laboratories Distributed Receiver Test Facility. Performance analysis and other design considerations are presented and discussed.

  9. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    Chie, C. M.; Lindsey, W. C.

    1984-08-01

    Distributed processing in the design and operation of the augmented TDRSS and the succeeding TDAS in the 1990's is discussed with the emphasis on the development of the autonomous integrated receive system (AIRS) for the operation of the S-band single access (SSA) return link in the White Sands ground terminal. This receive system has the capability of self configuration, real-time operation, and self diagnostic. The tasks of Doppler correction, demodulation, detection, and decoding are performed in an integrated manner where useful information are shared and used by ALL portions of AIRS performing these tasks. Operating modes, maintenance, system architecture, and performance characteristics are described.

  10. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; Lindsey, W. C.

    1984-01-01

    Distributed processing in the design and operation of the augmented TDRSS and the succeeding TDAS in the 1990's is discussed with the emphasis on the development of the autonomous integrated receive system (AIRS) for the operation of the S-band single access (SSA) return link in the White Sands ground terminal. This receive system has the capability of self configuration, real-time operation, and self diagnostic. The tasks of Doppler correction, demodulation, detection, and decoding are performed in an integrated manner where useful information are shared and used by ALL portions of AIRS performing these tasks. Operating modes, maintenance, system architecture, and performance characteristics are described.

  11. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer

  12. Air pollution control and heat recovery system for industrial ovens

    SciTech Connect

    Jamaluddin, A.A.

    1980-12-30

    A system of air pollution control and heat recovery is provided for an arrangement of industrial ovens, especially for drum manufacture. A plurality of paint bake ovens of various capacities, lengths and heat input are provided for multi-stage processing in the manufacture of drums and lids therefor. A supply of high temperature water is provided for multi-stage cleaning and rinsing in the manufacturing operation. The combined exhaust from the oven is preheated in a heat exchanger and then all of the combustible components are burnt off by passing through the flames of an incinerator grid burner. The effluent from the burner first passes through the heat exchanger to preheat said oven exhaust gases and then through hot water coils to provide all of the necessary hot water for the system. High pressure hot water (275/sup 0/) is provided in this heat exchange operation. The hot gasses from the last heat exchanger, completely free of combustible contaminates, are mixed with fresh air to supply hot air for the dryers used in the process. There is a substantially complete recovery of heat and the gasses discharged to atmosphere meet air quality standards.

  13. Parametric Analysis of Cyclic Phase Change and Energy Storage in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1997-01-01

    A parametric study on cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, has been performed. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results in the two-phase regime. Results indicate that parametric changes in receiver gas inlet temperature and receiver heat input effects higher sensitivity to changes in receiver gas exit temperatures.

  14. Performance evaluation of a selected three-ton air-to-air heat pump in the heating mode

    SciTech Connect

    Domingorena, A.A.; Ball, S.J.

    1980-01-01

    An air-to-air split system residential heat pump of nominal three-ton capacity was instrumented and tested in the heating mode under laboratory conditions. This was the second of a planned series of experiments to obtain a data base of system and component performance for heat pumps. The system was evaluated under both steady-state and frosting-defrosting conditions; sensitivity of the system performance to variations in the refrigerant charge was measured. From the steady-state tests, the heating capacity and coefficient of performance were computed, and evaluations were made of the performance parameters of the fan and fan motor units, the heat exchangers and refrigerant metering device, and the compressor. System heat losses were analyzed. The frosting-defrosting tests allowed the observation of system and component performance under dynamic conditions, and measurement of performance degradation under frosting conditions.

  15. Development of an integrated heat pipe-thermal storage system for a solar receiver

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Merrigan, M.A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. Sundstrand Corporation is developing a ORC-SDPS candidate for the Space Station that uses toluene as the organic fluid and LiOH as the TES material. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube. 3 refs., 8 figs.

  16. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms

    SciTech Connect

    Jacobi, A.M.; Shah, R.K.

    1998-10-01

    The behavior of air flows in complex heat exchanger passages is reviewed with a focus on the heat transfer effects of boundary-layer development, turbulence, spanwise and streamwise vortices, and wake management. Each of these flow features is discussed for the plain, wavy, and interrupted passages found in contemporary compact heat exchanger designs. Results from the literature are used to help explain the role of these mechanisms in heat transfer enhancement strategies.

  17. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... applicable chapters of the National Board Inspection Code, a Manual for Boiler and Pressure Vessel...

  18. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineers Boiler and Pressure Vessel Code, Section VIII, Rules for Construction of Unfired Pressure Vessels... 29 Labor 7 2011-07-01 2011-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's...

  19. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineers Boiler and Pressure Vessel Code, Section VIII, Rules for Construction of Unfired Pressure Vessels... 29 Labor 7 2010-07-01 2010-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's...

  20. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... applicable chapters of the National Board Inspection Code, a Manual for Boiler and Pressure Vessel...

  1. An integrated heat pipe-thermal storage design for a solar receiver

    NASA Astrophysics Data System (ADS)

    Keddy, E.; Sena, J. T.; Woloshun, K.; Merrigan, M. A.; Heidenreich, G.

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power System (ORC-SDPS) receiver for the Space Station application. The operating temperature of the heat pipe elements is in the 770 to 810 K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability.

  2. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.46...

  3. Temperature influence on wall-to-particle suspension heat transfer in a solar tubular receiver

    NASA Astrophysics Data System (ADS)

    Benoit, Hadrien; López, Inmaculada Pérez; Gauthier, Daniel; Flamant, Gilles

    2016-05-01

    Dense Particle Suspension (DPS) can be used as high temperature heat transfer fluid in solar receiver. Tests conducted with a one-tube experimental setup in real conditions of concentrated solar irradiation resulted in determining heat transfer coefficients for the DPS flowing upward in a vertical tube. They have been obtained for solid fluxes in the range 10-45 kg/m2.s and outlet temperatures up to 1020 K. The influence of solid flux, aeration and temperature is outlined in this paper. Heat transfer coefficient variations are correlated as a function of the solid flux and the temperature for given aeration conditions.

  4. Dynamic instabilities in radiation-heated boiler tubes for solar central receivers

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Chan, K. C.; Chen, K.; Yadigaroglu, G.

    1982-11-01

    Density-wave instabilities have been investigated in circumferentially nonuniform radiation-heated boiler tubes, simulating solar heating. Analysis and experimental data are presented. The analysis provides the basis for a computer code, STEAMFREQ-I, for the prediction of density-wave instabilities in boiler tubes with imposed heat flux. The key model features include a drift-flux flow model in the boiling region, spatial variation of heat flux, wall dynamics, and variable steam properties in the superheat region. The experimental data include results from two radiation heated boiler panel tests. The data are applicable to central receivers for solar electric power plants. Data for stable and unstable conditions are compared with predictions from STEAMFREQ-I.

  5. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  6. Acoustic focusing by an array of heat sources in air

    NASA Astrophysics Data System (ADS)

    Ge, Yong; Sun, Hong-xiang; Liu, Chen; Qian, Jiao; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Zhang, Shu-yi

    2016-06-01

    We report on a broadband acoustic focusing lens comprising 20 heat sources of different temperatures, 10 on each side of the array, in air. This focusing phenomenon is attributed to temperature gradients inducing the desired refractive index in one medium (air) and to the continuously changing acoustic impedance, which avoids any acoustic impedance difference that would occur between a lens and air. The results indicate that this focusing lens has a broader bandwidth (>3.5 kHz), higher intensity amplification (about 5.0 times), and a simpler structure. This focusing lens has great potential for applications in ultrasonic devices.

  7. Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers

    SciTech Connect

    Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.

    1996-07-01

    Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.

  8. Study and modeling of a pressurized air receiver to power a micro gas turbine

    NASA Astrophysics Data System (ADS)

    Ndiogou, Baye A.; Thiam, Ababacar; Mbow, Cheikh; Stouffs, Pascal; Azilinon, Dorothé

    2016-05-01

    In the present work a solar receiver with reticulated porous ceramic foam bounded by two concentric cylinders, horizontal axis and length L is selected and studied. A receiver pre-sizing study based on the optimization work of Hischier allowed us to find the dimensions and the receiver input variables. We have developed a mathematical model based on the Representative elementary volume to model the flow and heat transfer within the absorber. The numerical solution of equations set was obtained with FLUENT. The power of 75 kW wanted in this study is obtained with a thermal efficiency equal to 87%. The fields of temperature and velocities from the simulation are analyzed and it is clear from this study that the temperature profiles show the excellent ability of the receiver to transfer the heat to the fluid. The influences of the porosity and mass flow on the thermal efficiency are analyzed also. It emerges from this study that the mass flow rate and porosity are very critical parameters on the thermal performance of the receiver.

  9. [Air pollutants study by differential optical absorption spectroscopy with transmit-receive fibers].

    PubMed

    Wei, Yong-Jie; Geng, Xiao-Juan; Chen, Bo; Liu, Cui-Cui; Chen, Wen-Liang

    2013-10-01

    The differential optical absorption spectroscopy system is presented to monitor air pollutants, such as SO2, NO2, etc. The system employs a reflective telescope to collimate light source and focus absorbed light. A combined transmitting and receiving fiber bundle is set to the focus of a concave mirror. A Xenon lamp works as the light source. The light is coupled into the transmitting fiber, and then collimated by the reflective telescope system. After absorbed by the pollutants, the light is reflected by a pyramid mirror far away the telescope. Then the absorbed light is incident on the concave mirror the second time, and focused on the focal plane again. The receiving fiber induces the light which carries the information of the measured gas into a spectrometer. We can get the concentration of the pollutants by DOAS algorithm. Experimental results show that the proposed method can be adopted to measure some pollutants in air quality monitoring. PMID:24409736

  10. Advanced heat receiver conceptual design study. Final report, May 1986-July 1988

    SciTech Connect

    Kesseli, J.; Saunders, R.; Batchelder, G.

    1988-10-01

    Solar dynamic space power systems are candidate electrical power generating systems for future NASA missions. One of the key components of the solar dynamic power system is the solar receiver/thermal energy storage (TES) subsystem. Receiver development was conducted by NASA in the late 1960's and since then a very limited amount of work has been done in this area. Consequently the state of the art (SOA) receivers designed for the IOC space station are large and massive. The objective of the Advanced Heat Receiver Conceptual Design Study is to conceive and analyze advanced high temperature solar dynamic Brayton and Stirling receivers. The goal is to generate innovative receiver concepts that are half of the mass, smaller, and more efficient than the SOA. It is also necessary that these innovative receivers offer ease of manufacturing, less structural complexity and fewer thermal stress problems. Advanced Brayton and Stirling receiver storage units are proposed and analyzed in this study which can potentially meet these goals.

  11. Shortening the Defrost Time on a Heat Pump Air Conditioner

    NASA Astrophysics Data System (ADS)

    Kuwahara, Eiji; Yamazaki, Masaya; Kawamura, Toshiaki

    Methods to shorten the defrost time have been studied on a heat pump air conditioner. The experiment has been carried out using a 0.75kW heat pump and the energy balance during defrosting has been analyzed. We have found that the following methods are effective to shorten the defrost time; (1) Increase in power inqut to the compressor during defrosting, (2) Utilization of the compressor for thermal energy storage, (3) Reduction of the water left on the outdoor heat exchanger fins. The heat pump with the new defrosting system has been made on an experimental basis. lts defrost time is 1 minute and 55 seconds under the defrost condition of the Japanese Industrial Standard. The defrost time of a conventional heat pump is about 4 or 5 minutes.

  12. Heat transfer to air from a yawed cylinder

    NASA Astrophysics Data System (ADS)

    Kraabel, J. S.; McKillop, A. A.; Baughn, J. W.

    1982-03-01

    An experimental study designed to investigate heat transfer to air from a yawed cylinder is described. Measurements were made at Reynolds numbers of 34,000 and 106,000, and yaws varied from cross flow (beta = 0 deg) to 60 deg. The independence principle is found to be valid for heat transfer at the stagnation line and in the laminar boundary layer. Although this principle would not be expected to extend to the wake, the local heat transfer to the wake is not greatly affected by yaw for beta not greater than 40 deg. The heat transfer results can be explained in terms of a secondary vortex located downstream of an initial separation point and followed by a primary eddy. For high yaws and high normal Reynolds numbers, the heat transfer is similar to that which occurs in cross flow approaching critical flow.

  13. State Skill Standards: Heating, Ventilation, Air Conditioning, and Refrigeration

    ERIC Educational Resources Information Center

    Ball, Larry; Soukup, Dennis

    2006-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide career and technical education skill standards. The standards in this document are for Heating, Ventilation, Air Conditioning and Refrigeration (HVAC&R) programs and are designed to clearly state what the student should know and be able to do upon completion of an…

  14. Advanced Print Reading. Heating, Ventilation and Air Conditioning.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This is a workbook for students learning advanced blueprint reading for heating, ventilation, and air conditioning applications. The workbook contains eight units covering the following material: architectural working drawings; architectural symbols and dimensions; basic architectural electrical symbols; wiring symbols; basic piping symbols;…

  15. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  16. Heating, Air-Conditioning, and Refrigeration Technician. National Skill Standards.

    ERIC Educational Resources Information Center

    Vocational Technical Education Consortium of States, Decatur, GA.

    This guide contains information on the knowledge and skills identified by industry as essential to the job performance of heating, air-conditioning, and refrigeration technicians. It is intended to assist training providers in public and private institutions, as well as in industry, to develop and implement training that will provide workers with…

  17. An Analysis of the Air Conditioning, Refrigerating and Heating Occupation.

    ERIC Educational Resources Information Center

    Frass, Melvin R.; Krause, Marvin

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the air conditioning, refrigerating, and heating occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Six duties are…

  18. Air Conditioning, Heating, and Refrigeration: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for an air conditioning, heating, and refrigeration vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed…

  19. Heating and Air Conditioning Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains materials for teaching the heating and air conditioning specialist component of a competency-based instructional program for students preparing for employment in the automotive service trade. It is based on the National Institute of Automotive Service Excellence task lists. The six instructional units presented…

  20. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  1. Careers for the 70's in Heating and Air Conditioning

    ERIC Educational Resources Information Center

    Toner, James P.

    1974-01-01

    In a trade encompassing all others in construction, installation foremen for heating/air conditioning firms spend a varied day (repairing a water heater, overseeing installation crews). Decision-makers who must think while using their hands, they rely heavily on preparation in math, mechanical drawing, blueprint reading, physics, and electicity.…

  2. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  3. Ground test program for a full-size solar dynamic heat receiver

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  4. Full-size solar dynamic heat receiver thermal-vacuum tests

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  5. Ground test program for a full-size solar dynamic heat receiver

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  6. Full-size solar dynamic heat receiver thermal-vacuum tests

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, Thomas W.

    1991-01-01

    The testing of a full-size, 120 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test conduct period.

  7. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  8. Optical Property Enhancement and Durability Evaluation of Heat Receiver Aperture Shield Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.

    1998-01-01

    Under the Solar Dynamic Flight Demonstration (SDFD) program, NASA Lewis Research Center worked with AlliedSignal Aerospace, the heat receiver contractor, on the development, characterization and durability testing of refractory metals to obtain appropriate optical and thermal properties for the SDFD heat receiver aperture shield. Molybdenum and tungsten foils were grit-blasted using silicon carbide or alumina grit under various grit-blasting conditions for optical property enhancement. Black rhenium coated tungsten foil was also evaluated. Tungsten, black rhenium-coated tungsten, and grit-blasted tungsten screens of various mesh sizes were placed over the pristine and grit-blasted foils for optical property characterization. Grit-blasting was found to be effective in decreasing the specular reflectance and the absorptance/emittance ratio of the refractory foils. The placement of a screen further enhanced these optical properties, with a grit-blasted screen over a grit-blasted foil producing the best results. Based on the optical property enhancement results, samples were tested for atomic oxygen and vacuum heat treatment durability. Grit-blasted (Al2O3 grit) 2 mil tungsten foil was chosen for the exterior layer of the SDFD heat receiver aperture shield. A 0.007 in. wire diameter, 20 x 20 mesh tungsten screen was chosen to cover the tungsten foil. Based on these test results, a heat receiver aperture shield test unit has been built with the screen covered grit-blast tungsten foil exterior layers. The aperture shield was tested and verified the thermal and structural durability of the outer foil layers during an off-pointing period.

  9. High performance felt-metal-wick heat pipe for solar receivers

    NASA Astrophysics Data System (ADS)

    Andraka, Charles E.; Moss, Timothy A.; Baturkin, Volodymyr; Zaripov, Vladlen; Nishchyk, Oleksandr

    2016-05-01

    Sodium heat pipes have been identified as a potentially effective heat transport approach for CSP systems that require near-isothermal input to power cycles or storage, such as dish Stirling and highly recuperated reheat-cycle supercritical CO2 turbines. Heat pipes offer high heat flux capabilities, leading to small receivers, as well as low exergetic losses through isothermal coupling with the engine. Sandia developed a felt metal wick approach in the 1990's, and demonstrated very high performance1. However, multiple durability issues arose, primarily the structural collapse of the wick at temperature over short time periods. NTUU developed several methods of improving robustness of the wick2, but the resulting wick had limited performance capabilities. For application to CSP systems, the wick structures must retain high heat pipe performance with robustness for long term operation. In this paper we present our findings in developing an optimal balance between performance and ruggedness, including operation of a laboratory-scale heat pipe for over 5500 hours so far. Application of heat pipes to dish-Stirling systems has been shown to increase performance as much as 20%3, and application to supercritical CO2 systems has been proposed.

  10. Estimating ocean-air heat fluxes during cold air outbreaks by satellite

    NASA Technical Reports Server (NTRS)

    Chou, S. H.; Atlas, D.

    1981-01-01

    Nomograms of mean column heating due to surface sensible and latent heat fluxes were developed. Mean sensible heating of the cloud free region is related to the cloud free path (CFP, the distance from the shore to the first cloud formation) and the difference between land air and sea surface temperatures, theta sub 1 and theta sub 0, respectively. Mean latent heating is related to the CFP and the difference between land air and sea surface humidities q sub 1 and q sub 0 respectively. Results are also applicable to any path within the cloud free region. Corresponding heat fluxes may be obtained by multiplying the mean heating by the mean wind speed in the boundary layer. The sensible heating estimated by the present method is found to be in good agreement with that computed from the bulk transfer formula. The sensitivity of the solutions to the variations in the initial coastal soundings and large scale subsidence is also investigated. The results are not sensitive to divergence but are affected by the initial lapse rate of potential temperature; the greater the stability, the smaller the heating, other things being equal. Unless one knows the lapse rate at the shore, this requires another independent measurement. For this purpose the downwind slope of the square of the boundary layer height is used, the mean value of which is also directly proportional to the mean sensible heating. The height of the boundary layer should be measurable by future spaceborn lidar systems.

  11. Measuring important parameters for air-sea heat exchange

    NASA Astrophysics Data System (ADS)

    Garbe, Christoph; Schimpf, Uwe; Jaehne, Bernd

    2002-03-01

    The heat transfer between the ocean and the atmosphere is one of the most important parameters governing the global climate. Important parameters include the heat transfer velocity and the net heat flux as well as parameters of the underlying transport model. However, the net heat flux is hard to measure since processes take place in the thermal boundary layer, that is the topmost layer of the ocean less than 1 mm thick. Current techniques rely on three independent measurements of the constituent fluxes, the sensible heat flux, latent heat flux and radiative flux. They depend on indirect measurements of meteorological parameters and rely on a combination of data from different sensors using a number of heuristic assumptions. High relative errors and the need for long temporal averaging reduce the practicability of these techniques. In this paper a novel technique is presented that circumvents these drawbacks by directly measuring the net heat flux across the air-water interface with a single low-NETD infrared camera. A newly developed digital image processing technique allows to simultaneously estimating the surface velocity field and parameters of the temporal temperature change. In particular, this technique allows estimating the total derivative of the temperature with respect to time from a sequence of infrared images, together with error bounds on the estimates. This derivative can be used to compute the heat flux density and the heat transfer velocity, as well as the probability density function of the underlying surface renewal model. It is also possible to estimate the bulk-skin temperature difference given rise to by the net heat flux. Our technique has been successfully used in both laboratory measurements in the Heidelberg Aeolotron, as well as in field measurements in the equatorial pacific during the NOAA GasExII experiment this spring. The data show that heat flux measurements to an accuracy of better than 5% on a time scale of seconds are feasible.

  12. Line-focus solar central power system, phase I. Subsystem experiment: receiver heat transfer

    SciTech Connect

    Slemmons, A J

    1980-04-01

    Wind-tunnel tests confirmed that heat losses due to natural convection are negligible in the line-focus, solar-powered receiver. Anomalies in the forced-convection tests prevented definitive conclusions regarding the more important forced convection. Flow-visualization tests using a water table show much lower velocities inside the receiver cavity than outside, supporting the supposition that the forced-heat transfer should be less than that from a standard exposed cylinder. Furthermore, the water-table tests showed ways to decrease the low velocities in the cavity should this be desired. Further wind-tunnel testing should be done to confirm estimates and to support advanced design. This testing can be done in standard wind tunnels since only the forced convection is of concern.

  13. Recent Research in Compression Refrigeration Cycle Air Source Heat Pumps.

    NASA Astrophysics Data System (ADS)

    Arai, Akira; Senshu, Takao

    The most important theme for heat pump air conditioners is the improvement of energy saving and comfort. Recently, cycle components, especially compressores and heat exchangers have been improved greatly in their performance and efficiency. As for compressors, large progress in their efficiencies have been made by detailed analysises such as mechanical losses and by the development of a new type compression mechanism. As for heat exchangers, various high heat transfer surfaces have been developed together with the improvement of the production technologies for them. Further, the effect of the capacity-modulated cycle is evaluated quantitatively through the improvements of static and transient cycle simulation technologies. And in order to realize this cffect, the electrically driven expansion valves heve been marketed. This review introduces the trends of these energy-saving technologies as well as comfort improvement studies.

  14. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... electricity. Packaged terminal heat pump means a packaged terminal air conditioner that utilizes reverse cycle... indoor grilles, outdoor louvers, various ventilation options, indoor free air discharges, ductwork,...

  15. Modeling Cyclic Phase Change and Energy Storage in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1997-01-01

    Numerical results pertaining to cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, have been reported. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed and results compared with available experimental data. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results for comparisons with GTD data for both the subcooled and two-phase regimes. While qualitative trends were in close agreement for the balanced orbit modes, excellent quantitative agreement was observed for steady-state modes.

  16. Radiant heat test of Perforated Metal Air Transportable Package (PMATP).

    SciTech Connect

    Gronewald, Patrick James; Oneto, Robert; Mould, John; Pierce, Jim Dwight

    2003-08-01

    A conceptual design for a plutonium air transport package capable of surviving a 'worst case' airplane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A full-scale prototype, designated as the Perforated Metal Air Transport Package (PMATP) was thermally tested in the SNL Radiant Heat Test Facility. This testing, conducted on an undamaged package, simulated a regulation one-hour aviation fuel pool fire test. Finite element thermal predictions compared well with the test results. The package performed as designed, with peak containment package temperatures less than 80 C after exposure to a one-hour test in a 1000 C environment.

  17. Development of solar driven absorption air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  18. Use of waste heat for automotive air conditioning

    SciTech Connect

    Hamner, R.M.

    1981-01-01

    The ejector-compression refrigeration system, a heat powered system which can be operated as a heat pump, is described. The operation of the system is discussed in general and the ejector itself is described in more detail. The central thrust of the paper is the application of the system to comfort air conditioning of automobiles. The advantages, limitations, and recommendations for future research and development are given. Several analyses of the theoretical cycle are made and equations describing the operation of the ejector are derived. A brief bibliography is listed.

  19. Windage heating of air passing through labyrinth seals

    SciTech Connect

    Millward, J.A.; Edwards, M.F.

    1996-04-01

    The viscous drag on rotating components in gas turbine engines represents both a direct loss of power from the cycle and an input of heat into the secondary (cooling) air system. Hotter cooling air in turn means increased flow requirements. The effects of windage on performance are therefore compounded. To facilitate accurate temperature predictions of highly stressed components, information is needed on windage characteristics of all elements in the secondary cooling system. Much information is available in the literature for disks, cones, cylinders, bolts, etc., but little has been published on windage heating in high-speed seals. Results are presented for experiments carried out (at representative nondimensional conditions) on different designs of labyrinth seals. The results are compared with values calculated from the simple momentum balance theory suggested by McGreeham and Ko and with several values determined from CFD analysis.

  20. Heat-transfer processes in air-cooled engine cylinders

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin

    1938-01-01

    From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.

  1. Register Closing Effects on Forced Air Heating System Performance

    SciTech Connect

    Walker, Iain S.

    2003-11-01

    Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

  2. Airshuffler implementation at freezer air outlets for heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Ćerezci, Gökhan; Darka, Murat; Şenman, Ozan

    2016-06-01

    A study which is composed of computational simulation and experimental validation has been conducted for implementation of small, vane type geometries at freezer air outlets, similar to microvortex generators used in aircraft wings, in order to improve the heat transfer efficiency inside the freezer compartment by decreasing airside thermal resistance and improving the air distribution. Both simulation and experimental validation were performed in a loaded condition which was prepared according to `Household refrigerating appliances - characteristics and test methods - IEC 62552 [1]. Solutions for the incompressible K-epsilon (k-ɛ) turbulence model obtained for Bosch KDN 49 refrigerator freezer both with and without airshufflers at air outlets, which are similar to vane type microvortex generators with different geometric dimensions. The airshuffler dimensions were chosen with design of experiment (DOE) principles for finding the optimum geometry. The best combinations were tested according to cooling rate inside freezer compartment. Results were evaluated for feasibility of implementing of vortex generating surfaces (airshufflers) for cooling appliances.

  3. Mist Formation in Heat Exchanger of Air-Conditioners

    NASA Astrophysics Data System (ADS)

    Ishihara, Isao; Matsumoto, Ryosuke; Shibata, Yutaka

    The mist formation is found occasionally at the outlet of the air-conditioner, especially in the high temperature and high humidity environment. When the condensation takes place, a certain degree of the super-saturation is needed. Some researchers introduced the critical saturation model1-3) into the condensation process concerning with the super-saturation. However, under the ordinary environmental conditions where air-conditioners are installed, there are many nuclei for the phase change such as dusts in the humid air. They may offer the trigger to condense; that is to form the mist. In this research, with taking into account the super-saturation depending on the diameter of foreign nucleus, the mist formation is numerically predicted by solving boundary layer equations for the cold parallel plate channel simulating the heat exchanger of air-conditioner with the slit fins. The effects of the humidity and channel dimension on the mist formation rate and on heat and mass transfer are investigated. In addition, the numerical results are compared with those for the plate channel reported previously.

  4. Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation

    SciTech Connect

    Jianfeng, Lu; Jing, Ding; Jianping, Yang

    2010-11-15

    The heat transfer and absorption characteristics of an external receiver pipe under unilateral concentrated solar radiation are theoretically investigated. Since the heat loss ratio of the infrared radiation has maximum at moderate energy flux, the heat absorption efficiency will first increase and then decrease with the incident energy flux. The local absorption efficiency will increase with the flow velocity, while the wall temperature drops quickly. Because of the unilateral concentrated solar radiation and different incident angle, the heat transfer is uneven along the circumference. Near the perpendicularly incident region, the wall temperature and absorption efficiency slowly approaches to the maximum, while the absorption efficiency sharply drops near the parallelly incident region. The calculation results show that the heat transfer parameters calculated from the average incident energy flux have a good agreement with the average values of the circumference under different boundary conditions. For the whole pipe with coating of Pyromark, the absorption efficiency of the main region is above 85%, and only the absorption efficiency near the parallelly incident region is below 80%. In general, the absorption efficiency of the whole pipe increases with flow velocity rising and pipe length decreasing, and it approaches to the maximum at optimal concentrated solar flux. (author)

  5. Air Circulation and Heat Exchange under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  6. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Labeling for central air conditioners, heat... (âAPPLIANCE LABELING RULEâ) Required Disclosures § 305.12 Labeling for central air conditioners, heat pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps,...

  7. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... air conditioning heat pumps: The seasonal energy efficiency ratio (SEER in British thermal units per... 10 Energy 3 2013-01-01 2013-01-01 false Central air conditioners and heat pumps. 429.16 Section..., energy consumption or other measure of energy consumption of the central air conditioner or heat pump...

  8. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... air conditioning heat pumps: The seasonal energy efficiency ratio (SEER in British thermal units per... 10 Energy 3 2014-01-01 2014-01-01 false Central air conditioners and heat pumps. 429.16 Section..., energy consumption or other measure of energy consumption of the central air conditioner or heat pump...

  9. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... air conditioning heat pumps: The seasonal energy efficiency ratio (SEER in British thermal units per... 10 Energy 3 2012-01-01 2012-01-01 false Central air conditioners and heat pumps. 429.16 Section..., energy consumption or other measure of energy consumption of the central air conditioner or heat pump...

  10. Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation

    SciTech Connect

    Akbari, Hashem

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  11. A heating season comparison test of two solar air heating systems

    SciTech Connect

    Thacher, E.F.; Wen, C.

    1987-06-01

    An outdoor, comparison performance test of two solar air-heating systems was performed between December 1, 1985 and May 17, 1986, near Potsdam, in northern New York. Each system was installed in a small test cell and operated in the direct heating mode. An identical third test cell served as a control. Infiltration air was blown into the cells at 0.5 air changes per hour (ACH). The solar fractions obtained were low, ranging from 0.116 to0.213, with the north cell's fraction somewhat lower than the south cell's. The average solar fraction of both cells in each control range increased as the temperature control range widened. Simulation of the experiment in Albany, Buffalo, Potsdam, and Syracusae using TRNSYS gave solar fractions of similar magnitudes and the same trend. An economic analysis comparing the solar systems to five different conventional energy sources showed no payback during the 20-year term of the analysis.

  12. Design of Solar Heat Sheet for Air Heaters

    NASA Astrophysics Data System (ADS)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  13. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... effect of an air conditioner or heat pump (or its produced heating effect, depending on the mode of... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps §...

  14. Performance and durability of high emittance heat receiver surfaces for solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Roig, David M.; Burke, Christopher A.; Shah, Dilipkumar R.

    1994-01-01

    Haynes 188, a cobalt-based superalloy, will be used to make thermal energy storage (TES) containment canisters for a 2 kW solar dynamic ground test demonstrator (SD GTD). Haynes 188 containment canisters with a high thermal emittance (epsilon) are desired for radiating heat away from local hot spots, improving the heating distribution, which will in turn improve canister service life. In addition to needing a high emittance, the surface needs to be durable in an elevated temperature, high vacuum environment for an extended time period. Thirty-five Haynes 188 samples were exposed to 14 different types of surface modification techniques for emittance and vacuum heat treatment (VHT) durability enhancement evaluation. Optical properties were obtained for the modified surfaces. Emittance enhanced samples were exposed to VHT for up to 2692 hours at 827 C and less than or equal to 10(exp -6) torr with integral thermal cycling. Optical properties were taken intermittently during exposure, and after final VHT exposure. The various surface modification treatments increased the emittance of pristine Haynes 188 from 0.11 up to 0.86. Seven different surface modification techniques were found to provide surfaces which met the SD GTD receiver VHT durability requirement. Of the 7 surface treatments, 2 were found to display excellent VHT durability: an alumina based (AB) coating and a zirconia based coating. The alumina based coating was chosen for the epsilon enhancement surface modification technique for the SD GTD receiver. Details of the performance and vacuum heat treatment durability of this coating and other Haynes 188 emittance surface modification techniques are discussed. Technology from this program will lead to successful demonstration of solar dynamic power for space applications, and has potential for application in other systems requiring high emittance surfaces.

  15. Drying oven with heat reclamation and air pollution control system

    SciTech Connect

    Jamaluddin, A.A.

    1980-12-23

    A system of drying ovens is disclosed with associated means for heat reclamation and air pollution control. The ovens are primarily for drying or baking paint or other coatings on pipes or the like where the emissions are primarily hydrocarbons. In this system of ovens, hydrocarbon fumes are concentrated at the ends of the oven. Solvent laden fumes are, therefore, collected where the concentration is the highest. The exhaust from the oven is located at the central portion and leads to a combustion/incineration chamber where it is exhausted to atmosphere after incineration and a major part of the heat is recovered and recirculated to the oven. In a sequence of ovens, the exhaust from one oven is circulated to the next at a high linear velocity, but low volume (At 25% lel) and heated to a high temperature (1400/sup 0/F.) by in-line incineration of the fumes. The low volume, high velocity, high temperature gasses are mixed with a high volume, low velocity, low temperature exhaust collected from the end of that oven. This incineration and mixing and recirculation of gasses is repeated in each succeeding oven and no gasses are exhausted to atmosphere until the last oven. In the last oven, in sequence, a burner is provided to incinerate fumes recirculated at one end of the oven and the exhaust goes to atmosphere through an incinerator/heat exchanger where the reclaimed heat is supplied to outside air being fed to support combustion in the incinerator at one end of the last oven.

  16. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California

    SciTech Connect

    Ganji, A. . Div. of Engineering)

    1992-07-01

    Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  17. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report

    SciTech Connect

    Ganji, A.

    1992-07-01

    Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  18. MEASUREMENT OF AIR ENTRAINMENT AND DUST EMISSION DURING SHELLED CORN RECEIVING OPERATIONS WITH SIMULATED HOPPER BOTTOM GRAIN TRAILERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dust emissions from grain elevator operations can be a safety and health risk, and a nuisance. Dust emission and air entrainment data are needed for designing adequate and effective control methods. This study measured the dust emitted and air entrained during corn receiving operations at an eleva...

  19. Automotive absorption air conditioner utilizing solar and motor waste heat

    NASA Technical Reports Server (NTRS)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  20. Influence of HX size and augmentation on performance potential of mixtures in air-to-air heat pumps

    SciTech Connect

    Rice, C.K.

    1993-05-01

    A modified Carnot analysis with finite heat exchanger (HX) sizes, counterflow HX configurations, and ideal glide matching was conducted for an air-to-air heat pump application. The purpose of the analysis was to determine the envelope of potential HX size and refrigerant-side augmentation benefits for ideal mixtures relative to pure refrigerant alternatives. The mixture COP benefits examined are those due to exact external fluid glide-matching of idealized mixtures in more effective heat exchangers. Maximum possible mixture COP gains are evaluated for four steady-state air-to-air heat pump conditions. Performance improvement opportunities are found to be primarily in the cooling mode. The effects of deviation from counterflow by use of crossflow and countercrossflow HX configurations are addressed. Refrigerant-side augmentation with pure and mixed refrigerants is examined for air-side dominant and air-to-refrigerant balanced HXs.

  1. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools.

    PubMed

    Burdett, Garry J; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml(-1)) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml(-1). Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  2. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools

    PubMed Central

    Burdett, Garry J.; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml−1) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml−1. Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  3. On the different regimes of gas heating in air plasmas

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2015-10-01

    Simulations of the gas temperature in air (N2-20%O2) plasma discharges are presented for different values of the reduced electric field, E/N g, electron density n e, pressure and tube radius. This study is based on the solutions to the time-dependent gas thermal balance in a cylindrical geometry coupled to the electron, vibrational and chemical kinetics, for E/{{N}\\text{g}}=50 and 100 Td (1 Td = 10-17 V cm2), 109  ⩽  n e  ⩽  1011 cm-3, pressure in the range 1-20 Torr, and also considering different tube radius, 0.5, 1 and 1.5 cm. The competing role of different gas heating mechanisms is discussed in detail within the time range 0.01-100 ms. For times below 1 ms, gas heating occurs from O2 dissociation by electron impact through pre-dissociative excited states, e + O2  →  e + \\text{O}2*   →  e + 2O(3P) and …  →  e + O(3P) + O(1D), as well as through the quenching of N2 electronically excited states by O2. For longer times, simulation results show that gas heating comes from processes N(4S) + NO(X)  →  N2(X, v ~ 3) + O, N2(A) + O  →  NO(X) + N(2D), V-T N2-O collisions and the recombination of oxygen atoms at the wall. Depending on the given E/N g and n e values, each one of these processes can be an important gas-heating channel. The contribution of V-T N2-O exchanges to gas heating is important in the analysis of the gas temperature for different pressures and values of the tube radius. A global picture of these effects is given by the study of the fraction of the discharge power spent on gas heating, which is always ~15%. The values for the fractional power transferred to gas heating from vibrational and electronic excitation are also presented and discussed.

  4. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  5. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.92 Definitions concerning commercial air conditioners and heat pumps. The following definitions...

  6. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Heating Performance and Cost for Central Air... CONSERVATION ACT (âENERGY LABELING RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's...

  7. Analysis, design, and experimental results for lightweight space heat receiver canisters, phase 1

    NASA Technical Reports Server (NTRS)

    Schneider, Michael G.; Brege, Mark A.; Heidenreich, Gary R.

    1991-01-01

    Critical technology experiments have been performed on thermal energy storage modules in support of the Brayton Advanced Heat Receiver program. The modules are wedge-shaped canisters designed to minimize the mechanical stresses that occur during the phase change of the lithium fluoride phase change material. Nickel foam inserts were used in some of the canisters to provide thermal conductivity enhancement and to distribute the void volume. Two canisters, one with a nickel foam insert, and one without, were thermally cycled in various orientations in a fluidized bed furnace. The only measurable impact of the nickel foam was seen when the back and short sides of the canister were insulated to simulate operation in the advanced receiver design. In tests with insulation, the furnace to back side delta T was larger in the canister with the nickel foam insert, probably due to the radiant absorptivity of the nickel. However, the differences in the temperature profiles of the two canisters were small, and in many cases the profiles matched fairly well. Computed Tomography (CT) was successfully used to nondestructively demarcate void locations in the canisters. Finally, canister dimensional stability, which was measured throughout the thermal cycling test program with an inspection fixture was satisfactory with a maximum change of 0.635 mm (0.025 in.).

  8. Theoretical and Experimental Investigations of Cylindrical Air-Heating Solar Collector

    NASA Astrophysics Data System (ADS)

    Pelece, I.; Shipkovs, P.

    2016-06-01

    Solar energy is used not only at low latitudes, where it is available at large amounts, but also at higher latitudes, where height of sun and irradiance are significantly lower. On the other hand, the length of day at higher latitudes is longer in summer than at low latitudes, and also the path of the sun is longer. The present research deals with seeking for new shapes of solar collectors capable of receiving more solar energy. For designing and evaluating new shapes of solar collectors, it is necessary to have new methods for simple calculations of energy received from the sun by surface of any shape and direction. Such a method is explained in the present paper. Based on calculations by the proposed method, a new form of solar collector - a cylindrical collector - has been worked out. This collector is intended for air heating, but main principles can also be used for water heating, and even for photovoltaics. A cylindrical collector receives more energy in the morning and evening than a flat one, but at midday power of both collectors is equal, if effective areas are equal. Daily energy sum of the cylindrical solar collector is 1.5 times greater than that of the flat one.

  9. Design, fabrication, and testing of a 30 kW(sub t) screen-wick heat-pipe solar receiver

    NASA Astrophysics Data System (ADS)

    Andraka, C. E.; Diver, R. B.; Wolf, D. A.

    Heat-Pipe reflux receivers have been identified as a desirable interface to couple a Stirling engine with a parabolic dish solar concentrator. The reflux receiver provides power uniformly and nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. Therefore, the heat pipe reflux receiver allows the receiver and heater head to be independently thermally optimized, leading to high receiver thermal transport efficiency. Dynatherm Corporation designed and fabricated a screen-wick heat-pipe receiver for possible application to the Cummins Power Generation, Inc. first-generation 4 kW(sub e) free-piston dish-Stirling system, which required up to 30 kW(sub t). The receiver features a composite absorber wick and a homogeneous sponge-wick on the aft dome to provide sodium to the absorber during hot restarts. The screen wick is attached to the absorber dome by spot welds. Refluxing troughs collect the condensate in a cylindrical condenser and return it directly to the absorber surface. The receiver was fabricated and lamp tested to 16 kW(sub t) throughput by Dynatherm. The receiver has been tested on Sandia's 60 kW(sub t) solar furnace to a throughput power of 27.5 kW(sub t) and vapor space temperature up to 780 C. Infrared thermography was used to monitor the entire absorber dome for impending dryout while the receiver was tested. The receiver was started using solar input, without the assistance of electrical pre-heaters. The power was extracted with a gas-gap cold-water calorimeter to simulate the operation of a Stirling engine. The receiver design, thermal performance analysis, flux distribution analysis, test results, and post-test analysis are presented.

  10. User's manual for steady-state computer simulation for air-to-air heat pumps with selected examples

    SciTech Connect

    Not Available

    1982-06-30

    A steady-state computer simulation model has been developed for conventional, vapor compression cycle, electrically driven air-to-air heat pumps. Comparison between the heat pump simulation model predictions and available data from three heat pump experiments indicate that the predictions generally are within accepted tolerances. A sensitivity analysis was made to assess the effect of possible variations in some of the input parameters on the system's thermal performance. The computer simulation model is briefly described for heating and cooling modes, and simulation model input data and output are given. (LEW)

  11. Central solar energy receiver

    DOEpatents

    Drost, M. Kevin

    1983-01-01

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  12. Polyculture of penaeid shrimp in ponds receiving brackish heated effluent from a power plant

    SciTech Connect

    Ojeda, J.L.W.

    1983-01-01

    White shrimp Penaeus setiferus, were grown in monoculture or in polyculture with blue shrimp P. stylirostris, or striped mullet Mugil cephalus in 0.1-ha earthen ponds receiving heated effluent from the Houston Lighting and Power Company's Cedar Bayou Generating Station east of Baytown, Texas during 1978 and 1979. No detrimental effect of either species on white shrimp survival or yield was found. Blue shrimp was greater than that of white shrimp in the same ponds. Total yield was increased by polyculture. An experiment was performed in which blue shrimp were stocked conventionally into ponds, or stocked in three successive increments (staggered stocking study). A preliminary experiment was made in 1978, followed by a more expanded version in 1979. Staggered stocking increased pond yields compared to expected values from the control pond yields. There was no detrimental effect of staggered stocking on shrimp survival. Pond salinities were much lower in 1979 than in 1978, associated with lower shrimp growth, survival and yield. A distribution study performed in the staggered stocking study ponds revealed that blue shrimp in mixed-size culture tend to segregate by size, and that small shrimp show somewhat different distribution patterns and temporal activity patterns than large shrimp. All the organisms used also served as biological monitors of water quality. No detectable levels of pesticides were found in any of the cultured animals. The only heavy metal found in higher concentrations than in previous years at this site was chromium.

  13. Evidence of increased levels of space heat consumption and air leakage associated with forced air heating systems in houses in the Pacific Northwest

    SciTech Connect

    Parker, D.S. )

    1989-01-01

    This paper examines energy consumption and air-tightness data from 820 electrically heated houses built since 1980 in the Pacific Northwest. Half of the buildings were energy-efficient structures built to the model conservation standards (MCS) developed in the region. The rest of the sample were conventional new houses intended to be representative of current building practices. The houses were monitored for a period of one year with the structures audited to determine insulation levels and occupancy characteristics. In the analysis of the monitored data we found that heating system type plays a large role in determining the relative efficiency of electrically heated houses. Residences with electric forced-air heating systems used an average of 1.40 kWh/ft{sup 2} (15.1 kWh/m{sup 2}) more space heating energy than those without them. We also discovered through the use of fan pressurization and perfluorocarbon tracer gas tests (PFT) that houses with forced-air systems exhibited substantially higher level of air leakage. The tracer gas tests indicated an average of 70% higher levels of air change rate in the control houses with forced-air space heat as opposed to baseboard systems.

  14. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  15. Performance Characteristics of Cross-Fin-Tube-Type Heat Exchanger for Air Conditioner

    NASA Astrophysics Data System (ADS)

    Sasaki, Naoe; Kakiyama, Shiro; Sanuki, Noriyoshi

    The effects of enhanced heat transfer tube with ability to control the heat transfer disturbance by mechanical tube expanding were experimentally investigated on the performance characteristics of air-cooled cross-fin-tube-type heat exchanger for air conditioner. Three kinds of the enhanced heat transfer tube were developed and used in the experiment. The enhanced heat transfer tube was a kind of spirally grooved tube and composed with the fins smaller than those of the conventional spirally grooved tube excepting four fins located in orthogonal position on the tube circumference. The optimum groove number to enhance the performance of heat exchanger was also shown.

  16. Effects of fin pattern on the air side heat transfer coefficient in plate finned tube heat exchangers

    SciTech Connect

    Beecher, D.T.; Fagan, T.J.

    1987-06-01

    The effects of air velocity, heat exchanger geometry and fin pattern on air side heat transfer in plate finned tube heat exchangers were investigated experimentally using a single fin passage model. The geometric parameters considered included tube diameter, transverse tube spacing, longitudinal tube spacing, number of tube rows and fin spacing. The effects of fin pattern depth and number of fin patterns per longitudinal tube row were investigated for a pattern consisting of corrugations of triangular cross section transverse to the direction of air flow. The heat transfer data were correlated in terms of the dimensionless heat transfer coefficient (Nussult number) based on the arithmetic mean temperature difference Nu/sub a/ and the Graetz number Gz, a dimensionless measure of the level of flow development.

  17. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  18. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    SciTech Connect

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  19. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  20. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  1. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  2. Air Conditioning, Heating, and Ventilating: Construction, Supervision, and Inspection. Course of Study.

    ERIC Educational Resources Information Center

    Messer, John D.

    This course of study on air conditioning, heating, and ventilating is part of a construction, supervision, and inspection series, which provides instructional materials for community or junior college technical courses in the inspection program. Material covered pertains to: piping and piping systems; air movers; boilers; heat exchangers; cooling…

  3. Determination of air side heat transfer coefficient in a mini-channel heat exchanger using Wilson Plot method

    NASA Astrophysics Data System (ADS)

    Thoo, K. K.; Chin, W. M.; Heikal, M. R.

    2013-12-01

    In this study, the air side heat transfer coefficient of an aluminium mini-channel heat exchanger was investigated for single-phase flow in the mini-channel, with water in the tubes and air on the outside. Research methods included hydraulic tests on a single mini-channel tube, Wilson Plot experiments and experiment validation. Results obtained from the hydraulic test showed that turbulent flow occurred in the tube at a Reynolds number of 830. Wilson Plot experiments were conducted to determine air side heat transfer coefficient of the heat exchanger. The tube side Reynolds number was maintained above 1000 to ensure turbulent flow and tube side heat transfer coefficient was calculated using Gnielinski equation for turbulent flow. The air side heat transfer coefficients obtained from the Wilson Plot experiments were in good agreement with known correlations. The outcome of this study is to use the air side heat transfer coefficient to calculate the performance of refrigerant condensers for different tube pass ratios and flow pass configurations.

  4. Temporal variability of the Buenos Aires, Argentina, urban heat island

    NASA Astrophysics Data System (ADS)

    Camilloni, Inés; Barrucand, Mariana

    2012-01-01

    This paper describes the statistical characteristics and temporal variability of the urban heat island (UHI) intensity in Buenos Aires using 32-year surface meteorological data with 1-h time intervals. Seasonal analyses show that the UHI intensity is strongest during summer months and an "inverse" effect is found frequently during the afternoon hours of the same season. During winter, the UHI effect is in the minimal. The interannual trend and the seasonal variation of the UHI for the main synoptic hours for a longer record of 48 years are studied and associated to changes in meteorological factors as low-level circulation and cloud amount. Despite the population growth, it was found a negative trend in the nocturnal UHI intensity that could be explained by a decline of near clear-sky conditions, a negative trend in the calm frequencies and an increase in wind speed. Urban to rural temperature differences and rural temperatures are negatively correlated for diurnal and nocturnal hours both for annual and seasonal scales. This result is due to the lower interannual variability of urban temperatures in comparison to rural ones.

  5. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  6. The effect of air on the moist-heat resistance of Bacillus stearothermophilus spores.

    PubMed

    Scruton, M W

    1989-11-01

    The presence of air in an autoclave chamber and load is generally considered to reduce the lethal effect of the process on bacterial spores. In this study, the heat inactivation of spores of Bacillus stearothermophilus (NCIB 8224) was measured in the presence and absence of air at 100% relative humidity. The results confirm that air significantly enhances the lethality of moist-heat on this strain of B. stearothermophilus. PMID:2575633

  7. Energy conservation in fruit dehydrators utilizing recirculation of exhaust air and heat-recovery heat exchangers. Final report

    SciTech Connect

    Groh, J.E.; Thompson, T.L.

    1981-12-01

    Dehydration of fruit in the United States is often done by means of a tunnel dehydrator utilizing large quantities of fossil fuel. Existing dehydrators have been designed to operate with maximum product through-put and with little regard for energy efficiency. By incorporating dampers for air recirculation and thermal energy recovery equipment on the exhaust air, the energy required in dehydration was cut by over 40%, satisfying the original objectives of the program. A commercial dehydrator tunnel was modified by installing a heat recovery heat exchanger and an exhaust air recirculation damper. Another tunnel was equipped with the exhaust air recirculation damper only. A third tunnel was unmodified. These three tunnels of a 24 tunnel facility were equipped with individual natural gas meters to measure energy consumption. The energy consumption of the heat exchanger equipped tunnel normally amounted to approximately 40% of the unmodified tunnel during raisin production.

  8. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  9. Comparison of residential air-to-air heat pump and air-conditioner/gas furnace systems in 16 California climatic zones

    SciTech Connect

    Ayres, J.M.; Lau, H.

    1987-06-01

    Heat pumps with coefficients of performance ranging from 2.5 to 3.1 and gas furnaces with thermal efficiencies of 75% to 90% are analyzed through DOE-2 computer simulations and life-cycle cost analyses. The annual heating performances and the life-cycle costs of air-to-air heat pump and air-conditioner/gas furnace systems operating in single-family detached residences located in 16 climatic zones defined by the California Energy Commission are compared. With standard performance equipment, heat pumps cost more in all zones except for China Lake and Sacramento, but with high performance equipment, heat pumps cost less in all zones except for Fresno and Mt. Shasta.

  10. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  11. Reduced heat stress in offices in the tropics using solar powered drying of the supply air.

    PubMed

    Gunnarsen, L; Santos, A M B

    2002-12-01

    Many solutions to indoor climate problems known from developed countries may have prohibitive installation and running costs in developing countries. The purpose was to develop a low-cost solution to heat stress in a hot and humid environment based on solar powered drying of supply air. Dry supply air may facilitate personal cooling by increased evaporation of sweat. Heat acclimatized people with efficient sweating may in particular benefit from this cooling. A prototype solar powered supply system for dried-only air was made. Air from the system was mixed with room air, heated to six different combinations of temperature and humidity and led to Personal Units for Ventilation and Cooling (PUVAC) in six cubicles simulating office workplaces. A total of 123 heat acclimatized subjects were exposed 45 min in each of the cubicles. A model for the combined effect of operative temperature of room, moisture content of room air, temperature of supply air and moisture content of supply air was developed based on the experiments. Reduction of moisture content in the supply air by 1.6 g/kg had the same effect as lowering the operative temperature by 1 degree C. The solar-powered system for supplying dry air is a low-cost alternative to traditional air conditioning in hot and humid regions. PMID:12532757

  12. Effects of fin pattern on the air-side heat transfer coefficient in plate finned-tube heat exchangers

    SciTech Connect

    Beecher, D.T.; Fagan, T.J.

    1987-06-01

    The effects of air velocity, heat exchanger geometry, and fin patternation on air-side heat transfer in plate finned tube heat exchangers were investigated experimentally using a single-fin passage model. The geometric parameters considered included tube diameter, transverse tube spacing, longitudinal tube spacing, number of tube rows, and fin spacing. The effects of fin pattern depth and number of fin patterns per longitudinal tube row were investigated for a pattern consisting of corrugations of triangular cross-section transverse to the direction of airflow. The heat transfer data were correlated in terms of the dimensionless heat transfer coefficient (Nusselt number) based on the arithmetic mean temperature difference, Nu/sub a/, and the Graetz number, Gz, a dimensionless measure of the level of flow development.

  13. The Air Force Manufacturing Technology (MANTECH): Technology transfer methodology as exemplified by the radar transmit/receive module program

    NASA Technical Reports Server (NTRS)

    Houpt, Tracy; Ridgely, Margaret

    1991-01-01

    The Air Force Manufacturing Technology program is involved with the improvement of radar transmit/receive modules for use in active phased array radars for advanced fighter aircraft. Improvements in all areas of manufacture and test of these modules resulting in order of magnitude improvements in the cost of and the rate of production are addressed, as well as the ongoing transfer of this technology to the Navy.

  14. Design of the Heat Receiver for the U.S./Russia Solar Dynamic Power Joint Flight Demonstration

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Krystkowiak, Christopher; Klucher, Beth A.

    1996-01-01

    A joint U.S./Russia program is being conducted to develop, fabricate, launch, and operate a solar dynamic demonstration system on Space Station Mir. The goal of the program is to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station Alpha The major components of the system include a heat receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a concentrator, a radiator, a thermal control system, and a Space Shuttle Carrier. This paper discusses the design of the heat receiver component. The receiver comprises a cylindrical cavity, the walls of which are lined with a series of tubes running the length of the cavity. The engine working fluid, a mixture of xenon and helium, is heated by the concentrated sunlight incident on these tubes. The receiver incorporates integral thermal storage, using a eutectic mixture of lithium fluoride and calcium difluoride as the thermal storage solid-to-liquid phase change materiaL This thermal storage is required to enable power production during eclipse. The phase change material is contained in a series of individual containment canisters.

  15. Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss

    SciTech Connect

    Kutscher, C.; Burkholder, F.; Stynes, J. K.

    2012-02-01

    The thermal efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The thermal efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain the thermal efficiency curve. This paper describes this approach and also makes the case that there are advantages to plotting collector efficiency versus the difference between the operating temperature and the ambient temperature at which the receiver heat loss was measured divided by radiation to a fractional power (on the order of 1/3 but obtained via data regression) - as opposed to the difference between operating and ambient temperatures divided by the radiation. The results are shown to be robust over wide ranges of ambient temperature, sky temperature, and wind speed.

  16. Simulation of multistream plate-fin heat exchangers of an air separation unit

    NASA Astrophysics Data System (ADS)

    Boehme, R.; Parise, J. A. R.; Pitanga Marques, R.

    2003-06-01

    Hot and cold reversible heat exchangers of an air separation unit are simulated. Five fluid streams exchange heat with six fluid streams in parallel and counter flow. The numerical method employed divides the heat exchanger in a number of sections, for which fluid properties, capacity rates and heat transfer coefficients are considered constant. Single and two-phase streams are taken into account. Results obtained from the model are compared with field data.

  17. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    SciTech Connect

    Shen, Bo; Bhandari, Mahabir S

    2016-01-01

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.

  18. Characteristics of exhaust air facades as solar absorbers for saving of heating energy

    NASA Astrophysics Data System (ADS)

    Voncube, H. L.; Ludwig, E.

    1982-12-01

    The solar radiation exploited by solar exhaust air windows was measured at a building facing four main directions. The windows were not constructed as optimal radiation absorbers and the heat gain stood in a range of 3 to 10% of the heat consumption, depending on time of year. Optimal windows (chiefly clear glass with Venetian blinds) were found by a computer program simulating the process of radiation in an exhaust air-window and heat gains up to 50% can be obtained. Relation to air flow rate and others were found. The calculated results were proved by measurements. With a suitable heating systems in the building (heat transport form south side to north side, heat storage) up to 50% of the annual consumption can be saved.

  19. The effect of air leakage and heat exchange on the decay of entrapped air pocket slamming oscillations

    NASA Astrophysics Data System (ADS)

    Abrahamsen, Bjørn C.; Faltinsen, Odd M.

    2011-10-01

    The phenomenon studied in this work is that of an air pocket entrapped by a free surface water wave inside a rectangular tank at a high filling level. The wave, which is a gravity wave, is caused by forced horizontal motion which is constructed in a particular way, in order to entrap an air pocket as it approaches the upper left corner of the tank. As the wave touches the roof, the air is compressed and starts to oscillate. The oscillations resemble, to some extent, the free oscillations of an underdamped mass-spring system, where the mass is related to the generalized added mass effect of the water pressure associated with the air pocket oscillations. The stiffness is due to the compressibility of the air. The reason for the damping or, more generally, the decay of the air pocket oscillations is less understood. Air leakage has been proposed as one possible reason for this decay. In this work, the role of air leakage is found not to be the reason for the decay of the air pocket oscillations, because it is not present during major parts of the impact. However, by drilling holes in the roof of the tank, the effect of leakage during the oscillations is proven to cause decay. To explain the physical source of the decay of the oscillations, damping due to heat transfer to and from the air pocket is investigated through an analytical one-dimensional steady-state model. The damping due to heat transfer is observed to play an important role. The obtained understanding of the mechanisms causing the decay of the air-pocket impact at the upper corner is believed to be relevant to other types of impacts, particularly the entrapment of air pockets on walls by breaking waves.

  20. 41 CFR 304-3.8 - Must I adhere to the provisions of the Fly America Act when I receive air transportation to a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non... provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non... reimbursed to your agency by the non-Federal source, the provisions of the Fly America Act do not apply....

  1. 41 CFR 304-3.8 - Must I adhere to the provisions of the Fly America Act when I receive air transportation to a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non... provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non... reimbursed to your agency by the non-Federal source, the provisions of the Fly America Act do not apply....

  2. 41 CFR 304-3.8 - Must I adhere to the provisions of the Fly America Act when I receive air transportation to a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non... provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non... reimbursed to your agency by the non-Federal source, the provisions of the Fly America Act do not apply....

  3. 41 CFR 304-3.8 - Must I adhere to the provisions of the Fly America Act when I receive air transportation to a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non... provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non... reimbursed to your agency by the non-Federal source, the provisions of the Fly America Act do not apply....

  4. 41 CFR 304-3.8 - Must I adhere to the provisions of the Fly America Act when I receive air transportation to a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non... provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non... reimbursed to your agency by the non-Federal source, the provisions of the Fly America Act do not apply....

  5. Computation of flow and heat transfer in rotating cavities with peripheral flow of cooling air.

    PubMed

    Kiliç, M

    2001-05-01

    Numerical solutions of the Navier-Stokes equations have been used to model the flow and the heat transfer that occurs in the internal cooling-air systems of gas turbines. Computations are performed to study the effect of gap ratio, Reynolds number and the mass flow rate on the flow and the heat transfer structure inside isothermal and heated rotating cavities with peripheral flow of cooling air. Computations are compared with some of the recent experimental work on flow and heat transfer in rotating-cavities. The agreement between the computed and the available experimental data is reasonably good. PMID:11460668

  6. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  7. Optimum Allocation of Heat Exchanger Inventory of Irreversible Air Refrigeration Cycles

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Chen, Lingen; Sun, Fengrui; Wu, Chih

    The theory of finite time thermodynamics is applied to analyze the performance of irreversible air refrigeration cycles in this paper. For the fixed total heat exchanger inventory, the ratio of heat conductance of the low-temperature side heat exchanger to that of the high-temperature side heat exchanger is optimized for maximizing the cooling load and the coefficient of performance (COP) of the cycles. The influences of various parameters on the characteristic of the cycle are analyzed. The results obtained may provide guidance for the design of practice air refrigeration plants.

  8. Dynamic models of heating and cooling coils with one-dimensional air distribution

    NASA Astrophysics Data System (ADS)

    Wang, Zijie; Krauss, G.

    1993-06-01

    This paper presents the simulation models of the plate-fin, air-to-water (or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying coils in the HVAC (Heating, Ventilation and Air-Conditioning) systems. The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid. The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes. They can also be used to optimize the structures of such coils. The models are based on principal laws of heat and mass conservation and fluid mechanics. They are transparent and easy to use. In our work, a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique. Therefore we can conveniently simulate the coils with different structures and different geometric parameters. Two modular programs TRNSYS (Transient System Simulation) and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified. The coil elements and a real coil were simulated. The results were compared with the data offered by the manufacturer (company SOFICA) and also with those obtained using critical methods such as NTU method, etc. and good agreement is attained.

  9. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  10. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  11. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  12. Proposal of bypass in heat recovery system with sucking air

    NASA Astrophysics Data System (ADS)

    Siažik, Ján; Malcho, Milan; Rezničák, Štefan

    2016-06-01

    Waste heat is utilized in a wide variety of technologies for a number of reasons. But the significant one such reason is use of the energy contained for example in waste water or waste heat that would otherwise left unused. Other considerable reason it is also reduces primary costs to operate the technology. The article deals with the arrangement section of the unit in heat recovery systems where the entry of waste gases into defluorinastion device. The technologies re-use heat often use the bypass. Bypass fulfill their duty in equipment failures, for example heat exchanger where it is not possible to stop the operationimmediately and the hot combustion gases can flow bypass without interrupting operation.

  13. Analysis of heat pumps installed in family housing at Hunter Army Air Field

    SciTech Connect

    Parker, S.A.

    1994-08-01

    The US Army Forces Command (FORSCOM) tasked Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) to conduct a postconstruction evaluation of the air-source heat pumps installed in family housing at Hunter Army Air Field (AAF). The objective of this project was to investigate and resolve concerns about an increase in energy costs at Hunter AAF following the installation of heat pumps in November 1992. After completing several analyses and a field inspection of the heat pumps in family housing at Hunter AAF, the following conclusions were made: the installation of air-source heat pumps reduced the annual energy cost in family housing by $46,672 in 1993; the heat pump thermostat controls in Hunter AAF family housing appear to be incorrectly installed; and the Hunter AAF electric utility bill increased 10% during the first 6 months of 1993 compared to the first 6 months of 1992.

  14. Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation

    SciTech Connect

    Albanakis, C.; Missirlis, D.; Yakinthos, K.; Goulas, A.; Michailidis, N.; Omar, H.; Tsipas, D.; Granier, B.

    2009-01-15

    The main objective of this work was to evaluate the behavior of porous materials, when treated as volumetric receivers under concentrated solar radiation. For this reason various porous metallic and ceramic materials have been tested as potential receivers for concentrated solar radiation. The experimental investigation showed that their efficiency was depending on both materials parameters and flow conditions. In this work, a variety of foam materials such as Ni and Ni alloy, inconel, copper, aluminum and SiC with different open cell porosity were tested as potential media to be used as volumetric receivers and heat exchangers. However, since the results were similar, for space economy, only the results of two of them, nickel and inconel were presented in detail and compared with each other. (author)

  15. Integrated heat pipe-thermal storage design for a solar receiver. [Constant power source with heat from sun or from storage

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Woloshun, K.; Merrigan, M.A.; Heidenreich, G.

    1986-01-01

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power Systems (ORC-SDPS) receiver for the space station application. The operating temperature of he heat pipe elements is in the 770 to 810/sup 0/K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Stainless steel is used as the containment tube and screen material. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability. Details of the analysis and of fabrication and assembly procedures are presented. 2 refs., 8 figs.

  16. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  17. Development, solar test, and evaluation of a high-temperature air receiver for point-focusing parabolic dish applications

    NASA Technical Reports Server (NTRS)

    Hanseth, E. J.

    1981-01-01

    A high temperature solar receiver was fabricated and tested in excess of 1370 C on an 11-meter-diameter test bed concentrator at the Jet Propulsion Laboratory Parabolic Dish Test Site, Edwards, California. The 60-kilowatt thermal receiver design utilizes state-of-the-art silicon carbide honeycomb matrix panels to receive and transfer the solar energy and mullite elements for thermal buffer storage. Solar tests were conducted with indicated air exit temperatures ranging from 885 C (1625 F) to 1427 C (2600 F), mass flow rates of 75 to 105 g/sec (0.16 to 0.23 lbm/sec), and pressures up to 265 kPa absolute (38.4 psia). Estimates of efficiency are 59.7% at 1120 C (2048 F) to 80.6% at 885 C (1625 F) when aperture spillage losses are considered separately. Results are presented which demonstrate the feasibility of this innovative receiver concept for point-focusing parabolic dish applications over a wide temperature range.

  18. Electrically heated, air-cooled thermal modulator and at-column heating for comprehensive two-dimensional gas chromatography.

    PubMed

    Libardoni, Mark; Waite, J Hunter; Sacks, Richard

    2005-05-01

    An instrument for comprehensive two-dimensional gas chromatography (GCxGC) is described using an electrically heated and air-cooled thermal modulator requiring no cryogenic materials or compressed gas for modulator operation. In addition, at-column heating is used to eliminate the need for a convection oven and to greatly reduce the power requirements for column heating. The single-stage modulator is heated by current pulses from a dc power supply and cooled by a conventional two-stage refrigeration unit. The refrigeration unit, together with a heat exchanger and a recirculating pump, cools the modulator to about -30 degrees C. The modulator tube is silica-lined stainless steel with an internal film of dimethylpolysiloxane. The modulator tube is 0.18 mm i.d. x 8 cm in length. The modulator produces an injection plug width as small as 15 ms. PMID:15859594

  19. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  20. Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands

    SciTech Connect

    Akbari, Hashem

    2007-07-01

    World energy use is the main contributor to atmospheric CO2. In 2002, about 7.0 giga metric tons of carbon (GtC) were emitted internationally by combustion of gas, liquid, and solid fuels (CDIAC, 2006), 2 to 5 times the amount contributed by deforestation (Brown et al., 1988). The share of atmospheric carbon emissions for the United States from fossil fuel combustion was 1.6 GtC. Increasing use of fossil fuel and deforestation together have raised atmospheric CO{sub 2} concentration some 25% over the last 150 years. According to global climate models and preliminary measurements, these changes in the composition of the atmosphere have already begun raising the Earth's average temperature. If current energy trends continue, these changes could drastically alter the Earth's temperature, with unknown but potentially catastrophic physical and political consequences. During the last three decades, increased energy awareness has led to conservation efforts and leveling of energy consumption in the industrialized countries. An important byproduct of this reduced energy use is the lowering of CO{sub 2} emissions. Of all electricity generated in the United States, about one-sixth is used to air-condition buildings. The air-conditioning use is about 400 tera-watt-hours (TWh), equivalent to about 80 million metric tons of carbon (MtC) emissions, and translating to about $40 billion (B) per year. Of this $40 B/year, about half is used in cities that have pronounced 'heat islands'. The contribution of the urban heat island to the air-conditioning demand has increased over the last 40 years and it is currently at about 10%. Metropolitan areas in the United States (e.g., Los Angeles, Phoenix, Houston, Atlanta, and New York City) have typically pronounced heat islands that warrant special attention by anyone concerned with broad-scale energy efficiency (HIG, 2006). The ambient air is primarily heated through three processes: direct absorption of solar radiation, convection of heat

  1. A Procedure for the Design of Air-Heated Ice-Prevention Systems

    NASA Technical Reports Server (NTRS)

    Neel, C. B.

    1954-01-01

    A procedure proposed for use in the design of air-heated systems for the continuous prevention of ice formation on airplane components is set forth. Required heat-transfer and air-pressure-loss equations are presented, and methods of selecting appropriate meteorological conditions for flight over specified geographical areas and for the calculation of water-drop-impingement characteristics are suggested. In order to facilitate the design, a simple electrical analogue was devised which solves the complex heat-transfer relationships existing in the thermal-system analysis. The analogue is described and an illustration of its application to design is given.

  2. Desiccant outdoor air preconditioners maximize heat recovery ventilation potentials

    SciTech Connect

    Meckler, M.

    1995-12-31

    Microorganisms are well protected indoors by the moisture surrounding them if the relative humidity is above 70%. They can cause many acute diseases, infections, and allergies. Humidity also has an effect on air cleanliness and causes the building structure and its contents to deteriorate. Therefore, controlling humidity is a very important factor to human health and comfort and the structural longevity of a building. To date, a great deal of research has been done, and is continuing, in the use of both solid and liquid desiccants. This paper introduces a desiccant-assisted system that combines dehumidification and mechanical refrigeration by means of a desiccant preconditioning module that can serve two or more conventional air-conditioning units. It will be demonstrated that the proposed system, also having indirect evaporative cooling within the preconditioning module, can reduce energy consumption and provide significant cost savings, independent humidity and temperature control, and, therefore, improved indoor air quality and enhanced occupant comfort.

  3. Development of New Air-Cooled Heat Pump Chiller 'Compact Cube'

    NASA Astrophysics Data System (ADS)

    Ookoshi, Yasushi; Ito, Takuya; Yamaguchi, Hiroshi; Kato, Yohei; Ochiai, Yasutaka; Tanaka, Kosuke; Uji, Yoshihiro; Nakayama, Hiroshi

    Further improvement of the performance is requested to air-cooled heat pump chiller from the viewpoint of the global warming prevention. Smaller unit is needed to facilitate the renewal from absorption chiller to air-cooled heat pump chiller. To meet such needs, we developed compact new air-cooled heat pump chiller with high efficiency, 'Compact cube'. The developed machine is side-flow type with U-shaped fin and tube heat exchangers. With this structure, the uniform air velocity, high packed density of the heat exchangers, and the unit miniaturization have been implemented. The refrigeration cycle with two-evaporating temperature has also been implemented. The cooling COP of this cycle is 2% higher compared with conventional one-evaporating temperature cycle because of the rise of average evaporating temperature. In a new model, a new control system, which controls both capacity of compressors and air flow rate corresponding to heat load, has been implemented. As a result, the developed machine achieved IPLV(Integrated Part load Value) to 6.2(MCHV-P1800AE) which is 29% better than the conventional unit.

  4. FORMALDEHYDE AND TRACER GAS TRANSFER BETWEEN AIRSTREAMS IN ENTHALPY-TYPE AIR-TO-AIR HEAT EXCHANGERS

    SciTech Connect

    Fisk, W. J.; Pedersen, B. S.; Hekmat, D.; Chant, R. E.; Kaboli, H.

    1984-07-01

    Enthalpy exchangers are frequently employed to transfer heat and water between the supply and exhaust airstreams of mechanical ventilation systems. Concern has been expressed that some indoor-generated air pollutants, especially formaldehyde, may be transferred between airstreams by this type of heat exchanger and, thus, returned to the indoor space. This paper describes an experimental study in which the formaldehyde, tracer gas, and water vapor transfer rates in two enthalpy exchangers were measured. The first exchanger uses a crossflow core fabricated from a treated paper. The core of the second heat exchanger is a rotating heat wheel coated with lithium chloride. To reduce the transfer of gases by air leakage each core was installed in a specially fabricated case. Only 5% to 8% of the two tracer gases and 7% to 15% of the formaldehyde injected into the exhaust airstream was transferred to the supply airstream. Therefore, formaldehyde transfer between airstreams by processes other than air leakage does not seriously compromise the performance of these enthalpy exchangers. Theoretical calculations indicate, however, that the transfer of water vapor between airstreams in enthalpy exchangers can significantly diminish their ability to lower indoor formaldehyde concentrations because of the positive coupling between indoor humidity and the emission rates of formaldehyde from building materials.

  5. Heat transfer analysis for high temperature preheated air combustion in furnace

    SciTech Connect

    Taniguchi, H.; Arai, N.; Kudo, K.; Aoki, K.

    1998-07-01

    The high temperature preheated air combustion system has been recently developed and techniques of heat transfer analysis pose important problems in its application to the industrial field. The three-dimensional simulation has to be introduced, therefore, for the above heat transfer analysis with combustion, fluid flow and heat transfer. Another effort may be introduced to reduce the computing time of heat transfer analysis by means of some simplification in software of chemical simulation, etc. If one has introduced the application of the high temperature preheated air combustion technique in natural gas firing, the non-gray radiation should be applied to each radiant gas of CO{sub 2}, H{sub 2}O, CO or CH{sub 4}, in this analysis. Finally, the authors would like to refer the inverse computation of radiation heat transfer in furnace which has been proposed by one of the authors and another researcher in the United States. If one tries to estimate the performance of an industrial furnace, the heat flux on heating material is the most important factor which has been fixed as input data of computation. Therefore, the heat transfer analysis may be sometimes reversed by fixed data of heat flux and proceeded by trial and error method, in order to obtain the initial condition of heat source and furnace facilities.

  6. Performance comparison of air- and ground-coupled heat pump systems. Final report

    SciTech Connect

    Parker, J.D.; Kavanaugh, S.; Ramanathan, R.

    1984-01-01

    Research initiated in 1979 to compare the performance of air-coupled and ground-coupled heat pumps is described. Three heat pump systems were installed in small, neighboring all-electric residences served by the Oklahoma Gas and Electric Company in Perkins, Oklahoma. An air-coupled heat pump and two ground-coupled heat pumps - one with solar assistance - were field tested. However, equipment and instrumentation problems precluded gathering meaningful data for the solar-assisted ground-coupled system. Generally, the unassisted ground-coupled heat pump system proved superior to the air-coupled system, both in reducing peak demand and in consuming less energy on an annual basis. The unassisted ground-coupled system reduced summer and winter peak demand, and experienced no performance degradation due to buildup of rejected waste heat in the ground well. A polyethylene U-tube ground heat exchanger was installed in both ground-coupled systems midway through the project, replacing a five-inch annular PVC pipe arrangement that had functioned poorly. The U-tube performed well throughout the remainder of research. Differing lifestyles and thermostat changes by building occupants during the monitoring period produced quite different demands and loads in the test houses, but when results were normalized through simulation, the superior performance of the unassisted ground-coupled heat pump was confirmed.

  7. Satellite estimates of ocean-air heat fluxes during cold air outbreaks

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Atlas, D.

    1982-01-01

    A method for estimating the heat and moisture fluxes of coastal waters using the cloud free path, the sea surface temperature, and the saturation water vapor mixing ratio is presented. Generalized nomograms for the surface sensible and latent heat fluxes are developed using the Stage and Businger (1981) mixed-layer model. The fluxes are found to be slightly dependent on wind speed. The results are found to be applicable to any path within the cloud-free region, with heat fluxes obtainable by multiplication of the mean heating by the mean wind speed in the boundary layer. Higher stability causes lowered heating. It is shown that the latent heat flux is linear. Applications of the method to lake-effect snowstorms and for verification of boundary-layer models are indicated.

  8. Radioactive Air Emmission Notice of Construction (NOC) for the Waste Receiving and Processing Facility (WRAP)

    SciTech Connect

    MENARD, N.M.

    2000-12-01

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61.07 for the Waste Receiving and Processing (WRAP) Facility. The rewrite of this NOC incorporates all the approved revisions (Sections 5.0, 6.0, 8.0, and 9.0), a revised potential to emit (PTE) based on the revised maximally exposed individual (MEI) (Sections 8.0, 10.0, 11.0, 12.0, 13.0, 14.0, and 15.0), the results of a study on fugitive emissions (Sections 6.0, 10.0, and 15.0), and reflects the current operating conditions at the WRAP Facility (Section 5.0). This NOC replaces DOE/RL-93-15 and DOE/RL-93-16 in their entirety. The primary function of the WRAP Facility is to examine, assay, characterize, treat, verify, and repackage radioactive material and mixed waste. There are two sources of emissions from the WRAP Facility: stack emissions and fugitive emissions. The stack emissions have an unabated total effective dose equivalent (TEDE) estimate to the hypothetical offsite MEI of 1.13 E+02 millirem per year. The abated TEDE for the stack emissions is estimated at 5.63 E-02 millirem per year to the MEI. The fugitive emissions have an unabated TEDE estimate to the hypothetical offsite MEI of 5.87 E-04. There is no abatement for the fugitive emissions.

  9. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes.

    PubMed

    Oosterbeek, J W; Bürger, A; Westerhof, E; de Baar, M R; van den Berg, M A; Bongers, W A; Graswinckel, M F; Hennen, B A; Kruijt, O G; Thoen, J; Heidinger, R; Korsholm, S B; Leipold, F; Nielsen, S K

    2008-09-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam. ECE measurements are obtained during high power ECRH operation. This demonstrates the successful operation of the diagnostic and, in particular, a sufficient suppression of the gyrotron component preventing it from interfering with ECE measurements. When integrated into a feedback system for the control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates. PMID:19044409

  10. Selection and costing of heat exchangers. Air-cooled type

    NASA Astrophysics Data System (ADS)

    1994-12-01

    ESDU 94043 extends the information in ESDU 92013 which, when an air-cooled exchanger is found appropriate and is costed, provides the results for a datum design 40 ft (12.2 m) long with G-fins and 1 in (25 mm) diameter tube operating at a noise level of 85 dBa. It provides factors derived from an analysis of manufacturer's data to be applied to the cost results from ESDU 92013 to account for variations in those parameters and features. Additional guidance on the configuration and use of air-cooled exchangers is given. The data are incorporated in ESDUpac A9213 which is a Fortran program that implements the selection and costing method of ESDU 92013. It is provided on disc in the software volume compiled to run under DOS with a user-friendly interface that prompts on screen for input data.

  11. Central solar-energy receiver

    DOEpatents

    Not Available

    1981-10-27

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  12. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    NASA Astrophysics Data System (ADS)

    Yakut, Kenan; Yeşildal, Faruk; Karabey, Altuǧ; Yakut, Rıdvan

    2016-04-01

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L18(21*36) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η-Re graphics.

  13. Air Circulation and Heat Exchange Under Reduced Pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  14. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  15. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    NASA Astrophysics Data System (ADS)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  16. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment.

    PubMed

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42%. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments. PMID:25796204

  17. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  18. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    PubMed

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  19. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  20. Radiation heat transfer simulation in a window for a small particle solar receiver using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Whitmore, Alexander Jason

    Concentrating solar power systems are currently the predominant solar power technology for generating electricity at the utility scale. The central receiver system, which is a concentrating solar power system, uses a field of mirrors to concentrate solar radiation onto a receiver where a working fluid is heated to drive a turbine. Current central receiver systems operate on a Rankine cycle, which has a large demand for cooling water. This demand for water presents a challenge for the current central receiver systems as the ideal locations for solar power plants have arid climates. An alternative to the current receiver technology is the small particle receiver. The small particle receiver has the potential to produce working fluid temperatures suitable for use in a Brayton cycle which can be more efficient when pressurized to 0.5 MPa. Using a fused quartz window allows solar energy into the receiver while maintaining a pressurized small particle receiver. In this thesis, a detailed numerical investigation for a spectral, three dimensional, cylindrical glass window for a small particle receiver was performed. The window is 1.7 meters in diameter and 0.0254 meters thick. There are three Monte Carlo Ray Trace codes used within this research. The first MCRT code, MIRVAL, was developed by Sandia National Laboratory and modified by a fellow San Diego State University colleague Murat Mecit. This code produces the solar rays on the exterior surface of the window. The second MCRT code was developed by Steve Ruther and Pablo Del Campo. This code models the small particle receiver, which creates the infrared spectral direction flux on the interior surface of the window used in this work. The third MCRT, developed for this work, is used to model radiation heat transfer within the window itself and is coupled to an energy equation solver to produce a temperature distribution. The MCRT program provides a source term to the energy equation. This in turn, produces a new

  1. Rating procedure for mixed-air-source unitary air conditioners and heat pumps operating in the cooling mode

    SciTech Connect

    Domanski, P.A.

    1986-02-01

    A procedure is presented for rating split, residential air conditioners and heat pumps operating in the cooling mode that are made up of an evaporator unit combined with a condensing unit that has been rated under current procedures in conjunction with a different evaporator unit. The procedure allows calculation of capacity at the 95/sup 0/ F rating point and seasonal energy efficiency ratio, SEER, without performing laboratory tests of the complete system.

  2. Prognostic value of peritumoral heat-shock factor-1 in patients receiving resection of hepatocellular carcinoma

    PubMed Central

    Zhang, J-B; Guo, K; Sun, H-C; Zhu, X-D; Zhang, B; Lin, Z-H; Zhang, B-H; Liu, Y-K; Ren, Z-G; Fan, J

    2013-01-01

    Background: The cross-talk of hepatocellular carcinoma (HCC) cells and abnormal metabolic signals in peritumoral microenvironment modifies our knowledge of hepatocarcinogenesis. As an indispensable modulator of various stresses, the clinical significance of heat-shock transcription factor-1 (HSF1) in HCC microenvironment has never been defined. Methods: Hepatocellular carcinoma and matched peritumoral liver tissues (n=332) were semiquantitatively analysed for HSF1 expression, followed by correlation with clinicopathological parameters (patient outcomes). Moreover, the effects of HSF1 deficiency in L02 on monocarboxylate transporter-4 (MCT4) and HCC cells' colonisation and proliferation were investigated. Results: High expression of HSF1 in peritumoral tissue but not in HCC tissue was associated with poorer overall survival (OS) and time to recurrence (TTR), especially early recurrence (ER), which was further reconfirmed in validation cohort. Multivariate analysis showed that prognostic performance of peritumoral HSF1 was independent of other clinicopathological factors (hazard ratio for OS=2.60, P=0.002, for TTR=2.52, P<0.001). Notably, downregulation of HSF1 in L02 decreased MCT4 expression significantly. The supernatant from L02-shRNA-HSF1 in hypoxia, NOT normoxia condition, inhibited HCC cell colonisation and proliferation. Moreover, the combination of peritumoral HSF1 and MCT4 was the best predictor for ER and OS. Conclusion: High peritumoral HSF1 expression can serve as a sensitive ‘readout' for high-risk HCC ER, and could be a potential metabolic intervention target following curative resection. PMID:24002609

  3. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  4. Cost Analysis of an Air Brayton Receiver for a Solar Thermal Electric Power System in Selected Annual Production Volumes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Pioneer Engineering and Manufacturing Company estimated the cost of manufacturing and Air Brayton Receiver for a Solar Thermal Electric Power System as designed by the AiResearch Division of the Garrett Corporation. Production costs were estimated at annual volumes of 100; 1,000; 5,000; 10,000; 50,000; 100,000 and 1,000,000 units. These costs included direct labor, direct material and manufacturing burden. A make or buy analysis was made of each part of each volume. At high volumes special fabrication concepts were used to reduce operation cycle times. All costs were estimated at an assumed 100% plant capacity. Economic feasibility determined the level of production at which special concepts were to be introduced. Estimated costs were based on the economics of the last half of 1980. Tooling and capital equipment costs were estimated for ach volume. Infrastructure and personnel requirements were also estimated.

  5. Method and apparatus for operating a self-starting air heating system

    DOEpatents

    Heinrich, Charles E.

    1983-12-06

    A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.

  6. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  7. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  8. Operability test procedure for 241-U compressed air system and heat pump

    SciTech Connect

    Freeman, R.D.

    1994-08-31

    The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The supply piping to the 241-U Tank Farm is not included in the modification. Modifications to the 241-U-701 compressed air system include installation of a 15 HP Reciprocating Air Compressor, Ingersoll-Rand Model 10T3NLM-E15; an air dryer, Hankinson, Model DH-45; and miscellaneous system equipment and piping (valves, filters, etc.) to meet the design. A newly installed heat pump allows the compressor to operate within an enclosed relatively dust free atmosphere and keeps the compressor room within a standard acceptable temperature range, which makes possible efficient compressor operation, reduces maintenance, and maximizes compressor operating life. This document is an Operability Test Procedure (OTP) which will further verify (in addition to the Acceptance Test Procedure) that the 241-U-701 compressed air system and heat pump operate within their intended design parameters. The activities defined in this OTP will be performed to ensure the performance of the new compressed air system will be adequate, reliable and efficient. Completion of this OTP and sign off of the OTP Acceptance of Test Results is necessary for turnover of the compressed air system from Engineering to Operations.

  9. Preservation of Cognitive Performance with Age during Exertional Heat Stress under Low and High Air Velocity

    PubMed Central

    Wright Beatty, Heather E.; Keillor, Jocelyn M.; Hardcastle, Stephen G.; Boulay, Pierre; Kenny, Glen P.

    2015-01-01

    Older adults may be at greater risk for occupational injuries given their reduced capacity to dissipate heat, leading to greater thermal strain and potentially cognitive decrements. Purpose. To examine the effects of age and increased air velocity, during exercise in humid heat, on information processing and attention. Methods. Nine young (24 ± 1 years) and 9 older (59 ± 1 years) males cycled 4 × 15 min (separated by 15 min rest) at a fixed rate of heat production (400 W) in humid heat (35°C, 60% relative humidity) under 0.5 (low) and 3.0 (high) m·s−1 air velocity wearing coveralls. At rest, immediately following exercise (end exercise), and after the final recovery, participants performed an abbreviated paced auditory serial addition task (PASAT, 2 sec pace). Results. PASAT numbers of correct responses at end exercise were similar for young (low = 49 ± 3; high = 51 ± 3) and older (low = 46 ± 5; high = 47 ± 4) males and across air velocity conditions, and when scored relative to age norms. Psychological sweating, or an increased sweat rate with the administration of the PASAT, was observed in both age groups in the high condition. Conclusion. No significant decrements in attention and speeded information processing were observed, with age or altered air velocity, following intermittent exercise in humid heat. PMID:25874223

  10. CFD numerical simulation of air natural convection over a heated cylindrical surface

    NASA Astrophysics Data System (ADS)

    Flori, M.; Vîlceanu, L.

    2015-06-01

    In this study a CFD numerical simulation is used to describe the fluid flow and heat transfer in air surrounding a heated horizontal cylinder. The model is created in 2D space dimension involving a finite element solver of Navier-Stokes equations. As natural convection phenomenon is induced by a variable fluid density field with temperature rising, the Boussinesq approximation was coupled to the model.

  11. Convective heat transfer characteristics of laminar pulsating pipe air flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Attya, A. M.; Eid, A. I.; Aly, A. Z.

    Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4Hz) was obtained. In the frequency range of 17-25Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17Hz and a reduction up to 20% for pulsation frequency range of 25-29.5Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750

  12. The Effect of Aerodynamic Heating on Air Penetration by Shaped Charge Jets and Their Particles

    NASA Astrophysics Data System (ADS)

    Backofen, Joseph

    2009-06-01

    The goal of this paper is to present recent work modeling thermal coupling between shaped charge jets and their particles with air while it is being penetrated to form a crater that subsequently collapses back onto the jet. This work complements research published at International Symposia on Ballistics: 1) 1987 - Shaped Charge Jet Aerodynamics, Particulation and Blast Field Modeling; and 2) 2007 - Air Cratering by Eroding Shaped Charge Jets. The current work shows how and when a shaped charge jet's tip and jet particles are softened enough that they can erode in a hydrodynamic manner as modeled in these papers. This paper and its presentation includes models for heat transfer from shocked air as a function of jet velocity as well as heat flow within the jet or particle. The work is supported by an extensive bibliographic search including publications on meteors and ballistic missile re-entry vehicles. The modeling shows that a jet loses its strength to the depth required to justify hydrodynamic erosion when its velocity is above a specific velocity related to the shock properties of air and the jet material's properties. As a result, the portion of a jet's kinetic energy converted at the aerodynamic shock into heating transferred back onto the jet affects the energy deposited into the air through drag and ablation which in turn affect air crater expansion and subsequent collapse back onto the jet and its particles as shown in high-speed photography.

  13. Development of a high-efficiency, gas-fired, heat pipe, warm-air heating system

    NASA Astrophysics Data System (ADS)

    Feldman, S.; Becker, F.

    1985-01-01

    With the introduction by Borg-Warner of the Heatpipe Furnace, one of the major goals of this program was achieved. This milestone was reached after a 105,000 Btu/hr, 85 percent efficient manufacturing prototype heat pipe furnace was designed, fabricated, and tested by Thermo Electron. Other prototype units of different capacities were also designed. The prototypes underwent extensive field testing and in-house accelerated life-cycle testing, indicating that they were reliable, safe, and cost-competitive. Specific issues like freeze protection and oil contamination were addressed. Two different prototype ultrahigh-efficiency condensing furnaces were designed, fabricated and tested. One approach utilized a fluorocarbon-filled heat pipe as a secondary-stage heat exchanger; the other used a plate finned tube coil as the heat exchanger.

  14. Geothermal energy development in the eastern United States geothermal space heating - Naval Air Rework Facility, Norfolk, Virginia

    NASA Astrophysics Data System (ADS)

    Hill, F. K.; Henderson, R. W.

    1980-06-01

    The technical and economic feasibility of using geothermal energy for space heating the Naval Air Rework Facility (NARF) electronic integration hangar was evaluated. The warm water output from a single well was used in several modes: to heat via a floor radiation system or via heat pumps, with and without a ground water reservoir to store heat in off hours.

  15. Investigation of Effectiveness of Air-Heating a Hollow Steel Propeller for Protection Against Icing. 3: 25% Partitioned Blades

    NASA Technical Reports Server (NTRS)

    Mulholland, Donald R.; Perkins, Porter J.

    1948-01-01

    The icing protection obtained from an internally air-heated propeller blade partitioned to confine the heated air forward of 25-percent chord was investigated in the NACA Cleveland icing research tunnel. A production-model hollow steel propeller was modified with an Internal radial partition at 25-percent chord and with shank and tip openings to admit and exhaust the heated air. Temperatures were measured on the blade surfaces and in the heated-air system during tunnel icing conditions. Heat-exchanger effectiveness and photographs of Ice formations on the blades were obtained. Surface temperature measurements indicated that confining the heated air forward of the 25-percent chord gave.a more economical distribution of the applied heat as compared with unpartitioned and 50-percent partitioned blades, by dissipating a greater percentage of the available heat at the leading edge. At a propeller speed of 850 rpm, a heating rate of 7000 Btu per hour per blade at a shank air temperature of 400 F provided adequate Icing protection at ambient-air temperatures of 23 F but not at temperatures as low as 15 F. With the heating rate used, a heat-exchanger effectiveness of 77 percent was obtained as compared to 56 percent for 50-percent partitioned and 47 percent for unpartitioned blades.

  16. Non-fouling heat exchanger preheats plant make-up air: saves $13,000 in first year

    SciTech Connect

    Goss, J.

    1980-08-01

    Air exchanges to maintain a comfortable working environment at Gates Rubber Company in Denver, Colorado, involves general exhaust from V-belt vulcanization lines. A ventilation system without heat recovery or make-up air heaters had been in use, but the goal of the company was to install a sytem that could handle normal plant exhaust air without filtration and involve little or no mechanization. A counter-flow, air-to-air heat exchanger having no moving parts has been used successfully to recover heat from many dirty industrial process exhausts. Heat recovery efficiencies range from 50 to 80%. Four heat exchangers, arranged in parallel, were installed in one of the 30,000 scfm exhaust/make-up air systems at the Denver plant and savings amounted to $13,000 the first year.

  17. Performance outlook of the SCRAP receiver

    NASA Astrophysics Data System (ADS)

    Lubkoll, Matti; von Backström, Theodor W.; Harms, Thomas M.

    2016-05-01

    A combined cycle (CC) concentrating solar power (CSP) plant provides significant potential to achieve an efficiency increase and an electricity cost reduction compared to current single-cycle plants. A CC CSP system requires a receiver technology capable of effectively transferring heat from concentrated solar irradiation to a pressurized air stream of a gas turbine. The small number of pressurized air receivers demonstrated to date have practical limitations, when operating at high temperatures and pressures. As yet, a robust, scalable and efficient system has to be developed and commercialized. A novel receiver system, the Spiky Central Receiver Air Pre-heater (SCRAP) concept has been proposed to comply with these requirements. The SCRAP system is conceived as a solution for an efficient and robust pressurized air receiver that could be implemented in CC CSP concepts or standalone solar Brayton cycles without a bottoming Rankine cycle. The presented work expands on previous publications on the thermal modeling of the receiver system. Based on the analysis of a single heat transfer element (spike), predictions for its thermal performance can be made. To this end the existing thermal model was improved by heat transfer characteristics for the jet impingement region of the spike tip as well as heat transfer models simulating the interaction with ambient. While the jet impingement cooling effect was simulated employing a commercial CFD code, the ambient heat transfer model was based on simplifying assumptions in order to employ empirical and analytical equations. The thermal efficiency of a spike under design conditions (flux 1.0 MW/m2, air outlet temperature just below 800 °C) was calculated at approximately 80 %, where convective heat losses account for 16.2 % of the absorbed radiation and radiative heat losses for a lower 2.9 %. This effect is due to peak surface temperatures occurring at the root of the spikes. It can thus be concluded that the geometric

  18. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  19. Development of a High Performance Air Source Heat Pump for the US Market

    SciTech Connect

    Abdelaziz, Omar; Shen, Bo; Gao, Zhiming; Baxter, Van D; Iu, Ipseng

    2011-01-01

    Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

  20. Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment

    PubMed Central

    2014-01-01

    Background Heat-tolerant rice cultivars have been developed as a countermeasure to poor grain appearance quality under high temperatures. Recent studies showed that elevated CO2 concentrations (E-[CO2]) also reduce grain quality. To determine whether heat-tolerant cultivars also tolerate E-[CO2], we conducted a free-air CO2 enrichment (FACE) experiment with 12 rice cultivars differing in heat tolerance. Results The percentage of undamaged grains of five standard cultivars (Akitakomachi, Kinuhikari, Koshihikari, Matsuribare, Nipponbare) averaged 61.7% in the ambient [CO2] (AMB) plot and 51.7% in the FACE plot, whereas that of heat-tolerant cultivars (Eminokizuna, Wa2398, Kanto 257, Toyama 80, Mineharuka, Kanto 259, Saikai 290) averaged 73.5% in AMB and 71.3% in FACE. This resulted in a significant [CO2] by cultivar interaction. The percentage of white-base or white-back grains increased from 8.4% in AMB to 17.1% in FACE in the sensitive cultivars, but from only 2.1% in AMB to only 4.4% in FACE in the heat-tolerant cultivars. Conclusion Heat-tolerant cultivars retained their grain appearance quality at E-[CO2] under present air temperatures. Further improvements in appearance quality under present conditions will be needed to achieve improvements under E-[CO2], because E-[CO2] will likely lower the threshold temperature for heat stress. PMID:24920972

  1. Geothermal as a heat sink application for raising air conditioning efficency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  2. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air

    SciTech Connect

    2010-09-08

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  3. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  4. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…

  5. Getting Down to Business: Air Conditioning and Heating Service, Module 36. [Student Guide]. Entrepreneurship Training Components.

    ERIC Educational Resources Information Center

    Sanderson, Barbara

    This module on owning and operating an air conditioning and heating service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning…

  6. Technology evaluation of heating, ventilation, and air conditioning for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Keough, M. B.; Rippey, J. O.

    1974-01-01

    Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  7. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  8. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  9. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  10. Heating, Air Conditioning and Refrigeration. Vocational Education Curriculum Guide. Industrial and Technical Education.

    ERIC Educational Resources Information Center

    West Virginia State Vocational Curriculum Lab., Cedar Lakes.

    This curriculum guide contains 17 units that provides the basic curriculum components required to develop lesson plans for the heating, air conditioning, and refrigeration curriculum. The guide is not intended to be a complete, self-contained curriculum, but instead provides the teacher with a number of informational items related to the learning…

  11. Heating, Ventilation, Air-conditioning, and Refrigeration. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for heating, ventilation, air conditioning, and refrigeration occupations. The list contains units (with and without…

  12. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Introduction to Construction Series. Instructor Edition.

    ERIC Educational Resources Information Center

    Associated General Contractors of America, Washington, DC.

    This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…

  13. Heating, Air Conditioning and Refrigeration Curriculum Guide. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for heating, air conditioning, and refrigeration is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a…

  14. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brandemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  15. DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS

    EPA Science Inventory

    The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...

  16. VESL for Heating and Air Conditioning: A Competency-based Curriculum Guide. Project OSCAER.

    ERIC Educational Resources Information Center

    Lopez-Valadez, Jeanne, Ed.; Pankratz, David, Ed.

    This guide is intended for vocational educators developing the vocational English as a second language (VESL) component of a course in heating and air conditioning. The introductory section examines assumptions about second language learning and instruction and VESL classes, local adaptations of the curriculum, and sample VESL lessons. The chapter…

  17. Heating, Ventilation, Air Conditioning. Resource Manual for Custodial Training Course #3.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. School Plant Management Section.

    Intended as a manual to provide school custodians with some understanding of basic functions of heating, ventilating, and air conditioning equipment for safe, efficient operation. Contains general rules and specifications for providing custodians with a more complete awareness of their equipment and the field of "Climate Control" within the…

  18. The Condensation Line of Air and the Heats of Vaporization of Oxygen and Nitrogen

    NASA Technical Reports Server (NTRS)

    Furukawa, George T; Mccoskey, Robert E

    1953-01-01

    The condensation pressure of air was determined over the range of temperature from 60 to 85 K. The experimental results were slightly higher than the calculated values based on the ideal solution law. Heat of vaporization of oxygen was determined at four temperatures ranging from about 68 to 91 K and of nitrogen similarly at four temperatures ranging from 62 to 78 K.

  19. Investigation of Flow in an Axially Symmetrical Heated Jet of Air

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley

    1943-01-01

    The work done under this contract falls essentially into two parts: the first part was the design and construction of the equipment and the running of preliminary tests on the 3-inch jet, carried out by Mr. Carl Thiele in 1940; the second part consisting in the measurement in the 1-inch jet flow in an axially symmetrical heated jet of air. (author)

  20. Stress dependent magnetic properties of as-received and heat-pulse annealed amorphous Fe 81B 13.5Si 3.5C 2

    NASA Astrophysics Data System (ADS)

    Ghatak, S. K.; Mitra, A.

    1988-12-01

    Stress dependent magnetic properties of as-received and heat-treated amorphous Fe 81B 13.5Si 3.5C 2 alloy is studied. The heat-treatment is done by short duration infra-red heat-pulse. The results show that the anisotropy energy in the sample is of magneto-elastic in origin. An equation of state is obtained from the stress dependent M-H curves.

  1. Heat Dissipation from a Finned Cylinder at Different Fin-Plane/Air-stream Angles

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Biermann, Arnold E

    1932-01-01

    This report gives the results of an experimental determination of the temperature distribution in and the heat dissipation from a cylindrical finned surface for various fin-plane/air-stream angles. A steel cylinder 4.5 inches in diameter having slightly tapered fins of 0.30-inch pitch and 0.6 -inch width was equipped with an electrical heating unit furnishing 13 to 248 B.T.U. per hour per square inch of inside wall area. Air at speeds form 30 to 150 miles per hour was directed at seven different angles from 0 degrees to 90 degrees with respect to the fin planes. The tests show the best angle for cooling at all air speeds to be about 45 degrees. With the same temperature for the two conditions and with an air speed of 76 miles per hour, the heat input to the cylinder can be increased 50 percent at 45 degrees fin-plane/air-stream angle over that at 0 degrees.

  2. Vortex generator induced heat transfer augmentation past a rib in a heated duct air flow

    SciTech Connect

    Myrum, T.A.; Acharya, S.; Inamdar, S.; Mehrotra, A. )

    1992-02-01

    The present investigation represents the initial phase of a comprehensive experimental program designed to study the potential for increasing the heat transfer per unit pressure drop in a ribbed duct by positioning vortex generators at key locations in the flow. In particular, the present investigation consists of a rib positioned at the inlet to a rectangular test section with uniform heating at its bottom wall. Local and average Nusselt number results are obtained for a circular rod positioned either immediately above or just downstream of the rib.

  3. Age of air and heating rates: comparison of ERA-40 with ERA-Interim

    NASA Astrophysics Data System (ADS)

    Legras, B.; Fueglistaler, S.

    2009-04-01

    The age of air in the stratosphere is often used as a test for the good representation of the Brewer-Dobson circulation by atmospheric models. This is a critical requirement to modelize the distribution of long-lived species in chemical models. It is often advocated that using heating rates for vertical transport in the stratosphere performs better that standard analysed velocities from weather centers. This work is based on an extensive comparison of the age of air using 5 years of heating rates from the ERA-40 reanalysis and from the new ERA-interim reanalysis built with 4D-Var assimilation. The ERA-40 exhibits both too young ages with analyzed velocities and too old ages with heating rates. The reason for too young ages is spurious transport associated with too noisy wind, as a result of 3D-Var assimilation. Heating rates provide a much less noisy meridional circulation and preserve transport barriers and polar vortex confinement. However, excessive cooling near 30 hPa in the tropics blocks the ascending motion within the tropical pipe over extended periods of time inducing very old ages. This effect is usually corrected by an empirical correction which can exceed in some regions the calculated heating rate in magnitude, with opposite sign. We relate this correction to the assimilation temperature increment that is required to compensate the bias of the model, notably the excessive negative heat transport due to the noisy vertical velocities and the lack of mass conservation in the isentropic frame. The new ERA-interim exhibits much reduced noise in the vertical velocity and is ten times less diffusive than the ERA-40 in the tropics. Age of air is then found to be slightly older than given by the observations. The biases in the heating rate have also been considerably reduced with respect to ERA-40 and the assimilation increment is now only a fraction of the heating rate. The age of air is in fairly good aggreement with the observations at 20 km and higher

  4. Velocity and temperature field characteristics of water and air during natural convection heating in cans.

    PubMed

    Erdogdu, Ferruh; Tutar, Mustafa

    2011-01-01

    Presence of headspace during canning is required since an adequate amount allows forming vacuum during the process. Sealing technology may not totally eliminate all entrapped gases, and headspace might affect heat transfer. Not much attention has been given to solve this problem in computational studies, and cans, for example, were mostly assumed to be fully filled with product. Therefore, the objective of this study was to determine velocity and temperature evolution of water and air in cans during heating to evaluate the relevance of headspace in the transport mechanism. For this purpose, canned water samples with a certain headspace were used, and required governing continuity, energy, and momentum equations were solved using a finite volume approach coupled with a volume of fluid element model. Simulation results correlated well with experimental results validating faster heating effects of headspace rather than insulation effects as reported in the literature. The organized velocity motions along the air-water interface were also shown. Practical Application: Canning is a universal and economic method for processing of food products, and presence of adequate headspace is required to form vacuum during sealing of the cans. Since sealing technology may not totally eliminate the entrapped gases, mainly air, headspace might affect heating rates in cans. This study demonstrated the increased heating rates in the presence of headspace in contrast with some studies in the literature. By applying the effect of headspace, required processing time for thermally processed foods can be reduced leading to more rapid processes and lower energy consumptions. PMID:21535663

  5. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    PubMed Central

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  6. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  7. Dynamic effects on containment of air-curtain fume hood operated with heat source.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi

    2012-01-01

    This study focused on the leakage characteristics of the air-curtain fume hood that are subject to the influences of sash movement and walk-by motion while a high temperature heat source was operated in the hood. The flow visualization and trace gas test method were used to investigate the performance of the air-curtain fume hood. An electric heater was placed in the hood to simulate the heat source. The temperature of the heat source installed inside the air-curtain fume hood varied between 180°C and 300°C. Trace gas tests following the dynamic test methods of EN-14175 protocol were employed to measure the spillages of sulfur hexafluoride gas that were released in the hood. When subject to the influence of sash movement at a heat source temperature lower than 260°C, the leakage level was high at the suction velocity V(s) < 8 m/sec but was negligibly small at V(s) > 10 m/sec. When subject to the influence of people walk-by, the leakage level was relatively low at the suction velocity larger than 8 m/sec at sash height H = 50 cm. The height of the sash opening was a crucial parameter for the containment of the air-curtain fume hood. At the sash opening lower than about 25 cm, suction velocity less than or equal to 6 m/sec was enough to make the sulfur hexafluoride leakage less than the threshold value, 0.65 ppm, suggested by the BG Chemie. The air-curtain fume hood presented a great performance to resist the effect of drafts even though there was a high temperature heat source working in the hood. PMID:23009207

  8. Combined facial heating and inhalation of hot air do not alter thermoeffector responses in humans

    PubMed Central

    Wingo, Jonathan E.; Low, David A.; Keller, David M.; Kimura, Kenichi

    2015-01-01

    The influence of thermoreceptors in human facial skin on thermoeffector responses is equivocal; furthermore, the presence of thermoreceptors in the respiratory tract and their involvement in thermal homeostasis has not been elucidated. This study tested the hypothesis that hot air directed on the face and inhaled during whole body passive heat stress elicits an earlier onset and greater sensitivity of cutaneous vasodilation and sweating than that directed on an equal skin surface area away from the face. Six men and two women completed two trials separated by ∼1 wk. Participants were passively heated (water-perfused suit; core temperature increase ∼0.9°C) while hot air was directed on either the face or on the lower leg (counterbalanced). Skin blood flux (laser-Doppler flowmetry) and local sweat rate (capacitance hygrometry) were measured at the chest and one forearm. During hot-air heating, local temperatures of the cheek and leg were 38.4 ± 0.8°C and 38.8 ± 0.6°C, respectively (P = 0.18). Breathing hot air combined with facial heating did not affect mean body temperature onsets (P = 0.97 and 0.27 for arm and chest sites, respectively) or slopes of cutaneous vasodilation (P = 0.49 and 0.43 for arm and chest sites, respectively), or the onsets (P = 0.89 and 0.94 for arm and chest sites, respectively), or slopes of sweating (P = 0.48 and 0.65 for arm and chest sites, respectively). Based on these findings, respiratory tract thermoreceptors, if present in humans, and selective facial skin heating do not modulate thermoeffector responses during passive heat stress. PMID:26157054

  9. Air quality influenced by urban heat island coupled with synoptic weather patterns.

    PubMed

    Lai, Li-Wei; Cheng, Wan-Li

    2009-04-01

    Few studies have discussed the association between the urban heat island (UHI) phenomenon and air quality under synoptic weather patterns conducive to UHI. In this study, the authors used statistical analyses to study this association in the Taichung metropolis region. The air quality data obtained from government-owned observation stations and wind field profiles obtained from tethersonde monitoring (performed during 21-29 October 2004) were combined with the simulations of the horizontal wind fields at different heights by the air pollution model (TAPM). The results show that certain specific synoptic weather patterns worsen the air quality and induce the UHI phenomenon: Taichung's UHI appears clearly under the synoptic weather patterns featuring light air or breezes (0.56 m/s < or =wind speed <2.2 m/s) mainly from the north and west. Furthermore, under these weather patterns, the concentrations of air pollutants (NO2, CO2 and CO) increase significantly (P<0.05) with the UHI intensity. The convergence usually associated with nocturnal UHI causes the accumulation of O3 precursors, as well as other air pollutants, thereby worsening the air quality at that time and also during the following daytime period. PMID:19200584

  10. Evaluation of the impact of ionospheric disturbances on air navigation augmentation system using multi-point GPS receivers

    NASA Astrophysics Data System (ADS)

    Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.

    2013-12-01

    In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by

  11. Robustness analysis of an air heating plant and control law by using polynomial chaos

    SciTech Connect

    Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.; Balthazar, José M.; Rosa, Suélia S. R. F. de

    2014-12-10

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputs (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.

  12. Robustness analysis of an air heating plant and control law by using polynomial chaos

    NASA Astrophysics Data System (ADS)

    Colón, Diego; Ferreira, Murillo A. S.; Balthazar, José M.; Bueno, Átila M.; de S. R. F. Rosa, Suélia

    2014-12-01

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputs (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.

  13. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate

  14. Performance enhancement of an experimental air conditioning system by using TiO2/methanol nanofluid in heat pipe heat exchangers

    NASA Astrophysics Data System (ADS)

    Monirimanesh, Negin; Nowee, S. Mostafa; Khayyami, Shideh; Abrishamchi, Iman

    2016-05-01

    The effect of using nanofluid in thermosyphon-type heat pipe heat exchangers on energy conservation of an air-conditioning system was sought in this study. Innovatively, two heat exchangers in-series were deployed using TiO2/methanol nanofluids with 0-4 wt% concentrations as working fluids. The impacts of temperature and relative humidity on the effectiveness of 2 and 4-row heat exchangers were analyzed experimentally and more that 40 % energy saving was obtained.

  15. Effectiveness and humidification capacity investigation of liquid-to-air membrane energy exchanger under low heat capacity ratios at winter air conditions

    NASA Astrophysics Data System (ADS)

    Kassai, Miklos

    2015-06-01

    In this research, a novel small-scale single-panel liquid-to-air membrane energy exchanger has been used to numerically investigate the effect of given number of heat transfer units (4.5), different cold inlet air temperature (1.7, 5.0, 10.0 °C) and different low heat capacity ratio (0.4, 0.5, 0.6, 0.7, 0.8, 0.9) on the steady-state performance of the energy exchanger. This small-scale energy exchanger represents the full-scale prototypes well, saving manufacturing costs and time. Lithium chloride is used as a salt solution in the system and the steady-state total effectiveness of the exchanger is evaluated for winter inlet air conditions. The results show that total effectiveness of the energy exchanger decreases with heat capacity ratio in the mentioned range. Maximum numerical total effectiveness of 97% is achieved for the energy exchanger. Increasing the heat capacity ratio values on given inlet air temperature, the humidification capacity of energy exhanger is also investigated in this paper. The humidification performance increases with heat capacity ratio. The highest humidification performance (4.53 g/kg) can be reached when inlet air temperature is 1.7 °C, and heat capacity ratio is 1.0 in winter inlet air conditions in the range of low heat capacity ratio.

  16. Air pollution prevention through urban heat island mitigation: An update on the urban heat island pilot project

    SciTech Connect

    Gorsevski, V.; Taha, H.; Quattrochi, D.; Luvall, J.

    1998-07-01

    Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively cool the metropolitan landscape. In addition to the economic benefits, using less energy leads to reductions in emission of CO{sub 2}--a greenhouse gas--as well as ozone (smog) precursors such as NOx and VOCs. Because ozone is created when NOx and VOCs photochemically combine with heat and solar radiation, actions taken to lower ambient air temperature can significantly reduce ozone concentrations in certain areas. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three US cities. As part of the pilot, NASA will use remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. This information will be used by scientists at Lawrence Berkeley National Laboratory (LBNL) along with other data as inputs to model various scenarios that will help quantify the potential benefits of urban heat island mitigation measures in terms of reduced energy use and pollution. This paper will briefly describe this pilot project and provide an update on the progress to date.

  17. Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.

    SciTech Connect

    Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

    1994-07-26

    This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

  18. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Imai, Yosuke; Ohashi, Toshinori; Okamoto, Hiroaki; Hihara, Eiji; Kawakami, Ryuichiro

    On conventional gas heat pump(GHP), waste heat from gas engine that uses as driving source is emitted into outside. So from the standpoint of efficient use of waste heat, it is assumed that waste heat from gas engine is used as driving source of absorption chiller, and high temperature condensate refrigerant in GHP is subcooled to middle temperature by cold source from absorption cycle, and as a result, GHP makes more efficiency. However, in equipping GHP with absorption cycle, downsizing and high-efficiency of absorption cycle is required. In this study, air-cooled subcooled adiabatic absorber is focused and physical phenomenon in it is analyzed, and finally one perception of the optimized designing is shown.

  19. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling.

    PubMed

    Shaw, Kirsty J; Docker, Peter T; Yelland, John V; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2010-07-01

    A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments. PMID:20414500

  20. A method of exploration of the atmosphere of Titan. [hot air balloon heated by solar radiation or planetary thermal flux

    NASA Technical Reports Server (NTRS)

    Blamont, J.

    1978-01-01

    A hot-air balloon, with the air heated by natural sources, is described. Buoyancy is accomplished by either solar heating or by utilizing the IR thermal flux of the planet to heat the gas in the balloon. Altitude control is provided by a valve which is opened and closed by a barometer. The balloon is made of an organic material which has to absorb radiant energy and to emit as little as possible.

  1. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE PAGESBeta

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Yellowhair, Julius; Dutta, Pradip

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receivermore » and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  2. Talaromyces rubrifaciens, a new species discovered from heating, ventilation and air conditioning systems in China.

    PubMed

    Luo, Yi; Lu, Xiaohong; Bi, Wu; Liu, Fan; Gao, Weiwei

    2016-01-01

    A new Talaromyces species, T. rubrifaciens, was isolated from supply air outlets of heating, ventilation and air conditioning (HVAC) systems in three kinds of public building in Beijing and Nanjing, China. Morphologically it exhibits many characters of section Trachyspermi but is distinguished from other species of this section by restricted growth and broad and strictly biverticillate conidiophores. Phylogenetic analyses based on the internal transcribed spacer rDNA (ITS), β-tubulin (BenA), calmodulin (CaM) and RNA polymerase second largest subunit (RPB2) genes reveal that T. rubrifaciens is a distinct species in section Trachyspermi. PMID:27055570

  3. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  4. The transference of heat from a hot plate to an air stream

    NASA Technical Reports Server (NTRS)

    Elias, Franz

    1931-01-01

    The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.

  5. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  6. Performance tests of air source heat pumps under frosting conditions. Quality of results

    NASA Astrophysics Data System (ADS)

    Fahlen, P.

    This report focuses on the analysis of uncertainties in research regarding air-source heat pumps. The principles recommended by the Western European Calibration Conference (WECC) are applied and the generated information is condensed in the form of uncertainty budgets. The ensuring discussion, and the Measurement Assurance Program that was applied during the research work are also relevant to general testing of cooling coils, e.g. for air source heat pumps. The general conclusion of the analysis is that the method of determining frost mass by continuous weighing and frost density by inference from pressure drop considerations, which is presented in the report, has the potential to produce results with an accuracy on a par with the best previously used techniques to investigate frosting and defrosting phenomena. Furthermore, the methodology has the distinct advantage of yielding online measuring possibilities and being much less time consuming than traditional techniques.

  7. Heat transfer optimization for air-mist cooling between a stack of parallel plates

    NASA Astrophysics Data System (ADS)

    Issa, Roy J.

    2010-06-01

    A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.

  8. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOEpatents

    Roth, Gregory T.; Sellnau, Mark C.

    2016-08-09

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder of the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.

  9. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  10. The Maintenance of Heating, Ventilating and Air-Conditioning Systems and Indoor Air Quality in Schools: A Guide for School Facility Managers. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…

  11. Evolution of steel surface composition with heating in vacuum and in air

    NASA Astrophysics Data System (ADS)

    Doyle, Colin S.; Seal, Christopher K.; James, Bryony J.

    2011-09-01

    X-ray photoelectron spectroscopy (XPS) has been used to investigate the changes in surface composition of three steels as they have undergone heating. The steels were mild steel, and two austenitic stainless steels, commonly designated 304 and 316 stainless steels. XPS measurements were made on the untreated samples, and then following heating for 30 min in vacuo and in a 1 × 10-6 Torr partial pressure of air, at temperatures between 100 °C and 600 °C. Mild steel behaves differently to the two stainless steels under the heating conditions. In mild steel the iron content of the surface increased, with oxygen and carbon decreasing, as a function of increasing temperature. The chemical state of the iron also changed from oxide at low temperatures, to metallic at temperatures above 450 °C. In both stainless steels the amount of iron present in the surface decreased with increasing temperature. The decrease in iron at the surface was accompanied by an increase in the amount of chromium at the steel surface. At temperatures above 450 °C the iron in both 304 and 316 stainless steels showed significant contributions from metallic iron, whilst the chromium present was in an oxide state. In 316 stainless steel heated to 600 °C there was some metallic chromium present in the surface layer. The surfaces heated in air showed the least variation in composition, with the major change being the loss of carbon from the surfaces following heating above 300 °C. There was also a minor increase in the concentration of chromium present on both the stainless steels heated under these conditions. There was also little change in the oxidation state of the iron and chromium present on the surface of these steels. There was some evidence of the thickening of the surface oxides as seen by the loss of the lower binding energy signal in the iron or chromium core level scans. The surfaces heated in vacuum showed a similar trend in the concentration of carbon on the surfaces, however the

  12. The feasibility study of the waste heat air-conditioning system for automobile

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Ping; Yuan, Xiu-Gan; Mei, Zhi-Guang

    1994-06-01

    In this paper, the feasibility of application of a solid-absorption system using ammonia and chlorides as working pair to automobile air-conditioning system is investigated. This system has the advantages of minimum environmental problem and utilizing waste heat from the automobile engine as thermal energy input. Analyses show that the main problem associated with the application of solid-absorption system is the size of the reactors. Techniques to solve this problem are discussed.

  13. Application information on typical hygrometers used in heating, ventilating and air conditioning (HVAC) systems

    SciTech Connect

    Kao, J.Y.; Snyder, W.J.

    1982-01-01

    Hygrometer selection information is provided for application in heating, ventilating and air-conditioning (HVAC) systems. A general review of hygrometer literature has been provided and the most commonly used ones for HVAC are discussed. Typical hygrometer parameters are listed to indicate the type of performance that can be expected. Laboratory test results of self-regulating, salt-phase transition hygrometers are presented and discussed in detail.

  14. Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect

    Murphy, Richard W; Rice, C Keith; Baxter, Van D; Craddick, William G

    2007-07-01

    This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

  15. Air jet levitation furnace system for observing glass microspheres during heating and melting

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Dunn, S. L.

    1982-01-01

    A collimated hole structure air jet levitation system has been developed which can be used to levitate hollow glass microspheres used in inertial confinement fusion studies. An ellipsoidal furnace has been added to the system to provide a heating source. A video camera and a 16 mm movie camera connected to a microsphere system provide real time observation as well as permanent documentation of the experiments. Microspheres have been levitated at temperatures over 1400 C for over 10 minutes at a time.

  16. Heat loss in air of an Antarctic marine mammal, the Weddell seal.

    PubMed

    Mellish, Jo-Ann; Hindle, Allyson; Skinner, John; Horning, Markus

    2015-01-01

    The conflicting needs of homeostasis in air versus water complicate our understanding of thermoregulation in marine mammals. Large-scale modeling efforts directed at predicting the energetic impact of changing sea ice conditions on polar ecosystems require a better understanding of thermoregulation in air of free-ranging animals. We utilized infrared imaging as an indirect approach to determine surface temperatures of dry, hauled-out Weddell seals (Leptonychotes weddellii, n = 35) of varying age and body condition during the Antarctic summer. The study groups provided a fivefold range in body mass and a threefold range in blubber depth. Surface temperature (T s) did not vary by body region (head, shoulder, axilla, torso, hip, flippers). Average seal T s (mean 13.9 ± 11.2 °C) was best described through a combination of the physical traits of body mass and environmental variables of ambient temperature T air, and wind speed. Additional factors of ice temperature (T ice), relative humidity and cloud cover did not improve the model. Heat transfer model estimates suggested that radiation contributed 56.6 ± 7.7 % of total heat loss. Convection and conduction accounted for the remaining 15.7 ± 12.3 and 27.7 ± 9.3 %, respectively. Heat loss by radiation was primarily influenced by body mass and wind speed, whereas convective heat loss was influenced primarily by blubber depth and wind speed. Conductive heat loss was modeled largely as a function of physical traits of mass and blubber depth rather than any environmental covariates, and therefore was substantially higher in animals in leaner condition. PMID:25378218

  17. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  18. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  19. Air CHP, a new concept in small-scale space heating

    SciTech Connect

    Mullins, P.

    1996-10-01

    A new type of combined heat and power (CHP) system claimed to be capable of providing electrical and thermal power with efficiencies in the region of 95% is being marketed by Aircogen Ltd, a company launched by turbine and compressor manufacturer Peter Brotherhood. Power generation capabilities range from 50 to 1500 kW. VarityPerkins has played a large part in supplying spark-ignited gas engines for the first installations of this new system from the group`s plants in Stafford and Shrewsbury, U.K. Aircogen has developed a system in which the air for heating the building is heated direct from the gen-set. This provides a further source of extracted heat and contributes to the extremely high thermal efficiencies. The system lends itself particularly to swimming pools, supermarkets, leisure centers, or any building where large spaces need to be heated for prolonged periods and where normally low-pressure hot water heating would be used. This paper describes briefly the design, specifications and typical applications.

  20. Heat flux: thermohydraulic investigation of solar air heaters used in agro-industrial applications

    NASA Astrophysics Data System (ADS)

    Rahmati Aidinlou, H.; Nikbakht, A. M.

    2016-07-01

    A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based on the constant roughness parameters such as relative roughness height (e/D), relative roughness pitch (P/e), angle of attack (α) and aspect ratio with Reynolds numbers ranging from 5000 to 19,000 in the fully developed region. Heat fluxes of 800, 900 and 1000 Wm-2 were provided. The enhancement in friction factor is observed to be 3.1656, 3.47 and 3.0856 times, and for the Nusselt number either, augmentation is calculated to be 1.4437, 1.4963 and 1.535 times, respectively, over the smooth duct for 800, 900 and 1000 Wm-2 heat fluxes. Thermohydraulic performance is plotted versus the Reynolds number based on the aforementioned roughness parameters at varying heat fluxes. The results show up that thermohydraulic performance is found to be maximum for 1000 Wm-2 at the average Reynolds number of 5151. Based on the results, we can verify that the introduced solar simulator can help analyzing and developing solar collector installations at the simulated heat fluxes.

  1. Thermal control of a lidar laser system using a non-conventional ram air heat exchanger

    NASA Technical Reports Server (NTRS)

    Killough, Brian D.; Alexander, William, Jr.; Swofford, Doyle P.

    1990-01-01

    This paper describes the analysis and performance testing of a uniquely designed external heat exchanger. The heat exchanger is attached externally to an aircraft and is used to cool a laser system within the fuselage. Estimates showed insufficient cooling capacity with a conventional staggered tube array in the limited space available. Thus, a non-conventional design wes developed with larger tube and fin area exposed to the ram air to increase the heat transfer performance. The basic design consists of 28 circular finned aluminum tubes arranged in two parallel banks. Wind tunnel tests were performed to simulate air and liquid flight conditions for the non-conventional parallel bank arrangement and the conventional staggered tube arrangement. Performance comparisons of each of the two designs are presented. Test results are used in a computer model of the heat exchanger to predict the operating performance for the entire flight profile. These analyses predict significantly improved performance over the conventional design and show adequate thermal control margins.

  2. Measurement and prediction of heat transfer from compressor discs with a radial inflow of cooling air

    NASA Astrophysics Data System (ADS)

    Farthing, P. R.; Long, C. A.; Rogers, R. H.

    1991-06-01

    An internal theory is used to model the flow, and predict heat transfer rates, for corotating compressor disks with a superposed radial inflow of air. Measurements of heat transfer are also made, both in an experimental rig and in an engine. The flow structure comprises source and sink regions, Ekman-type layers and an inviscid central core. Entrainment occurs in the source region, the fluid being distributed into the two nonentraining Ekman-type layers. Fluid leaves the cavity via the sink region. The integral model is validated against the experimental data, although there are some uncertainties in modeling the exact thermal conditions of the experiment. The magnitude of the Nusselt numbers is affected by the rotational Reynolds number and dimensionless flowrate; the maximum value of Nu is found to occur near the edge of the source region. The heat transfer measurements using the engine data show acceptable agreement with theory and experiment.

  3. Heat transfer from an open-wedge cavity to a symmetrically impinging slot air jet

    NASA Astrophysics Data System (ADS)

    Rahimi, Mostafa; Mazraeh, Adel Etefagh

    2014-08-01

    Heat transfer from an open-wedge cavity to a symmetrically impinging slot air jet is investigated at the present study. The effect of the cavity angle was mainly examined on the Nusselt number distribution. Based on the results, heat transfer was generally poor at the vicinity of the apex, rising to form a maximum at the impingement and then followed by a moderate decline at further distances. The region of maximum heat transfer on the surfaces shifted outward the cavity as the cavity angle was decreased. Also, average Nusselt number over an effective length of the surface remained almost constant and independent of the cavity angle for a specified jet Reynolds number and nozzle-to-apex spacing.

  4. High-speed measurement of an air transect's temperature shift heated by laser beam

    NASA Astrophysics Data System (ADS)

    Li, WenYu; Jiang, ZongFu; Xi, Fengjie; Li, Qiang; Xie, Wenke

    2005-02-01

    Laser beam heat the air on the optic path, Beam-deflection optical tomography is a non-intrusive method to measure the 2-dimension temperature distribution in the transect. By means of linear Hartmann Sensor at the rate of 27kHz, the optic path was heated by a 2.7μm HF laser, continuous and high time resolution gradients of optic phase were obtained. the result of analysing and calculation showed the temperament shift in the heated beam path was not higher than 50K when the HF laser power was 9W. The experiment showed that it is a practical non-intrusive temperature shift measurement method for a small area aero-optical medium.

  5. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  6. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  7. Dish/stirling hybrid-receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2002-01-01

    A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

  8. Zoning of the territory of Russia by the effectiveness of low-potential heat of the ground and atmospheric air for heating buildings

    NASA Astrophysics Data System (ADS)

    Vasilyev, G. P.; Kolesova, M. V.; Gornov, V. F.; Yurchenko, I. A.

    2016-06-01

    The article represents the results of researches to zone the territory of Russia and Europe division into districts of by efficiency of using for the heat supply of buildings of low-potential thermal energy of ground and free air and their combination. While modeling the heat regime of geothermal HPS in climatic conditions of different regions of the territory of Russia, the influence of the long-term extraction of geothermal heat energy on the ground heat regime has been taken into account as well as the influence of phase transitions of pore moisture in ground on the efficiency of operation of geothermal heat-pump heat-supply systems. Also considered were the sinking of temperatures of ground massif by long-term extraction of the heat energy from the ground as calculation parameters of the heat energy from the ground, and as calculation parameters of ground massif temperatures.

  9. An assessment of air-sea heat fluxes from ocean and coupled reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria; Haines, Keith; Balmaseda, Magdalena; Chang, You-Soon; Drevillon, Marie; Ferry, Nicolas; Fujii, Yosuke; Köhl, Armin; Storto, Andrea; Toyoda, Takahiro; Wang, Xiaochun; Waters, Jennifer; Xue, Yan; Yin, Yonghong; Barnier, Bernard; Hernandez, Fabrice; Kumar, Arun; Lee, Tong; Masina, Simona; Andrew Peterson, K.

    2015-10-01

    Sixteen monthly air-sea heat flux products from global ocean/coupled reanalyses are compared over 1993-2009 as part of the Ocean Reanalysis Intercomparison Project (ORA-IP). Objectives include assessing the global heat closure, the consistency of temporal variability, comparison with other flux products, and documenting errors against in situ flux measurements at a number of OceanSITES moorings. The ensemble of 16 ORA-IP flux estimates has a global positive bias over 1993-2009 of 4.2 ± 1.1 W m-2. Residual heat gain (i.e., surface flux + assimilation increments) is reduced to a small positive imbalance (typically, +1-2 W m-2). This compensation between surface fluxes and assimilation increments is concentrated in the upper 100 m. Implied steady meridional heat transports also improve by including assimilation sources, except near the equator. The ensemble spread in surface heat fluxes is dominated by turbulent fluxes (>40 W m-2 over the western boundary currents). The mean seasonal cycle is highly consistent, with variability between products mostly <10 W m-2. The interannual variability has consistent signal-to-noise ratio (~2) throughout the equatorial Pacific, reflecting ENSO variability. Comparisons at tropical buoy sites (10°S-15°N) over 2007-2009 showed too little ocean heat gain (i.e., flux into the ocean) in ORA-IP (up to 1/3 smaller than buoy measurements) primarily due to latent heat flux errors in ORA-IP. Comparisons with the Stratus buoy (20°S, 85°W) over a longer period, 2001-2009, also show the ORA-IP ensemble has 16 W m-2 smaller net heat gain, nearly all of which is due to too much latent cooling caused by differences in surface winds imposed in ORA-IP.

  10. Structural and Resistivity Changes in YBa2Cu3Oy Ceramics by Heat-Treatment in Air

    NASA Astrophysics Data System (ADS)

    Leng, Song; Narita, Nobutaka; Higashida, Kenji; Mazaki, Hiromasa

    1987-08-01

    Effect of heat-tretment in YBa2Cu3Oy ceramics was investigated using the methods of electrical resistivity, TG, DTA and X-ray diffraction. In the heating process, a mass increase and a resistivity decrease are observed in the sample in the temperature range 630-780 K. Heat-treatment in air at temperatures above 780 K causes the marked increase of resistivity as well as the decrease of oxygen content. The YBa2Cu3Oy compound is decomposed gradually above 1200 K and completely at around 1290 K. The degradation and recovery of structural and transport properties by heat-treatment in air are also reported.

  11. Actual Performance Prediction of Split-type Room Air Conditioner which Considered Unsteady Operation Concerning Heat Island Problem

    NASA Astrophysics Data System (ADS)

    Shinomiya, Naruaki; Nishimura, Nobuya; Iyota, Hiroyuki; Nomura, Tomohiro

    Split type air conditioners are operated actually in the situation unlike the condition that was described in a product catalog. On the other hand, exhaust heat from air conditioner is considered as one of the causes of heat island problem in urban area, and the air conditioner performance and heat load affect exhaust heat amount. In this study, air conditioner performances in both standard summer day and severe hot day were examined by dynamic simulation which considered outdoor weather changes. As a result, actual performances of the air conditioner were demonstrated as a function of outdoor temperature, heat load and indoor temperature. The higher the outdoor temperature and heat load rise, the smaller influences of indoor temperature against COP became. In standard summer day, relative performance exceeded by 15 to 45% than that of JIS operating condition. Also, COP in severe hot day decreased about 6% at the peak time than that of standard day. As a result, the air conditioner exhaust heat during one day which was predicted by the proposed simulation model became about 16% smaller than the conventional prediction model.

  12. Urban Heat Island Versus Air Quality - a Numerical Modelling Study for a European City

    NASA Astrophysics Data System (ADS)

    Fallmann, J.; Forkel, R.; Emeis, S.

    2014-12-01

    In 2050 70% of the global population is expected to live in urban areas. Climate change will render these areas more vulnerable to heat waves, which often are accompanied by severe air pollution problems. The Urban Heat Island (UHI) is a feature that adds to the general temperature increase that is expected. Decreasing the UHI can impact air quality as well, because heat influences atmospheric dynamics and accelerates air chemical processes and often also increases the emission of primary pollutants due to increased demand of energy. The goal of this study is to investigate the effect of, e.g., high reflective surfaces and urban greening on mitigating the UHI and the related impact on air quality. A multi-layer urban canopy model is coupled to the mesoscale model WRF-Chem and the urban area of Stuttgart (South-West Germany) is taken as one example. Different scenario runs are executed for short time periods and are compared to a control run. The results show that the UHI effect can be substantially reduced when changing the albedo of roof surfaces, whereas the effect of urban greening is minor. Both scenarios have in common, that they evoke changes in secondary circulation patterns. The effects of these mitigation strategies on chemical composition of the urban atmosphere are complex, attributed to both chemical and dynamical features. Increasing the reflectivity of roof surfaces in the model results in a net decrease of the surface ozone concentration, because ozone formation is highly correlated to temperature. With regard to primary pollutants, e.g. NO, CO and PM10 concentrations are increased when increasing reflectivity. This effect primarily can be ascribed to a reduction of turbulent motion, convection and a decrease of the boundary layer height, coming along with lower temperatures in the urban canopy layer due to increased reflectivity. The table below shows the effect on grid cell mean concentrations for different chemical species and scenarios.

  13. Mortality Related to Air Pollution with the Moscow Heat Wave and Wildfire of 2010

    PubMed Central

    Shaposhnikov, Dmitry; Revich, Boris; Bellander, Tom; Bedada, Getahun Bero; Bottai, Matteo; Kharkova, Tatyana; Kvasha, Ekaterina; Lezina, Elena; Lind, Tomas; Semutnikova, Eugenia

    2014-01-01

    Background: Prolonged high temperatures and air pollution from wildfires often occur together, and the two may interact in their effects on mortality. However, there are few data on such possible interactions. Methods: We analyzed day-to-day variations in the number of deaths in Moscow, Russia, in relation to air pollution levels and temperature during the disastrous heat wave and wildfire of 2010. Corresponding data for the period 2006–2009 were used for comparison. Daily average levels of PM10 and ozone were obtained from several continuous measurement stations. The daily number of nonaccidental deaths from specific causes was extracted from official records. Analyses of interactions considered the main effect of temperature as well as the added effect of prolonged high temperatures and the interaction with PM10. Results: The major heat wave lasted for 44 days, with 24-hour average temperatures ranging from 24°C to 31°C and PM10 levels exceeding 300 μg/m3 on several days. There were close to 11,000 excess deaths from nonaccidental causes during this period, mainly among those older than 65 years. Increased risks also occurred in younger age groups. The most pronounced effects were for deaths from cardiovascular, respiratory, genitourinary, and nervous system diseases. Continuously increasing risks following prolonged high temperatures were apparent during the first 2 weeks of the heat wave. Interactions between high temperatures and air pollution from wildfires in excess of an additive effect contributed to more than 2000 deaths. Conclusions: Interactions between high temperatures and wildfire air pollution should be considered in risk assessments regarding health consequences of climate change. PMID:24598414

  14. Reduction in air emissions attainable through implementation of district heating and cooling

    SciTech Connect

    Bloomquist, R.G.

    1996-12-31

    District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissions credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.

  15. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  16. Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan

    2008-01-01

    NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.

  17. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  18. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2016-05-01

    The turbulent air-sea heat flux feedback (α , in {W m}^{-2}{ K}^{-1} ) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤ 10° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤ 10 {W m}^{-2}{ K}^{-1} . In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2}{ K}^{-1} . Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  19. Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere

    NASA Astrophysics Data System (ADS)

    Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.

    2015-03-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.

  20. A novel trapezoid fin pattern applicable for air-cooled heat sink

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hung; Wang, Chi-Chuan

    2015-11-01

    The present study proposed a novel step or trapezoid surface design applicable to air-cooled heat sink under cross flow condition. A total of five heat sinks were made and tested, and the corresponding fin patterns are (a) plate fin; (b) step fin (step 1/3, 3 steps); (c) 2-step fin (step 1/2, 2 steps); (d) trapezoid fin (trap 1/3, cutting 1/3 length from the rear end) and (e) trapezoid fin (trap 1/2, cutting 1/2 length from the rear end). The design is based on the heat transfer augmentation via (1) longer perimeter of entrance region and (2) larger effective temperature difference at the rear part of the heat sink. From the test results, it is found that either step or trapezoid design can provide a higher heat transfer conductance and a lower pressure drop at a specified frontal velocity. The effective conductance of trap 1/3 design exceeds that of plate surface by approximately 38 % at a frontal velocity of 5 m s-1 while retains a lower pressure drop of 20 % with its surface area being reduced by 20.6 %. For comparisons exploiting the overall thermal resistance versus pumping power, the resultant thermal resistance of the proposed trapezoid design 1/3, still reveals a 10 % lower thermal resistance than the plate fin surface at a specified pumping power.

  1. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    SciTech Connect

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  2. Air blast and heat radiation from fuel-rich mixture detonations

    NASA Astrophysics Data System (ADS)

    Dorofeev, S. B.; Sidorov, V. P.; Kuznetsov, M. S.; Dvoinishnikov, A. E.; Alekseev, V. I.; Efimenko, A. A.

    1996-06-01

    Large scale experiments were carried out to study the effect fuel concentration on air blast parameters and heart radiation from gaseous detonations. Hemispheric plastic envelope (4 meters in radius) was used with propane-air mixtures containing from 4 to 7 vol. % of fuel. The expressions for overpressures and impulses were determined in Sachs variables. The effect of fuel concentration on blast parameters is shown to be insignificant for the same amount of oxygen in the mixture volume. Thus the blast wave parameters can be described as for stoichiometric mixtures using additional scaling for the explosion energy according to oxygen content (cloud volume). The results of large scale experiments with fuel spray clouds containing 0.16-100 tons of fuel with mean concentration from stoichiometric ( C 0) up to 3 C 0 are reconsidered. These results confirm the proposed scaling of air blast parameters for a wide range of fuel types, cloud volumes and fuel concentrations. Detonations of fuel rich gaseous mixtures result in a strong heat radiation. Heat radiation energy, time and size of the fireball formed are studied as a function of fuel concentration.

  3. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  4. Thermal decomposition of sugarcane straw, kinetics and heat of reaction in synthetic air.

    PubMed

    Rueda-Ordóñez, Yesid Javier; Tannous, Katia

    2016-07-01

    The aim of this work was to analyze the thermal decomposition, kinetics and heat of reaction of sugarcane straw in synthetic air by thermogravimetry (TG) and differential scanning calorimetry (DSC). The TG and DSC experiments were carried out using heating rates of 2.5°C/min, 5°C/min, and 10°C/min, and particle diameter of 0.250mm. In the study of the smoldering reaction were identified three consecutive stages, drying, oxidative pyrolysis, and combustion. Thus, the kinetic pathway was composed by six independent parallel reactions, three for each stage after drying, in which the activation energies were 176, 313, 150, 80, 150, and 100kJ/mol. The heat of reaction in synthetic air was completely exothermic releasing 8MJ/kg. The modeled curves of thermal decomposition of sugarcane straw presented good agreement with experimental data. Then, the kinetic parameters obtained could be used to analyze different processes involving smoldering. PMID:27019126

  5. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  6. Self-pulsing discharges in pre-heated air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Janda, Mário; Machala, Zdenko; Dvonč, Lukáš; Lacoste, Deanna; Laux, Christophe O.

    2015-01-01

    The paper presents investigations of self-pulsing discharges in atmospheric pressure air pre-heated to 300-1000 K. Despite using a direct-current power supply, two self-pulsing discharge regimes, a repetitive transient spark (TS) and a repetitive streamer (RS) were generated. The pulse repetition frequency, on the order of a few kHz, can be controlled by adjusting the generator voltage. The TS is a discharge initiated by a streamer, followed by a short (tens of ns) spark current pulse (˜ 1 A), associated with the total discharging of the internal capacity of the electric circuit. The TS is suitable for the study of ‘memory’ effects (pre-heating, pre-ionization) on the mechanisms of streamer-to-spark transition and electrical breakdown in atmospheric pressure air. The TS regime was stable below ˜600 K. Above ˜600 K, a stable repetitive streamer (RS) regime was observed. In this regime, the breakdown and spark did not occur. After the initial streamer, the internal capacity of the electrical circuit discharged partially. With further pre-heating of the gas, the stable TS appeared again at ˜1000 K.

  7. Influence mechanism on flow and heat transfer characteristics for air-cooled steam condenser cells

    NASA Astrophysics Data System (ADS)

    He, Wei Feng; Dai, Yi Ping; Li, Mao Qing; Ma, Qing Zhong

    2012-09-01

    Air-cooled steam condensers (ACSCs) have been extensively utilized to reject waste heat in power industry to save water resources. However, ACSC performance is so sensitive to ambient wind that almost all the air-cooled power plants in China are less efficient compared to design conditions. It is shown from previous research that the influence of ambient wind on the cell performance differs from its location in the condenser. As a result, a numerical model including two identical ACSC cells are established, and the different influence on the performance of the cells is demonstrated and analyzed through the computational fluid dynamics method. Despite the great influence from the wind speeds, similar cell performance is obtained for the two cells under both windless and wind speed conditions when the wind parallels to the steam duct. Fan volumetric effectiveness which characterizes the fan performance, as well as the exchanger heat transfer rate, drops obviously with the increasing wind speed, and performance difference between the exchanger pair in the same A-frame also rises continuously. Furthermore, different flow and heat transfer characteristics of the windward and leeward cell are obtained at different wind angles, and ambient wind enhances the performance of the leeward cell, while that of the windward one changes little.

  8. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo). PMID:26523605

  9. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  10. 77 to 1200 K tensile properties of several wrought superalloys after long-term 1093 K heat treatment in air and vacuum

    NASA Astrophysics Data System (ADS)

    Whittenberger, J. D.

    1994-02-01

    The 77 to 1200 K tensile properties of approximately 1.3 mm thick wrought sheet Co-base Haynes alloy 188 and Ni-base Haynes alloy 230 and Inconel 617 have been measured after heat treatment in air and vacuum for periods up to 22,500 h at 1093 K. Significant changes in structure were produced by prior exposures, including precipitation of second phases and, in the case of heat treatment in air, oxide scale and surface-connected grain boundary pits/oxides, as deep as 50 to 70 µm, in all three superalloys. Due to the geometry of the experiment, the vacuum-exposed samples were protected from loss of volatile elements by evaporation; hence, such specimens were simply given 1093 K anneals in an innocuous environment, which produced very little surface attack. Compared to the properties of as-received alloys, prior exposure tended to reduce both the yield strength and ultimate tensile strength, with the greatest reductions at 77 and 298 K. The most dramatic effect of heat treatment was found in the low-temperature residual tensile elongation, where decreases from 40 to 5% at 77 K were found. Ductility is the only property that was found to have a consistent dependency on environment, with air exposure always yielding less tensile elongation than vacuum exposure.

  11. 77 to 1,200 K tensile properties of several wrought superalloys after long-term 1,093 K heat treatments in air and vacuum

    SciTech Connect

    Whittenberger, J.D. . Lewis Research Center)

    1994-02-01

    The 77 to 1,200 K tensile properties of approximately 1.3 mm thick wrought sheet Co-base Haynes alloy 188 and Ni-base Haynes alloy 230 and Inconel 617 have been measured after heat treatment in air and vacuum for periods up to 22,500 h at 1,093 K. Significant changes in structure were produced by prior exposures, including precipitation of second phases and, in the case of heat treatment in air, oxide scale and surface-connected grain boundary pits/oxides, as deep as 50 to 70 [mu]m, in all three superalloys. Due to the geometry of the experiment, the vacuum-exposed samples were protected from loss of volatile elements by evaporation; hence, such specimens were simply given 1,093 K anneals in an innocuous environment, which produced very little surface attack. Compared to the properties of as-received alloys, prior exposure tended to reduce both the yield strength and ultimate tensile strength, with the greatest reductions at 77 and 298 K. The most dramatic effect of heat treatment was found in the low-temperature residual tensile elongation, where decreases from 40 to 5% at 77 K were found. Ductility is the only property that was found to have a consistent dependency on environment, with air exposure always yielding less tensile elongation than vacuum exposure.

  12. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    SciTech Connect

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-05-01

    In many parts of North America residential HVAC systems are installed outside conditioned space. This leads to significant energy losses and poor occupant comfort due to conduction and air leakage losses from the air distribution ducts. In addition, cooling equipment performance is sensitive to air flow and refrigerant charge that have been found to be far from manufacturers specifications in most systems. The simulation techniques discussed in this report were developed in an effort to provide guidance on the savings potentials and comfort gains that can be achieved by improving ducts (sealing air leaks) and equipment (correct air-flow and refrigerant charge). The simulations include the complex air flow and thermal interactions between duct systems, their surroundings and the conditioned space. They also include cooling equipment response to air flow and refrigerant charge effects. Another key aspect of the simulations is that they are dynamic to account for cyclic losses from the HVAC system and the effect of cycle length on energy and comfort performance. To field test the effect of changes to residential HVAC systems requires extensive measurements to be made for several months for each condition tested. This level of testing is often impractical due to cost and time limitations. Therefore the Energy Performance of Buildings Group at LBNL developed a computer simulation tool that models residential HVAC system performance. This simulation tool has been used to answer questions about equipment downsizing, duct improvements, control strategies and climate variation so that recommendations can be made for changes in residential construction and HVAC installation techniques that would save energy, reduce peak demand and result in more comfortable homes. Although this study focuses on California climates, the simulation tool could easily be applied to other climates. This report summarizes the simulation tool and discusses the significant developments that allow

  13. Investigation of Effectiveness of Air-Heating a Hollow Steel Propeller for Protection Against Icing. 2: 50% Impartitioned Blades

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.; Mulholland, Donald R.

    1948-01-01

    The icing protection afforded an internal air-heated propeller blade by radial partitioning at 50-percent chord to confine the heated air to the forward half of the blade was determined in the NACA Cleveland icing research tunnel. A modified production-model hollow steel propeller, was used for the investigation. Temperatures of the blade surfaces for several heating rates were measured under various tunnel Icing' conditions. Photographic observations of ice formations on blade surfaces and blade heat-exchanger effectiveness were obtained. With 50-percent partitioning of the blades, adequate icing protection at 1050 rpm was obtained with a heating rate of 26,000 Btu per hour per blade at the blade shank using an air temperature of 400 F with a flow rate of 280 pounds per hour per blade, which is one-third less heat than was found necessary for similar Ice protection with unpartitioned blades. The chordwise distribution of the applied heat, as determined by surface temperature measurements, was considered unsatisfactory with much of the heat dissipated well back of the leading edge. Heat-exchanger effectiveness of approximately 56 percent also Indicated poor utilization of available heat. This effectiveness was, however, 9 percent greater than that obtained from unpartitioned blades.

  14. Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer.

    PubMed

    Faal, Saeed; Tavakoli, Teymor; Ghobadian, Barat

    2015-05-01

    In this study thermal energy of an engine was used to dry apricot. For this purpose, experiments were conducted on thin layer drying apricot with combined heat and power dryer, in a laboratory dryer. The drying experiments were carried out for four levels of engine output power (25 %, 50 %, 75 % and full load), producing temperatures of 50, 60, 70, and 80 ° C in drying chamber respectively. The air velocity in drying chamber was about 0.5 ± 0.05 m/s. Different mathematical models were evaluated to predict the behavior of apricot drying in a combined heat and power dryer. Conventional statistical equations namely modeling efficiency (EF), Root mean square error (RMSE) and chi-square (χ2) were also used to determine the most suitable model. Assessments indicated that the Logarithmic model considering the values of EF = 0.998746, χ 2 = 0.000120 and RMSE = 0.004772, shows the best treatment of drying apricot with combined heat and power dryer among eleven models were used in this study. The average values of effective diffusivity ranged 1.6260 × 10(-9) to 4.3612 × 10(-9) m2/s for drying apricot at air temperatures between 50 and 80 °C and at the air flow rate of 0.5 ± 0.05 m/s; the values of Deff increased with the increase of drying temperature the effective diffusivities in the second falling rate period were about eight times greater than that in the first falling rate period. PMID:25892795

  15. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  16. The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters

    NASA Astrophysics Data System (ADS)

    Webber, H.; Bond, A.; Hempsell, M.

    The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.

  17. Diffusion welding in air. [solid state welding of butt joint by fusion welding, surface cleaning, and heating

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Holko, K. H. (Inventor)

    1974-01-01

    Solid state welding a butt joint by fusion welding the peripheral surfaces to form a seal is described along with, autogenetically cleaning the faying or mating surfaces of the joint by heating the abutting surfaces to 1,200 C and heating to the diffusion welding temperature in air.

  18. Air Source Heat Pumps for Cold Climate Applications: Recent U. S. R&D Results from IEA HPP Annex 41

    SciTech Connect

    Baxter, Van D; Groll, Dr. Eckhard A.; Shen, Bo

    2014-01-01

    Air source heat pumps are easily applied to buildings almost anywhere. They are widespread in milder climate regions but their use in cold regions is hampered due to low efficiency and heating capacity at cold outdoor temperatures. This article describes selected R&D activities aimed at improving their cold weather performance.

  19. An Experimental Investigation of an Exhaust-gas-to-air Heat Exchanger for Use on Jet-stack-equipped Engines

    NASA Technical Reports Server (NTRS)

    Stalder, Jackson R; Spies, Ray J , Jr

    1948-01-01

    Tests were made to determine the loss in exhaust-jet thrust and engine power resulting from the insertion of an exhaust-gas-to-air heat exchanger in a jet-type exhaust stack of an aircraft engine. The thermal performance of the heat exchanger was also determined.

  20. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  1. Cost analysis of new and retrofit hot-air type solar assisted heating systems

    NASA Technical Reports Server (NTRS)

    Stewart, R. D.; Hawkins, B. J.

    1978-01-01

    A detailed cost analysis/cost improvement study was performed on two Department of Energy/National Aeronautics and Space Administration operational test sites to determine actual costs and potential cost improvements of new and retrofit hot air type, solar assisted heating and hot water systems for single family sized structures. This analysis concentrated on the first cost of a system which included procurement, installation, and integration of a solar assisted heating and hot water system on a new or retrofit basis; it also provided several cost projections which can be used as inputs to payback analyses, depending upon the degree of optimism or future improvements assumed. Cost definitions were developed for five categories of cost, and preliminary estimates were developed for each. The costing methodology, approach, and results together with several candidate low cost designs are described.

  2. An approach to monitoring HVAC (heating ventilating and air conditioning) technology developments in Japan

    SciTech Connect

    Lewis, P.M.; Ashton, W.B.; McDonald, S.C.

    1987-12-01

    This paper presents a discussion of methods for periodicaly monitoring Japanese advanced technology developments for equipment and components in the heating ventilating and air conditioning (HVAC) industry. The emphasis in the approach recommended is on evaluation of foreign literature - both technical and trade publications - because of both the increasing availability of these materials and the usefulness of information they present. Although not a comprehensive nor completely detailed source of information, HVAC technology literature is an important component of ''scanning the business/technical environmental'' for many purposes. Moreover, despite obstacles in obtaining and translating some important literature, useful knowledge can be obtained from many foreign literature sources for relatively modest costs.

  3. Mathematical equations for heat conduction in the fins of air-cooled engines

    NASA Technical Reports Server (NTRS)

    Harper, R R; Brown, W B

    1923-01-01

    The problem considered in this report is that of reducing actual geometrical area of fin-cooling surface, which is, of course, not uniform in temperature, to equivalent cooling area at one definite temperature, namely, that prevailing on the cylinder wall at the point of attachment of the fin. This makes it possible to treat all the cooling surface as if it were part of the cylinder wall and 100 per cent effective. The quantities involved in the equations are the geometrical dimensions of the fin, thermal conductivity of the material composing it, and the coefficient of surface heat dissipation between the fin and the air streams.

  4. Passive decay heat removal by natural air convection after severe accidents

    SciTech Connect

    Erbacher, F.J.; Neitzel, H.J.; Cheng, X.

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  5. Heat transport in the marine atmospheric boundary layer during an intense cold air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zimmerman, Jeffrey

    1988-01-01

    The generation of the virtual heat flux in the convective MABL associated with the January 28, 1986 intense cold air airbreak offshore of the Carolinas is studied. A technique based on the joint frequency distribution of the virtual potential temperature and vertical motion (Mahrt and Paumier, 1984) is used. The results suggest that, if buoyancy is mainly driven by the temperature flux, the physical processes for generating buoyancy flux are about the same for boundary layers over land and ocean, even with different convective regimes.

  6. Seasonal and Diurnal Air Pollution from Residential Cooking and Space Heating in the Eastern Tibetan Plateau.

    PubMed

    Carter, Ellison; Archer-Nicholls, Scott; Ni, Kun; Lai, Alexandra M; Niu, Hongjiang; Secrest, Matthew H; Sauer, Sara M; Schauer, James J; Ezzati, Majid; Wiedinmyer, Christine; Yang, Xudong; Baumgartner, Jill

    2016-08-01

    Residential combustion of solid fuel is a major source of air pollution. In regions where space heating and cooking occur at the same time and using the same stoves and fuels, evaluating air-pollution patterns for household-energy-use scenarios with and without heating is essential to energy intervention design and estimation of its population health impacts as well as the development of residential emission inventories and air-quality models. We measured continuous and 48 h integrated indoor PM2.5 concentrations over 221 and 203 household-days and outdoor PM2.5 concentrations on a subset of those days (in summer and winter, respectively) in 204 households in the eastern Tibetan Plateau that burned biomass in traditional stoves and open fires. Using continuous indoor PM2.5 concentrations, we estimated mean daily hours of combustion activity, which increased from 5.4 h per day (95% CI: 5.0, 5.8) in summer to 8.9 h per day (95% CI: 8.1, 9.7) in winter, and effective air-exchange rates, which decreased from 18 ± 9 h(-1) in summer to 15 ± 7 h(-1) in winter. Indoor geometric-mean 48 h PM2.5 concentrations were over two times higher in winter (252 μg/m(3); 95% CI: 215, 295) than in summer (101 μg/m(3); 95%: 91, 112), whereas outdoor PM2.5 levels had little seasonal variability. PMID:27351357

  7. A new 'bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen.

    PubMed

    Jacobs, Stephanie J; Pezza, Alexandre B; Barras, Vaughan; Bye, John

    2014-03-01

    Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor 'bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne. PMID:23404183

  8. A new `bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen

    NASA Astrophysics Data System (ADS)

    Jacobs, Stephanie J.; Pezza, Alexandre B.; Barras, Vaughan; Bye, John

    2014-03-01

    Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor `bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.

  9. Radiative and turbulent heating rates in the clear-air boundary layer

    NASA Astrophysics Data System (ADS)

    Savijärvi, Hannu

    2006-01-01

    The diurnal evolution of a clear-sky midlatitude summertime boundary layer (BL) was studied using a column model over smooth and homogeneous land, subject to weak, moderate, and strong winds. The high-resolution BL model (lowest point at 30 cm) was equipped with an adequate turbulence scheme and a narrow-band long-wave (LW) radiation scheme, the latter validated using data from the International Comparison of Radiation Codes in Climate Models (ICRCCM).In off-line ICRCCM experiments, ground emissivity ɛ < 1 led to extra LW cooling of air near the surface compared to ɛ = 1. However, much stronger LW cooling at heights of 1 3 m, and warming below 1 m, was obtained by setting the ground colder than air at screen height, a typical condition during clear nights. Conversely, a warm surface anomaly typical of sunny days leads to strong LW warming at 1 3 m, with LW cooling just above the ground. These ground temperature anomalies dominated the LW heating/cooling patterns at heights of up to 3 4 m, perhaps explaining controversies in the observed LW flux divergences close to the ground.Interactive model results indicate that the middle part of a windy clear-air nocturnal BL (NBL) is dominated by turbulent cooling, while the upper and lower NBL is dominated by LW cooling. Below about 1 m, a fourth layer is formed with LW warming and turbulent cooling, in agreement with the off-line experiments. When the surface winds fall below about 1 1.5 m s -1 LW cooling dominates in the whole NBL, except very near the surface. In these light wind conditions the Monin Obukhov theory should be revised to include radiative effects.In clear-air daytime conditions strong convective BL heating dominates over weak LW cooling except at 1 3 m heights where the cooler air absorbs the thermal emission of the hot ground. The subsequent LW warming of the superadiabatic surface layer appears to be strong enough to induce local turbulent cooling (despite the hot surface) in an 'hour glass' pattern

  10. A vacuum tube vee-trough collector for solar heating and air conditioning applications

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    An analysis is conducted of the performance of a vee-trough vacuum tube collector proposed for use in solar heating and cooling applications. The vee-trough reflector is a triangular sectioned, flat surfaced reflector, whose axis is laid in the East-West direction. A vacuum tube receiver placed at the bottom of the vee-trough collects solar heat most efficiently since convection is completely eliminated. Radiation losses are reduced by use of selective coatings on the absorber. Owing to its high temperature capabilities (300-400 F), the proposed scheme could also be used for power generation applications in combination with an organic Rankine conversion system. It is especially recommended for unattended pumping stations since the reflectors only require reversal once every six months.

  11. On the Potential Impact of Daytime Surface Sensible Heat Flux on the Dissipation of Martian Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Segal, M.; Arritt, R. W.; Tillman, J. E.

    1997-01-01

    The Martian daytime soil surface temperature is governed primarily by the net irradiance balance and surface soil heat flux. Thus the outbreak of a cold air mass generates increased sensible heat flux that is conducive to daytime dissipation of the cold air mass thermal characteristics. Conceptual and scaling evaluations of this dissipation are provided while comparison is made with similar situations on Earth. It is estimated that sensible heat flux contribution to the dissipation of the original thermal structure of the cold air could be three times larger than the corresponding situation on Earth. Illustrative numerical model simulations provide scaling of the potential impact on the dissipation of cold air masses for various combinations of background wind speed and latitudes.

  12. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    SciTech Connect

    Chen, W.W.; Gregonis, R.A.

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  13. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Failures and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within in the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings and potential remediation techniques will also be discussed.

  14. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. PMID:25446789

  15. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  16. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  17. Internal combustion engine system with fog injection and heat exchange

    SciTech Connect

    Munk, M.

    1987-10-27

    An improved turbine apparatus is described comprising: a turbine power generator, including a source of input air, and a source of fuel, a compressor which receives the input air, a combustion chamber which receives air from the output of the compressor and fuel from the source of fuel, a turbine which receives exhaust gases from the combustion chamber; and an electrical generator mechanically coupled with the turbine; a fogging device communicating with the input air. The fogging device is adapted to receive a fogger air supply and a fogger water supply, and to generate a fog in the input air, an adjustable heat exchanger for exchanging heat from the exhaust of the turbine to the input air to be fogged; and means for adjusting the level of heat exchange of the heat exchanger in accordance with properties of the input air and the level of fog being generated.

  18. Combustion system for hybrid solar fossil fuel receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  19. Development and testing of a fluidized bed solar thermal receiver

    SciTech Connect

    Bachovchin, D.M.; Archer, D.H.; Neale, D.H.; Brown, C.T.; Lefferdo, J.M.

    1981-01-01

    Requirements for effective solar thermal receivers are compared with the characteristics of fluidized beds to demonstrate the compatibility of the two technologies. The Westinghouse design and construction of a solar thermal fluidized bed air heater for industrial process heat is described. Tests of the unit with concentrated solar radiation at the Georgia Tech Advanced Components Test Facility are outlined and receiver performance is evaluated.

  20. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  1. Investigation of Effectiveness of Air-Heating a Hollow Steel Propeller for Protection Against Icing. 1: Unpartitioned Blades

    NASA Technical Reports Server (NTRS)

    Mulholland, Donald R.; Perkins, Porter J.

    1948-01-01

    An investigation to determine the effectiveness of icing protection afforded by air-heating hollow steel unpartitioned propeller blades has been conducted In the NACA Cleveland icing research tunnel. The propeller used was a production model modified with blade shank and tip openings to permit internal passage of heated air. Blade-surface and heated-air temperatures were obtained and photographic observations of Ice formations were made with variations In icing intensity and heating rate to the blades. For the conditions of Icing to which the propeller was subjected, it was found that adequate ice protection was afforded with a heating rate of 40 1 000 Btu per hour per blade. With less than 40,000 Btu per hour per blade, ice protection failed because of significant ice accretions on the leading edge. The chordwise distribution of heat was unsatisfactory with most of the available heat dissipated well back of the leading edge on both the thrust and camber face's instead of at the leading edge where it was most needed. A low utilization of available heat for icing protection is indicated by a beat-exchanger effectiveness of approximately 47 percent.

  2. Use of Sandia's Central Receiver Test Facility as a high-intensity heat source for testing missile nose-cone (Radome) radar systems

    SciTech Connect

    Porter, D.R.

    1981-09-01

    A series of tests at Sandia's Central Receiver Test Facility in support of the US Navy's SM-2 Blk 2 Radome Improvement Program is described. The CRTF was the source of high-intensity solar radiation for testing onboard radar-tracking systems under heating conditions intended to simulate those that occur in supersonic flight. Also discussed are the hardware used and the software developed at the CRTF.

  3. Air Pollution in Moscow Region and Kiev during Heat Wave in July-August 2010

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, A. M.; Tarasova, O. A.; Belikov, I. B.; Blum, O. B.; Elansky, N. F.; Kuznetsova, I. N.; Shumsky, R. A.

    2010-12-01

    when the maximum hourly averaged surface ozone and CO mixing ratios were up to 238 ppb and 30 ppm, respectively. Thresholds were also exceeded for NO, NO2 and PM10. Air composition in the Moscow region in summer 2010 was compared to the one in 2002. The latter was also affected by big forest and peat fires to the east of Moscow. In Kiev surface ozone and NOx mixing ratios during the heat wave only slightly exceeded the ones typical for this period of the year. A conclusion was made on the impact and contribution of the biomass burning products and secondary pollutants on the abrupt air quality decrease in the Moscow region in summer 2010.

  4. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  5. Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components

    NASA Astrophysics Data System (ADS)

    Ferroukhi, M. Y.; Abahri, K.; Belarbi, R.; Limam, K.; Nouviaire, A.

    2015-12-01

    The present paper lies to study the coupled heat, air and moisture transfer in multi-layer building materials. Concerning the modeling part, the interest is to predict the hygrothermal behavior, by developing a macroscopic model that incorporates simultaneously the diffusive, convective and conductive effects on the building elements. Heat transfer is considered in the strongly coupled situation where the mass and heat flux are temperature, vapor pressure and total pressure dependents. The model input parameters are evaluated experimentally through the development of various experimental prototypes in the laboratory. Thereafter, an experimental setup has been established in order to evaluate the hygrothermal process of several multilayer walls configurations. The experimental procedure consists to follow the temperature and relative humidity evolutions within the samples thickness, submitted to controlled and fixed boundary conditions. This procedure points out diverging conclusion between different testing materials combinations (e.g. red-brick and polystyrene). In fact, the hygrothermal behavior of the tested configurations is completely dependent on both materials selection and their thermophysical properties. Finally, comparison between numerical and experimental results showed good agreement with acceptable errors margins with an average of 3 %.

  6. Effect of heat waves on VOC emissions from vegetation and urban air quality

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Kuik, F.; Lauer, A.; Bonn, B.; Butler, T. M.

    2015-12-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how heat waves affect emissions of VOC from urban vegetation and corresponding ground-level ozone. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the 2006 heat wave. VOC emissions from vegetation are simulated with MEGAN 2.0 coupled with WRF-CHEM. Our preliminary results indicate that contribution of VOCs from vegetation to ozone formation may increase by more than twofold during the heat wave period. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  7. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  8. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  9. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D

    2011-01-01

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  10. Second generation sodium heat pipe receiver for a USAB V-160 Stirling engine: Evaluation of on-sun test results using the proposed IEA guidelines and analysis of heat pipe damage

    SciTech Connect

    Laing, D.; Traebing, C.

    1997-11-01

    Dish/Stirling technology has demonstrated the highest conversion efficiencies of all solar thermal conversion systems. At the DLR a second generation sodium heat pipe receiver for the Schlaich Bergermann und Partner (SBP) 9-kW{sub e} dish/Stirling system has been developed and constructed. Long-term operation occurred from Oct. 1992 until Aug. 1993 at the Plataforma Solar de Almeria (PSA) in Spain, accumulating 950 operating hours. The performance of the SBP 9-kW{sub e} system with a sodium heat pipe receiver is evaluated according to the guidelines for dish/Stirling performance evaluation by Stine and Powel, as proposed to the International Energy Agency (IEA). Tests were stopped due to a leak in the receiver absorber surface. The analysis of this damage is reported.

  11. Ceramic Solar Receiver

    NASA Technical Reports Server (NTRS)

    Robertson, C., Jr.

    1984-01-01

    Solar receiver uses ceramic honeycomb matrix to absorb heat from Sun and transfer it to working fluid at temperatures of 1,095 degrees and 1,650 degrees C. Drives gas turbine engine or provides heat for industrial processes.

  12. The use of an air bubble curtain to reduce the received sound levels for harbor porpoises (Phocoena phocoena).

    PubMed

    Lucke, Klaus; Lepper, Paul A; Blanchet, Marie-Anne; Siebert, Ursula

    2011-11-01

    In December 2005 construction work was started to replace a harbor wall in Kerteminde harbor, Denmark. A total of 175 wooden piles were piled into the ground at the waters edge over a period of 3 months. During the same period three harbor porpoises were housed in a marine mammal facility on the opposite side of the harbor. All animals showed strong avoidance reactions after the start of the piling activities. As a measure to reduce the sound exposure for the animals an air bubble curtain was constructed and operated in a direct path between the piling site and the opening of the animals' semi-natural pool. The sound attenuation effect achieved with this system was determined by quantitative comparison of pile driving impulses simultaneously measured in front of and behind the active air bubble curtain. Mean levels of sound attenuation over a sequence of 95 consecutive pile strikes were 14 dB (standard deviation (s.d.) 3.4 dB) for peak to peak values and 13 dB (s.d. 2.5 dB) for SEL values. As soon as the air bubble curtain was installed and operated, no further avoidance reactions of the animals to the piling activities were apparent. PMID:22088014

  13. Aerodynamic heated steam generating apparatus

    SciTech Connect

    Kim, K.

    1986-08-12

    An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.

  14. Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa

    NASA Astrophysics Data System (ADS)

    Fontaine, Bernard; Janicot, Serge; Monerie, Paul-Arthur

    2013-08-01

    study documents the time evolution of air temperature and heat waves occurrences over Northern Africa for the period 1979-2011. A significant warming (1°-3°C), appearing by the mid-1960s over Sahara and Sahel, is associated with higher/lesser frequency of warm/cold temperatures, as with longer duration and higher occurrences of heat waves. Heat waves episodes of at least 4 day duration have been examined after removing the long-term evolution. These episodes are associated with specific anomalies: (i) in spring, positive low-level temperature anomalies over the Sahel and Sahara; low and midlevel cyclonic rotation over Morocco associated with a Rossby wave pattern, lessening the Harmattan; more/less atmospheric moisture westward/eastward to 0°; upward/downward anomalies above the western/eastern regions associated with the Rossby wave pattern; (ii) in summer, a similar but weaker positive low-level temperature anomaly (up to 3°C); less moisture westward to 10°W, a cyclonic anomaly in central Sahel favoring the monsoon eastward to 0° and a midlevel anticyclonic anomaly over the Western Sahara, increasing southward the flux divergence associated with the African Easterly Jet. In March-May, two to three heat waves propagate eastward. They are preceded by an abnormal warm cell over Libya and southwesterlies over the West Sahara. A large trough stands over North Atlantic while midtropospheric subsidence and anticyclonic rotation reinforce over the continent, then migrates toward the Arabian peninsula in breaking up. These signals are spatially coherent and might suggest the role of short Rossby waves with an eastward group velocity and a baroclinic mode, possibly associated with jet stream deformation.

  15. Experimental and numerical investigations on slot air jet impingement cooling of a heated cylindrical concave surface

    NASA Astrophysics Data System (ADS)

    Nouri-Bidgoli, H.; Ashjaee, M.; Yousefi, T.

    2014-04-01

    Experimental and numerical studies have been carried out for slot air jet impingement on a heated concave surface of a partially opened-top horizontal cylinder of length L = 20 cm. The slot jet is situated at the symmetry line of the partially opened-top cylinder along the gravity vector and impinges to the bottom of the cylinder which is designated as θ = 0°. The width of the opening at the top of the horizontal cylinder is W = 3 cm which corresponds to a circumferential angle Δθ = 50.8°. The experiments are performed by a Mach-Zehnder interferometer which enables to measure the local convection heat transfer coefficient. Also, a finite volume method based on the SIMPLE algorithm and non-orthogonal grid discretization scheme is used to solve the continuity, momentum, and energy equations. The Poisson equations are solved for (x, y) to find the grid points which are distributed in a non-uniform manner with higher concentration close to the solid regions. The effects of jet Reynolds number ( Re j) in the range from 190 to 1,600 and the ratio of spacing between nozzle and cylinder surface to the jet width from H = 1.5 to H = 10.7 on the local and average Nusselt numbers are examined. It is observed that maximum Nusselt number occurs at the stagnation point at (θ = 0°) and the local heat transfer coefficient decreases on the circumferential surface of the cylinder with increase of θ as a result of thermal boundary layer thickness growth. Also results show that the local and average heat transfer coefficients are raised by increasing the jet Reynolds number and by decreasing the nozzle-to-surface spacing.

  16. Heat flux measurements in stagnation point methane/air flames with thermographic phosphors

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed; Staude, Susanne; Bergmann, Ulf; Atakan, Burak

    2010-10-01

    Light-induced phosphorescence from thermographic phosphors was used to study the wall temperatures and heat fluxes from nearly one-dimensional flat premixed flames. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with equivalence ratios of φ = 1, φ = 0.75 and φ = 1.25 at ambient pressure. The flames were burning in a stagnation point arrangement against a water-cooled plate. The central part of this plate was an alumina ceramic plate coated from both sides with chromium-doped alumina (ruby) and excited with a Nd:YAG laser or a green light-emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 to 1.2 m/s. The burner to plate distance (H) ranged from 0.5 to 2 times the burner exit diameter ( d = 30 mm). The measured heat flux rates indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one-dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, gas phase temperatures were measured by OH-LIF for a stoichiometric stagnation point flame. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high mass fluxes. This geometry may be well suited for further studies of the elementary flame wall interaction.

  17. T & I--Air Conditioning, Refrigeration, and Heating--Heating Units. Kit No. 87. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Simmons, Mike

    An instructor's manual and student activity guide on air conditioning, refrigeration, and heating units are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational…

  18. Numerical simulation of heat transfer performance of an air-cooled steam condenser in a thermal power plant

    NASA Astrophysics Data System (ADS)

    Gao, Xiufeng; Zhang, Chengwei; Wei, Jinjia; Yu, Bo

    2009-09-01

    Numerical simulation of the thermal-flow characteristics and heat transfer performance is made of an air-cooled steam condenser (ACSC) in a thermal power plant by considering the effects of ambient wind speed and direction, air-cooled platform height, location of the main factory building and terrain condition. A simplified physical model of the ACSC combined with the measured data as input parameters is used in the simulation. The wind speed effects on the heat transfer performance and the corresponding steam turbine back pressure for different heights of the air-cooled platform are obtained. It is found that the turbine back pressure (absolute pressure) increases with the increase of wind speed and the decrease of platform height. This is because wind can not only reduce the flowrate in the axial fans, especially at the periphery of the air-cooled platform, due to cross-flow effects, but also cause an air temperature increase at the fan inlet due to hot air recirculation, resulting in the deterioration of the heat transfer performance. The hot air recirculation is found to be the dominant factor because the main factory building is situated on the windward side of the ACSC.

  19. Numerical modeling and simulation of hot air jet anti-icing system employing channels for enhanced heat transfer

    NASA Astrophysics Data System (ADS)

    Ahmed, Kamran Zaki

    Aircraft icing is a serious concern for the aviation community since it is one of the major causes of fatal aircraft accidents. Aircrafts use different anti-icing systems and one such system is the hot-air anti-icing system, which utilizes hot-air from the engine compressor bleed to heat critical aircraft surfaces and prevent ice formation. Numerous experimental and numerical studies have been performed to increase the efficiency of the hot-air jet based anti-icing systems. Most of the investigations have focused on either orifice design or the impingement region of target surface geometry. Since the impingement surface heat transfer drops off sharply past the stagnation region, investigators have studied the use of multiple jets to enhance surface heat transfer over a larger area. However, use of multiple jets is a further strain on engine resources. One way to conserve engine resources is to use single jet in conjunction with various geometric and physical mechanisms to enhance heat transfer. The current study focuses on enhancing heat transfer using a single jet and a channel. The study investigates the effect of channel's height, inlet location and Reynolds number on heat transfer characteristics in terms of average Nusselt number distribution along the impingement surface. The commercial CFD code, FLUENT, is used to simulate the different cases. Results indicate that the heat transfer depends strongly on height and width of channel, jet-to-target spacing, inlet angle and jet Reynolds number.

  20. Effects of Tube Diameter and Tubeside Fin Geometry on the Heat Transfer Performance of Air-Cooled Condensers

    NASA Astrophysics Data System (ADS)

    Wang, H. S.; Honda, Hiroshi

    A theoretical study has been made on the effects of tube diameter and tubeside fin geometry on the heat transfer performance of air-cooled condensers. Extensive numerical calculations of overall heat transfer from refrigerant R410A flowing inside a horizontal microfin tube to ambient air were conducted for a typical operating condition of the air-cooled condenser. The tubeside heat transfer coefficient was calculated by applying a modified stratified flow model developed by Wang et al.8). The numerical results show that the effects of tube diameter, fin height, fin number and helix angle of groove are significant, whereas those of the width of flat portion at the fin tip, the radius of round corner at the fin tip and the fin half tip angle are small.

  1. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOEpatents

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  2. HVAC (heating, ventilation, air conditioning) literature in Japan: A critical review

    SciTech Connect

    Hane, G.J.

    1988-02-01

    Japanese businessmen in the heating, ventilation, air conditioning, and refrigeration (HVACandR) industry consider the monitoring of technical and market developments in the United States to be a normal part of their business. In contrast, efforts by US businessmen to monitor Japanese HVAC and R developments are poorly developed. To begin to redress this imbalance, this report establishes the groundwork for a more effective system for use in monitoring Japanese HVAC and R literature. Discussions of a review of the principal HVAC and R publications in Japan and descriptions of the type of information contained in each of those publications are included in this report. Since the Japanese HVAC and R literature is abundant, this report also provides practical suggestions on how a researcher or research manager can limit the monitoring effort to the publications and type of information that would most likely be of greatest value.

  3. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  4. Laminar natural convection heat transfer and air flow in three-dimensional cubic enclosures with a partially heated wall

    NASA Astrophysics Data System (ADS)

    Mellah, S.; Ben-Cheikh, N.; Ben-Beya, B.; Lili, T.

    2015-03-01

    In the present study, a finite volume computational procedure and a full multigrid technique are used to investigate laminar natural convection in partially heated cubic enclosures. Effects of heated strip disposition in the enclosure on the heat transfer rate are studied. Results are presented in the form of flow lines, isotherms plots, average Nusselt numbers, and average temperature on the heat source surface. Statistical distributions of temperature and average velocity fields and their root-mean-square values are presented and discussed.

  5. Air leak seal for lung dissection plane with diode laser irradiation: monitoring heat-denature with auto-fluorescence

    NASA Astrophysics Data System (ADS)

    Gotoh, Maya; Arai, Tsunenori

    2008-02-01

    We studied the monitoring of heat-denature by autofluorescence spectrum from lung dissection plane during laser air leak sealing procedure. In order to seal the air leakage from lung in thoracotomy, we proposed novel laser sealing method with the combination of the diode laser (810nm wavelength) irradiation and indocyanine green staining (peak absorption wavelength: 805 nm). This sealing method is expected to preserve the postoperative ventilatory capacity and achieve minimally invasive surgery. We previously reported that this laser sealing only requires thin sealing margin (less than 300 μm in thickness) compared with that of the suturing or stapling. The most serious issue on the laser air leak sealing might be re-air-leakage due to rigid surface layer caused by excessive heat-denature, such as carbonization. We should achieve laser air leak sealing minimizing the degree of heat denature. Dissection planes of isolated porcine lung with /without the diode laser irradiation were prepared as samples. We measured the auto-fluorescence from these samples using a spectrometer. When the diode laser was irradiated with 400J/cm2, the surface of diode laser irradiated lung was fully carbonized. The ration of auto-fluorescence emission of 450nm / 500 nm, with 280 nm excitation wavelength was decreased less tha 50 % of initial value. That of 600 nm / 500 nm was increased over 700 % of initial value. The decreasing of the 450 nm auto-fluorescence intensity might be attributed to the heat-denaturing of the interstitial collagen in lung. However, increasing of the 600 nm didn't specify the origins, we suppose it might be originated from heat-denature substance, like carbonization. We could establish the useful monitoring for lung heat-denaturing with simple methodology. We think the auto-fluorescence measurement can be helpful not only for understanding the sealing mechanism, but also for controlling the degree of heat-denaturing during the procedure.

  6. Experimental study of convective heat transfer under arrays of impinging air jets from slots and circular holes

    NASA Astrophysics Data System (ADS)

    Can, M.; Etemog✓lu, A. B.; Avci, A.

    Impinging air jets are widely used in industry, for heating, cooling, drying, etc, because of the high heat transfer rates which is developed in the impingement region. To provide data for designers of industrial equipment, a large multi-nozzle rig was used to measure average heat transfer coefficients under arrays of both slot nozzles and circular holes. The aim of the present paper is to develop the relationship between heat transfer coefficient, air mass flow and fan power which is required for the optimum design of nozzle systems. The optimum free area was obtained directly from experimental results. The theory of optimum free area was analysed and good agreement was found between theoretical and experimental results. It was also possible to optimise the variables, to achieve minimum capital and running costs.

  7. Performance analysis of innovative collector fields for solar-electric plants, using air as heat transfer medium

    SciTech Connect

    De Marchi Desenzani, P.; Gaia, M.

    1984-08-01

    The production of electricity by thermodynamic conversion of the heat supplied by flat plate collectors has been tried many times. The use of air as heat transfer medium could allow a dramatic simplification of the collector field and a relevant reduction of thermal inertia. The paper discusses the characteristics of a system based on air collectors and ORC engine. Both multilayer inflated plastic sheet collectors and vacuum tubes collectors are proposed as suitable solutions. The field fan power consumption is optimized jointly with the power cycle evaporator design. Both the envisaged solutions are investigated on the point of view of overall cost/performance ratio.

  8. IMPACT OF HEATING AND AIR CONDITIONING SYSTEM OPERATION AND LEAKAGE ON VENTILATION AND INTERCOMPARTMENT TRANSPORT: STUDIES IN UNOCCUPIED AND OCCUPIED TENNESSEE VALLEY HOMES

    EPA Science Inventory

    Forced-air heating and air conditioning (HAC) systems caused an average and maximum increase in air infiltration rates of 1.8- and 4.3-fold, respectively, during brief whole-house studies of tracer gas decay In 39 occupied houses. An average Increase in air infiltration rate of 0...

  9. Investigation of the motion and heat transfer of water droplets in the swirling air flow in weightlessness

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Fedyaev, V. L.; Morenko, I. V.; Snigerev, B. A.; Galimov, E. R.

    2016-06-01

    The motion and heat transfer of water droplets with a swirling air flow is investigated. Flow was considered in a cylindrical chamber in the absence of gravity. We created a mathematical model of this problem and made appropriate calculations. The features of the air flow at a tangential feeding it into the chamber, and the motion of the drops, their thermal behaviour are founded. We presented the recommendations for the rational choice of parameters of the apparatus and rational operation regime.

  10. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  11. The Regional Impacts of Cooking and Heating Emissions on Ambient Air Quality and Disease Burden in China.

    PubMed

    Archer-Nicholls, Scott; Carter, Ellison; Kumar, Rajesh; Xiao, Qingyang; Liu, Yang; Frostad, Joseph; Forouzanfar, Mohammad H; Cohen, Aaron; Brauer, Michael; Baumgartner, Jill; Wiedinmyer, Christine

    2016-09-01

    Exposure to air pollution is a major risk factor globally and particularly in Asia. A large portion of air pollutants result from residential combustion of solid biomass and coal fuel for cooking and heating. This study presents a regional modeling sensitivity analysis to estimate the impact of residential emissions from cooking and heating activities on the burden of disease at a provincial level in China. Model surface PM2.5 fields are shown to compare well when evaluated against surface air quality measurements. Scenarios run without residential sector and residential heating emissions are used in conjunction with the Global Burden of Disease 2013 framework to calculate the proportion of deaths and disability adjusted life years attributable to PM2.5 exposure from residential emissions. Overall, we estimate that 341 000 (306 000-370 000; 95% confidence interval) premature deaths in China are attributable to residential combustion emissions, approximately a third of the deaths attributable to all ambient PM2.5 pollution, with 159 000 (142 000-172 000) and 182 000 (163 000-197 000) premature deaths from heating and cooking emissions, respectively. Our findings emphasize the need to mitigate emissions from both residential heating and cooking sources to reduce the health impacts of ambient air pollution in China. PMID:27479733

  12. Analysis of auto-ignition of heated hydrogen-air mixtures with different detailed reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Stanković, I.; Merci, B.

    2011-06-01

    Auto-ignition processes of hydrogen, diluted with nitrogen, in heated air are numerically investigated by means of an unsteady laminar flamelet approach in mixture fraction space. The focus is on the auto-ignition delay time and the most reactive mixture fraction as obtained with five chemical mechanisms. Two strongly different levels of dilution, corresponding to experiments in the open literature, are considered. This concerns low-temperature chemistry at atmospheric pressure. The temperature of the air stream is much higher than the temperature of the fuel stream in the cases under study. We extensively investigate the effect of the co-flow temperature, the conditional scalar dissipation rate and the resolution in mixture fraction space for one case. With respect to the conditional scalar dissipation rate, we discuss the Amplitude Mapping Closure (AMC) model with imposed maximum scalar dissipation rate at mixture fraction equal to 0.5, as well as a constant conditional scalar dissipation rate value over the entire mixture fraction value range. We also illustrate that an auto-ignition criterion, based on a temperature rise, leads to similar results as an auto-ignition criterion, based on OH mass fraction, provided that the hydrogen is not too strongly diluted.

  13. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  14. Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R. F.; Rowe, John P.; Freeman, J. W.

    1959-01-01

    The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.

  15. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

  16. Secondary effects of urban heat island mitigation measures on air quality

    NASA Astrophysics Data System (ADS)

    Fallmann, Joachim; Forkel, Renate; Emeis, Stefan

    2016-01-01

    This study presents numerical simulations analysing the effect of urban heat island (UHI) mitigation measures on the chemical composition of the urban atmosphere. The mesoscale chemical transport model WRF-Chem is used to investigate the impact of urban greening and highly reflective surfaces on the concentrations of primary (CO, NO) as well as secondary pollutants (O3) inside the urban canopy. In order to account for the sub-grid scale heterogeneity of urban areas, a multi-layer urban canopy model is coupled to WRF-Chem. Using this canopy model at its full extend requires the introduction of several urban land use classes in WRF-Chem. The urban area of Stuttgart serves as a test bed for the modelling of a case scenario of the 2003 European Heat Wave. The selected mitigation measures are able to reduce the urban temperature by about 1 K and the mean ozone concentration by 5-8%. Model results however document also negative secondary effects on urban air quality, which are closely related to a decrease of vertical mixing in the urban boundary layer. An increase of primary pollutants NO and CO by 5-25% can be observed. In addition, highly reflective surfaces can increase peak ozone concentration by up to 12% due to a high intensity of reflected shortwave radiation accelerating photochemical reactions.

  17. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    SciTech Connect

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  18. Analysis on explosive welded Al/Mg plates in as-received state and after heat treatment using the in situ high-energy X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Chen, Pengwan; Nie, Zhihua; Lan, Yazhu

    2015-06-01

    The synchrotron-based HEXRD method has a much better angular resolution in the reciprocal space than neutron or traditional laboratory XRD, which creates an opportunity that could precisely study the crystal structure and parameter from the XRD pattern. Due to the high penetration depth of high-energy X-ray, the micro-strain and phase distribution could be determined precisely. In this work, the explosive welded 2024 Al/AZ31 Mg plates, both in as-received state and after heat treatment, were investigated by HEXRD method. The XRD patterns were taken shot-by-shot, going from Al to Mg with step width of 0.1mm. The micro-strain, phase distribution and grain size of each step were estimated and analyzed within the general mechanism of explosive welding. It is interesting to find that the intense texture observed in both cladded and base materials disappeared at the welded interface. Residual stress, which was obviously detected at the interface for the as-received sample, was eliminated after heat treatment. For the as-received sample, the strain of Mg along the path from interface to free surface was different for different Azimuth angle and different crystal orientation; but such variations didn't occur for Al.

  19. A correlation to predict the heat flux on the air-side of a vapor chamber with overturn-U flattened tubes

    NASA Astrophysics Data System (ADS)

    Srimuang, Wasan; Limkaisang, Viroj

    2016-08-01

    The heat transfer characteristics of a conventional vapor chamber (CVC) and a loop vapor chamber (LVC) are compared. The vapor chambers consisted of a stainless steel box with different covers. The results indicated that the heat flux and convective heat transfer coefficient of the air-side of LVC is higher than CVC. An empirical correlation was developed to predict the convective heat transfer coefficient of the air-side of the LVC.

  20. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  1. Design Optimization and the Limits of Steady-State Heating Efficiency for Conventional Single-Speed Air-Source Heat Pumps

    SciTech Connect

    Rice, C.K.

    2001-06-06

    The ORNL Heat Pump Model and an optimizing program were used to explore the limits of steady-state heating efficiency for conventional air-source heat pumps. The method used allows for the simultaneous optimization of ten selected design variables, taking proper account of their interactions, while constraining other parameters to chosen limits or fixed values. Designs were optimized for a fixed heating capacity, but the results may be scaled to other capacities. Substantial performance improvement is predicted compared to today's state of the art heat pump. With increased component efficiencies that are expected in the near future and with modest increases in heat exchanger area, a 28% increase in heating efficiency is predicted; for long-term improvements with considerably larger heat exchangers, a 56% increase is possible. The improved efficiencies are accompanied by substantial reductions in the requirements for compressor and motor size. The predicted performance improvements are attributed not only to improved components and larger heat exchangers but also to the use of an optimizing design procedure. Deviations from the optimized design may be necessary to make use of available component sizes and to maintain good cooling-mode performance while improving the heating efficiency. Sensitivity plots (i.e., COP as a function of one or more design parameters) were developed to explore design flexibilities and to evaluate their consequences. The performance of the optimized designs was compared to that of modified ideal cycles to assess the factors that limit further improvement. It is hoped that the design methods developed will be useful to designers in the heat pump industry.

  2. Urban heat island influence on refraction index fluctuations from the data of spatially separated GPS-GLONASS receivers

    NASA Astrophysics Data System (ADS)

    Khutorov, Vladislav; Khutorova, Olga; Teptin, German

    2015-11-01

    In this paper we show results of troposphere fluctuation analysis and its influence on GPS phase observations. The main object of investigation is a time and spatial correlations between GPS observables induced by the atmospheric mesoscale process in troposphere. We can estimate space structure of atmospheric parameters, using the data from network based on Global Navigation Satellite System receivers. We used mathematical means of turbulence theory and wavelet analysis. The results show a significant effect on GPS signals caused by the mesoscale troposphere process and urban conditions.

  3. Technique for determination of accurate heat capacities of volatile, powdered, or air-sensitive samples using relaxation calorimetry

    NASA Astrophysics Data System (ADS)

    Marriott, Robert A.; Stancescu, Maria; Kennedy, Catherine A.; White, Mary Anne

    2006-09-01

    We introduce a four-step technique for the accurate determination of the heat capacity of volatile or air-sensitive samples using relaxation calorimetry. The samples are encapsulated in a hermetically sealed differential scanning calorimetry pan, in which there is an internal layer of Apiezon N grease to assist thermal relaxation. Using the Quantum Design physical property measurement system to investigate benzoic acid and copper standards, we find that this method can lead to heat capacity determinations accurate to ±2% over the temperature range of 1-300K, even for very small samples (e.g., <10mg and contributing ca. 20% to the total heat capacity).

  4. On-sun first operation of a 150 kWth pilot solar receiver using dense particle suspension as heat transfer fluid

    NASA Astrophysics Data System (ADS)

    López, Inmaculada Pérez; Benoit, Hadrien; Gauthier, Daniel; Sans, Jean-Louis; Guillot, Emmanuel; Cavaillé, Roland; Mazza, German; Flamant, Gilles

    2016-05-01

    A 50-150 kWth pilot solar rig comprising the key equipments of a real plant and that uses silicon carbide Dense Particles Suspension as the heat transfer fluid has been tested at the 1 MW solar furnace at Odeillo-Font Romeu, France. The tests were carried out under large ranges of operating parameters and controlling the mass flow rate when higher temperature was required and when changes on DNI (direct normal irradiation) occurred. This paper presents experimental results on particle outlet temperature, dynamic response of the system to solid mass flow rate and solar power variations, and receiver thermal efficiency (η). Mean and maximum particles' temperature up to 585°C and 720°C respectively was reached. The receiver thermal efficiency was measured in the range 50-90%.

  5. Benchmark performance analysis of an ECM-modulated air-to-air heat pump with a reciprocating compressor

    NASA Astrophysics Data System (ADS)

    Rice, C. K.

    1992-01-01

    A benchmark analysis was conducted to predict the maximum steady- state performance potential of a near-term modulating residential- size heat pump. Continuously variable-speed, permanent-magnet electronically commutated motors (ECMs) were assumed to modulate the compressor and the indoor and outdoor fans in conjunction with existing modulating reciprocating compressor technology. A modulating heat pump design tool was used to optimize this ECM benchmark heat pump, using speed ranges and total heat exchanger sizes per-unit-capacity equivalent to that used by the highest SEER-rated variable-speed unit presently on the market (SEER = 16.4). Parametric steady-state performance optimization was conducted at a nominal design cooling ambient of 95 F (35 C) and at three off-design ambients of 82 F (27.8 C) cooling and 47 F and 17 F (8.3 C and minus 8.3 C) heating. In comparison to the reference commercially available residential unit, the analysis for the ECM benchmark predicted steady-state heating COPs about 35 percent higher and a cooling EER almost 25 percent higher at the nominal design cooling condition. The cooling EER at 82 F (27.8 C) was 13 percent higher than that of the reference unit when a comparable sensible heat ratio of 0.71 was maintained, while an EER gain of 24 percent at the 82 F (27.8 C) rating point was predicted when the sensible heat ratio was relaxed to 0.83.

  6. An experimental and numerical investigation of air side heat transfer and flow characteristics on finned plate configuration

    NASA Astrophysics Data System (ADS)

    Gu, Lihao; Ling, Xiang; Peng, Hao

    2012-10-01

    In this paper, a new type of finned plate heat exchanger (FPHE) is presented to recover the waste heat from exhaust flue gases. A finned plate configuration causes low pressure drop and it is especially appropriate for heat transfer at the flue gas side. Meanwhile, this paper presents a detailed experimental and numerical study of convection heat transfer and pressure drop of the new structure. Three-dimensional numerical simulation results using the CFD code FLUENT6.3 were compared with experimental data to select the best model. The heat transfer and pressure drop with different geometry pattern was then studied numerically using the selected model. And the velocity field and temperature distribution of air flow in the finned plate channel are presented with different geometry patterns. These results provide insight into improved designs of FPHEs.

  7. The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I

    SciTech Connect

    Shen, Bo

    2011-01-01

    This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

  8. Articulated, Performance-Based Instruction Objectives Guide for Air Conditioning, Refrigeration, and Heating. Volume II (Second Year).

    ERIC Educational Resources Information Center

    Henderson, William Edward, Jr., Ed.

    This articulation guide contains 17 units of instruction for the second year of a two-year vocational program designed to prepare the high school graduate to install, maintain, and repair various types of residential and commercial heating, air conditioning, and refrigeration equipment. The units are designed to help the student to expand and…

  9. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  10. Heating, Air Conditioning; Glossary of Key Words. Vocational Reading Power Project, Title III, E.S.E.A.

    ERIC Educational Resources Information Center

    Hotchkiss, Marvin; Schafer, Thomas

    The glossary is one of twenty in various subject areas of vocational education designed to assist the student in vocabulary mastery for particular vocational education courses. They are part of the Vocational Reading Power Project, Title III, E.S.E.A. This glossary is for a course in heating and air conditioning. It is divided into two parts: one…

  11. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 1: Transmittal documents; Executive summary; Project summary

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described.

  12. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study.

    PubMed

    Vuković, Gordana; Aničić Urošević, Mira; Pergal, Miodrag; Janković, Milan; Goryainova, Zoya; Tomašević, Milica; Popović, Aleksandar

    2015-12-01

    In areas with moderate to continental climates, emissions from residential heating system lead to the winter air pollution peaks. The EU legislation requires only the monitoring of airborne concentrations of particulate matter, As, Cd, Hg, Ni, and B[a]P. Transition metals and rare earth elements (REEs) have also arisen questions about their detrimental health effects. In that sense, this study examined the level of extensive set of air pollutants: 16 polycyclic aromatic hydrocarbons (PAHs), and 41 major elements, trace elements, and REEs using Sphagnum girgensohnii moss bag technique. During the winter of 2013/2014, the moss bags were exposed across Belgrade (Serbia) to study the influence of residential heating system to the overall air quality. The study was set as an extension to our previous survey during the summer, i.e., non-heating season. Markedly higher concentrations of all PAHs, Sb, Cu, V, Ni, and Zn were observed in the exposed moss in comparison to the initial values. The patterns of the moss REE concentrations normalized to North American Shale Composite and Post-Archean Australian Shales were identical across the study area but enhanced by anthropogenic activities. The results clearly demonstrate the seasonal variations in the moss enrichment of the air pollutants. Moreover, the results point out a need for monitoring of air quality during the whole year, and also of various pollutants, not only those regulated by the EU Directive. PMID:26213134

  13. Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report

    SciTech Connect

    Not Available

    1994-09-01

    Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

  14. Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires

    NASA Astrophysics Data System (ADS)

    Rusticucci, Matilde; Kyselý, Jan; Almeira, Gustavo; Lhotka, Ondřej

    2016-05-01

    Heat waves are one of the main concerns related to the impacts of climate change, because their frequency and severity are projected to increase in a future climate. The objectives of this work are to study the long-term variability of heat waves over Argentina and to estimate recurrence probability of the most severe 2008 heat wave in Buenos Aires. We used three definitions of heat waves that were based on (1) daily maximum temperature above the 90th percentile (MaxTHW), (2) daily minimum temperature above the 90th percentile (MinTHW) and (3) both maximum and minimum temperatures above the corresponding 90th percentiles (EHW). The minimum length of a heat wave was 3 days, and the analysis was performed over the October-March period. Decadal values in Buenos Aires experienced clear increases in heat waves according to MinTHW and EHW, with the highest frequency for both in the 2001-2010 decade, but at other stations, combinations of different trends and decadal variability resulted in some cases in a decrease of extreme heat waves. In the north-western part of the country, a strong positive change in the last decade was found, mainly due to the increment in the persistence of MinTHW but also accompanied by increases in MaxTHW. In general, other stations show a clear positive trend in MinTHW and decadal variability in MaxTHW, with the largest EHW cases in the last decade. We also estimated recurrence probability of the longest and most severe heat wave in Buenos Aires (over 1909-2010, according to intensity measured by the cumulative excess of maximum daily temperature above the 90th percentile) that occurred from 3 to 14 November 2008, by means of simulations with a stochastic first-order autoregressive model. The recurrence probability of such long and severe heat wave is small in the present climate but it is likely to increase substantially in the near future even under a moderate warming trend.

  15. Solar thermal energy receiver

    NASA Technical Reports Server (NTRS)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  16. Enhancement and performance evaluation for heat transfer of air cooling zone for reduction system of sponge titanium

    NASA Astrophysics Data System (ADS)

    Wang, Wenhao; Wu, Fuzhong; Jin, Huixin

    2016-05-01

    Since the magnesiothermic reduction employed in current sponge titanium is a highly exothermic reaction, the TiCl4 feed rate is carried out slowly to keep a suitable temperature in reduction reactor, which accounts for an extremely low level of productivity and energy efficiency. In order to shorten the production cycle and improve the energy efficiency, an enhancing scheme is proposed to enhance the heat transfer of air cooling zone for reduction system. The air cooling zone and enhancing scheme are firstly introduced. And then, the heat transfer characteristics of cooling zone are obtained by theoretical analysis and experimental date without enhancing scheme. Finally, the enhancement is analyzed and evaluated. The results show that the fitting results of heat transfer coefficients can be used to evaluate the heat transfer enhancement of cooling zone. Heat sources temperatures have a limited decreasing, heat transfer rate increases obviously with the enhanced cooling, and the TiCl4 feed rate can be increased significantly by 9.61 %. And the measured and calculated results are good enough to meet the design requirements.

  17. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  18. Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers

    NASA Astrophysics Data System (ADS)

    Murray, James J.; Guha, Abhijit; Bond, Alan

    High pressure heat exchangers used in closed cycle rocket engines and air-breathing propulsion pre-coolers are required to work at very high heat transfer rates. They work with high fluid flow rates and are fabricated from tubes or channels which have small hydraulic diameters. This increases the compactness of the unit and therefore reduces its mass. Novel designs of the manifold are required so that the pressure drop remains within acceptable limit. This paper reports on the progress of research work to investigate the manufacture of such heat exchangers and characterise their performance. The investigations centre on a heat exchanger constructed from tube of 0.4 mm diameter with potential heat transfer coefficients of up to 5000 W/m 2/K. The heat exchanger is subjected to pre-cooler operating conditions of 1000 K simulated air external flow and supercritical cryogenic internal flow. It seeks to validate extrapolations of aerodynamic and heat transfer design data under extreme temperatures and high mass flow rates. Due to the small size of the heat exchanger and the thin walls of the tubes, novel manufacturing methods are required. Work is being done to investigate compatibility of various high temperature brazing materials with thin walled tubes and special manufacturing automation processes to allow cost effective constant-quality fabrication of production units. It is concluded that heat exchangers capable of power transfer rates of up to 1 megawatt per kilogram mass are capable of being manufactured and used operationally. This is a technology where production to satisfy future aerospace demands for single-stage-to-orbit and hypersonic propulsion can be envisaged.

  19. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns

    SciTech Connect

    Tang, L.H.; Zeng, M.; Wang, Q.W.

    2009-07-15

    Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

  20. Using Sea Level to Probe Linkages Between Heat Transport Convergence, Heat Storage Rate, and Air-Sea Heat Exchange in the Subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Thompson, L.; Kelly, K. A.; Booth, J. F.

    2014-12-01

    Annual mean surface heat fluxes from the ocean to the atmosphere in midlatitudes are maximum in the Gulf Stream and that surface flux is driven by geostrophic heat transport convergence. Evidence is mounting that on interannual times scales, the surface flux of heat in the Gulf Stream region is controlled by the amount of heat that is stored in the region and that the heat storage rate is in turn controlled by geostrophic heat transport convergence. In addition, variations in meridional heat transport have been linked to the meridional overturning circulation just to the south of the Gulf Stream at the RAPID/MOCHA array at 26.5N, suggesting that changes in the meridional overturning circulation might be linked to surface heat exchange in the Gulf Stream. The twenty-year record of satellite sea level (SSH) along with high quality surface heat fluxes allow a detailed evaluation of the interaction between stored oceanic heat in this region and surface heat fluxes on interannual times scales. Using gridded sea level from AVISO as a proxy for upper ocean heat content along with surface turbulent heat flux from OAFlux, we evaluate the lagged correlations between interannual surface turbulent heat fluxes and SSH variability. Previous work has shown that where advection is small lagged correlations between SST (sea surface temperature) and surface turbulent heat flux are generally antisymmetric about zero lag with negative correlations when SST leads and positive correlations when SST lags. This indicates that surface heat fluxes force SST anomalies that at later times are damped by surface fluxes. In contrast, the lagged correlation between SSH anomalies and the turbulent flux of heat in the Gulf Stream region show a distinctly asymmetric relationship about zero-lag. The correlations are negative when SSH leads but are not significant when SSH lags indicating the dominant role in heat transport convergence in driving heat content changes, and that the heat content

  1. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. PMID:23590456

  2. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  3. Hybrid intelligent control scheme for air heating system using fuzzy logic and genetic algorithm

    SciTech Connect

    Thyagarajan, T.; Shanmugam, J.; Ponnavaikko, M.; Panda, R.C.

    2000-01-01

    Fuzzy logic provides a means for converting a linguistic control strategy, based on expert knowledge, into an automatic control strategy. Its performance depends on membership function and rule sets. In the traditional Fuzzy Logic Control (FLC) approach, the optimal membership is formed by trial-and-error method. In this paper, Genetic Algorithm (GA) is applied to generate the optimal membership function of FLC. The membership function thus obtained is utilized in the design of the Hybrid Intelligent Control (HIC) scheme. The investigation is carried out for an Air Heat System (AHS), an important component of drying process. The knowledge of the optimum PID controller designed, is used to develop the traditional FLC scheme. The computational difficulties in finding optimal membership function of traditional FLC is alleviated using GA In the design of HIC scheme. The qualitative performance indices are evaluated for the three control strategies, namely, PID, FLC and HIC. The comparison reveals that the HIC scheme designed based on the hybridization of FLC with GA performs better. Moreover, GA is found to be an effective tool for designing the FLC, eliminating the human interface required to generate the membership functions.

  4. Simultaneous heat and mass transfer inside a vertical tube in evaporating a heated falling alcohols liquid film into a stream of dry air

    NASA Astrophysics Data System (ADS)

    Senhaji, S.; Feddaoui, M.; Mediouni, T.; Mir, A.

    2009-03-01

    A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.

  5. A detailed radiation heat transfer study of a dish-Stirling receiver: The impact of cavity wall radiation properties and cavity shapes

    NASA Astrophysics Data System (ADS)

    Garrido, Jorge; Wang, Wujun; Nilsson, Martin; Laumert, Björn

    2016-05-01

    A detailed 3-D radiation analysis of a dish-Stirling cavity receiver is carried out to estimate the cavity steady-state temperatures in order to assess the receiver integrity, lifetime and efficiency performance. For this purpose, a parabolic dish was modeled with 5.2 m focal length, 8.85 m aperture diameter and 2 mrad surface error. Three generic cavity shapes (cylindrical, diamond-shaped and reverse-conical) with three different emissivities (0.2, 0.4 and 0.7) are studied. Worst-case scenario heat generations (total absorbed radiation), maximum steady-state temperatures and energy balances of the cavities are calculated to evaluate the receiver performance. The results show that reverse-conical cavities can significantly reduce cavity wall peak temperatures (by 40-120 K), improve the temperature evenness and decrease the radiation losses by 4-5%. Regarding radiation properties, low reflectivities present lower steady-state temperatures even for low/moderate direct solar fluxes. Due to the lower temperatures, lower total thermal losses are also expected.

  6. Crustal and upper-mantle structure beneath ice-covered regions in Antarctica from S-wave receiver functions and implications for heat flow

    NASA Astrophysics Data System (ADS)

    Ramirez, C.; Nyblade, A.; Hansen, S. E.; Wiens, D. A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Shore, P.; Wilson, T.

    2016-03-01

    S-wave receiver functions (SRFs) are used to investigate crustal and upper-mantle structure beneath several ice-covered areas of Antarctica. Moho S-to-P (Sp) arrivals are observed at ˜6-8 s in SRF stacks for stations in the Gamburtsev Mountains (GAM) and Vostok Highlands (VHIG), ˜5-6 s for stations in the Transantarctic Mountains (TAM) and the Wilkes Basin (WILK), and ˜3-4 s for stations in the West Antarctic Rift System (WARS) and the Marie Byrd Land Dome (MBLD). A grid search is used to model the Moho Sp conversion time with Rayleigh wave phase velocities from 18 to 30 s period to estimate crustal thickness and mean crustal shear wave velocity. The Moho depths obtained are between 43 and 58 km for GAM, 36 and 47 km for VHIG, 39 and 46 km for WILK, 39 and 45 km for TAM, 19 and 29 km for WARS and 20 and 35 km for MBLD. SRF stacks for GAM, VHIG, WILK and TAM show little evidence of Sp arrivals coming from upper-mantle depths. SRF stacks for WARS and MBLD show Sp energy arriving from upper-mantle depths but arrival amplitudes do not rise above bootstrapped uncertainty bounds. The age and thickness of the crust is used as a heat flow proxy through comparison with other similar terrains where heat flow has been measured. Crustal structure in GAM, VHIG and WILK is similar to Precambrian terrains in other continents where heat flow ranges from ˜41 to 58 mW m-2, suggesting that heat flow across those areas of East Antarctica is not elevated. For the WARS, we use the Cretaceous Newfoundland-Iberia rifted margins and the Mesozoic-Tertiary North Sea rift as tectonic analogues. The low-to-moderate heat flow reported for the Newfoundland-Iberia margins (40-65 mW m-2) and North Sea rift (60-85 mW m-2) suggest that heat flow across the WARS also may not be elevated. However, the possibility of high heat flow associated with localized Cenozoic extension or Cenozoic-recent magmatic activity in some parts of the WARS cannot be ruled out.

  7. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    SciTech Connect

    Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

    2008-02-01

    The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

  8. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2001-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple three-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady-state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discrete locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  9. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2000-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple 3-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discreet locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  10. Some critical remarks about the radiative heat transfer in air frame cavities according to EN ISO 10077-2

    NASA Astrophysics Data System (ADS)

    Cuccurullo, G.; Giordano, L.

    2015-11-01

    Thermal performances of windows frames are established, in Europe, by the international standard UNI EN ISO 10077-2:2012. The standard introduces an equivalent thermal conductivity for air frame cavities thus simplifying the original combined heat transfer problem to a merely two-dimensional conductive one. The equivalence is referred to a rectangular cavity and is not able to fully recover the same radiative heat flux involved in the original problem. In view of that, the paper is focused on the radiative heat transfer taking place in the air cavities and aims to check if different equivalence criteria could lead to improved results. Thus, numerical tests involving an accurate description of radiative heat transfer in air cavities are compared to the simplified fully-conductive one provided by the standard. Results show that different criteria lead to quite different results. The optimal criterion turns out to depend on both geometrical and surface radiative parameters. It is also shown that, in any case, a proper radiative resistance but not the one suggested by the ISO 10077 should be adopted.

  11. Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes.

    PubMed

    Haque, M Amdadul; Aldred, Peter; Chen, Jie; Barrow, Colin J; Adhikari, Benu

    2013-11-15

    The extent and nature of denaturation of whey protein isolate (WPI) in convective air drying environments was measured and analysed using single droplet drying. A custom-built, single droplet drying instrument was used for this purpose. Single droplets having 5±0.1μl volume (initial droplet diameter 1.5±0.1mm) containing 10% (w/v) WPI were dried at air temperatures of 45, 65 and 80°C for 600s at constant air velocity of 0.5m/s. The extent and nature of denaturation of WPI in isothermal heat treatment processes was measured at 65 and 80°C for 600s and compared with those obtained from convective air drying. The extent of denaturation of WPI in a high hydrostatic pressure environment (600MPa for 600s) was also determined. The results showed that at the end of 600s of convective drying at 65°C the denaturation of WPI was 68.3%, while it was only 10.8% during isothermal heat treatment at the same medium temperature. When the medium temperature was maintained at 80°C, the denaturation loss of WPI was 90.0% and 68.7% during isothermal heat treatment and convective drying, respectively. The bovine serum albumin (BSA) fraction of WPI was found to be more stable in the convective drying conditions than β-lactoglobulin and α-lactalbumin, especially at longer drying times. The extent of denaturation of WPI in convective air drying (65 and 80°C) and isotheral heat treatment (80°C) for 600s was found to be higher than its denaturation in a high hydrostatic pressure environment at ambient temperature (600MPa for 600s). PMID:23790837

  12. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  13. Central solar receivers - Applications for utilities and industry

    NASA Astrophysics Data System (ADS)

    Curto, P. A.; Stern, G.

    1982-07-01

    Two fundamentally different types of central solar receiver systems - molten salt and forced air systems - have been developed to the point of commercial demonstration. In the molten salt system, molten salt is heated to about 600 C and used to produce steam for power generation. The overall peak efficiency (sunlight to electricity) is approximately 23.2% using the molten salt concept, compared to 8-12% with photovoltaics. In the forced-air system, ambient air is inducted into speed-controlled gas turbines, forced through a metal tube receiver, heated to 600-816 C, and then expanded into several different turbines. The exhaust air can be utilized in various ways, depending on the downstream process conditions. A table of the combined cycle system performances for the forced-air system shows that the overall cycle efficiencies range from 35.6 to 37.4% (from heat to electricity), while when coupled with an annual average (sunlight-to-heat) collection efficiency of 54% in the air receiver, overall annual system efficiency ranges from 19.2 to 20.2%, with peak efficiency as high as 23.2%. Detailed diagrams of each of the two systems are given. The new generation of these plants have broad applications in new and retrofit utility and industrial facilities. The projected costs are competitive, even for first-generation plants.

  14. Correlation formulas for the frost thickness and heat transfer coefficient on a cylinder in humid air cross flow

    SciTech Connect

    Sengupta, S.; Sherif, S.A.; Wong, K.V.

    1995-12-31

    This paper reports on results of an experimental investigation where the emphasis was placed on obtaining empirical correlations for the frost thickness-time history and the heat transfer coefficient-time history for a cylinder in humid air cross flow. The facility employed for the investigation consisted of a low velocity wind tunnel comprised of a rectangular test section, a transition section and a honeycomb placed at the tunnel entrance. An external refrigerator was used to cool an antifreeze solution having a mixture of 90% methanol and 10% ethylene glycol. Measured parameters included, among other things, the heat transfer coefficient as well as the frost thickness.

  15. Effect of increasing urban albedo on meteorology and air quality of Montreal (Canada) - Episodic simulation of heat wave in 2005

    NASA Astrophysics Data System (ADS)

    Touchaei, Ali G.; Akbari, Hashem; Tessum, Christopher W.

    2016-05-01

    Increasing albedo is an effective strategy to mitigate urban air temperature in different climates. Using reflective urban surfaces decreases the air temperature, which potentially reduces the rate of generation of smog. However, for implementing the albedo enhancement, complicated interactions between air, moisture, aerosols, and other gaseous contaminant in the atmosphere should be considered. We used WRF-CHEM to investigate the effect of increasing albedo in Montreal, Canada, during a heat wave period (July 10th through July 12th, 2005) on air quality and urban climate. The reflectivity of roofs, walls, and roads are increased from 0.2 to 0.65, 0.6, and 0.45, respectively. Air temperature at 2-m elevation is decreased during all hours in the simulation period and the maximum reduction is about 1 °C on each day (Tmax is reduced by about 0.7 °C) The concentration of two regulated pollutants -ozone (O3) and fine particulate matters (PM2.5) - is calculated at a height of 5-m above the ground. The maximum decrease in 8-h averaged ozone concentration is about 3% (∼0.2 ppbv). 24-h averaged PM2.5 concentration decreases by 1.8 μg/m3. This relatively small change in concentration of pollutants is related to the decrease in planetary boundary layer height caused by increasing the albedo. Additionally, the combined effect of decreased solar heat gain by building surfaces and decreased air temperature reduces the energy consumption of HVAC systems by 2% (∼0.1 W/m2), which exacerbates the positive effect of the albedo enhancement on the air quality.

  16. Effect of increasing urban albedo on meteorology and air quality of Montreal (Canada) - Episodic simulation of heat wave in 2005

    NASA Astrophysics Data System (ADS)

    Touchaei, Ali G.; Akbari, Hashem; Tessum, Christopher W.

    2016-05-01

    Increasing albedo is an effective strategy to mitigate urban air temperature in different climates. Using reflective urban surfaces decreases the air temperature, which potentially reduces the rate of generation of smog. However, for implementing the albedo enhancement, complicated interactions between air, moisture, aerosols, and other gaseous contaminant in the atmosphere should be considered. We used WRF-CHEM to investigate the effect of increasing albedo in Montreal, Canada, during a heat wave period (July 10th through July 12th, 2005) on air quality and urban climate. The reflectivity of roofs, walls, and roads are increased from 0.2 to 0.65, 0.6, and 0.45, respectively. Air temperature at 2-m elevation is decreased during all hours in the simulation period and the maximum reduction is about 1 °C on each day (Tmax is reduced by about 0.7 °C) The concentration of two regulated pollutants -ozone (O3) and fine particulate matters (PM2.5) - is calculated at a height of 5-m above the ground. The maximum decrease in 8-h averaged ozone concentration is about 3% (∼0.2 ppbv). 24-h averaged PM2.5 concentration decreases by 1.8 μg/m3. This relatively small change in concentration of pollutants is related to the decrease in planetary boundary layer height caused by increasing the albedo. Additionally, the combined effect of decreased solar heat gain by building surfaces and decreased air temperature reduces the energy consumption of HVAC systems by 2% (∼0.1 W/m2), which exacerbates the positive effect of the albedo enhancement on the air quality.

  17. A fixed tilt solar collector employing reversible vee-through reflectors and evaluated tube receivers for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    The Vee-Trough/Evacuated Tube Collector (VTETC) was analyzed rigorously and various mathematical models were developed to calculate the optical performance of the vee-trough concentrators, and the quasi-steady state thermal performance of the evacuated tube receivers. Tests were run to verify the mathematical analyses. Back-silvered glass mirror, Alzak, Aluminized Teflon, and Kinglux (electropolished aluminum reflectors) were tested. Additional tests were run at temperatures ranging from 80 to 190 C (176-374 F). For the glass mirror reflectors, peak efficiencies, based on aperture area and operating temperatures of 125 C (257 F), were over 40%. Efficiencies of about 40% were observed at temperatures of 150 C (302 F) and 30% at 175 C (347 F). Test data for several days, predicted daily useful heats, and efficiency values are presented for a full year. These theoretical values were then compared with actual data points for the same temperature range.

  18. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  19. Exploiting zone trapping to avoid liberation of air bubbles in flow-based analytical procedures requiring heating.

    PubMed

    Vida, Ana C F; Zagatto, Elias A G

    2014-01-01

    In flow-based analytical procedures requiring heating, liberation of air bubbles is avoided by trapping a sample selected portion into a heated hermetic environment. The flow-through cuvette is maintained into a temperature-controlled aluminium block, thus acting as the trapping element and allowing real-time monitoring. The feasibility of the innovation was demonstrated in the spectrophotometric catalytic determination of vanadium in mineral waters. Air bubbles were not released even for temperatures as high as 95°C. The proposed system handles about 25 samples per hour, requires only 3 mg p-anisidine per determination and yields precise results (r.s.d. = 2.1%), in agreement with ICP-MS. Detection limit was evaluated (3.3 σ criterion) as 0.1 μg L(-1) V. PMID:25109646

  20. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    SciTech Connect

    1997-08-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs.