Sample records for air hepa filtration

  1. Invasive aspergillosis in severely neutropenic patients over 18 years: impact of intranasal amphotericin B and HEPA filtration.

    PubMed

    Withington, S; Chambers, S T; Beard, M E; Inder, A; Allen, J R; Ikram, R B; Schousboe, M I; Heaton, D C; Spearing, R I; Hart, D N

    1998-01-01

    The impact of intranasal amphotericin B and high-efficiency particulate air (HEPA) filtration on the incidence of invasive aspergillosis was reviewed in patients from 1977 to 1994 undergoing intensive chemotherapy. Overall, the incidence of proven invasive aspergillosis was reduced from 24.4% (1977-1984) to 7.1% (1985-1991) (P < 0.001) following the introduction of intranasal prophylaxis, but when probable cases of aspergillosis were included and lymphoma cases excluded, there was no change in incidence. Following the introduction of HEPA filtration, patient exposure to aspergillus spores as measured by air sampling was markedly reduced and there were no new cases of invasive aspergillosis. HEPA filtration proved effective in reducing invasive aspergillosis and has allowed increasingly aggressive treatment regimens to be introduced.

  2. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparison of MERV 16 and HEPA filters for cab filtration of underground mining equipment.

    PubMed

    Cecala, A B; Organiscak, J A; Noll, J D; Zimmer, J A

    2016-08-01

    Significant strides have been made in optimizing the design of filtration and pressurization systems used on the enclosed cabs of mobile mining equipment to reduce respirable dust and provide the best air quality to the equipment operators. Considering all of the advances made in this area, one aspect that still needed to be evaluated was a comparison of the efficiencies of the different filters used in these systems. As high-efficiency particulate arrestance (HEPA) filters provide the highest filtering efficiency, the general assumption would be that they would also provide the greatest level of protection to workers. Researchers for the U.S. National Institute for Occupational Safety and Health (NIOSH) speculated, based upon a previous laboratory study, that filters with minimum efficiency reporting value, or MERV rating, of 16 may be a more appropriate choice than HEPA filters in most cases for the mining industry. A study was therefore performed comparing HEPA and MERV 16 filters on two kinds of underground limestone mining equipment, a roof bolter and a face drill, to evaluate this theory. Testing showed that, at the 95-percent confidence level, there was no statistical difference between the efficiencies of the two types of filters on the two kinds of mining equipment. As the MERV 16 filters were less restrictive, provided greater airflow and cab pressurization, cost less and required less-frequent replacement than the HEPA filters, the MERV 16 filters were concluded to be the optimal choice for both the roof bolter and the face drill in this comparative-analysis case study. Another key finding of this study is the substantial improvement in the effectiveness of filtration and pressurization systems when using a final filter design.

  4. Comparison of MERV 16 and HEPA filters for cab filtration of underground mining equipment

    PubMed Central

    Cecala, A.B.; Organiscak, J.A.; Noll, J.D.; Zimmer, J.A.

    2016-01-01

    Significant strides have been made in optimizing the design of filtration and pressurization systems used on the enclosed cabs of mobile mining equipment to reduce respirable dust and provide the best air quality to the equipment operators. Considering all of the advances made in this area, one aspect that still needed to be evaluated was a comparison of the efficiencies of the different filters used in these systems. As high-efficiency particulate arrestance (HEPA) filters provide the highest filtering efficiency, the general assumption would be that they would also provide the greatest level of protection to workers. Researchers for the U.S. National Institute for Occupational Safety and Health (NIOSH) speculated, based upon a previous laboratory study, that filters with minimum efficiency reporting value, or MERV rating, of 16 may be a more appropriate choice than HEPA filters in most cases for the mining industry. A study was therefore performed comparing HEPA and MERV 16 filters on two kinds of underground limestone mining equipment, a roof bolter and a face drill, to evaluate this theory. Testing showed that, at the 95-percent confidence level, there was no statistical difference between the efficiencies of the two types of filters on the two kinds of mining equipment. As the MERV 16 filters were less restrictive, provided greater airflow and cab pressurization, cost less and required less-frequent replacement than the HEPA filters, the MERV 16 filters were concluded to be the optimal choice for both the roof bolter and the face drill in this comparative-analysis case study. Another key finding of this study is the substantial improvement in the effectiveness of filtration and pressurization systems when using a final filter design. PMID:27524838

  5. HEPA air filter (image)

    MedlinePlus

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  6. Further evaluation of alternative air-filtration systems for reducing the transmission of Porcine reproductive and respiratory syndrome virus by aerosol

    PubMed Central

    Deen, John; Cano, Jean Paul; Batista, Laura; Pijoan, Carlos

    2006-01-01

    Abstract The purpose of this study was to compare 4 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, 2×-low-cost filtration, bag filtration, and use of a filter tested against particles derived from dioctylphthalate (DOP). The HEPA-filtration system used a prefilter screen, a bag filter (Eurovent [EU] 8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (prefilter), 2 fiberglass furnace filters, and 2 electrostatic furnace filters. Bag filtration involved the use of a filter rated EU8 and a minimum efficiency reporting value (MERV) of 14. The 95%-DOP, 0.3-μm-filtration system involved a pleat-in-pleat V-bank disposable filter with a 95% efficiency rating for particles 0.3 μm or greater in diameter and ratings of EU9 and MERV 15. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct containing the treatments. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 0 of the 10 HEPA-filtration replicates, 2 of the 10 bag-filtration replicates, 4 of the 10 low-cost-filtration replicates, 0 of the 10 95%-DOP, 0.3-μm-filtration replicates, and all 10 of the control replicates. Using a similar approach, we further evaluated the HEPA- and 95%-DOP, 0.3-μm-filtration systems. Infection was not observed in any of the 76 HEPA-filtration replicates but was observed in 2 of the 76 95%-DOP, 0.3-μm replicates and 42 of the 50 control replicates. Although the difference between the 95%-DOP, 0.3-μm and control replicates was significant (P < 0.0005), so was the level of failure of the 95%-DOP, 0.3-μm system (P = 0.02). In conclusion, under the conditions of this study

  7. Effectiveness of in-room air filtration and dilution ventilation for tuberculosis infection control.

    PubMed

    Miller-Leiden, S; Lobascio, C; Nazaroff, W W; Macher, J M

    1996-09-01

    Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important, influencing room air flow patterns and the spatial distribution of concentrations. Air filters containing efficient, but non-high efficiency particulate air (HEPA) filter media were as effective as air filters containing HEPA filter media.

  8. Effectiveness of In-Room Air Filtration and Dilution Ventilation for Tuberculosis Infection Control.

    PubMed

    Miller-Leiden, S; Lohascio, C; Nazaroff, W W; Macher, J M

    1996-09-01

    Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important, influencing room air flow patterns and the spatial distribution of concentrations. Air filters containing efficient, but non-high efficiency particulate air (HEPA) filter media were as effective as air filters containing HEPA filter media.

  9. A Randomized Cross-over Air Filtration Intervention Trial for Reducing Cardiovascular Health Risks in Residents of Public Housing near a Highway

    PubMed Central

    Padró-Martínez, Luz T.; Owusu, Emmanuel; Reisner, Ellen; Zamore, Wig; Simon, Matthew C.; Mwamburi, Mkaya; Brown, Carrie A.; Chung, Mei; Brugge, Doug; Durant, John L.

    2015-01-01

    Exposure to traffic-generated ultrafine particles (UFP; particles <100 nm) is likely a risk factor for cardiovascular disease. We conducted a trial of high-efficiency particulate arrestance (HEPA) filtration in public housing near a highway. Twenty residents in 19 apartments living <200 m from the highway participated in a randomized, double-blind crossover trial. A HEPA filter unit and a particle counter (measuring particle number concentration (PNC), a proxy for UFP) were installed in living rooms. Participants were exposed to filtered air for 21 days and unfiltered air for 21 days. Blood samples were collected and blood pressure measured at days 0, 21 and 42 after a 12-hour fasting period. Plasma was analyzed for high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), tumor necrosis factor alpha-receptor II (TNF-RII) and fibrinogen. PNC reductions ranging from 21% to 68% were recorded in 15 of the apartments. We observed no significant differences in blood pressure or three of the four biomarkers (hsCRP, fibrinogen, and TNF-RII) measured in participants after 21-day exposure to HEPA-filtered air compared to measurements after 21-day exposure to sham-filtered air. In contrast, IL-6 concentrations were significantly higher following HEPA filtration (0.668 pg/mL; CI = 0.465–0.959) compared to sham filtration. Likewise, PNC adjusted for time activity were associated with increasing IL-6 in 14- and 21-day moving averages, and PNC was associated with decreasing blood pressure in Lags 0, 1 and 2, and in a 3-day moving average. These negative associations were unexpected and could be due to a combination of factors including exposure misclassification, unsuccessful randomization (i.e., IL-6 and use of anti-inflammatory medicines), or uncontrolled confounding. Studies with greater reduction in UFP levels and larger sample sizes are needed. There also needs to be more complete assessment of resident time activity and of outdoor vs. indoor source contributions

  10. A Randomized Cross-over Air Filtration Intervention Trial for Reducing Cardiovascular Health Risks in Residents of Public Housing near a Highway.

    PubMed

    Padró-Martínez, Luz T; Owusu, Emmanuel; Reisner, Ellen; Zamore, Wig; Simon, Matthew C; Mwamburi, Mkaya; Brown, Carrie A; Chung, Mei; Brugge, Doug; Durant, John L

    2015-07-10

    Exposure to traffic-generated ultrafine particles (UFP; particles <100 nm) is likely a risk factor for cardiovascular disease. We conducted a trial of high-efficiency particulate arrestance (HEPA) filtration in public housing near a highway. Twenty residents in 19 apartments living <200 m from the highway participated in a randomized, double-blind crossover trial. A HEPA filter unit and a particle counter (measuring particle number concentration (PNC), a proxy for UFP) were installed in living rooms. Participants were exposed to filtered air for 21 days and unfiltered air for 21 days. Blood samples were collected and blood pressure measured at days 0, 21 and 42 after a 12-hour fasting period. Plasma was analyzed for high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), tumor necrosis factor alpha-receptor II (TNF-RII) and fibrinogen. PNC reductions ranging from 21% to 68% were recorded in 15 of the apartments. We observed no significant differences in blood pressure or three of the four biomarkers (hsCRP, fibrinogen, and TNF-RII) measured in participants after 21-day exposure to HEPA-filtered air compared to measurements after 21-day exposure to sham-filtered air. In contrast, IL-6 concentrations were significantly higher following HEPA filtration (0.668 pg/mL; CI = 0.465-0.959) compared to sham filtration. Likewise, PNC adjusted for time activity were associated with increasing IL-6 in 14- and 21-day moving averages, and PNC was associated with decreasing blood pressure in Lags 0, 1 and 2, and in a 3-day moving average. These negative associations were unexpected and could be due to a combination of factors including exposure misclassification, unsuccessful randomization (i.e., IL-6 and use of anti-inflammatory medicines), or uncontrolled confounding. Studies with greater reduction in UFP levels and larger sample sizes are needed. There also needs to be more complete assessment of resident time activity and of outdoor vs. indoor source contributions

  11. A pilot study to investigate the effects of combined dehumidification and HEPA filtration on dew point and airborne mold spore counts in day care centers.

    PubMed

    Bernstein, J A; Levin, L; Crandall, M S; Perez, A; Lanphear, B

    2005-12-01

    Meteorological factors such as relative humidity directly correlate with airborne fungal levels outdoors and indoors. While dehumidification alone is effective at reducing moisture necessary for mold growth, it is inadequate as a single intervention as it does not remove viable and non-viable fungal spores that are potentially allergenic. The purpose of this pilot study was to investigate whether dehumidification in combination with high-efficiency particulate arrestance (HEPA) filtration is effective at reducing airborne mold spore levels in day care centers. Two day care centers within a 2-mile radius of each other were selected. Day care center A was 2 years old with eight rooms while day care center B was 15 years old with six rooms. A high efficiency Santa Fe dehumidification unit equipped with a HEPA filter was installed in half the rooms (intervention) of each day care facility. Electronic HOBO data loggers continuously measured outdoor and indoor room dew point and temperature every 2 h throughout the study. Dew point and airborne fungal spore measurements from selected rooms with controlled air conditions were analyzed by comparing baseline measurements to those obtained at subsequent time periods over 1 year. Regression models accounted for correlations between measurements in the same room over time. Intervention resulted in a lowered average dew point from baseline by 8.8 degrees C compared with a decrease of 7.1 degrees C in non-intervention rooms across all time periods in both facilities (P<0.001). Fungal analyses demonstrated lower baseline (P=0.06) and follow-up means in intervention rooms (P<0.05), however the change from baseline to end of follow-up differed between intervention and non-intervention rooms in the two facilities. Log transformation was applied to approximate normality of fungal measurements. Dehumidification with HEPA filtration was effective at controlling indoor dew point in both facilities and at reducing airborne culturable

  12. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to massmore » flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program

  13. Applied patent RFID systems for building reacting HEPA air ventilation system in hospital operation rooms.

    PubMed

    Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng

    2012-12-01

    RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented.

  14. Air filtration systems and restrictive access conditions improve indoor air quality in clinical units: Penicillium as a general indicator of hospital indoor fungal levels.

    PubMed

    Araujo, Ricardo; Cabral, João Paulo; Rodrigues, Acácio Gonçalves

    2008-03-01

    High-efficiency particulate air (HEPA) filters do not completely prevent nosocomial fungal infections. The first aim of this study was to evaluate the impact of different filters and access conditions upon airborne fungi in hospital facilities. Additionally, this study identified fungal indicators of indoor air concentrations. Eighteen rooms and wards equipped with different air filter systems, and access conditions were sampled weekly, during 16 weeks. Tap water samples were simultaneously collected. The overall mean concentration of atmospheric fungi for all wards was 100 colony forming units/m(3). We found a direct proportionality between the levels of the different fungi in the studied atmospheres. Wards with HEPA filters at positive air flow yielded lower fungal levels. Also, the existence of an anteroom and the use of protective clothes were associated to the lowest fungal levels. Principal component analysis showed that penicillia afforded the best separation between wards' air fungal levels. Fungal strains were rarely recovered from tap water samples. In addition to air filtration systems, some access conditions to hospital units, like presence of anteroom and use of protective clothes, may prevent high fungal air load. Penicillia can be used as a general indicator of indoor air fungal levels at Hospital S. João.

  15. Air filtration media from electrospun waste high-impact polystyrene fiber membrane

    NASA Astrophysics Data System (ADS)

    Zulfi, Akmal; Miftahul Munir, Muhammad; Hapidin, Dian Ahmad; Rajak, Abdul; Edikresnha, Dhewa; Iskandar, Ferry; Khairurrijal, Khairurrijal

    2018-03-01

    Nanofiber membranes were synthesized from waste high-impact polystyrene (HIPS) using electrospinning method and then applied as air filtration media. The waste HIPS precursor solution with the concentration of 20 wt.% was prepared by dissolving waste HIPS into the mixture of d-limonene and DMF solvents. Beaded or fine nanofibers could be achieved by adjusting the ratio of solvents mixture (d-limonene and DMF). Using the ratios of solvents (d-limonene: DMF) of 3:1, 1:1, and 1:3, it was obtained beaded HIPS nanofibers with the average diameter of 272 nm, beaded HIPS nanofibers with the average diameter of 937, and fine HIPS nanofibers with the average diameter of 621 nm, respectively. From the FTIR spectral analysis, it was found that the FTIR peaks of the HIPS nanofiber membranes are the same as those of the cleaned waste HIPS and there are no FTIR peaks of DMF and d-limonene solvents. These findings implied that the electrospinning process allows the recycling of waste HIPS into HIPS nanofibers without any trapped solvent phases or apparent degradation of the original material. From the contact angle measurement, it was confirmed that the HIPS nanofiber membranes are hydrophobic and the presence of the beads in the HIPS nanofiber membranes varies their contact angles. From the air-filtration test, it was shown that the fiber morphology (beaded or fine nanofibers) considerably affects the filtration performance of the membranes. The presence of beads increased the distance between the fibers so that the pressure drop decreased. Moreover, the basis weight of the membrane greatly affected the filtration efficiency. The HIPS nanofiber membrane with the basis weight of 12.22 g m‑2 had the efficiency greater than 99.999%, which was equivalent to that of the HEPA filter.

  16. Hepa filter dissolution process

    DOEpatents

    Brewer, Ken N.; Murphy, James A.

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  17. HEPA Help

    ERIC Educational Resources Information Center

    Rathey, Allen

    2006-01-01

    Poor indoor air quality in school facilities can detract from the health and productivity of students, teachers and other employees. Asthma--often triggered or aggravated by dust--is the No. 1 cause of chronic absenteeism in schools. Using vacuum cleaners equipped with high-efficiency particulate air (HEPA) filters to clean education institutions…

  18. HEPA filter dissolution process

    DOEpatents

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  19. Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis.

    PubMed

    Korves, T M; Piceno, Y M; Tom, L M; Desantis, T Z; Jones, B W; Andersen, G L; Hwang, G M

    2013-02-01

    Air travel can rapidly transport infectious diseases globally. To facilitate the design of biosensors for infectious organisms in commercial aircraft, we characterized bacterial diversity in aircraft air. Samples from 61 aircraft high-efficiency particulate air (HEPA) filters were analyzed with a custom microarray of 16S rRNA gene sequences (PhyloChip), representing bacterial lineages. A total of 606 subfamilies from 41 phyla were detected. The most abundant bacterial subfamilies included bacteria associated with humans, especially skin, gastrointestinal and respiratory tracts, and with water and soil habitats. Operational taxonomic units that contain important human pathogens as well as their close, more benign relatives were detected. When compared to 43 samples of urban outdoor air, aircraft samples differed in composition, with higher relative abundance of Firmicutes and Gammaproteobacteria lineages in aircraft samples, and higher relative abundance of Actinobacteria and Betaproteobacteria lineages in outdoor air samples. In addition, aircraft and outdoor air samples differed in the incidence of taxa containing human pathogens. Overall, these results demonstrate that HEPA filter samples can be used to deeply characterize bacterial diversity in aircraft air and suggest that the presence of close relatives of certain pathogens must be taken into account in probe design for aircraft biosensors. A biosensor that could be deployed in commercial aircraft would be required to function at an extremely low false alarm rate, making an understanding of microbial background important. This study reveals a diverse bacterial background present on aircraft, including bacteria closely related to pathogens of public health concern. Furthermore, this aircraft background is different from outdoor air, suggesting different probes may be needed to detect airborne contaminants to achieve minimal false alarm rates. This study also indicates that aircraft HEPA filters could be used

  20. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  1. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  2. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  3. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  4. Analysis of an MCU HEPA filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Fondeur, F. F.

    A series of direct analyses on three portions (inlet, center, and outlet) of the High Efficiency Particulate Air (HEPA) filter material from the Modular Caustic-Side Solvent Extraction Unit (MCU) have been performed; this includes x-ray methods such as X-Ray Diffraction (XRD), Contained Scanning Electron Microscopy (CSEM) and X-Ray Fluorescence (XRF), as well as Fourier Transform InfraRed spectroscopy (FTIR). Additionally, two leaching studies (one with water, one with dichloromethane) have been performed on three portions (inlet, center, and outlet) of the HEPA filter material, with the leachates being analyzed by Inductively-coupled plasma emission spectroscopy (ICPES), Semi-Volatile Organic Analysis (SVOA) and gammascan.more » From the results of the analyses, SRNL feels that cesium-depleted solvent is being introduced into the HEPA filter. The most likely avenue for this is mechanical aerosolization of solvent, where the aerosol is then carried along an airstream into the HEPA filter. Once introduced into the HEPA filter media, the solvent wicks throughout the material, and migrates towards the outlet end. Once on the outlet end, continual drying could cause particulate flakes to exit the filter and travel farther down the airstream path.« less

  5. Improving IAQ Via Air Filtration.

    ERIC Educational Resources Information Center

    Monk, Brian

    1999-01-01

    Provides tips on using air filtration to control indoor air quality in educational facilities, including dedicated spaces with unique air quality conditions such as in libraries, museums and archival storage areas, kitchens and dining areas, and laboratories. The control of particulate contaminants, gaseous contaminants, and moisture buildup are…

  6. Combined use of an electrostatic precipitator and a high-efficiency particulate air filter in building ventilation systems: Effects on cardiorespiratory health indicators in healthy adults.

    PubMed

    Day, D B; Xiang, J; Mo, J; Clyde, M A; Weschler, C J; Li, F; Gong, J; Chung, M; Zhang, Y; Zhang, J

    2018-05-01

    High-efficiency particulate air (HEPA) filtration in combination with an electrostatic precipitator (ESP) can be a cost-effective approach to reducing indoor particulate exposure, but ESPs produce ozone. The health effect of combined ESP-HEPA filtration has not been examined. We conducted an intervention study in 89 volunteers. At baseline, the air-handling units of offices and residences for all subjects were comprised of coarse, ESP, and HEPA filtration. During the 5-week long intervention, the subjects were split into 2 groups, 1 with just the ESP removed and the other with both the ESP and HEPA removed. Each subject was measured for cardiopulmonary risk indicators once at baseline, twice during the intervention, and once 2 weeks after baseline conditions were restored. Measured indoor and outdoor PM 2.5 and ozone concentrations, coupled with time-activity data, were used to calculate exposures. Removal of HEPA filters increased 24-hour mean PM 2.5 exposure by 38 (95% CI: 31, 45) μg/m 3 . Removal of ESPs decreased 24-hour mean ozone exposure by 2.2 (2.0, 2.5) ppb. No biomarkers were significantly associated with HEPA filter removal. In contrast, ESP removal was associated with a -16.1% (-21.5%, -10.4%) change in plasma-soluble P-selectin and a -3.0% (-5.1%, -0.8%) change in systolic blood pressure, suggesting reduced cardiovascular risks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Air Cleaning Technologies

    PubMed Central

    2005-01-01

    Executive Summary Objective This health technology policy assessment will answer the following questions: When should in-room air cleaners be used? How effective are in-room air cleaners? Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone? What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan? The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario’s capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry’s Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Clinical Need Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering

  8. Achieving 'excellent' indoor air quality in commercial offices equipped with air-handling unit--respirable suspended particulate.

    PubMed

    Lam, K S; Chan, F S; Fung, W Y; Lui, B S S; Lau, L W L

    2006-04-01

    A study was carried out to investigate the feasibility of achieving ultra low respirable suspended particulates (RSP) in commercial offices without major modification of existing ventilation systems by enhancing the particulates removal efficiency of existing central ventilation systems. Four types of filters which include pre-filters, cartridge filters, bag filters and high efficiency particulates air (HEPA) filters were tested in a commercial building in Causeway Bay. The results show that an RSP objective of <20 microg/m3 could be met by removing RSP from both the return air and outdoor air supply simultaneously. This level of performance is classed as 'excellent' by the Hong Kong Government, Environmental Protection Department. Filters with efficiency that exceed 80% placed both in the return air and outdoor air were sufficient to meet the objective. It is not necessary to install HEPA filters to achieve the 'excellent' class. The outdoor air filter has great influence on the steady state indoor RSP concentration while the effective cleaning rate is governed by the return air filter. Higher efficiency filters increased the static drop but the volume flow of the air fan was not affected significantly. The additional cost incurred was <5% of the existing operation cost. This paper reports a field study of RSP control for an indoor office environment. The results are directly applicable to building service engineering in the design of ventilation systems using air-handling units. Field observations indicated that indoor RSP in an office environment could be suppressed below 20 microg/m3 within 1 h by the simultaneous filtration of outdoor air and return air. Outdoor air filtration has a great influence on the steady state indoor concentration and return air filtration governs the cleaning rate. It is believed that the results of this study could be extended to the cleaning of other indoor pollutants such as volatile organic compounds.

  9. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  10. Allergy-Proof Your House

    MedlinePlus

    ... small-particle or high-efficiency particulate air (HEPA) filter. Shampoo the carpet frequently. Curtains and blinds. Use ... dander they shed. Air filtration. Choose an air filter that has a small-particle or HEPA filter. ...

  11. Evaluating the Long-Term Health and Economic Impacts of Central Residential Air Filtration for Reducing Premature Mortality Associated with Indoor Fine Particulate Matter (PM2.5) of Outdoor Origin.

    PubMed

    Zhao, Dan; Azimi, Parham; Stephens, Brent

    2015-07-21

    Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002-2.5% and increase life expectancy by 0.02-1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location.

  12. Tools for Schools: Filtration for Improved Air Quality. Technical Services Bulletin.

    ERIC Educational Resources Information Center

    2001

    This product bulletin addresses air pollution control in educational facilities to enhance educational performance, provides air quality recommendations for schools, and examines the filtration needs of various school areas. The types of air particles typically present are highlighted, and the use of proper filtration to control gases and vapors…

  13. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, M.; Bergman, W.

    2017-08-25

    The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.

  14. Fluorometric Method for Determining the Efficiency of Spun-Glass Air Filtration Media

    PubMed Central

    Sullivan, James F.; Songer, Joseph R.; Mathis, Raymond G.

    1967-01-01

    The procedures and equipment needed to measure filtration efficiency by means of fluorescent aerosols are described. The filtration efficiency of individual lots of spun-glass air filtration medium or of entire air filtration systems employing such media was determined. Data relating to the comparative evaluation of spun-glass filter media by means of the fluorometric method described, as well as by conventional biological procedures, are presented. PMID:6031433

  15. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS...

  16. Evaluating the Long-Term Health and Economic Impacts of Central Residential Air Filtration for Reducing Premature Mortality Associated with Indoor Fine Particulate Matter (PM2.5) of Outdoor Origin

    PubMed Central

    Zhao, Dan; Azimi, Parham; Stephens, Brent

    2015-01-01

    Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002–2.5% and increase life expectancy by 0.02–1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location. PMID:26197328

  17. Survey of HEPA filter experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.

    1982-07-01

    A survey of high efficiency particulate air (HEPA) filter applications and experience at Department of Energy (DOE) sites was conducted to provide an overview of the reasons and magnitude of HEPA filter changeouts and failures. Results indicated that approximately 58% of the filters surveyed were changed out in the three year study period, and some 18% of all filters were changed out more than once. Most changeouts (63%) were due to the existence of a high pressure drop across the filter, indicative of filter plugging. Other reasons for changeout included leak-test failure (15%), preventive maintenance service life limit (13%), suspectedmore » damage (5%) and radiation buildup (4%). Filter failures occurred with approximately 12% of all installed filters. Of these failures, most (64%) occurred for unknown or unreported reasons. Handling or installation damage accounted for an additional 19% of reported failures. Media ruptures, filter-frame failures and seal failures each accounted for approximately 5 to 6% of the reported failures.« less

  18. Recirculating Air Filtration Significantly Reduces Exposure to Airborne Nanoparticles

    PubMed Central

    Pui, David Y.H.; Qi, Chaolong; Stanley, Nick; Oberdörster, Günter; Maynard, Andrew

    2008-01-01

    Background Airborne nanoparticles from vehicle emissions have been associated with adverse effects in people with pulmonary and cardiovascular disease, and toxicologic studies have shown that nanoparticles can be more hazardous than their larger-scale counterparts. Recirculating air filtration in automobiles and houses may provide a low-cost solution to reducing exposures in many cases, thus reducing possible health risks. Objectives We investigated the effectiveness of recirculating air filtration on reducing exposure to incidental and intentionally produced airborne nanoparticles under two scenarios while driving in traffic, and while generating nanomaterials using gas-phase synthesis. Methods We tested the recirculating air filtration in two commercial vehicles when driving in traffic, as well as in a nonventilation room with a nanoparticle generator, simulating a nanomaterial production facility. We also measured the time-resolved aerosol size distribution during the in-car recirculation to investigate how recirculating air filtration affects particles of different sizes. We developed a recirculation model to describe the aerosol concentration change during recirculation. Results The use of inexpensive, low-efficiency filters in recirculation systems is shown to reduce nanoparticle concentrations to below levels found in a typical office within 3 min while driving through heavy traffic, and within 20 min in a simulated nanomaterial production facility. Conclusions Development and application of this technology could lead to significant reductions in airborne nanoparticle exposure, reducing possible risks to health and providing solutions for generating nanomaterials safely. PMID:18629306

  19. Evaluation of systems for reducing the transmission of Porcine reproductive and respiratory syndrome virus by aerosol

    PubMed Central

    2006-01-01

    Abstract The purpose of this study was to compare 3 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, low-cost filtration, and ultraviolet light (UV) irradiation. The HEPA-filtration system involved a pre-filter screen, a bag filter (EU8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (pre-filter), a fiberglass furnace filter, and an electrostatic furnace filter. For UV irradiation, a lamp emitted UVC radiation at 253.7 nm. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 9 of the 10 control replicates, 8 of the 10 UVC-irradiation replicates, 4 of the 10 low-cost-filtration replicates, and 0 of the 10 HEPA-filtration replicates. When compared with no intervention, HEPA filtration and low-cost filtration significantly reduced PRRSV transmission (P < 0.0005 and = 0.0286, respectively), whereas UV irradiation had no effect (P = 0.5). However, low-cost filtration and UV irradiation were significantly less effective (P = 0.043 and P < 0.0005, respectively) than HEPA filtration. In conclusion, under the conditions of this study, HEPA filtration was significantly more effective at reducing aerosol transmission of PRRSV than the other methods evaluated. PMID:16548329

  20. Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study.

    PubMed

    Chuang, Hsiao-Chi; Ho, Kin-Fai; Lin, Lian-Yu; Chang, Ta-Yuan; Hong, Gui-Bing; Ma, Chi-Ming; Liu, I-Jung; Chuang, Kai-Jen

    2017-09-01

    The association of short-term air pollution filtration with cardiovascular health has been documented. However, the effect of long-term indoor air conditioner filtration on the association between air pollution and cardiovascular health is still unclear. We recruited 200 homemakers from Taipei and randomly assigned 100 of them to air filtration or control intervention; six home visits were conducted per year from 2013 to 2014. The participants under air filtration intervention during 2013 were reassigned to control intervention in 2014. The air pollution measurements consisted of particulate matter less than or equal to 2.5μm in diameter (PM 2.5 ) and total volatile organic compounds (VOCs); blood pressure was monitored for each participant during each visit. The following morning, blood samples were collected after air pollution monitoring. The blood samples were used to analyze biological markers, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and fibrinogen. Household information, including cleaning, cooking, and air conditioning, was collected by a questionnaire. Mixed-effects models were used to investigate the associations among air pollution measurements, blood pressure and biological markers. The results showed that increased levels of PM 2.5 and total VOCs were associated with increased hs-CRP, 8-OHdG and blood pressure. The health variables were higher among participants in the control intervention phase than among those in the air filtration intervention phase. We concluded that air pollution exposure was associated with systemic inflammation, oxidative stress and elevated blood pressure. The long-term filtration of air pollution with an air conditioner filter was associated with cardiovascular health of adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mitigation of radon and thoron decay products by filtration.

    PubMed

    Wang, Jin; Meisenberg, Oliver; Chen, Yongheng; Karg, Erwin; Tschiersch, Jochen

    2011-09-01

    Inhalation of indoor radon ((222)Rn) and thoron ((220)Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h(-1) and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (-70% for attached radon decay products and -80% for attached thoron decay products at a filtration rate of 0.5 h(-1) with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+300%) while that of unattached radon decay products rose only slightly though at a much higher level (+17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the thoron

  2. Efficacy of photocatalytic HEPA filter on microorganism removal.

    PubMed

    Chuaybamroong, P; Chotigawin, R; Supothina, S; Sribenjalux, P; Larpkiattaworn, S; Wu, C-Y

    2010-06-01

    This study assessed the application of photocatalytic oxidation (PCO) to the high efficiency particulate air (HEPA) filter for disinfection of airborne microorganisms. Experiments were conducted at two TiO2 loadings (1870 +/- 169 and 3140 +/- 67 mg/m(2)) on the HEPA filter irradiated with UV-A at the intensity of 0.85 +/- 0.18 or 4.85 +/- 0.09 mW/cm(2) under two relative humidity conditions (45 +/- 5% and 75 +/- 5%). Inactivation and penetration of four microorganisms were tested, including Aspergillus niger, Penicillium citrinum, Staphylococcus epidermidis, and Bacillus subtilis. It was found that microorganisms retained on a photocatalytic filter were inactivated around 60-80% and even 100% for S. epidermidis when the PCO reactions occurred. Lower penetration was also found from the photocatalytic filter for all airborne microorganisms. High humidity decreased photocatalysis efficacy. Increasing TiO2 loading or irradiance intensity did not substantially affect its disinfection capability. The high efficiency particulate air filter is used widely to remove particulates and microorganisms from the air stream. However, the filter may become a source of microbes if those retained microorganisms proliferate and re-entrain back into the filtered air. This study demonstrates that such a problem can be handled effectively by using photocatalytic reactions to inactivate those confined microorganisms. A 60-100% microbe reduction can be achieved for a wide variety of microorganisms to provide better indoor air quality for hospitals, offices, and domestic applications.

  3. The use of an air filtration system in podiatry clinics.

    PubMed

    McLarnon, Nichola; Burrow, Gordon; Maclaren, William; Aidoo, Kofi; Hepher, Mike

    2003-06-01

    A small-scale study was conducted to ascertain the efficiency and effectiveness of an air filtration system for use in podiatry/chiropody clinics (Electromedia Model 35F (A), Clean Air Ltd, Scotland, UK). Three clinics were identified, enabling comparison of data between podiatry clinics in the West of Scotland. The sampling was conducted using a portable Surface Air Sampler (Cherwell Laboratories, Bicester, UK). Samples were taken on two days at three different times before and after installation of the filtration units. The global results of the study indicate the filter has a statistically significant effect on microbial counts, with an average percentage decrease of 65%. This study is the first time, to the authors' knowledge, such a system has been tested within podiatric practice.

  4. Effectiveness and cost of reducing particle-related mortality with particle filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, W. J.; Chan, W. R.

    This study evaluates the mortality-related benefits and costs of improvements in particle filtration in U.S. homes and commercial buildings based on models with empirical inputs. The models account for time spent in various environments as well as activity levels and associated breathing rates. The scenarios evaluated include improvements in filter efficiencies in both forced-air heating and cooling systems of homes and heating, ventilating, and air conditioning systems of workplaces as well as use of portable air cleaners in homes. The predicted reductions in mortality range from approximately 0.25 to 2.4 per 10 000 population. The largest reductions in mortality were frommore » interventions with continuously operating portable air cleaners in homes because, given our scenarios, these portable air cleaners with HEPA filters most reduced particle exposures. For some interventions, predicted annual mortality-related economic benefits exceed $1000 per person. Economic benefits always exceed costs with benefit-to-cost ratios ranging from approximately 3.9 to 133. In conclusion, restricting interventions to homes of the elderly further increases the mortality reductions per unit population and the benefit-to-cost ratios.« less

  5. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  6. Forced-air warming design: evaluation of intake filtration, internal microbial buildup, and airborne-contamination emissions.

    PubMed

    Reed, Mike; Kimberger, Oliver; McGovern, Paul D; Albrecht, Mark C

    2013-08-01

    Forced-air warming devices are effective for the prevention of surgical hypothermia. However, these devices intake nonsterile floor-level air, and it is unknown whether they have adequate filtration measures to prevent the internal buildup or emission of microbial contaminants. We rated the intake filtration efficiency of a popular current-generation forced-air warming device (Bair Hugger model 750, Arizant Healthcare) using a monodisperse sodium chloride aerosol in the laboratory. We further sampled 23 forced-air warming devices (same model) in daily hospital use for internal microbial buildup and airborne-contamination emissions via swabbing and particle counting. Laboratory testing found the intake filter to be 63.8% efficient. Swabbing detected microorganisms within 100% of the forced-air warming blowers sampled, with isolates of coagulase-negative staphylococci, mold, and micrococci identified. Particle counting showed 96% of forced-air warming blowers to be emitting significant levels of internally generated airborne contaminants out of the hose end. These findings highlight the need for upgraded intake filtration, preferably high-efficiency particulate air filtration (99.97% efficient), on current-generation forced-air warming devices to reduce contamination buildup and emission risks.

  7. Cardiorespiratory responses of air filtration: A randomized crossover intervention trial in seniors living in Beijing: Beijing Indoor Air Purifier StudY, BIAPSY.

    PubMed

    Shao, Danqing; Du, Yipeng; Liu, Shuo; Brunekreef, Bert; Meliefste, Kees; Zhao, Qian; Chen, Jie; Song, Xiaoming; Wang, Meng; Wang, Juan; Xu, Hongbing; Wu, Rongshan; Wang, Tong; Feng, Baihuan; Lung, Candice Shih-Chun; Wang, Xian; He, Bei; Huang, Wei

    2017-12-15

    In this Beijing Indoor Air Purifier StudY (BIAPSY), we conducted a randomized crossover intervention trial in a panel of 35 non-smoking senior participants with free-living, with and without chronic obstructive pulmonary disease (COPD). Portable air filtration units were randomly allocated to active-(filter in) for 2weeks and sham-mode (filter out) for 2weeks in the households. We examined the differences in indoor air pollutant concentrations in 20 study homes and a suite of cardio-respiratory biomarker levels in study participants between filtration modes, with and without adjustment for potential confounders. Following active filtration, we observed significant reductions from 60±45 to 24±15μg/m 3 in ten-day averages of indoor PM 2.5 and reductions from 3.87±1.65 to 1.81±1.19m -1 .10 -5 in ten-day averages of indoor BC, compared to sham-mode filtration. The major components of indoor PM 2.5 , including water soluble organics, NO 3 - , SO 4 2- , Zn 2+ , Pb 2+ and K + , were also reduced significantly by 42% to 63%. However, following active filtration, we only observed significant reductions on systemic inflammation measured as of IL-8 at 58.59% (95% CI: -76.31, -27.64) in the total group of participants and 70.04% (95% CI: -83.05, -47.05) in the subset of COPD patients, with adjustments. We were not able to detect improvements on lung function, blood pressure, and heart rate variability, following short-term intervention of two-week active air filtration. In conclusion, our results showed that indoor air filtration produced clear improvement on indoor air quality, but no demonstrable changes in the cardio-respiratory outcomes of study interest observed in the seniors living with real-world air pollution exposures. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Impact of different supply air and recirculating air filtration systems on stable climate, animal health, and performance of fattening pigs in a commercial pig farm

    PubMed Central

    Wenke, Cindy; Pospiech, Janina; Reutter, Tobias; Altmann, Bettina; Truyen, Uwe

    2018-01-01

    Biosecurity is defined as the implementation of measures that reduce the risk of disease agents being introduced and/or spread. For pig production, several of these measures are routinely implemented (e.g. cleaning, disinfection, segregation). However, air as a potential vector of pathogens has long been disregarded. Filters for incoming and recirculating air were installed into an already existing ventilation plant at a fattening piggery (3,840 pigs at maximum) in Saxony, Germany. Over a period of three consecutive fattening periods, we evaluated various parameters including air quality indices, environmental and operating parameters, and pig performance. Animal data regarding respiratory diseases, presence of antibodies against influenza A viruses, PRRSV, and Actinobacillus pleuropneumoniae and lung health score at slaughter were recorded, additionally. There were no significant differences (p = 0.824) in total bacterial counts between barns with and without air filtration. Recirculating air filtration resulted in the lowest total dust concentration (0.12 mg/m3) and lung health was best in animals from the barn equipped with recirculating air filtration modules. However, there was no difference in animal performance. Antibodies against all above mentioned pathogens were detected but mostly animals were already antibody-positive at re-stocking. We demonstrated that supply air filtration as well as recirculating air filtration technique can easily be implemented in an already existing ventilation system and that recirculating air filtration resulted in enhanced lung health compared to supply air-filtered and non-filtered barns. A more prominent effect might have been obtained in a breeding facility because of the longer life span of sows and a higher biosecurity level with air filtration as an add-on measure. PMID:29558482

  10. Contextualizing Hepatocyte Functionality of Cryopreserved HepaRG Cell Cultures

    PubMed Central

    Jackson, Jonathan P.; Li, Linhou; Chamberlain, Erica D.; Wang, Hongbing

    2016-01-01

    Over the last decade HepaRG cells have emerged as a promising alternative to primary human hepatocytes (PHH) and have been featured in over 300 research publications. Most of these reports employed freshly differentiated HepaRG cells that require time-consuming culture (∼28 days) for full differentiation. Recently, a cryopreserved, predifferentiated format of HepaRG cells (termed here “cryo-HepaRG”) has emerged as a new model that improves global availability and experimental flexibility; however, it is largely unknown whether HepaRG cells in this format fully retain their hepatic characteristics. Therefore, we systematically investigated the hepatocyte functionality of cryo-HepaRG cultures in context with the range of interindividual variation observed with PHH in both sandwich-culture and suspension formats. These evaluations uncovered a novel adaptation period for the cryo-HepaRG format and demonstrated the impact of extracellular matrix on cryo-HepaRG functionality. Pharmacologically important drug-metabolizing alleles were genotyped in HepaRG cells and poor metabolizer alleles for CYP2D6, CYP2C9, and CYP3A5 were identified and consistent with higher frequency alleles found in individuals of Caucasian decent. We observed liver enzyme inducibility with aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor activators comparable to that of sandwich-cultured PHH. Finally, we show for the first time that cryo-HepaRG supports proper CAR cytosolic sequestration and translocation to hepatocyte nuclei in response to phenobarbital treatment. Taken together, these data reveal important considerations for the use of this cell model and demonstrate that cryo-HepaRG are suitable for metabolism and toxicology screening. PMID:27338863

  11. Effects of ceiling-mounted HEPA-UV air filters on airborne bacteria concentrations in an indoor therapy pool building.

    PubMed

    Kujundzic, Elmira; Zander, David A; Hernandez, Mark; Angenent, Largus T; Henderson, David E; Miller, Shelly L

    2005-02-01

    The purpose of this study was to assess the effectiveness of a new generation of high-volume, ceiling-mounted high-efficiency particulate air (HEPA)-ultraviolet (UV) air filters (HUVAFs) for their ability to remove or inactivate bacterial aerosol. In an environmentally controlled full-scale laboratory chamber (87 m3), and an indoor therapy pool building, the mitigation ability of air filters was assessed by comparing concentrations of total bacteria, culturable bacteria, and airborne endotoxin with and without the air filters operating under otherwise similar conditions. Controlled chamber tests with pure cultures of aerosolized Mycobacterium parafortuitum cells showed that the HUVAF unit tested provided an equivalent air-exchange rate of 11 hr(-1). Using this equivalent air-exchange rate as a design basis, three HUVAFs were installed in an indoor therapy pool building for bioaerosol mitigation, and their effectiveness was studied over a 2-year period. The HUVAFs reduced concentrations of culturable bacteria by 69 and 80% during monitoring periods executed in respective years. The HUVAFs reduced concentrations of total bacteria by 12 and 76% during the same monitoring period, respectively. Airborne endotoxin concentrations were not affected by the HUVAF operation.

  12. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    NASA Astrophysics Data System (ADS)

    Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2012-05-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20-46 % points compared to non-coated fabric and could provide collection efficiency above 95 %.

  13. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    PubMed Central

    Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2013-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707

  14. Improving indoor air quality through botanical air filtration in energy efficient residences

    NASA Astrophysics Data System (ADS)

    Newkirk, Daniel W.

    According to the U.S. EPA, the average American spends 90% of their time indoors where pollutants are two to five times more prevalent than outside. The consequences of these pollutants are estimated to cost the U.S. 125 billion dollars in lost health and productivity. Background literature suggests botanical air filtration may be able to solve this problem by leveraging the natural ability of plants to purify indoor air. By improving indoor air quality, energy consumption can also be reduced by bringing in less outside air to dilute contaminants within the space. A botanical air filter, called the Biowall, was designed and grown aeroponically in a sealed environmental chamber. Precise measurements of air temperature, air humidity, air quality and energy consumption were made under various lighting levels, plant species and watering strategies to optimize its performance. It was found to reduce indoor air pollutants 60 percent and has the potential to reduce heating and cooling energy consumption by 20 to 30 percent.

  15. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration.

    PubMed

    Liu, Bowen; Zhang, Shichao; Wang, Xueli; Yu, Jianyong; Ding, Bin

    2015-11-01

    Nanofibrous media that both possess high airborne particle interception efficiency and robust air permeability would have broad technological implications for areas ranging from individual protection and industrial security to environmental governance; however, creating such filtration media has proved extremely challenging. Here we report a strategy to construct the bio-based polyamide-56 nanofiber/nets (PA-56 NFN) membranes with bimodal structures for effective air filtration via one-step electrospinning/netting. The PA-56 membranes are composed of completely covered two-dimensional (2D) ultrathin (∼20 nm) nanonets which are optimized by facilely regulating the solution concentration, and the bonded scaffold fibers constructed cavity structures which are synchronously created by using the CH3COOH inspiration. With integrated properties of small aperture, high porosity, and bonded scaffold, the resulting PA-56 NFN membranes exhibit high filtration efficiency of 99.995%, low pressure drop of 111 Pa, combined with large dust holding capacity of 49 g/m(2) and dust-cleaning regeneration ability, for filtrating ultrafine airborne particles in the most safe manner involving sieving principle and surface filtration. The successful synthesis of PA-56 NFN medium would not only make it a promising candidate for air filtration, but also provide new insights into the design and development of nanonet-based bimodal structures for various applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Results from Evaluation of Representative ASME AG-1 Section FK Radial Flow Dimple Pleated HEPA Filters Under Elevated Conditions - 12002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giffin, Paxton K.; Parsons, Michael S.; Rickert, Jaime G.

    The American Society of Mechanical Engineers (ASME) has recently added Section FK establishing requirements for radial flow HEPA filters to the Code on Nuclear Air and Gas Treatment (AG-1). Section FK filters are expected to be a major element in the HEPA filtration systems across the US Department of Energy (DOE) complex. Radial flow filters have been used in Europe for some time, however a limited amount of performance evaluation data exists with respect to these new AG-1 Section FK units. In consultation with a technical working group, the Institute for Clean Energy Technology (ICET) at Mississippi State University (MSU)hasmore » evaluated a series of representative AG-1 Section FK dimple pleated radial flow HEPA filters. The effects of elevated relative humidity and temperature conditions on these filters are particularly concerning. Results from the evaluation of Section FK filters under ambient conditions have been presented at the 2011 waste management conference. Additions to the previous test stand to enable high temperature and high humidity testing, a review of the equipment used, the steps taken to characterize the new additions, and the filter test results are presented in this study. Test filters were evaluated at a volumetric flow rate of 56.6 m{sup 3}/min (2000 cfm) and were challenged under ambient conditions with Alumina, Al(OH){sub 3}, until reaching a differential pressure of 1 kPa (4 in. w.c.), at which time the filters were tested, unchallenged with aerosol, at 54 deg. C (130 deg. F) for approximately 1 hour. At the end of that hour water was sprayed near the heat source to maximize vaporization exposing the filter to an elevated relative humidity up to 95%. Collected data include differential pressure, temperature, relative humidity, and volumetric flow rate versus time. (authors)« less

  17. Some aspects of applying nanostructured materials in air filtration, water filtration and electrical engineering

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lovecka, Lenka; Kazda, Tomas; Giurg, Adam; Skorvan, Ondrej

    2017-05-01

    Nanostructures prepared from nanofibres and nanostructured composites prepared from nanofibres and fillers are gradually becoming increasingly demanded materials for applications in various industrial branches connected with catalysis, environment protection (air filtration, waste water treatment, sound absorption), in biological engineering, electronics (battery separators, electrode materials), etc. Selected applications of these materials prepared in the company SPUR a.s. are summed up in the following presentation.

  18. Herbal Extract Incorporated Nanofiber Fabricated by an Electrospinning Technique and its Application to Antimicrobial Air Filtration.

    PubMed

    Choi, Jeongan; Yang, Byeong Joon; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-18

    Recently, with the increased attention to indoor air quality, antimicrobial air filtration techniques have been studied widely to inactivate hazardous airborne microorganisms effectively. In this study, we demonstrate herbal extract incorporated (HEI) nanofibers synthesized by an electrospinning technique and their application to antimicrobial air filtration. As an antimicrobial herbal material, an ethanolic extract of Sophora flavescens, which exhibits great antibacterial activity against pathogens, was mixed with the polymer solution for the electrospinning process. We measured various characteristics of the synthesized HEI nanofibers, such as fiber morphology, fiber size distribution, and thermal stability. For application of the electrospun HEI nanofibers, we made highly effective air filters with 99.99% filtration efficiency and 99.98% antimicrobial activity against Staphylococcus epidermidis. The pressure drop across the HEI nanofiber air filter was 4.75 mmH2O at a face air velocity of 1.79 cm/s. These results will facilitate the implementation of electrospun HEI nanofiber techniques to control air quality and protect against hazardous airborne microorganisms.

  19. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    PubMed

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  20. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems

    PubMed Central

    Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862

  1. Analysis of radon and thoron progeny measurements based on air filtration.

    PubMed

    Stajic, J M; Nikezic, D

    2015-02-01

    Measuring of radon and thoron progeny concentrations in air, based on air filtration, was analysed in order to assess the reliability of the method. Changes of radon and thoron progeny activities on the filter during and after air sampling were investigated. Simulation experiments were performed involving realistic measuring parameters. The sensitivity of results (radon and thoron concentrations in air) to the variations of alpha counting in three and five intervals was studied. The concentration of (218)Po showed up to be the most sensitive to these changes, as was expected because of its short half-life. The well-known method for measuring of progeny concentrations based on air filtration is rather unreliable and obtaining unrealistic or incorrect results appears to be quite possible. A simple method for quick estimation of radon potential alpha energy concentration (PAEC), based on measurements of alpha activity in a saturation regime, was proposed. Thoron PAEC can be determined from the saturation activity on the filter, through beta or alpha measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Water washable stainless steel HEPA filter

    DOEpatents

    Phillips, Terrance D.

    2001-01-01

    The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.

  3. ASME AG-1 Section FC Qualified HEPA Filters; a Particle Loading Comparison - 13435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillo, Andrew; Ricketts, Craig I.

    High Efficiency Particulate Air (HEPA) Filters used to protect personnel, the public and the environment from airborne radioactive materials are designed, manufactured and qualified in accordance with ASME AG-1 Code section FC (HEPA Filters) [1]. The qualification process requires that filters manufactured in accordance with this ASME AG-1 code section must meet several performance requirements. These requirements include performance specifications for resistance to airflow, aerosol penetration, resistance to rough handling, resistance to pressure (includes high humidity and water droplet exposure), resistance to heated air, spot flame resistance and a visual/dimensional inspection. None of these requirements evaluate the particle loading capacitymore » of a HEPA filter design. Concerns, over the particle loading capacity, of the different designs included within the ASME AG-1 section FC code[1], have been voiced in the recent past. Additionally, the ability of a filter to maintain its integrity, if subjected to severe operating conditions such as elevated relative humidity, fog conditions or elevated temperature, after loading in use over long service intervals is also a major concern. Although currently qualified HEPA filter media are likely to have similar loading characteristics when evaluated independently, filter pleat geometry can have a significant impact on the in-situ particle loading capacity of filter packs. Aerosol particle characteristics, such as size and composition, may also have a significant impact on filter loading capacity. Test results comparing filter loading capacities for three different aerosol particles and three different filter pack configurations are reviewed. The information presented represents an empirical performance comparison among the filter designs tested. The results may serve as a basis for further discussion toward the possible development of a particle loading test to be included in the qualification requirements of ASME

  4. Survey of HEPA filter applications and experience at Department of Energy sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.

    1981-11-01

    Results indicated that approximately 58% of the filters surveyed were changed out in the 1977 to 1979 study period and some 18% of all filters were changed out more than once. Most changeouts (60%) were due to the existence of a high pressure drop across the filter, indicative of filter plugging. The next most recurrent reasons for changeout and their percentage changeouts were leak test failure (15%) and preventive maintenance service life limit (12%). An average filter service life was calculated to be 3.0 years with a 2.0-year standard deviation. The labor required for filter changeout was calculated as 1.5more » manhours per filter changed. Filter failures occurred with approximately 12% of all installed filters. Most failures (60%) occurred for unknown reasons and handling or installation damage accounted for an additional 20% of all failures. Media ruptures, filter frame failures and seal failures occurred with approximately equal frequency at 5 to 6% each. Subjective responses to the questionnaire indicate problems are: need for improved acid and moisture resistant filters; filters more readily disposable as radioactive waste; improved personnel training in filter handling and installation; and need for pretreatment of air prior to HEPA filtration.« less

  5. Detection and removal of impurities in nitric oxide generated from air by pulsed electrical discharge.

    PubMed

    Yu, Binglan; Blaesi, Aron H; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B; Goldstein, Lee E; Zapol, Warren M

    2016-11-30

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N 2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO 2 ) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 μg/day) and the platinum-nickel ground electrode (-55 μg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Detection and Removal of Impurities in Nitric Oxide Generated from Air by Pulsed Electrical Discharge

    PubMed Central

    Yu, Binglan; Blaesi, Aron H.; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B.; Goldstein, Lee E.; Zapol, Warren M.

    2016-01-01

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (−90 µg/day) and the platinum-nickel ground electrode (−55 µg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. PMID:27592386

  7. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  8. Epidemiological study of air filtration systems for preventing PRRSV infection in large sow herds.

    PubMed

    Alonso, Carmen; Murtaugh, Michael P; Dee, Scott A; Davies, Peter R

    2013-10-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the most economically significant pathogen in the US swine industry. Aerosol transmission among herds is a major concern in pig dense regions and filtration of incoming air, in combination with standard biosecurity procedures, has been demonstrated to prevent transmission of PRRSV into susceptible herds. To quantify the impact of air filtration on reducing risk of PRRSV outbreaks, we compared the incidence rate of new PRRSV introductions in 20 filtered and 17 non-filtered control sow herds in a swine dense region of North America during a 7 year study period. Events of novel virus introduction were ascertained by phylogenetic analysis of PRRSV ORF5 gene sequences. Putative new viruses were defined as exogenous (introduced) based on ORF5 nucleotide sequence differences compared to previous farm isolates. The influence of sequence difference cut-off values ranging from 2 to 10% on case definition and relative risk were evaluated. Non-filtered farms incurred about 0.5 outbreaks per year, with a seasonal increase in risk in cooler periods. Baseline risk, prior to filtration, in treatment farms was approximately 0.75 per year, approximately 50% higher than in control farms. Air filtration significantly reduced risk of PRRSV introduction events to 0.06-0.22 outbreaks per year, depending on the cut-off values used to classify a virus isolate as new to the herd. Overall, air filtration led to an approximately 80% reduction in risk of introduction of novel PRRSV, indicating that on large sow farms with good biosecurity in swine-dense regions, approximately four-fifths of PRRSV outbreaks may be attributable to aerosol transmission. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Air cleaning technologies: an evidence-based analysis.

    PubMed

    2005-01-01

    This health technology policy assessment will answer the following questions: When should in-room air cleaners be used?How effective are in-room air cleaners?Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone?What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan?The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario's capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry's Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering, and personal protection methods. Engineering

  10. Reducing indoor air pollutants with air filtration units in wood stove homes.

    PubMed

    McNamara, Marcy L; Thornburg, Jonathon; Semmens, Erin O; Ward, Tony J; Noonan, Curtis W

    2017-08-15

    Biomass burning has been shown to be a major source of poor indoor air quality (IAQ) in developing and higher income countries across the world. Specifically, wood burning for cooking and heating contributes to high indoor concentrations of fine (particles with aerodynamic diameters<2.5μm; PM 2.5 ) and coarse (particles with aerodynamic diameters <10μm and >2.5μm; PMc) particulate matter. Endotoxin, predominantly found within the coarse fraction of airborne particulate matter, is associated with proinflammatory effects and adverse outcomes among susceptible populations. The aim of this study was to assess the efficacy of air filter interventions in reducing indoor PM 2.5 , PMc, and PMc-associated endotoxin concentrations in homes using a wood stove for primary heating. Homes (n=48) were randomized to receive in-room air filtration units with either a high efficiency filter (i.e. active) or a lower efficiency fiberglass filter (i.e., placebo). The active filter intervention showed a 66% reduction in indoor PM 2.5 concentrations (95% CI: 42.2% to 79.7% reduction) relative to the placebo intervention. Both the active and the placebo filters were effective in substantially reducing indoor concentrations of PMc (63.3% and 40.6% average reduction for active and placebo filters, respectively) and PMc-associated endotoxin concentrations (91.8% and 80.4% average reductions, respectively). These findings support the use of high efficiency air filtration units for reducing indoor PM 2.5 in homes using a wood stove for primary heating. We also discovered that using lower efficiency, lower cost filter alternatives can be effective for reducing PMc and airborne endotoxin in homes burning biomass fuel. Copyright © 2017. Published by Elsevier B.V.

  11. HEPA filter encapsulation

    DOEpatents

    Gates-Anderson, Dianne D.; Kidd, Scott D.; Bowers, John S.; Attebery, Ronald W.

    2003-01-01

    A low viscosity resin is delivered into a spent HEPA filter or other waste. The resin is introduced into the filter or other waste using a vacuum to assist in the mass transfer of the resin through the filter media or other waste.

  12. Mold occurring on the air cleaner high-efficiency particulate air filters used in the houses of child patients with atopic dermatitis.

    PubMed

    Kim, Seong Hwan; Ahn, Geum Ran; Son, Seung Yeol; Bae, Gwi-Nam; Yun, Yeo Hong

    2014-09-01

    Fungi are the known sources of irritation associated with atopic diseases (e.g., asthma, allergic rhinoconjunctivitis, and atopic eczema). To quantitatively estimate their presence in the indoor environment of atopic dermatitis-inflicted child patient's houses (ADCPHs), the high-efficiency particulate air (HEPA) filters installed inside the air cleaners of three different ADCPHs were investigated for the presence of mold. The air cleaner HEPA filters obtained from the three different ADCPHs were coded as HEPA-A, -B, and -C, respectively, and tested for the presence of mold. The colony forming units (CFUs) corresponding to the HEPA-A, -B, and -C filters were estimated to be 6.51 × 10(2) ± 1.50 × 10(2) CFU/cm(2), 8.72 × 10(2) ± 1.69 × 10(2) CFU/cm(2), and 9.71 × 10(2) ± 1.35 × 10(2) CFU/cm(2), respectively. Aspergillus, Penicillium, Alternaria, Cladosporium, Trichoderma, and other fungal groups were detected in the 2,494 isolates. The distribution of these fungal groups differed among the three filters. Cladosporium was the major fungal group in filters HEPA-A and -C, whereas Penicillium was the major fungal group in the filter HEPA-B. Nine fungal species, including some of the known allergenic species, were identified in these isolates. Cladosporium cladosporioides was the most common mold among all the three filters. This is the first report on the presence of fungi in the air cleaner HEPA filters from ADCPHs in Korea.

  13. Mold Occurring on the Air Cleaner High-Efficiency Particulate Air Filters Used in the Houses of Child Patients with Atopic Dermatitis

    PubMed Central

    Kim, Seong Hwan; Ahn, Geum Ran; Son, Seung Yeol; Bae, Gwi-Nam

    2014-01-01

    Fungi are the known sources of irritation associated with atopic diseases (e.g., asthma, allergic rhinoconjunctivitis, and atopic eczema). To quantitatively estimate their presence in the indoor environment of atopic dermatitis-inflicted child patient's houses (ADCPHs), the high-efficiency particulate air (HEPA) filters installed inside the air cleaners of three different ADCPHs were investigated for the presence of mold. The air cleaner HEPA filters obtained from the three different ADCPHs were coded as HEPA-A, -B, and -C, respectively, and tested for the presence of mold. The colony forming units (CFUs) corresponding to the HEPA-A, -B, and -C filters were estimated to be 6.51 × 102 ± 1.50 × 102 CFU/cm2, 8.72 × 102 ± 1.69 × 102 CFU/cm2, and 9.71 × 102 ± 1.35 × 102 CFU/cm2, respectively. Aspergillus, Penicillium, Alternaria, Cladosporium, Trichoderma, and other fungal groups were detected in the 2,494 isolates. The distribution of these fungal groups differed among the three filters. Cladosporium was the major fungal group in filters HEPA-A and -C, whereas Penicillium was the major fungal group in the filter HEPA-B. Nine fungal species, including some of the known allergenic species, were identified in these isolates. Cladosporium cladosporioides was the most common mold among all the three filters. This is the first report on the presence of fungi in the air cleaner HEPA filters from ADCPHs in Korea. PMID:25346608

  14. 77 FR 38857 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Treatment, Heating Ventilation and Air Conditioning Systems.'' This new standard provides comprehensive test... Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water-Cooled... NUCLEAR REGULATORY COMMISSION [NRC-2012-0152] Design, Inspection, and Testing Criteria for Air...

  15. Evolution of Emergent Technologies for Producing Nonwoven Fabrics for Air Filtration

    ERIC Educational Resources Information Center

    Ou, Yingjie

    2016-01-01

    Nonwovens is a fast growing industry driven by technological research and development (R&D), and one of the major application areas for nonwovens is air filtration. Research on nonwovens technologies has mainly focused on the science and technology areas, but there is very little published research on technology management issues within the…

  16. Preparation of hierarchical structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Pan, Zhijuan

    2015-11-01

    Hierarchical structured nano-sized/porous poly(lactic acid) (PLA-N/PLA-P) composite fibrous membranes with excellent air filtration performance were prepared via an electrospinning technique. Firstly, PLA-P fibers with different morphology were fabricated by varying the relative humidity, and the nanopores on fiber surface played a key role in improving the specific surface area and filtration performance of the resultant membranes. Secondly, hierarchical structure of PLA-N/PLA-P interlaced structured membranes and PLA-N/PLA-P double-layer structured membranes with different mass ratios for further enhanced air filtration performance were also successfully prepared by combining PLA-N fibers with PLA-P fibers. Filtration tests by measuring the penetration of sodium chloride (NaCl) aerosol particles with a 260 nm mass median diameter revealed that a moderate mass ratio of PLA-P fibers and PLA-N fibers contributed to improving the filtration performance of the hierarchical structured PLA-N/PLA-P composite membrane, and the double-layer structured PLA-N/PLA-P membrane possessed a higher filtration efficiency and quality factor than that of an interlaced structured PLA-N/PLA-P membrane with the same mass ratio. The as-prepared PLA-N/PLA-P double-layer structured membrane with a mass ratio of 1/5 showed a high filtration efficiency (99.999%) and a relatively low pressure drop (93.3 Pa) at the face velocity of 5.3 cm/s.

  17. 77 FR 60481 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing a revision to Regulatory Guide (RG) 1.52, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-accident Engineered-Safety-Feature Atmosphere Cleanup Systems in Light-Water-Cooled Nuclear Power Plants.'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption units of engineered-safety-feature (ESF) atmosphere cleanup systems in light-water-cooled nuclear power plants.

  18. Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations

    PubMed Central

    Balamurugan, Ramalingam; Sundarrajan, Subramanian; Ramakrishna, Seeram

    2011-01-01

    In recent decades, engineered membranes have become a viable separation technology for a wide range of applications in environmental, food and biomedical fields. Membranes are now competitive compared to conventional techniques such as adsorption, ion exchangers and sand filters. The main advantage of membrane technology is the fact that it works without the addition of any chemicals, with relatively high efficiency and low energy consumption with well arranged process conductions. Hence they are widely utilized in biotechnology, food and drink manufacturing, air filtration and medical uses such as dialysis for kidney failure patients. Membranes from nanofibrous materials possess high surface area to volume ratio, fine tunable pore sizes and their ease of preparation prompted both industry and academic researchers to study their use in many applications. In this paper, modern concepts and current research progress on various nanofibrous membranes, such as water and air filtration media, are presented. PMID:24957734

  19. Performance Evaluation of Axial Flow AG-1 FC and Prototype FM (High Strength) HEPA Filters - 13123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giffin, Paxton K.; Parsons, Michael S.; Wilson, John A.

    High efficiency particulate air (HEPA) filters are routinely used in DOE nuclear containment activities. The Nuclear Air Cleaning Handbook (NACH) stipulates that air cleaning devices and equipment used in DOE nuclear applications must meet the American Society of Mechanical Engineers (ASME) Code on Nuclear Air and Gas Treatment (AG-1) standard. This testing activity evaluates two different axial flow HEPA filters, those from AG-1 Sections FC and FM. Section FM is under development and has not yet been added to AG-1 due to a lack of qualification data available for these filters. Section FC filters are axial flow units that utilizemore » a fibrous glass filtering medium. The section FM filters utilize a similar fibrous glass medium, but also have scrim backing. The scrim-backed filters have demonstrated the ability to endure pressure impulses capable of completely destroying FC filters. The testing activities presented herein will examine the total lifetime loading for both FC and FM filters under ambient conditions and at elevated conditions of temperature and relative humidity. Results will include loading curves, penetration curves, and testing condition parameters. These testing activities have been developed through collaborations with representatives from the National Nuclear Security Administration (NNSA), DOE Office of Environmental Management (DOE-EM), New Mexico State University, and Mississippi State University. (authors)« less

  20. Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogle, Brandon; Kelly, James; Haslam, Jeffrey

    The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finitemore » Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.« less

  1. Preparing cytotoxic agents in an isolator.

    PubMed

    Favier, M; Hansel, S; Bressolle, F

    1993-11-01

    The design of an isolator and its use by an oncology satellite pharmacy for preparing cytotoxic drugs are described. The isolator (Iso Concept, Boulogne, France) is a totally enclosed ventilated biological-safety cabinet of class III polyvinyl chloride (PVC) with positive air pressure, a half-suit with a rotating seal, and attached neoprene gloves. There are three work-stations, one for the half-suit and two along one side of the isolator. The ventilation and air filtration system consists of one entry pipe with a full ventilation-filtration box fitted with one prefilter, one blower, one ball valve, one high-efficiency particulate air (HEPA) filter, one airtight nipple connected to an automatic sterilizer, alarms, and one exhaust pipe protected by a HEPA filter. The air lock consists of a rigid, transparent Plexiglas pass-through. The chamber is sterilized with heated compressed air mixed with 3.5% peracetic acid. Maintenance includes regular changing of gloves and HEPA filters; checking of the integrity of the PVC, half-suit, and gloves; and washing and decontamination procedures. Preparation of cytotoxics is planned in advance with prescription data and manufacturing sheets. In the half-suit, a pharmacy technician reads the label, supervises preparation of the sterile admixture, and writes a label. The operators on the side of the unit read the manufacturing sheet and prepare the dose identified by the label.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Health hazards associated with the use of di-(2-ethylhexyl) phthalate (commonly referred to as DOP) in HEPA filter test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-01-01

    Di-(2-ethylhexyl) phthalate (DEHP), commonly referred to as di-octyl phthalate, is an important production chemical in the US. In addition to its major use as an additive in plastics, DEHP is widely used to evaluate the effectiveness of high efficiency particulate air (HEPA) filters. Historically, DEHP was also used in quantitative fit testing for respirators. Evaluations of this compound a decade ago showed that it can induce hepatocellular carcinomas in laboratory animals. Although most Department of Energy (DOE) facilities have since discontinued using DEHP in respirator fit testing, DEHP continues to be used for evaluating HEPA filters. This report summarizes availablemore » information on the toxicity, mutagenicity, carcinogenicity, and other hazards and problems posed by DEHP, specifically with reference to HEPA filter testing. Information on work practice improvements as well as the availability and suitability of DEHP substitutes are also presented. This material should assist the DOE in the safe use of this material.« less

  3. In-home air filtration for improving cardiovascular health: Lessons from a CBPR study in public housing

    PubMed Central

    Brugge, Doug; Reisner, Ellin; Padró-Martínez, Luz T.; Zamore, Wig; Owusu, Emmanuel; Durant, John L.

    2013-01-01

    Background Particulate air pollution, including from motor vehicles, is associated with cardiovascular disease. Objectives To describe lessons learned from installing air filtration units in public housing apartments next to a major highway. Methods We reviewed experience with recruitment, retention and acceptance of the air filtration units. Results Recruitment and retention have been challenging, but similar to other studies in public housing. Equipment noise and overheated apartments during hot weather have been notable complaints from participants. In addition, we found that families with members with Alzheimer’s or mental disability were less able to tolerate the equipment. Conclusions For this research the primary lesson is that working closely with each participant is important. A future public health program would need to address issues of noise and heat to make the intervention more acceptable to residents. PMID:23543021

  4. Health benefits of particle filtration.

    PubMed

    Fisk, W J

    2013-10-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, for example, 7% to 25%. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air. Published 2013. This article is a US Government work and is in the public domain in the USA.

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - AIR PURATOR CORPORATION HUYGLAS 1405M FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  6. Electrospun Magnetic Nanoparticle-Decorated Nanofiber Filter and Its Applications to High-Efficiency Air Filtration.

    PubMed

    Kim, Juyoung; Chan Hong, Seung; Bae, Gwi Nam; Jung, Jae Hee

    2017-10-17

    Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe 3 O 4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.

  7. An indoor air filtration study in homes of elderly: cardiovascular and respiratory effects of exposure to particulate matter

    PubMed Central

    2013-01-01

    Background Exposure to particulate air pollution increases respiratory and cardiovascular morbidity and mortality, especially in elderly, possibly through inflammation and vascular dysfunction. Methods We examined potential beneficial effects of indoor air filtration in the homes of elderly, including people taking vasoactive drugs. Forty-eight nonsmoking subjects (51 to 81 years) in 27 homes were included in this randomized, double-blind, crossover intervention study with consecutive two-week periods with or without the inclusion of a high-efficiency particle air filter in re-circulating custom built units in their living room and bedroom. We measured blood pressure, microvascular and lung function and collected blood samples for hematological, inflammation, monocyte surface and lung cell damage markers before and at day 2, 7 and 14 during each exposure scenario. Results The particle filters reduced the median concentration of PM2.5 from approximately 8 to 4 μg/m3 and the particle number concentration from 7669 to 5352 particles/cm3. No statistically significant effects of filtration as category were observed on microvascular and lung function or the biomarkers of systemic inflammation among all subjects, or in the subgroups taking (n = 11) or not taking vasoactive drugs (n = 37). However, the filtration efficacy was variable and microvascular function was within 2 days significantly increased with the actual PM2.5 decrease in the bedroom, especially among 25 subjects not taking any drugs. Conclusion Substantial exposure contrasts in the bedroom and no confounding by drugs appear required for improved microvascular function by air filtration, whereas no other beneficial effect was found in this elderly population. PMID:24373585

  8. Evaluation of HEPA vacuum cleaning and dry steam cleaning in reducing levels of polycyclic aromatic hydrocarbons and house dust mite allergens in carpets

    PubMed Central

    Yu, Chang Ho; Yiin, Lih-Ming; Fan, Zhi-Hua (Tina); Rhoads, George G.

    2014-01-01

    Dry steam cleaning, which has gained recent attention as an effective method to reduce house dust mite (HDM) allergen concentration and loading in carpets, was evaluated in this study for its efficacy in lowering levels of polycyclic aromatic hydrocarbons (PAHs) as well as HDM allergens. Fifty urban homes with wail-to-wall carpets, mostly low-income and with known lead contamination, were studied in 2003 and 2004. Two carpet-cleaning interventions were compared: Repeated HEPA (High Efficiency Particulate Air filtered) vacuuming alone and repeated HEPA vacuuming supplemented with dry steam cleaning. Vacuum samples were collected to measure carpet loading of dust and contaminants immediately before and after cleaning. Paired comparisons were conducted to evaluate the effectiveness of the cleaning protocols in reducing the levels of PAHs and HDM allergens in carpets. The results indicated that both cleaning methods substantially reduced the loading of PAHs and HDM allergens as well as dust in carpets (p < 0.0001). The reductions in loading of dust (64.4%), PAHs (69.1%), and HDM allergens (85.5%), by dry steam cleaning plus repetitive HEPA vacuuming were larger than the reductions by regular HEPA vacuuming alone: dust (55.5%), PAHs (58.6%), and HDM allergens (80.8%), although the difference was statistically significant only for dust and PAHs. We conclude that intensive HEPA vacuum cleaning substantially reduced the loading of PAHs and HDM allergens in carpets in these urban homes and that dry steam cleaning added modestly to cleaning effectiveness. PMID:19137159

  9. Transparent Nanofibrous Mesh Self-Assembled from Molecular LEGOs for High Efficiency Air Filtration with New Functionalities.

    PubMed

    Singh, Varun Kumar; Ravi, Sai Kishore; Sun, Wanxin; Tan, Swee Ching

    2017-02-01

    Alarming levels of particulate matter pollution in air pose a serious health threat in several countries, therefore intriguing a strong need for an economic and a viable technology of air filtration. Current air purification technology is rather expensive with certain types even having the risk of emitting hazardous by-products. The authors have developed a multifunctional air filter inspired from the nasal hairs possessing an ability to specifically trap/exhale the foreign particles and allergens while still letting the air flow. This design is achieved by introducing different functionalities at different dimensional scale employing a bottom-up approach starting with an organic molecule which is further self-organized to form nanoparticles and ultimately to a nanofibrous mesh. While the molecular building block inherently possesses the property of shielding Ultraviolet (UV) rays, the nanofibrous mesh built up from it aids in trapping the particulate matter while maintaining good air flow. By controlling the concentration of the organic molecule, the formation of fibers has been enabled in the nanoscale regime to obtain high particle-capture possibilities. The self-assembled nanofibrous filter thus designed has achieved a high filtration efficiency of ≈90% for the PM 2.5 particle in congruence with the ability to block the harmful UV radiations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Xenobiotic metabolism in the fish hepatic cell lines Hepa-E1 and RTH-149, and the gill cell lines RTgill-W1 and G1B: Biomarkers of CYP450 activity and oxidative stress.

    PubMed

    Franco, Marco E; Sutherland, Grace E; Lavado, Ramon

    2018-04-01

    The use of fish cell cultures has proven to be an effective tool in the study of environmental and aquatic toxicology. Valuable information can be obtained from comparisons between cell lines from different species and organs. In the present study, specific chemicals were used and biomarkers (e.g. 7-Ethoxyresorufin-O-deethylase (EROD) activity and reactive oxygen species (ROS)) were measured to assess the metabolic capabilities and cytotoxicity of the fish hepatic cell lines Hepa-E1 and RTH-149, and the fish gill cell lines RTgill-W1 and G1B. These cell lines were exposed to β-naphthoflavone (BNF) and benzo[a]pyrene (BaP), the pharmaceutical tamoxifen (TMX), and the organic peroxide tert-butylhydroperoxide (tBHP). Cytotoxicity in gill cell lines was significantly higher than in hepatic cells, with BNF and TMX being the most toxic compounds. CYP1-like associated activity, measured through EROD activity, was only detected in hepatic cells; Hepa-E1 cells showed the highest activity after exposure to both BNF and BaP. Significantly higher levels of CYP3A-like activity were also observed in Hepa-E1 cells exposed to TMX, while gill cell lines presented the lowest levels. Measurements of ROS and antioxidant enzymes indicated that peroxide levels were higher in gill cell lines in general. However, levels of superoxide were significantly higher in RTH-149 cells, where no distinctive increase of superoxide-related antioxidants was observed. The present study demonstrates the importance of selecting adequate cell lines in measuring specific metabolic parameters and provides strong evidence for the fish hepatocarcinoma Hepa-E1 cells to be an excellent alternative in assessing metabolism of xenobiotics, and in expanding the applicability of fish cell lines for in vitro studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Pilot study of high-performance air filtration for classroom applications.

    PubMed

    Polidori, A; Fine, P M; White, V; Kwon, P S

    2013-06-01

    A study was conducted to investigate the effectiveness of three air purification systems in reducing the exposure of children to air contaminants inside nine classrooms of three Southern California schools. Continuous and integrated measurements were conducted to monitor the indoor and outdoor concentrations of ultrafine particles (UFPs), fine and coarse particulate matter (PM2.5 and PM10 , respectively), black carbon (BC), and volatile organic compounds. An heating, ventilating, and air conditioning (HVAC)-based high-performance panel filter (HP-PF), a register-based air purifier (RS), and a stand-alone air cleaning system (SA) were tested alone and in different combinations for their ability to remove the monitored pollutants. The combination of a RS and a HP-PF was the most effective solution for lowering the indoor concentrations of BC, UFPs, and PM2.5 , with study average reductions between 87% and 96%. When using the HP-PF alone, reductions close to 90% were also achieved. In all cases, air quality conditions were improved substantially with respect to the corresponding baseline (preexisting) conditions. Data on the performance of the gas-absorbing media included in the RS and SA unit were inconclusive, and their effectiveness, lifetime, costs, and benefits must be further assessed before conclusions and recommendations can be made. The installation of effective air filtration devices in classrooms may be an important mitigation measure to help reduce the exposure of school children to indoor pollutants of outdoor origin including ultrafine particles and diesel particulate matter, especially at schools located near highly trafficked freeways, refineries, and other important sources of air toxics. Published 2012. This article is a US Government work and is in the public domain in the USA.

  12. Institute for Clean Energy Technology Mississippi State University NSR&D Aged HEPA Filter Study Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacks, Robert; Stormo, Julie; Rose, Coralie

    Data have demonstrated that filter media lose tensile strength and the ability to resist the effects of moisture as a function of age. Testing of new and aged filters needs to be conducted to correlate reduction of physical strength of HEPA media to the ability of filters to withstand upset conditions. Appendix C of the Nuclear Air Cleaning Handbook provides the basis for DOE’s HEPA filter service life guidance. However, this appendix also points out the variability of data, and it does not correlate performance of aged filters to degradation of media due to age. Funding awarded by NSR&D tomore » initiate full-scale testing of aged HEPA filters addresses the issue of correlating media degradation due to age with testing of new and aged HEPA filters under a generic design basis event set of conditions. This funding has accelerated the process of describing this study via: (1) establishment of a Technical Working Group of all stakeholders, (2) development and approval of a test plan, (3) development of testing and autopsy procedures, (4) acquiring an initial set of aged filters, (5) testing the initial set of aged filters, and (6) developing the filter test report content for each filter tested. This funding was very timely and has moved the project forward by at least three years. Activities have been correlated with testing conducted under DOE-EM funding for evaluating performance envelopes for AG-1 Section FC Separator and Separatorless filters. This coordination allows correlation of results from the NSR&D Aged Filter Study with results from testing new filters of the Separator and Separatorless Filter Study. DOE-EM efforts have identified approximately 100 more filters of various ages that have been stored under Level B conditions. NSR&D funded work allows a time for rigorous review among subject matter experts before moving forward with development of the testing matrix that will be used for additional filters. The NSR&D data sets are extremely valuable in

  13. Next Generation of Electrospun Textiles for Chemical and Biological Protection and Air Filtration

    DTIC Science & Technology

    2009-09-01

    these products were comparable to results reported for reactions of potassium 2,3-butanedione monooximate with GD, which produced 31P resonances at...Next Generation of Electrospun Textiles for Chemical and Biological Protection and Air Filtration by Liang Chen B.S. in Chemical Physics, University... of Science and Technology of China, 2001 M.S. in Chemistry, Brown University, 2004 M.S.C.E.P. in Chemical Engineering, Massachusetts Institute of

  14. Evaluation of the Long-Term Effect of Air Filtration on the Occurrence of New PRRSV Infections in Large Breeding Herds in Swine-Dense Regions

    PubMed Central

    Dee, Scott; Cano, Jean Paul; Spronk, Gordon; Reicks, Darwin; Ruen, Paul; Pitkin, Andrea; Polson, Dale

    2012-01-01

    Airborne transmission of porcine reproductive and respiratory syndrome virus (PRRSV) is a risk factor for the infection of susceptible populations. Therefore, a long‑term sustainability study of air filtration as a means to reduce this risk was conducted. Participating herds (n = 38) were organized into 4 independent cohorts and the effect of air filtration on the occurrence of new PRRSV infections was analyzed at 3 different levels from September 2008 to January 2012 including the likelihood of infection in contemporary filtered and non-filtered herds, the likelihood of infection before and after implementation of filtration and the time to failure in filtered and non-filtered herds. Results indicated that new PRRSV infections in filtered breeding herds were significantly lower than in contemporary non-filtered control herds (P < 0.01), the odds for a new PRRSV infection in breeding herds before filtration was 7.97 times higher than the odds after filtration was initiated (P < 0.01) and the median time to new PRRSV infections in filtered breeding herds of 30 months was significantly longer than the 11 months observed in non-filtered herds (P < 0.01). In conclusion, across all 3 levels of analysis, the long-term effect of air filtration on reducing the occurrence of new PRRSV infections in the study population was demonstrated. PMID:22754642

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, PAINT OVERSPRAY ARRESTOR, PUROLATOR PRODUCTS AIR FILTRATION COMPANY, DMK804404 AND PB2424

    EPA Science Inventory

    Paint overspray arrestors (POAs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the particle filtration efficiency as a function of size for particles smaller than...

  16. The effectiveness of stand alone air cleaners for shelter-in-place.

    PubMed

    Ward, M; Siegel, J A; Corsi, R L

    2005-04-01

    Stand-alone air cleaners may be efficient for rapid removal of indoor fine particles and have potential use for shelter-in-place (SIP) strategies following acts of bioterrorism. A screening model was employed to ascertain the potential significance of size-resolved particle (0.1-2 microm) removal using portable high efficiency particle arresting (HEPA) air cleaners in residential buildings following an outdoor release of particles. The number of stand-alone air cleaners, air exchange rate, volumetric flow rate through the heating, ventilating and air-conditioning (HVAC) system, and size-resolved particle removal efficiency in the HVAC filter were varied. The effectiveness of air cleaners for SIP was evaluated in terms of the outdoor and the indoor particle concentration with air cleaner(s) relative to the indoor concentration without air cleaners. Through transient and steady-state analysis of the model it was determined that one to three portable HEPA air cleaners can be effective for SIP following outdoor bioaerosol releases, with maximum reductions in particle concentrations as high as 90% relative to conditions in which an air cleaner is not employed. The relative effectiveness of HEPA air cleaners vs. other removal mechanisms was predicted to decrease with increasing particle size, because of increasing competition by particle deposition with indoor surfaces and removal to HVAC filters. However, the effect of particle size was relatively small for most scenarios considered here. The results of a screening analysis suggest that stand-alone (portable) air cleaners that contain high efficiency particle arresting (HEPA) filters can be effective for reducing indoor fine particle concentrations in residential dwellings during outdoor releases of biological warfare agents. The relative effectiveness of stand-alone air cleaners for reducing occupants' exposure to particles of outdoor origin depends on several factors, including the type of heating, ventilating and air

  17. U-235 Holdup Measurements in the 321-M Lathe HEPA Banks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salaymeh, S.R.

    The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Decommissioning Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The results of the holdup assays are essential for determining compliance with the Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. This report covers holdup measurements of uranium residue in six high efficiency particulate air (HEPA) filter banks of the A-lathe and B-lathe exhaust systems of the 321-M facility. This report discusses the non-destructive assay measurements,more » assumptions, calculations, and results of the uranium holdup in these six items.« less

  18. Filtration effectiveness of HVAC systems at near-roadway schools.

    PubMed

    McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T

    2013-06-01

    Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  19. High Efficiency Particulate Air (HEPA) Filter Generation, Characterization, and Disposal Experiences at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, D. E.

    2002-02-28

    High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications.more » Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications.« less

  20. Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo.

    PubMed

    Jiang, Zhengyu; Zhang, Hongxia; Wang, Ye; Yu, Bin; Wang, Chen; Liu, Changcheng; Lu, Juan; Chen, Fei; Wang, Minjun; Yu, Xinlu; Lin, Jiahao; Pan, Xinghua; Wang, Pin; Zhu, Haiying

    2016-02-23

    Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1-6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo.

  1. Characterizing ultrafine particles and other air pollutants in and around school buses.

    PubMed

    Zhu, Yifang; Zhang, Qunfang

    2014-03-01

    Increasing evidence has demonstrated toxic effects of ultrafine particles (UFP*, diameter < 100 nm). Children are particularly at risk because of their immature respiratory systems and higher breathing rates per body mass. This study aimed to characterize UFP, PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter), and other vehicular-emitted pollutants in and around school buses. Four sub-studies were conducted, including: 1. On-road tests to measure in-cabin air pollutant levels while school buses were being driven; 2. Idling tests to determine the contributions of tailpipe emissions from idling school buses to air pollutant levels in and around school buses under different scenarios; 3. Retrofit tests to evaluate the performance of two retrofit systems, a diesel oxidation catalyst (DOC) muffler and a crankcase filtration system (CFS), on reducing tailpipe emissions and in-cabin air pollutant concentrations under idling and driving conditions; and 4. High efficiency particulate air (HEPA) filter air purifier tests to evaluate the effectiveness of in-cabin filtration. In total, 24 school buses were employed to cover a wide range of school buses commonly used in the United States. Real-time air quality measurements included particle number concentration (PNC), fine and UFP size distribution in the size range 7.6-289 nm, PM2.5 mass concentration, black carbon (BC) concentration, and carbon monoxide (CO) and carbon dioxide (CO2) concentrations. For in-cabin measurements, instruments were placed on a platform secured to the rear seats inside the school buses. For all other tests, a second set of instruments was deployed to simultaneously measure the ambient air pollutant levels. For tailpipe emission measurements, the exhaust was diluted and then measured by instruments identical to those used for the in-cabin measurements. The results show that when driving on roads, in-cabin PNC, fine and UFP size distribution, PM2.5, BC, and CO varied by engine age

  2. ENVIRONMENTAL TECHNLOGY VERIFICATION PROGRAM REPORT: PAINT OVERSPRAY ARRESTOR, PUROLATOR PRODUCTS AIR FILTRATION CO. D95084415, DMK 80-4404 AND PB2424

    EPA Science Inventory

    The report gives results of March 26-29, 1999, tests of Purolator Products Air Filtration Co's D95084415, DMK80-4404, and PB2424 paint overspray arrestors (POAs) as part of an evaluation of POAs by EPA's Air Pollution Control Technology (APCT) Environmental Technology Verificatio...

  3. Overexpression of HepaCAM inhibits cell viability and motility through suppressing nucleus translocation of androgen receptor and ERK signaling in prostate cancer.

    PubMed

    Song, Xuedong; Wang, Yin; Du, Hongfei; Fan, Yanru; Yang, Xue; Wang, Xiaorong; Wu, Xiaohou; Luo, Chunli

    2014-07-01

    HepaCAM is suppressed in a variety of human cancers, and involved in cell adhesion, growth, migration, invasion, and survival. However, the expression and function of HepaCAM in prostate cancer are still unknown. HepaCAM expression has been detected by RT-PCR, Western blotting and immunohistochemistry staining in prostate cell lines RWPE-1, LNCap, DU145, PC3, and in 75 human prostate tissue specimens, respectively. Meanwhile, the cell proliferation ability was detected by WST-8 assay. The role of HepaCAM in prostate cancer cell migration and invasion was examined by wound healing and transwell assay. And flow cytometry was used to observe the apoptosis of prostate cancer cells. Then we detected changes of Androgen Receptor translocation and ERK signaling using immunofluorescence staining and western blot after overexpression of HepaCAM. The HepaCAM expression was significantly down-regulated in prostate cancer tissues and undetected in prostate cancer cells. However, the low HepaCAM expression was not statistically associated with clinicopathological characteristics of prostate cancer. Overexpression of HepaCAM in prostate cancer cells decreased the cell proliferation, migration and invasion, and induced the cell apoptosis. Meanwhile, HepaCAM prevented the androgen receptor translocation from the cytoplasm to the nucleus and down-regulated the MAPK/ERK signaling. Our results suggested that HepaCAM acted as a tumor suppressor in prostate cancer. HepaCAM inhibited cell viability and motility which might be through suppressing the nuclear translocation of Androgen Receptor and down-regulating the ERK signaling. Therefore, it was indicated that HepaCAM may be a potential therapeutic target for prostate cancer. © 2014 Wiley Periodicals, Inc.

  4. Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolosa, Laia

    Only a few in vitro assays have been proposed to evaluate the steatotic potential of new drugs. The present study examines the utility of HepaRG cells as a cell-based assay system for screening drug-induced liver steatosis. A high-content screening assay was run to evaluate multiple toxicity-related cell parameters in HepaRG cells exposed to 28 compounds, including drugs reported to cause steatosis through different mechanisms and non-steatotic compounds. Lipid content was the most sensitive parameter for all the steatotic drugs, whereas no effects on lipid levels were produced by non-steatotic compounds. Apart from fat accumulation, increased ROS production and altered mitochondrialmore » membrane potential were also found in the cells exposed to steatotic drugs, which indicates that all these cellular events contributed to drug-induced hepatotoxicity. These findings are of clinical relevance as most effects were observed at drug concentrations under 100-fold of the therapeutic peak plasmatic concentration. HepaRG cells showed increased lipid overaccumulation vs. HepG2 cells, which suggests greater sensitivity to drug-induced steatosis. An altered expression profile of transcription factors and the genes that code key proteins in lipid metabolism was also found in the cells exposed to drugs capable of inducing liver steatosis. Our results generally indicate the value of HepaRG cells for assessing the risk of liver damage associated with steatogenic compounds and for investigating the molecular mechanisms involved in drug-induced steatosis. - Highlights: • HepaRG cells were explored as an in vitro model to detect steatogenic potential. • Multiple toxicity-related endpoints were analysed by HCS. • HepaRG showed a greater sensitivity to drug-induced steatosis than HepG2 cells. • Changes in the expression of genes related to lipid metabolism were revealed. • HepaRG allow mechanistic understanding of liver damage induced by steatogenic drugs.« less

  5. Hepa1-6-FLuc cell line with the stable expression of firefly luciferase retains its primary properties with promising bioluminescence imaging ability.

    PubMed

    Li, Yasha; Liu, Mengnan; Cui, Jiejie; Yang, Ke; Zhao, Li; Gong, Mengjia; Wang, Yi; He, Yun; He, Tongchuan; Bi, Yang

    2018-05-01

    Reliable animal models are required for the in vivo study of the molecular mechanisms and effects of chemotherapeutic drugs in hepatocarcinoma. In vivo tracing techniques based on firefly luciferase (FLuc) may optimize the non-invasive monitoring of experimental animals. The present study established a murine Hepa1-6-FLuc cell line that stably expressed a retrovirus-delivered FLuc protein gene. The cell morphology, proliferation, migration and invasion ability of Hepa1-6-FLuc cells were the same as that of the Hepa1-6 cells, and thus is suitable to replace Hepa1-6 cells in the construction of hepatocarcinoma animal models. No differences in subcutaneous tumor mass and its pathomorphology from implanted Hepa1-6-FLuc cells were observed compared with Hepa1-6 control tumors. Bioluminescence imaging indicated that the Luc signal of the Hepa1-6-FLuc cells was consistently strengthened with increases in tumor mass; however, the Luc signal of Hepa1-6-AdFLuc became weaker and eventually disappeared during tumor development. Therefore, compared with the transient expression by adenovirus, stable expression of the FLuc gene in Hepa1-6 cells may better reflect cell proliferation and survival in vivo , and provide a reliable source for the establishment of hepatocarcinoma models.

  6. Volatility and leachability of heavy metals and radionuclides in thermally treated HEPA filter media generated from nuclear facilities.

    PubMed

    Yoon, In-Ho; Choi, Wang-Kyu; Lee, Suk-Chol; Min, Byung-Youn; Yang, Hee-Chul; Lee, Kune-Woo

    2012-06-15

    The purpose of the present study was to apply thermal treatments to reduce the volume of HEPA filter media and to investigate the volatility and leachability of heavy metals and radionuclides during thermal treatment. HEPA filter media were transformed to glassy bulk material by thermal treatment at 900°C for 2h. The most abundant heavy metal in the HEPA filter media was Zn, followed by Sr, Pb and Cr, and the main radionuclide was Cs-137. The volatility tests showed that the heavy metals and radionuclides in radioactive HEPA filter media were not volatilized during the thermal treatment. PCT tests indicated that the leachability of heavy metals and radionuclides was relatively low compared to those of other glasses. XRD results showed that Zn and Cs reacted with HEPA filter media and were transformed into crystalline willemite (ZnO·SiO(2)) and pollucite (Cs(2)OAl(2)O(3)4SiO(2)), which are not volatile or leachable. The proposed technique for the volume reduction and transformation of radioactive HEPA filter media into glassy bulk material is a simple and energy efficient procedure without additives that can be performed at relatively low temperature compared with conventional vitrification process. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Developing Community-Level Policy and Practice to Reduce Traffic-Related Air Pollution Exposure

    PubMed Central

    Brugge, Doug; Patton, Allison P.; Bob, Alex; Reisner, Ellin; Lowe, Lydia; Bright, Oliver-John M.; Durant, John L.; Newman, Jim; Zamore, Wig

    2016-01-01

    The literature consistently shows associations of adverse cardiovascular and pulmonary outcomes with residential proximity to highways and major roadways. Air monitoring shows that traffic-related pollutants (TRAP) are elevated within 200–400 m of these roads. Community-level tactics for reducing exposure include the following: 1) HEPA filtration; 2) Appropriate air-intake locations; 3) Sound proofing, insulation and other features; 4) Land-use buffers; 5) Vegetation or wall barriers; 6) Street-side trees, hedges and vegetation; 7) Decking over highways; 8) Urban design including placement of buildings; 9) Garden and park locations; and 10) Active travel locations, including bicycling and walking paths. A multidisciplinary design charrette was held to test the feasibility of incorporating these tactics into near-highway housing and school developments that were in the planning stages. The resulting designs successfully utilized many of the protective tactics and also led to engagement with the designers and developers of the sites. There is a need to increase awareness of TRAP in terms of building design and urban planning. PMID:27413416

  8. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters.

    PubMed

    Nemoto, Junji; Saito, Tsuguyuki; Isogai, Akira

    2015-09-09

    Simple freeze-drying of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (TOCN) dispersions in water/tert-butyl alcohol (TBA) mixtures was conducted to prepare TOCN aerogels as high-performance air filter components. The dispersibility of the TOCNs in the water/TBA mixtures, and the specific surface area (SSA) of the resulting TOCN aerogels, was investigated as a function of the TBA concentration in the mixtures. The TOCNs were homogeneously dispersed in the water/TBA mixtures at TBA concentrations up to 40% w/w. The SSAs of the TOCN aerogels exceeded 300 m2/g when the TBA concentration in the aqueous mixtures was in the range from 20% to 50% w/w. When a commercially available, high-efficiency particulate air (HEPA) filter was combined with TOCN/water/TBA dispersions prepared using 30% TBA, and the product was freeze-dried, the resulting TOCN aerogel-containing filters showed superior filtration properties. This was because nanoscale, spider-web-like networks of the TOCNs with large SSAs were formed within the filter.

  9. Synergistic anticancer effects of curcumin and resveratrol in Hepa1-6 hepatocellular carcinoma cells.

    PubMed

    Du, Qin; Hu, Bing; An, Hong-Mei; Shen, Ke-Ping; Xu, Ling; Deng, Shan; Wei, Meng-Meng

    2013-05-01

    Hepatocellular carcinoma remains one of the most prevalent malignancies worldwide. Curcuma aromatica and Polygonum cuspidatum are one of the commonly used paired-herbs for liver cancer treatment. Curcumin and resveratrol are the major anticancer constituents of Curcuma aromatica and Polygonum cuspidatum, respectively. Curcumin and resveratrol have been found to exhibit a synergistic anticancer effect in colon cancer. However, the combined effect of curcumin and resveratrol against hepatocellular carcinoma remains unknown. In the present study, we evaluated the combined effects of curcumin and resveratrol in hepatocellular carcinoma Hepa1-6 cells. The results showed that curcumin and resveratrol significantly inhibited the proliferation of Hepa1-6 cells in a dose- and time-dependent manner. The combination treatment of curcumin and resveratrol elicited a synergistic antiproliferative effect in Hepa1-6 cells. The apoptosis of Hepa1-6 cells induced by the combination treatment with curcumin and resveratrol was accompanied by caspase-3, -8 and -9 activation, which was completely abrogated by a pan caspase inhibitor, Z-VAD-FMK. Combination of curcumin and resveratrol upregulated intracellular reactive oxygen species (ROS) levels in Hepa1-6 cells. The ROS scavenger, NAC, partially attenuated the apoptosis and caspase activation induced by the combination treatment of curcumin and resveratrol. In addition, the combination of curcumin and resveratrol downregulated XIAP and survivin expression. These data suggest that the combination treatment of curcumin and resveratrol is a promising novel anticancer strategy for liver cancer. The present study also provides new insights into the effective mechanism of paired-herbs in traditional Chinese medicine.

  10. Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems.

    PubMed

    Brun, C P; Miron, D; Silla, L M R; Pasqualotto, A C

    2013-04-01

    Invasive fungal diseases have emerged as important causes of morbidity and mortality in haematological patients. In this study air samples were collected in two haematopoietic stem cell transplantation (HSCT) units, in which distinct air-control systems were in place. In hospital 1 no high-efficiency particulate air (HEPA) filter was available whereas in hospital 2 HSCT rooms were equipped with HEPA filters, with positive air pressure in relation to the corridor. A total of 117 samples from rooms, toilets and corridors were obtained during December 2009 to January 2011, using a six-stage Andersen sampler. In both hospitals, the concentration of potentially pathogenic fungi in the air was reduced in patients' rooms compared to corridors (P < 0·0001). Despite the presence of a HEPA filter in hospital 2, rooms in both hospitals showed similar concentrations of potentially pathogenic fungi (P = 0·714). These findings may be explained by the implementation of additional protective measures in hospital 1, emphasizing the importance of such measures in protected environments.

  11. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.

    PubMed

    Jung, Jae Hee; Hwang, Gi Byoung; Lee, Jung Eun; Bae, Gwi Nam

    2011-08-16

    Carbon nanotubes (CNTs) have been widely used in a variety of applications because of their unique structure and excellent mechanical and electrical properties. Additionally, silver (Ag) nanoparticles exhibit broad-spectrum biocidal activity toward many different bacteria, fungi, and viruses. In this study, we prepared Ag-coated CNT hybrid nanoparticles (Ag/CNTs) using aerosol nebulization and thermal evaporation/condensation processes and tested their usefulness for antimicrobial air filtration. Droplets were generated from a CNT suspension using a six-jet collison nebulizer, passed through a diffusion dryer to remove moisture, and entered a thermal tube furnace where silver nanoparticles were generated by thermal evaporation/condensation at ∼980 °C in a nitrogen atmosphere. The CNT and Ag nanoparticle aerosols mixed together and attached to each other, forming Ag/CNTs. For physicochemical characterization, the Ag/CNTs were introduced into a scanning mobility particle sizer (SMPS) for size distribution measurements and were sampled by the nanoparticle sampler for morphological and elemental analyses. For antimicrobial air filtration applications, the airborne Ag/CNT particles generated were deposited continuously onto an air filter medium. Physical characteristics (fiber morphology, pressure drop, and filtration efficiency) and biological characteristics (antimicrobial tests against Staphylococcus epidermidis and Escherichia coli bioaerosols) were evaluated. Real-time SMPS and transmission electron microscopy (TEM) data showed that Ag nanoparticles that were <20 nm in diameter were homogeneously dispersed and adhered strongly to the CNT surfaces. Because of the attachment of Ag nanoparticles onto the CNT surfaces, the total particle surface area concentration measured by a nanoparticle surface area monitor (NSAM) was lower than the summation of each Ag nanoparticle and CNT generated. When Ag/CNTs were deposited on the surface of an air filter medium, the

  12. Evaluation of an air-filtration system for preventing aerosol transmission of Porcine reproductive and respiratory syndrome virus

    PubMed Central

    2005-01-01

    Abstract The purpose of this study was to evaluate the ability of a commercial air-filtration system to reduce aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV). The system consisted of a pre-filter and 2 filters with EU8 and EU13 ratings. In each of 4 trials, 5 PRRSV-infected donor pigs and 1 naïve recipient pig (each 25 kg) were housed in opposing chambers connected by a 1.3-m-long duct. The system filtered air entering 1 recipient-pig chamber (filtered facility) from the donor- chamber but not a 2nd recipient-pig chamber (nonfiltered facility). The donor pigs had been experimentally infected with PRRSV MN-184, an isolate previously documented to be shed at a high frequency in contagious aerosols. On days 3 to 7 after infection of the donors, the 2 groups were housed in their respective chambers for 6 h and then in separate facilities, where samples were collected for testing by polymerase chain reaction and enzyme-linked immunosorbent assay over 14 d. Aerosol transmission was observed in 6 of the 20 replicates in the nonfiltered facility, whereas all pigs remained PRRSV-negative in the filtered facility; the difference was significant at P < 0.01. Thus, under the conditions of this study, the air-filtration system evaluated appeared to be highly effective at reducing aerosol transmission of PRRSV. PMID:16479728

  13. Comparison of nonwoven fiberglass and stainless steel microfiber media in aerosol coalescence filtration

    NASA Astrophysics Data System (ADS)

    Manzo, Gabriel

    Coalescing filters are used to remove small liquid droplets from air streams. They have numerous industrial applications including dehumidification, cabin air filtration, compressed air filtration, metal working, CCV, and agriculture. In compressed air systems, oils used for lubrication of compressor parts can aerosolize into the main air stream causing potential contamination concerns for downstream applications. In many systems, humid air can present problems to sensitive equipment and sensors. As the humid air cools, small water drops condense and can disrupt components that need to be kept dry. Fibrous nonwoven filter media are commonly used to coalesce small drops into larger drops for easier removal. The coalescing performance of a medium is dependent upon several parameters including permeability, porosity, and wettability. In many coalescing filters, glass fibers are used. In this work, the properties of steel fiber media are measured to see how these properties compare to glass fiber media. Steel fiber media has different permeability, porosity and wettability to oil and water than fiber glass media. These differences can impact coalescence performance. The impact of these differences in properties on coalescence filtration performance was evaluated in a coalescence test apparatus. The overall coalescence performance of the steel and glass nonwoven fiber media are compared using a filtration efficiency and filtration index. In many cases, the stainless steel media performed comparably to fiber glass media with efficiencies near 90%. Since stainless steel media had lower pressure drops than fiber glass media, its filtration index values were significantly higher. Broader impact of this work is the use of stainless steel fiber media as an alternative to fiber glass media in applications where aerosol filtration is needed to protect the environment or sensitive equipment and sensors.

  14. HEPA Filter Disposal Write-Up 10/19/16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loll, C.

    Process knowledge (PK) collection on HEPA filters is handled via the same process as other waste streams at LLNL. The Field technician or Characterization point of contact creates an information gathering document (IGD) in the IGD database, with input provided from the generator, and submits it for electronic approval. This document is essentially a waste generation profile, detailing the physical, chemical as well as radiological characteristics, and hazards, of a waste stream. It will typically contain a general, but sometimes detailed, description of the work processes which generated the waste. It will contain PK as well as radiological and industrialmore » hygiene analytical swipe results, and any other analytical or other supporting knowledge related to characterization. The IGD goes through an electronic approval process to formalize the characterization and to ensure the waste has an appropriate disposal path. The waste generator is responsible for providing initial process knowledge information, and approves the IGD before it routed to chemical and radiological waste characterization professionals. This is the standard characterization process for LLNL-generated HEPA Filters.« less

  15. Isolation of bacteriophages from air using vacuum filtration technique: an improved and novel method.

    PubMed

    Magare, B; Nair, A; Khairnar, K

    2017-10-01

    Development of a simple and economical air sampler for isolation and enrichment of bacteriophages from air samples. A vacuum filtration unit with simple modifications was used for isolation of bacteriophages from air sampled in the lavatory. Air was sampled at the rate of 62 l min -1 by bubbling into Mcllvaine buffer for 30 min, which was used as bacteriophage solution for enrichment and plaque assessment against individual hosts. Alternatively, the aforementioned phage solution was enriched using a host consortium before plaque assessment. Phages were isolated in the range of 1-12 PFU per ml by the first method, whereas enrichment with host consortium gave phages around 10- to 1000-folds higher in number. Combining with established enrichment method, an improvement of about 10 times in phage isolation efficiency was attained. The method is very useful for studying the natural bacteriophages of air, requiring only a basic microbiological laboratory setup making it simple and economical. This study brings out a simple, economical air sampler for assessing air bacteriophages that can be employed by any microbial laboratory. Although various methods are available for studying bacteriophages in water and soil, very limited are available for air. To the best of our knowledge, the method developed in this study is unique in its design and concept for studying bacteriophages in air. The sampler is sterilizable by autoclaving and maintains a healthy rate of airflow provided by conventional vacuum pumps. The use of a nonspecific 'trapping solution' allows for the qualitative and quantitative study of air bacteriophages. © 2017 The Society for Applied Microbiology.

  16. Development of Test Protocols for International Space Station Particulate Filters

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Vijayakumar, R.; Agui, Juan H.

    2014-01-01

    Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High- Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. Over the years, the service life of these filters has been re-evaluated based on limited post-flight tests of returned filters and risk factors. On earth, a well designed and installed HEPA filter will last for several years, e.g. in industrial and research clean room applications. Test methods for evaluating these filters are being developed on the basis of established test protocols used by the industry and the military. This paper will discuss the test methods adopted and test results on prototypes of the ISS filters. The results will assist in establishing whether the service life can be extended for these filters. Results from unused filters that have been in storage will also be presented to ascertain the shelf life and performance deterioration, if any and determine if the shelf life may be extended.

  17. Monitoring of Microscopic Filamentous Fungi in Indoor Air of Transplant Unit.

    PubMed

    Holý, Ondřej; Matoušková, Ivanka; Kubátová, Alena; Hamal, Petr; Svobodová, Lucie; Jurásková, Eva; Raida, Luděk

    2015-12-01

    The aim of the study was to control the microbial contamination of indoor air monitored monthly at the Transplant Unit of the University Hospital Olomouc from August 2010 to July 2011. The unit is equipped with a three-stage air filtration system with HEPA filters. The MAS-100 air sampler (Merck, GER) was used. Twenty locations were singled out for the purposes of collecting a total of 720 samplings of the indoor air. Swabs of the HVAC diffusers at the sampling locations were always carried out after the sampling of the indoor air. In total, 480 samples of the indoor air were taken for Sabouraud chloramphenicol agar. In 11 cases (2.29%) the cultivation verified the presence of microscopic filamentous fungi. Only two cases involved the sanitary facilities of a patient isolation box; the other positive findings were from the facilities. The most frequent established genus was Aspergillus spp. (4x), followed by Trichoderma spp. (2x) and Penicillium spp. (2x), Paecilomyces spp., Eurotium spp., and Chrysonilia spp. (1x each). In 2 cases the cultivation established sterile aerial mycelium, unfortunately no further identification was possible. A total of 726 swabs of HVAC diffusers were collected (2 positive-0.28%). The study results demonstrated the efficacy of the HVAC equipment. With the continuing increase in the number of severely immunocompromised patients, hospitals are faced with the growing problem of invasive aspergillosis and other opportunistic infections. Preventive monitoring of microbial air contaminants is of major importance for the control of invasive aspergillosis. Copyright© by the National Institute of Public Health, Prague 2015.

  18. FIELD METHODS TO MEASURE CONTAMINANT REMOVAL EFFECTIVENESS OF GAS-PHASE AIR FILTRATION EQUIPMENT - PHASE 1: SEARCH OF LITERATURE AND PRIOR ART

    EPA Science Inventory

    The report, Phase 1 of a two-phase research project, gives results of a literature search into the
    effectiveness of in-field gas-phase air filtration equipment (GPAFE) test methods, including required instrumentation and costs. GPAFE has been used in heating, ventilation, and ...

  19. Nuclear air cleaning: the need for a change in emphasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.

    1982-11-01

    The nuclear industry now has over 35 years of experience in nuclear air cleaning. This experience covers technology development, system design, operations, and maintenance. Much of the past experience has been directed towards technology development with particular emphasis on high efficiency particulate air (HEPA) filters. Implementation of this technology has lagged its development by a number of years. A recent study examines the cause and frequencies of HEPA filter changeouts and failures. These data lead to a conclusion that a shift in emphasis from technology development to the training of personnel and the designing and maintaining of such systems ismore » needed. Some highlights of the data and a discussion of topics which should be addressed in training will be presented.« less

  20. Infiltration of forest fire and residential wood smoke: an evaluation of air cleaner effectiveness.

    PubMed

    Barn, Prabjit; Larson, Timothy; Noullett, Melanie; Kennedy, Susan; Copes, Ray; Brauer, Michael

    2008-09-01

    Communities impacted by fine-particle air pollution (particles with an aerodynamic diameter less than 2.5 microm; PM(2.5)) from forest fires and residential wood burning require effective, evidence-based exposure-reduction strategies. Public health recommendations during smoke episodes typically include advising community members to remain indoors and the use of air cleaners, yet little information is available on the effectiveness of these measures. Our study attempted to address the following objectives: to measure indoor infiltration factor (F(inf)) of PM(2.5) from forest fires/wood smoke, to determine the effectiveness of high-efficiency particulate air (HEPA) filter air cleaners in reducing indoor PM(2.5), and to analyze the home determinants of F(inf) and air cleaner effectiveness (ACE). We collected indoor/outdoor 1-min PM(2.5) averages and 48-h outdoor PM(2.5) filter samples for 21 winter and 17 summer homes impacted by wood burning and forest fire smoke, respectively, during 2004-2005. A portable HEPA filter air cleaner was operated indoors with the filter removed for one of two sampling days. Particle F(inf) and ACE were calculated for each home using a recursive model. We found mean F(inf)+/-SD was 0.27+/-0.18 and 0.61+/-0.27 in winter (n=19) and summer (n=13), respectively, for days when HEPA filters were not used. Lower F(inf)+/-SD values of 0.10+/-0.08 and 0.19+/-0.20 were found on corresponding days when HEPA filters were in place. Mean+/-SD ACE ([F(inf) without filter-F(inf) with filter]/F(inf) without filter) in winter and summer were 55+/-38% and 65+/-35%, respectively. Number of windows and season predicted F(inf) (P<0.001). No significant predictors of ACE were identified. Our findings show that remaining indoors combined with use of air cleaner can effectively reduce PM(2.5) exposure during forest fires and residential wood burning.

  1. Use of Recirculating Ventilation with Dust Filtration to Improve Wintertime Air Quality in a Swine Farrowing Room

    PubMed Central

    Anthony, T. Renée; Altmaier, Ralph; Jones, Samuel; Gassman, Rich; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    The performance of a recirculating ventilation system with dust filtration was evaluated to determine its effectiveness to improve the air quality in a swine farrowing room of a concentrated animal feeding operation (CAFO). Air was exhausted from the room (0.47 m3sec−1; 1000 cfm), treated with a filtration unit (Shaker-Dust Collector), and returned to the farrowing room to reduce dust concentrations while retaining heat necessary for livestock health. The air quality in the room was assessed over a winter, during which time limited fresh air is traditionally brought into the building. Over the study period, dust concentrations ranged from 0.005 to 0.31 mg m−3 (respirable) and 0.17 to 2.09 mg m−3 (inhalable). In-room dust concentrations were reduced (41% for respirable and 33% for inhalable) with the system in operation, while gas concentrations (ammonia [NH3], hydrogen sulfide [H2S], carbon monoxide [CO], carbon dioxide [CO2]) were unchanged. The position of the exhaust and return air systems provided reasonably uniform contaminant distributions, although the respirable dust concentrations nearest one of the exhaust ducts was statistically higher than other locations in the room, with differences averaging only 0.05 mg m−3. Throughout the study, CO2 concentrations consistently exceeded 1540 ppm (industry recommendations) and on eight of the 18 study days it exceeded 2500 ppm (50% of the ACGIH TLV), with significantly higher concentrations near a door to a temperature-controlled hallway that was typically often left open. Alternative heaters are recommended to reduce CO2 concentrations in the room. Contaminant concentrations were modeled using production and environmental factors, with NH3 related to the number of sow in the room and outdoor temperatures and CO2 related to the number of piglets and outdoor temperatures. The recirculating ventilation system provided dust reduction without increasing concentrations of hazardous gases. PMID:25950713

  2. Integrated photocatalytic filtration array for indoor air quality control.

    PubMed

    Denny, Frans; Permana, Eric; Scott, Jason; Wang, Jing; Pui, David Y H; Amal, Rose

    2010-07-15

    Photocatalytic and filtration technologies were integrated to develop a hybrid system capable of removing and oxidizing organic pollutants from an air stream. A fluidized bed aerosol generator (FBAG) was adapted to prepare TiO(2)-loaded ventilation filters for the photodegradation of gas phase ethanol. Compared to a manually loaded filter, the ethanol photodegradation rate constant for the FBAG coated filter increased by 361%. Additionally, the presence of the photogenerated intermediate product, acetaldehyde, was reduced and the time for mineralization to CO(2) was accelerated. These improvements were attributed to the FBAG system providing a more uniform distribution of TiO(2) particles across the filter surface leading to greater accessibility by the UV light. A dual-UV-lamp system, as opposed to a single-lamp system, enhanced photocatalytic filter performance demonstrating the importance of high light irradiance and light distribution across the filter surface. Substituting the blacklight blue lamps with a UV-light-emitting-diode (UV-LED) array led to further improvement as well as suppressed the electrical energy per order (EE/O) by a factor of 6. These improvements derived from the more uniform distribution of light irradiance as well as the higher efficiency of UV-LEDs in converting electrical energy to photons.

  3. Effects of MERV 16 filters and routine work practices on enclosed cabs for reducing respirable dust and DPM exposures in an underground limestone mine

    PubMed Central

    Noll, J.D.; Cecala, A.B.; J.A.Organiscak; Rider, J.P.

    2015-01-01

    An effective technique to minimize miners’ respirable dust and diesel exposure on mobile mining equipment is to place mine operators in enclosed cabs with designed filtration and pressurization systems. Many factors affect the performance of these enclosed cab systems, and one of the most significant factors is the effectiveness of the filtration system. High-efficiency particulate air (HEPA)-type filters are typically used because they are highly efficient at capturing all types and sizes of particles, including those in the submicron range such as diesel particulate matter (DPM). However, in laboratory tests, minimum efficiency reporting value (MERV) 16 filters have proven to be highly efficient for capturing DPM and respirable dust. Also, MERV 16 filters can be less restrictive to cab airflow and less expensive than HEPA filters. To verify their effectiveness in the field, MERV 16 filters were used in the enclosed cab filtration system on a face drill and roof bolting mining machine and tested at an underground limestone mine. Test results showed that DPM and respirable dust concentrations were reduced by more than 90% when the cabs were properly sealed. However, when the cab door was opened periodically throughout the shift, the reduction efficiency of the MERV 16 filters was reduced to 80% on average. PMID:26236044

  4. HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro.

    PubMed

    Lübberstedt, Marc; Müller-Vieira, Ursula; Mayer, Manuela; Biemel, Klaus M; Knöspel, Fanny; Knobeloch, Daniel; Nüssler, Andreas K; Gerlach, Jörg C; Zeilinger, Katrin

    2011-01-01

    Primary human hepatocytes are considered as a highly predictive in vitro model for preclinical drug metabolism studies. Due to the limited availability of human liver tissue for cell isolation, there is a need of alternative cell sources for pharmaceutical research. In this study, the metabolic activity and long-term stability of the human hepatoma cell line HepaRG were investigated in comparison to primary human hepatocytes (pHH). Hepatocyte-specific parameters (albumin and urea synthesis, galactose and sorbitol elimination) and the activity of human-relevant cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) were assayed in both groups over a period of 14 days subsequently to a two week culture period in differentiated state in case of the HepaRG cells, and compared with those of cryopreserved hepatocytes in suspension. In addition, the inducibility of CYP enzymes and the intrinsic clearances of eleven reference drugs were determined. The results show overall stable metabolic activity of HepaRG cells over the monitored time period. Higher albumin production and galactose/sorbitol elimination rates were observed compared with pHH, while urea production was not detected. CYP enzyme-dependent drug metabolic capacities were shown to be stable over the cultivation time in HepaRG cells and were comparable or even higher (CYP2C9, CYP2D6, CYP3A4) than in pHH, whereas commercially available hepatocytes showed a different pattern The intrinsic clearance rates of reference drugs and enzyme induction of most CYP enzymes were similar in HepaRG cells and pHH. CYP1A2 activity was highly inducible in HepaRG by β-naphthoflavone. In conclusion, the results from this study indicate that HepaRG cells could provide a suitable alternative to pHH in pharmaceutical research and development for metabolism studies such as CYP induction or sub-chronic to chronic hepatotoxicity studies. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Impact of the air filtration on indoor particle concentration by using combination filters in offices building

    NASA Astrophysics Data System (ADS)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Noraini, N. M. R.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Heating ventilation and air conditioning system (HVAC) is very important for offices building and human health. The combining filter method was used to reduce the air pollution indoor such as that particulate matter and gases pollution that affected in health and productivity. Using particle filters in industrial HVAC systems (factories and manufacturing process) does not enough to remove all the indoor pollution. The main objective of this study is to investigate the impact of combination filters for particle and gases removal efficiency. The combining method is by using two filters (particulate filter pre-filter and carbon filter) to reduce particle matter and gases respectively. The purpose of this study is to use minimum efficiency reporting value (MERV filter) rating 13 and activated carbon filter (ACF) to remove indoor air pollution and controlling the air change rate to enhance the air quality and energy saving. It was concluded that the combination filter showed good removal efficiency of particle up to 90.76% and 89.25% for PM10 and PM2.5 respectively. The pressure drop across the filters was small compared with the high-efficiency filters. The filtration efficiency of combination filters after three months’ was better than efficiency by the new MERV filter alone.

  6. Protection of the vehicle cab environment against bacteria, fungi and endotoxins in composting facilities.

    PubMed

    Schlosser, O; Huyard, A; Rybacki, D; Do Quang, Z

    2012-06-01

    Microbial quality of air inside vehicle cabs is a major occupational health risk management issue in composting facilities. Large differences and discrepancies in protection factors between vehicles and between biological agents have been reported. This study aimed at estimating the mean protection efficiency of the vehicle cab environment against bioaerosols with higher precision. In-cab measurement results were also analysed to ascertain whether or not these protection systems reduce workers' exposure to tolerable levels. Five front-end loaders, one mobile mixer and two agricultural tractors pulling windrow turners were investigated. Four vehicles were fitted with a pressurisation and high efficiency particulate air (HEPA) filtration system. The four others were only equipped with pleated paper filter without pressurisation. Bacteria, fungi and endotoxins were measured in 72 pairs of air samples, simultaneously collected inside the cab and on the outside of the cab with a CIP 10-M sampler. A front-end loader, purchased a few weeks previously, fitted with a pressurisation and high efficiency particulate air (HEPA) filtration system, and with a clean cab, exhibited a mean protection efficiency of between 99.47% CI 95% [98.58-99.97%] and 99.91% [99.78-99.98%] depending on the biological agent. It is likely that the lower protection efficiency demonstrated in other vehicles was caused by penetration through the only moderately efficient filters, by the absence of pressurisation, by leakage in the filter-sealing system, and by re-suspension of particles which accumulated in dirty cabs. Mean protection efficiency in regards to bacteria and endotoxins ranged between 92.64% [81.87-97.89%] and 98.61% [97.41-99.38%], and between 92.68% [88.11-96.08%] and 98.43% [97.44-99.22%], respectively. The mean protection efficiency was the lowest when confronted with fungal spores, from 59.76% [4.19-90.75%] to 94.71% [91.07-97.37%]. The probability that in-cab exposure to fungi

  7. Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells

    PubMed Central

    2012-01-01

    Liver infection with hepatitis B virus (HBV), a DNA virus of the Hepadnaviridae family, leads to severe disease, such as fibrosis, cirrhosis and hepatocellular carcinoma. The early steps of the viral life cycle are largely obscure and the host cell plasma membrane receptors are not known. HepaRG is the only proliferating cell line supporting HBV infection in vitro, following specific differentiation, allowing for investigation of new host host-cell factors involved in viral entry, within a more robust and reproducible environment. Viral infection generally begins with receptor recognition at the host cell surface, following highly specific cell-virus interactions. Most of these interactions are expected to take place at the plasma membrane of the HepaRG cells. In the present study, we used this cell line to explore changes between the plasma membrane of undifferentiated (−) and differentiated (+) cells and to identify differentially-regulated proteins or signaling networks that might potentially be involved in HBV entry. Our initial study identified a series of proteins that are differentially expressed in the plasma membrane of (−) and (+) cells and are good candidates for potential cell-virus interactions. To our knowledge, this is the first study using functional proteomics to study plasma membrane proteins from HepaRG cells, providing a platform for future experiments that will allow us to understand the cell-virus interaction and mechanism of HBV viral infection. PMID:22857383

  8. Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.

    High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikesmore » and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)« less

  9. Fire tests to evaluate the potential fire threat and its effects on HEPA filter integrity in cell ventilation at the Oak Ridge National Laboratory, Building 7920

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M.

    1992-12-01

    As a result of a DOE (Tiger Team) Technical Safety Appraisal (November 1990) of the Radiochemical Engineering Development Center (REDC), ORNL Building 7920, a number of fire protection concerns were identified. The primary concern was the perceived loss of ventilation system containment due to the thermal destruction and/or breaching of the prefilters and/or high-efficiency particulate air filters (HEPA `s) and the resultant radioactive release to the external environment. The following report describes the results of an extensive fire test program performed by the Fire Research Discipline (FRD) of the Special Projects Division of Lawrence Livermore National Lab (LLNL) and fundedmore » by ORNL to address these concerns. Full scale mock-ups of a REDC hot cell tank pit, adjacent cubicle pit, and associated ventilation system were constructed at LLNL and 13 fire experiments were conducted to specifically answer the questions raised by the Tiger Team. Our primary test plan was to characterize the burning of a catastrophic solvent spill (kerosene) of 40 liters and its effect on the containment ventilation system prefilters and HEPA filters. In conjunction with ORNL and Lockwood Greene we developed a test matrix that assessed the fire performance of the prefilters and HEPA filters; evaluated the fire response of the fiber reinforced plastic (FRP) epoxy ventilation duct work; the response and effectiveness of the fire protection system, the effect of fire in a cubicle on the vessel off-gas (VOG) elbow, and other fire safety questions.« less

  10. Impact of humidification and nebulization during expiratory limb protection: an experimental bench study.

    PubMed

    Tonnelier, Alexandre; Lellouche, François; Bouchard, Pierre Alexandre; L'Her, Erwan

    2013-08-01

    Different filtering devices are used during mechanical ventilation to avoid dysfunction of flow and pressure transducers or for airborne microorganisms containment. Water condensates, resulting from the use of humidifiers, but also residual nebulization particles may have a major influence on expiratory limb resistance. To evaluate the influence of nebulization and active humidification on the resistance of expiratory filters. A respiratory system analog was constructed using a test lung, an ICU ventilator, heated humidifiers, and a piezoelectric nebulizer. Humidifiers were connected to different types of circuits (unheated, mono-heated, new-generation and old-generation bi-heated). Five filter types were evaluated: electrostatic, heat-and-moisture exchanger, standard, specific, and internal heated high-efficiency particulate air [HEPA] filter. Baseline characteristics were obtained from each dry filter. Differential pressure measurements were carried out after 24 hours of continuous in vitro use for each condition, and after 24 hours of use with an old-generation bi-heated circuit without nebulization. While using unheated circuits, measurements had to be interrupted before 24 hours for all the filtering devices except the internal heated HEPA filter. The heat-and-moisture exchangers occluded before 24 hours with the unheated and mono-heated circuits. The circuit type, nebulization practice, and duration of use did not influence the internal heated HEPA filter resistance. Expiratory limb filtration is likely to induce several major adverse events. Expiratory filter resistance increase is due mainly to the humidification circuit type, rather than to nebulization. If filtration is mandatory while using an unheated circuit, a dedicated filter should be used for ≤ 24 hours, or a heated HEPA for a longer duration.

  11. Three-dimensional HepaRG model as an attractive tool for toxicity testing.

    PubMed

    Leite, Sofia B; Wilk-Zasadna, Iwona; Zaldivar, Jose M; Airola, Elodie; Reis-Fernandes, Marcos A; Mennecozzi, Milena; Guguen-Guillouzo, Christiane; Chesne, Christopher; Guillou, Claude; Alves, Paula M; Coecke, Sandra

    2012-11-01

    The culture of HepaRG cells as three dimensional (3D) structures in the spinner-bioreactor may represent added value as a hepatic system for toxicological purposes. The use of a cost-effective commercially available bioreactor, which is compatible with high-throughput cell analysis, constitutes an attractive approach for routine use in the drug testing industry. In order to assess specific aspects of the biotransformation capacity of the bioreactor-based HepaRG system, the induction of CYP450 enzymes (i.e., CYP1A2, 2B6, 2C9, and 3A4) and the activity of the phase II enzyme, uridine diphosphate glucuronoltransferase (UGT), were tested. The long-term functionality of the system was demonstrated by 7-week stable profiles of albumin secretion, CYP3A4 induction, and UGT activities. Immunofluorescence-based staining showed formation of tissue-like arrangements including bile canaliculi-like structures and polar distribution of transporters. The use of in silico models to analyze the in vitro data related to hepatotoxic activity of acetaminophen (APAP) demonstrated the advantage of the integration of kinetic and dynamic aspects for a better understanding of the in vitro cell behavior. The bioactivation of APAP and its related cytotoxicity was assessed in a system compatible to high-throughput screening. The approach also proved to be a good strategy to reduce the time necessary to obtain fully differentiated cell cultures. In conclusion, HepaRG cells cultured in 3D spinner-bioreactors are an attractive tool for toxicological studies, showing a liver-like performance and demonstrating a practical applicability for toxicodynamic approaches.

  12. Filter aids influence on pressure drop across a filtration system

    NASA Astrophysics Data System (ADS)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  13. Coagulation, flocculation, dissolved air flotation and filtration in the removal of Giardia spp. and Cryptosporidium spp. from water supply.

    PubMed

    Andreoli, Fernando César; Sabogal-Paz, Lyda Patricia

    2017-11-15

    Removing protozoa from a water supply using coagulation, flocculation, dissolved air flotation (DAF) and filtration on a bench scale was evaluated. Calcium carbonate flocculation with and without immunomagnetic separation (IMS) was chosen to detect Giardia spp. cysts and Cryptosporidium spp. oocysts in the studied samples. The results indicated that DAF removed between 1.31 log and 1.79 log of cysts and between 1.08 log and 1.42 log of oocysts. The performance was lower in filtration, with the removal of 1.07 log-1.44 log for cysts and 0.82 log-0.98 log for oocysts. The coagulation, flocculation, DAF and filtration steps removed more than 2.2 log of cysts and oocysts from the water studied. However, protozoa were detected in the filtered water, even with turbidity values of 0.2 NTU. The recovery of the detection method met the international criteria and was higher when there was no IMS. Including the third acid dissociation in the IMS was critical to improve the performance of the protocol tested. However, there was an increase in the technical and analytical complexity and costs. It was also observed that the efficiency of the treatment was linked to the performance of the selected method of detecting protozoa.

  14. Testing chemical carcinogenicity by using a transcriptomics HepaRG-based model?

    PubMed Central

    Doktorova, T. Y.; Yildirimman, Reha; Ceelen, Liesbeth; Vilardell, Mireia; Vanhaecke, Tamara; Vinken, Mathieu; Ates, Gamze; Heymans, Anja; Gmuender, Hans; Bort, Roque; Corvi, Raffaella; Phrakonkham, Pascal; Li, Ruoya; Mouchet, Nicolas; Chesne, Christophe; van Delft, Joost; Kleinjans, Jos; Castell, Jose; Herwig, Ralf; Rogiers, Vera

    2014-01-01

    The EU FP6 project carcinoGENOMICS explored the combination of toxicogenomics and in vitro cell culture models for identifying organotypical genotoxic- and non-genotoxic carcinogen-specific gene signatures. Here the performance of its gene classifier, derived from exposure of metabolically competent human HepaRG cells to prototypical non-carcinogens (10 compounds) and hepatocarcinogens (20 compounds), is reported. Analysis of the data at the gene and the pathway level by using independent biostatistical approaches showed a distinct separation of genotoxic from non-genotoxic hepatocarcinogens and non-carcinogens (up to 88 % correct prediction). The most characteristic pathway responding to genotoxic exposure was DNA damage. Interlaboratory reproducibility was assessed by blindly testing of three compounds, from the set of 30 compounds, by three independent laboratories. Subsequent classification of these compounds resulted in correct prediction of the genotoxicants. As expected, results on the non-genotoxic carcinogens and the non-carcinogens were less predictive. In conclusion, the combination of transcriptomics with the HepaRG in vitro cell model provides a potential weight of evidence approach for the evaluation of the genotoxic potential of chemical substances. PMID:26417288

  15. AIR CLEANING FOR ACCEPTABLE INDOOR AIR QUALITY

    EPA Science Inventory

    The paper discusses air cleaning for acceptable indoor air quality. ir cleaning has performed an important role in heating, ventilation, and air-conditioning systems for many years. raditionally, general ventilation air-filtration equipment has been used to protect cooling coils ...

  16. Forced-air warming blowers: An evaluation of filtration adequacy and airborne contamination emissions in the operating room.

    PubMed

    Albrecht, Mark; Gauthier, Robert L; Belani, Kumar; Litchy, Mark; Leaper, David

    2011-05-01

    Forced-air warming (FAW) is widely used to prevent hypothermia during surgical procedures. The airflow from these blowers is often vented near the operative site and should be free of contaminants to minimize the risk of surgical site infection. Popular FAW blowers contain a 0.2-μm rated intake filter to reduce these risks. However, there is little evidence that the efficiency of the intake filter is adequate to prevent airborne contamination emissions or protect the internal air path from microbial contamination buildup. Five new intake filters were obtained directly from the manufacturer (Bair Hugger 505, model 200708D; Arizant Healthcare, Eden Prairie, MN), and 5 model 200708C filters currently in hospital use were removed from FAW devices. The retention efficiency of these filters was assessed using a monodisperse sodium chloride aerosol. In the same hospitals, internal air path surface swabs and hose outlet particle counts were performed on 52 forced-air warming devices (all with the model 200708C filter) to assess internal microbial buildup and airborne contamination emissions. Intake filter retention efficiency at 0.2 μm was 93.8% for the 200708C filter and 61.3% at for the 200708D filter. The 200708D filter obtained directly from the manufacturer has a thinner filtration media than the 200708C filter in current hospital use, suggesting that the observed differences in retention efficiency were due to design changes. Fifty-eight percent of the FAW blowers evaluated were internally generating and emitting airborne contaminants, with microorganisms detected on the internal air path surfaces of 92.3% of these blowers. Isolates of Staphylococcus aureus, coagulase-negative Staphylococcus, and methicillin-resistant S aureus were detected in 13.5%, 3.9%, and 1.9% of FAW blowers, respectively. The design of popular FAW devices using the 200708C filter was found to be inadequate for preventing the internal buildup and emission of microbial contaminants into the

  17. Demonstrated technology for high-rate filtration of oily wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danzberger, A.H.; Nebolsine, R.

    1980-01-01

    A discussion covers the various techniques (gravity separation, air or gas flotation, and ultrafiltration) used to remove oil from wastewater; their relative advantages; the satisfactory performance of ultrahigh-rate (UHR) filters in various applications, including in a Standard Oil Co. (Ohio) refinery; the development of UHR filtration plants by Hydrotechnic Corp.; the design and advantages of Hydrotechnic's filters; filtration; flow control and head loss; the backwash process; and the capital, construction, and operating costs of UHR filters (1000 to 7000 cu m/hr).

  18. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  19. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei

    2013-03-01

    We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols

  20. Comparative Proteomics Reveals Novel Components at the Plasma Membrane of Differentiated HepaRG Cells and Different Distribution in Hepatocyte- and Biliary-Like Cells

    PubMed Central

    Woods, Alisa G.; Lazar, Catalin; Radu, Gabriel L.; Darie, Costel C.; Branza-Nichita, Norica

    2013-01-01

    Hepatitis B virus (HBV) is a human pathogen causing severe liver disease and eventually death. Despite important progress in deciphering HBV internalization, the early virus-cell interactions leading to infection are not known. HepaRG is a human bipotent liver cell line bearing the unique ability to differentiate towards a mixture of hepatocyte- and biliary-like cells. In addition to expressing metabolic functions normally found in liver, differentiated HepaRG cells support HBV infection in vitro, thus resembling cultured primary hepatocytes more than other hepatoma cells. Therefore, extensive characterization of the plasma membrane proteome from HepaRG cells would allow the identification of new cellular factors potentially involved in infection. Here we analyzed the plasma membranes of non-differentiated and differentiated HepaRG cells using nanoliquid chromatography-tandem mass spectrometry to identify the differences between the proteomes and the changes that lead to differentiation of these cells. We followed up on differentially-regulated proteins in hepatocytes- and biliary-like cells, focusing on Cathepsins D and K, Cyclophilin A, Annexin 1/A1, PDI and PDI A4/ERp72. Major differences between the two proteomes were found, including differentially regulated proteins, protein-protein interactions and intracellular localizations following differentiation. The results advance our current understanding of HepaRG differentiation and the unique properties of these cells. PMID:23977166

  1. Comparative proteomics reveals novel components at the plasma membrane of differentiated HepaRG cells and different distribution in hepatocyte- and biliary-like cells.

    PubMed

    Petrareanu, Catalina; Macovei, Alina; Sokolowska, Izabela; Woods, Alisa G; Lazar, Catalin; Radu, Gabriel L; Darie, Costel C; Branza-Nichita, Norica

    2013-01-01

    Hepatitis B virus (HBV) is a human pathogen causing severe liver disease and eventually death. Despite important progress in deciphering HBV internalization, the early virus-cell interactions leading to infection are not known. HepaRG is a human bipotent liver cell line bearing the unique ability to differentiate towards a mixture of hepatocyte- and biliary-like cells. In addition to expressing metabolic functions normally found in liver, differentiated HepaRG cells support HBV infection in vitro, thus resembling cultured primary hepatocytes more than other hepatoma cells. Therefore, extensive characterization of the plasma membrane proteome from HepaRG cells would allow the identification of new cellular factors potentially involved in infection. Here we analyzed the plasma membranes of non-differentiated and differentiated HepaRG cells using nanoliquid chromatography-tandem mass spectrometry to identify the differences between the proteomes and the changes that lead to differentiation of these cells. We followed up on differentially-regulated proteins in hepatocytes- and biliary-like cells, focusing on Cathepsins D and K, Cyclophilin A, Annexin 1/A1, PDI and PDI A4/ERp72. Major differences between the two proteomes were found, including differentially regulated proteins, protein-protein interactions and intracellular localizations following differentiation. The results advance our current understanding of HepaRG differentiation and the unique properties of these cells.

  2. A Custom Robotic System for Inspecting HEPA Filters in the Payload Changeout Room at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Spencer, James E., Jr.; Looney, Joe

    1994-01-01

    In this paper, the prime objective is to describe a custom 4-dof (degree-of-freedom) robotic arm capable of autonomously or telerobotically performing systematic HEPA filter inspection and certification in the Shuttle Launch Pad Payload Changeout Rooms (PCR's) on pads A and B at the Kennedy Space Center, Florida. This HEPA filter inspection robot (HFIR) has been designed to be easily deployable and is equipped with the necessary sensory devices, control hardware, software and man-machine interfaces needed to implement HEPA filter inspection reliably and efficiently without damaging the filters or colliding with existing PCR structures or filters. The main purpose of the HFIR is to implement an automated positioning system to move special inspection sensors in pre-defined or manual patterns for the purpose of verifying filter integrity and efficiency. This will ultimately relieve NASA Payload Operations from significant problems associated with time, cost and personnel safety, impacts realized during non-automated PCR HFIR filter certification.

  3. Feasibility of bioengineered two-stages sequential batch reactor and filtration-adsorption process for complex agrochemical effluent.

    PubMed

    Manekar, Pravin; Biswas, Rima; Urewar, Chaitali; Pal, Sukdeb; Nandy, Tapas

    2013-11-01

    In the present study, the feasibility of a bioengineered two-stages sequential batch reactor (BTSSBR) followed by filtration-adsorption process was investigated to treat the agrochemical effluent by overcoming factor affecting process stability such as microbial imbalance and substrate sensitivity. An air stripper stripped 90% of toxic ammonia, and combined with other streams for bio-oxidation and filtration-adsorption. The BTSSBR system achieved bio-oxidation at 6 days hydraulic retention time by fending off microbial imbalance and substrate sensitivity. The maximum reduction in COD and BOD by heterotrophic bacteria in the first reactor was 87% and 90%, respectively. Removal of toxic ammoniacal-nitrogen by autotrophic bacteria in a post-second stage bio-oxidation was 97%. The optimum filtration and adsorption of pollutants were achieved at a filtration rate of 10 and 9 m(3)m(-2)h(-1), respectively. The treatment scheme comprising air stripper, BTSSBR and filtration-adsorption process showed a great promise for treating the agrochemical effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  5. Stable Overexpression of the Constitutive Androstane Receptor Reduces the Requirement for Culture with Dimethyl Sulfoxide for High Drug Metabolism in HepaRG Cells.

    PubMed

    van der Mark, Vincent A; Rudi de Waart, D; Shevchenko, Valery; Elferink, Ronald P J Oude; Chamuleau, Robert A F M; Hoekstra, Ruurdtje

    2017-01-01

    Dimethylsulfoxide (DMSO) induces cellular differentiation and expression of drug metabolic enzymes in the human liver cell line HepaRG; however, DMSO also induces cell death and interferes with cellular activities. The aim of this study was to examine whether overexpression of the constitutive androstane receptor (CAR, NR1I3), the nuclear receptor controlling various drug metabolism genes, would sufficiently promote differentiation and drug metabolism in HepaRG cells, optionally without using DMSO. By stable lentiviral overexpression of CAR, HepaRG cultures were less affected by DMSO in total protein content and obtained increased resistance to acetaminophen- and amiodarone-induced cell death. Transcript levels of CAR target genes were significantly increased in HepaRG-CAR cultures without DMSO, resulting in increased activities of cytochrome P450 (P450) enzymes and bilirubin conjugation to levels equal or surpassing those of HepaRG cells cultured with DMSO. Unexpectedly, CAR overexpression also increased the activities of non-CAR target P450s, as well as albumin production. In combination with DMSO treatment, CAR overexpression further increased transcript levels and activities of CAR targets. Induction of CYP1A2 and CYP2B6 remained unchanged, whereas CYP3A4 was reduced. Moreover, the metabolism of low-clearance compounds warfarin and prednisolone was increased. In conclusion, CAR overexpression creates a more physiologically relevant environment for studies on hepatic (drug) metabolism and differentiation in HepaRG cells without the utilization of DMSO. DMSO still may be applied to accomplish higher drug metabolism, required for sensitive assays, such as low-clearance studies and identification of (rare) metabolites, whereas reduced total protein content after DMSO culture is diminished by CAR overexpression. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex; Biologie Servier, Gidy

    2014-04-01

    Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stainedmore » by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. Conclusion: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients. - Highlights: • There is no pharmacological agent approved for the treatment of NAFLD. • This study demonstrates that PPAR agonists can reduce fatty acid-induced steatosis. • Some nuclear receptors appear to be potent actors in the

  7. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification.

    PubMed

    Wang, Zhiqiang; Pei, Jingjing; Zhang, Jensen S

    2014-09-15

    Botanical filtration has been proved to be effective for indoor gas pollutant removal. To understand the roles of different transport, storage and removal mechanism by a dynamic botanical air filter, a series of experimental investigations were designed and conducted in this paper. Golden Pothos (Epipremnum aureum) plants was selected for test, and its original soil or activated/pebbles root bed was used in different test cases. It was found that flowing air through the root bed with microbes dynamically was essential to obtain meaningful formaldehyde removal efficiency. For static potted plant as normally place in rooms, the clean air delivery rate (CADR), which is often used to quantify the air cleaning ability of portable air cleaners, was only ∼ 5.1m(3)/h per m(2) bed, while when dynamically with air flow through the bed, the CADR increased to ∼ 233 m(3)/h per m(2) bed. The calculated CADR due to microbial activity is ∼ 108 m(3)/h per m(2) bed. Moisture in the root bed also played an important role, both for maintaining a favorable living condition for microbes and for absorbing water-soluble compounds such as formaldehyde. The role of the plant was to introduce and maintain a favorable microbe community which effectively degraded the volatile organic compounds adsorbed or absorbed by the root bed. The presence of the plant increased the removal efficiency by a factor of two based on the results from the bench-scale root bed experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Tronville, Paolo

    2014-06-01

    The filtration of airborne nanoparticles is an important control technique as the environmental, health, and safety impacts of nanomaterials grow. A review of the literature shows that significant progress has been made on airborne nanoparticle filtration in the academic field in the recent years. We summarize the filtration mechanisms of fibrous and membrane filters; the air flow resistance and filter media figure of merit are discussed. Our review focuses on the air filtration test methods and instrumentation necessary to implement them; recent experimental studies are summarized accordingly. Two methods using monodisperse and polydisperse challenging aerosols, respectively, are discussed in detail. Our survey shows that the commercial instruments are already available for generating a large amount of nanoparticles, sizing, and quantifying them accurately. The commercial self-contained filter test systems provide the possibility of measurement for particles down to 15 nm. Current international standards dealing with efficiency test for filters and filter media focus on measurement of the minimum efficiency at the most penetrating particle size. The available knowledge and instruments provide a solid base for development of test methods to determine the effectiveness of filtration media against airborne nanoparticles down to single-digit nanometer range.

  9. MicroRNA Responses to the Genotoxic Carcinogens Aflatoxin B1 and Benzo[a]pyrene in Human HepaRG Cells.

    PubMed

    Marrone, April K; Tryndyak, Volodymyr; Beland, Frederick A; Pogribny, Igor P

    2016-02-01

    Recent advances in toxicogenomics present an opportunity to develop new in vitro testing methodologies to identify human carcinogens. We have investigated microRNA expression responses to the treatment of human liver HepaRG cells with the human genotoxic carcinogens aflatoxin B1 (AFB1) and benzo[a]pyrene (B[a]P), and the structurally similar compounds aflatoxin B2 (AFB2) and benzo[e]pyrene (B[e]P) that exhibit minimal carcinogenic potential. We demonstrate that treatment of HepaRG cells with AFB1 or B[a]P resulted in specific changes in the expression of miRNAs as compared with their non-carcinogenic analogues, particularly in a marked over-expression of miR-410. An additional novel finding is the dose- and time-dependent inhibition of miR-122 in AFB1-treated HepaRG cells. Mechanistically, the AFB1-induced down-regulation of miR-122 was attributed to inhibition of the HNF4A/miR-122 regulatory pathway. These results demonstrate that HepaRG cells can be used to investigate miRNA responses to xenobiotic exposure, and illustrate the existence of early non-genotoxic events, in addition to a well-established genotoxic mode of action changes, in the mechanism of AFB1 and B[a]P carcinogenicity. Published by Oxford University Press on behalf of the Society of Toxicology 2015. This work is written by US Government employees and is in the public domain in the US.

  10. Water Filtration

    ERIC Educational Resources Information Center

    Jacobsen, Erica K.

    2004-01-01

    A water filtration column is devised by students using a two-liter plastic bottle containing gravel, sand, and activated charcoal, to test the filtration potential of the column. Results indicate that the filtration column eliminates many of the contaminating materials, but does not kill bacteria.

  11. Transpulmonary passage of venous air emboli

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Hills, B. A.

    1985-01-01

    Twenty-seven paralyzed anesthetized dogs were embolized with venous air to determine the effectiveness of the pulmonary vasculature for bubble filtration or trapping. Air doses ranged from 0.05 to 0.40 ml/kg min in 0.05-ml increments with ultrasonic Doppler monitors placed over arterial vessels to detect any microbubbles that crossed the lungs. Pulmonary vascular filtration of the venous air infusions was complete for the lower air doses ranging from 0.05 to 0.30 ml/kg min. When the air doses were increased to 0.35 ml/kg min, the filtration threshold was exceeded with arterial spillover of bubbles occurring in 50 percent of the animals and reaching 71 percent for 0.40 ml/kg min. Significant elevations were observed in pulmonary arterial pressure and pulmonary vascular resistance. Systemic blood pressure and cardiac output decreased, whereas left ventricular end-diastolic pressure remained unchanged. The results indicate that the filtration of venous bubbles by the pulmonary vasculature was complete when the air infusion rates were kept below a threshold value of 0.30 ml/kg min.

  12. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    PubMed

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-05

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination.

  13. Impacts of air cleaners on indoor air quality in residences impacted by wood smoke.

    PubMed

    Wheeler, Amanda J; Gibson, Mark D; MacNeill, Morgan; Ward, Tony J; Wallace, Lance A; Kuchta, James; Seaboyer, Matt; Dabek-Zlotorzynska, Ewa; Guernsey, Judith Read; Stieb, David M

    2014-10-21

    Residential wood combustion is an important source of ambient air pollution, accounting for over 25% of fine particulate matter (PM2.5) emissions in Canada. In addition to these ambient contributions, wood smoke pollutants can enter the indoor environment directly when loading or stoking stoves, resulting in a high potential for human exposure. A study of the effectiveness of air cleaners at reducing wood smoke-associated PM2.5 of indoor and outdoor origin was conducted in 31 homes during winter 2009-10. Day 1, the residents' wood burning appliance operated as usual with no air cleaner. Days 2 and 3, the wood burning appliance was not operational and the air cleaner was randomly chosen to operate in "filtration" or "placebo filtration" mode. When the air cleaner was operating, total indoor PM2.5 levels were significantly lower than on placebo filtration days (p = 0.0001) resulting in a median reduction of 52%. There was also a reduction in the median PM2.5 infiltration factor from 0.56 to 0.26 between these 2 days, suggesting the air cleaner was responsible for increased PM2.5 deposition on filtration days. Our findings suggest that the use of an air cleaner reduces exposure to indoor PM2.5 resulting from both indoor and ambient wood smoke sources.

  14. Evaluation of the ICET Test Stand to Assess the Performance of a Range of Ceramic Media Filter Elements in Support of ASME AG-1 Subsection FO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schemmel, A.

    High Efficiency Particulate Air (HEPA) filters are defined as extended-medium, dry-type filters with: (1) a minimum particle removal efficiency of no less than 99.97 percent for 0.3 micrometer particles, (2) a maximum, clean resistance of 1.0 inch water column (in. WC) when operated at 1,000 cubic feet per minute (CFM), and (3) a rigid casing that extends the full depth of the medium. Specifically, ceramic media HEPA filters provide better performance at elevated temperatures, are moisture resistant and nonflammable, can perform their function if wetted and exposed to greater pressures, and can be cleaned and reused. This paper describes themore » modification and design of a large scale test stand which properly evaluates the filtration characteristics of a range of ceramic media filters challenged with a nuclear aerosol agent in order to develop Section FO of ASME AG-1.« less

  15. A comparison of two nano-sized particle air filtration tests in the diameter range of 10 to 400 nanometers

    NASA Astrophysics Data System (ADS)

    Japuntich, Daniel A.; Franklin, Luke M.; Pui, David Y.; Kuehn, Thomas H.; Kim, Seong Chan; Viner, Andrew S.

    2007-01-01

    Two different air filter test methodologies are discussed and compared for challenges in the nano-sized particle range of 10-400 nm. Included in the discussion are test procedure development, factors affecting variability and comparisons between results from the tests. One test system which gives a discrete penetration for a given particle size is the TSI 8160 Automated Filter tester (updated and commercially available now as the TSI 3160) manufactured by the TSI, Inc., Shoreview, MN. Another filter test system was developed utilizing a Scanning Mobility Particle Sizer (SMPS) to sample the particle size distributions downstream and upstream of an air filter to obtain a continuous percent filter penetration versus particle size curve. Filtration test results are shown for fiberglass filter paper of intermediate filtration efficiency. Test variables affecting the results of the TSI 8160 for NaCl and dioctyl phthalate (DOP) particles are discussed, including condensation particle counter stability and the sizing of the selected particle challenges. Filter testing using a TSI 3936 SMPS sampling upstream and downstream of a filter is also shown with a discussion of test variables and the need for proper SMPS volume purging and filter penetration correction procedure. For both tests, the penetration versus particle size curves for the filter media studied follow the theoretical Brownian capture model of decreasing penetration with decreasing particle diameter down to 10 nm with no deviation. From these findings, the authors can say with reasonable confidence that there is no evidence of particle thermal rebound in the size range.

  16. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  17. Control of asthma triggers in indoor air with air cleaners: a modeling analysis.

    PubMed

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; Macintosh, David L

    2008-08-06

    Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30-55% lower cat allergen levels, 90-99% lower risk of respiratory infection through the inhalation route of exposure, 90-98% lower environmental tobacco smoke (ETS) levels, and 50-75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice.

  18. Field Assessment of Enclosed Cab Filtration System Performance Using Particle Counting Measurements

    PubMed Central

    Organiscak, John A.; Cecala, Andrew B.; Noll, James D.

    2015-01-01

    Enclosed cab filtration systems are typically used on mobile mining equipment to reduce miners’ exposure to airborne dust generated during mining operations. The National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) has recently worked with a mining equipment manufacturer to examine a new cab filtration system design for underground industrial minerals equipment. This cab filtration system uses a combination of three particulate filters to reduce equipment operators’ exposure to dust and diesel particulates present in underground industrial mineral mines. NIOSH initially examined this cab filtration system using a two-instrument particle counting method at the equipment company’s manufacturing shop facility to assess several alternative filters. This cab filtration system design was further studied on several pieces of equipment during a two- to seven-month period at two underground limestone mines. The two-instrument particle counting method was used outside the underground mine at the end of the production shifts to regularly test the cabs’ long-term protection factor performance with particulates present in the ambient air. This particle counting method showed that three of the four cabs achieved protection factors greater than 1,000 during the field studies. The fourth cab did not perform at this level because it had a damaged filter in the system. The particle counting measurements of submicron particles present in the ambient air were shown to be a timely and useful quantification method in assessing cab performance during these field studies. PMID:23915268

  19. 8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING SOUTHWEST, SHOWING MEZZANINE WITH FILTER TANKS AT REAR - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  20. 7. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHEAST, SHOWING PUMP NO. 1 AND METERING EQUIPMENT - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  1. Rotary filtration system

    DOEpatents

    Herman, David T [Aiken, SC; Maxwell, David N [Aiken, SC

    2011-04-19

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  2. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the samemore » (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.« less

  3. Influence of combined dust reducing carpet and compact air filtration unit on the indoor air quality of a classroom.

    PubMed

    Scheepers, Paul T J; de Hartog, Jeroen J; Reijnaerts, Judith; Beckmann, Gwendolyn; Anzion, Rob; Poels, Katrien; Godderis, Lode

    2015-02-01

    Primary schools mostly rely on natural ventilation but also have an interest in affordable technology to improve indoor air quality (IAQ). Laboratory tests show promising results for dust reducing carpets and compact air filtration systems but there is no information available on the performance of these interventions in actual operating classrooms. An exploratory study was performed to evaluate a combination of the two systems in a primary school. Measurements of PM-10 and PM-2.5 were performed by filter sampling and aerosol spectrometry. Other IAQ parameters included black smoke (BS), volatile organic compounds (VOC), nitrogen dioxide (NO2) and formaldehyde. Both interventions were introduced in one classroom during one week, using another classroom as a reference. In a second week the interventions were moved to the other classroom, using the first as a reference (cross-over design). In three remaining weeks the classrooms were compared without interventions. Indoor IAQ parameters were compared to the corresponding outdoor parameters using the indoor/outdoor (I/O) ratio. When the classrooms were occupied (teaching hours) interventions resulted in 27-43% reductions of PM-10, PM-2.5 and BS values. During the weekends the systems reduced these levels by 51-87%. Evaluations using the change in I/O ratios gave comparable results. Levels of VOC, NO2 and formaldehyde were rather low and a contribution of the interventions to the improvement of these gas phase IAQ parameters was inconclusive.

  4. Health and perception of cabin air quality among Swedish commercial airline crew.

    PubMed

    Lindgren, T; Norbäck, D

    2005-01-01

    younger crew had, and cabin crew with atopy had more complaints of dry air than other crew had. Current smokers had fewer complaints of stuffy air than non-smokers had. Airline crew that had been on a flight on which smoking was allowed in the week before the survey, had more complaints of stuffy air, dry air and passive smoking, than crew that had not been on such a flight in the preceding week had. Complaints on cabin air quality and health symptoms were common among commercial airline crew, and related to age, gender, atopy and type of work onboard. The hygienic measurements showed that the relative air humidity is very low on intercontinental flights, and particle levels are high on flights with passive smoking. This illustrates the need to improve the cabin air quality in commercial airlines. Such improvements could include better control of cabin temperature, air humidification, efficient air filtration with high efficiency particulate air filter (HEPA) filtration on all types of aircraft and sufficient air exchange rate in order to fulfil current ventilation standards.

  5. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  6. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  7. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  8. Control of asthma triggers in indoor air with air cleaners: a modeling analysis

    PubMed Central

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; MacIntosh, David L

    2008-01-01

    Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. Methods We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Results Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30–55% lower cat allergen levels, 90–99% lower risk of respiratory infection through the inhalation route of exposure, 90–98% lower environmental tobacco smoke (ETS) levels, and 50–75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. Conclusion These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice. PMID:18684328

  9. Dissemination, resuspension, and filtration of carbon fibers. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1980-01-01

    Carbon fiber transport was studied using mathematical models established for other pollution problems. It was demonstrated that resuspension is not a major factor contributing to the risk. Filtration and fragmentation tests revealed that fiber fragmentation shifts the fiber spectrum to shorter mean lengths in high velocity air handling systems.

  10. Metronidazole reduces the expression of cytochrome P450 enzymes in HepaRG cells and cryopreserved human hepatocytes.

    PubMed

    Kudo, Toshiyuki; Endo, Yumiko; Taguchi, Rina; Yatsu, Masami; Ito, Kiyomi

    2015-05-01

    1. Blood levels of S-warfarin have been reported to be increased by concomitant administration of metronidazole (MTZ), an antiprotozoal imidazole derivative. 2. To elucidate the mechanism of this interaction and to identify other possible drug-drug interactions, we conducted an in vitro study with the human hepatoma HepaRG cells and cryopreserved human hepatocytes on the ability of MTZ to reduce the expression of cytochrome P450 (CYP) as well as nuclear receptors that regulate the expression of these enzymes. 3. HepaRG cells and cryopreserved human hepatocytes were treated with MTZ (20 to 500 µM) and were then analyzed by real-time RT-PCR to determine mRNA levels of drug-metabolizing enzymes and nuclear receptors. 4. In both cells, the expressions of CYP2C8, CYP2C9, CYP3A4 and constitutive androstane receptor (CAR) were decreased by MTZ treatment. Particularly, in HepaRG cells, their mRNA levels were decreased by MTZ treatment in a concentration-dependent manner. 5. Our findings suggest that the interaction between MTZ and S-warfarin may be due to the MTZ-induced down-regulation of CYP2C9, the primary enzyme responsible for S-warfarin hydroxylation, and CAR, which regulates CYP2C9 expression. We also found that MTZ use may alter the disposition of drugs metabolized by the CYP isozymes investigated.

  11. Effects of air filtration on concentration and deposition of gaseous and particulate air pollutants in open-top field chambers. [Ceanothus crassifolius Torr. , Pinus coulteri D. Don, P. ponderosa Dougl. ex P. C. Lawson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bytnerowicz, A.; Olszyk, D.M.; Dawson, P.J.

    Concentrations of gaseous and particulate air pollutants, and deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup {minus}2}{sub 4}, and NH{sup +}{sub 4} ions to branches of California lilac (Ceanothus crassifolius Torr.), Coulter pine (Pinus coulteri D. Don.), ponderosa pine (P. ponderosa Dougl. ex P. C. Lawson), nylon filters, and paper filters were measured in open-top field chambers with different filtration materials and in chamberless outside plots. Additionally, concentrations of O{sub 3}, NO{sub 2}, NO, SO{sub 2} and total S compounds also were determined in the chambers. Effects of different air filtrations were more evident for deposition fluxes to plant and surrogatemore » surfaces. On the average, in the CHARCOAL chambers, deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup 2{minus}}{sub 4}, and NH{sup +}{sub 4} to the surfaces were reduced to 21, 38, and 26% of the outside values, respectively. In the DUST 1 DUST 2 chambers, deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup 2{minus}}{sub 4}, and NH{sup +}{sub 4} were reduced to about 50, 56, and 75% of the outside levels, respectively. Deposition fluxes of the studied ions to plants were much lower than to nylon and paper filters.« less

  12. Exploration of PM2.5 filtration property of filter bag for environment protection

    NASA Astrophysics Data System (ADS)

    Zhu, Ruitian; Zheng, Jinwei; Ni, Bingxuan; Zhang, Peng

    2017-06-01

    In this paper, filter bag of polyphenylene sulfide (PPS) needle punched nonwoven for environment protection was investigated. The results showed that air permeability of sample was linear rise with the increase of the pressure drop. During the testing process, the residual pressure drop rose with the increase of cycles because of test dust attaching on the surface of the filter. The PM2.5 filtration efficiency was obtained of 99.854%, which was smaller than the dust filtration efficiency of 99.971% because of the fine particles taking larger proportion of the dust through the sample. Results show that this method of evaluating the PM2.5 filtration property is feasible.

  13. [The aspiratory resistance and filtration penetration of N95 filtering-facepiece respirators used widely in China].

    PubMed

    Wang, Xinyan; Shi, Tingming; Lu, Wei; Qin, Shaoxian; Liu, Yuewei; Tao, Ying; Zhang, Hongge; Chen, Weihong

    2015-01-01

    The objective of this study was to investigate the aspiratory resistance, filtration penetration and their influence factors of N95 filtering-facepiece respirators used widely in China. The total of 6 brands and 21 models of N95 filtering-facepiece respirators which are certified and big sales on the market. The aspiratory resistance and filtration efficiency filter penetration were measured while air pump ran from 10 L/min to 100 L/min using differential pressure gauge and the PortaCount, respectively. The filtration penetrations for 2 of the 21 models were lower than 95%, and the qualified rate for all models was 90.47%. The filtration penetrations gradually decreased when ventilation flow of air pump increased. The negative correlation was observed between filtration penetration and ventilation flow (r(2) = 0.711, P < 0.05). The resistances of all 21 models of N95 respirators met the requirements of the national standard. The aspiratory resistance started to elevate with the increasing of ventilation flow, and a positive correlation between both (r(2) = 0.878, P < 0.05). Significant differences of filtration penetration and aspiratory resistance were observed among between different brands (P < 0.05) although no differences of filtration penetration existed among different models of one brand (P > 0.05). But the differences of the aspiratory resistance among different models of one brand were statistically significant (P < 0.05). The aspiratory resistances of all N95 filtering-facepiece respirators used in this study met the requirements of the national standard. And the qualified ratio of filtration penetration of all models was higher than 90%. The influencing factors of aspiratory resistance included materials, size and ventilation flow. And influencing factors for filtration penetration were materials and ventilation flow.

  14. Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells

    PubMed Central

    Choi, Yoon-Hee; Lee, Hyun Sook; Chung, Cha-Kwon

    2017-01-01

    BACKGROUND/OBJECTIVE Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes. PMID:28386382

  15. Use of the HepaRG Cell Line to Assess Potential Human Hepatotoxicity of ToxCast™ Chemicals

    EPA Science Inventory

    The HepaRG cell line is a promising model system for predicting human hepatotoxicity in part because of the greater capacity to metabolize chemicals than other cell models. We hypothesized that this cell line would be a relevant model for toxicity testing of industrial chemicals....

  16. Decontamination of indoor air to reduce the risk of airborne infections: Studies on survival and inactivation of airborne pathogens using an aerobiology chamber.

    PubMed

    Sattar, Syed A; Kibbee, Richard J; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Ijaz, M Khalid

    2016-10-01

    Although indoor air can spread many pathogens, information on the airborne survival and inactivation of such pathogens remains sparse. Staphylococcus aureus and Klebsiella pneumoniae were nebulized separately into an aerobiology chamber (24.0 m 3 ). The chamber's relative humidity and air temperature were at 50% ± 5% and 20°C ± 2°C, respectively. The air was sampled with a slit-to-agar sampler. Between tests, filtered air purged the chamber of any residual airborne microbes. The challenge in the air varied between 4.2 log 10 colony forming units (CFU)/m 3 and 5.0 log 10 CFU/m 3 , sufficient to show a ≥3 log 10 (≥99.9%) reduction in microbial viability in air over a given contact time by the technologies tested. The rates of biologic decay of S aureus and K pneumoniae were 0.0064 ± 0.00015 and 0.0244 ± 0.009 log 10 CFU/m 3 /min, respectively. Three commercial devices, with ultraviolet light and HEPA (high-efficiency particulate air) filtration, met the product efficacy criterion in 45-210 minutes; these rates were statistically significant compared with the corresponding rates of biologic decay of the bacteria. One device was also tested with repeated challenges with aerosolized S aureus to simulate ongoing fluctuations in indoor air quality; it could reduce each such recontamination to an undetectable level in approximately 40 minutes. The setup described is suitable for work with all major classes of pathogens and also complies with the U.S. Environmental Protection Agency's guidelines (2012) for testing air decontamination technologies. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. Pilot-scale tests of HEME and HEPA dissolution process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qureshi, Z.H.; Strege, D.K.

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsedmore » with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.« less

  18. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  19. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  20. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  1. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  2. Development of an Indexing Media Filtration System for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles derived from multiple biological and material sources. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reduce-gravity flight tests data will be presented. The features of the new filter system may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical.

  3. Acoustic filtration and sedimentation of soot particles

    NASA Astrophysics Data System (ADS)

    Martin, K. M.; Ezekoye, O. A.

    Removal of soot particles from a static chamber by an intense acoustic field is investigated. Combustion of a solid fuel fills a rectangular chamber with small soot particles, which sediment very slowly. The chamber is then irradiated by an intense acoustic source to produce a three dimensional standing wave field in the chamber. The acoustic excitation causes the soot particles to agglomerate, forming larger particles which sediment faster from the system. The soot also forms 1-2 cm disks, with axes parallel to the axis of the acoustic source, which are levitated by the sound field at half-wavelength spacing within the chamber. Laser extinction measurements are made to determine soot volume fractions as a function of exposure time within the chamber. The volume fraction is reduced over time by sedimentation and by particle migration to the disks. The soot disks are considered to be a novel mechanism for particle removal from the air stream, and this mechanism has been dubbed acoustic filtration. An experimental method is developed for comparing the rate of soot removal by sedimentation alone with the rate of soot removal by sedimentation and acoustic filtration. Results show that acoustic filtration increases the rate of soot removal by a factor of two over acoustically-induced sedimentation alone.

  4. 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells.

    PubMed

    Takahashi, Yu; Hori, Yuji; Yamamoto, Tomohisa; Urashima, Toshiki; Ohara, Yasunori; Tanaka, Hideo

    2015-05-07

    3D (three-dimensional) cultures are considered to be an effective method for toxicological studies; however, little evidence has been reported whether 3D cultures have an impact on hepatocellular physiology regarding lipid or glucose metabolism. In the present study, we conducted physiological characterization of hepatoma cell lines HepG2 and HepaRG cells cultured in 3D conditions using a hanging drop method to verify the effect of culture environment on cellular responses. Apo (Apolipoprotein)B as well as albumin secretion was augmented by 3D cultures. Expression of genes related to not only drug, but also glucose and lipid metabolism were significantly enhanced in 3D cultured HepaRG spheroids. Furthermore, mRNA levels of CYP (cytochrome P450) enzymes following exposure to corresponding inducers increased under the 3D condition. These data suggest that this simple 3D culture system without any special biomaterials can improve liver-specific characteristics including lipid metabolism. Considering that the system enables high-throughput assay, it may become a powerful tool for compound screening concerning hepatocellular responses in order to identify potential drugs. © 2015 Authors.

  5. Electrospun ceramic fibermats for filtration applications in lunar missions for in-habitat applications

    NASA Astrophysics Data System (ADS)

    Biswas, Apratim

    In the absence of atmosphere and hydrosphere, there are few collisions between dust particles in the lunar environment. Further, particles become charged in presence of cosmic rays and similarly charged particles repel each other. Hence particles retain sharp edges and often have high aspect ratios. When exposed to lunar dust, humans show symptoms similar to hay fever. Such particles are also damaging to equipment. Humans and robots, used in operations, can bring such dust particles inside the human habitat making them airborne. High efficiency particulate air (HEPA) filters provide an effective way to trap such particles. But due to environment conditions, polymer based filters are susceptible to mechanical erosion. The presence of high energy radiation, due to the absence of atmosphere and magnetic fields, is also damaging to polymers. Ceramic materials are resistant to abrasion and radiation and hence were chosen as the preferred class of materials for the filtration media. Among all the ceramics, TiO2 was selected for its photocatalytic activity which may play a key role in energy-efficient survival in space or lunar stations. Such fibers are multi-functional with the advantage of self-cleaning property in presence of radiation. However ceramic fibers, including TiO 2 fibers, have a significant disadvantage of their own. They are brittle and were considered too prone to failure to be successfully used as a filtration media when they reach nanometer dimensions. This dissertation describes the advances in fabrication and understanding of fundamentals in overcoming these challenges. In absence of crack initiation sites, amorphous ceramic fibers have near theoretical strength and strain to failure. Amorphous TiO2 -SiO2 fibermats, with lower flaw populations and exceptional surface quality, have been developed. They can be rolled to a radius of curvature of 3.4 mm -- exhibiting flexibility. The fibermats are also mechanically robust and can withstand the stress

  6. BAGHOUSE FILTRATION PRODUCTS VERIFICATION TESTING, HOW IT BENEFITS THE BOILER BAGHOUSE OPERATOR

    EPA Science Inventory

    The paper describes the Environmental Technology Verification (ETV) Program for baghouse filtration products developed by the Air Pollution Control Technology Verification Center, one of six Centers under the ETV Program, and discusses how it benefits boiler baghouse operators. A...

  7. Method of treating contaminated HEPA filter media in pulp process

    DOEpatents

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  8. Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil-Water Separation.

    PubMed

    Zhang, Yong-Gang; Zhu, Ying-Jie; Xiong, Zhi-Chao; Wu, Jin; Chen, Feng

    2018-04-18

    Inorganic aerogels have been attracting great interest owing to their distinctive structures and properties. However, the practical applications of inorganic aerogels are greatly restricted by their high brittleness and high fabrication cost. Herein, inspired by the cancellous bone, we have developed a novel kind of hydroxyapatite (HAP) nanowire-based inorganic aerogel with excellent elasticity, which is highly porous (porosity ≈ 99.7%), ultralight (density 8.54 mg/cm 3 , which is about 0.854% of water density), and highly adiabatic (thermal conductivity 0.0387 W/m·K). Significantly, the as-prepared HAP nanowire aerogel can be used as the highly efficient air filter with high PM 2.5 filtration efficiency. In addition, the HAP nanowire aerogel is also an ideal candidate for continuous oil-water separation, which can be used as a smart switch to separate oil from water continuously. Compared with organic aerogels, the as-prepared HAP nanowire aerogel is biocompatible, environmentally friendly, and low-cost. Moreover, the synthetic method reported in this work can be scaled up for large-scale production of HAP nanowires, free from the use of organic solvents. Therefore, the as-prepared new kind of HAP nanowire aerogel is promising for the applications in various fields.

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - TETRATEC PTFE TECHNOLOGIES TETRATEX 8005

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT--BAGHOUSE FILTRATION PRODUCTS, W.L. GORE ASSOC., INC.

    EPA Science Inventory

    The U.S. Environmental Protection Agency Air Pollution Control Technology (APCT) Verification Center evaluates the performance of baghouse filtration products used primarily to control PM2.5 emissions. This verification statement summarizes the test results for W.L. Gore & Assoc....

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR "C-SERIES" POLYESTER PANEL FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar "C-Series" Polyester Panel Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 126 Pa clean and 267...

  12. Analysis and comparison of biotreatment of air polluted with ethanol using biofiltration and biotrickling filtration.

    PubMed

    Morotti, Karine; Ramirez, Antonio Avalos; Jones, J Peter; Heitz, Michèle

    2011-12-01

    This study analyses the performance of ethanol biofiltration with percolation (biotrickling filtration, BTF) comparing to a conventional biofilter (biofiltration, BF). Two biofilters packed with clay balls were operated in a range of inlet concentrations of ethanol in the air varying from 0.47 to 2.36 g m(-3). For both the BF and BTF, the specific growth rate (mu) and the elimination capacity (EC) decreased with the ethanol inlet concentration, presenting a kinetic of substrate inhibition. A Haldane-type model was adjusted for both biofilters in order to model both EC and mu as a function of the ethanol inlet concentration in the gas. The maximum EC was similar for both biofilters, at around 46 g m(-3) h(-1), whereas the maximum mu was 0.0057 h(-1) for the BF and 0.0103 h(-1) for the BTF. The maximum of ethanol removed, occurred at the lowest inlet concentration of (0.47 gm(-3)), and reached 86% for the BF and 74% for the BTF.

  13. Impact of backwashing procedures on deep bed filtration productivity in drinking water treatment.

    PubMed

    Slavik, Irene; Jehmlich, Alexander; Uhl, Wolfgang

    2013-10-15

    Backwash procedures for deep bed filters were evaluated and compared by means of a new integrated approach based on productivity. For this, different backwash procedures were experimentally evaluated by using a pilot plant for direct filtration. A standard backwash mode as applied in practice served as a reference and effluent turbidity was used as the criterion for filter run termination. The backwash water volumes needed, duration of the filter-to-waste period, time out of operation, total volume discharged and filter run-time were determined and used to calculate average filtration velocity and average productivity. Results for filter run-times, filter backwash volumes, and filter-to-waste volumes showed considerable differences between the backwash procedures. Thus, backwash procedures with additional clear flushing phases were characterised by an increased need for backwash water. However, this additional water consumption could not be compensated by savings during filter ripening. Compared to the reference backwash procedure, filter run-times were longer for both single-media and dual-media filters when air scour and air/water flush were optimised with respect to flow rates and the proportion of air and water. This means that drinking water production time is longer and less water is needed for filter bed cleaning. Also, backwashing with additional clear flushing phases resulted in longer filter run-times before turbidity breakthrough. However, regarding the productivity of the filtration process, it was shown that it was almost the same for all of the backwash procedures investigated in this study. Due to this unexpected finding, the relationships between filter bed cleaning, filter ripening and filtration performance were considered and important conclusions and new approaches for process optimisation and resource savings were derived. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house.

    PubMed

    Singer, B C; Delp, W W; Black, D R; Walker, I S

    2017-07-01

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE PAGES

    Singer, B. C.; Delp, W. W.; Black, D. R.; ...

    2016-12-05

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 fil ter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  16. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett C.; Delp, William W.; Black, Douglas R.

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration produced indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection whereas supply MERV16 filtration reduced PM 2.55 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filters in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5. Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  17. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, B. C.; Delp, W. W.; Black, D. R.

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 fil ter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  18. Human HepaRG Cells can be Cultured in Hanging-drop Plates for Cytochrome P450 Induction and Function Assays.

    PubMed

    Murayama, Norie; Usui, Takashi; Slawny, Nicky; Chesné, Christophe; Yamazaki, Hiroshi

    2015-01-01

    Recent guidance/guidelines for industry recommend that cytochrome P450 induction can be assessed using human hepatocyte enzyme activity and/or mRNA levels to evaluate potential drug- drug interactions. To evaluate time-dependent cytochrome P450 induction precisely, induction of CYP1A2, CYP2B6, and CYP3A4 mRNA was confirmed (>2-fold) by the treatment with omeprazole, phenobarbital, and rifampicin, respectively, for 24 or 48 h on day 3 from the start of culture. After 24 h, the fold induction of CYP1A2 with 3.6 and 1.8x10(4) HepaRG cells per well was lower than that for 7.2x10(4) cells. CYP1A2 induction levels at 24 h were higher than those after 48 h. In contrast, higher CYP2B6 inductions were confirmed after 48 h exposure than after 24 h, independent of the number of cells per well. To help reduce the use of human cryopreserved hepatocytes, typical P450-dependent enzyme activities were investigated in human HepaRG cells cultured in commercial hanging-drop plates. Newly designed 96-well hanging-drop plates were capable of maintaining human CYP3A-dependent midazolam hydroxylation activities for up to 4 days using only 10% of the recommended initial 7.2x10(4) cells per well. Favorable HepaRG function using hanging-drop plates was confirmed by detecting 1'- hydroxymidazolam O-glucuronide on day 3, suggesting an improvement over traditional control plates in which this metabolite can be detected for 24-well plates. These results suggest that the catalytic function and/or induction of CYP1A2, CYP2B6, and CYP3A4 can be readily assessed with reduced numbers of starting HepaRG cells cultured in three-dimensional cultures in drops prepared with hanging-drop plates.

  19. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    PubMed

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  20. Development of an Indexing Media Filtration System for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles including skin flakes, hair and clothing fibers, other biological matter, and particulate matter derived from material and equipment wear. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. These features may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reducegravity flight tests data will be presented.

  1. Characteristics of insufficiently active participants that benefit from health-enhancing physical activity (HEPA) promotion programs implemented in the sports club setting.

    PubMed

    Ooms, Linda; Leemrijse, Chantal; Collard, Dorine; Schipper-van Veldhoven, Nicolette; Veenhof, Cindy

    2018-06-01

    Health-enhancing physical activity (HEPA) promotion programs are implemented in sports clubs. The purpose of this study was to examine the characteristics of the insufficiently active participants that benefit from these programs. Data of three sporting programs, developed for insufficiently active adults, were used for this study. These sporting programs were implemented in different sports clubs in the Netherlands. Participants completed an online questionnaire at baseline and after six months (n = 458). Of this sample, 35.1% (n = 161) was insufficiently active (i.e. not meeting HEPA levels) at baseline. Accordingly, two groups were compared: participants who were insufficiently active at baseline, but increased their physical activity to HEPA levels after six months (activated group, n = 86) versus participants who were insufficiently active both at baseline and after six months (non-activated group, n = 75). Potential associated characteristics (demographic, social, sport history, physical activity) were included as independent variables in bivariate and multivariate logistic regression analyses. The percentage of active participants increased significantly from baseline to six months (from 64.9 to 76.9%, p < 0.05). The bivariate logistic regression analyses showed that participants in the activated group were more likely to receive support from family members with regard to their sport participation (62.8% vs. 42.7%, p = 0.02) and spent more time in moderate-intensity physical activity (128 ± 191 min/week vs. 70 ± 106 min/week, p = 0.02) at baseline compared with participants in the non-activated group. These results were confirmed in the multivariate logistic regression analyses: when receiving support from most family members, there is a 216% increase in the odds of being in the activated group (OR = 2.155; 95% CI: 1.118-4.154, p = 0.02) and for each additional 1 min/week spent in moderate-intensity physical

  2. Analysis of Basis Weight Uniformity of Microfiber Nonwovens and Its Impact on Permeability and Filtration Properties

    NASA Astrophysics Data System (ADS)

    Amirnasr, Elham

    It is widely recognized that nonwoven basis weight non-uniformity affects various properties of nonwovens. However, few studies can be found in this topic. The development of uniformity definition and measurement methods and the study of their impact on various web properties such as filtration properties and air permeability would be beneficial both in industrial applications and in academia. They can be utilized as a quality control tool and would provide insights about nonwoven behaviors that cannot be solely explained by average values. Therefore, for quantifying nonwoven web basis weight uniformity we purse to develop an optical analytical tool. The quadrant method and clustering analysis was utilized in an image analysis scheme to help define "uniformity" and its spatial variation. Implementing the quadrant method in an image analysis system allows the establishment of a uniformity index that can be used to quantify the degree of uniformity. Clustering analysis has also been modified and verified using uniform and random simulated images with known parameters. Number of clusters and cluster properties such as cluster size, member and density was determined. We also utilized this new measurement method to evaluate uniformity of nonwovens produced with different processes and investigated impacts of uniformity on filtration and permeability. The results of quadrant method shows that uniformity index computed from quadrant method demonstrate a good range for non-uniformity of nonwoven webs. Clustering analysis is also been applied on reference nonwoven with known visual uniformity. From clustering analysis results, cluster size is promising to be used as uniformity parameter. It is been shown that non-uniform nonwovens has provide lager cluster size than uniform nonwovens. It was been tried to find a relationship between web properties and uniformity index (as a web characteristic). To achieve this, filtration properties, air permeability, solidity and

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR FP-98 MINIPLEAT V-BLANK FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar FP-98 Minipleat V-Bank Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 137 Pa clean and 348 Pa ...

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - INSPEC FIBRES 5512BRF FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - MENARDI-CRISWELL 50-504 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  6. Stay away from asthma triggers

    MedlinePlus

    ... cleaner with a HEPA (high-efficiency particulate arrestor) filter. Replace wall-to-wall carpet with wood or ... a central air conditioning system, use a HEPA filter to remove pet allergens from indoor air. Use ...

  7. Viral Penetration of High Efficiency Particulate Air (HEPA) Filters (PREPRINT)

    DTIC Science & Technology

    2009-09-01

    US Plastics, Lima , 155 Ohio). Each path runs through a test article and thence through one AGI-30 all-glass 156 impinger (Chemglass, Vineland, N.J...rotameter (Blue–White 400, Huntington Beach , California, or PMR1-159 101346, Cole–Parmer, Vernon Hills, Illinois). At the end of the sampling path...fibrous Filters." J. Air Pollution Control Assoc. 30 [4]: 501 377–381. 502 Leenders, G.J.M, A.C. Bolle, and J. Stadhouders. 1984. “A Study of the

  8. 40 CFR 721.10077 - 3H-1,2,4-Triazol-3-one, 1,2-dihydro-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-fitting respirator equipped with N100 (if aerosols absent), R100, or P100 filters (either half- or full... Efficiency Particulate Air (HEPA) filters; powered air-purifying respirator equipped with a tight-fitting facepiece (either half- or full-face) and HEPA filters; and supplied-air respirator operated in pressure...

  9. 40 CFR 721.10411 - Alkanenitrile, bis(cyanoalkyl)amino (generic) (P-07-537).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with N100 (if oil aerosols absent), R100, or P100 filters; NIOSH-certified powered air-purifying respirator equipped with a loose- fitting hood or helmet and high efficiency particulate air (HEPA) filters... HEPA filters; or NIOSH-certified supplied-air respirator operated in pressure demand or continuous flow...

  10. 40 CFR 721.10077 - 3H-1,2,4-Triazol-3-one, 1,2-dihydro-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-fitting respirator equipped with N100 (if aerosols absent), R100, or P100 filters (either half- or full... Efficiency Particulate Air (HEPA) filters; powered air-purifying respirator equipped with a tight-fitting facepiece (either half- or full-face) and HEPA filters; and supplied-air respirator operated in pressure...

  11. 40 CFR 721.10411 - Alkanenitrile, bis(cyanoalkyl)amino (generic) (P-07-537).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with N100 (if oil aerosols absent), R100, or P100 filters; NIOSH-certified powered air-purifying respirator equipped with a loose- fitting hood or helmet and high efficiency particulate air (HEPA) filters... HEPA filters; or NIOSH-certified supplied-air respirator operated in pressure demand or continuous flow...

  12. 40 CFR 721.10077 - 3H-1,2,4-Triazol-3-one, 1,2-dihydro-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-fitting respirator equipped with N100 (if aerosols absent), R100, or P100 filters (either half- or full... Efficiency Particulate Air (HEPA) filters; powered air-purifying respirator equipped with a tight-fitting facepiece (either half- or full-face) and HEPA filters; and supplied-air respirator operated in pressure...

  13. 40 CFR 721.10077 - 3H-1,2,4-Triazol-3-one, 1,2-dihydro-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-fitting respirator equipped with N100 (if aerosols absent), R100, or P100 filters (either half- or full... Efficiency Particulate Air (HEPA) filters; powered air-purifying respirator equipped with a tight-fitting facepiece (either half- or full-face) and HEPA filters; and supplied-air respirator operated in pressure...

  14. 40 CFR 721.10411 - Alkanenitrile, bis(cyanoalkyl)amino (generic) (P-07-537).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with N100 (if oil aerosols absent), R100, or P100 filters; NIOSH-certified powered air-purifying respirator equipped with a loose- fitting hood or helmet and high efficiency particulate air (HEPA) filters... HEPA filters; or NIOSH-certified supplied-air respirator operated in pressure demand or continuous flow...

  15. Advanced Filter Technology For Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  16. Gravity filtration performances of the bio-diatomite dynamic membrane reactor for slightly polluted surface water purification.

    PubMed

    Chu, Huaqiang; Dong, Bingzhi; Zhang, Yalei; Zhou, Xuefei

    2012-01-01

    A bio-diatomite dynamic membrane (BDDM) reactor for surface water treatment under a water head of 30, 40, 50, 60 and 70 cm, respectively, was investigated, which was very effective for pollutants removal. The water head exerted strong influences on filtration flux of BDDM during the precoating process, as well as on the formation of BDDM and turbidity variations. A high filtration flux (approximately 200-300 L/m2 h) could be achieved in the long filtration times of BDDM with a stable effluent turbidity of approximately 0.11-0.25 NTU. The BDDM could remove particles larger than 25 μm completely. The adopted sintered diatomite mainly consisted of macro pores, which were beneficial for improving the filtration flux of BDDM. During the backwash stage, the BDDM could be removed completely by the air backwash.

  17. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

    NASA Astrophysics Data System (ADS)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre

    2017-02-01

    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  18. NASA Lunar Dust Filtration and Separations Workshop Report

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Stocker, Dennis P.

    2009-01-01

    NASA Glenn Research Center hosted a 2.5-day workshop, entitled "NASA Lunar Dust Filtration and Separations Workshop" at the Ohio Aerospace Institute in Cleveland, Ohio, on November 18 to 20, 2008. The purpose of the workshop was to address the issues and challenges of particulate matter removal from the cabin atmospheres in the Altair lunar lander, lunar habitats, and in pressurized rovers. The presence of lunar regolith dust inside the pressurized volumes was a theme of particular interest. The workshop provided an opportunity for NASA, industry experts, and academia to identify and discuss the capabilities of current and developing air and gas particulate matter filtration and separations technologies as they may apply to NASA s needs. A goal of the workshop was to provide recommendations for strategic research areas in cabin atmospheric particulate matter removal and disposal technologies that will advance and/or supplement the baseline approach for these future lunar surface exploration missions.

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - BHA GROUP, INC. QG061 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  20. 29 CFR 1910.134 - Respiratory protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...

  1. 29 CFR 1910.134 - Respiratory protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...

  2. 29 CFR 1910.134 - Respiratory protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...

  3. Protein-Based Nanofabrics for Multifunctional Air Filtering

    NASA Astrophysics Data System (ADS)

    Souzandeh, Hamid

    With the fast development of economics and population, air pollution is getting worse and becomes a great concern worldwide. The release of chemicals, particulates and biological materials into air can lead to various diseases or discomfort to humans and other living organisms, alongside other serious impacts on the environment. Therefore, improving indoor air quality using various air filters is in critical need because people stay inside buildings most time of the day. However, current air filters using traditional polymers can only remove particles from the polluted air and disposing the huge amount of used air filters can cause serious secondary environmental pollution. Therefore, development of multi-functional air filter materials with environmental friendliness is significant. For this purpose, we developed "green" protein-based multifunctional air-filtering materials. The outstanding performance of the green materials in removal of multiple species of pollutants, including particulate matter, toxic chemicals, and biological hazards, simultaneously, will greatly facilitate the development of the next-generation air-filtration systems. First and foremost, we developed high-performance protein-based nanofabric air-filter mats. It was found that the protein-nanofabrics possess high-efficiency multifunctional air-filtering properties for both particles and various species of chemical gases. Then, the high-performance natural protein-based nanofabrics were promoted both mechanically and functionally by a textured cellulose paper towel. It is interestingly discovered that the textured cellulose paper towel not only can act as a flexible mechanical support, but also a type of airflow regulator which can improve the pollutant-nanofilter interactions. Furthermore, the protein-based nanofabrics were crosslinked in order to enhance the environmental-stability of the filters. It was found that the crosslinked protein-nanofabrics can significantly improve the structure

  4. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy.

    PubMed

    Park, Jae Hong; Yoon, Ki Young; Na, Hyungjoo; Kim, Yang Seon; Hwang, Jungho; Kim, Jongbaeg; Yoon, Young Hun

    2011-09-01

    We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (<1 μm) were used as the test aerosol particles, and their number concentration was measured using a scanning mobility particle sizer. Antibacterial tests were performed using the colony counting method, and Escherichia coli (E. coli) was used as the test bacteria. The results showed that the CNT deposition increased the filtration efficiency of nano and submicron-sized particles, but did not increase the pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  6. Gel filtration of sialoglycoproteins.

    PubMed Central

    Alhadeff, J A

    1978-01-01

    The role of sialic acid in the gel-filtration behaviour of sialoglycoproteins was investigated by using the separated isoenzymes of purified human liver alpha-L-fucosidase and several other well-known sialic acid-containing glycoproteins (fetuin, alpha1-acid glycoprotein, thyroglobulin and bovine submaxillary mucin). For each glycoprotein studied, gel filtration of its desialylated derivative gave an apparent molecular weights much less than that expected just from removal of sialic acid. For the lower-molecular-weight glycoproteins (fetuin and alpha1-acid glyocprotein), gel filtration of the sialylated molecules led to apparent molecular weights much larger than the known values. The data indicate that gel filtration cannot be used for accurately determining the molecular weights of at least some sialoglycoproteins. Images Fig. 1. PMID:356853

  7. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    PubMed

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  8. ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FRYE JM; ANASTOS HL; GUTIERREZ FC

    2012-06-07

    While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%;more » and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.« less

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, BHA GROUP, INC., QP131 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, POLYMER GROUP, INC., DURAPEX PET FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, TETRATEC PTFE PRODUCTS, TETRATEX 6212 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  12. Instituting a filtration/pressurization system to reduce dust concentrations in a control room at a mineral processing plant

    PubMed Central

    Noll, J.; Cecala, A.; Hummer, J.

    2016-01-01

    The National Institute for Occupational Safety and Health has observed that many control rooms and operator compartments in the U.S. mining industry do not have filtration systems capable of maintaining low dust concentrations in these areas. In this study at a mineral processing plant, to reduce respirable dust concentrations in a control room that had no cleaning system for intake air, a filtration and pressurization system originally designed for enclosed cabs was modified and installed. This system was composed of two filtering units: one to filter outside air and one to filter and recirculate the air inside the control room. Eighty-seven percent of submicrometer particles were reduced by the system under static conditions. This means that greater than 87 percent of respirable dust particles should be reduced as the particle-size distribution of respirable dust particles is greater than that of submicrometer particles, and filtration systems usually are more efficient in capturing the larger particles. A positive pressure near 0.02 inches of water gauge was produced, which is an important component of an effective system and minimizes the entry of particles, such as dust, into the room. The intake airflow was around 118 cfm, greater than the airflow suggested by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) for acceptable indoor air quality. After one year, the loading of the filter caused the airflow to decrease to 80 cfm, which still produces acceptable indoor air quality. Due to the loading of the filters, the reduction efficiency for submicrometer particles under static conditions increased to 94 percent from 87 percent. PMID:26834293

  13. Estimates of associated outdoor particulate matter health risk and costs reductions from alternative building, ventilation and filtration scenarios.

    PubMed

    Sultan, Zuraimi M

    2007-05-01

    Although many studies have reported calculations of outdoor particulate matter (PM) associated externalities using ambient data, there is little information on the role buildings, their ventilation and filtration play. This study provides the framework to evaluate the health risk and cost reduction of building, ventilation and filtration strategies from outdoor PM pollution on a nationwide level and applied it to a case study in Singapore. Combining Indoor Air Quality (IAQ) and time weighted exposure models, with established concentration-response functions and monetary valuation methods, mortality and morbidity effects of outdoor PM on the population of Singapore under different building, ventilation and filtration strategies were estimated. Different interventions were made to compare the effects from the current building conditions. The findings demonstrate that building protection effect reduced approximately half the attributable health cases amounting to US$17.7 billion due to PM pollution when compared to levels computed using outdoor data alone. For residential buildings, nationwide adoption of natural ventilation from current state is associated with 28% higher cases of mortality and 13 to 38% higher cases for different morbidities, amounting to US$6.7 billion. The incurred cost is negligible compared to energy costs of air-conditioning. However, nationwide adoption of closed residence and air-conditioning are associated with outcomes including fewer mortality (10 and 6% respectively), fewer morbidities (8 and 4% respectively) and economic savings of US$1.5 and 0.9 billion respectively. The related savings were about a factor of 9 the energy cost for air-conditioning. Nationwide adoption of mechanical ventilation and filtration from current natural ventilation in schools is associated with fewer asthma hospital admissions and exacerbations; although the economic impact is not substantial. Enhanced workplace filtration reduces the mortality and morbidity

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - STANDARD FILTER CORPORATION PE16ZU FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  15. Air cooled turbine component having an internal filtration system

    DOEpatents

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  16. Cabin air filtration: helping to protect occupants from infectious diseases.

    PubMed

    Bull, Karen

    2008-05-01

    Presentation made at the Aviation Health Conference, London, November 2006. In modern aircraft, the air in the cabin is provided by the environmental control system (ECS) and consists of approximately 50% outside air (engine 'bleed air') mixed with approximately 50% filtered, recirculated air. This paper describes how modern aircraft cabin air filters are effective at removing airborne particulate contamination (such as bacteria and viruses) from the recirculated air system. It also describes one of the technological solutions that is currently available to treat any odours or volatile organic compounds (VOCs) that may be present in the aircraft ECS.

  17. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  18. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  19. Carbon Nanotube Membranes: Synthesis, Properties, and Future Filtration Applications

    PubMed Central

    Rashid, Md. Harun-Or; Ralph, Stephen F.

    2017-01-01

    Over the course of the past decade, there has been growing interest in the development of different types of membranes composed of carbon nanotubes (CNTs), including buckypapers and composite materials, for an ever-widening range of filtration applications. This article provides an overview of how different types of CNT membranes are prepared and the results obtained from investigations into their suitability for different applications. The latter involve the removal of small particles from air samples, the filtration of aqueous solutions containing organic compounds and/or bacteria, and the separation of individual liquids present in mixtures. A growing number of reports have demonstrated that the incorporation of CNTs into composite membranes confers an improved resistance to fouling caused by biomacromolecules and bacteria. These results are discussed, along with evidence that demonstrates it is possible to further reduce fouling by taking advantage of the inherent conductivity of composite membranes containing CNTs, as well as by using different types of electrochemical stimuli. PMID:28468314

  20. Selecting Cells for Bioartificial Liver Devices and the Importance of a 3D Culture Environment: A Functional Comparison between the HepaRG and C3A Cell Lines.

    PubMed

    van Wenum, Martien; Adam, Aziza A A; Hakvoort, Theodorus B M; Hendriks, Erik J; Shevchenko, Valery; van Gulik, Thomas M; Chamuleau, Robert A F M; Hoekstra, Ruurdtje

    2016-01-01

    Recently, the first clinical trials on Bioartificial Livers (BALs) loaded with a proliferative human hepatocyte cell source have started. There are two cell lines that are currently in an advanced state of BAL development; HepaRG and HepG2/C3A. In this study we aimed to compare both cell lines on applicability in BALs and to identify possible strategies for further improvement. We tested both cell lines in monolayer- and BAL cultures on growth characteristics, hepatic differentiation, nitrogen-, carbohydrate-, amino acid- and xenobiotic metabolism. Interestingly, both cell lines adapted the hepatocyte phenotype more closely when cultured in BALs; e.g. monolayer cultures produced lactate, while BAL cultures showed diminished lactate production (C3A) or conversion to elimination (HepaRG), and urea cycle activity increased upon BAL culturing in both cell lines. HepaRG-BALs outperformed C3A-BALs on xenobiotic metabolism, ammonia elimination and lactate elimination, while protein synthesis was comparable. In BAL cultures of both cell lines ammonia elimination correlated positively with glutamine production and glutamate consumption, suggesting ammonia elimination was mainly driven by the balance between glutaminase and glutamine synthetase activity. Both cell lines lacked significant urea cycle activity and both required multiple culture weeks before reaching optimal differentiation in BALs. In conclusion, culturing in BALs enhanced hepatic functionality of both cell lines and from these, the HepaRG cells are the most promising proliferative cell source for BAL application.

  1. The HepaRG cell line: biological properties and relevance as a tool for cell biology, drug metabolism, and virology studies.

    PubMed

    Marion, Marie-Jeanne; Hantz, Olivier; Durantel, David

    2010-01-01

    Liver progenitor cells may play an important role in carcinogenesis in vivo and represent therefore useful cellular materials for in vitro studies. The HepaRG cell line, which is a human bipotent progenitor cell line capable to differentiate toward two different cell phenotypes (i.e., biliary-like and hepatocyte-like cells), has been established from a liver tumor associated with chronic hepatitis C. This cell line represents a valuable alternative to ex vivo cultivated primary human hepatocytes (PHH), as HepaRG cells share some features and properties with adult hepatocytes. The cell line is particularly useful to evaluate drugs and perform drug metabolism studies, as many detoxifying enzymes are expressed and functional. It is also an interesting tool to study some aspect of progenitor biology (e.g., differentiation process), carcinogenesis, and the infection by some pathogens for which the cell line is permissive (e.g., HBV infection). Overall, this chapter gives a concise overview of the biological properties and potential applications of this cell line.

  2. Water Filtration Products

    NASA Technical Reports Server (NTRS)

    1986-01-01

    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  3. WATER FILTRATION AT DULUTH

    EPA Science Inventory

    After partial completion of the Lakewood Filtration Plant at Duluth, studies were begun with funding provided by the demonstration grant. Research covered a variety of topics and was done with a 10 gpm pilot plant located at the filtration plant, with the full scale plant operati...

  4. 29 CFR 1910.1027 - Cadmium.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... respirators when they experience eye irritation. (C) Provide HEPA filters for powered and non-powered air.... High-efficiency particulate air (HEPA) filter means a filter capable of trapping and retaining at least..., the employer shall sample the employee(s) expected to have the highest cadmium exposures. (2) Specific...

  5. Protective environment for hematopoietic cell transplant (HSCT) recipients: The Infectious Diseases Working Party EBMT analysis of global recommendations on health-care facilities.

    PubMed

    Styczynski, Jan; Tridello, Gloria; Donnelly, J Peter; Iacobelli, Simona; Hoek, Jennifer; Mikulska, Malgorzata; Aljurf, Mahmoud; Gil, Lidia; Cesaro, Simone

    2018-03-13

    International guidelines on protective environment for HSCT recipients proposed a set of 10 global recommendations in 2009 on protective environment (GRPE) concerning hospital room design and ventilation. The EBMT Infectious Diseases Working Party undertook a survey on the status on protective environment for HSCT recipients with the aim of surveying current practices and their agreement with GRPE recommendations. The questionnaire consisted of 37 questions divided into 5 sections about filtration, air changes, maintenance, and the protective environment in rooms and the surrounding unit. Overall, 177 centres (response rate 33%) from 36 countries responded, indicating that 99.4% of patient rooms were equipped with HEPA filters, but only 48.6% of the centre's staff were aware of, and could confirm, regular replacement of filters based on manufacturers' recommendations. Well-sealed rooms were used in terms of windows (70.6%), ceilings (35%), and plumbing pipes (51.4%). The sensor monitors in the patient room used to determine when the HEPA filters require changing were installed only in 18.1% of centres. Only 1 centre fulfilled all 10 GRPE recommendations, while 62 centres fulfilled the 3 level "A" recommendations. In conclusion, HEPA-filtered rooms are available in almost all centres, while fewer centres fulfilled other requirements. Knowledge on the details and maintenance of protective environments in the HSCT setting was inadequate, reflecting a lack of communication between the health personnel involved, hospital infection control and the hospital maintenance services.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - W.L. GORE & ASSOCIATES, INC. L4347 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - BASF CORPORATION AX/BA-14/9-SAXP FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  8. Evaluation of organic anion-transporting polypeptide 1B1 and CYP3A4 activities in primary human hepatocytes and HepaRG cells cultured in a dynamic three-dimensional bioreactor system.

    PubMed

    Ulvestad, Maria; Darnell, Malin; Molden, Espen; Ellis, Ewa; Åsberg, Anders; Andersson, Tommy B

    2012-10-01

    The long-term stability of liver cell functions is a major challenge when studying hepatic drug transport, metabolism, and toxicity in vitro. The aim of the present study was to investigate organic anion-transporting polypeptide (OATP) 1B1 and CYP3A4 activities in fresh primary human hepatocytes and differentiated cryopreserved HepaRG cells when cultured in a three-dimensional (3D) bioreactor system. OATP1B1 activity was determined by loss from media experiments of [(3)H]estradiol-17β-D-glucuronide and atorvastatin acid (ATA) for up to 7 days in culture. ATA metabolite formation was determined at days 3 to 4 to evaluate CYP3A4 activity. Overall, the results showed that freshly isolated human hepatocytes inoculated in the bioreactor retained OATP1B1 activity for at least 7 days, whereas in HepaRG cells no OATP1B1 activity was observed beyond day 2. The activity data were in agreement with immunohistochemical stainings, which showed that OATP1B1 protein expression was preserved for at least 9 days in fresh human hepatocytes, whereas OATP1B1 was expressed markedly lower in HepaRG cells after 9 days in culture. Fresh human hepatocytes and HepaRG cells exhibited similar CYP3A4 activity in bioreactor culture, and immunohistochemical stainings supported these findings. Activity and mRNA expression of OATP1B1 and CYP3A4 in primary human hepatocytes compared with HepaRG cells in fresh suspensions were in agreement with data obtained in bioreactor culture. In conclusion, freshly isolated human hepatocytes cultured in a 3D bioreactor system preserve both OATP1B1 and CYP3A4 activities, allowing long-term in vitro studies on drug disposition and toxicity.

  9. PDF-based heterogeneous multiscale filtration model.

    PubMed

    Gong, Jian; Rutland, Christopher J

    2015-04-21

    Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.

  10. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, W.L. GORE & ASSOCIATES, INC., L4427 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS, W.L. GORE & ASSOCIATES, INC. LYSB3 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size for particles equal to or smaller than...

  13. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.

    PubMed

    Welling, Irma; Lehtimäki, Matti; Rautio, Sari; Lähde, Tero; Enbom, Seppo; Hynynen, Pasi; Hämeri, Kaarle

    2009-02-01

    The importance of fine particles has become apparent as the knowledge of their effects on health has increased. Fine particle concentrations have been published for outside air, plasma arc cutting, welding, and grinding, but little data exists for the woodworking industry. Sanding was evaluated as the producer of the woodworking industry's finest particles, and was selected as the target study. The number of dust particles in different particle size classes and the mass concentrations were measured in the following environments: workplace air during sanding in plywood production and in the inlet and return air; in the dust emission chamber; and in filter testing. The numbers of fine particles were low, less than 10(4) particles/cm(3) (10(7) particles/L). They were much lower than typical number concentrations near 10(6) particles/cm(3) measured in plasma arc cutting, grinding, and welding. Ultrafine particles in the size class less than 100 nm were found during sanding of MDF (medium density fiberboard) sheets. When the cleaned air is returned to the working areas, the dust content in extraction systems must be monitored continuously. One way to monitor the dust content in the return air is to use an after-filter and measure pressure drop across the filter to indicate leaks in the air-cleaning system. The best after-filtration materials provided a clear increase in pressure drop across the filter in the loading of the filter. The best after-filtration materials proved to be quite effective also for fine particles. The best mass removal efficiencies for fine particles around 0.3 mum were over 80% for some filter materials loaded with sanding wood dust.

  14. Pig manure treatment by filtration.

    PubMed

    Kowalski, Zygmunt; Makara, Agnieszka; Matýsek, Dalibor; Hoffmann, Józef; Hoffmann, Krystyna

    2013-01-01

    A study of new pig manure treatment and filtration process was carried out. The advantage of the worked out technology is the method of incorporation of crystalline phase into solid organic part of manure. The obtained new solid phase of manure contains about 50% of crystalline phase forming a filtration aid that enables high effectiveness of manure filtration. The filtration rate of manure separation into solid and liquid fractions with pressure filter may achieve 1300-3000 kg/m(2)/h. The method makes it possible to maintain an overall average pollutant removal performance 90% for the chemical oxygen demand COD, > 99% for the suspended solids SS, to 47% for the total nitrogen content. The obtained results showed that the proposed technology being efficient and simple offers a possible solution to pig manure problems.

  15. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  16. THE EFFECT OF SAMe AND BETAINE ON HEPA 1-6, C34 AND E47 LIVER CELL SURVIVAL IN VITRO

    PubMed Central

    Oliva, Joan; Zhong, Jin; Buslon, Virgil S.; French, Samuel W.

    2011-01-01

    In recent years, methyl one-carbon metabolism has received a great deal of attention because the disruption of methyl balance in a variety of genetically modified mice is associated with the development of various forms of liver injury, namely fatty liverdisease and hepatocellular carcinoma (HCC). In addition, patients with liver disease often have an abnormal expression of key genes involved in methionine metabolism as well as elevated serum levels of methionine and homocysteine (Hcy). S-adenosylmethionine (SAMe) has rapidly moved from being a methyl donor to a key metabolite that regulates hepatocyte proliferation, necrosis and differentiation. Biosynthesis of SAMe occurs in all mammalian cells as the first step in methionine catabolism in a reaction catalyzed by methionine adenosyltransferase (MAT). Decreased hepatic SAMe biosynthesis is a consequence of numerous forms of chronic liver injury. In an animal model of chronic liver SAMe deficiency, the liver is predisposed to further injury and develops spontaneous steatohepatitis and HCC. SAMe treatment in experimental animal models of liver injury shows that its hepatoprotective properties. Meta-analyses also showed that it is effective in the treatment of patients with cholestatic liver diseases. We studied the survival of liver cells treated with SAMe and betaine using Hepa 1–6 and E47/C34 cell lines. We showed that exogenous SAMe decreased the number of Hepa 1–6 and E47/C34 cells, and increased the number of dead cells in vitro. Betaine had no significant effect on the number of surviving cells and the number of dead cells. The combination of both methyl donors significantly increased the survival of liver cells and reduced necrosis, compare to SAMe alone. This study showed the inhibition of the proliferatino and increased necrosis in response to SAMe on liver cancer cell lines Hepa 1–6 and C34. PMID:22032937

  17. Membrane filtration device for studying compression of fouling layers in membrane bioreactors

    PubMed Central

    Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard

    2017-01-01

    A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990

  18. Effect of Laminating Pressure on Polymeric Multilayer Nanofibrous Membranes for Liquid Filtration.

    PubMed

    Yalcinkaya, Fatma; Hruza, Jakub

    2018-04-24

    In the new century, electrospun nanofibrous webs are widely employed in various applications due to their specific surface area and porous structure with narrow pore size. The mechanical properties have a major influence on the applications of nanofiber webs. Lamination technology is an important method for improving the mechanical strength of nanofiber webs. In this study, the influence of laminating pressure on the properties of polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF) nanofibers/laminate was investigated. Heat-press lamination was carried out at three different pressures, and the surface morphologies of the multilayer nanofibrous membranes were observed under an optical microscope. In addition, air permeability, water filtration, and contact angle experiments were performed to examine the effect of laminating pressure on the breathability, water permeability and surface wettability of multilayer nanofibrous membranes. A bursting strength test was developed and applied to measure the maximum bursting pressure of the nanofibers from the laminated surface. A water filtration test was performed using a cross-flow unit. Based on the results of the tests, the optimum laminating pressure was determined for both PAN and PVDF multilayer nanofibrous membranes to prepare suitable microfilters for liquid filtration.

  19. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Drop Testing of Returned Units

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.; Berger, Gordon M.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  20. Filter Efficiency and Pressure Testing of Returned ISS Bacterial Filter Elements (BFEs)

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  1. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS, BWF AMERICA, INC. GRADE 700 MPS POLYESTER FELT FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size for particles equal to or smaller than...

  3. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  4. Water sample filtration unit

    USGS Publications Warehouse

    Skougstad, M.W.; Scarbro, G.F.

    1968-01-01

    A readily portable, all plastic, pressure filtration unit is described which greatly facilitates rapid micropore membrane field filtration of up to several liters of water with a minimum risk of inorganic chemical alteration or contamination of the sample. The unit accommodates standard 10.2-cm. (4-inch) diameter filters. The storage and carrying case serves as a convenient filter stand for both field and laboratory use.

  5. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface water source or a ground water source under the direct influence of surface water...

  6. Environmental Technology Verification--Baghouse Filtration Products: GE Energy QG061 Filtration Media (Tested September 2008)

    EPA Science Inventory

    This report reviews the filtration and pressure drop performance of GE Energy's QG061 filtration media. Environmental Technology Verification (ETV) testing of this technology/product was conducted during a series of tests in September 2008. The objective of the ETV Program is to ...

  7. Particle Collection Efficiency of a Lens-Liquid Filtration System

    NASA Astrophysics Data System (ADS)

    Wong, Ross Y. M.; Ng, Moses L. F.; Chao, Christopher Y. H.; Li, Z. G.

    2011-09-01

    Clinical and epidemiological studies have shown that indoor air quality has substantial impact on the health of building occupants [1]. Possible sources of indoor air contamination include hazardous gases as well as particulate matters (PMs) [2]. Experimental studies show that the size distribution of PMs in indoor air ranges from tens of nanometers to a few hundreds of micrometers [3]. Vacuum cleaners can be used as a major tool to collect PMs from floor/carpets, which are the main sources of indoor PMs. However, the particle collection efficiency of typical cyclonic filters in the vacuums drops significantly for particles of diameter below 10 μm. In this work, we propose a lens-liquid filtration system (see Figure 1), where the flow channel is formed by a liquid free surface and a planar plate with fin/lens structures. Computational fluid dynamics simulations are performed by using FLUENT to optimize the structure of the proposed system toward high particle collection efficiency and satisfactory pressure drop. Numerical simulations show that the system can collect 250 nm diameter particles with collection efficiency of 50%.

  8. Walking in the high-rise city: a Health Enhancement and Pedometer-determined Ambulatory (HEPA) program in Hong Kong

    PubMed Central

    Leung, Angela YM; Cheung, Mike KT; Tse, Michael A; Shum, Wai Chuen; Lancaster, BJ; Lam, Cindy LK

    2014-01-01

    Due to the lack of good infrastructure in the public estates, many older adults in urban areas are sedentary. The Health Enhancement and Pedometer-Determined Ambulatory (HEPA) program was developed to assist older adults with diabetes and/or hypertension to acquire walking exercise habits and to build social support, while engaged in regular physical activity. This study aimed to describe the HEPA program and to report changes in participants’ walking capacity and body strength after 10-week walking sessions. A pre- and postintervention design was used. Pedometers were used to measure the number of steps taken per day before and after the 10-week intervention. Upper and lower body strength, lower body flexibility, and quality of life were assessed. A total of 205 older adults completed the program and all health assessments. After the 10-week intervention, the average number of steps per day increased by 36%, from 6,591 to 8,934. Lower body strength, upper body strength, and aerobic fitness increased significantly after 10 weeks, along with improvement in the 12-item Short Form Health Survey (SF™-12) physical and mental health component summary scores. A social support network was built in the neighborhood, and the local environment was utilized to make walking possible and enjoyable. PMID:25170259

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - ALBANY INTERNATIONAL CORP. INDUSTRIAL PROCESS TECHNOLOGIES PRIMATEX PLUS I FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  10. A PERSPECTIVE OF RIVERBANK FILTRATION

    EPA Science Inventory

    Riverbank filtration is a process in which pumping of wells located along riverbanks induce a portion of the river water to flow toward the pumping wells. The process has many similarities to the slow sand filtration process. River water contaminants are attenuated due to a combi...

  11. 40 CFR 63.11507 - What are my standards and management practices?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... distilled/de-ionized water, water filtration, pre-cleaning of parts to be plated, and thorough rinsing of... emissions from the thermal spraying process and transports the emissions to a water curtain, fabric filter... and transports the emissions to a water curtain, fabric filter, cartridge, or HEPA filter, according...

  12. Filtration by eyelashes

    NASA Astrophysics Data System (ADS)

    Vistarakula, Krishna; Bergin, Mike; Hu, David

    2010-11-01

    Nearly every mammalian and avian eye is rimmed with lashes. We investigate experimentally the ability of lashes to reduce airborne particle deposition in the eye. We hypothesize that there is an optimum eyelash length that maximizes both filtration ability and extent of peripheral vision. This hypothesis is tested using a dual approach. Using preserved heads from 36 species of animals at the American Museum of Natural History, we determine the relationship between eye size and eyelash geometry (length and spacing). We test the filtration efficacy of these geometries by deploying outdoor manikins and measuring particle deposition rate as a function of eyelash length.

  13. Efficiency of different air filter types for pig facilities at laboratory scale.

    PubMed

    Wenke, Cindy; Pospiech, Janina; Reutter, Tobias; Truyen, Uwe; Speck, Stephanie

    2017-01-01

    Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs.

  14. Development of a Repeatable Protocol to Uniformly Coat Internal Complex Geometries of Fine Featured 3D Printed Objects with Ceramic Material, including Determination of Viscosity Limits to Properly Coat Certain Pore Sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, A.

    HEPA filters are commonly used in air filtration systems ranging in application from simple home systems to the more advanced networks used in research and development. Currently, these filters are most often composed of glass fibers with diameter on the order of one micron with polymer binders. These fibers, as well as the polymers used, are known to be fragile and can degrade or become extremely brittle with heat, severely limiting their use in high temperature applications. Ceramics are one promising alternative and can enhance the filtration capabilities compared to the current technology. Because ceramic materials are more thermally resistantmore » and chemically stable, there is great interest in developing a repeatable protocol to uniformly coat fine featured polymer objects with ceramic material for use as a filter. The purpose of this experiment is to determine viscosity limits that are able to properly coat certain pore sizes in 3D printed objects, and additionally to characterize the coatings themselves. Latex paint was used as a surrogate because it is specifically designed to produce uniform coatings.« less

  15. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Rudd and D. Bergey

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.« less

  16. COMPARATIVE EVALUATION OF R3f GARNET BEAD FILTRATION AND MULTIMEDIA FILTRATION SYSTEMS; FINAL REPORT

    EPA Science Inventory

    This report summarizes the results of tests conducted to date at the EPA T&E Facility on the R3f filtration system utilizing fine beads (such as garnet beads or glass beads) and a conventional multimedia filtration system. Both systems have been designed and built by Enprotec, a...

  17. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.

    PubMed

    Solbu, Kasper; Daae, Hanne Line; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag Gunnar; Lindgren, Torsten; Bakke, Berit; Lundanes, Elsa; Molander, Paal

    2011-05-01

    Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max HEPA-filters. Other OPs, as dibutylphenyl phosphate (DBPP) and tri-n-butyl phosphate (TnBP) originating from hydraulic oils were more prominent in the samples, illustrated by determination of TnBP in all of the within-day samples collected from airplanes (n = 76, min-max 0.02-4.1 µg m(-3)). All samples were collected under normal flight conditions. However, the TCP concentration during ground testing in an airplane that had experienced leakage of turbine oil with subsequent contamination of the cabin and cockpit air, was an order of magnitude higher as compared to after engine replacement (p = 0.02).

  18. Reliability and Validity of the SE-HEPA: Examining Physical Activity- and Healthy Eating-Specific Self-Efficacy among a Sample of Preadolescents

    ERIC Educational Resources Information Center

    Steele, Michael M.; Burns, Leonard G.; Whitaker, Brandi N.

    2013-01-01

    Objective. The purpose of this study was to examine the psychometric properties of the self-efficacy for healthy eating and physical activity measure (SE-HEPA) for preadolescents. Method. The reliability of the measure was examined to determine if the internal consistency of the measure was adequate (i.e., [alpha]s greater than 0.70). Next, in an…

  19. The use of high-efficiency particulate air-filter respirators to protect hospital workers from tuberculosis. A cost-effectiveness analysis.

    PubMed

    Adal, K A; Anglim, A M; Palumbo, C L; Titus, M G; Coyner, B J; Farr, B M

    1994-07-21

    After outbreaks of multidrug-resistant tuberculosis, the Centers for Disease Control and Prevention proposed the use of respirators with high-efficiency particulate air filters (HEPA respirators) as part of isolation precautions against tuberculosis, along with a respiratory-protection program for health care workers that includes medical evaluation, training, and tests of the fit of the respirators. Each HEPA respirator costs between $7.51 and $9.08, about 10 times the cost of respirators currently used. We conducted a cost-effectiveness analysis using data from the University of Virginia Hospital on exposure to patients with tuberculosis and rates at which the purified-protein-derivative (PPD) skin test became positive in hospital workers. The costs of a respiratory-protection program were based on those of an existing program for workers dealing with hazardous substances. During 1992, 11 patients with documented tuberculosis were admitted to our hospital. Eight of 3852 workers (0.2 percent) had PPD tests that became positive. Five of these conversions were believed to be due to the booster phenomenon; one followed unprotected exposure to a patient not yet in isolation; the other two occurred in workers who had never entered a tuberculosis isolation room. These data suggest that it will take more than one year for the use of HEPA respirators to prevent a single conversion of the PPD test. Assuming that one conversion is prevented per year, however, it would take 41 years at out hospital to prevent one case of occupationally acquired tuberculosis, at a cost of $1.3 million to $18.5 million. Given the effectiveness of currently recommended measures to prevent nosocomial transmission of tuberculosis, the addition of HEPA respirators would offer negligible protective efficacy at great cost.

  20. Removal of Cryptosporidium parvum in bank filtration systems

    NASA Astrophysics Data System (ADS)

    Harter, T.; Atwill, E. R.; Hou, L. L.

    2003-04-01

    The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Many surface water systems therefore depend on filtration systems, including bank filtration systems, for the removal of the pathogenic oocysts. To better understand the effectiveness, e.g., of bank filtration systems, we have implemented a series of columns studies under various environmental conditions (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough of C. parvum in pulsed injections of the oocyst through sand columns, although the model does not account for the significant tailing that occurs in C. parvum transport. Application of colloid filtration theory to bank filtration system is further limited by the intrinsic heterogeneity of the geologic systems used for bank filtration. We couple filtration theory with a stochastic subsurface transport approach and with percolation theory to account for the effects of intrinsic heterogeneity. We find that a 1-log removal can be achieved even under relatively adverse conditions (low collision efficiency, high velocity) if 85% - 90% of the sedimentary hydrofacies located within the bank filtration system or of the coarsest known hydrofacies connecting the riverbed with the extraction system has a grain-size distribution with a 10% passing diameter equal to 1 mm. One millimeter is a standard sieve size in sediment analysis.

  1. Al-Coated Conductive Fiber Filters for High-Efficiency Electrostatic Filtration: Effects of Electrical and Fiber Structural Properties.

    PubMed

    Choi, Dong Yun; An, Eun Jeong; Jung, Soo-Ho; Song, Dong Keun; Oh, Yong Suk; Lee, Hyung Woo; Lee, Hye Moon

    2018-04-10

    Through the direct decomposition of an Al precursor ink AlH 3 {O(C 4 H 9 ) 2 }, we fabricated an Al-coated conductive fiber filter for the efficient electrostatic removal of airborne particles (>99%) with a low pressure drop (~several Pascals). The effects of the electrical and structural properties of the filters were investigated in terms of collection efficiency, pressure drop, and particle deposition behavior. The collection efficiency did not show a significant correlation with the extent of electrical conductivity, as the filter is electrostatically charged by the metallic Al layers forming electrical networks throughout the fibers. Most of the charged particles were collected via surface filtration by Coulombic interactions; consequently, the filter thickness had little effect on the collection efficiency. Based on simulations of various fiber structures, we found that surface filtration can transition to depth filtration depending on the extent of interfiber distance. Therefore, the effects of structural characteristics on collection efficiency varied depending on the degree of the fiber packing density. This study will offer valuable information pertaining to the development of a conductive metal/polymer composite air filter for an energy-efficient and high-performance electrostatic filtration system.

  2. Efficiency of different air filter types for pig facilities at laboratory scale

    PubMed Central

    Wenke, Cindy; Pospiech, Janina; Reutter, Tobias; Truyen, Uwe

    2017-01-01

    Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs. PMID:29028843

  3. Dual-Color Fluorescence Imaging to Monitor CYP3A4 and CYP3A7 Expression in Human Hepatic Carcinoma HepG2 and HepaRG Cells

    PubMed Central

    Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako

    2014-01-01

    Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps. PMID:25101946

  4. Dual-color fluorescence imaging to monitor CYP3A4 and CYP3A7 expression in human hepatic carcinoma HepG2 and HepaRG cells.

    PubMed

    Tsuji, Saori; Kawamura, Fumihiko; Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako

    2014-01-01

    Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.

  5. Enhanced performance of crumb rubber filtration for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2009-03-01

    Waste-tire-derived crumb rubber was utilized as filter media to develop an efficient filter for ballast water treatment. In this study, the effects of coagulation, pressure filtration and dual-media (gravity) filtration on the performance of the crumb rubber filtration were investigated. The removal efficiencies of turbidity, phytoplankton and zooplankton, and head loss development were monitored during the filtration process. The addition of a coagulant enhanced the removal efficiencies of all targeted matter, but resulted in substantial increase of head loss. Pressure filtration increased filtration rates to 220 m(3)h(-1)m(-2) for 8-h operation and improved the zooplankton removal. Dual-media (crumb rubber/sand) gravity filtration also improved the removal efficiencies of phytoplankton and zooplankton over mono-media gravity crumb rubber filtration. However, these filtration techniques alone did not meet the criteria for removing indigenous organisms from ballast water. A combination of filtration and disinfection is suggested for future studies.

  6. Vibrating membrane filtration as improved technology for microalgae dewatering.

    PubMed

    Nurra, Claudia; Clavero, Ester; Salvadó, Joan; Torras, Carles

    2014-04-01

    The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean pore sizes (from 7000Da to 0.2μm) were tested and compared in both filtration set-ups. Experiments were carried-out with Nannochloropsis gaditana and Phaeodactylum tricornutum microalgae. It has been demonstrated that, even if the choice of the membrane depends on its cut-off, its material and the type of microalgae filtrated, dynamic filtration is always the best technology over a conventional one. If with conventional filtration permeability values were in the vicinity of 10L/h/m(2)/bar in steady state phase, with dynamic filtration these values increased to 30L/h/m(2)/bar or more. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Air filters and air cleaners: Rostrum by the American Academy of Allergy, Asthma & Immunology Indoor Allergen Committee

    PubMed Central

    Sublett, James L.; Seltzer, James; Burkhead, Robert; Williams, P. Brock; Wedner, H. James; Phipatanakul, Wanda

    2010-01-01

    The allergist is generally recognized as possessing the greatest expertise in relating airborne contaminants to respiratory health, both atopic and nonatopic. Consequently, allergists are most often asked for their professional opinions regarding the appropriate use of air-cleaning equipment. This rostrum serves as a resource for the allergist and other health care professionals seeking a better understanding of air filtration. PMID:19910039

  8. High-Temperature Particulate Matter Filtration with Resilient Yttria-Stabilized ZrO2 Nanofiber Sponge.

    PubMed

    Wang, Haolun; Lin, Sen; Yang, Shen; Yang, Xudong; Song, Jianan; Wang, Dong; Wang, Haiyang; Liu, Zhenglian; Li, Bo; Fang, Minghao; Wang, Ning; Wu, Hui

    2018-05-01

    Particulate matter (PM) is a major air pollutant in many regions, jeopardizing ecosystems and public health. Filtration at pollutant source is one of the most important ways to protect the environment, however, considering the high-temperature exhaust gas emissions, effective removal of PM and related pollutants from their sources remains a major challenge. In this study, a resilient, heat-resisting, and high-efficiency PM filter based on yttria-stabilized ZrO 2 (YSZ) nanofiber sponge produced with a scalable solution blow spinning process is reported. The porous 3D sponge composed of YSZ nanofibers is lightweight (density of 20 mg cm -3 ) and resilient at both room temperature and high temperatures. At room-temperature conditions, the YSZ nanofiber sponge exhibits 99.4% filtration efficiency for aerosol particles with size in the range of 20-600 nm, associated with a low pressure drop of only 57 Pa under an airflow velocity of 4.8 cm s -1 . At a high temperature of 750 °C, the ceramic sponge maintains a high filtration efficiency of 99.97% for PM 0.3-2.5 under a high airflow velocity of 10 cm s -1 . A practical vehicle exhaust filter to capture particles with filtration efficiency of >98.3% is also assembled. Hence, the YSZ nanofiber sponge has enormous potential to be applied in industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Perspective of Riverbank Filtration in China

    NASA Astrophysics Data System (ADS)

    Li, J.; Teng, Y.; Zhai, Y.; Zuo, R.

    2014-12-01

    Sustainable drinking water supply can affect the health of people, and the surrounding ecosystems. According to statistics of the monitoring program of drinking water sources in 309 at or above prefecture level of China in 2013, the major pollutants index were total phosphorus, ammonia and manganese in surface drinking water sources, respectively, iron, ammonia and manganese in groundwater drinking water sources, respectively. More than 150 drinking water emergency environmental accidents happened since 2006, 52 of these accidents led to the disruption of water supply in waterworks, and a population of over ten million were affected. It indicated that there is a potential risk for people's health by the use of river water directly and it is necessary to require alternative techniques such as riverbank filtration for improving the drinking water quality. Riverbank filtration is an inexpensive natural process, not only smoothing out normal pollutant concentration found in surface water but also significantly reducing the risk from such emergency events as chemical spill into the river. Riverbank filtration technique has been used in many countries more than 100 years, including China. In China, in 1950s, the bank infiltration technique was first applied in northeast of China. Extensive bank infiltration application was conducted in 1980s, and more than 300 drinking water sources utilities bank infiltration established mainly near the Songhua River Basin, the Yellow River Basin, Haihe River Basin. However, the comparative lack of application and researches on riverbank filtration have formed critical scientific data gap in China. As the performance of riverbank filtration technique depend on not only the design and setting such as well type, pumping rate, but also the local hydrogeology and environmental properties. We recommend more riverbank filtration project and studies to be conducted to collect related significant environmental geology data in China

  10. Harvesting microalgal biomass using crossflow membrane filtration: critical flux, filtration performance, and fouling characterization.

    PubMed

    Elcik, Harun; Cakmakci, Mehmet

    2017-06-01

    The purpose of this study was to investigate the efficient harvesting of microalgal biomass through crossflow membrane filtration. The microalgal biomass harvesting experiments were performed using one microfiltration membrane (pore size: 0.2 µm, made from polyvinylidene fluoride) and three ultrafiltration membranes (molecular weight cut-off: 150, 50, and 30 kDa, made from polyethersulfone, hydrophilic polyethersulfone, and regenerated cellulose, respectively). Initially, to minimize membrane fouling caused by microalgal cells, experiments with the objective of determining the critical flux were performed. Based on the critical flux calculations, the best performing membrane was confirmed to be the UH050 membrane, produced from hydrophilic polyethersulfone material. Furthermore, we also evaluated the effect of transmembrane pressure (TMP) and crossflow velocity (CFV) on filtration flux. It was observed that membrane fouling was affected not only by the membrane characteristics, but also by the TMP and CFV. In all the membranes, it was observed that increasing CFV was associated with increasing filtration flux, independent of the TMP.

  11. Hybrid Filter Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  12. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....174 Section 141.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... water system subject to the requirements of this subpart that provides conventional filtration treatment...

  13. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....174 Section 141.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... water system subject to the requirements of this subpart that provides conventional filtration treatment...

  14. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....174 Section 141.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... water system subject to the requirements of this subpart that provides conventional filtration treatment...

  15. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Testing of Returned Units

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.

    2017-01-01

    The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  16. Spontaneous water filtration of bio-inspired membrane

    NASA Astrophysics Data System (ADS)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon

    2016-11-01

    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  17. One-dimensional filtration of pharmaceutical grade phyllosilicate dispersions.

    PubMed

    Viseras, C; Cerezo, P; Meeten, G H; Lopez-Galindo, A

    2001-04-17

    The filtration behaviour of some clay-water dispersions was studied. Two Spanish fibrous phyllosilicates (sepiolite from Vicálvaro and palygorskite from Turón) and a commercial bentonite (Bentopharm UK) with similar sizes and different morphologies (fibrous and/or laminar) were selected as model clays. Sepiolite from Vicálvaro is an almost pure fibrous sample, Bentopharm presents a high amount of laminar particles and palygorskite from Turón is made up of similar percentages of laminar and fibrous particles. The disperse systems were made up using a rotor-stator mixer working at two different mixing rates (1000 and 8000 rpm), for periods of 1 and 10 min. Filtration measurements were taken and the corresponding filtration curves obtained. Finally, the desorptivity (S) of the filtration cakes was calculated and correlated to the textural characteristics of the materials, the solid fraction and mixing conditions. Filtration behaviour of the dispersions depended on all three of these factors. Laminar dispersions presented lower S values than fibrous dispersions. In the 2% w/v dispersions the bridging forces between particles did not permit formation of an interconnected network as in 10% w/v dispersions and, consequently, filtration times increased with the solid fraction (i.e. S values decreased). Regarding stability to pH changes, the results showed that filtration behaviour was highly sensitive to basic pH in the fibrous clay dispersions and almost insensitive in the laminar clay dispersions.

  18. The effect of high-efficiency particulate air respirator design on occupational health: a pilot study balancing risks in the real world.

    PubMed

    Eck, E K; Vannier, A

    1997-02-01

    To quantify specific factors believed to increase healthcare worker (HCW) risk for contaminated sharps injuries (eg, visibility, communication, and range of motion); to quantify the degree to which respirators of various designs impacted those same factors; and to assess HCW opinions about the suitability of selected respirators with respect to patient care and user compliance criteria. Sharps injury data from seven hospitals were analyzed to determine the potential contribution of visibility, communication, and range of motion to reported injuries. Healthcare workers representing various clinical specialties and physical characteristics were examined at baseline and while wearing five different respirators to quantify the impact of respirator design on visibility, communication, and range of motion. Healthcare workers were interviewed and completed a survey assessing each respirator. Hospital and ambulatory-care settings. Population-based and convenience sample. Communication, visibility, and range of motion were found to affect contaminated sharps injuries significantly. Selected high-efficiency particulate air (HEPA) respirators were found to have a negative impact on each of these variables. Healthcare workers involved in the study also reported compliance criteria problems with selected HEPA respirators, which may effect implementation of respiratory precautions adversely. Current HEPA respirators, because of their design, potentially increase the risk of bloodborne pathogen exposure through sharps injuries. We conclude that mandating respirators without regard to the potential impact of their design to the sharps injuries may be counterproductive to HCW safety, because they may increase, rather than decrease, overall occupational risk to HCWs.

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION--GENERIC VERIFICATION PROTOCOL FOR BIOLOGICAL AND AEROSOL TESTING OF GENERAL VENTILATION AIR CLEANERS

    EPA Science Inventory

    Under EPA's Environmental Technology Verification Program, Research Triangle Institute (RTI) will operate the Air Pollution Control Technology Center to verify the filtration efficiency and bioaerosol inactivation efficiency of heating, ventilation and air conditioning air cleane...

  20. 40 CFR 141.717 - Pre-filtration treatment toolbox components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface water or GWUDI source. (c) Bank filtration. Systems receive Cryptosporidium treatment credit for... paragraph. Systems using bank filtration when they begin source water monitoring under § 141.701(a) must... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Pre-filtration treatment toolbox...

  1. Performance analysis of air conditioning system and airflow simulation in an operating theater

    NASA Astrophysics Data System (ADS)

    Alhamid, Muhammad Idrus; Budihardjo, Rahmat

    2018-02-01

    The importance of maintaining performance of a hospital operating theater is to establish an adequate circulation of clean air within the room. The parameter of air distribution in a space should be based on Air Changes per Hour (ACH) to maintain a positive room pressure. The dispersion of airborne particles in the operating theater was governed by regulating the air distribution so that the operating theater meets clean room standards ie ISO 14664 and ASHRAE 170. Here, we introduced several input parameters in a simulation environment to observe the pressure distribution in the room. Input parameters were air temperature, air velocity and volumetric flow rate entering and leaving room for existing and designed condition. In the existing operating theatre, several observations were found. It was found that the outlet air velocity at the HEPA filter above the operating table was too high thus causing a turbulent airflow pattern. Moreover, the setting temperature at 19°C was found to be too low. The supply of air into the room was observed at lower than 20 ACH which is under the standard requirement. Our simulation using FloVent 8.2™ program showed that not only airflow turbulence could be reduced but also the amount of particle contamination could also be minimized.

  2. Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions.

    PubMed

    Hörmann, Vanessa; Brenske, Klaus-Reinhard; Ulrichs, Christian

    2018-01-01

    Three common plant species (Dieffenbachia maculata, Spathiphyllum wallisii, and Asparagus densiflorus) were tested against their capacity to remove the air pollutants toluene (20.0 mg m -3 ) and 2-ethylhexanol (14.6 mg m -3 ) under light or under dark in chamber experiments of 48-h duration. Results revealed only limited pollutant filtration capabilities and indicate that aerial plant parts of the tested species are only of limited value for indoor air quality improvement. The removal rate constant ranged for toluene from 3.4 to 5.7 L h -1  m -2 leaf area with no significant differences between plant species or light conditions (light/dark). The values for 2-ethylhexanol were somewhat lower, fluctuating around 2 L h -1  m -2 leaf area for all plant species tested, whereas differences between light and dark were observed for two of the three species. In addition to pollutant removal, CO 2 fixation/respiration and transpiration as well as quantum yield were evaluated. These physiological characteristics seem to have no major impact on the VOC removal rate constant. Exposure to toluene or 2-ethylhexanol revealed no or only minor effects on D. maculata and S. wallisii. In contrast, a decrease in quantum yield and CO 2 fixation was observed for A. densiflorus when exposed to 2-ethylhexanol or toluene under light, indicating phytotoxic effects in this species.

  3. 24 CFR 35.140 - Prohibited methods of paint removal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... air (HEPA) local exhaust control. (c) Abrasive blasting or sandblasting without HEPA local exhaust control. (d) Heat guns operating above 1100 degrees Fahrenheit or charring the paint. (e) Dry sanding or dry scraping, except dry scraping in conjunction with heat guns or within 1.0 ft. (0.30 m.) of...

  4. 24 CFR 35.140 - Prohibited methods of paint removal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... air (HEPA) local exhaust control. (c) Abrasive blasting or sandblasting without HEPA local exhaust control. (d) Heat guns operating above 1100 degrees Fahrenheit or charring the paint. (e) Dry sanding or dry scraping, except dry scraping in conjunction with heat guns or within 1.0 ft. (0.30 m.) of...

  5. 24 CFR 35.140 - Prohibited methods of paint removal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... air (HEPA) local exhaust control. (c) Abrasive blasting or sandblasting without HEPA local exhaust control. (d) Heat guns operating above 1100 degrees Fahrenheit or charring the paint. (e) Dry sanding or dry scraping, except dry scraping in conjunction with heat guns or within 1.0 ft. (0.30 m.) of...

  6. 24 CFR 35.140 - Prohibited methods of paint removal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... air (HEPA) local exhaust control. (c) Abrasive blasting or sandblasting without HEPA local exhaust control. (d) Heat guns operating above 1100 degrees Fahrenheit or charring the paint. (e) Dry sanding or dry scraping, except dry scraping in conjunction with heat guns or within 1.0 ft. (0.30 m.) of...

  7. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.« less

  8. Survival and growth of micro-organisms on air filtration media during initial loading

    NASA Astrophysics Data System (ADS)

    Kemp, P. C.; Neumeister-Kemp, H. G.; Lysek, G.; Murray, F.

    A new type of air filtration medium made from a hygroscopic polymer fibre and constructed in three layers was investigated to measure the survival and growth of micro-organisms on this medium in comparison to a widely used fibreglass medium. Both materials were supplied by the manufacturer and tested "blind". The materials were loaded in an Airotester unit. Micro-organisms were analysed at 2 weekly intervals for 8 weeks by washing filter samples and plating the solution on to agar media and by vital fluorescence microscopy. Filter samples were also weighed to calculate water content and the pH value of the filter material was measured in the wash out eluate. Vital fluorescence microscopy revealed fungi were able to grow on fibreglass medium, but not on the multi-layered polymer. The colony forming unit (CFU) counts did not increase at a steady rate. There was a significant increase on both materials ( P<0.001) during the first 2 weeks which was then followed by a significant decrease in 4 weeks ( P<0.001) but the CFU then significantly increased in 6 weeks ( P<0.05) which were the highest CFU counts during the 2-month trial. There was a significant difference in CFU counts between the filter materials only in week 2 ( P⩽0.001) and week 4 ( P=0.04). Fewer micro-organisms were extracted from the multi-layered polymer than from the fibreglass medium. Fewer fungal species were identified on the multi-layered polymer (nine species) than on the fibreglass medium (13 species). The pH value on the multi-layered polymer was significantly higher than the fibreglass material but only when clean ( P<0.010) and after 2 weeks ( P<0.001). A significantly higher water content on the fibreglass medium ( P<0.001) also indicated a habitat where a wider range of fungal species and bacteria are able to survive. While there was a reduced survival and growth of micro-organisms on the multi-layered polymer material in the initial month of service life, this advantage was cancelled by

  9. Chemical Protection Testing of Sorbent-Based Air Purification Components (APCs)

    DTIC Science & Technology

    2016-06-24

    APC’s ability to filter air in a chemically contaminated environment. 15. SUBJECT TERMS Air purification component; APC; filtration fabric...FF, filter media, collective protection; individual protection. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...incoming air. The intent of this process is to produce traceable, quantifiable, and defensible data that can be used to analyze an APC’s ability to filter

  10. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Filtration sampling requirements. 141...-Systems Serving 10,000 or More People § 141.174 Filtration sampling requirements. (a) Monitoring... sampling every four hours in lieu of continuous monitoring, but for no more than five working days...

  11. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Filtration sampling requirements. 141...-Systems Serving 10,000 or More People § 141.174 Filtration sampling requirements. (a) Monitoring... sampling every four hours in lieu of continuous monitoring, but for no more than five working days...

  12. 10. OBLIQUE DETAIL VIEW OF PUMP NO. 1 IN FILTRATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. OBLIQUE DETAIL VIEW OF PUMP NO. 1 IN FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHEAST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  13. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research. Revised Edition.

    ERIC Educational Resources Information Center

    Bayer, Charlene W.; Crow, Sidney A.; Fischer, John

    Understanding the primary causes of indoor air quality (IAQ) problems and how controllable factors--proper heating, ventilation and air-conditioning (HVAC) system design, allocation of adequate outdoor air, proper filtration, effective humidity control, and routine maintenance--can avert problems may help all building owners, operators, and…

  14. Optimization of the cleaning process on a pilot filtration setup for waste water treatment accompanied by flow visualization

    NASA Astrophysics Data System (ADS)

    Bílek, Petr; Hrůza, Jakub

    2018-06-01

    This paper deals with an optimization of the cleaning process on a liquid flat-sheet filter accompanied by visualization of the inlet side of a filter. The cleaning process has a crucial impact on the hydrodynamic properties of flat-sheet filters. Cleaning methods avoid depositing of particles on the filter surface and forming a filtration cake. Visualization significantly helps to optimize the cleaning methods, because it brings new overall view on the filtration process in time. The optical method, described in the article, enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. Visualization is a strong tool for investigation of the processes on filters in details and it is also possible to determine concentration of particles after an image analysis. The impact of air flow rate, inverse pressure drop and duration on the cleaning mechanism is investigated in the article. Images of the cleaning process are compared to the hydrodynamic data. The tests are carried out on a pilot filtration setup for waste water treatment.

  15. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    PubMed

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Life Support Filtration System Trade Study for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Perry, Jay L.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.

  17. Design parameters for rotating cylindrical filtration

    NASA Technical Reports Server (NTRS)

    Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.

    2002-01-01

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.

  18. 1. Perspective view southwest of filtration bed with earth mounded ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Perspective view southwest of filtration bed with earth mounded over facility. Armory Street appears in the foreground. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  19. 30. Valves under central corridor of filtration bed building. Main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Valves under central corridor of filtration bed building. Main flood valves is at left and crossover valve is a right. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  20. Crumb rubber filtration: a potential technology for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2006-05-01

    The removal of turbidity, particles, phytoplankton and zooplankton in water by crumb rubber filtration was investigated. A substantial reduction was achieved. Of the three variables, filter depth, media size and filtration rate, media size had the most significant influence. Smaller media size favored higher removal efficiency of all targeted matter. There was no apparent relationship between removal efficiency and filter depth. Higher filtration rate resulted in lower removal efficiency and higher head loss. Compared with conventional granular media filters, crumb rubber filters required less backwash, and developed lower head loss. Consequently crumb rubber filters could be run for a longer time or allow a higher filtration rate. The results also indicate that the crumb rubber filtration alone did not achieve the target removal of invasive species. However, crumb rubber filtration could potentially be used as a primary treatment technology to enhance the efficiency of a secondary treatment process (e.g., disinfection).

  1. Prediction of the filtrate particle size distribution from the pore size distribution in membrane filtration: Numerical correlations from computer simulations

    NASA Astrophysics Data System (ADS)

    Marrufo-Hernández, Norma Alejandra; Hernández-Guerrero, Maribel; Nápoles-Duarte, José Manuel; Palomares-Báez, Juan Pedro; Chávez-Rojo, Marco Antonio

    2018-03-01

    We present a computational model that describes the diffusion of a hard spheres colloidal fluid through a membrane. The membrane matrix is modeled as a series of flat parallel planes with circular pores of different sizes and random spatial distribution. This model was employed to determine how the size distribution of the colloidal filtrate depends on the size distributions of both, the particles in the feed and the pores of the membrane, as well as to describe the filtration kinetics. A Brownian dynamics simulation study considering normal distributions was developed in order to determine empirical correlations between the parameters that characterize these distributions. The model can also be extended to other distributions such as log-normal. This study could, therefore, facilitate the selection of membranes for industrial or scientific filtration processes once the size distribution of the feed is known and the expected characteristics in the filtrate have been defined.

  2. Recycled PET Nanofibers for Water Filtration Applications

    PubMed Central

    Zander, Nicole E.; Gillan, Margaret; Sweetser, Daniel

    2016-01-01

    Water shortage is an immediate and serious threat to our world population. Inexpensive and scalable methods to clean freshwater and wastewater are in high demand. Nanofiber filtration membranes represent a next generation nonwoven filter media due to their unique properties. Polyethlyene terephthalate (PET) is often used in the packaging of water and other commonly used materials, leading to a large amount of plastic waste often with limited incentive for recycling (few value-added uses). Here, we present work in the generation of nanofiber liquid filtration membranes from PET plastic bottles and demonstrate their use in microfiltration. PET nanofiber membranes were formed via solution electrospinning with fiber diameters as low as ca. 100 nm. Filtration efficiency was tested with latex beads with sizes ranging from 30 to 2000 nm. Greater than 99% of the beads as small as 500 nm were removed using gravity filtration. To reduce biofouling, the mats were functionalized with quaternary ammonium and biguanide biocides. The biguanide functionalized mats achieved 6 log reduction for both gram negative and gram positive bacteria. PMID:28773380

  3. 22. Float located adjacent to entry stair in filtration bed. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Float located adjacent to entry stair in filtration bed. The float actuates a valve that maintains water level over the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  4. 2. View east of filtration bed building. Access bridge to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View east of filtration bed building. Access bridge to earth covering over reinforced concrete roof is at center right of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  5. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shuangwen

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then,more » the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.« less

  6. Proceedings of the fifteenth DOE nuclear air cleaning conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    First, M.W.

    1979-02-01

    Papers presented are grouped under the following topics: noble gas separation, damage control, aerosols, test methods, new air cleaning technology from Europe, open-end, and filtration. A separate abstract was prepared for each paper.

  7. Long-Term Leukocyte Filtration Should Be Avoided during Extracorporeal Circulation

    PubMed Central

    Tang, Jiali; Tao, Kaiyu; Zhou, Jing; Zhang, Chongwei; Gong, Lina; Luo, Nanfu

    2013-01-01

    Filtration during extracorporeal circulation (ECC) not only removes but also activates leukocytes; therefore, long-term leukocyte filtration may cause adverse effects. In the present study, we tested this hypothesis by priming ECC with 300 mL of canine blood and examining filtration effects in 3 groups (n = 6 each) during 60 min ECC. In the control group (Group C) blood was filtrated with an arterial filter for 60 min; in long-term (Group L) and short-term (Group S) groups, blood was filtrated with a leukocyte filter for 60 and 5 min. We found that about 90% of leukocytes were removed after 5 min of filtration in both Groups L and S. Although leukocyte count continued to reduce, mean fluorescent intensities of CD11/CD18, free hemoglobin, and neutrophil elastase increased in Group L and were higher than those in Groups C and S at 60 min. Leukocyte rupture, cytoplasmic leakage, and circulating naked nuclei were also found in Group L. The data support our hypothesis that long-term filtration can induce inflammation and lead to leukocyte destruction. PMID:24453424

  8. Vision-related quality of life following glaucoma filtration surgery.

    PubMed

    Hirooka, Kazuyuki; Nitta, Eri; Ukegawa, Kaori; Tsujikawa, Akitaka

    2017-05-12

    To evaluate vision-related quality of life (VR-QOL) following glaucoma filtration surgery. A total of 103 glaucoma patients scheduled to undergo glaucoma filtration surgery. Prior to and at three months after glaucoma filtration surgery, trabeculectomy or EX-PRESS, all patients completed the 25-item National Eye Institute Visual Function Questionnaire (VFQ-25). A total of 48 patients underwent combined cataract and filtration surgery. The clinical data collected pre- and postoperatively included best-corrected visual acuity (BCVA) and intraocular pressure (IOP). The IOP decreased significantly from 19.0 ± 8.1 mmHg to 9.7 ± 3.9 mmHg (P < 0.001). Preoperative VFQ-25 composite score (65.8 ± 15.6) was similar to the postoperative score (67.8 ± 16.6). A significantly improved VFQ-25 composite score (pre: 63.2 ± 17.1, post: 67.7 ± 17.8; P = 0.001) was observed in the patients who underwent combined cataract and filtration surgery. There was a significant association between the BCVA changes in the operated eye and the changes in the VFQ-25 composite score (r = -0.315, P = 0.003). Although glaucoma filtration surgery by itself did not decrease the VR-QOL in glaucoma patients, there was significant improvement in the VR-QOL after the patients underwent combined cataract and glaucoma filtration surgery.

  9. Novel Filtration Markers for GFR Estimation

    PubMed Central

    Inker, Lesley A.; Coresh, Josef; Levey, Andrew S.; Eckfeldt, John H.

    2017-01-01

    Creatinine-based glomerular filtration rate estimation (eGFRcr) has been improved and refined since the 1970s through both the Modification of Diet in Renal Disease (MDRD) Study equation in 1999 and the CKD Epidemiology Collaboration (CKD-EPI) equation in 2009, with current clinical practice dependent primarily on eGFR for accurate assessment of GFR. However, researchers and clinicians have recognized limitations of relying on creatinine as the only filtration marker, which can lead to inaccurate GFR estimates in certain populations due to the influence of non-GFR determinants of serum or plasma creatinine. Therefore, recent literature has proposed incorporation of multiple serum or plasma filtration markers into GFR estimation to improve precision and accuracy and decrease the impact of non-GFR determinants for any individual biomarker. To this end, the CKD-EPI combined creatinine-cystatin C equation (eGFRcr-cys) was developed in 2012 and demonstrated superior accuracy to equations relying on creatinine or cystatin C alone (eGFRcr or eGFRcys). Now, the focus has broadened to include additional novel filtration markers to further refine and improve GFR estimation. Beta-2-microglobulin (B2M) and beta-trace-protein (BTP) are two filtration markers with established assays that have been proposed as candidates for improving both GFR estimation and risk prediction. GFR estimating equations based on B2M and BTP have been developed and validated, with the CKD-EPI combined BTP-B2M equation (eGFRBTP-B2M) demonstrating similar performance to eGFR and eGFR. Additionally, several studies have demonstrated that both B2M and BTP are associated with outcomes in CKD patients, including cardiovascular events, ESRD and mortality. This review will primarily focus on these two biomarkers, and will highlight efforts to identify additional candidate biomarkers through metabolomics-based approaches. PMID:29333147

  10. THE ROLE OF FILTRATION IN PREVENTING WATERBORNE DISEASE

    EPA Science Inventory

    Filtration is an important treatment process in the removal of pathogenic microorganisms and the prevention of waterborne disease. Historically, filtration was responsible for reducing death and illness from waterborne disease in 1871 in Germany. Other early examples in the U.S. ...

  11. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  12. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  13. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  14. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  15. The Air Pollution Exposure Laboratory (APEL) for controlled human exposure to diesel exhaust and other inhalants: characterization and comparison to existing facilities.

    PubMed

    Birger, Nicholas; Gould, Timothy; Stewart, James; Miller, Mark R; Larson, Timothy; Carlsten, Chris

    2011-03-01

    The Air Pollution Exposure Laboratory (APEL) was designed for the controlled inhalation of human subjects to aged and diluted diesel exhaust (DE) to mimic "real-world" occupational and environmental conditions. An EPA Tier 3-compliant, 6.0 kW diesel generator is operated under discrete cyclic loads to simulate diesel on-road emissions. The engine accepts standard ultra-low sulfur diesel or a variety of alternative fuels (such as biodiesel) via a partitioned tank. A portion of raw exhaust is drawn into the primary dilution system and is diluted 9:1 with compressed air at standard temperature (20°C) and humidity (40%) levels. The exhaust is further diluted approximately 25:1 by high efficiency particulate air (HEPA)-filtered air (FA) and then aged for 4 min before entering the 4 × 6 × 7-foot exposure booth. An optional HEPA filter path immediately proximal to the booth can generate a particle-reduced (gas-enriched) exposure. In-booth particulate is read by a nephelometer to provide an instantaneous light scattering coefficient for closed-loop system control. A Scanning Mobility Particle Sizer and multi-stage impactor measures particle size distribution. Filter sampling allows determination of sessional average concentrations of size-fractionated and unfractionated particulate oxidative potential, elemental carbon, organic carbon and trace elements. Approximately 300 μg/m(3) PM(2.5) is routinely achievable at APEL and is well characterized in terms of oxidative potential and elemental components. APEL efficiently creates fresh DE, appropriately aged and diluted for human experimentation at safe yet realistic concentrations. Description of exposure characteristics allows comparison to other international efforts to deepen the current evidence base regarding the health effects of DE.

  16. 21. Overflow pipe in filtration bed. Located at each corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Overflow pipe in filtration bed. Located at each corner of the bed, the pipes drain off any excess water and maintain a limit on water depth. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  17. Tailored liquid chromatography-mass spectrometry analysis improves the coverage of the intracellular metabolome of HepaRG cells.

    PubMed

    Cuykx, Matthias; Negreira, Noelia; Beirnaert, Charlie; Van den Eede, Nele; Rodrigues, Robim; Vanhaecke, Tamara; Laukens, Kris; Covaci, Adrian

    2017-03-03

    Metabolomics protocols are often combined with Liquid Chromatography-Mass Spectrometry (LC-MS) using mostly reversed phase chromatography coupled to accurate mass spectrometry, e.g. quadrupole time-of-flight (QTOF) mass spectrometers to measure as many metabolites as possible. In this study, we optimised the LC-MS separation of cell extracts after fractionation in polar and non-polar fractions. Both phases were analysed separately in a tailored approach in four different runs (two for the non-polar and two for the polar-fraction), each of them specifically adapted to improve the separation of the metabolites present in the extract. This approach improves the coverage of a broad range of the metabolome of the HepaRG cells and the separation of intra-class metabolites. The non-polar fraction was analysed using a C18-column with end-capping, mobile phase compositions were specifically adapted for each ionisation mode using different co-solvents and buffers. The polar extracts were analysed with a mixed mode Hydrophilic Interaction Liquid Chromatography (HILIC) system. Acidic metabolites from glycolysis and the Krebs cycle, together with phosphorylated compounds, were best detected with a method using ion pairing (IP) with tributylamine and separation on a phenyl-hexyl column. Accurate mass detection was performed with the QTOF in MS-mode only using an extended dynamic range to improve the quality of the dataset. Parameters with the greatest impact on the detection were the balance between mass accuracy and linear range, the fragmentor voltage, the capillary voltage, the nozzle voltage, and the nebuliser pressure. By using a tailored approach for the intracellular HepaRG metabolome, consisting of three different LC techniques, over 2200 metabolites can be measured with a high precision and acceptable linear range. The developed method is suited for qualitative untargeted LC-MS metabolomics studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evaluation of emerging factors blocking filtration of high-adjunct-ratio wort.

    PubMed

    Ma, Ting; Zhu, Linjiang; Zheng, Feiyun; Li, Yongxian; Li, Qi

    2014-08-20

    Corn starch has become a common adjunct for beer brewing in Chinese breweries. However, with increasing ratio of corn starch, problems like poor wort filtration performance arise, which will decrease production capacity of breweries. To solve this problem, factors affecting wort filtration were evaluated, such as the size of corn starch particle, special yellow floats formed during liquefaction of corn starch, and residual substance after liquefaction. The effects of different enzyme preparations including β-amylase and β-glucanase on filtration rate were also evaluated. The results indicate that the emerging yellow floats do not severely block filtration, while the fine and uniform-shape corn starch particle and its incompletely hydrolyzed residue after liquefaction are responsible for filtration blocking. Application of β-amylase preparation increased the filtration rate of liquefied corn starch. This study is useful for our insight into the filtration blocking problem arising in the process of high-adjunct-ratio beer brewing and also provides a feasible solution using enzyme preparations.

  19. 20. View of sand filtration bed. Wheelbarrow was used to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of sand filtration bed. Wheelbarrow was used to remove schmutzdeck (top, dirty sand layer containing particulate contamination, dead microorganisms and debris) for cleaning and or disposal. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  20. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  1. SU-D-209-02: Percent Depth Dose Curves for Fluoroscopic X-Ray Beam Qualities Incorporating Copper Filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunderle, K; Wayne State University School of Medicine, Detroit, MI; Godley, A

    Purpose: The purpose of this investigation was to quantify percent depth dose (PDD) curves for fluoroscopic x-ray beam qualities incorporating added copper filtration. Methods: A PTW (Freiburg, Germany) MP3 water tank was used with a Standard Imaging (Middleton, WI) Exradin Model 11 Spokas Chamber to measure PDD curves for 60, 80, 100 and 120 kVp x-ray beams with copper filtration ranging from 0.0–0.9 mm at 22cm and 42cm fields of view from 0 to 150 mm of water. A free-in-air monitor chamber was used to normalize the water tank data to fluctuations in output from the fluoroscope. The measurements weremore » acquired on a Siemens (Erlangen, Germany) Artis ZeeGo fluoroscope. The fluoroscope was inverted from the typical orientation providing an x-ray beam originating from above the water tank. The water tank was positioned so that the water level was located at 60cm from the focal spot; which also represents the focal spot to interventional reference plane distance for that fluoroscope. Results: PDDs for 60, 80, 100, and 120 kVp with 0 mm of copper filtration compared well to previously published data by Fetterly et al. [Med Phys, 28, 205 (2001)] for those beam qualities given differences in fluoroscopes, geometric orientation, type of ionization chamber, and the water tank used for data collection. PDDs for 60, 80, 100, and 120 kVp with copper filtration were obtained and are presented, which have not been previously investigated and published. Conclusion: The equipment and processes used to acquire the reported data were sound and compared well with previously published data for PDDs without copper filtration. PDD data for the fluoroscopic x-ray beams incorporating copper filtration can be used as reference data for estimating organ or soft tissue dose at depth involving similar beam qualities or for comparison with mathematical models.« less

  2. Industrial Application of Open Pore Ceramic Foam for Molten Metal Filtration

    NASA Astrophysics Data System (ADS)

    Gauckler, L. J.; Waeber, M. M.; Conti, C.; Jacob-Dulière, M.

    Ceramic foam filters were used for industrial filtration of aluminum. Results are compared with laboratory experiments which are in good agreement with trajectory analyses of deep bed filtration for the early stage of filtration.

  3. Organic colloids and their influence on low-pressure membrane filtration.

    PubMed

    Laabs, C; Amy, G; Jekel, M

    2004-01-01

    Wastewater treatment by low-pressure membrane filtration (MF and UF) is affected to a large extent by macromolecules and colloids. In order to investigate the influence of organic colloids on the membrane filtration process, colloids were isolated from a wastewater treatment plant effluent using a rotary-evaporation pre-concentration step followed by dialysis. Stirred cell tests were carried out using redissolved colloids, with and without additional glass fiber filtration. After constant pressure membrane filtration of 190 L/m2, the initial flux had declined by 50% for colloids > 6-8 kD (glass fiber filtered) with a hydrophilic MF membrane and for colloids > 12-14 kD (glass fiber filtered) with a hydrophobic MF membrane. For the non-filtered colloidal solutions, the flux decline was even steeper with the flux being below 10% of the initial flux after 190 L/m2 were passed through the membranes. As with larger particles, colloids form a filtration cake layer on top of the membrane surface when used as isolates without prior filtration. This filtration cake is easily removed during backwashing. However, polysaccharides as a macromolecular component of the colloid isolate cause severe fouling by the formation of a gel layer on the membrane surface that is difficult to remove completely.

  4. Accelerated testing technique for evaluating performance of chemical air filters for DUV photolithographic equipment

    NASA Astrophysics Data System (ADS)

    Kishkovich, Oleg P.; Bolgov, Dennis; Goodwin, William

    1999-06-01

    In this paper, the authors discuss the requirements for chemical air filtration system used in conjunction with modern DUV photolithography equipment. Among the topics addressed are the scope of pollutants, their respective internal and external sources, and an overview of different types of filtration technologies currently in use. Key filtration parameters, including removal efficiency, service life, and spill protection capacity, are discussed and supported by actual data, reflection the total molecular base concentration in operational IC manufacturing facilities. The authors also describe a time-accelerated testing procedure for comparing and evaluating different filtration technologies and designs, and demonstrate how this three-day test procedure can reliably predict an effective filter service life up to ten years.

  5. Contamination Impact of Station Brush Fire on Cleanroom Facilities

    NASA Technical Reports Server (NTRS)

    Carey, Phil; Blakkolb, Brian

    2010-01-01

    Brush and forest fires, both naturally occurring and anthropogenic in origin, in proximity to space flight hardware processing facilities raise concerns about the threat of contamination resulting from airborne particulate and molecular components of smoke. Perceptions of the severity of the threat are possibly heightened by the high sensitivity of the human sense of smell to some components present in the smoke of burning vegetation.On August 26th, 2009, a brushfire broke out north of Pasadena, California, two miles from the Jet Propulsion Laboratory. The Station Fire destroyed over 160,000 acres, coming within a few hundred yards of JPL. Smoke concentrations on Lab were very heavy over several days. All Lab operations were halted, and measures were taken to protect personnel, critical hardware, and facilities. Evaluation of real-time cleanroom monitoring data, visualinspection of facilities, filter systems, and analysis of surface cleanliness samples revealed facility environments andhardware were minimally effected.Outside air quality easily exceeded Class Ten Million. Prefilters captured most large ash and soot; multi-stage filtration greatly minimized the impact on the HEPA/ULPA filters. Air quality in HEPA filtered spacecraft assembly cleanrooms remained within Class 10,000 specification throughout. Surface cleanliness was inimally affected, as large particles were effectively removed from the airstream, and sub-micron particles have extremely long settling rates. Approximate particulate fallout within facilities was 0.00011% area coverage/day compared to 0.00038% area coverage/day during normal operations. Deposition of condensable airborne components, as measured in real time, peaked at approximately1.0 ng/cm2/day compared to 0.05 ng/cm2/day nominal.

  6. Contamination impact of station brush fire on cleanroom facilities

    NASA Astrophysics Data System (ADS)

    Carey, Philip A.; Blakkolb, Brian K.

    2010-08-01

    Brush and forest fires, both naturally occurring and anthropogenic in origin, in proximity to space flight hardware processing facilities raise concerns about the threat of contamination resulting from airborne particulate and molecular components of smoke. Perceptions of the severity of the threat are possibly heightened by the high sensitivity of the human sense of smell to some components present in the smoke of burning vegetation. On August 26th, 2009, a brushfire broke out north of Pasadena, California, two miles from the Jet Propulsion Laboratory. The Station Fire destroyed over 160,000 acres, coming within a few hundred yards of JPL. Smoke concentrations on Lab were very heavy over several days. All Lab operations were halted, and measures were taken to protect personnel, critical hardware, and facilities. Evaluation of real-time cleanroom monitoring data, visual inspection of facilities, filter systems, and analysis of surface cleanliness samples revealed facility environments and hardware were minimally effected. Outside air quality easily exceeded Class Ten Million. Prefilters captured most large ash and soot; multi-stage filtration greatly minimized the impact on the HEPA/ULPA filters. Air quality in HEPA filtered spacecraft assembly cleanrooms remained within Class 10,000 specification throughout. Surface cleanliness was minimally affected, as large particles were effectively removed from the airstream, and sub-micron particles have extremely long settling rates. Approximate particulate fallout within facilities was 0.00011% area coverage/day compared to 0.00038% area coverage/day during normal operations. Deposition of condensable airborne components, as measured in real time, peaked at approximately 1.0 ng/cm2/day compared to 0.05 ng/cm2/day nominal.

  7. UTEX LEACHING, THICKENING AND FILTRATION TESTS. Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, A.; George, D.R.; Thomas, P.N.

    1954-03-15

    A series of leaching, thickening, and filtration tests was undertaken to determine minimum conditions for high uranium extractions and obtain thickening and filtration data. The ore represented by the sample responded to cold and hot leaching with the minimum condition for uranium extraction being 500 pounds of H/ sub 2/SO/sub 4/ per ton and five pounds NaClO/sub 3/ per ton leached at room temperature for l6 hours with uranium extraction of over 95%. Thickening and filtration were economical if a reagent such as S-3000 or Guar gum was used. (auth)

  8. Removal of pathogens using riverbank filtration

    NASA Astrophysics Data System (ADS)

    Cote, M. M.; Emelko, M. B.; Thomson, N. R.

    2003-04-01

    Although more than hundred years old, in situ or Riverbank Filtration (RBF) has undergone a renewed interest in North America because of its potential as a surface water pre-treatment tool for removal of pathogenic microorganisms. A new RBF research field site has been constructed along the banks of the Grand River in Kitchener, Ontario, Canada to assess factors influencing pathogen removal in the subsurface. Implementation of RBF and appropriate design of subsequent treatment (UV, chlorination, etc.) processes requires successful quantification of in situ removals of Cryptosporidium parvum or a reliable surrogate parameter. C.~parvum is often present in surface water at low indigenous concentrations and can be difficult to detect in well effluents. Since releases of inactivated C.~parvum at concentrations high enough for detection in well effluents are cost prohibitive, other approaches for demonstrating effective in situ filtration of C.~parvum must be considered; these include the use of other microbial species or microspheres as indicators of C.~parvum transport in the environment. Spores of Bacillus subtilis may be considered reasonable indicators of C.~parvum removal by in situ filtration because of their size (˜1 μm in diameter), spherical shape, relatively high indigenous concentration is many surface waters, and relative ease of enumeration. Based on conventional particle filtration theory and assuming equivalent chemical interactions for all particle sizes, a 1 μm B.~subtilis spore will be removed less readily than a larger C. parvum oocyst (4-6 μm) in an ideal granular filter. Preliminary full-scale data obtained from a high rate RBF production well near the new RBF test site demonstrated greater than 1 log removal of B.~subtilis spores. This observed spore removal is higher than that prescribed by the proposed U.S. Long Term 2 Enhanced Surface Water Treatment Rule for C.~parvum. To further investigate the removal relationship between C

  9. Metabolomics analysis of the toxicity pathways of triphenyl phosphate in HepaRG cells and comparison to oxidative stress mechanisms caused by acetaminophen.

    PubMed

    Van den Eede, Nele; Cuykx, Matthias; Rodrigues, Robim M; Laukens, Kris; Neels, Hugo; Covaci, Adrian; Vanhaecke, Tamara

    2015-12-01

    Since the publication of REACH guidelines, the need for in vitro tools for toxicity testing has increased. We present here the development of a hepatotoxicity testing tool using human HepaRG cell cultures and metabolomics. HepaRG cells were exposed to either 4mM acetaminophen (APAP) as reference toxicant for oxidative stress or 50 μM triphenyl phosphate (TPHP) as toxicant with unknown toxicity pathways (TPs). After 72 h exposure, cells were subjected to quenching and liquid-liquid extraction which resulted in a polar and an apolar fraction. Analysis of fractions was performed by ultrahigh performance liquid chromatography-high resolution tandem mass spectrometry (UHPLC-QTOF-MS). Significantly up or down regulated metabolites were selected by univariate statistics prior to identification. In order to obtain robust and specific TP biomarkers, the experiment was also repeated using a different culture medium composition to assess which metabolites show consistent changes. Potential biomarkers belonging to different TPs were found for APAP and TPHP. For APAP, the biomarkers were related to a decrease in unsaturated phospholipids, and for TPHP to an accumulation of phosphoglycerolipids and increase of palmitoyl lysophosphatidylcholine. This first proof-of-concept opens new perspectives for the analysis of other (reference) toxicants with different TPs and it can be used to expand the in vitro tool for hepatotoxicity screening of various compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Functional principal component analysis of glomerular filtration rate curves after kidney transplant.

    PubMed

    Dong, Jianghu J; Wang, Liangliang; Gill, Jagbir; Cao, Jiguo

    2017-01-01

    This article is motivated by some longitudinal clinical data of kidney transplant recipients, where kidney function progression is recorded as the estimated glomerular filtration rates at multiple time points post kidney transplantation. We propose to use the functional principal component analysis method to explore the major source of variations of glomerular filtration rate curves. We find that the estimated functional principal component scores can be used to cluster glomerular filtration rate curves. Ordering functional principal component scores can detect abnormal glomerular filtration rate curves. Finally, functional principal component analysis can effectively estimate missing glomerular filtration rate values and predict future glomerular filtration rate values.

  11. The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing.

    PubMed

    Zhan, Ying; Johnson, Karoline; Norris, Christina; Shafer, Martin M; Bergin, Mike H; Zhang, Yinping; Zhang, Junfeng; Schauer, James J

    2018-06-01

    In many developing regions with poor air quality, the use of air filtration devices to clean indoor air is growing rapidly. In this study, we collected indoor, outdoor and personal exposure filter-based samples of fine particulate matter (PM 2.5 ) with both properly operating, and sham air cleaners in six Beijing residences from July 24th to August 17th, 2016. Mass concentrations of PM 2.5 and several health relevant components of PM 2.5 including organic carbon, elemental carbon, sulfate, nitrate, ammonium, and 21 selected metals, were analyzed to evaluate the effectiveness of air cleaners. The effect of air purification on PM 2.5 reactive oxygen species (ROS) activity, a metric of the oxidative potential of the aerosol, was also evaluated. The average indoor PM 2.5 concentration during true filtration was 8.47μg/m 3 , compared to 49.0μg/m 3 during sham filtration; thus, air cleaners can significantly reduce the indoor PM 2.5 concentration to well below WHO guideline levels and significantly lower all major components of PM 2.5 . However, the utility of air cleaners in reducing overall personal exposure to PM 2.5 and its components was marginal in this study: the average personal exposure PM 2.5 concentration was 67.8 and 51.1μg/m 3 during true and sham filtration respectively, and it is likely due to the activity patterns of the subjects. Short-term exposure contributions from environments with high PM 2.5 concentrations, including exposure to traffic related emissions as well as uncharacterized indoor microenvironments, likely add substantially to the total PM 2.5 exposure burden. The toxicity assay indicates that the air cleaners can also significantly reduce ROS activity in the indoor environment; however, this decrease did not translate to a reduction in personal exposure. Elemental carbon, lead, and arsenic were well-correlated with the ROS activity, thus adding to the knowledge base of drivers for ROS activity. Copyright © 2018 Elsevier B.V. All rights

  12. A new approach to determining symmetry groups of filtration properties of porous media in nonlinear filtration laws

    NASA Astrophysics Data System (ADS)

    Maksimov, V. M.; Dmitriev, N. M.; Dmitriev, M. N.

    2017-04-01

    Theoretical analysis of filtration properties of porous media for orthotropic and monoclinic symmetry groups has been carried out. It is shown how it is possible to establish a type of symmetry with the help of special laboratory investigations and to distinguish groups with orthotropic and monoclinic symmetry. It is established that the criterion for solving this problem is the use of nonlinear Darcy law at high flow velocities, where the effects of asymmetry of filtration properties manifest themselves upon a change in the flow direction.

  13. AIR INFILTRATION MEASUREMENTS USING TRACER GASES: A LITERATURE REVIEW

    EPA Science Inventory

    The report gives results of a literature review of air filtration measurements using tracer gases, including sulfur hexafluoride, hydrogen, carbon monoxide, carbon dioxide, nitrous oxide, and radioactive argon and krypton. Sulfur hexafluoride is the commonest tracer gas of choice...

  14. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  15. A Controlled Design of Ripple-Like Polyamide-6 Nanofiber/Nets Membrane for High-Efficiency Air Filter.

    PubMed

    Zhang, Shichao; Liu, Hui; Zuo, Fenglei; Yin, Xia; Yu, Jianyong; Ding, Bin

    2017-03-01

    The filtration capacity of fibrous media for airborne particles is restricted by their thick diameter, low porosity, and limited frontal area. The ability to solve this problem would have broad technological implications for various air filtration applications; despite many past efforts, it remains a great challenge to achieve. Herein, a facile and scalable strategy to fabricate the ripple-like polyamide-6 nanofiber/nets (PA-6 NF/N) air filter via combining electrospinning/netting technique with receiving substrate design is demonstrated. This proposed approach allows the scaffold filaments to orderly embed into 2D PA-6 nanonets layer with Steiner-tree structures and nanoscale diameter of ≈20 nm, resulting in the ripple-like membrane with extremely small pore size, highly porous structure, and hugely extended frontal surface, by facilely adjusting its pleat span and pleat pitch. These unique structural advantages enable the ripple-like PA-6 NF/N filter to filtrate the ultrafine particles with high removal efficiency of 99.996%, low air resistance of 95 Pa, and robust quality factor of >0.11 Pa -1 ; using its superlight weight of 0.9 g m -2 and physical sieving manner. This approach has the potentialities to give rise to a novel generation of filter media displaying enhanced filtration capacity for various applications thanks to their nanoscale features and designed macrostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Efficacy of interventions targeting household air pollution from residential wood stoves.

    PubMed

    Ward, Tony J; Semmens, Erin O; Weiler, Emily; Harrar, Solomon; Noonan, Curtis W

    2017-01-01

    Wood is commonly used for residential heating, but there are limited evidence-based interventions for reducing wood smoke exposures in the indoor environment. The Asthma Randomized Trial of Indoor Wood Smoke (ARTIS) study was designed to assess the efficacy of residential interventions to reduce indoor PM exposure from wood stoves. As part of a three-arm randomized placebo-controlled trial, two household-level interventions were evaluated: wood stove changeouts and air filtration units. Exposure outcomes included indoor measures such as continuous PM 2.5 , particle counts, and carbon monoxide. Median indoor PM 2.5 concentration was 17.5 μg/m 3 in wood-burning homes prior to interventions. No significant reductions in PM 2.5 concentrations were observed in the 40 homes receiving the placebo filter intervention. Sixteen homes received the wood stove changeout and showed no significant changes in PM 2.5 or particle counts. PM 2.5 concentrations were reduced by 68% in the filter intervention homes. Relative to placebo, air filtration unit homes had an overall PM 2.5 reduction of 63% (95% CI: 47-75%). Relative to the wood stove changeout, the filtration unit intervention was more efficacious and less expensive, yet compliance issues indicated a need for the evaluation of additional strategies for improving indoor air quality in homes using wood stoves.

  17. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar

    1995-01-01

    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethysmography of supine healthy male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n = 6) and during placebo infusion (n = 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 +/- 4 to 2,568 +/- 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion: mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3%, respectively, relative to preinfusion baseline values (p less than 0.05). Mean calf filtration, however, was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20% with ANP infusion, whereas blood pressure was unchanged. Calf conductance (blood flow/ arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, pharmacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchnic sites or both, while having the opposite effect in the leg.

  18. Observations on using inside air concentrations as a predictor of outside air concentrations

    DOE PAGES

    Hawkley, Gavin; Whicker, Jeffrey; Harris, Jason

    2015-04-01

    Here, excavations of radiological material were performed within confined structures with known operational parameters, such as a filtered exhaust system with known filtration efficiency. Given the known efficiency, the assumption could be made that the air concentrations of radioactivity measured outside the structure would be proportional to the air concentrations measured inside the structure. To investigate this assumption, the inside concentration data was compared with the outside concentration data. The correlation of the data suggested that the inside concentrations were not a good predictor of the outside concentrations. This poor correlation was deemed to be a result of operational unknownsmore » within the structures.« less

  19. Sequential Blood Filtration for Extracorporeal Circulation: Initial Results from a Proof-of-Concept Prototype.

    PubMed

    Herbst, Daniel P

    2014-09-01

    Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient's systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p < .05. All filters in the test group were comparable in pressure loss performance, showing a range of 26-33 mmHg at a flow rate of 6 L/min. In gross air-handling studies, the prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique.

  20. Sequential Blood Filtration for Extracorporeal Circulation: Initial Results from a Proof-of-Concept Prototype

    PubMed Central

    Herbst, Daniel P.

    2014-01-01

    Abstract: Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient’s systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p < .05. All filters in the test group were comparable in pressure loss performance, showing a range of 26–33 mmHg at a flow rate of 6 L/min. In gross air-handling studies, the prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique. PMID:26357790

  1. RIVERBANK FILTRATION: FATE OF DBP PRECURSORS AND SELECTED MICROORGANISMS

    EPA Science Inventory

    The fate of disinfection by-product (DBP) precursors and selected microorganisms during riverbank filtration (RBF) was monitored at three different mid-Western drinking water utilities. At all three sites, filtration (RBF) was monitored at three different mid-Western drinking wa...

  2. STORMWATER TREATMENT AT CRITICAL AREAS: EVALUATION OF FILTRATION MEDIA

    EPA Science Inventory

    Past research has identified urban runoff as a major contributor to the degradation of urban streams and rivers. Filtration, especially "slow" filtration, is of interest for stormwater runoff treatment because filters will work on intermittent flows without significant loss of ca...

  3. Evaluation of Low-Pressure Drop Antimicrobial and Hybrid Air Filters

    DTIC Science & Technology

    2006-09-01

    purification of aerosol- contaminated air streams has been performed by mechanical filtration. Existing particle filters will stop bacterial and viral...or hybrid low-∆P antimicrobial particulate filter materials. 1.2 Background Traditional purification of aerosol- contaminated air streams has...Plastics, Lima , Ohio). Each path runs through a test article and thence through one AGI-30 all-glass impinger (Chemglass, Vineland, N.J.) partially

  4. Fabrication of an anti-viral air filter with SiO₂-Ag nanoparticles and performance evaluation in a continuous airflow condition.

    PubMed

    Joe, Yun Haeng; Woo, Kyoungja; Hwang, Jungho

    2014-09-15

    In this study, SiO2 nanoparticles surface coated with Ag nanoparticles (SA particles) were fabricated to coat a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter were evaluated against aerosolized bacteriophage MS2 in a continuous air flow condition. A mathematical approach was developed to measure the anti-viral ability of the filter with various virus deposition times. Moreover, two quality factors based on the anti-viral ability of the filter, and a traditional quality factor based on filtration efficiency, were calculated. The filtration efficiency and pressure drop increased with decreasing media velocity and with increasing SA particle coating level. The anti-viral efficiency also increased with increasing SA particle coating level, and decreased by with increasing virus deposition time. Consequently, SA particle coating on a filter does not have significant effects on filtration quality, and there is an optimal coating level to produce the highest anti-viral quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Water Treatment Technology - Filtration.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  6. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells.

    PubMed

    Chen, Liming; Bao, Yifan; Piekos, Stephanie C; Zhu, Kexin; Zhang, Lirong; Zhong, Xiao-Bo

    2018-07-01

    Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1 α (HNF1 α ), hepatocyte nuclear factor 4 α (HNF4 α ), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1 α antisense RNA 1 (HNF1 α -AS1) and HNF4 α antisense RNA 1 (HNF4 α -AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1 α and HNF4 α affected expression of a wide range of P450s as well as other transcription factors. HNF1 α and HNF4 α controlled the expression of their neighborhood lncRNAs, HNF1 α -AS1 and HNF4 α -AS1, respectively. HNF1 α -AS1 and HNF4 α -AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter

    PubMed Central

    Zhang, Shichao; Liu, Hui; Yin, Xia; Li, Zhaoling; Yu, Jianyong; Ding, Bin

    2017-01-01

    Effective promotion of air filtration applications proposed for fibers requires their real nanoscale diameter, optimized pore structure, and high service strength; however, creating such filter medium has proved to be a tremendous challenge. This study first establishes a strategy to design and fabricate novel poly(m-phenylene isophthalamide) nanofiber/nets (PMIA NF/N) air filter via electrospinning/netting. Our strategy results in generation of a bimodal structure including a scaffold of nanofibers and abundant two-dimensional ultrathin (~20 nm) nanonets to synchronously construct PMIA filters by combining solution optimization, humidity regulation, and additive inspiration. Benefiting from the structural features including the true nanoscale diameter, small pore size, high porosity, and nets bonding contributed by the widely distributed nanonets, our PMIA NF/N filter exhibits the integrated properties of superlight weight (0.365 g m−2), ultrathin thickness (~0.5 μm), and high tensile strength (72.8 MPa) for effective air filtration, achieving the ultra-low penetration air filter level of 99.999% and low pressure drop of 92 Pa for 300–500 nm particles by sieving mechanism. The successful synthesis of PMIA NF/N would not only provide a promising medium for particle filtration, but also develop a versatile platform for exploring the application of nanonets in structural enhancement, separation and purification. PMID:28074880

  8. Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter

    NASA Astrophysics Data System (ADS)

    Zhang, Shichao; Liu, Hui; Yin, Xia; Li, Zhaoling; Yu, Jianyong; Ding, Bin

    2017-01-01

    Effective promotion of air filtration applications proposed for fibers requires their real nanoscale diameter, optimized pore structure, and high service strength; however, creating such filter medium has proved to be a tremendous challenge. This study first establishes a strategy to design and fabricate novel poly(m-phenylene isophthalamide) nanofiber/nets (PMIA NF/N) air filter via electrospinning/netting. Our strategy results in generation of a bimodal structure including a scaffold of nanofibers and abundant two-dimensional ultrathin (~20 nm) nanonets to synchronously construct PMIA filters by combining solution optimization, humidity regulation, and additive inspiration. Benefiting from the structural features including the true nanoscale diameter, small pore size, high porosity, and nets bonding contributed by the widely distributed nanonets, our PMIA NF/N filter exhibits the integrated properties of superlight weight (0.365 g m-2), ultrathin thickness (~0.5 μm), and high tensile strength (72.8 MPa) for effective air filtration, achieving the ultra-low penetration air filter level of 99.999% and low pressure drop of 92 Pa for 300-500 nm particles by sieving mechanism. The successful synthesis of PMIA NF/N would not only provide a promising medium for particle filtration, but also develop a versatile platform for exploring the application of nanonets in structural enhancement, separation and purification.

  9. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar

    1995-01-01

    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethys-mography of supine health male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n equals 6) and during placebo infusion (n equals 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 plus or minus 4 to 2,568 plus or minus 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion; mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3 percent respectively, relative to pre-infusion baseline values (p is less than 0.05). Mean calf filtration, however was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20 percent with ANP infusion, wheras blood pressure was unchanged. Calf conductance (blood flow/arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, phamacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchic sites or both, while having the opposite effect in the leg.

  10. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification.

    PubMed

    Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R

    2008-07-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.

  11. Quantifying oil filtration effects on bearing life

    NASA Technical Reports Server (NTRS)

    Needelman, William M.; Zaretsky, Erwin V.

    1991-01-01

    Rolling-element bearing life is influenced by the number, size, and material properties of particles entering the Hertzian contact of the rolling element and raceway. In general, rolling-element bearing life increases with increasing level of oil filtration. Based upon test results, two equations are presented which allow for the adjustment of bearing L(sub 10) or catalog life based upon oil filter rating. It is recommended that where no oil filtration is used catalog life be reduced by 50 percent.

  12. 11. DETAIL VIEW OF FILTER TANK IN FILTRATION PLANT (#1773), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF FILTER TANK IN FILTRATION PLANT (#1773), LOOKING NORTHWEST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  13. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production.

    PubMed

    Kartal, S N; Imamura, Y; Tsuchiya, F; Ohsato, K

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Fomitopsis palustris. However the filtrates from sugi wood processed at 270 degrees C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot.

  14. Validation of sterilizing grade filtration.

    PubMed

    Jornitz, M W; Meltzer, T H

    2003-01-01

    Validation consideration of sterilizing grade filters, namely 0.2 micron, changed when FDA voiced concerns about the validity of Bacterial Challenge tests performed in the past. Such validation exercises are nowadays considered to be filter qualification. Filter validation requires more thorough analysis, especially Bacterial Challenge testing with the actual drug product under process conditions. To do so, viability testing is a necessity to determine the Bacterial Challenge test methodology. Additionally to these two compulsory tests, other evaluations like extractable, adsorption and chemical compatibility tests should be considered. PDA Technical Report # 26, Sterilizing Filtration of Liquids, describes all parameters and aspects required for the comprehensive validation of filters. The report is a most helpful tool for validation of liquid filters used in the biopharmaceutical industry. It sets the cornerstones of validation requirements and other filtration considerations.

  15. Problems in creation of modern air inlet filters of power gas turbine plants in Russia and methods of their solving

    NASA Astrophysics Data System (ADS)

    Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.

    2016-08-01

    The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.

  16. 12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHWEST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  17. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    PubMed

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-08-01

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 7. WEYMOUTH FILTRATION PLANT, BUILDING 1 INTERIOR: LA VERNE CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. WEYMOUTH FILTRATION PLANT, BUILDING 1 INTERIOR: LA VERNE CONTROL ROOM, REGULATES DISTRIBUTION OF WATER, CONTROLS POWER HOUSES. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  19. Purification of contaminated water by filtration through porous glass

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M. I.

    1972-01-01

    Method for purifying water that is contaminated with mineral salts and soluble organic compounds is described. Method consists of high pressure filtration of contaminated water through stabilized porous glass membranes. Procedure for conducting filtration is described. Types of materials by percentage amounts removed from the water are identified.

  20. Pathogen filtration to control plant disease outbreak in greenhouse production

    NASA Astrophysics Data System (ADS)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  1. Development of Test Protocols for International Space Station Particulate Filters

    NASA Technical Reports Server (NTRS)

    Vijayakumar, R.; Green, Robert D.; Agui, Juan H.

    2015-01-01

    Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High-Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. The filter element for this system has a non-standard cross-section with a length-to-width ratio (LW) of 6.6. A filter test setup was designed and built to meet industry testing standards. A CFD analysis was performed to initially determine the optimal duct geometry and flow configuration. Both a screen and flow straighter were added to the test duct design to improve flow uniformity and face velocity profiles were subsequently measured to confirm. Flow quality and aerosol mixing assessments show that the duct flow is satisfactory for the intended leak testing. Preliminary leak testing was performed on two different ISS filters, one with known perforations and one with limited use, and results confirmed that the testing methods and photometer instrument are sensitive enough to detect and locate compromised sections of an ISS BFE.Given the engineering constraints in designing spacecraft life support systems, it is anticipated that non-industry standard filters will be required in future designs. This work is focused on developing test protocols for testing the ISS BFE filters, but the methodology is general enough to be extended to other present and future spacecraft filters. These techniques for characterizing the test duct and perform leak testing

  2. Genome-wide analysis of human constitutive androstane receptor (CAR) transcriptome in wild-type and CAR-knockout HepaRG cells.

    PubMed

    Li, Daochuan; Mackowiak, Bryan; Brayman, Timothy G; Mitchell, Michael; Zhang, Lei; Huang, Shiew-Mei; Wang, Hongbing

    2015-11-01

    The constitutive androstane receptor (CAR) modulates the transcription of numerous genes involving drug metabolism, energy homeostasis, and cell proliferation. Most functions of CAR however were defined from animal studies. Given the known species difference of CAR and the significant cross-talk between CAR and the pregnane X receptor (PXR), it is extremely difficult to decipher the exact role of human CAR (hCAR) in gene regulation, relying predominantly on pharmacological manipulations. Here, utilizing a newly generated hCAR-knockout (KO) HepaRG cell line, we carried out RNA-seq analysis of the global transcriptomes in wild-type (WT) and hCAR-KO HepaRG cells treated with CITCO, a selective hCAR agonist, phenobarbital (PB), a dual activator of hCAR and hPXR, or vehicle control. Real-time PCR assays in separate experiments were used to validate RNA-seq findings. Our results indicate that genes encoding drug-metabolizing enzymes are among the main clusters altered by both CITCO and PB. Specifically, CITCO significantly changed the expression of 135 genes in an hCAR-dependent manner, while PB altered the expression of 227 genes in WT cells of which 94 were simultaneously modulated in both cell lines reflecting dual effects of PB on hCAR/PXR. Notably, we found that many genes promoting cell proliferation and tumorigenesis were up-regulated in hCAR-KO cells, suggesting that hCAR may play an important role in cell growth that differs from mouse CAR. Together, our results reveal both novel and known targets of hCAR and support the role of hCAR in maintaining the homeostasis of metabolism and cell proliferation in the liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Turbine lubricating oil: New filtration advances save time and money

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushar, T.

    1996-11-01

    This article describes benefits of filtration advances which include fewer forced outages, faster startups and reduced bearing wear. The importance of clean lubricating oil for turbines has been recognized for a long time, and almost all generating plants use some type of filtration system. Many older technologies and systems cannot remove enough of the contaminants to meet the needs of today`s turbines and operating conditions. Newer filtration technologies, such as multiphase filtration systems incorporating pressure coalescence filters to remove water, can reduce contaminants to levels that will help prevent unscheduled or forced outages, allow faster startups after an ongoing outage,more » and reduce wear of bearings and other components. Such preventive measures are more important than ever because of today`s increased competition and emphasis on cost control.« less

  4. Landfill Leachate Treatment by Electrocoagulation and Fiber Filtration.

    PubMed

    Li, Runwei; Wang, Boya; Owete, Owete; Dertien, Joe; Lin, Chen; Ahmad, Hafiz; Chen, Gang

    2017-11-01

      Landfilling is widely adopted as one of the most economical processes for solid waste disposal. At the same time, landfill leachate is also a great environmental concern owing to its complex composition and high concentrations of contaminants. This research investigated electrocoagulation and fiber filtration for the treatment of landfill leachate. Besides electrical current (i.e., current density) and reaction time, pH played a very important role in arsenic and phosphorus removal by electrocoagulation. The combination of electrocoagulation with fiber filtration achieved a 94% chemical oxygen demand (COD), 87% arsenic, 96% iron, and 86% phosphorus removal. During electrocoagulation, the micro-particles that could not be settled by gravity were removed by the first stage of fiber filtration. Organic contaminants in the leachate were further removed by biodegradation in the second stage of fiber biofiltration.

  5. Methodology for modeling the microbial contamination of air filters.

    PubMed

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  6. Methodology for Modeling the Microbial Contamination of Air Filters

    PubMed Central

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter. PMID:24523908

  7. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners

    PubMed Central

    Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.-Y.; O'Toole, A.; Robins, T.; Rowe, Z.; Lewis, T.

    2014-01-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84 ± 27%, but dropped to 63 ± 33% in subsequent seasons. In months when households were not visited, use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. PMID:22145709

  8. Topical Silver Nanoparticles Result in Improved Bleb Function by Increasing Filtration and Reducing Fibrosis in a Rabbit Model of Filtration Surgery

    PubMed Central

    Butler, Michelle R.; Prospero Ponce, Claudia M.; Weinstock, Y. Etan; Orengo-Nania, Silvia; Chevez-Barrios, Patricia; Frankfort, Benjamin J.

    2013-01-01

    Purpose. To compare the effects of silver nanoparticles (AgNPs) and mitomycin C (MMC) on intraocular pressure (IOP) and external, histologic, and immunohistochemical bleb characteristics in a rabbit model of filtration surgery. Methods. Filtration surgery with concurrent topical application of either AgNPs or MMC was performed on 14 pigmented Dutch Belted rabbits. IOP and bleb characteristics were compared on postoperative day 1 and at weeks 1 through 6. Hematoxylin and eosin staining and smooth muscle actin (SMA) immunohistochemistry were performed at postoperative week 6. Results. Average IOP across all time points was reduced 5.8 and 3.8 mm Hg in AgNP- and MMC-treated eyes, respectively. At week 6, IOP was reduced 4.1 and 0.2 mm Hg in AgNP- and MMC-treated eyes, respectively. Blebs were smaller, thicker, and less ischemic in AgNP-treated eyes. AgNP-treated eyes showed less fibrosis and more stromal edema, suggesting increased filtration, and also had fewer SMA-positive myofibroblasts, suggesting reduced bleb contraction. AgNP-treated eyes showed more lymphocytes than MMC-treated eyes. There were few complications in both groups. Conclusions. In a rabbit model of filtration surgery, AgNPs are a reasonable alternative to MMC as adjunctive therapy. Compared to MMC, AgNPs result in an improved and sustained reduction of IOP and promote blebs with decreased fibrosis and ischemia as well as increased filtration despite a smaller overall size. This combination may offer an opportunity to promote long-term surgical IOP reduction with an improved complication profile. PMID:23766475

  9. 3. INTERIOR OF THE WATER FILTRATION PLANT SHOWING REMAINS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR OF THE WATER FILTRATION PLANT SHOWING REMAINS OF THE FILTRATION APPARATUS. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  10. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    PubMed

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Removals of cryptosporidium parvum oocysts and cryptosporidium-sized polystyrene microspheres from swimming pool water by diatomaceous earth filtration and perlite-sand filtration.

    PubMed

    Lu, Ping; Amburgey, James E; Hill, Vincent R; Murphy, Jennifer L; Schneeberger, Chandra L; Arrowood, Michael J; Yuan, Tao

    2017-06-01

    Removal of Cryptosporidium-sized microspheres and Cryptosporidium parvum oocysts from swimming pools was investigated using diatomaceous earth (DE) precoat filtration and perlite-sand filtration. In pilot-scale experiments, microsphere removals of up to 2 log were obtained with 0.7 kg·DE/m 2 at a filtration rate of 5 m/h. A slightly higher microsphere removal (2.3 log) was obtained for these DE-precoated filters when the filtration rate was 3.6 m/h. Additionally, pilot-scale perlite-sand filters achieved greater than 2 log removal when at least 0.37 kg/m 2 of perlite was used compared to 0.1-0.4 log removal without perlite both at a surface loading rate of 37 m/h. Full-scale testing achieved 2.7 log of microspheres and oocysts removal when 0.7 kg·DE/m 2 was used at 3.6 m/h. Removals were significantly decreased by a 15-minute interruption of the flow (without any mechanical agitation) to the DE filter in pilot-scale studies, which was not observed in full-scale filters. Microsphere removals were 2.7 log by perlite-sand filtration in a full-scale swimming pool filter operated at 34 m/h with 0.5 kg/m 2 of perlite. The results demonstrate that either a DE precoat filter or a perlite-sand filter can improve the efficiency of removal of microspheres and oocysts from swimming pools over a standard sand filter under the conditions studied.

  12. Activities of Aureobasidium pullulans cell filtrates against Monilinia laxa of peaches.

    PubMed

    Di Francesco, Alessandra; Roberti, Roberta; Martini, Camilla; Baraldi, Elena; Mari, Marta

    2015-12-01

    The Aureobasidium pullulans L1 and L8 strains are known as efficient biocontrol agents against several postharvest fungal pathogens. In order to better understand the mechanism of action underneath the antifungal activity of L1 and L8 strains, yeast cell filtrates grown at different times were evaluated in vivo against Monilinia laxa on peach. Lesion diameters on peach fruit were reduced by L1 and L8 culture filtrates of 42.5% and 67% respectively. The ability of these filtrates to inhibit M. laxa conidia germination and germ tube elongation was studied by in vitro assays. The results showed a 70% reduction of conidia germination for both strains while for germ tube elongation, it was 52% and 41% for L1 and L8 culture filtrates respectively. Finally, the activity of cell wall hydrolytic enzymes such as chitinase and glucanase in cell filtrates was analysed and the expression of genes encoding these activities was quantified during yeast growth. From 24h onward, both culture filtrates contained β,1-3,glucanase and. chitinase activities, the most pronounced of which was N-β-acetylglucosaminidase. Gene expression level encoding for these enzymes in L1 and L8 varied according to the strain. These results indicate that L1 and L8 strains culture filtrates retain the yeast antagonistic activity and suggest that the production of hydrolytic enzymes plays an important role in this activity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. A Pollen Primer | NIH MedlinePlus the Magazine

    MedlinePlus

    ... air filters (HEPA) or an electrostatic air filter. Tree Pollen Trees produce pollen earliest, as soon as January in ... distributed miles away. Fewer than 100 kinds of trees cause allergies. Some common ones are catalpa, elm, ...

  14. Estimated effect of ventilation and filtration on chronic health risks in U.S. offices, schools, and retail stores.

    PubMed

    Chan, W R; Parthasarathy, S; Fisk, W J; McKone, T E

    2016-04-01

    We assessed the chronic health risks from inhalation exposure to volatile organic compounds (VOCs) and particulate matter (PM2.5) in U.S. offices, schools, grocery, and other retail stores and evaluated how chronic health risks were affected by changes in ventilation rates and air filtration efficiency. Representative concentrations of VOCs and PM2.5 were obtained from available data. Using a mass balance model, changes in exposure to VOCs and PM2.5 were predicted if ventilation rate were to increase or decrease by a factor of two, and if higher efficiency air filters were used. Indoor concentrations were compared to health guidelines to estimate percentage exceedances. The estimated chronic health risks associated with VOC and PM2.5 exposures in these buildings were low relative to the risks from exposures in homes. Chronic health risks were driven primarily by exposures to PM2.5 that were evaluated using disease incidence of mortality, chronic bronchitis, and non-fatal stroke. The leading cancer risk factor was exposure to formaldehyde. Using disability-adjusted life years (DALYs) to account for both cancer and non-cancer effects, results suggest that increasing ventilation alone is ineffective at reducing chronic health burdens. Other strategies, such as pollutant source control and the use of particle filtration, should also be considered. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  16. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells

    NASA Astrophysics Data System (ADS)

    Nunn, Abigail D. G.; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-06-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome.

  17. Filtration device for active effluents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerin, M.; Meunier, G.

    1994-12-31

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter.

  18. Evaluation of Filtration and UV Disinfection for Inactivation of ...

    EPA Pesticide Factsheets

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3) cartridge filtration. Two types of low-pressure UV systems were evaluated with and without pretreatment systems. The presentation will provide results for removal of particles and inactivation of MS2 bacteriophage (a viral surrogate) on two surface waters in northeastern Minnesota. Several studies, including a recent study conducted by Minnesota Department of Health (MDH), show that viruses occur in groundwater at a higher rate than expected. Based on preliminary results in Minnesota, virus occurrence appears to be correlated with recharge events such as heavy rainfall and snowmelt. These recharge events are predicted to become more extreme due to climate change impacts. Filtration, ultraviolet (UV) disinfection, and chlorination, can provide a multi-barrier approach for removal or inactivation of pathogens and DBP precursors in both groundwater and surface water systems.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppiti, James; Nelson, Roger; MacMillan, Walter J.

    The Waste Isolation Pilot Plant (WIPP) is a 655-meter deep mine near Carlsbad, New Mexico, used to dispose the nation’s defense transuranic waste. Limited airborne radioactivity was released from a container of radioactive waste in WIPP on 14 February, 2014. As designed, a mine ventilation filtration system prevented the large scale release of contamination from the underground. However, isolation dampers leaked, which allowed the release of low levels of contaminants after the event until they were sealed. None of the exposed individuals received any recordable dose. While surface contamination was limited, contamination in the ventilation system and portions of themore » underground was substantial. High efficiency particulate air (HEPA) filters in the operating ventilation system ensure continued containment during recovery and resumption of disposal operations. However, ventilation flow is restricted since the incident, with all exhaust air directed through the filters. Decontamination and natural fixation by the hygroscopic nature of the salt host rock has reduced the likelihood of further contamination spread. Contamination control and ventilation system operability are crucial for resumption of operations. This article provides an operational assessment and evaluation of these two key areas.« less

  20. Comparison of Garnet Bead Media Filtration and Multimedia Filtration for Turbidity and Microbial Pathogen Removal

    EPA Science Inventory

    U.S. Environmental Protection Agency’s (EPA’s) National Risk Management Research Laboratory (NRMRL) in Cincinnati, Ohio is evaluating drinking water filtration systems to determine their capability to meet the requirements of the Long-Term 2 Enhanced Surface Water Treatment Rule ...

  1. Health benefits of particle filtration

    EPA Science Inventory

    This product was developed under an interagency agreement between the U.S. EPA and the U.S. Department of Energy - Lawrence Berkeley National Laboratory (LBNL). The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews o...

  2. Angiogenesis in Glaucoma Filtration Surgery and Neovascular Glaucoma-A Review

    PubMed Central

    Kim, Megan; Lee, Chelsea; Payne, Rachael; Yue, Beatrice Y.J.T.; Chang, Jin-Hong; Ying, Hongyu

    2015-01-01

    Angiogenesis may pose a clinical challenge in glaucoma, for example during the wound healing phase after glaucoma filtration surgery and in a severe form of secondary glaucoma called neovascular glaucoma (NVG). Up regulation of vascular endothelial growth factor (VEGF), a key mediator of angiogenesis, occurs in eyes that have undergone glaucoma filtration surgery, as well as those with NVG. This has led to studies investigating the ability of anti-VEGF therapy to improve outcomes, and we examine their findings with respect to the safety and efficacy of anti-VEGF agents, mainly bevacizumab and ranibizumab, in eyes that have undergone glaucoma filtration surgery or have NVG. Combining conventional therapies—such as anti-metabolites after filtration surgery and panretinal photocoagulation in NVG—and anti-VEGF drugs may achieve a synergetic effect, although further studies are required to evaluate the long-term efficacy of combination treatments. PMID:25980779

  3. Ultrasonic filtration of industrial chemical solutions

    NASA Technical Reports Server (NTRS)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  4. Expanded uncertainty estimation methodology in determining the sandy soils filtration coefficient

    NASA Astrophysics Data System (ADS)

    Rusanova, A. D.; Malaja, L. D.; Ivanov, R. N.; Gruzin, A. V.; Shalaj, V. V.

    2018-04-01

    The combined standard uncertainty estimation methodology in determining the sandy soils filtration coefficient has been developed. The laboratory researches were carried out which resulted in filtration coefficient determination and combined uncertainty estimation obtaining.

  5. Drilling fluid containing a copolymer filtration control agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, J. M.

    1985-10-15

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: a (meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and N, N-dialkyl (meth) acrylamide. The copolymer may be cross-linked with N,N'-methylenebisacrylamide or other appropriate cross-linking agent.

  6. Dynamic Optical Filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  7. Dynamic optical filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  8. Uptake of wheel-filtration among clients of a supervised injecting facility: Can structured education work?

    PubMed

    Steele, Maureen; Silins, Edmund; Flaherty, Ian; Hiley, Sarah; van Breda, Nick; Jauncey, Marianne

    2018-01-01

    Wheel-filtration of pharmaceutical opioid tablets is a recognised harm reduction strategy, but uptake of the practice among people who inject drugs is low. The study aimed to: (i) examine perceptions of filtration practices; (ii) provide structured education on wheel-filtration; and (iii) assess uptake of the practice. Frequent opioid tablet injectors (n = 30) attending a supervised injecting facility in Sydney, Australia, received hands-on instruction on wheel-filtration based on recommended practice. Pre-education, post-education and follow-up questionnaires were administered. Wheel-filtration was generally regarded as better than cotton-filtration (the typical method) in terms of perceived effects on health, ease of use and overall drug effect. Sixty-eight percent of those who said they would try wheel-filtration after the education had actually done so. Of those who usually used cotton-filtration, over half (60%) had used wheel-filtration two weeks later. Uptake of safer preparation methods for pharmaceutical opioid tablets increases after structured education in wheel-filtration. Findings suggest that SIFs are an effective site for this kind of education. Supervised injecting facility workers are uniquely positioned to provide harm reduction education at the time of injection. [Steele M, Silins E, Flaherty I, Hiley S, van Breda N, Jauncey M. Uptake of wheel-filtration among clients of a supervised injecting facility: Can structured education work? Drug Alcohol Rev 2018;37:116-120]. © 2017 Australasian Professional Society on Alcohol and other Drugs.

  9. Drilling fluid containing a copolymer filtration control agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, D.P.; Lucas, J.M.; Perricone, A.C.

    1981-10-06

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.

  10. Comparison of home lead dust reduction techniques on hard surfaces: the New Jersey assessment of cleaning techniques trial.

    PubMed Central

    Rich, David Q; Rhoads, George G; Yiin, Lih-Ming; Zhang, Junfeng; Bai, Zhipeng; Adgate, John L; Ashley, Peter J; Lioy, Paul J

    2002-01-01

    High efficiency particulate air filter (HEPA) vacuums, which collect particles > 0.3 micro m, and trisodium phosphate (TSP), a detergent claimed to selectively remove lead, have been included in the HUD Guidelines for the Evaluation and Control of Lead Based Paint Hazards in Housing without systematic validation of their effectiveness. At the time the study was initiated, both HEPA vacuums and TSP were relatively expensive, they were not readily found in urban retail centers, and there were environmental concerns about the use and disposal of high-phosphate detergents. A randomized, controlled trial was conducted in urban high-risk homes in northern New Jersey to determine whether a more readily available and less expensive low-phosphate, non-TSP detergent and non-HEPA vacuum could perform as well as TSP and a HEPA vacuum in a cleaning protocol. Homes were randomized to one of three cleaning methods: TSP/HEPA vacuum, TSP/non-HEPA vacuum, or non-TSP/non-HEPA vacuum. Change in log-transformed lead loading was used in mixed models to compare the efficacy of the three cleaning techniques separately for uncarpeted floors, window sills, and window troughs. After we adjusted for baseline lead loading, the non-HEPA vacuum produced larger reductions on hard floors [19%; 95% confidence interval (CI), 3-38%], but the HEPA vacuum produced larger reductions on window sills (22%; 95% CI, 11-32%) and larger reductions on window troughs (16%; 95% CI, -4 to 33%). The non-TSP produced larger reductions on window troughs (21%; 95% CI, -2 to 50%), but TSP produced larger reductions on hard floors (5%; 95% CI, -12 to 19%) and window sills (8%; 95% CI, -5 to 20%). TSP/HEPA produced larger reductions on window sills (28%; 95% CI, 18-37%) and larger reductions on window troughs (2%; 95% CI, -24 to 23%), whereas the non-TSP/non-HEPA method produced larger reductions on hard floors (13%; 95% CI, -5 to 34%). Because neither vacuum nor detergent produced consistent results across surface

  11. Comparison of home lead dust reduction techniques on hard surfaces: the New Jersey assessment of cleaning techniques trial.

    PubMed

    Rich, David Q; Rhoads, George G; Yiin, Lih-Ming; Zhang, Junfeng; Bai, Zhipeng; Adgate, John L; Ashley, Peter J; Lioy, Paul J

    2002-09-01

    High efficiency particulate air filter (HEPA) vacuums, which collect particles > 0.3 micro m, and trisodium phosphate (TSP), a detergent claimed to selectively remove lead, have been included in the HUD Guidelines for the Evaluation and Control of Lead Based Paint Hazards in Housing without systematic validation of their effectiveness. At the time the study was initiated, both HEPA vacuums and TSP were relatively expensive, they were not readily found in urban retail centers, and there were environmental concerns about the use and disposal of high-phosphate detergents. A randomized, controlled trial was conducted in urban high-risk homes in northern New Jersey to determine whether a more readily available and less expensive low-phosphate, non-TSP detergent and non-HEPA vacuum could perform as well as TSP and a HEPA vacuum in a cleaning protocol. Homes were randomized to one of three cleaning methods: TSP/HEPA vacuum, TSP/non-HEPA vacuum, or non-TSP/non-HEPA vacuum. Change in log-transformed lead loading was used in mixed models to compare the efficacy of the three cleaning techniques separately for uncarpeted floors, window sills, and window troughs. After we adjusted for baseline lead loading, the non-HEPA vacuum produced larger reductions on hard floors [19%; 95% confidence interval (CI), 3-38%], but the HEPA vacuum produced larger reductions on window sills (22%; 95% CI, 11-32%) and larger reductions on window troughs (16%; 95% CI, -4 to 33%). The non-TSP produced larger reductions on window troughs (21%; 95% CI, -2 to 50%), but TSP produced larger reductions on hard floors (5%; 95% CI, -12 to 19%) and window sills (8%; 95% CI, -5 to 20%). TSP/HEPA produced larger reductions on window sills (28%; 95% CI, 18-37%) and larger reductions on window troughs (2%; 95% CI, -24 to 23%), whereas the non-TSP/non-HEPA method produced larger reductions on hard floors (13%; 95% CI, -5 to 34%). Because neither vacuum nor detergent produced consistent results across surface

  12. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  13. Test Operations Procedure (TOP) 08-2-197 Chemical Protection Testing of Sorbent-Based Air Purification Components (APCs)

    DTIC Science & Technology

    2016-06-24

    APC’s ability to filter air in a chemically contaminated environment. 15. SUBJECT TERMS Air purification component; APC; filtration fabric...FF, filter media, collective protection; individual protection. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...incoming air. The intent of this process is to produce traceable, quantifiable, and defensible data that can be used to analyze an APC’s ability to filter

  14. The effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Colberg, M.R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally-associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  15. Sioux City Riverbank Filtration Study

    NASA Astrophysics Data System (ADS)

    Mach, R.; Condon, J.; Johnson, J.

    2003-04-01

    The City of Sioux City (City) obtains a large percentage of their drinking water supply from both a horizontal collector well system and vertical wells located adjacent to the Missouri River. These wells are set in either the Missouri Alluvium or the Dakota Sandstone aquifer. Several of the collector well laterals extend out beneath the Missouri River, with the laterals being over twenty feet below the river channel bottom. Due to concerns regarding ground water under direct surface water influence, the Iowa Department of Natural Resources (IDNR) required the City to expand their water treatment process to deal with potential surface water contaminant issues. With the extensive cost of these plant upgrades, the City and Olsson Associates (OA) approached the IDNR requesting approval for assessing the degree of natural riverbank filtration for water treatment. If this natural process could be ascertained, the level of treatment from the plant could be reduced. The objective of this study was to quantify the degree of surface water (i.e. Missouri River) filtration due to the underlying Missouri River sediments. Several series of microscopic particulate analysis where conducted, along with tracking of turbidity, temperature, bacteria and a full scale particle count study. Six particle sizes from six sampling points were assessed over a nine-month period that spanned summer, fall and spring weather periods. The project was set up in two phases and utilized industry accepted statistical analyses to identify particle data trends. The first phase consisted of twice daily sample collection from the Missouri River and the collector well system for a one-month period. Statistical analysis of the data indicated reducing the sampling frequency and sampling locations would yield justifiable data while significantly reducing sampling and analysis costs. The IDNR approved this modification, and phase II included sampling and analysis under this reduced plant for an eight

  16. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Brian K.

    2014-08-01

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  17. Fine dust filtration using a metal fiber bed.

    PubMed

    Lee, Kyung Mi; Lee, Young Sup; Jo, Young Min

    2006-08-01

    A bed-type filter composed of thin metal alloy fiber was closely examined with dust capturing in cold and hot runs. The investigation of an individual mechanism across the filter bed indicated that the aerated dust could be initially collected by depth filtration, and after a while, surface filtration dominated the overall dust collection. The present metal fiber bed was comparable to the conventional ceramic filters because of its good collection efficiency with low pressure drop. It also showed potential to be used as a prefilter in a diesel exhaust trapping system.

  18. Comparison of inclined plate sedimentation and dissolved air flotation for the minimisation of subsequent nitrogenous disinfection by-product formation.

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Templeton, Michael R; Yin, Da-Qiang

    2011-04-01

    The formation of disinfection by-products (DBPs), including both nitrogenous disinfection by-products (N-DBPs) and carbonaceous disinfection by-products (C-DBPs), was investigated upon chlorination of water samples following two treatment processes: (i) coagulation-inclined plate sedimentation (IPS)-filtration and (ii) coagulation-dissolved air flotation (DAF)-filtration. The removal of algae, dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and UV(254) by coagulation-DAF-filtration was superior to coagulation-IPS-filtration. On average, 53%, 53% and 31% of DOC, DON and UV(254) were removed by coagulation-DAF-filtration process, which were higher than 47%, 31% and 27% of that by coagulation-IPS-filtration process. Additionally, coagulation-IPS-filtration performed less well at removing the low molecular weight organics than coagulation-DAF-filtration process. The concentrations of chloroform, dichloroacetamide (DCAcAm) and dichloroacetonitrile (DCAN) formed during chlorination after coagulation-DAF-filtration reached their maximum values of 13, 1.5 and 4.7μgL(-1), respectively, and were lower than those after coagulation-IPS-filtration with the maximum detected levels of 17, 2.9 and 6.3μgL(-1). However, the trichloronitromethane (TCNM) concentration after the two processes was similar, suggesting that DON may have less of a contribution to TCNM formation than DCAcAm and DCAN. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE

    EPA Science Inventory

    The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...

  20. Successful treatment of homozygous familial hypercholesterolemia using cascade filtration plasmapheresis.

    PubMed

    Kardaş, Fatih; Cetin, Aysun; Solmaz, Musa; Büyükoğlan, Rüksan; Kaynar, Leylagül; Kendirci, Mustafa; Eser, Bülent; Unal, Ali

    2012-12-01

    The aim of this study was to report the efficacy of low-density lipoprotein cholesterol (LDL-C) apheresisusing a cascade filtration system in pediatric patients with homozygous familial hypercholesterolemia (FH), and toclarify the associated adverse effects and difficulties. LDL-C apheresis using a cascade filtration system was performed in 3 pediatric patientswith homozygous FH; in total, 120 apheresis sessions were performed. Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dL to 145 ± 43 mg/dL (p= 0.011). We observed an acute mean reduction in the plasma level of total cholesterol (57.9%), LDL-C (70.8%),and high-density lipoprotein cholesterol (HDL-C) (40.7%). Treatments were well tolerated. The most frequent clinicaladverse effects were hypotension in 3 sessions (2.5%), chills (1.7%) in 2 sessions, and nausea/vomiting in 3 sessions(2.5%). Our experience using the cascade filtration system with 3 patients included good clinical outcomes andlaboratory findings, safe usage, and minor adverse effects and technical problems. None declared.

  1. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-12-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  2. High-resolution real-time optical studies of radiological air sample filtration processes in an environmental continuous air monitor

    NASA Astrophysics Data System (ADS)

    Rodgers, John C.; Wasiolek, Piotr T.; Schery, Stephen D.; Alcantara, Raul E.

    1999-01-01

    The need for a continuous air monitor capable of quick and accurate measurements of airborne radioactivity in close proximity to the work environment during waste management, site restoration, and D&D operations led to the Los Alamos National Laboratory development of an environmental continuous air monitor (ECAM). Monitoring the hostile work environment of waste recovery, for example, presents unique challenges for detector design for detectors previously used for the clean room conditions of the typical plutonium laboratory. The environmental and atmospheric conditions (dust, high wind, etc.) influence aerosol particle penetration into the ECAM sampling head as well as the build-up of deposits on the ECAM filter.

  3. IMPACT OF WATER CHEMISTRY ON MANGANESE REMOVAL DURING OXIDATION/FILTRATION TREATMENT

    EPA Science Inventory

    This is a poster showing the purpose and setup of our pilot plant experiments with manganese filtration. The focus is on the differences, effectiveness, and problems with using chlorine and potassium permanganate in oxidation/filtration. The poster will show the results and findi...

  4. Changes in airborne fungi from the outdoors to indoor air; large HVAC systems in nonproblem buildings in two different climates.

    PubMed

    Kemp, P C; Neumeister-Kemp, H G; Esposito, B; Lysek, G; Murray, F

    2003-01-01

    Little is known about the changes in occurrence and distribution of airborne fungi as they are transported in the airstream from the outdoor air through the heating, ventilation, and air conditioning (HVAC) system to the indoor air. To better understand this, airborne fungi were analyzed in the HVAC systems of two large office buildings in different climate zones. Fungal samples were taken in each of the walk-in chambers of the HVAC systems using a six-stage Andersen Sampler with malt extract agar. Results showed that fungal species changed with different locations in the HVAC systems. The outdoor air intake produced the greatest filtration effect for both the counts and species of outdoor air fungi. The colony forming unit (CFU) counts and species diversity was further reduced in the air directly after the filters. The cooling coils also had a substantial filtration effect. However, in room air the CFU counts were double and the mixture of fungal species was different from the air leaving the HVAC system at the supply air outlet in most locations. Diffusion of outdoor air fungi to the indoors did not explain the changes in the mixture of airborne fungi from the outdoor air to the indoor air, and some of the fungi present in the indoor air did not appear to be transported indoors by the HVAC systems.

  5. 40 CFR 721.10575 - 1-Propanone, 1,1'-(oxydi-4,1-phenylene)bis[2-hydroxy-2-methyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), R100, or P100 filters. (B) NIOSH-certified air-purifying, tight-fitting full-face respirator equipped with N100 (if oil aerosols absent), R100, or P100 filters. (C) NIOSH-certified powered air-purifying respirator equipped with a loose-fitting hood or helmet and high efficiency particulate air (HEPA) filters...

  6. 40 CFR 721.10575 - 1-Propanone, 1,1'-(oxydi-4,1-phenylene)bis[2-hydroxy-2-methyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...), R100, or P100 filters. (B) NIOSH-certified air-purifying, tight-fitting full-face respirator equipped with N100 (if oil aerosols absent), R100, or P100 filters. (C) NIOSH-certified powered air-purifying respirator equipped with a loose-fitting hood or helmet and high efficiency particulate air (HEPA) filters...

  7. Effects of pore pressure and mud filtration on drilling rates in a permeable sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, A.D.; DiBona, B.; Sandstrom, J.

    1983-10-01

    During laboratory drilling tests in a permeable sandstone, the effects of pore pressure and mud filtration on penetration rates were measured. Four water-base muds were used to drill four saturated sandstone samples. The drilling tests were conducted at constant borehole pressure with different back pressures maintained on the filtrate flowing from the bottom of the sandstone samples. Bit weight was also varied. Filtration rates were measured while drilling and with the bit off bottom and mud circulating. Penetration rates were found to be related to the difference between the filtration rates measured while drilling and circulating. There was no observedmore » correlation between standard API filtration measurements and penetration rate.« less

  8. Effects of pore pressure and mud filtration on drilling rates in a permeable sandstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, A.D.; Dearing, H.L.; DiBona, B.G.

    1985-09-01

    During laboratory drilling tests in a permeable sandstone, the effects of pore pressure and mud filtration on penetration rates were measured. Four water-based muds were used to drill four saturated sandstone samples. The drilling tests were conducted at constant borehole pressure while different backpressures were maintained on the filtrate flowing from the bottom of the sandstone samples. Bit weight was varied also. Filtration rates were measured while circulating mud during drilling and with the bit off bottom. Penetration rates were found to be related qualitatively to the difference between the filtration rates measured while drilling and circulating. There was nomore » observed correlation between standard API filtration measurements and penetration rate.« less

  9. Modeling the filtration ability of stockpiled filtering facepiece

    NASA Astrophysics Data System (ADS)

    Rottach, Dana R.

    2016-03-01

    Filtering facepiece respirators (FFR) are often stockpiled for use during public health emergencies such as an infectious disease outbreak or pandemic. While many stockpile administrators are aware of shelf life limitations, environmental conditions can lead to premature degradation. Filtration performance of a set of FFR retrieved from a storage room with failed environmental controls was measured. Though within the expected shelf life, the filtration ability of several respirators was degraded, allowing twice the penetration of fresh samples. The traditional picture of small particle capture by fibrous filter media qualitatively separates the effect of inertial impaction, interception from the streamline, diffusion, settling, and electrostatic attraction. Most of these mechanisms depend upon stable conformational properties. However, common FFR rely on electrets to achieve their high performance, and over time heat and humidity can cause the electrostatic media to degrade. An extension of the Langevin model with correlations to classical filtration concepts will be presented. The new computational model will be used to predict the change in filter effectiveness as the filter media changes with time.

  10. Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration

    DTIC Science & Technology

    2013-11-18

    the experimental filter media Next-SandTM was used, thus turbidity results may not be translatable to conventional filtration media. The media...performance objective was not met. Further optimization of the media filtration process would result in meeting the objective. Dissolved Organic Carbon...FINAL REPORT Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration ESTCP Project ER

  11. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... turbidity level of representative samples of a system's filtered water must be less than or equal to 0.5 NTU....74 (a)(1) and (c)(1). (2) The turbidity level of representative samples of a system's filtered water... filtration, the turbidity level of representative samples of a system's filtered water must be less than or...

  12. Transport of Cryptosporidium oocysts in porous media: Role of straining and physicochemical filtration

    USGS Publications Warehouse

    Tufenkji, N.; Miller, G.F.; Ryan, J.N.; Harvey, R.W.; Elimelech, M.

    2004-01-01

    The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.

  13. EX-PRESS Glaucoma Filtration Device: efficacy, safety, and predictability

    PubMed Central

    Chan, Jessica E; Netland, Peter A

    2015-01-01

    Trabeculectomy has been the traditional primary surgical therapy for open-angle glaucoma. While trabeculectomy is effective in lowering intraocular pressure, complications associated with the procedure have motivated the development of alternative techniques and devices, including the EX-PRESS Glaucoma Filtration Device. This review describes the efficacy, safety, complication rates, and potential advantages and disadvantages of the EX-PRESS Glaucoma Filtration Device. EX-PRESS implantation is technically simpler compared with that of trabeculectomy, with fewer surgical steps. Vision recovery has been more rapid after EX-PRESS implantation compared with trabeculectomy. Intraocular pressure variation is lower during the early postoperative period, indicating a more predictable procedure. While efficacy of the EX-PRESS implant has been comparable to trabeculectomy, postoperative complications appear less common after EX-PRESS implantation compared with trabeculectomy. The EX-PRESS Glaucoma Filtration Device appears to be safe and effective in the surgical management of open-angle glaucoma. PMID:26366105

  14. Impacts of extreme flooding on riverbank filtration water quality.

    PubMed

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) <90% baseline, high dissolved oxygen (DO) >400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the

  15. SU-F-I-75: Half-Value Layer Thicknesses and Homogeneity Coefficients for Fluoroscopic X-Ray Beam Spectra Incorporating Spectral Filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunderle, K; Wayne State University School of Medicine, Detroit, MI; Godley, A

    Purpose: The purpose of this investigation is to quantify various first half-value-layers (HVLs), second HVLs and homogeneity coefficients (HCs) for a state-of-the-art fluoroscope utilizing spectral (copper) filtration. Methods: A Radcal (Monrovia, Ca) AccuPro dosimeter with a 10×6-6 calibrated ionization chamber was used to measure air kerma for radiographic x-ray exposures made on a Siemens (Erlangen, Germany) Artis ZeeGo fluoroscope operated in the service mode. The ionization chamber was centered in the x-ray beam at 72 cm from the focal spot with a source-to-image-distance of 120 cm. The collimators were introduced to limit the x-ray field to approximately 5 cm ×more » 5 cm at the ionization chamber plane. Type-1100 aluminum filters, in 0.5 mm increments, were used to determine the HVL. Two HVL calculation methods were used, log-linear interpolation and Lambert-W interpolation as described by Mathieu [Med Phys, 38(8), 4546 (2011)]. Multiple measurements were made at 60, 80, 100, 120 kVp at spectral filtration thicknesses of 0, 0.1, 0.3, 0.6 and 0.9 mm. Results: First HVL, second HVL, and HCs are presented for the fluoroscopic x-ray beam spectra indicated above, with nearly identical results from the two interpolation methods. Accuracy of the set kVp was also determined and deviated less than 2%. First HVLs for fluoroscopic x-ray beam spectra without spectral filtration determined in our study were 7%–16% greater than previously published data by Fetterly et al. [Med Phys, 28, 205 (2001)]. However, the FDA minimum HVL requirements changed since that publication, requiring larger HVLs as of 2006. Additionally, x-ray tube and generator architecture have substantially changed over the last 15 years providing different beam spectra. Conclusion: X-ray beam quality characteristics for state-of-the-art fluoroscopes with spectral filtration have not been published. This study provides reference data which will be useful for defining beam qualities encountered on

  16. Filtration effects on ball bearing life and condition in a contaminated lubricant

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.

    1978-01-01

    Ball bearings were fatigue tested with a noncontaminated lubricant and with a contaminated lubricant under four levels of filtration. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns. Aircraft turbine engine contaminants were injected into the filter's supply line at a constant rate of 125 milligrams per bearing hour. Bearing life and running track condition generally improved with finer filtration. The experimental lives of 3 and 30 micron filter bearings were statistically equivalent, approaching those obtained with the noncontaminated lubricant bearings. Compared to these bearings, the lives of the 49 micron bearings were statistically lower. The 105 micron bearings experienced gross wear. The degree of surface distress, weight loss, and probable failure mode were dependent on filtration level, with finer filtration being clearly beneficial.

  17. Bio-Defense Now: 56 Suggestions for Immediate Improvements

    DTIC Science & Technology

    2005-05-01

    Air Education and Training Command HVAC Heating, Ventilation and Air Conditioning ICAM Improved Chemical Agent Monitor ICD-9-CM Internal...conditioning ( HVAC ) system capabilities, making a big difference in removal of many BW agents. High Efficiency Particulate Air (HEPA) filters are also...agents. This program has developed biological sensor-activated heating, ventilation, and air conditioning ( HVAC ) control sys- tems, high efficiency

  18. Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin, Germany

    NASA Astrophysics Data System (ADS)

    Kohfahl, Claus; Massmann, Gudrun; Pekdeger, Asaf

    2009-05-01

    The microbial degradation of pharmaceuticals found in surface water used for artificial recharge is strongly dependent on redox conditions of the subsurface. Furthermore the durability of production wells may decrease considerably with the presence of oxygen and ferrous iron due to the precipitation of trivalent iron oxides and subsequent clogging. Field measurements are presented for oxygen at a bank filtration site in Berlin, Germany, along with simplified calculations of different oxygen pathways into the groundwater. For a two-dimensional vertical cross-section, oxygen input has been calculated for six scenarios related to different water management strategies. Calculations were carried out in order to assess the amount of oxygen input due to (1) the infiltration of oxic lake water, (2) air entrapment as a result of water table oscillations, (3) diffusive oxygen flux from soil air and (4) infiltrating rainwater. The results show that air entrapment and infiltrating lake water during winter constitute by far the most important mechanism of oxygen input. Oxygen input by percolating rainwater and by diffusive delivery of oxygen in the gas phase is negligible. The results exemplify the importance of well management as a determining factor for water oscillations and redox conditions during artificial recharge.

  19. Four years experience with filtration systems in commercial nurseries for eliminating Phytophthora species from recirculation water

    Treesearch

    T. Ufer; M. Posner; H.-P. Wessels; S. Wagner; K. Kaminski; T. Brand; Werres S.

    2008-01-01

    In a four year project, three different filtration systems were tested under commercial nursery conditions to eliminate Phytophthora spp. from irrigation water. Five nurseries were involved in the project. Slow sand filtration systems were tested in three nurseries. In the fourth nursery, a filtration system with lava grains (Shieer® Bio filtration)...

  20. Cellular proliferation after experimental glaucoma filtration surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jampel, H.D.; McGuigan, L.J.; Dunkelberger, G.R.

    1988-01-01

    We used light microscopic autoradiography to determine the time course of cellular incorporation of tritiated thymidine (a correlate of cell division) following glaucoma filtration surgery in seven eyes of four cynomolgus monkeys with experimental glaucoma. Incorporation of tritiated thymidine was detected as early as 24 hours postoperatively. Peak incorporation occurred five days postoperatively and had returned to baseline levels by day 11. Cells incorporating tritiated thymidine included keratocytes, episcleral cells, corneal and capillary endothelial cells, and conjunctival and corneal epithelial cells. Transmission electron microscopy was correlated with the autoradiographic results to demonstrate that fibroblasts were dividing on the corneoscleral margin.more » These findings have potential clinical implications for the use of antiproliferative agents after filtration surgery.« less

  1. [Why? How? What for? We must measure the glomerular filtration].

    PubMed

    Treviño-Becerra, Alejandro

    2010-01-01

    The measurement of the glomerular filtration shows the degree of the functional qualities and the proficiency of the renal system. Despite new technologies, at present the best accepted technique for measuring the glomerular filtration in most countries is the clearance of creatinine in 24 hour urine. The clearance of creatinine has the advantage that it is confident, easy to reproduce, without technical limitations and low cost.

  2. ADVANCED ELECTROSTATIC ENHANCEMENT OF FABRIC FILTRATION

    EPA Science Inventory

    The paper discusses laboratory and pilot plant studies of a modification of the U.S. EPA's Electrically Stimulated Fabric Filtration (ESFF) method in which corona voltage on a center-wire electrode replaces the subcorona electrodes at the bag surface. The electric field which aff...

  3. Microvascular pressures and filtration coefficients in the cat mesentery.

    PubMed Central

    Fraser, P A; Smaje, L H; Verrinder, A

    1978-01-01

    1. Filtration coefficient and hydrostatic pressure have been measured in single capillaries and venules in the cat mesentery using a modification of the Landis (1927) single vessel occlusion technique. 2. Venules were found to be filtering fluid, not absorbing it as is often supposed. 3. The mean filtration coefficient in capillaries was 0.018 micrometers . s-1 . mmHg-1 (1.35 X 10(-10)m . s-1 . Pa-1) while that in venules, was 0.027 micrometers . s-1 . mmHg-1 (2.02 X 10(-10)m . s-1 . Pa-1). 4. In both capillaries and venules, filtration coefficient increased with decreasing pressure. 5. The difference between directly measured venular pressure and that calculated from the occlusion data was used to determine the contribution of the interstitium to fluid exchange. In the mesentery superfused with Krebs solution the tissue pressure so determined was found to be zero or subatmospheric initially but became increasingly positive with lengthening exposure of the mesentery. PMID:722585

  4. Structural ordering of casein micelles on silicon nitride micro-sieves during filtration.

    PubMed

    Gebhardt, Ronald; Holzmüller, Wolfgang; Zhong, Qi; Müller-Buschbaum, Peter; Kulozik, Ulrich

    2011-11-01

    The paper reports on the structure and formation of casein micelle deposits on silicon nitride micro-sieves during the frontal filtration. The most frequent radius of the fractionated casein micelles we use is R=60 nm as detected by static light scattering (SLS) and atomic force microscopy (AFM). We estimate the size and size distribution of the casein micelles which pass through the micro-sieve during the filtration process. A sharpening of the size distribution at the beginning of the filtration process (t=40s) is followed by a broadening and a shift of the most frequent radii towards smaller sizes at later times (t=840 s). The size distribution of the micelles deposited on the micro-sieve during filtration is bimodal and consists of the largest and smallest micelles. At larger filtration times, we observe a shift of both deposited size classes towards smaller sizes. The atomic force micrographs of the reference sample reveal a tendency of the casein micelles to order in a hexagonal lattice when deposited on the micro-sieves by solution casting. The deposition of two size classes can be explained by a formation of a mixed hexagonal lattice with large micelles building up the basis lattice and smaller sizes filling octahedral and tetrahedral holes of the lattice. The accompanied compression with increasing thickness of the casein layer could result from preferential deposition of smaller sizes in the course of the filtration. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Estimation of single-kidney glomerular filtration rate without exogenous contrast agent.

    PubMed

    He, Xiang; Aghayev, Ayaz; Gumus, Serter; Ty Bae, K

    2014-01-01

    Measurement of single-kidney filtration fraction and glomerular filtration rate (GFR) without exogenous contrast is clinically important to assess renal function and pathophysiology, especially for patients with comprised renal function. The objective of this study is to develop a novel MR-based tool for noninvasive quantification of renal function using conventional MR arterial spin labeling water as endogenous tracer. The regional differentiation of the arterial spin labeling water between the glomerular capsular space and the renal parenchyma was characterized and measured according to their MR relaxation properties (T1ρ or T2 ), and applied to the estimation of filtration fraction and single-kidney GFR. The proposed approach was tested to quantify GFR in healthy volunteers at baseline and after a protein-loading challenge. Biexponential decay of the cortical arterial spin labeling water MR signal was observed. The major component decays the same as parenchyma water; the minor component decays much slower as expected from glomerular ultra-filtrates. The mean single-kidney GFR was estimated to be 49 ± 9 mL/min at baseline and increased by 28% after a protein-loading challenge. We developed an arterial spin labeling-based MR imaging method that allows us to estimate renal filtration fraction and singe-kidney GFR without use of exogenous contrast. Copyright © 2013 Wiley Periodicals, Inc.

  6. Effect of filtration on rolling-element-bearing life in contaminated lubricant environment

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Sherlock, J. J.

    1978-01-01

    Fatigue tests were conducted on groups of 65 millimeter-bore ball bearings under four levels of filtration with and without a contaminated MIL-L-23699 lubricant. The baseline series used noncontaminated oil with 49 micron absolute filtration. In the remaining tests contaminants of the composition found in aircraft engine filters were injected into the filter's supply line at a constant rate of 125 milligrams per bearing-hour. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns (0.45, 10, 30, and 70 microns nominal), respectively. Bearings were tested at 15,000 rpm under 4580 newtons radial load. Bearing life and running tract condition generally improved with finer filtration. The 3 and 30 micron filter bearings in a contaminated lubricant had statistically equivalent lives, approaching those from the baseline tests. The experimental lives of 49 micron bearings were approximately half the baseline bearing's lives. Bearings tested with the 105 micron filter experienced wear failures. The degree of surface distress, weight loss, and probable failure mode were found to be dependent on filtration level, with finer filtration being clearly beneficial.

  7. Filtration effects on ball bearing life and condition in a contaminated lubricant

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.

    1978-01-01

    Ball bearings were fatigue tested with a noncontaminated MIL-L-23699 lubricant and with a contaminated MIL-L-23699 lubricant under four levels of filtration. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns. Aircraft turbine engine contaminants were injected into the filter's supply line at a constant rate of 125 milligrams per bearing hour. Bearing life and running track condition generally improved with finer filtration. The experimental lives of 3- and 30-micron filter bearings were statistically equivalent, approaching those obtained with the noncontaminated lubricant bearings. Compared to these bearings, the lives of the 49-micron bearings were statistically lower. The 105-micron bearings experienced gross wear. The degree of surface distress, weight loss, and probable failure mode were dependent on filtration level, with finer filtration being clearly beneficial.

  8. Health benefits and costs of filtration interventions that reduce indoor exposure to PM2.5 during wildfires.

    PubMed

    Fisk, W J; Chan, W R

    2017-01-01

    Increases in hospital admissions and deaths are associated with increases in outdoor air particles during wildfires. This analysis estimates the health benefits expected if interventions had improved particle filtration in homes in Southern California during a 10-day period of wildfire smoke exposure. Economic benefits and intervention costs are also estimated. The six interventions implemented in all affected houses are projected to prevent 11% to 63% of the hospital admissions and 7% to 39% of the deaths attributable to wildfire particles. The fraction of the population with an admission attributable to wildfire smoke is small, thus, the costs of interventions in all homes far exceeds the economic benefits of reduced hospital admissions. However, the estimated economic value of the prevented deaths exceed or far exceed intervention costs for interventions that do not use portable air cleaners. For the interventions with portable air cleaner use, mortality-related economic benefits exceed intervention costs as long as the cost of the air cleaners, which have a multi-year life, are not attributed to the short wildfire period. Cost effectiveness is improved by intervening only in the homes of the elderly who experience most of the health effects of particles from wildfires. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  10. Vulnerability of bank filtration systems to climate change.

    PubMed

    Sprenger, C; Lorenzen, G; Hülshoff, I; Grützmacher, G; Ronghang, M; Pekdeger, A

    2011-01-15

    Bank filtration (BF) is a well established and proven natural water treatment technology, where surface water is infiltrated to an aquifer through river or lake banks. Improvement of water quality is achieved by a series of chemical, biological and physical processes during subsurface passage. This paper aims at identifying climate sensitive factors affecting bank filtration performance and assesses their relevance based on hypothetical 'drought' and 'flood' climate scenarios. The climate sensitive factors influencing water quantity and quality also have influence on substance removal parameters such as redox conditions and travel time. Droughts are found to promote anaerobic conditions during bank filtration passage, while flood events can drastically shorten travel time and cause breakthrough of pathogens, metals, suspended solids, DOC and organic micropollutants. The study revealed that only BF systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. The storage capacity of the banks and availability of two source waters renders BF for drinking water supply less vulnerable than surface water or groundwater abstraction alone. Overall, BF is vulnerable to climate change although anthropogenic impacts are at least as important. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Diatomite releases silica during spirit filtration.

    PubMed

    Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M

    2014-09-15

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer's health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon content was analysed. It was found that up to 0.36% by weight of diatomite dissolved in the aqueous ethanol and amorphous silica, in the form of hollow spherical microparticles, was the most abundant component. Silicon concentrations in Brandy de Jerez increased by up to 163.0% after contact with diatomite and these changes were more marked for calcined diatomite. In contrast, reductions of more than 30% in silicon concentrations were achieved after membrane filtration at low temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Isolation of circulating tumor cells from pancreatic cancer by automated filtration

    PubMed Central

    Brychta, Nora; Drosch, Michael; Driemel, Christiane; Fischer, Johannes C.; Neves, Rui P.; Esposito, Irene; Knoefel, Wolfram; Möhlendick, Birte; Hille, Claudia; Stresemann, Antje; Krahn, Thomas; Kassack, Matthias U.; Stoecklein, Nikolas H.; von Ahsen, Oliver

    2017-01-01

    It is now widely recognized that the isolation of circulating tumor cells based on cell surface markers might be hindered by variability in their protein expression. Especially in pancreatic cancer, isolation based only on EpCAM expression has produced very diverse results. Methods that are independent of surface markers and therefore independent of phenotypical changes in the circulating cells might increase CTC recovery also in pancreatic cancer. We compared an EpCAM-dependent (IsoFlux) and a size-dependent (automated Siemens Healthineers filtration device) isolation method for the enrichment of pancreatic cancer CTCs. The recovery rate of the filtration based approach is dramatically superior to the EpCAM-dependent approach especially for cells with low EpCAM-expression (filtration: 52%, EpCAM-dependent: 1%). As storage and shipment of clinical samples is important for centralized analyses, we also evaluated the use of frozen diagnostic leukapheresis (DLA) as source for isolating CTCs and subsequent genetic analysis such as KRAS mutation detection analysis. Using frozen DLA samples of pancreatic cancer patients we detected CTCs in 42% of the samples by automated filtration. PMID:29156783

  13. Isolation of circulating tumor cells from pancreatic cancer by automated filtration.

    PubMed

    Brychta, Nora; Drosch, Michael; Driemel, Christiane; Fischer, Johannes C; Neves, Rui P; Esposito, Irene; Knoefel, Wolfram; Möhlendick, Birte; Hille, Claudia; Stresemann, Antje; Krahn, Thomas; Kassack, Matthias U; Stoecklein, Nikolas H; von Ahsen, Oliver

    2017-10-17

    It is now widely recognized that the isolation of circulating tumor cells based on cell surface markers might be hindered by variability in their protein expression. Especially in pancreatic cancer, isolation based only on EpCAM expression has produced very diverse results. Methods that are independent of surface markers and therefore independent of phenotypical changes in the circulating cells might increase CTC recovery also in pancreatic cancer. We compared an EpCAM-dependent (IsoFlux) and a size-dependent (automated Siemens Healthineers filtration device) isolation method for the enrichment of pancreatic cancer CTCs. The recovery rate of the filtration based approach is dramatically superior to the EpCAM-dependent approach especially for cells with low EpCAM-expression (filtration: 52%, EpCAM-dependent: 1%). As storage and shipment of clinical samples is important for centralized analyses, we also evaluated the use of frozen diagnostic leukapheresis (DLA) as source for isolating CTCs and subsequent genetic analysis such as KRAS mutation detection analysis. Using frozen DLA samples of pancreatic cancer patients we detected CTCs in 42% of the samples by automated filtration.

  14. The Effects of Antifoam Agent on Dead End Filtration Process

    NASA Astrophysics Data System (ADS)

    Mohamad Pauzi, S.; Ahmad, N.; Yahya, M. F.; Arifin, M. A.

    2018-05-01

    The formation of foam as a result from introducing gases during cell culture process in the bioprocess industry has indirectly affected the throughput of the product of interest. Due to that, antifoams were developed and established as one of the means to minimize the formation of foam in the cell culture. There are many types of antifoams but the silicone-type of antifoams are widely used in the bioprocess industry. Although the establishment of antifoam has aided the cell culture process, the impacts of its presence in the cell culture to the downstream process especially the dead end filtration is not widely discussed. The findings in the study emphasized on the dead end filtration performance that includes flux rate profile and the resulted filtration capacity. In this study, the concentrations of antifoam injected into the solution were varied from 0.2% v/v – 1.0% v/v and the solutions were filtered using constant flow method. The resulted maximum pressure readings and final flux rates indicated that the resistance exerted to the feed flow rate increased as the concentration of antifoam loaded in the solution increased. This later has led to the decline in the flux rates with percentage reduction between 32 – 68%. The calculated filter capacity for flux rate of 1000LMH ranged from 53 – 63L/m2 while it is in the range of 40 – 43L/m2 for flux rate of 2000LMH. The presence of antifoam agents in the feed load was determined to have negative effects on the dead end filtration performance and it may reduce the efficiency of the dead end filtration process.

  15. 40 CFR 721.10002 - 2-Thiazolidinone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HEPA filters; and supplied-air respirator operated in pressure demand or continuous flow mode and... substance may cause internal organ effects (blood, liver, and kidney). The substance may cause developmental...

  16. 40 CFR 721.10002 - 2-Thiazolidinone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HEPA filters; and supplied-air respirator operated in pressure demand or continuous flow mode and... substance may cause internal organ effects (blood, liver, and kidney). The substance may cause developmental...

  17. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  18. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  19. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  20. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  1. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  2. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    PubMed

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.

    PubMed

    Allmendinger, Andrea; Mueller, Robert; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan

    2015-10-01

    Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. DIFFERENTIATION BETWEEN CERTAIN TOXIC PROPERTIES OF FILTRATES OF HEMOLYTIC STAPHYLOCOCCUS AUREUS

    PubMed Central

    Weld, Julia T. Parker; Gunther, Anne

    1931-01-01

    1. Sterile filtrates from certain hemotoxic strains of Staphylococcus aureus have several toxic properties, of which the most important are the hemotoxic, the necrotoxic, the leucocidic and the property of killing rapidly. 2. The necrotoxic action appears to be caused by a constituent in the filtrates different from either the hemotoxic or the leucocidic one. PMID:19869919

  5. Breakthrough of cyanobacteria in bank filtration.

    PubMed

    Pazouki, Pirooz; Prévost, Michèle; McQuaid, Natasha; Barbeau, Benoit; de Boutray, Marie-Laure; Zamyadi, Arash; Dorner, Sarah

    2016-10-01

    The removal of cyanobacteria cells in well water following bank filtration was investigated from a source water consisting of two artificial lakes (A and B). Phycocyanin probes used to monitor cyanobacteria in the source and in filtered well water showed an increase of fluorescence values demonstrating a progressive seasonal growth of cyanobacteria in the source water that were correlated with cyanobacterial biovolumes from taxonomic counts (r = 0.59, p < 0.00001). A strong correlation was observed between the cyanobacterial concentrations in the lake water and in the well water as measured by the phycocyanin probe (p < 0.001, 0.73 ≤ r(2) ≤ 0.94). Log removals from bank filtration estimated from taxonomic counts ranged from 0.96 ± (0.5) and varied according to the species of cyanobacteria. Of cyanobacteria that passed through bank filtration, smaller cells were significantly more frequent in well water samples (p < 0.05) than larger cells. Travel times from the lakes to the wells were estimated as 2 days for Lake B and 10 days for Lake A. Cyanobacterial species in the wells were most closely related to species found in Lake B. Thus, a travel time of less than 1 week permitted the breakthrough of cyanobacteria to wells. Winter samples demonstrated that cyanobacteria accumulate within bank filters, leading to continued passage of cells beyond the bloom season. Although no concentrations of total microcystin-LR were above detection limits in filtered well water, there is concern that cyanobacterial cells that reach the wells have the potential to contain intracellular toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules

    PubMed Central

    O'Connor, Sean; O'Connor, Paula Fey; Feng, H. Amy

    2015-01-01

    Summary An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 – 4 mg of National Institute of Standards and Technology Standard Reference Material® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were housed within plastic closed-face cassette samplers (CFCs). A method detection limit (MDL) of 0,075 mg per sample was estimated. Precision Sr at 0,5 - 4 mg per sample was 0,031 and the estimated bias was 0,058. Weight stability over 28 days was verified for both blanks and spiked capsules. Independent laboratory testing on blanks and field samples verified long-term weight stability as well as sampling and analysis precision and bias estimates. An overall precision estimate Ŝrt of 0,059 was obtained. An accuracy measure of ±15,5% was found for the gravimetric method using PVC internal capsules. PMID:26435581

  7. Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules.

    PubMed

    O'Connor, Sean; O'Connor, Paula Fey; Feng, H Amy; Ashley, Kevin

    2014-10-01

    An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 - 4 mg of National Institute of Standards and Technology Standard Reference Material ® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were housed within plastic closed-face cassette samplers (CFCs). A method detection limit (MDL) of 0,075 mg per sample was estimated. Precision S r at 0,5 - 4 mg per sample was 0,031 and the estimated bias was 0,058. Weight stability over 28 days was verified for both blanks and spiked capsules. Independent laboratory testing on blanks and field samples verified long-term weight stability as well as sampling and analysis precision and bias estimates. An overall precision estimate Ŝ rt of 0,059 was obtained. An accuracy measure of ±15,5% was found for the gravimetric method using PVC internal capsules.

  8. 235U Holdup Measurements in Three 321-M Exhaust HEPA Banks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewberry, R

    2005-02-24

    The Analytical Development Section of Savannah River National Laboratory (SRNL) was requested by the Facilities Disposition Division to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The results of the holdup assays are essential for determining compliance with the Waste Acceptance Criteria, Material Control & Accountability, and to meet criticality safety controls. This report covers holdup measurements of uranium residue in three HEPA filter exhaustmore » banks of the 321-M facility. Each of the exhaust banks has dimensions near 7' x 14' x 4' and represents a complex holdup problem. A portable HPGe detector and EG&G Dart system that contains the high voltage power supply and signal processing electronics were used to determine highly enriched uranium (HEU) holdup. A personal computer with Gamma-Vision software was used to control the Dart MCA and to provide space to store and manipulate multiple 4096-channel {gamma}-ray spectra. Some acquisitions were performed with the portable detector configured to a Canberra Inspector using NDA2000 acquisition and analysis software. Our results for each component uses a mixture of redundant point source and area source acquisitions that yielded HEU contents in the range of 2-10 grams. This report discusses the methodology, non-destructive assay (NDA) measurements, assumptions, and results of the uranium holdup in these items. This report includes use of transmission-corrected assay as well as correction for contributions from secondary area sources.« less

  9. Graphene nanoplatelets as high-performance filtration control material in water-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal

    2018-05-01

    The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.

  10. Effects of filtration modes on membrane fouling behavior and treatment in submerged membrane bioreactor.

    PubMed

    Maqbool, Tahir; Khan, Sher Jamal; Lee, Chung-Hak

    2014-11-01

    Relaxation or backwashing is obligatory for effective operation of membrane module and intermittent aeration is helpful for nutrients removal. This study was performed to investigate effects of different filtration modes on membrane fouling behavior and treatment in membrane bioreactor (MBR) operated at three modes i.e., 12, 10 and 8min filtration and 3, 2, and 2min relaxation corresponding to 6, 5 and 4cycles/hour, respectively. Various parameters including trans-membrane pressure, specific cake resistance, specific oxygen uptake rate, nutrients removal and sludge dewaterability were examined to optimize the filtration mode. TMP profiles showed that MBR(8+2) with 8min filtration and 2min relaxation reduced the fouling rate and depicted long filtration time in MBR treating synthetic wastewater. MBR(12+3) was more efficient in organic and nutrients removal while denitrification rate was high in MBR(8+2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sperm preparation through Sephadex™ filtration improves in vitro fertilization rate of buffalo oocytes.

    PubMed

    Husna, A U; Azam, A; Qadeer, S; Awan, M A; Nasreen, S; Shahzad, Q; Fouladi-Nashta, A; Khalid, M; Akhter, S

    2018-04-01

    Routinely, swim-up method is used to separate high-quality sperm; however, long processing time and close cell-to-cell contact during the centrifugation step are inevitable elements of oxidative stress to sperm. The objective was to evaluate Sephadex ™ and glass wool filtration to separate motile, intact and viable sperm for in vitro fertilization in buffalo. The cumulus-oocyte complexes (COCs) were collected from ovaries of slaughtered buffaloes by aspiration and matured for 24 hr in CO 2 incubator at 38.5°C and 5% CO 2 . Matured COCs were rinsed twice in fertilization TALP and placed in the pre-warmed fertilization medium without sperm. Cryopreserved buffalo semen was thawed at 37°C for 30 s and processed through Sephadex ™ , glass wool filtration and swim-up (control). Total and motile sperm recovery rates were assessed, resuspended in fertilization TALP and incubated for 15-20 min in CO 2 incubator. Samples prepared by each method were divided into two aliquots: one aliquot was studied for sperm quality (progressive motility, membrane integrity, viability, liveability), while the other was subjected to co-incubation with sets of 10-15 in vitro matured oocytes. Data on sperm quality were analysed by ANOVA, while in vitro fertilizing rates were compared by chi-squared test using SPSS-20. Least significant difference (LSD) test was used to compare treatment means. Glass wool filtration yielded higher total and motile sperm recovery rate, while Sephadex ™ filtration improved (p < .05) sperm quality (progressive motility, membrane integrity, viability, liveability). Sperm preparation through Sephadex filtration yielded higher in vitro fertilization rate in terms of cleavage rate compared to glass wool filtration and swim-up (control). In conclusion, cryopreserved Nili-Ravi buffalo sperm selected through Sephadex filtration showed improved quality and yielded better fertilization rates (cleavage rate) of in vitro matured/fertilized oocytes. Sephadex

  12. Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid

    NASA Astrophysics Data System (ADS)

    yang, P.

    2013-12-01

    Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid Ping Yang 1,2, Min-hui Wu2, Xue-wen Zhu2, Tao Deng2, Xue-qing Sun2 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092,China 2. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China Abstract The process of filtrate loss of low-solids drilling fluid was tested by changing the polyanionic cellulose content in low-solids drilling fluid. The effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid was analyzed. The test results showed that when time of filtration is same, the volume of filtrate loss decreases linearly with increasing polyanionic cellulose content. When polyanionic cellulose content is same, the rate of filtrate loss decreases nonlinearly with increasing time and the rate of filtrate loss will reach a stable value.The volume of filtrate loss in 7 to 8 minutes can reaches half of the total volume of filtrate loss. At the same time, the rate of filtrate loss of drilling fluid decreases nonlinearly with increasing viscosity.When the apparent viscosity is between 3.5~4.15 MPa.s, decrease speed of rate of filtrate loss of drilling fluid is quick. The results are helpful for characteristics evaluation of filtrate loss of drilling fluid and control of filtrate loss. Keyword Polyanionic Cellulose,Drilling Fluid,Process of Filtrate Loss Acknowledgments This investigation was supported by the National Natural Science Foundation of China (projects No. 41002093 and 41072205); the Fundamental Research Funds for the Central Universities; the Shanghai Leading Academic Discipline Project (project No. B308), Tongji University; and the Program for Young Excellent Talents, Tongji University. The authors are extremely grateful for the financial support from these five organizations.

  13. Nicotine, cotinine, and β-nicotyrine inhibit NNK-induced DNA-strand break in the hepatic cell line HepaRG.

    PubMed

    Ordonez, Patricia; Sierra, Ana Belen; Camacho, Oscar M; Baxter, Andrew; Banerjee, Anisha; Waters, David; Minet, Emmanuel

    2014-07-15

    Recent in vitro work using purified enzymes demonstrated that nicotine and/or a nicotine metabolite could inhibit CYPs (CYP2A6, 2A13, 2E1) involved in the metabolism of the genotoxic tobacco nitrosamine NNK. This observation raises the possibility of nicotine interaction with the mechanism of NNK bioactivation. Therefore, we hypothesized that nicotine or a nicotine metabolite such as cotinine might contribute to the inhibition of NNK-induced DNA strand breaks by interfering with CYP enzymes. The effect of nicotine and cotinine on DNA strand breaks was evaluated using the COMET assay in CYP competent HepaRG cells incubated with bioactive CYP-dependent NNK and CYP-independent NNKOAc (4-(acetoxymethylnitrosoamino)-1-(3-pyridyl)-1-butanone). We report a dose-dependent reduction in DNA damage in hepatic-derived cell lines in the presence of nicotine and cotinine. Those results are discussed in the context of the in vitro model selected. Copyright © 2014. Published by Elsevier Ltd.

  14. Nanoparticle Filtration in a RTM Processed Epoxy/Carbon Fiber Composite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Micham, Logan; Copa, Christine C.; Criss, James M., Jr.; Mintz, Eric A.

    2011-01-01

    Several epoxy matrix composite panels were fabricated by resin transfer molding (RTM) E862/W resin onto a triaxially braided carbon fiber pre-form. Nanoparticles including carbon nanofiber, synthetic clay, and functionalized graphite were dispersed in the E862 matrix, and the extent of particle filtration during processing was characterized. Nanoparticle dispersion in the resin flashing on both the inlet and outlet edges of the panel was compared by TEM. Variation in physical properties such as Tg and moisture absorption throughout the panel were also characterized. All nanoparticle filled panels showed a decrease in Tg along the resin flow path across the panel, indicating nanoparticle filtration, however there was little change in moisture absorption. This works illustrates the need to obtain good nano-particle dispersion in the matrix resin to prevent particle agglomeration and hence particle filtration in the resultant polymer matrix composites (PMC).

  15. The effect of membrane filtration on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.

    1996-01-01

    The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.

  16. Effect of hypothermic pulmonary artery flushing on capillary filtration coefficient.

    PubMed

    Andrade, R S; Wangensteen, O D; Jo, J K; Tsai, M Y; Bolman, R M

    2000-07-27

    We previously demonstrated that surfactant dilution and inhibition occur immediately after pulmonary artery flushing with hypothermic modified Euro-Collins solution. Consequently, we speculated that increased capillary permeability contributed to these surfactant changes. To test this hypothesis, we evaluated the effects of hypothermic pulmonary artery flushing on the pulmonary capillary filtration coefficient (Kfc), and additionally performed a biochemical analysis of surfactant. We used a murine isolated, perfused lung model to measure the pulmonary capillary filtration coefficient and hemodynamic parameters, to determine the wet to dry weight ratio, and to evaluate surfactant by biochemical analysis of lung lavage fluid. We defined three study groups. In group I (controls), we harvested lungs without hypothermic pulmonary artery flushing, and measured Kfc immediately. In group II (in situ flush), we harvested lungs after hypothermic pulmonary artery flushing with modified Euro-Collins solution, and then measured Kfc. Experiments in groups I and II were designed to evaluate persistent changes in Kfc after pulmonary artery flushing. In group III (ex vivo flush), we flushed lungs ex vivo to evaluate transient changes in Kfc during hypothermic pulmonary artery flushing. Groups I and II did not differ significantly in capillary filtration coefficient and hemodynamics. Group II showed significant alterations on biochemical surfactant analysis and a significant increase in wet-to-dry weight ratio, when compared with group I. In group III, we observed a significant transient increase in capillary filtration coefficient during pulmonary artery flushing. Hypothermic pulmonary artery flushing transiently increases the capillary filtration coefficient, leads to an increase in the wet to dry weight ratio, and induces biochemical surfactant changes. These findings could be explained by the effects of hypothermic modified Euro-Collins solution on pulmonary capillary

  17. Contamination control through filtration of microorganisms

    NASA Technical Reports Server (NTRS)

    Stabekis, P. D.; Lyle, R. G.

    1972-01-01

    A description is given of the various kinds of gas and liquid filters used in decontamination and sterilization procedures. Also discussed are filtration mechanisms, characteristics of filter materials, and the factors affecting filter performance. Summaries are included for filter testing and evaluation techniques and the possible application of the filters to spacecraft sterilization.

  18. 40 CFR 721.10583 - Benzenamine, 4,4′-[1,3-phenylenebis(1-methylethylidene)]bis-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., tight-fitting half-face respirator equipped with N100 (if oil aerosols absent), R100, or P100 filters... aerosols absent), R100, or P100 filters. (C) NIOSH-certified powered air-purifying respirator equipped with a loose-fitting hood or helmet and high efficiency particulate air (HEPA) filters. (D) NIOSH...

  19. 40 CFR 721.10583 - Benzenamine, 4,4′-[1,3-phenylenebis(1-methylethylidene)]bis-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., tight-fitting half-face respirator equipped with N100 (if oil aerosols absent), R100, or P100 filters... aerosols absent), R100, or P100 filters. (C) NIOSH-certified powered air-purifying respirator equipped with a loose-fitting hood or helmet and high efficiency particulate air (HEPA) filters. (D) NIOSH...

  20. Particulate matter triggers depressive-like response associated with modulation of inflammatory cytokine homeostasis and brain-derived neurotrophic factor signaling pathway in mice.

    PubMed

    Liu, Xuemei; Qian, Xin; Xing, Jing; Wang, Jinhua; Sun, Yixuan; Wang, Qin'geng; Li, Huiming

    2018-04-23

    Particulate matter (PM) exposure may contribute to depressive-like response in mice. However, few studies have evaluated the adaptive impacts of long-term PM exposure on depressive-like response associated with systemic inflammation and brain-derived neurotrophic factor (BDNF) signaling pathway. We studied the association among depressive-like behaviors, mRNA levels of pro- and anti-inflammatory cytokines, and the expression of BDNF signaling pathway in mice by long-term PM exposure. C57BL/6 male mice were exposed to ambient air alongside control mice breathing air filtered through a high-efficiency air PM (HEPA) filter. Depressive-like behaviors were assessed together with pro-inflammatory, anti-inflammatory cytokine mRNA levels and the modulation of BDNF pathway in hippocampus and olfactory-bulb of mice exposed to PM for 4, 8, and 12 weeks. Exposure to HEPA filtered air for 4 weeks may exert antidepressant like effects in mice. Pro-inflammatory cytokines were up-regulated while the expression of BDNF, its high-affinity receptor tropomyosin-related kinase B (TrkB), and the transcription factor cAMP-response-element binding protein (CREB) were down-regulated in ambient air mice. However, after 8 weeks, there was no significant difference in the rate of depressive-like behaviors between the two groups. After 12 weeks, mice exposed to ambient air again had a higher rate of depressive-like behaviors, significant up-regulation of pro-inflammatory cytokines, down-regulation of interleukin-10 (IL-10), BDNF, TrkB, and CREB than HEPA mice. Ultrafine PM in brain tissues of mice exposed to ambient air was observed. Our results suggest continuous high-level PM exposure alters the depressive-like response in mice and induces a damage-repair-imbalance reaction.

  1. Novel routes of albumin passage across the glomerular filtration barrier.

    PubMed

    Castrop, H; Schießl, I M

    2017-03-01

    Albuminuria is a hallmark of kidney diseases of various aetiologies and an unambiguous symptom of the compromised integrity of the glomerular filtration barrier. Furthermore, there is increasing evidence that albuminuria per se aggravates the development and progression of chronic kidney disease. This review covers new aspects of the movement of large plasma proteins across the glomerular filtration barrier in health and disease. Specifically, this review focuses on the role of endocytosis and transcytosis of albumin by podocytes, which constitutes a new pathway of plasma proteins across the filtration barrier. Thus, we summarize what is known about the mechanisms of albumin endocytosis by podocytes and address the fate of the endocytosed albumin, which is directed to lysosomal degradation or transcellular movement with subsequent vesicular release into the urinary space. We also address the functional consequences of overt albumin endocytosis by podocytes, such as the formation of pro-inflammatory cytokines, which might eventually result in a deterioration of podocyte function. Finally, we consider the diagnostic potential of podocyte-derived albumin-containing vesicles in the urine as an early marker of a compromised glomerular barrier function. In terms of new technical approaches, the review covers how our knowledge of the movement of albumin across the glomerular filtration barrier has expanded by the use of new intravital imaging techniques. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  2. Depot effect of bioactive components in experimental membrane filtrations

    NASA Astrophysics Data System (ADS)

    Mitev, D.; Peshev, D.; Peev, G.; Peeva, L.

    2017-01-01

    Depot effects were found to be accompanying phenomena of membrane separation processes. Accumulation of target species in the membrane matrix during feasibility tests can hamper proper conclusions or compromise the filtration results. Therefore, we investigated the effects of delayed membrane release of chlorogenic acid and caffeine, considered as key compounds of interest in spent coffee products’ recovery treatment. Permeate fluxes and key components release were studied in course of 24 hours via nanofiltration of pure solvent, both immediately after the mock solution filtration and after idle stay. Conclusions are drawn and recommendations advised for proper analysis of experimental data on membrane screening.

  3. DEMONSTRATION BULLETIN: MEMBRANE FILTRATION - SBP TECHNOLOGIES, INC.

    EPA Science Inventory

    SBP Technologies Inc. (SBP) has developed a membrane-based separation technology that can reduce the volume of contaminated groundwater requiring treatment. The SBP Filtration Unit consists of porous, sintered, stainless steel tubes arranged in a shell-and-tube module configurati...

  4. Forced-air warming: a source of airborne contamination in the operating room?

    PubMed

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-10-10

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room.We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques.Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers.The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site.

  5. In-Water Hull Cleaning & Filtration System

    NASA Astrophysics Data System (ADS)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  6. 40 CFR 721.10279 - Multi-walled carbon nanotubes (generic) (P-10-246).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a loose-fitting hood or helmet and high efficiency particulate air (HEPA) filters; or (C) NIOSH... in § 721.80(f), (k) (conductivity additive to resins, rubber, and to battery electrodes), and (q...

  7. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    USDA-ARS?s Scientific Manuscript database

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  8. ELECTROSTATIC ENHANCEMENT OF FABRIC FILTRATION OF FLY ASH AND SPRAY DRYER BY-PRODUCT

    EPA Science Inventory

    The paper describes small pilot-scale experiments, showing that the pressure drop increase during the fabric filtration of redispersed spray dryer by-product (chiefly calcium salts and fly ash) is significantly reduced by electrostatic enhancement of the filtration. The pressure ...

  9. DEVELOPMENT OF AG-1 SECTION FI ON METAL MEDIA FILTERS - 9061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D; Charles A. Waggoner, C

    Development of a metal media standard (FI) for ASME AG-1 (Code on Nuclear Air and Gas Treatment) has been under way for almost ten years. This paper will provide a brief history of the development process of this section and a detailed overview of its current content/status. There have been at least two points when dramatic changes have been made in the scope of the document due to feedback from the full Committee on Nuclear Air and Gas Treatment (CONAGT). Development of the proposed section has required resolving several difficult issues associated with scope; namely, filtering efficiency, operating conditions (mediamore » velocity, pressure drop, etc.), qualification testing, and quality control/acceptance testing. A proposed version of Section FI is currently undergoing final revisions prior to being submitted for balloting. The section covers metal media filters of filtering efficiencies ranging from medium (less than 99.97%) to high (99.97% and greater). Two different types of high efficiency filters are addressed; those units intended to be a direct replacement of Section FC fibrous glass HEPA filters and those that will be placed into newly designed systems capable of supporting greater static pressures and differential pressures across the filter elements. Direct replacements of FC HEPA filters in existing systems will be required to meet equivalent qualification and testing requirements to those contained in Section FC. A series of qualification and quality assurance test methods have been identified for the range of filtering efficiencies covered by this proposed standard. Performance characteristics of sintered metal powder vs. sintered metal fiber media are dramatically different with respect to parameters like differential pressures and rigidity of the media. Wide latitude will be allowed for owner specification of performance criteria for filtration units that will be placed into newly designed systems. Such allowances will permit use of the most

  10. Laboratory and on-road evaluations of cabin air filters using number and surface area concentration monitors.

    PubMed

    Qi, Chaolong; Stanley, Nick; Pui, David Y H; Kuehn, Thomas H

    2008-06-01

    An automotive cabin air filter's effectiveness for removing airborne particles was determined both in a laboratory wind tunnel and in vehicle on-road tests. The most penetrating particle size for the test filter was approximately 350 nm, where the filtration efficiency was 22.9 and 17.4% at medium and high fan speeds, respectively. The filtration efficiency increased for smaller particles and was 43.9% for 100 nm and 72.0% for 20 nm particles at a medium fan speed. We determined the reduction in passenger exposure to particles while driving in freeway traffic caused by a vehicle ventilation system with a cabin air filter installed. Both particle number and surface area concentration measurements were made inside the cabin and in the surrounding air. At medium fan speed, the number and surface area concentration-based exposure reductions were 65.6 +/- 6.0% and 60.6 +/- 9.4%, respectively. To distinguish the exposure reduction contribution from the filter alone and the remainder of the ventilation system, we also performed tests with and without the filter in place using the surface area monitors. The ventilation system operating in the recirculation mode with the cabin air filter installed provided the maximum protection, reducing the cabin particle concentration exponentially over time and usually taking only 3 min to reach 10 microm2/cm3 (a typical office air condition) under medium fan speed.

  11. Plasma discharge self-cleaning filtration system

    DOEpatents

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  12. A problem of hospital hygiene: the presence of aspergilli in hospital wards with different air-conditioning features.

    PubMed

    Perdelli, Fernanda; Sartini, Marina; Spagnolo, Anna Maria; Dallera, Maurizio; Lombardi, Roberto; Cristina, Maria Luisa

    2006-06-01

    A total of 1,030 microbiological samples were taken in 3 hospital wards with different air-conditioning features: no conditioning system (ward A), a conditioning system equipped with minimum efficiency reporting value (MERV) filters (ward B), and a conditioning system thoroughly maintained and equipped with high-efficiency particulate air (HEPA) filters (absolute) (ward C). The air in each ward was sampled, and the bacterial and fungal concentrations were determined by active and passive methods. The concentration of fungi on surfaces was also determined. Active sampling showed positive samples in wards A and B only, with average values of 0.50 colony-forming units (CFU)/m(3) (95% CI, 0.30 to 0.70) in A and 0.16 CFU/m(3) (95% CI, 0.13 to 0.20) in B. Passive sampling was positive only in ward A (mean, 0.14 CFU/cm(2)/h; 95% CI, 0.13 to 0.15). Aspergillus was found in 27% and 22% of sampled surfaces in wards A and B, respectively, but in no samples from ward C. The most commonly found species was A. fumigatus (76% of cases in A and 34% of cases in B). The results show that the use of air-conditioning systems markedly reduces the concentration of aspergilli in the environment. Proper maintenance of these systems is clearly fundamental if their efficacy is to be ensured.

  13. Polymer-treated woody biomass: a filtration medium for removing phosphate from water

    Treesearch

    Thomas L Eberhardt

    2006-01-01

    A two-stage treatment of refined aspen wood fiber with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a filtration medium that was effective in removing phosphate from test solutions. To assess the stability of the filtration medium, samples exposed to the test solutions were analyzed by FTIR spectroscopy. The resultant spectra indicated that...

  14. Microwave-Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (Postprint)

    DTIC Science & Technology

    2012-02-01

    Baggiani, A. and Senesi, S. (2004). Effect of Microwave Radiation on Bacillus subtilis Spores . J. Appl. Microbiol. 97: 1220–1227. Damit, B., Lee, C.N...AFRL-RX-TY-TP-2012-0020 MICROWAVE-IRRADIATION-ASSISTED HVAC FILTRATION FOR INACTIVATION OF VIRAL AEROSOLS POSTPRINT Myung-Heui Woo and...12-APR-2011 -- 11-DEC-2011 Microwave Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (POSTPRINT) FA8650-06-C-5913 0602102F

  15. Chiral filtration-induced spin/valley polarization in silicene line defects

    NASA Astrophysics Data System (ADS)

    Ren, Chongdan; Zhou, Benhu; Sun, Minglei; Wang, Sake; Li, Yunfang; Tian, Hongyu; Lu, Weitao

    2018-06-01

    The spin/valley polarization in silicene with extended line defects is investigated according to the chiral filtration mechanism. It is shown that the inner-built quantum Hall pseudo-edge states with identical chirality can serve as a chiral filter with a weak magnetic field and that the transmission process is restrained/strengthened for chiral states with reversed/identical chirality. With two parallel line defects, which act as natural chiral filtration, the filter effect is greatly enhanced, and 100% spin/valley polarization can be achieved.

  16. Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate

    DOE PAGES

    Sievers, David A.; Kuhn, Erik M.; Tucker, Melvin P.; ...

    2017-06-28

    In this study, the reaction conditions used during dilute-acid pretreatment of lignocellulosic biomass control the carbohydrate digestion yield and also hydrolyzate properties. Depending on the conversion route of interest, solid-liquid separation (SLS) may be required to split the hemicellulose-rich liquor from the cellulose-rich insoluble solids, and slurry properties are important for SLS. Corn stover was pretreated at different reaction conditions and the slurries were assessed for conversion yield and filtration performance. Increasing pretreatment temperature reduced the solids mean particle size and resulted in slower slurry filtration rates when vacuum filtered or pressure filtered. Corn stover pretreated at 165 °C formore » 10 min and with 1% H 2SO 4 exhibited the highest xylose yield and best filtration performance with a no-wash filtration rate of 80 kg/h m 2 and cake permeability of 15 x 10 -15.« less

  17. Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, David A.; Kuhn, Erik M.; Tucker, Melvin P.

    In this study, the reaction conditions used during dilute-acid pretreatment of lignocellulosic biomass control the carbohydrate digestion yield and also hydrolyzate properties. Depending on the conversion route of interest, solid-liquid separation (SLS) may be required to split the hemicellulose-rich liquor from the cellulose-rich insoluble solids, and slurry properties are important for SLS. Corn stover was pretreated at different reaction conditions and the slurries were assessed for conversion yield and filtration performance. Increasing pretreatment temperature reduced the solids mean particle size and resulted in slower slurry filtration rates when vacuum filtered or pressure filtered. Corn stover pretreated at 165 °C formore » 10 min and with 1% H 2SO 4 exhibited the highest xylose yield and best filtration performance with a no-wash filtration rate of 80 kg/h m 2 and cake permeability of 15 x 10 -15.« less

  18. Investigation of Microgranular Adsorptive Filtration System

    NASA Astrophysics Data System (ADS)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling

  19. Comparative Recoveries of Naegleria fowleri Amoebae from Seeded River Water by Filtration and Centrifugation

    PubMed Central

    Pernin, P.; Pélandakis, M.; Rouby, Y.; Faure, A.; Siclet, F.

    1998-01-01

    Detection of pathogenic Naegleria fowleri in environmental water samples, which is necessary for the prevention of primary amoebic meningoencephalitis, generally requires concentrating the samples. Two concentration techniques, filtration and centrifugation, were used to study the recovery of N. fowleri, in vegetative or cystic form, that had been mixed with the two other thermotolerant Naegleria species, N. lovaniensis and N. australiensis. Counting of amoebae was performed by the most probable number method on 10 water replicates of 100 ml and 10 ml each. With both concentration methods, recovery was better for cysts than for trophozoites (53% ± 21% versus 5% ± 5% by filtration and 57% ± 25% versus 22% ± 5% by centrifugation). The recovery of Naegleria trophozoites by filtration was very low, and centrifugation was significantly better than filtration in recovery of Naegleria trophozoites (22% ± 5% versus 5% ± 5%; P < 0.001). For cysts, however, filtration appeared as efficient as centrifugation, with equivalent values for recovery (53% ± 21% versus 57% ± 25%; P > 0.7). Although the recovery of cysts of N. fowleri obtained by filtration (51% ± 24%) appeared higher than that by centrifugation (36% ± 23%), the difference was not significant (P > 0.1). Both concentration methods have highly variable recovery rates, making accurate quantification of low concentrations (<100/liter) of N. fowleri in the environment difficult. PMID:9501435

  20. Public health protection through bank filtration - Kearney Nebraska case study

    NASA Astrophysics Data System (ADS)

    Esseks, E.; Bellamy, W.; Heinemann, T.; Stocker, K.

    2003-04-01

    The investigation of Kearney's bank filtration system provides further evidence of this technology's capability to assist in providing public health protection, as it relates to drinking water. The results of hydrogeologic and treatment studies demonstrate the capabilities of the Platte River aquifer materials, in this locale, to remove pathogens and their surrogates. Continual monitoring and evaluations will establish the system’s longevity and continued treatment efficacy. The City of Kearney is located in south central Nebraska. The City owns and operates a public water system that serves approximately 24,889 people. The water system includes 12 wells located on Killgore Island in the Platte River. In 1994, the Nebraska Department of Health and Human Services System (Department) determined that 3 wells in the wellfield serving the City of Kearney were ground water under the direct influence of surface water. This determination was based on results of microscopic particulate analysis (MPA). The City of Kearney undertook the natural bank filtration study to determine whether natural bank filtration was occurring at the site and if the filtration was sufficient to meet pathogen treatment requirements designed to protect public health. A preliminary study was undertaken from June through October 1995. This coincided with the City’s peak pumping time, which may be the time when the influence of the River is greatest on the wellfield wells. Hydrogeologic studies assisted in selecting wells that were at highest risk based on shortest travel times and greatest differential head. Data collected included particle counts, MPAs, turbidity, coliform, centrifugate pellet evaluation (CPE) volumes, pH, conductivity, and temperature. Following analysis of data collected during the preliminary 18-week study the Department granted conditional approval of 2-log credit for removal of Giardia lamblia and 1-log credit for removal of viruses through bank filtration, pending the