Science.gov

Sample records for air infiltration measurement

  1. Perfluorocarbon tracer method for air-infiltration measurements

    DOEpatents

    Dietz, R.N.

    1982-09-23

    A method of measuring air infiltration rates suitable for use in rooms of homes and buildings comprises the steps of emitting perfluorocarbons in the room to be measured, sampling the air containing the emitted perfluorocarbons over a period of time, and analyzing the samples at a laboratory or other facility.

  2. AIR INFILTRATION MEASUREMENTS USING TRACER GASES: A LITERATURE REVIEW

    EPA Science Inventory

    The report gives results of a literature review of air filtration measurements using tracer gases, including sulfur hexafluoride, hydrogen, carbon monoxide, carbon dioxide, nitrous oxide, and radioactive argon and krypton. Sulfur hexafluoride is the commonest tracer gas of choice...

  3. Measuring Infiltration Rates in Homes as a Basis for Understanding Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Jerz, G. G.; Lamb, B. K.; Pressley, S. N.; O'Keeffe, P.; Fuchs, M.; Kirk, M.

    2015-12-01

    Infiltration rates, or the rate of air exchange, of houses are important to understand because ventilation can be a dominate factor in determining indoor air quality. There are chemicals that are emitted from surfaces or point sources inside the home which are harmful to humans; these chemicals come from various objects including furniture, cleaning supplies, building materials, gas stoves, and the surrounding environment. The use of proper ventilation to cycle cleaner outdoor air into the house can be crucial for maintaining healthy living conditions in the home. At the same time, there can also be outdoor pollutants which infiltrate the house and contribute to poor indoor air quality. In either case, it is important to determine infiltration rates as a function of outdoor weather conditions, the house structure properties and indoor heating and cooling systems. In this work, the objective is to measure ventilation rates using periodic releases of a tracer gas and measuring how quickly the tracer concentration decays. CO2 will be used as the tracer gas because it is inert and harmless at low levels. An Arduino timer is connected to a release valve which controls the release of 9.00 SLPM of CO2 into the uptake vent within the test home. CO2 will be released until there is at least a 200 to 300 ppm increase above ambient indoor levels. Computers with CO2 sensors and temperature/pressure sensors attached will be used to record data from different locations within the home which will continuously record data up to a week. The results from these periodic ventilation measurements will be analyzed with respect to outdoor wind and temperature conditions and house structure properties. The data will be used to evaluate an established indoor air quality model.

  4. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration... gain due to infiltration as much as possible without impinging on health and comfort and within...

  5. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration... gain due to infiltration as much as possible without impinging on health and comfort and within...

  6. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration... gain due to infiltration as much as possible without impinging on health and comfort and within...

  7. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration... gain due to infiltration as much as possible without impinging on health and comfort and within...

  8. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration...-to-ceiling and wall-to-floor connections shall be caulked or otherwise sealed. When walls...

  9. A field method for measurement of infiltration

    USGS Publications Warehouse

    Johnson, A.I.

    1963-01-01

    The determination of infiltration--the downward entry of water into a soil (or sediment)--is receiving increasing attention in hydrologic studies because of the need for more quantitative data on all phases of the hydrologic cycle. A measure of infiltration, the infiltration rate, is usually determined in the field by flooding basins or furrows, sprinkling, or measuring water entry from cylinders (infiltrometer rings). Rates determined by ponding in large areas are considered most reliable, but the high cost usually dictates that infiltrometer rings, preferably 2 feet in diameter or larger, be used. The hydrology of subsurface materials is critical in the study of infiltration. The zone controlling the rate of infiltration is usually the least permeable zone. Many other factors affect infiltration rate--the sediment (soil) structure, the condition of the sediment surface, the distribution of soil moisture or soil- moisture tension, the chemical and physical nature of the sediments, the head of applied water, the depth to ground water, the chemical quality and the turbidity of the applied water, the temperature of the water and the sediments, the percentage of entrapped air in the sediments, the atmospheric pressure, the length of time of application of water, the biological activity in the sediments, and the type of equipment or method used. It is concluded that specific values of the infiltration rate for a particular type of sediment are probably nonexistent and that measured rates are primarily for comparative use. A standard field-test method for determining infiltration rates by means of single- or double-ring infiltrometers is described and the construction, installation, and operation of the infiltrometers are discussed in detail.

  10. An investigation of infiltration and indoor air quality

    SciTech Connect

    Not Available

    1990-09-01

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During this study, the statistical distribution of radon concentrations inside 2400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures -- caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors -- have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO{sub 2}, CO, SO{sub 2}, and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality. 87 tabs.

  11. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  12. Horizontal Fluid Infiltration: A New Measurement Device and Some Observations

    NASA Astrophysics Data System (ADS)

    Culligan, P. J.; Ivanov, V. M.; Germiane, J. T.

    2003-12-01

    Fluid infiltration in the vadose zone has been the subject of study since the early 1900s. Understanding infiltration processes is important to numerous problems, including forecasting moisture distribution following soil irrigation, estimating the potential for leachate generation during landfill cover design, and predicting contaminant transport to groundwater following a surface spill. Many models have been developed to describe fluid infiltration, including the well-known models by Jean-Yves Parlange and his co-workers (e.g., Smith and Parlange, Water Resources Research, 14(3), 1978). These models predict the time-rate of infiltration and the cumulative volume of infiltration based on parameters, such as sorptivity, that are often obtained from laboratory experiments. The proper design of these experiments, and appreciation of the factors controlling parameters derived from them, is therefore key to the accuracy of such models. This paper describes a new experimental setup to observe fluid infiltration under one-dimensional capillary dominated flow. Dry soil is packed in a horizontal 700 mm long polycarbonate channel that is 25.5 mm x 25.5 mm in cross-section. The top of the channel is open to the atmosphere. The upstream end of the channel is connected, via a three-valve chamber, to an infiltrant container placed on an electronic balance. Initial flooding and final draining of the three-valve chamber can be controlled without disturbing conditions in the column. The height of the infiltrant container can be adjusted to control the fluid inlet head. The end of the column is capped with a seal that allows the free exit of air. During an experiment, fluid is introduced at the upstream end of the column at a fixed head. The position of the infiltration front and the cumulative mass of fluid flowing into the column are both observed with time. At the end of each experiment, the fluid saturation along the column is obtained by sampling from the top, open surface of

  13. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature

  14. Measured Infiltration and Ventilation in Manufactured Homes : Residential Construction Demonstration Project, Cycle II.

    SciTech Connect

    Palmiter, Larry S.

    1992-04-28

    Air infiltration is an important factor in heat loss and indoor air quality; in modern well-insulated homes, it may account for as much as half of the total heat loss. Due to the recent emphasis by home buyers and manufacturers on energy efficiency, tighter homes are being constructed. In the past, it was assumed that natural infiltration would provide adequate ventilation to maintain acceptable indoor air quality, but this is no longer the case in modern energy-efficient homes. This report summarizes the results of infiltration measurements made on two groups of manufactured homes in the Bonneville Power Administration (BPA) service area: 131 energy-efficient homes constructed under RCDP, and a control group of 29 homes not participating in energy-efficiency programs.

  15. A novel experiment for measuring infiltration into seasonal frozen soil

    NASA Astrophysics Data System (ADS)

    Demand, Dominic; Weiler, Markus

    2016-04-01

    Large parts of the northern hemisphere have at least seasonal frozen soils. Depending on the initial soil water content infiltration capacity can be reduced through pore blockage of ice. Many studies dealing with this topic used numerical modelling for estimating the effect of frozen soils on infiltration. Only a few studies investigated the influences of seasonal frozen soils on infiltration and runoff generation in field experiments. Some authors point out that preferential flow can be an important factor under frozen conditions, but only qualitative information are available so far. A missing methodology makes it hard to measure and quantify infiltration into frozen soils, especially the role of preferential flow. Therefore, a novel multi-method approach for measuring the influences of seasonal frozen soil on infiltration is presented. Sprinkling experiments with a rate of 50 mm/h were performed at frozen soil plots under wet and dry initial conditions in a grassland field site in the Black Forest, Germany. Additionally, two different water temperatures were used for the sprinkling experiments (~2°C and ~10°C). Thermal infrared imagery was tested for continuous, in-situ monitoring of the spatiotemporal soil thermal state during infiltration and the possibility to derive information on water flow. A dye tracer (Brilliant Blue FCF) was added to the infiltrating water and analyzed by image analysis for flow patterns and depth distribution. Thermal infrared imagery and dye tracer were used for the first time in field experiments in frozen soils and were tested for their potential to show the effect of preferential flow under frozen conditions. These information were related to observed soil moisture and temperature profiles measured with capacitance probes in five depths. Furthermore timing and amount of surface runoff was examined for all plots. Brilliant Blue flow patterns and surface runoff were compared against unfrozen soils with similar initial conditions

  16. Measuring Spatial Infiltration in Stormwater Control Measures: Results and Implications

    EPA Science Inventory

    This presentation will provide background information on research conducted by EPA-ORD on the use of soil moisture sensors in bioretention/bioinfiltration technologies to evaluate infiltration mechanisms and compares monitoring results to simplified modeling assumptions. A serie...

  17. Vadose Zone Infiltration Rates from Sr isotope Measurements

    NASA Astrophysics Data System (ADS)

    Maher, K.; Maher, K.; DePaolo, D. J.; DePaolo, D. J.; Conrad, M.

    2001-12-01

    Predicting infiltration rates and recharge through the vadose zone in arid regions is difficult and hence developing methods for the measurement of infiltration rates is important. We have been investigating the use of Sr isotope measurements for determining infiltration at the 200 Area plateau on the Hanford reservation in central Washington. In this context, infiltration affects the transport of contaminants to the water table as well as recharge of the groundwater system. Using Sr isotopes for this purpose requires drill core and water samples from the vadose zone, although leaches of the cores can substitute for water samples. Complementary information, including some constraints on regional recharge, can also be obtained using water samples from groundwater monitoring wells. The VZ method is based on the fact that the Sr isotope ratio of soil water just below the surface is often set by dissolution of aeolian material including carbonate, and this ratio is different from the average value in the deeper underlying vadose zone rock matrix. As water infiltrates, the Sr isotopic composition of the water changes toward the rock values as a result of Sr released from the rocks by weathering reactions. The rate of change with depth of the Sr isotope ratio of the vadose zone water is a function ultimately of q/R; the ratio of the infiltration flux (q) to the bulk rock weathering rate (R). Where it is possible to evaluate R, q can be estimated. As data accumulate it may be possible to improve the calibration of the method. At Hanford the vadose zone rock material is mostly unconsolidated sand, silt, and gravel of broadly granitic composition, which constitute the Hanford and Ringold formations. Annual precipitation is about 160 mm/yr. Drilling and coring of a ca. 70m hole to the water table in 1999 as part of the Hanford groundwater monitoring program, in a relatively undisturbed area of the site, allowed us to generate a unique Sr isotope data set. The Sr isotope

  18. Measurement of gas transport properties for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  19. Difficulties in the evaluation and measuring of soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2013-04-01

    Soil water infiltration is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the evaluation and measurement of water infiltration rates has become indispensable for the evaluation and modeling of the previously mentioned processes. Infiltration is one of the most difficult hydrological parameters to evaluate or measure accurately. Although the theoretical aspects of the process of soil water infiltration are well known since the middle of the past century, when several methods and models were already proposed for the evaluation of infiltration, still nowadays such evaluation is not frequently enough accurate for the purposes being used. This is partially due to deficiencies in the methodology being used for measuring infiltration, including some newly proposed methods and equipments, and in the use of non appropriate empirical models and approaches. In this contribution we present an analysis and discussion about the main difficulties found in the evaluation and measurement of soil water infiltration rates, and the more commonly committed errors, based on the past experiences of the author in the evaluation of soil water infiltration in many different soils and land conditions, and in their use for deducing soil water balances under variable and changing climates. It is concluded that there are not models or methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil

  20. Evaluation of different field methods for measuring soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  1. Infiltration of forest fire and residential wood smoke: an evaluation of air cleaner effectiveness.

    PubMed

    Barn, Prabjit; Larson, Timothy; Noullett, Melanie; Kennedy, Susan; Copes, Ray; Brauer, Michael

    2008-09-01

    Communities impacted by fine-particle air pollution (particles with an aerodynamic diameter less than 2.5 microm; PM(2.5)) from forest fires and residential wood burning require effective, evidence-based exposure-reduction strategies. Public health recommendations during smoke episodes typically include advising community members to remain indoors and the use of air cleaners, yet little information is available on the effectiveness of these measures. Our study attempted to address the following objectives: to measure indoor infiltration factor (F(inf)) of PM(2.5) from forest fires/wood smoke, to determine the effectiveness of high-efficiency particulate air (HEPA) filter air cleaners in reducing indoor PM(2.5), and to analyze the home determinants of F(inf) and air cleaner effectiveness (ACE). We collected indoor/outdoor 1-min PM(2.5) averages and 48-h outdoor PM(2.5) filter samples for 21 winter and 17 summer homes impacted by wood burning and forest fire smoke, respectively, during 2004-2005. A portable HEPA filter air cleaner was operated indoors with the filter removed for one of two sampling days. Particle F(inf) and ACE were calculated for each home using a recursive model. We found mean F(inf)+/-SD was 0.27+/-0.18 and 0.61+/-0.27 in winter (n=19) and summer (n=13), respectively, for days when HEPA filters were not used. Lower F(inf)+/-SD values of 0.10+/-0.08 and 0.19+/-0.20 were found on corresponding days when HEPA filters were in place. Mean+/-SD ACE ([F(inf) without filter-F(inf) with filter]/F(inf) without filter) in winter and summer were 55+/-38% and 65+/-35%, respectively. Number of windows and season predicted F(inf) (P<0.001). No significant predictors of ACE were identified. Our findings show that remaining indoors combined with use of air cleaner can effectively reduce PM(2.5) exposure during forest fires and residential wood burning.

  2. Mass transport measurements and modeling for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N.

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  3. Evaluation of the particle infiltration efficiency of three passive samplers and the PS-1 active air sampler

    NASA Astrophysics Data System (ADS)

    Markovic, Milos Z.; Prokop, Sebastian; Staebler, Ralf M.; Liggio, John; Harner, Tom

    2015-07-01

    The particle infiltration efficiencies (PIE) of three passive and one active air samplers were evaluated under field conditions. A wide-range particle spectrometer operating in the 250-4140 nm range was used to acquire highly temporally resolved particle-number and size distributions for the different samplers compared to ambient air. Overall, three of the four evaluated samplers were able to acquire a representative sample of ambient particles with PIEs of 91.5 ± 13.7% for the GAPS Network sampler, 103 ± 15.5% for the Lancaster University sampler, and 89.6 ± 13.4% for a conventional PS-1 high-volume active air sampler (Hi-Vol). Significantly (p = 0.05) lower PIE of 54 ± 8.0% was acquired for the passive sampler used under the MONET program. These findings inform the comparability and use of passive and active samplers for measuring particle-associated priority chemicals in air.

  4. MEASUREMENTS OF INFILTRATION RATES IN COMPACTED URBAN SOILS

    EPA Science Inventory

    Previous research hs identified significant reductions in infiltration rates in disturbed urban soils, More than 150 prior tests were conducted in predominately sandy and clayey urban soils in the Birmingham and Mobile, AL areas. Infiltration in Clayey soils ws found to be affect...

  5. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  6. Comparison of Infiltrability Measurements in the Thornbush Savanna, Namibia

    NASA Astrophysics Data System (ADS)

    Classen, Nikolaus; Gröngröft, Alexander; Eschenbach, Annette

    2010-05-01

    Large proportions of Namibian Savannas are affected by strong bush encroachment leading to a reduction in grazing capacity. Especially woody plant encroachment is expected to have an impact on hydrology by increasing plant transpiration, bare soil evaporation and reducing soil water availability (HUXMAN et al. 2005). Although the processes are not fully understood, the role of soil water balance is highlighted by many studies. Especially the small-scale interactions of vegetation and soil are of high relevance. To characterize the water balance of different sites in the Namibian thornbush savanna long-term studies were conducted. In addition we applied three methods to quantify the infiltration rate (IR) at four central Namibian thornbush savanna sites differing in soil texture and vegetation type: a single ring (own construction, 14 cm inner diameter), a disc-infiltrometer (Eijkelkamp Agrisearch Equipment BV) and a hood infiltrometer (UGT Umwelt-Geräte-Technik GmbH). At each site, the measurements we conducted along short transect lines (15 m) in positions with differing plant influence (canopy of Acacia trees and shrubs, grass and dwarf-shrub tussocks, bare soil, termitaria). All three methods resulted in different mean IR as well as spatial distribution patterns. Using statistical analysis by ANOVA, dominant controlling variables were elaborated. The poster will demonstrate which of the methods is defensible with respect to the research question. References : HUXMAN, T. E., B. P. WILCOX, et al. (2005): Ecohydrological implications of woody plant encroachment. Ecology 86(2): 308-319. Acknowledgment: The work was founded by BMBF within the Project Biota South (support code 01LC 0624 A2).

  7. Air volume measurement of 'Braeburn' apple fruit.

    PubMed

    Drazeta, Lazar; Lang, Alexander; Hall, Alistair J; Volz, Richard K; Jameson, Paula E

    2004-05-01

    The radial disposition of air in the flesh of fruit of Malus domestica Borkh., cv 'Braeburn' was investigated using a gravimetric technique based on Archimedes' principle. Intercellular air volume was measured by weighing a small tissue sample under water before and after vacuum infiltration to remove the air. In a separate procedure, the volume of the same sample was measured by recording the buoyant upthrust experienced by it when fully immersed in water. The method underestimates tissue air volume due to a slight invasion of the intercellular air spaces around the edges of the sample when it is immersed in water. To correct for this error, an adjustment factor was made based upon an analysis of a series of measurements of air volume in samples of different dimensions. In 'Braeburn' there is a gradient of declining air content from just beneath the skin to the centre of the fruit with a sharp discontinuity at the core line. Cell shape and cell packing were observed in the surface layers of freshly excised and stained flesh samples using a dissecting microscope coupled to a video camera and a PC running proprietary software. Tissue organization changed with distance below the skin. It is speculated that reduced internal gas movement, due to the tightly packed tissue of 'Braeburn' and to the potential diffusion barrier at the core line between the cortex and the pith, may increase susceptibility of the flesh to disorders associated with tissue browning and breakdown.

  8. How Direct Flux Measurements Can Improve Infiltration Estimates in Ephemeral Streams

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, J.; Xie, Y.; Cook, P. G.

    2015-12-01

    In arid and semi-arid areas replenishment of groundwater resources is strongly dependent on surface water infiltration from ephemeral streams and creeks. An accurate estimation of water infiltration and aquifer recharge from these surface water features is paramount, but this task is subject to physical (streambed heterogeneity) and transient (flow variability) challenges of these watercourses. Although several methods are available to estimate stream infiltration, only a handful of them are suitable for ephemeral streams, all of which are indirect methods. In this study we performed an infiltration experiment at the transect scale in an ephemeral stream at the time it was dry, thereby obtaining direct estimates of stream infiltration. Groundwater heads measured in a transect of piezometers orthogonal to the stream identified the development of a groundwater mound laterally displaced several meters into the streambank. The experiment was modelled using the two-dimensional integrated surface-subsurface model HydroGeosphere® and calibrated with PEST using different combinations of groundwater heads and infiltration volume data. Although the model can be calibrated to produce a good match to measured groundwater heads, accurate predictions of stream infiltration can be made only if the heads used for model calibration capture the groundwater mound. The use of infiltration flux or volume during model calibration, instead, provides the best calibration results, and does not require knowledge of the position of the groundwater mound. Given that heterogeneity of streambed and streambank sediments leads to the possibility that the groundwater mound developed during flow events will be poorly characterised or perhaps missed altogether, we demonstrate that incorporating infiltration flux or volume data into the model calibration increases the ability of a model to simulate accurate estimates of stream infiltration during natural flow events.

  9. Testing of evaluation methods applied to raw infiltration data measured at very heterogeneous mountain forest soils

    NASA Astrophysics Data System (ADS)

    Jacka, Lukas; Pavlasek, Jirka; Pech, Pavel

    2016-04-01

    In order to obtain infiltration parameters and analytical expressions of the cumulative infiltration and infiltration rate, raw infiltration data are often evaluated using various infiltration equations. Knowledge about the evaluation variability of these equations in the specific case of extremely heterogeneous soils provides important information for many hydrological and engineering applications. This contribution presents an evaluation of measured data using five well-established physically-based equations and empirical equations, and makes a comparison of these procedures. Evaluation procedures were applied to datasets measured on three different sites of hydrologically important mountain podzols. A total of 47 single ring infiltration experiments were evaluated using these procedures. From the quality-of-fit perspective, all of the tested equations characterized most of the raw datasets properly. In a few cases, some of the physically-based equations led to poor fits of the datasets measured on the most heterogeneous site (characterized by the lowest depth of the organic horizon, and more bleached eluvial horizon than on the other tested sites). For the parameters evaluated on this site, the sorptivity estimates and the saturated hydraulic conductivity (Ks) estimates were distinctly different between the tested procedures.

  10. Measuring the relative extent of pulmonary infiltrates by hierarchical classification of patient-specific image features

    NASA Astrophysics Data System (ADS)

    Tsevas, S.; Iakovidis, D. K.

    2011-11-01

    Pulmonary infiltrates are common radiological findings indicating the filling of airspaces with fluid, inflammatory exudates, or cells. They are most common in cases of pneumonia, acute respiratory syndrome, atelectasis, pulmonary oedema and haemorrhage, whereas their extent is usually correlated with the extent or the severity of the underlying disease. In this paper we propose a novel pattern recognition framework for the measurement of the extent of pulmonary infiltrates in routine chest radiographs. The proposed framework follows a hierarchical approach to the assessment of image content. It includes the following: (a) sampling of the lung fields; (b) extraction of patient-specific grey-level histogram signatures from each sample; (c) classification of the extracted signatures into classes representing normal lung parenchyma and pulmonary infiltrates; (d) the samples for which the probability of belonging to one of the two classes does not reach an acceptable level are rejected and classified according to their textural content; (e) merging of the classification results of the two classification stages. The proposed framework has been evaluated on real radiographic images with pulmonary infiltrates caused by bacterial infections. The results show that accurate measurements of the infiltration areas can be obtained with respect to each lung field area. The average measurement error rate on the considered dataset reached 9.7% ± 1.0%.

  11. Field infiltration measurements in grassed roadside drainage ditches: Spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Ahmed, Farzana; Gulliver, John S.; Nieber, J. L.

    2015-11-01

    Roadside drainage ditches (grassed swales) are an attractive stormwater control measure (SCM) since they can reduce runoff volume by infiltrating water into the soil, filter sediments and associated pollutants out of the water, and settle solids onto the soil surface. In this study a total of 722 infiltration measurements were collected in five swales located in Twin-Cities, MN and one swale located in Madison, WI to characterize the field-saturated hydraulic conductivity (Kfs) derived from the infiltration measurements of these swales. Measurements were taken with a falling head device, the Modified Philip Dunne (MPD) infiltrometer, which allows the collection of simultaneous infiltration measurements at multiple locations with several infiltrometers. Field-saturated hydraulic conductivity was higher than expected for different soil texture classes. We hypothesize that this is due to plant roots creating macropores that break up the soil for infiltration. Statistical analysis was performed on the Kfs values to analyze the effect of initial soil moisture content, season, soil texture class and distance in downstream direction on the geometric mean Kfs value of a swale. Because of the high spatial variation of Kfs in the same swale no effect of initial soil moisture content, season and soil texture class was observed on the geometric mean Kfs value. But the distance in downstream direction may have positive or negative effect on the Kfs value. An uncertainty analysis on the Kfs value indicated that approximately twenty infiltration measurements is the minimum number to obtain a representative geometric mean Kfs value of a swale that is less than 350 m long within an acceptable level of uncertainty.

  12. Field measurement and model prediction of infiltration in treated wastewater irrigated clayey soil

    NASA Astrophysics Data System (ADS)

    Albalasmeh, Ammar; Gharaibeh, Mamoun; Ghezzehei, Teamrat

    2016-04-01

    Soil water infiltration is a critical process in designing irrigation systems, especially if traded wastewater (TWW) is being used. In this study, the ability of seven different infiltration models (Kostiakov, Modified Kostiakov, Philip, Horton, Holaton, SCS (US-Soil Conservation Service) and Huggins and Monke) were compared to estimate and assess those models' parameters, and to evaluate their prediction ability for TWW irrigated soils. The field measurements were conducted in TWW irrigated soils using a hood infiltrometer. Six comparison criteria including Mean error, Geometric mean error, Root mean square error, Coefficient of determination, F-Statistic and Akaike information criterion were used to determine the best performing model with the least number of fitting parameters. The research indicated that three-parameter models had the best description of the relationship between cumulative infiltration and time in the researched TWW irrigated soils.

  13. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    SciTech Connect

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  14. Instrumentation for air quality measurements.

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1973-01-01

    Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.

  15. Infiltration measurements and modeling in a soil-vertical drain system

    NASA Astrophysics Data System (ADS)

    Hammecker, Claude; Siltecho, Siwaporn; Angulo-Jaramillo, Rafael; Lassabatere, Laurent; Robain, Henri; Winiarski, Thierry; Trelo-ges, Vidaya; Suvannang, Nopmanee

    2016-04-01

    Severe water logging problems occur in rubber tree plantations in NE Thailand during the rainy season and create adverse conditions for the development of the trees. Moreover this situation contributes to a waste of scarce rainfall and reduce it's efficiency, as 50% is lost by hypodermic water flow and superficial runoff. The presence of a clayey layer at 1m depth with low permeability, hindering the water infiltration that led to the occurrence of a perched water table. In order to drawdown the water level of the perched water table and to increase the efficiency of the rainfall by storing water in the underlying bedrock a vertical drainage system was developed. In order to test the feasibility of this solution we chose to use the numerical modelling of water flow in soil and to test different set-ups (size and spacing between the drains). The objective of this study was to characterise the hydraulic properties and of the soil-drain system in a rubber tree plantation. Therefore an experiment was set up in rubber tree plantation at Ban Non Tun, Khon Kaen Province (Northeast of Thailand). Infiltration experiments around the vertical drains with single ring of 1m diameter, were conducted in three different locations to measure infiltration rate. The infiltration experiments were also monitored with two complementary geophysical methods (ERT and GPR) to asses the progression ans at the geometry of the wetting front. The model Hydrus2D was used to adjust the computed infiltration curves and water level in the drain to the experimental data, by fitting effective unsaturated hydrodynamic parameters for the drain. These parameters were used to calibrate the model and to perform further predictive numerical simulations.

  16. Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements.

    PubMed

    Mathews, Sunish; Farrell, Gerald; Semenova, Yuliya

    2011-06-10

    The application of nematic liquid crystal infiltrated photonic crystal fiber as a sensor for electric field intensity measurement is demonstrated. The device is based on an intrinsic sensing mechanism for electric fields. The sensor probe, which consists of a 1  cm infiltrated section of photonic crystal fiber with a lateral size of ∼125  μm, is very compact with small size and weight. A simple all-fiber design for the sensor is employed in an intensity based measurement scheme. The transmitted and reflected power of the infiltrated photonic crystal fiber is shown to have a linear response with the applied electric field. The sensor is operated in the telecommunication window at 1550  nm. The temperature dependence of the device at this operating wavelength is also experimentally studied and discussed. These structures can be used to accurately measure electric field intensity and can be used for the fabrication of all-fiber sensors for high electric field environments as both an in-line and reflective type point sensor.

  17. Measurement of gas transport through fiber preforms and densified composites for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1998-05-01

    Gas transport via pressure-driven permeation or via concentration-driven diffusion is a key step in the chemical vapor infiltration (CVI) process. This paper describes methods for the measurement of these properties for CVI preforms and partially infiltrated composites. Results are presented for Nicalon-fiber cloth layup preforms and composites, Nextel-fiber braid preforms and composites, and a Nicalon-fiber three-dimensional (3-D) weave composite. The permeability of Nicalon cloth layup preforms is strongly dependent on the packing density over the range of 29--40 vol% but is only weakly dependent on the orientation of the alternating cloth layers. The permeability of Nextel braid preforms is dependent on the thread count and the weight for cloths with similar construction and packing density. The gas permeability of the finer wave (6.3 tows/cm (16 tows/in.)) is approximately one-half that of the coarser weave (3.5 tows/cm (9 tows/in.)). Results are reported for a small number of infiltrated composites with Nextel fiber reinforcement. Attempts to mount a Nicalon-fiber 3-D weave preform specimen have been unsuccessful. Results for a small number of composite specimens with 3-D weave reinforcement are reported.

  18. Air pollution measurements from satellites

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Griggs, M.; Malkmus, W.; Bartle, E. R.

    1973-01-01

    A study is presented on the remote sensing of gaseous and particulate air pollutants which is an extension of a previous report. Pollutants can be observed by either active or passive remote sensing systems. Calculations discussed herein indicate that tropospheric CO, CO2, SO2, NO2, NH3, HCHO, and CH4 can be measured by means of nadir looking passive systems. Additional species such as NO, HNO3, O3, and H2O may be measured in the stratosphere through a horizon experiment. A brief theoretical overview of resonance Raman scattering and resonance fluorescence is given. It is found that radiance measurements are most promising for general global applications, and that stratospheric aerosols may be measured using a sun occultation technique. The instrumentation requirements for both active and passive systems are examined and various instruments now under development are described.

  19. Application of Modular Modeling System to Predict Evaporation, Infiltration, Air Temperature, and Soil Moisture

    NASA Technical Reports Server (NTRS)

    Boggs, Johnny; Birgan, Latricia J.; Tsegaye, Teferi; Coleman, Tommy; Soman, Vishwas

    1997-01-01

    Models are used for numerous application including hydrology. The Modular Modeling System (MMS) is one of the few that can simulate a hydrology process. MMS was tested and used to compare infiltration, soil moisture, daily temperature, and potential and actual evaporation for the Elinsboro sandy loam soil and the Mattapex silty loam soil in the Microwave Radiometer Experiment of Soil Moisture Sensing at Beltsville Agriculture Research Test Site in Maryland. An input file for each location was created to nut the model. Graphs were plotted, and it was observed that the model gave a good representation for evaporation for both plots. In comparing the two plots, it was noted that infiltration and soil moisture tend to peak around the same time, temperature peaks in July and August and the peak evaporation was observed on September 15 and July 4 for the Elinsboro Mattapex plot respectively. MMS can be used successfully to predict hydrological processes as long as the proper input parameters are available.

  20. Infiltration and Runoff Measurements on Steep Burned Hillslopes Using a Rainfall Simulator with Variable Rain Intensities

    USGS Publications Warehouse

    Kinner, David A.; Moody, John A.

    2008-01-01

    Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities (about 20 millimeters per hour [mm/h], 35 mm/h, and 50 mm/h), were conducted on four plots. Measurements during and after the simulations included runoff, rainfall, suspended-sediment concentrations, surface ash layer thickness, soil moisture, soil grain size, soil lost on ignition, and plot topography. Runoff discharge reached a steady state within 7 to 26 minutes. Steady infiltration rates with the 50-mm/h application rainfall intensity approached 20?35 mm/h. If these rates are projected to rainfall application intensities used in many studies of burned area runoff production (about 80 mm/h), the steady discharge rates are on the lower end of measurements from other studies. Experiments using multiple rainfall intensities (three) suggest that runoff begins at rainfall intensities around 20 mm/h at the 1-square-meter scale, an observation consistent with a 10-mm/h rainfall intensity threshold needed for runoff initiation that has been reported in the literature.

  1. Air brake-dynamometer accurately measures torque

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Air brake-dynamometer assembly combines the principles of the air turbine and the air pump to apply braking torque. The assembly absorbs and measures power outputs of rotating machinery over a wide range of shaft speeds. It can also be used as an air turbine.

  2. Analysis of the dynamics of soil infiltrability of agricultural soils from continuous rainfall-runoff measurements on small plots

    NASA Astrophysics Data System (ADS)

    Léonard, J.; Ancelin, O.; Ludwig, B.; Richard, G.

    2006-07-01

    In this study, data from continuous measurement of natural rainfall and runoff rates on nine 2 m 2 runoff plots were used to analyse the dynamics of infiltration and how it relates to the evolution of the soil surface state. All measurements were performed on two cropped sites in northern France on low slope loess soils, with low rainfall intensities. Crops represented were maize, wheat and sugar beet. Infiltrability was characterized at the scale of the plot and of the rainfall event by a single parameter, the constant infiltrability that yields an excess rainfall hyetograph with a volume equal to the measured runoff volume ( ϕ index). Results indicated that: (1) even if the runoff plots were installed on two catchments where water erosion was important, the observed runoff volumes and intensities were very small. The runoff to rainfall ratio was typically less than 5% at the season to year scale; (2) the apparent infiltrability ϕ cannot be defined independently from rainfall intensity when runoff at the outlet of a plot comes from only a subset of the plot area. The relationship between rainfall intensity and apparent infiltrability can be used to estimate the relative runoff contributing area (≈0.10-0.35 in ourcase); (3) the development and nature of surface crusting has a major influence on the apparent infiltrability: there is a progressive shift of ϕ toward low values when crusting develops, which is predominantly due to an increase in the relative contributing area. From a methodological point of view, failure to include the rainfall intensity dependence of infiltrability in runoff modelling could introduce large errors on runoff predictions. This relationship between rainfall intensity and apparent infiltrability should thus be analysed when possible, and soil surface state characterization should include more information about connection between the different parts of a plot and its outlet.

  3. The measured energy impact of air leakage on frame wall systems. Final report

    SciTech Connect

    Bhattacharyya, S.

    1991-06-01

    Infiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air -- with the latent portion of the enthalpy difference sometimes neglected. An experimental and analytical investigation has been conducted on the actual energy impact of air leakage on frame wall systems. Calorimetric measurements conducted on a small test cell and on a well characterized stud-cavity wall specimen with measured amounts of air leakage introduced under a variety of controlled conditions and configurations show convincingly that infiltration can lead to a much smaller change in the energy load than is customarily calculated. The data also suggest that the phenomenon occurs in full-sized houses as well. Infiltration Heat Exchange Effectiveness (IHEE),{var_epsilon}, is introduced as a measure of the effectiveness of a building in ``recovering`` heat otherwise lost (or gained) because of infiltration. Measurements show that {var_epsilon} increases as: (a) flow rate decreases; (b) flow path length increases; and, (c) hole/crack size decreases.

  4. The measured energy impact of air leakage on frame wall systems

    SciTech Connect

    Bhattacharyya, S.

    1991-06-01

    Infiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air -- with the latent portion of the enthalpy difference sometimes neglected. An experimental and analytical investigation has been conducted on the actual energy impact of air leakage on frame wall systems. Calorimetric measurements conducted on a small test cell and on a well characterized stud-cavity wall specimen with measured amounts of air leakage introduced under a variety of controlled conditions and configurations show convincingly that infiltration can lead to a much smaller change in the energy load than is customarily calculated. The data also suggest that the phenomenon occurs in full-sized houses as well. Infiltration Heat Exchange Effectiveness (IHEE),{var epsilon}, is introduced as a measure of the effectiveness of a building in recovering'' heat otherwise lost (or gained) because of infiltration. Measurements show that {var epsilon} increases as: (a) flow rate decreases; (b) flow path length increases; and, (c) hole/crack size decreases.

  5. Optical Measurements of Air Plasma

    DTIC Science & Technology

    2008-05-05

    generated in air by means of an electron beam is highly efficient. Fast electrons propagating through air result in production of electron- ion pairs...through the mechanism of impact ionization, which requires 33.7 eV per electron- ion pair. The air pressure, concentration of variable species, such as...and polyatomic species. Because our time scales are in the 1 ms to 10 ms range, there is a strong possibility of obtaining real-time absorption

  6. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  7. Air Monitoring, Measuring, and Emissions Research

    EPA Pesticide Factsheets

    Measurement research is advancing the ability to determine the composition of sources of air pollution, conduct exposure assessments, improve monitoring capabilities and support public health research.

  8. Disruptive Innovation in Air Measurement Technology: Reality ...

    EPA Pesticide Factsheets

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innovation for the air pollution measurement field. The intended audience is primarily those with experience in air pollution measurement methods, but much of the talk is accessible to the general public. This is a keynote presentation on emerging air monitoring technology, to be provided at the AWMA measurements conference in March, 2016.

  9. High performance air electrode for solid oxide regenerative fuel cells fabricated by infiltration of nano-catalysts

    NASA Astrophysics Data System (ADS)

    Lee, Sung-il; Kim, Jeonghee; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook; Je, Hae-June; Lee, Hae-Weon; Song, Huesup; Yoon, Kyung Joong

    2014-03-01

    A high performance air electrode fabricated by infiltration of highly active nano-catalysts into a porous scaffold is demonstrated for high-temperature solid oxide regenerative fuel cells (SORFCs). The nitrate precursor solution for Sm0.5Sr0.5CoO3 (SSC) catalyst is impregnated into a porous La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-gadolinia-doped ceria (GDC) composite backbone, and extremely fine SSC nano-particles are uniformly synthesized by in-situ crystallization at the initial stage of SORFC operation via homogeneous nucleation induced by urea decomposition. The SSC nano-catalysts are in the size range of 40-80 nm and stable against coarsening upon the SORFC operation at 750 °C. The electrochemical performance is significantly improved by incorporation of SSC nano-catalysts in both power generation and hydrogen production modes. Systematic analysis on the impedance spectra reveals that the surface modification of the air electrode with nano-catalysts remarkably accelerates the chemical surface exchange reactions for both O2 reduction and O2- oxidation, which are the major limiting processes for SORFC performance.

  10. Air Combat Maneuvering Performance Measurement

    DTIC Science & Technology

    1979-09-01

    several major purposes. First, it would provide improved feedback to Air Combat Maneuvering (ACM) students concerning their progress through the flight...materials and syllabi. Consistent patterns of weakness in the students would serve as an indicator of a need for adjustment and improvement in the program...adversary maneuvers. BFM students learn to perceive the aspect angle, angle-off, and closure rate of the opposing aircraft. They learn the proper maneuver

  11. Air Quality Measurements for Science and Policy

    EPA Science Inventory

    Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...

  12. Measurement of Air Pollutants in the Troposphere

    ERIC Educational Resources Information Center

    Clemitshaw, Kevin C.

    2011-01-01

    This article describes the principles, applications and performances of methods to measure gas-phase air pollutants that either utilise passive or active sampling with subsequent laboratory analysis or involve automated "in situ" sampling and analysis. It focuses on air pollutants that have adverse impacts on human health (nitrogen…

  13. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect

    Parker, Danny S.

    2016-09-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  14. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  15. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  16. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  17. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  18. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  19. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  20. Embedded coupler based on selectively infiltrated photonic crystal fiber for strain measurement.

    PubMed

    Wang, Ying; Liao, C R; Wang, D N

    2012-11-15

    A photonic crystal fiber (PCF) with embedded coupler is demonstrated for strain measurement. The embedded coupler is constructed by the selective filling of one of the air holes in the PCF. Light propagated in the fiber core can be efficiently coupled to the liquid-filled rod waveguide under phase-matching conditions, resulting in sharp decreasing of resonant wavelength intensity. The highest strain sensitivity is calculated to be ~23.8 pm/με due to the coupling between core mode and fundamental mode of the liquid rod, when the refractive index (RI) of the liquid is 1.46. With the increase of the RI, the resonance can also be observed between the core mode and the higher-order modes of the liquid rod, whereas the strain sensitivity drops to ~6.4 pm/με. The experimentally obtained static strain sensitivity values are ~22 and ~3.8 pm/με for the coupling between the core mode and the fundamental mode or linearly polarized LP(11) modes of the liquid rod, respectively, which are in good agreement with the simulations. The dynamic strain measurement resolution obtained is ~1.2 nε/(Hz)(1/2).

  1. Measurement of formaldehyde in clean air

    SciTech Connect

    Neitzert, V.; Seiler, W.

    1981-01-01

    A method for the measurement of small amounts of formaldehyde in air has been developed. The method is based on the derivatization of HCHO with 2.4-Denetrophenylhydragine, forming 2.4-Dentrophylhydragine, measured with GC-ECD-technique. HCHO is preconcentrated using a cryogenic sampling technique. The detection limit is 0.05 ppbv for a sampling volume of 200 liter. The method has been applied for measurements in continental and marine air masses showing HCHO mixing ratios of 0.4--5.0 ppbv and 0.2--1.0 ppbv, respectively. HCHO mixing ratios show diurnal variations with maximum values during the early afternoon and minimum values during the early morning. In continental air, HCHO mixing ratios are positively correlated with CO and SO/sub 2/, indicating anthropogenic HCHO sources which are estimated to be 6--11 x 10/sup 12/g/year/sup -1/ on a global scale.

  2. Electrets to measure ion concentration in air.

    PubMed

    Kotrappa, P

    2005-08-01

    Positive and negative ions are produced in air, mainly due to radon and terrestrial/cosmic radiation sources. Measuring ion concentration in air indirectly provides a measure of these sources. Electrets (electrically charged pieces of Teflon), when exposed in the environment, collect ions of opposite sign leading to a measurable decrease in charge, depending upon the exposure time and ion concentration. This work describes a method of correlating electret discharge rate to the ion concentration as measured by a calibrated ion density meter. Once calibrated, electrets can then be used to measure ion concentration of either sign. The ion concentration in ambient air was measured to be about 200 ions mL(-1), measured over several hours. Both positive and negative ion concentrations were similar. In a typical room, negative ion concentration was about 3,500 ions mL(-1), and, surprisingly, there were no positive ions at all in that room. Being an integrating passive device, the method provides the unique possibility of measuring low or high concentrations of positive or negative ions over extended periods, which is difficult to do with other ion concentration measuring instruments.

  3. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Intake and cooling air......

  4. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake and cooling air......

  5. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate of intake... measurement technique shall conform to the following: (1) The air flow measurement method used must have a... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake and cooling air......

  6. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake and cooling air......

  7. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake and cooling air......

  8. Chemical Analysis for Chitin as a Measure of Fungal Infiltration of Cellulosic Materials.

    DTIC Science & Technology

    1976-12-01

    the addition of 50 n’.illiliters of I 2N hydrochloric acid). Store at .~lO0 C. (11) Bushnell-Haas medium (12) Glucosamine hydrochloride (I milliliter...Infiltration Cellu!.jsic Materials Fungus-Induced Deterioration Glucosamine A TRACT (Cl~ i~s ,.v.ra. ia. ~V ~~~~~a . y d Sd.niIl ~ By block ni b.,) A chemical...EXPERIMENTAL PROCEDURE 3. Approach to the Problem. Carry out laboratory experiments to investigate variables as: shelf life of stock glucosamine , digestion

  9. Measuring Air Density in the Introductory Lab

    ERIC Educational Resources Information Center

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2010-01-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…

  10. Measure Guideline: Guide to Attic Air Sealing

    SciTech Connect

    Lstiburek, J.

    2014-09-01

    The Guide to Attic Air Sealing was completed in 2010 and although not in the standard Measure Guideline format, is intended to be a Measure Guideline on Attic Air Sealing. The guide was reviewed during two industry stakeholders meetings held on December 18th, 2009 and January 15th, 2010, and modified based on the comments received. Please do not make comments on the Building America format of this document. The purpose of the Guide to Attic Air Sealing is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy - health, safety and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.

  11. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  12. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  13. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  14. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  15. Measurement error in air pollution exposure assessment.

    PubMed

    Navidi, W; Lurmann, F

    1995-01-01

    The exposure of an individual to an air pollutant can be assessed indirectly, with a "microenvironmental" approach, or directly with a personal sampler. Both methods of assessment are subject to measurement error, which can cause considerable bias in estimates of health effects. If the exposure estimates are unbiased and the measurement error is nondifferential, the bias in a linear model can be corrected when the variance of the measurement error is known. Unless the measurement error is quite large, estimates of health effects based on individual exposures appear to be more accurate than those based on ambient levels.

  16. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  17. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  18. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  19. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  20. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  1. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  2. Measure Guideline: Guide to Attic Air Sealing

    SciTech Connect

    Lstiburek, Joseph

    2014-09-01

    The purpose of this measure guideline is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy, health, safety, and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.

  3. Amine Measurements in Boreal Forest Air

    NASA Astrophysics Data System (ADS)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  4. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  5. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  6. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  7. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  8. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  9. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  10. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  11. Exposure measurement for air-pollution epidemiology

    SciTech Connect

    Ferris, B.G.; Ware, J.H.; Spengler, J.D.

    1988-08-01

    The chapter describes the evolution of air-pollution epidemiology over a period when changes in pollution technologies have both lowered total exposures and dispersed them over vastly greater areas. Since personal exposure and microenvironmental measurements are expensive, studies oriented toward measurements of total exposure will be smaller and more intensive. The shift in emphasis to total human exposure also will affect health risk assessment and raise difficult issues in the regulatory domain. Considering that outdoor exposures (for which EPA has a regulatory mandate) occur in the context of exposures from other sources, the potential effect of regulatory action would probably be small. The regulatory issues are even more difficult for particulate air pollution since cigarette smoking is the strongest determinant of indoor levels but the EPA lacks regulatory responsibility for cigarette smoke.

  12. Modeling residential fine particulate matter infiltration for exposure assessment.

    PubMed

    Hystad, Perry U; Setton, Eleanor M; Allen, Ryan W; Keller, Peter C; Brauer, Michael

    2009-09-01

    Individuals spend the majority of their time indoors; therefore, estimating infiltration of outdoor-generated fine particulate matter (PM(2.5)) can help reduce exposure misclassification in epidemiological studies. As indoor measurements in individual homes are not feasible in large epidemiological studies, we evaluated the potential of using readily available data to predict infiltration of ambient PM(2.5) into residences. Indoor and outdoor light scattering measurements were collected for 84 homes in Seattle, Washington, USA, and Victoria, British Columbia, Canada, to estimate residential infiltration efficiencies. Meteorological variables and spatial property assessment data (SPAD), containing detailed housing characteristics for individual residences, were compiled for both study areas using a geographic information system. Multiple linear regression was used to construct models of infiltration based on these data. Heating (October to February) and non-heating (March to September) season accounted for 36% of the yearly variation in detached residential infiltration. Two SPAD housing characteristic variables, low building value, and heating with forced air, predicted 37% of the variation found between detached residential infiltration during the heating season. The final model, incorporating temperature and the two SPAD housing characteristic variables, with a seasonal interaction term, explained 54% of detached residential infiltration. Residences with low building values had higher infiltration efficiencies than other residences, which could lead to greater exposure gradients between low and high socioeconomic status individuals than previously identified using only ambient PM(2.5) concentrations. This modeling approach holds promise for incorporating infiltration efficiencies into large epidemiology studies, thereby reducing exposure misclassification.

  13. Influence of surficial soil and bedrock on indoor radon in New York State homes. Task 2, Subtask 2 of an investigation of infiltration and indoor air quality in New York State homes

    SciTech Connect

    Kunz, C.

    1989-10-01

    Radon can enter a building from soil and bedrock through cracks or openings in the basement. Extrapolation from data obtained from studies of miners exposed to high concentrations of radon and other carcinogens over long periods indicates that radon gas in the home poses an increased risk of lung cancer. The project was initiated to determine the characteristics of soil and bedrock that contribute to the availability of radon for infiltration into the home, and the feasibility of using soil characteristics in mapping areas at higher risk for above-average indoor radon in New York State. After conducting soil surveys across the State, the researchers choose four areas for further study. Fifteen homes in each area were tested for indoor air concentrations of radon, air infiltration into the home, radon concentrations in the soil, and the permeability of the soil for gas flow. The researchers concluded that these parameters could be combined to obtain a Radon Index Number to predict mean indoor radon levels for a given area with similar soil geology. However, this measure has a limited ability to predict indoor radon levels for a particular home due to variations in construction as well as differences in soil and bedrock.

  14. Kerbside DOAS measurements of air pollutants

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Ling, Hong; Legelli, Stefan; Münkel, Christoph; Emeis, Stefan

    2014-10-01

    Emission sources as well as wind speed and direction and MLH are important factors which influence high air pollutant concentrations. This is generally known (Schäfer et al., 2006) but the detailed understanding of processes directing certain air pollutant concentrations like HCHO is not complete. To study these processes a long-term campaign in Augsburg, Germany, was performed since March 2012. The concentrations of NO, NO2, O3 and HCHO, which were measured with a DOAS from OPSIS across a main traffic road and a nearby park area, are analysed. A ceilometer CL31 from Vaisala which is an eye-safe commercial mini-lidar system is applied to detect layering of the lower atmosphere continuously. Special software for this ceilometer with MATLAB provides routine retrievals of lower atmosphere layering from vertical profiles of laser backscatter data. Meteorological data were measured by a ground-based weather station at the measurement site as well as taken from monitoring data archives of the German National Meteorological Service (DWD), which are measured by radiosondes (Oberschleißheim). Correlation analyses are applied to show the coupling of temporal variations of NO, NO2, O3 and HCHO concentrations with temperature, mixing layer height and wind speed. HCHO which is emitted from both anthropogenic and biogenic sources is studied especially.

  15. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  16. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  17. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  18. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  19. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  20. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  1. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  2. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  3. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  4. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  5. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  6. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  7. Nitrogen Transformations in Wetland Soil Cores Measured by (sup15)N Isotope Pairing and Dilution at Four Infiltration Rates

    PubMed Central

    Stepanauskas, R.; Davidsson, E. T.; Leonardson, L.

    1996-01-01

    The effect of water infiltration rate (IR) on nitrogen cycling in a saturated wetland soil was investigated by applying a (sup15)N isotope dilution and pairing method. Water containing [(sup15)N]nitrate was infiltrated through 10-cm-long cores of sieved and homogenized soil at rates of 72, 168, 267, and 638 mm day(sup-1). Then the frequencies of (sup30)N(inf2), (sup29)N(inf2), (sup15)NO(inf3)(sup-), and (sup15)NH(inf4)(sup+) in the outflow water were measured. This method allowed simultaneous determination of nitrification, coupled and uncoupled denitrification, and nitrate assimilation rates. From 3% (at the highest IR) to 95% (at the lowest IR) of nitrate was removed from the water, mainly by denitrification. The nitrate removal was compensated for by the net release of ammonium and dissolved organic nitrogen. Lower oxygen concentrations in the soil at lower IRs led to a sharper decrease in the nitrification rate than in the ammonification rate, and, consequently, more ammonium leaked from the soil. The decreasing organic-carbon-to-nitrogen ratio (from 12.8 to 5.1) and the increasing light A(inf250)/A(inf365) ratio (from 4.5 to 5.2) indicated an increasing bioavailability of the outflowing dissolved organic matter with increasing IR. The efflux of nitrous oxide was also very sensitive to IR and increased severalfold when a zone of low oxygen concentration was close to the outlet of the soil cores. N(inf2)O then constituted 8% of the total gaseous N lost from the soil. PMID:16535352

  8. Estimating an overall infiltration value in an urbanized watershed using high-resolution satellite images and ground measurements 1934

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rain water infiltration is part of the water cycle and is strongly influenced by human activities, such as urban growth. Changes in infiltration rates due to urbanization can affect storm water runoff, soil moisture and groundwater recharge. This is of particular concern in areas of rapid urbanizati...

  9. Global trends of measured surface air temperature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lebedeff, Sergej

    1987-01-01

    The paper presents the results of surface air temperature measurements from available meteorological stations for the period of 1880-1985. It is shown that the network of meteorological stations is sufficient to yield reliable long-term, decadal, and interannual temperature changes for both the Northern Hemisphere and the Southern Hemisphere, despite the fact that most stations are located on the continents. The results indicate a global warming of about 0.5-0.7 C in the past century, with warming of similar magnitude in both hemispheres. A strong warming trend between 1965 and 1980 raised the global mean temperature in 1980 and 1981 to the highest level in the period of instrumental records. Selected graphs of the temperature change in each of the eight latitude zones are included.

  10. Neutron probe measurements of air saturation near an air sparging well

    SciTech Connect

    Acomb, L.J.; McKay, D.; Currier, P.; Berglund, S.T.; Sherhart, T.V.; Benediktsson, C.V.

    1995-12-31

    In situ air sparging is being used to remediate diesel-fuel-contaminated soils in the zone of water table fluctuation at a remote Alaskan Federal Aviation Administration (FAA) air navigation aid site. A neutron probe was used to measure changes in percent air saturation during air sparging in a uniform, aeolian sand. Air was injected about 15 ft below the water table at air flowrates of 4 to 16 ft{sup 3}/min (cfm). The neutron probe data show that during air sparging the distribution of injected air changed through time, initially expanding outward from the sparge well screen, then consolidating around the air sparging well, until a steady-state condition was reached. The maximum radius of influence, measured at an air flowrate of 16 cfm, was about 15 ft during steady-state flow. At all air flowrates the percent air saturation was highest near the air sparging well and decreased radially away from the sparging well. Near the sparging well, the percent air saturation ranged from about 30% to >50% at air injection rates of 4 to 16 cfm. Where the percent air saturation is similar to that in the vadose zone, volatilization and biodegradation may occur at rates similar to those in the vadose zone. Selected air saturation results are presented, and dissolved oxygen and saturated zone pressure data are summarized.

  11. Applying large datasets to developing a better understanding of air leakage measurement in homes

    SciTech Connect

    Walker, I. S.; Sherman, M. H.; Joh, J.; Chan, W. R.

    2013-03-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. There are several methods for measuring air tightness that may result in different values and sometimes quite different uncertainties. The two main approaches trade off bias and precision errors and thus result indifferent outcomes for accuracy and repeatability. To interpret results from the two approaches, various questions need to be addressed, such as the need to measure the flow exponent, the need to make both pressurization and depressurization measurements and the role of wind in determining the accuracy and precision of the results. This article uses two large datasets of blower door measurements to reach the following conclusions. For most tests the pressure exponent should be measured but for wind speeds greater than 6 m/s a fixed pressure exponent reduces experimental error. The variability in reported pressure exponents is mostly due to changes in envelope leakage characteristics. Finally, it is preferable to test in both pressurization and depressurization modes due to significant differences between the results in these two modes.

  12. Applying large datasets to developing a better understanding of air leakage measurement in homes

    DOE PAGES

    Walker, I. S.; Sherman, M. H.; Joh, J.; ...

    2013-03-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. There are several methods for measuring air tightness that may result in different values and sometimes quite different uncertainties. The two main approaches trade off bias and precision errors and thus result indifferent outcomes for accuracy and repeatability. To interpret results from the two approaches, various questions needmore » to be addressed, such as the need to measure the flow exponent, the need to make both pressurization and depressurization measurements and the role of wind in determining the accuracy and precision of the results. This article uses two large datasets of blower door measurements to reach the following conclusions. For most tests the pressure exponent should be measured but for wind speeds greater than 6 m/s a fixed pressure exponent reduces experimental error. The variability in reported pressure exponents is mostly due to changes in envelope leakage characteristics. Finally, it is preferable to test in both pressurization and depressurization modes due to significant differences between the results in these two modes.« less

  13. Next-generation air measurement technologies | Science ...

    EPA Pesticide Factsheets

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.

  14. Distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air in cold zone.

    PubMed

    Mohammed, Mohammed O A; Song, Wei-Wei; Ma, Yong-Liang; Liu, Li-Yan; Ma, Wan-Li; Li, Wen-Long; Li, Yi-Fan; Wang, Feng-Yan; Qi, Mei-Yun; Lv, Na; Wang, Ding-Zhen; Khan, Afed Ulla

    2016-07-01

    In this study we investigated the distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air done in Harbin city, northeastern China. Simultaneous indoor and outdoor sampling was done to collect 264 PM2.5 samples from four sites during winter, summer, and spring. Infiltration of PAHs into indoors was estimated using Retene, Benzo [ghi]perylene and Chrysene as reference compounds, where the latter compound was suggested to be a good estimator and subsequently used for further calculation of infiltration factors (IFs). Modeling with positive matrix factorization (PMF5) and estimation of diagnostic isomeric ratios were applied for identifying sources, where coal combustion, crop residues burning and traffic being the major contributors, particularly during winter. Linear discriminant analysis (LDA) has been utilized to show the distribution patterns of individual PAH congeners. LDA showed that, the greatest seasonal variability was attributed to high molecular weight compounds (HMW PAHs). Potential health risk of PAHs exposure was assessed through relative potency factor approach (RPF). The levels of the sum of 16 US EPA priority PAHs during colder months were very high, with average values of 377 ± 228 ng m(-)(3) and 102 ± 75.8 ng m(-)(3), for the outdoors and indoors, respectively. The outdoor levels reported to be 19 times higher than the outdoor concentrations during warmer months (summer + spring), while the indoor concentrations were suggested to be 9 times and 10 times higher than that for indoor summer (average 11.73 ± 4 ng m(-3)) and indoor spring (9.5 ± 3.3 ng m(-3)). During nighttime, outdoor PAHs revealed wider range of values compared to datytime which was likely due to outdoor temperature, a weather parameter with the strongest negative influence on ∑16PAHs compared to low impact of relative humidity and wind speed.

  15. Effects of hyperbaric oxygen at 1.25 atmospheres absolute with normal air on macrophage number and infiltration during rat skeletal muscle regeneration.

    PubMed

    Fujita, Naoto; Ono, Miharu; Tomioka, Tomoka; Deie, Masataka

    2014-01-01

    Use of mild hyperbaric oxygen less than 2 atmospheres absolute (2026.54 hPa) with normal air is emerging as a common complementary treatment for severe muscle injury. Although hyperbaric oxygen at over 2 atmospheres absolute with 100% O2 promotes healing of skeletal muscle injury, it is not clear whether mild hyperbaric oxygen is equally effective. The purpose of the present study was to investigate the impact of hyperbaric oxygen at 1.25 atmospheres absolute (1266.59 hPa) with normal air on muscle regeneration. The tibialis anterior muscle of male Wistar rats was injured by injection of bupivacaine hydrochloride, and rats were randomly assigned to a hyperbaric oxygen experimental group or to a non-hyperbaric oxygen control group. Immediately after the injection, rats were exposed to hyperbaric oxygen, and the treatment was continued for 28 days. The cross-sectional area of centrally nucleated muscle fibers was significantly larger in rats exposed to hyperbaric oxygen than in controls 5 and 7 days after injury. The number of CD68- or CD68- and CD206-positive cells was significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. Additionally, tumor necrosis factor-α and interleukin-10 mRNA expression levels were significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. The number of Pax7- and MyoD- or MyoD- and myogenin-positive nuclei per mm2 and the expression levels of these proteins were significantly higher in rats exposed to hyperbaric oxygen than in controls 5 days after injury. These results suggest that mild hyperbaric oxygen promotes skeletal muscle regeneration in the early phase after injury, possibly due to reduced hypoxic conditions leading to accelerated macrophage infiltration and phenotype transition. In conclusion, mild hyperbaric oxygen less than 2 atmospheres absolute with normal air is an appropriate support therapy for severe muscle injuries.

  16. Measurement Methods to Determine Air Leakage Between Adjacent Zones

    SciTech Connect

    Hult, Erin L.; Dickerhoff, Darryl J.; Price, Phillip N.

    2012-09-01

    Air leakage between adjacent zones of a building can lead to indoor air quality and energy efficiency concerns, however there is no existing standard for measuring inter-zonal leakage. In this study, synthesized data and field measurements are analyzed in order to explore the uncertainty associated with different methods for collecting and analyzing fan pressurization measurements to calculate interzone leakage.

  17. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  18. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  19. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  20. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  1. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    SciTech Connect

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  2. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  3. Measurement of Radon in Indoor Air.

    ERIC Educational Resources Information Center

    Downey, Daniel M.; Simolunas, Glenn

    1988-01-01

    Describes a laboratory experiment to teach the principles of air sampling, gamma ray spectroscopy, nuclear decay, and radioactive equilibrium. Analyzes radon by carbon adsorption and gamma ray counting. Provides methodology and rate of decay equations. (MVL)

  4. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    SciTech Connect

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  5. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ​

  6. Solute Breakthrough During Recurrent Ponded Infiltration Into Heterogeneous Soil

    NASA Astrophysics Data System (ADS)

    Sobotkova, M.; Snehota, M.; Cislerova, M.

    2009-12-01

    Water flow during recurrent ponded infiltration may be influenced by presence of entrapped air in heterogeneous soils. It is assumed that variations of the entrapped air volume cause changes of the water content and flow patterns, with consequences for the solute transport. The aim of this contribution is to investigate the effect of entrapped air on dispersion by means of experiments in laboratory. Two undisturbed samples of sandy loam soils were collected at the experimental sites in the Šumava Mountains and the Jizera Mountains (Czech Republic). Recurrent ponded infiltration, conducted on each soil sample consisted of two or more infiltration runs. The same level of ponding was maintained during each infiltration run at the top of the sample. Water drained freely through the perforated plate at the bottom of the sample. First infiltration run was done into naturally dry soil while subsequent runs were conducted into wetter soil. Suction pressure heads in three heights were continuously measured by tensiometers. Water contents were monitored by TDR probes also in three heights. Outflow fluxes were recorded continuously during the experiments as well as the weight of the sample. During each infiltration run the concentration pulse of potassium bromide solution was applied at the top of the soil core during steady state flow and breakthrough curve was acquired by electrochemical in-line analysis of bromide ions in the effluent. Soil hydraulic properties were obtained by fitting the measured flux, water content and pressure data by the dual permeability model. The dispersion coefficients were determined by fitting a one-dimensional advection-dispersion equation to each breakthrough curve. Differences in the shape of the breakthrough curves obtained for individual infiltration runs will be discussed on the poster. This research has been supported by GACR 103/08/1552.

  7. Solute breakthrough during recurrent ponded infiltration into heterogeneous soil

    NASA Astrophysics Data System (ADS)

    Sobotkova, Martina; Snehota, Michal; Dohnal, Michal; Cislerova, Milena

    2010-05-01

    Water flow during recurrent ponded infiltration may be influenced by presence of entrapped air in heterogeneous soils. It is assumed that variations of the entrapped air volume cause changes of the water content and flow patterns, with consequences for the solute transport. The aim of this contribution is to investigate the effect of entrapped air on dispersion by means of experiments in laboratory. Two undisturbed samples of sandy loam soils were collected at the experimental sites in the Šumava Mountains and the Jizera Mountains (Czech Republic). Packed sample of fine quartz sand was used as a reference. Recurrent ponded infiltration, conducted on each soil sample consisted of two or more infiltration runs. The same level of ponding was maintained during each infiltration run at the top of the sample. Water drained freely through the perforated plate at the bottom of the sample. First infiltration run was done into naturally dry soil while subsequent runs were conducted into wetter soil. Suction pressure heads in three heights were continuously measured by tensiometers. Water contents were monitored by TDR probes also in three heights. Outflow fluxes were recorded continuously during the experiments as well as the weight of the sample. During each infiltration run the concentration pulse of potassium bromide solution was applied at the top of the soil core during steady state flow and breakthrough curve was acquired by electrochemical in-line analysis of bromide ions in the effluent. Soil hydraulic properties were obtained by fitting the measured flux, water content and pressure data by the dual permeability model. The dispersion coefficients were determined by fitting a one-dimensional advection-dispersion equation to each breakthrough curve. Differences in the shape of the breakthrough curves obtained for individual infiltration runs will be discussed on the poster. This research has been supported by GACR 103/08/1552.

  8. Lower cost air measurement technology – what is on the ...

    EPA Pesticide Factsheets

    This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology. This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology.

  9. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers...

  10. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are...

  11. Infiltration as Ventilation: Weather-Induced Dilution

    SciTech Connect

    Sherman, Max H.; Turner, William J.N.; Walker, Iain S.

    2011-06-01

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount of air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.

  12. Next-generation air measurement technologies

    EPA Science Inventory

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the st...

  13. Measuring Air Resistance in a Computerized Laboratory.

    ERIC Educational Resources Information Center

    Takahashi, Ken; Thompson, D.

    1999-01-01

    Presents an activity that involves dropping spherical party balloons onto a sonic motion sensor to show that the force associated with the air resistance is proportional to both the square of the velocity and the cross-sectional area of the balloon. (Author/WRM)

  14. Measure Guideline: Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, C.; Maxwell, S.

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  15. Measure Guideline. Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, Casey; Maxwell, Sean

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  17. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must be made within 100 cm of the air-intake of the engine. The measurement location must be either in... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test...

  18. Assessments of fatty infiltration and muscle atrophy from a single magnetic resonance image slice are not predictive of three-dimensional measurements

    PubMed Central

    Vidt, Meghan E.; Santago, Anthony C.; Tuohy, Christopher J.; Poehling, Gary G.; Freehill, Michael T.; Kraft, Robert A.; Marsh, Anthony P.; Hegedus, Eric J.; Miller, Michael E.; Saul, Katherine R.

    2015-01-01

    Purpose The purpose was to 1) determine whether standard clinical muscle fatty infiltration and atrophy assessment techniques using a single image slice for patients with a rotator cuff tear (RCT) are correlated with three-dimensional measures in older individuals (60+ years), and 2) determine whether age-associated changes to muscle morphology and strength are compounded by a RCT. Methods Twenty older subjects were studied, 10 with a RCT of the supraspinatus (5M/5F) and 10 matched controls. Clinical imaging assessments (Goutallier, Fuchs scores; cross-sectional area ratio) were made for RCT subjects. Three-dimensional measurements of rotator cuff muscle and fat tissues were made for all subjects using MRI. Isometric joint moment was measured at the shoulder. Results There were no significant associations between single-image assessments and three-dimensional measurements of fatty infiltration for supraspinatus and infraspinatus. Compared to controls, RCT subjects had significantly increased fatty infiltration percentages for each rotator cuff muscle (all p≤0.023), reduced whole muscle volume for supraspinatus, infraspinatus, and subscapularis (all p≤0.038), and reduced fat-free muscle volume for supraspinatus, infraspinatus, and subscapularis (all p≤0.027). Only teres minor (p=0.017) fatty infiltration volume was significantly greater for RCT subjects. Adduction, flexion, and external rotation strength (all p≤0.021) were significantly reduced for RCT subjects, and muscle volume was a significant predictor of strength for all comparisons. Conclusions Clinical scores using a single image slice do not represent three-dimensional muscle measurements. Efficient methods are needed to more effectively capture three-dimensional information for clinical applications. RCT subjects had increased fatty infiltration percentages likely driven by muscle atrophy rather than increased fat volume. Muscle volume’s significant association with strength production suggests

  19. Measuring Concentrations of Particulate 140La in the Air

    DOE PAGES

    Okada, Colin E.; Kernan, Warnick; Keillor, Martin; ...

    2016-01-01

    This article discusses deployment of air-samplers to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device experiments. Positioned 100-600 meters downwind of the release point, the filters were collected immediately and analyzed in a field laboratory. The article discusses quantities for total activity collected on the air filters as well as additional information to compute the average or integrated air concentrations. In the case of a public emergency, this type of information would be important for decision makers and responders.

  20. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  1. Method and Apparatus for Measuring Surface Air Pressure

    NASA Technical Reports Server (NTRS)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  2. Improving Detection of IV Infiltrates in Neonates

    PubMed Central

    Driscoll, MD, Colleen; Langer, Melissa; Burke, Susan; El Metwally, MD, Dina

    2015-01-01

    Neonates and infants in the neonatal intensive care unit suffer significant morbidity when intravenous (IV) catheters infiltrate. The underreporting of adverse events through hospital voluntary reporting systems, such as ours, can complicate the monitoring of low incidence events, like IV infiltrates. Based on severe cases of IV infiltrates observed in our neonatal intensive care unit, we attempted to improve the detection of all infiltrates and reduce the incidence of Stage 4 infiltrates. We developed, and initiated the use of, an evidence-based guideline for the improved surveillance, prevention, and management of IV infiltrates, with corresponding educational interventions for faculty and staff. We instituted the use of a checklist for compliance with guidelines, and as a mechanism of surveillance. The baseline incidence rate of IV infiltrates, determined by the voluntary reporting system, was 5 per 1000 line days. Following initiation of the guidelines and checklist, the IV infiltrate rate increased to 9 per 1000 line days. In most months, the detection of IV infiltrates was improved by use of the checklist. During the post-intervention period the rate of Stage 4 infiltrates, as measured by usage of nitroglycerin ointment, was significantly reduced. In conclusion, the detection of IV infiltrates was improved following our quality improvement interventions. Further, use of an evidence-based guideline for managing infiltrates may reduce the most severe infiltrate injuries. PMID:26734388

  3. Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.

    PubMed

    Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian

    2011-10-01

    The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.

  4. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  5. On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs

    SciTech Connect

    Faybishenko, B.; Bodvarsson, G.S.; Salve, R.

    2002-04-01

    To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Tonopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility, using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variations of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff

  6. Femtosecond frequency comb based distance measurement in air.

    PubMed

    Balling, Petr; Kren, Petr; Masika, Pavel; van den Berg, S A

    2009-05-25

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The relative agreement for distance measurement in known laboratory conditions is better than 10(-7). According to the model, similar precision seems feasible even for long-distance measurement in air if conditions are sufficiently known. It is demonstrated that the relative width of the interferogram envelope even decreases with the measured length, and a fringe contrast higher than 90% could be obtained for kilometer distances in air, if optimal spectral width for that length and wavelength is used. The possibility of comb radiation delivery to the interferometer by an optical fiber is shown by model and experiment, which is important from a practical point of view.

  7. Identification and influence of spatial outliers in air quality measurements

    NASA Astrophysics Data System (ADS)

    O'Leary, B. F.; Lemke, L. D.

    2015-12-01

    The heterogeneous nature of urban air complicates the analysis of spatial and temporal variability in air quality measurements. Evaluation of potentially inaccurate measurements (i.e., outliers) poses particularly difficult challenges in extensive air quality datasets with multiple measurements distributed in time and space. This study investigated the identification and impact of outliers in measurements of NO­2, BTEX, PM2.5, and PM10 in the contiguous Detroit, Michigan, USA and Windsor, Ontario, Canada international airshed. Measurements were taken at 100 locations during September 2008 and June 2009 and modeled at a 300m by 300m scale resolution. The objective was to determine if outliers were present and, if so, to quantify the magnitude of their impact on modeled spatial pollution distributions. The study built upon previous investigations by the Geospatial Determinants of Health Outcomes Consortium that examined relationships between air pollutant distributions and asthma exacerbations in the Detroit and Windsor airshed. Four independent approaches were initially employed to identify potential outliers: boxplots, variogram clouds, difference maps, and the Local Moran's I statistic. Potential outliers were subsequently reevaluated for consistency among methods and individually assessed to select a final set of outliers. The impact of excluding individual outliers was subsequently determined by revising the spatially variable air pollution models and recalculating associations between air contaminant concentrations and asthma exacerbations in Detroit and Windsor in 2008. For the pollutants examined, revised associations revealed weaker correlations with spatial outliers removed. Nevertheless, the approach employed improves the model integrity by increasing our understanding of the spatial variability of air pollution in the built environment and providing additional insights into the association between acute asthma exacerbations and air pollution.

  8. Air earth current measurements at Kew, London, 1909 1979

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Ingram, W. J.

    2005-07-01

    A vertical conduction current arises from the global ionospheric potential and the integrated electrical resistance between the Earth's surface and the ionosphere. The conduction current density varies with the ionospheric potential and the vertical (columnar) resistance. At the surface, the conduction current density is known as the air-earth current. C.T.R. Wilson developed a measurement technique for the air-earth current in 1906, which was implemented by the British Meteorological Office at its Kew Observatory (51° 28'N, 0° 19'W) near London in 1909. Simultaneous measurements of air-earth current, potential gradient and positive air conductivity were made almost continuously until 1979 using the Wilson method on fine afternoons. A summary of the complete set of monthly mean measurements is presented here for the first time. The data span the nuclear weapons testing period and the UK Clean Air Act of 1956, both of which influenced the measurements obtained. Annual average values of the air earth current density at Kew are 0.97 pA·m -2 (1909-1931), 1.04 pA·m -2 (1932-1949) and 1.41 pA·m -2 (1967-1979).

  9. Measurement results obtained from air quality monitoring system

    SciTech Connect

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  10. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature measurement must be made within 122 cm of the engine. The measurement location must be made either... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES...

  11. Ultrasonic system for accurate distance measurement in the air.

    PubMed

    Licznerski, Tomasz J; Jaroński, Jarosław; Kosz, Dariusz

    2011-12-01

    This paper presents a system that accurately measures the distance travelled by ultrasound waves through the air. The simple design of the system and its obtained accuracy provide a tool for non-contact distance measurements required in the laser's optical system that investigates the surface of the eyeball.

  12. MEASUREMENT OF LOW LEVEL AIR TOXICS WITH MODIFIED UV DOAS

    EPA Science Inventory

    To further understand near source impacts, EPA is working to develop open-path optical techniques for spatiotemporal-resolved measurement of air pollutants. Of particular interest is near real time quantification of mobile-source generated CO, Nox and hydrocarbons measured in cl...

  13. Confounding and exposure measurement error in air pollution epidemiology.

    PubMed

    Sheppard, Lianne; Burnett, Richard T; Szpiro, Adam A; Kim, Sun-Young; Jerrett, Michael; Pope, C Arden; Brunekreef, Bert

    2012-06-01

    Studies in air pollution epidemiology may suffer from some specific forms of confounding and exposure measurement error. This contribution discusses these, mostly in the framework of cohort studies. Evaluation of potential confounding is critical in studies of the health effects of air pollution. The association between long-term exposure to ambient air pollution and mortality has been investigated using cohort studies in which subjects are followed over time with respect to their vital status. In such studies, control for individual-level confounders such as smoking is important, as is control for area-level confounders such as neighborhood socio-economic status. In addition, there may be spatial dependencies in the survival data that need to be addressed. These issues are illustrated using the American Cancer Society Cancer Prevention II cohort. Exposure measurement error is a challenge in epidemiology because inference about health effects can be incorrect when the measured or predicted exposure used in the analysis is different from the underlying true exposure. Air pollution epidemiology rarely if ever uses personal measurements of exposure for reasons of cost and feasibility. Exposure measurement error in air pollution epidemiology comes in various dominant forms, which are different for time-series and cohort studies. The challenges are reviewed and a number of suggested solutions are discussed for both study domains.

  14. The Aeroflex: A Bicycle for Mobile Air Quality Measurements

    PubMed Central

    Elen, Bart; Peters, Jan; Van Poppel, Martine; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout

    2013-01-01

    Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification. PMID:23262484

  15. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hörandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  16. Infiltration into Fractured Bedrock

    SciTech Connect

    Salve, Rohit; Ghezzehei, Teamrat A.; Jones, Robert

    2007-09-01

    One potential consequence of global climate change and rapid changes in land use is an increased risk of flooding. Proper understanding of floodwater infiltration thus becomes a crucial component of our preparedness to meet the environmental challenges of projected climate change. In this paper, we present the results of a long-term infiltration experiment performed on fractured ash flow tuff. Water was released from a 3 x 4 m{sup 2} infiltration plot (divided into 12 square subplots) with a head of {approx}0.04 m, over a period of {approx}800 days. This experiment revealed peculiar infiltration patterns not amenable to current infiltration models, which were originally developed for infiltration into soils over a short duration. In particular, we observed that in part of the infiltration plot, the infiltration rate abruptly increased a few weeks into the infiltration tests. We suggest that these anomalies result from increases in fracture permeability during infiltration, which may be caused by swelling of clay fillings and/or erosion of infill debris. Interaction of the infiltration water with subsurface natural cavities (lithophysal cavities) could also contribute to such anomalies. This paper provides a conceptual model that partly describes the observed infiltration patterns in fractured rock and highlights some of the pitfalls associated with direct extension of soil infiltration models to fractured rock over a long period.

  17. Measuring Outdoor Air Intake Rates into Existing Building

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  18. Measuring Light Air Ions in a Speleotherapeutic Cave

    NASA Astrophysics Data System (ADS)

    Roubal, Z.; Bartušek, K.; Szabó, Z.; Drexler, P.; Überhuberová, J.

    2017-02-01

    The paper deals with a methodology proposed for measuring the concentration of air ions in the environment of speleotherapeutic caves, and with the implementation of the AK-UTEE-v2 ionmeter. Speleotherapy, in the context of its general definition, is the medical therapy that utilizes the climate of selected caves to treat patients with health problems such as asthma. These spaces are characterized by the presence of high air humidity and they make extreme demands on the execution of the measuring device, the Gerdien tube (GT in the following) in particular, and on the amplifier electronics. The result is an automated measuring system using a GT with low-volume air flow, enabling long-term measuring of air ion concentration and determination of spectral ion characteristics. Interesting from the instrumentation viewpoint are the GT design, active shielding, and execution of the electrometric amplifier. A specific method for the calculation of spectral ion characteristics and the mode of automatic calibration were proposed and a procedure of automatic measurement in the absence of attendants was set up. The measuring system is designed for studying and long-term monitoring of the concentration of light negative ions in dependence on climatic conditions and on the mobility of ions occurring in the cave.

  19. Low-frequency sound absorption measurements in air

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Meredith, R. W.

    1984-01-01

    Thirty sets of sound absorption measurements in air at a pressure of 1 atmosphere are presented at temperatures from 10 C to 50 C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. The measurements were conducted by the method of free decay in a resonant tube having a length of 18.261 m and bore diameter of 0.152 m. Background measurements in a gas consisting of 89.5 percent N2 and 10.5 percent Ar, a mixture which has the same sound velocity as air, permitted the wall and structural losses of the tube to be separated from the constituent absorption, consisting of classical rotational and vibrational absorption, in the air samples. The data were used to evaluate the vibrational relaxation frequencies of N2 and/or O2 for each of the 30 sets of meteorological parameters. Over the full range of humidity, the measured relaxation frequencies of N2 in air lie between those specified by ANSI Standard S1.26-1978 and those measured earlier in binary N2H2O mixtures. The measured relaxation frequencies could be determined only at very low values of humidity, reveal a significant trend away from the ANSI standard, in agreement with a prior investigation.

  20. Measurement of oxygen transfer from air into organic solvents

    PubMed Central

    Ramesh, Hemalata; Hobisch, Mathias; Borisov, Sergey; Klimant, Ingo; Krühne, Ulrich; Woodley, John M

    2015-01-01

    Abstract BACKGROUND The use of non‐aqueous organic media is becoming increasingly important in many biotechnological applications in order to achieve process intensification. Such media can be used, for example, to directly extract poorly water‐soluble toxic products from fermentations. Likewise many biological reactions require the supply of oxygen, most normally from air. However, reliable online measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due to limitations in the current analytical methods. RESULTS For the first time, online oxygen measurements in non‐aqueous media using a novel optical sensor are demonstrated. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological applications). Subsequently, the oxygen transfer rates from air into these organic solvents were measured. CONCLUSION The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen measurements in organic solvents has also been demonstrated, paving the way for new opportunities in process control. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:27773958

  1. Autocorrelation and variability of indoor air quality measurements.

    PubMed

    Luoma, M; Batterman, S A

    2000-01-01

    Measurements of gaseous and particulate concentrations are used to characterize the indoor environment, but such measurements may reflect temporary conditions that are not representative of longer time periods. Moreover, indoor air quality (IAQ) measurements are autocorrelated, a result of limited mixing and air exchange, cyclic emissions, HVAC operation, and other factors. This article analyzes the autocorrelation and variability of IAQ measurements using time series analysis techniques in conjunction with a simple IAQ model. Autocorrelations may be estimated using the air exchange rate (alpha) and ventilation effectiveness (epsilon) of the building or room under study, or estimated from pollutant measurements. From this, the variability, required sample size, and other sampling parameters are estimated. The method is tested in a case study in which particle number, fungi, bacteria, and carbon dioxide concentrations were continuously measured in an office building over a 1-week period. The estimated air exchange rate (1.4/hr) for area studied was predicted to yield autocorrelation coefficients of approximately 0.5 for measurements collected on 30-min intervals. Autocorrelation coefficients based on airborne measurements (lag 0.5 hr) ranged from 0.5 to 0.7 for 1-25 microm diameter particles, fungi, and CO2, but near zero for particles < or =1 microm diameter and bacteria. As expected, the variability of measurements with the lowest autocorrelation decreased the most at long sampling times. The implications for spaces with low alpha * epsilon products are that measurements may not benefit significantly from longer averaging periods, measurements on any single day may not be representative, and day-to-day variability may be significant. Steps to determine sample sizes, averaging times, and sampling strategies that can improve the representativeness of IAQ measurements are discussed.

  2. Conjunction of Multizone Infiltration Specialists (COMIS) fundamentals

    SciTech Connect

    Feustel, H.E.; Rayner-Hooson, A.

    1990-05-01

    The COMIS workshop (Conjunction of Multizone Infiltration Specialists) was a joint research effort to develop a multizone infiltration mode. This workshop (October 1988--September 1989) was hosted by the Energy Performance of Buildings Group at Lawrence Berkeley Laboratory's Applied Science Division. The task of the workshop was to develop a detailed multizone infiltration program taking crack flow, HVAC-systems, single-sided ventilation and transport mechanism through large openings into account. This work was accomplished not by investigating into numerical description of physical phenomena but by reviewing the literature for the best suitable algorithm. The numerical description of physical phenomena is clearly a task of IEA-Annex XX Air Flow Patterns in Buildings,'' which will be finished in September 1991. Multigas tracer measurements and wind tunnel data will be used to check the model. The agenda integrated all participants' contributions into a single model containing a large library of modules. The user-friendly program is aimed at researchers and building professionals. From its announcement in December 1986, COMIS was well received by the research community. Due to the internationality of the group, several national and international research programmes were co-ordinated with the COMIS workshop. Colleagues for France, Italy, Japan, The Netherlands, People's Republic of China, Spain, Sweden, Switzerland, and the United States of America were working together on the development of the model. Even though this kind of co-operation is well known in other fields of research, e.g., high energy physics; for the field of building physics it is a new approach. This document contains an overview about infiltration modelling as well as the physics and the mathematics behind the COMIS model. 91 refs., 38 figs., 9 tabs.

  3. Infiltrated carbon foam composites

    NASA Technical Reports Server (NTRS)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  4. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  5. Evaluation of a passive air sampler for measuring indoor formaldehyde.

    PubMed

    Kim, Sun-Tae; Yim, Bongbeen; Jeong, Jaeho

    2007-04-01

    A passive air sampler, using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, was evaluated for the determination of formaldehyde in indoor environments. Chromatography paper cleaned using a 3% hydrogen peroxide solution was experimentally determined as being the optimum absorption filter for the collection of formaldehyde (0.05 microg cm(-2) formaldehyde). From a linear-regression analysis between the mass of formaldehyde time-collected on a passive air sampler and the formaldehyde concentration measured by an active sampler, the sampling rate of the passive air sampler was 1.52 L h(-1). The sampling rate, determined for the passive air sampler in relation to the temperature (19 - 28 degrees C) and the relative humidity (30 - 90%), were 1.56 +/- 0.04 and 1.58 +/- 0.07 L h(-1), respectively. The relationship between the sampling rate and the air velocity was a linear-regression within the observed range. In the case of exposed samplers, the stability of the collected formaldehyde decreased with increasing storage time (decrease of ca. 25% after 22 days); but with the unexposed samplers the stability of the blank remained relatively unchanged for 7 days (decrease of ca. 37% after 22 days). The detection limits for the passive air sampler with an exposure time of 1 day and 7 days were 10.4 and 1.48 microg m(-3), respectively.

  6. METHOD FOR MEASURING AIR-IMMISCIBLE LIQUID PARTITION COEFFICIENTS

    EPA Science Inventory

    The principal objective of this work was to measure nonaqueous phase liquid-air partition coefficients for various gas tracer compounds. Known amounts of trichloroethene (TCE) and tracer, as neat compounds, were introduced into glass vials and allowed to equilibrate. The TCE and ...

  7. Disruptive Innovation in Air Measurement Technology: Reality or Hype?

    EPA Science Inventory

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innov...

  8. Continuous Quantitative Measurements on a Linear Air Track

    ERIC Educational Resources Information Center

    Vogel, Eric

    1973-01-01

    Describes the construction and operational procedures of a spark-timing apparatus which is designed to record the back and forth motion of one or two carts on linear air tracks. Applications to measurements of velocity, acceleration, simple harmonic motion, and collision problems are illustrated. (CC)

  9. Global Ammonia Concentrations Seen by the 13-years AIRS Measurements

    NASA Astrophysics Data System (ADS)

    Warner, Juying; Wei, Zigang; Larrabee Strow, L.; Dickerson, Russell; Nowak, John; Wang, Yuxuan

    2016-04-01

    Ammonia is an integral part of the nitrogen cycle and is projected to be the largest single contributor to each of acidification, eutrophication and secondary particulate matter in Europe by 2020 (Sutton et al., 2008). The impacts of NH3 also include: aerosol production affecting global radiative forcing, increases in emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4), and modification of the transport and deposition patterns of SO2 and NOx. Therefore, monitoring NH3 global distribution of sources is vitally important to human health with respect to both air and water quality and climate change. We have developed new daily and global ammonia (NH3) products from AIRS hyperspectral measurements. These products add value to AIRS's existing products that have made significant contributions to weather forecasts, climate studies, and air quality monitoring. With longer than 13 years of data records, these measurements have been used not only for daily monitoring purposes but also for inter-annual variability and short-term trend studies. We will discuss the global NH3 emission sources from biogenic and anthropogenic activities over many emission regions captured by AIRS. We will focus their variability in the last 13 years.

  10. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  11. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  12. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  13. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  14. Definition of air quality measurements for monitoring space shuttle launches

    NASA Technical Reports Server (NTRS)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  15. DIAL measurements for air pollution and fugitive-loss monitoring

    NASA Astrophysics Data System (ADS)

    Robinson, Rod A.; Woods, Peter T.; Milton, Martin J. T.

    1995-09-01

    This paper describes a mobile differential absorption LIDAR system, which operates in the UV, visible, and IR spectral regions. This system can measure a range of important air pollutants emitted by industry, including SO2, NO2, NO, HCl, benzene, toluene, and a large range of other VOC's. These species can be monitored at fugitive and flammable levels at ranges of up to 1 km (for IR measurements) and 3 km (for UV measurements). Examples of measurements of fluxes emitted from large scale industrial sties are presented and discussed. Comparisons are given between measured fluxes and those calculated using the US Environmental Protection Agency's and American Petroleum Institute's standard procedures for estimating industrial emissions. The fluxes measured by DIAL are higher than the values derived from the API procedures. Possible reasons for discrepancies between the measured results and the EPA/API estimation procedures will be discussed.

  16. Localization of groundwater infiltration in the combined sewers of Brussels by stable isotopes measurements (δ18O, δD) by Cavity Ring Down Spectroscopy.

    NASA Astrophysics Data System (ADS)

    De Bondt, Kevin; Claeys, Philippe

    2014-05-01

    In the last 20 years research has been conducted to quantify the infiltration of groundwater into the sewers. This groundwater, called parasitic water, increases the volume of waste-water to be treated and consequently the cost of this treatment. Moreover, in the case of combined sewer systems, the parasitic water also limits the sewer capacity and indirectly increases the risks of combined sewer overflows and floods. The infiltration of groundwater occurs trough cracks, sewer collapses and from direct connections with old springs. Different methods quantify the intrusion of parasitic water. Among these, the use of the stable isotopes of water (δ18O & δD) shows good result in catchments or cities close to Mountainous regions (example from Lyon, Zurich), where isotopic signals vary significantly because of continental and altitude effects. However many cities, such as Brussels, are located in more oceanic settings and theoretically offer less potential for the application of the stable isotopes method. In the case of Brussels, river-water from the Meuse is used to produce domestic-water. The catchment of this river extends into the Ardennes, which are affected by slightly different climatic conditions. δ18O & δD analyzes of groundwater from the main aquifer (Ledo-Paniselian-Brusselian) and domestic-water from the Callois reservoir fed by the Meuse River show sufficient isotopic differences in the south of Brussels, but only during the summer. The discrimination potential is better with δD than with δ18O. The improvement of δD measurements (precision, costs,...) brought by Cavity Ring Down Spectroscopy largely contributes to the potential of using stable isotopes method to trace water in Brussels. The first campaigns in the sewers also show a little enrichment (in heavy isotopes) of the waste-water in comparison with the reservoir waters and tap waters. This increases the potential of the method but constrains the sampling to pure waste-water in sewer segments

  17. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate--The effects of street sweeping, vacuum cleaning, high pressure washing, and milling.

    PubMed

    Winston, Ryan J; Al-Rubaei, Ahmed M; Blecken, Godecke T; Viklander, Maria; Hunt, William F

    2016-03-15

    The surface infiltration rates (SIR) of permeable pavements decline with time as sediment and debris clog pore spaces. Effective maintenance techniques are needed to ensure the hydraulic functionality and water quality benefits of this stormwater control. Eight different small-scale and full-scale maintenance techniques aimed at recovering pavement permeability were evaluated at ten different permeable pavement sites in the USA and Sweden. Maintenance techniques included manual removal of the upper 2 cm of fill material, mechanical street sweeping, regenerative-air street sweeping, vacuum street sweeping, hand-held vacuuming, high pressure washing, and milling of porous asphalt. The removal of the upper 2 cm of clogging material did not significantly improve the SIR of concrete grid paves (CGP) and permeable interlocking concrete pavers (PICP) due to the inclusion of fines in the joint and bedding stone during construction, suggesting routine maintenance cannot overcome improper construction. For porous asphalt maintenance, industrial hand-held vacuum cleaning, pressure washing, and milling were increasingly successful at recovering the SIR. Milling to a depth of 2.5 cm nearly restored the SIR for a 21-year old porous asphalt pavement to like-new conditions. For PICP, street sweepers employing suction were shown to be preferable to mechanical sweepers; additionally, maintenance efforts may become more intensive over time to maintain a threshold SIR, as maintenance was not 100% effective at removing clogging material.

  18. Pressureless infiltration of aluminum metal-matrix composites

    SciTech Connect

    Kajikawa, Y.; Nukami, T.; Flemings, M.C.

    1995-08-01

    Pressureless infiltration of ceramic preforms by molten aluminum is described. The preforms are SiC with varying amounts of particulate Al, Ti, and Ni. Infiltrants employed are pure Al and Al-12.5 wt pct Si. It is shown that a pressure differential within the preform is required for infiltration, and measurements are made of pressure changes in the preforms during infiltration. Results indicate that atmospheric pressure is essential for infiltration but that capillarity may play a role as well.

  19. Reproducibility of measurements of trace gas concentrations in expired air.

    PubMed

    Strocchi, A; Ellis, C; Levitt, M D

    1991-07-01

    Measurement of the pulmonary excretion of trace gases has been used as a simple means of assessing metabolic reactions. End alveolar trace gas concentration, rather than excretory rate, is usually measured. However, the reproducibility of this measurement has received little attention. In 17 healthy subjects, duplicate collections of alveolar air were obtained within 1 minute of each other using a commercially available alveolar air sampler. The concentrations of hydrogen, methane, carbon monoxide, and carbon dioxide were measured. When the subject received no instruction on how to expire into the device, a difference of 28% +/- 19% (1SD) was found between duplicate determinations of hydrogen. Instructing the subjects to avoid hyperventilation or to inspire maximally and exhale immediately resulted in only minor reduction in variability. However, a maximal inspiration held for 15 seconds before exhalation reduced the difference to a mean of 9.6% +/- 8.0%, less than half that observed with the other expiratory techniques. Percentage difference of methane measurements with the four different expiratory techniques yielded results comparable to those obtained for hydrogen. In contrast, percentage differences for carbon monoxide measurements were similar for all expiratory techniques. When normalized to a PCO2 of 5%, the variability of hydrogen measurements with the breath-holding technique was reduced to 6.8% +/- 4.7%, a value significantly lower than that obtained with the other expiratory methods. This study suggests that attention to the expiratory technique could improve the accuracy of tests using breath hydrogen measurements.

  20. Status of air-shower measurements with sparse radio arrays

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2017-03-01

    This proceeding gives a summary of the current status and open questions of the radio technique for cosmic-ray air showers, assuming that the reader is already familiar with the principles. It includes recent results of selected experiments not present at this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex have demonstrated that areas of several km2 can be instrumented for reasonable costs with antenna spacings of the order of 200m. For the energy of the primary particle such sparse antenna arrays can already compete in absolute accuracy with other precise techniques, like the detection of air-fluorescence or air-Cherenkov light. With further improvements in the antenna calibration, the radio detection might become even more accurate. For the atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR features a precision similar to the fluorescence technique, but analysis methods for the radio measurement of Xmax are still under development. Moreover, the combination of radio and muon measurements is expected to increase the accuracy of the mass composition, and this around-the-clock recording is not limited to clear nights as are the light-detection methods. Consequently, radio antennas will be a valuable add-on for any air shower array targeting the energy range above 100 PeV.

  1. Method for measurement of volatile oxygenated hydrocarbons in ambient air

    NASA Astrophysics Data System (ADS)

    Leibrock, E.; Slemr, J.

    An automated gas chromatographic method for the quantitative determination of oxygenated (C 2C 5 carbonyls and C 1C 2 alcohols) and some non-oxygenated (C 5C 8) hydrocarbons in ambient air has been developed. The analytical system consists of a gas chromatograph with a cryogenic sampling trap, a precolumn for the separation of water and other interfering compounds, a cryogenic focusing trap and two analytical columns connected in series. Substances are detected either by flame ionization or by a mass spectrometer. Ozone is removed by a potassium iodide scrubber placed upstream the sampling trap. External gas standards generated by a permeation device are used for calibration. The detection limits range between 0.03 and 0.08 ng (depending on the compound), equivalent to 5 to 56 ppt in 1 l of sampled air. The method was tested by an intercomparison with a different gas chromatographic technique for the determination of NMHC. The system has been applied since 1994 for measurements in ambient air. Data obtained during an intensive campaign in summer 1995 at the field station Wank (1778 m a.s.l.) near Garmisch-Partenkirchen, Germany, are reported and compared with NMHC mixing ratios measured simultaneously in the same air masses.

  2. Hereditary Diffuse Infiltrating Retinoblastoma.

    PubMed

    Schedler, Katharina J E; Traine, Peter G; Lohmann, Dietmar R; Haritoglou, Christos; Metz, Klaus A; Rodrigues, Eduardo B

    2016-01-01

    Retinoblastoma is one of the most common childhood cancers. The diffuse infiltrating retinoblastoma is a rare subtype of this neoplasm. The majority of cases of diffuse infiltrating retinoblastoma are unilateral and occur sporadically. Herein we report on a family with three children affected by retinoblastoma, among them one girl with diffuse infiltrating retinoblastoma. This girl was diagnosed at the age of 8 years with a unilateral diffuse infiltrating retinoblastoma. By contrast, the two brothers became clinically apparent in the first 2 years of life with bilateral retinoblastoma. The parents were clinically unremarkable. Genetic analysis of RB1 gene was performed. The girl with diffuse infiltrating RB was found to be heterozygous for an oncogenic mutation in the RB1 gene that was also carried by both brothers and the father of the family. These results show that diffuse infiltrating retinoblastoma can develop on the background of a hereditary predisposition to retinoblastoma.

  3. Assessing soil hydrological variability at the cm- to dm-scale using air permeameter measurements

    NASA Astrophysics Data System (ADS)

    Beerten, K.; Vandersmissen, N.; Rogiers, B.; Mallants, D.

    2012-04-01

    Soils and surficial sediments are crucial elements in the hydrological cycle since they are the medium through which infiltrating precipitation percolates to the aquifer. At the same time, soil horizons and shallow stratigraphy may act as hydraulic barriers that can promote runoff or interflow and hamper deep infiltration. For most catchments little is known about the small-scale horizontal and vertical variability of soil hydrological properties. Such information is however required to calculate detailed soil water flow paths and estimate small scale spatial variability in recharge and run-off. We present the results from field air permeameter measurements to assess the small-scale variability of saturated hydraulic conductivity in heterogeneous 2-D soil profiles. To this end, several outcrops in the unsaturated zone (sandy soils with podzolisation) of an interfluve in the Kleine Nete river catchment (Campine area, Northern Belgium) were investigated using a hand-held permeameter. Measurements were done each 10 cm on ~ 2 x 1 m or ~ 2 x 0.5 m grids. The initial results of the measurements (air permeability Kair; millidarcy) are recalculated to saturated hydraulic conductivity (Ks; m/s) using specific transfer functions (Loll et al., 1999; Iversen et al., 2003). Validation of the results is done with independent lab-based constant head Ks measurements. The results show that field based Ks values generally range between 10-3 m/s and 10-7 m/s within one profile, but extremely high values (up to 10-1 m/s) have been measured as well. The lowest values are found in the organic- and silt-rich Bh horizon of podzol soils observed within the profiles (~ 10-6-10-7m/s), while the highest values are observed in overlying dune sands less than 40 cm deep (up to 10-3 m/s with outliers to 10-1 m/s). Comparison of field and laboratory based Ks data reveals there is fair agreement between both methods, apart from several outliers. Scatter plots indicate that almost all points

  4. The Air Microwave Yield (AMY) experiment to measure the GHz emission from air shower plasmas

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Bohacova, M.; Cataldi, G.; Coluccia, M. R.; Creti, P.; De Mitri, I.; Di Giulio, C.; Engel, R.; Facal San Luis, P.; Iarlori, M.; Martello, D.; Monasor, M.; Perrone, L.; Petrera, S.; Privitera, P.; Riegel, M.; Rizi, V.; Rodriguez Fernandez, G.; Salamida, F.; Salina, G.; Settimo, M.; Smida, R.; Verzi, V.; Werner, F.; Williams, C.

    2013-06-01

    The AMY experiment aims to measure the Microwave Bremsstrahlung Radiation (MBR) emitted by air-showers secondary electrons accelerating in collisions with neutral molecules of the atmosphere. The measurements are performed at the Beam Test Facility (BTF) of Frascati INFN National Laboratories and the final purpose is to characterize the process to be used in a next generation detectors of ultra-high energy cosmic rays (up to 1020eV). We describe the experimental set-up and the first test measurement performed in November 2011.

  5. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  6. Measuring PM and related air pollutants using low-cost ...

    EPA Pesticide Factsheets

    Emerging air quality sensors may play a key role in better characterizing levels of air pollution in a variety of settings There are a wide range of low-cost (< $500 US) sensors on the market, but few have been characterized. If accurate, this new generation of inexpensive sensors can potentially allow larger fleets of monitors to be deployed to better study the spatial and temporal variability of pollutants. The small size and light weight of these sensors also allows for the possibility of wearable or drone applications. Sensor networks will very likely play a key role in future estimates of human health impacts of pollutants, in particular particulate matter (PM), and will allow for the better characterization of pollutant sources and source regions.We will present measurements from an assortment of sensors, costing $20-$700, that have been used to measure air pollution in the US, India, and China with a focus on estimating PM concentrations. Their performance has been evaluated in these very different settings with low concentrations seen in the US (up to approximately 20 ug m-3) and much higher concentrations measured in India and China (up to approximately 300 ug m-3). Based on these studies the optimal concentration ranges of these sensors have been determined. Used in conjunction with data from a carbon dioxide sensor, emissions factors were estimated in some of the locations. In addition temperature and humidity sensors can be used to calculate c

  7. A comparison of PAMS and air toxics measurements

    NASA Astrophysics Data System (ADS)

    Sistla, Gopal; Aleksic, Nenad

    One of the requirements of the 1990 Clean Air Act Amendments (CAA) is that 1-h ozone nonattainment areas that are classified severe or higher category are required to operate a network of photochemical assessment monitors (PAMS) to provide hourly measurements of volatile organic compounds (VOCs) comprising of Carbon number <12 (C2-C12), along with carbonyl measurements at 3-h intervals during the summer ozone season. Often collocated with PAMS are 24-h-integrated canister and cartridge-based measurements of selected air toxic compounds, thereby providing an opportunity for inter-comparison and validation of both sets of data. In this study, we report such a comparison and estimates of trend for benzene, m-, p- and o-xylene, toluene, ethylbenzene, 1,2,4-trimethylbenzene, formaldehyde and acetaldehyde at Bronx, NY. The analysis shows that hourly PAMS and 24-h-integrated air toxics are in good agreement with each other exhibiting similar trends and that the PAMS with the higher temporal resolution offers information on excursions of the toxic compounds that would be quite useful in assessment of acute health effects. These findings were also found to be applicable to other locations such as South De Kalb, GA; Gary, IN and Lynn, MA.

  8. Radio Emission in Atmospheric Air Showers Measured by LOPES-30

    SciTech Connect

    Isar, P. G.

    2008-01-24

    When Ultra High Energy Cosmic Rays (UHECR) interact with particles in the Earth's atmosphere, they produce a shower of secondary particles propagating towards the ground. These relativistic particles emit synchrotron radiation in the radio frequency range when passing the Earth's magnetic field. The LOPES (LOFAR Prototype Station) experiment investigates the radio emission from these showers in detail and will pave the way to use this detection technique for large scale applications like in LOFAR (Low Frequency Array) and the Pierre Auger Observatory. The LOPES experiment is co-located and measures in coincidence with the air shower experiment KASCADE-Grande at Forschungszentrum Karlsruhe, Germany. LOPES has an absolute amplitude calibration array of 30 dipole antennas (LOPES-30). After one year of measurements of the single East-West polarization by all 30 antennas, recently, the LOPES-30 set-up was configured to perform dual-polarization measurements. Half of the antennas have been configured for measurements of the North-South polarization. Only by measuring at the same time both, the E-W and N-S polarization components of the radio emission, the geo-synchrotron effect as the dominant emission mechanism in air showers can be verified. The status of the measurements, including the absolute calibration procedure of the dual-polarized antennas as well as analysis of dual-polarized event examples are reported.

  9. PAH Measurements in Air in the Athabasca Oil Sands Region.

    PubMed

    Hsu, Yu-Mei; Harner, Tom; Li, Henrik; Fellin, Phil

    2015-05-05

    Polycyclic aromatic hydrocarbon (PAH) measurements were conducted by Wood Buffalo Environmental Association (WBEA) at four community ambient Air quality Monitoring Stations (AMS) in the Athabasca Oil Sands Region (AOSR) in Northeastern Alberta, Canada. The 2012 and 2013 mean concentrations of a subset of the 22 PAH species were 9.5, 8.4, 8.8, and 32 ng m(-3) at AMS 1 (Fort McKay), AMS 6 (residential Fort McMurray), AMS 7 (downtown Fort McMurray), and AMS 14 (Anzac), respectively. The average PAH concentrations in Fort McKay and Fort McMurray were in the range of rural and semirural areas, but peak values reflect an industrial emission influence. At these stations, PAHs were generally associated with NO, NO2, PM2.5, and SO2, indicating the emissions were from the combustion sources such as industrial stacks, vehicles, residential heating, and forest fires, whereas the PAH concentrations at AMS 14 (∼35 km south of Fort McMurray) were more characteristic of urban areas with a unique pattern: eight of the lower molecular weight PAHs exhibited strong seasonality with higher levels during the warmer months. Enthalpies calculated from Clausius-Clapeyron plots for these eight PAHs suggest that atmospheric emissions were dominated by temperature-dependent processes such as volatilization at warm temperatures. These findings point to the potential importance of localized water-air and/or surface-air transfer on observed PAH concentrations in air.

  10. Versatile radar measurement of the electron loss rate in air

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Shneider, Mikhail N.; Miles, Richard B.

    2013-11-01

    We present an experimental method that makes possible in-situ measurements of the electron loss rate in arbitrary gas mixtures. A weakly ionized plasma is induced via resonant multiphoton ionization of trace amounts of nitric oxide seeded into the gas, and homodyne microwave scattering detection is used to study the dynamics of the electron loss mechanisms. Using this approach, the attachment rate for electrons to molecular oxygen in room temperature, atmospheric pressure air is determined. The measured 0.76 × 108 s-1 attachment rate is in very good agreement with predictions based on literature data.

  11. Versatile radar measurement of the electron loss rate in air

    SciTech Connect

    Dogariu, Arthur; Shneider, Mikhail N.; Miles, Richard B.

    2013-11-25

    We present an experimental method that makes possible in-situ measurements of the electron loss rate in arbitrary gas mixtures. A weakly ionized plasma is induced via resonant multiphoton ionization of trace amounts of nitric oxide seeded into the gas, and homodyne microwave scattering detection is used to study the dynamics of the electron loss mechanisms. Using this approach, the attachment rate for electrons to molecular oxygen in room temperature, atmospheric pressure air is determined. The measured 0.76 × 10{sup 8} s{sup −1} attachment rate is in very good agreement with predictions based on literature data.

  12. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  13. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect

    2013-09-01

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home.

  14. Integrated Assessment of Air Pollution Control Measures for Megacities

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have

  15. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  16. Low-Cost Sensor Units for Measuring Urban Air Quality

    NASA Astrophysics Data System (ADS)

    Popoola, O. A.; Mead, M.; Stewart, G.; Hodgson, T.; McLoed, M.; Baldovi, J.; Landshoff, P.; Hayes, M.; Calleja, M.; Jones, R.

    2010-12-01

    Measurements of selected key air quality gases (CO, NO & NO2) have been made with a range of miniature low-cost sensors based on electrochemical gas sensing technology incorporating GPS and GPRS for position and communication respectively. Two types of simple to operate sensors units have been designed to be deployed in relatively large numbers. Mobile handheld sensor units designed for operation by members of the public have been deployed on numerous occasions including in Cambridge, London and Valencia. Static sensor units have also been designed for long-term autonomous deployment on existing street furniture. A study was recently completed in which 45 sensor units were deployed in the Cambridge area for a period of 3 months. Results from these studies indicate that air quality varies widely both spatially and temporally. The widely varying concentrations found suggest that the urban environment cannot be fully understood using limited static site (AURN) networks and that a higher resolution, more dispersed network is required to better define air quality in the urban environment. The results also suggest that higher spatial and temporal resolution measurements could improve knowledge of the levels of individual exposure in the urban environment.

  17. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  18. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect

    Vieira, R.; Parker, D.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.

    2013-09-01

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home. Even cutting internal moisture gains in half to 6.05 lbs/day, the dew point of the tight home was more than 15 degrees F higher than the outside dry bulb temperature. The homes have single pane glass representative of older Central Florida homes.

  19. SCANNING VOLTA POTENTIALS MEASUREMENTS OF METALS IN IRRADIATED AIR.

    SciTech Connect

    ISAACS, H.S.; ADZIC, G.; AND ENERGY SCIENCES AND TECHNOLOGY DEPARTMENT; JEFFCOATE, C.S.

    2000-10-22

    A method for direct dc measurement of the Volta potential is presented. High intensity synchrotron x-ray beams were used to locally irradiate the atmosphere adjacent to the metal surface and produce a conducting path between a sample and a reference probe. The direct measurements of potential in the ionized air could be made at probe heights of around 1 mm compared to less than 0.1 mm for the Kelvin probe. The measurements were similar to traditional Kelvin probe measurements, but had a poorer spatial resolution. In contrast to the Kelvin probe methods, the approach described allows observation of the current as a function of impressed voltage. Methods to improve the special resolution of the technique and applications to corrosion under coating will be presented.

  20. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  1. Measurement of Temporal Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  2. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  3. Modelling infiltration processes in frozen soils

    NASA Astrophysics Data System (ADS)

    Ireson, A. M.; Barbour, L. S.

    2014-12-01

    Understanding the hydrological processes in soils subject to significant freeze-thaw is fraught by "experimental vagaries and theoretical imponderables" (Miller 1980, Applications of soil physics). The infiltration of snowmelt water and the subsequent transmission of unfrozen water during thawing, is governed by hydraulic conductivity values which are changing with both ice and unfrozen water content. Water held within pores is subject to capillary forces, which results in a freezing point depression (i.e. water remains in the liquid state slightly below 0°C). As the temperature drops below zero, water freezes first in the larger pores, and then in progressively smaller pores. Since the larger pores also are the first to empty by drainage, these pores may be air filled during freezing, while smaller water filled pores freeze. This explains why an unsaturated, frozen soil may still have a considerable infiltration capacity. Infiltration into frozen soil is a critical phenomena related to the risk of flooding in the Canadian prairies, controlling the partitioning of snowmelt into either infiltration or runoff. We propose a new model, based on conceptualizing the pore space as a bundle of capillary tubes (with significant differences to the capillary bundle model of Wannatabe and Flury, 2008, WRR, doi:10.1029/2008WR007102) which allows any air-filled macropores to contribute to the potential infiltration capacity of the soil. The patterns of infiltration and water movement during freeze-thaw from the model are compared to field observations from the Canadian prairies and Boreal Plains.

  4. Objective Measure of Nasal Air Emission Using Nasal Accelerometry

    PubMed Central

    Cler, Meredith J.; Lien, Yu-An S.; Braden, Maia N.; Mittelman, Talia; Downing, Kerri

    2016-01-01

    Purpose This article describes the development and initial validation of an objective measure of nasal air emission (NAE) using nasal accelerometry. Method Nasal acceleration and nasal airflow signals were simultaneously recorded while an expert speech language pathologist modeled NAEs at a variety of severity levels. In addition, microphone and nasal accelerometer signals were collected during the production of /pɑpɑpɑpɑ/ speech utterances by 25 children with and without cleft palate. Fourteen inexperienced raters listened to the microphone signals from the pediatric speakers and rated the samples for the severity of NAE using direct magnitude estimation. Mean listener ratings were compared to a novel quantitative measurement of NAE derived from the nasal acceleration signals. Results Correlation between the nasal acceleration energy measure and the measured nasal airflow was high (r = .87). Correlation between the measure and auditory-perceptual ratings was moderate (r = .49). Conclusion The measure presented here is quantitative and noninvasive, and the required hardware is inexpensive ($150). Future studies will include speakers with a wider range of NAE severity and etiology, including cleft palate, hearing impairment, or dysarthria. Further development will also involve validation of the measure against airflow measures across subjects. PMID:27618145

  5. Ozone measurement system for NASA global air sampling program

    NASA Technical Reports Server (NTRS)

    Tiefermann, M. W.

    1979-01-01

    The ozone measurement system used in the NASA Global Air Sampling Program is described. The system uses a commercially available ozone concentration monitor that was modified and repackaged so as to operate unattended in an aircraft environment. The modifications required for aircraft use are described along with the calibration techniques, the measurement of ozone loss in the sample lines, and the operating procedures that were developed for use in the program. Based on calibrations with JPL's 5-meter ultraviolet photometer, all previously published GASP ozone data are biased high by 9 percent. A system error analysis showed that the total system measurement random error is from 3 to 8 percent of reading (depending on the pump diaphragm material) or 3 ppbv, whichever are greater.

  6. Air-Sea Interaction Measurements from R/P FLIP

    NASA Astrophysics Data System (ADS)

    Friehe, C. A.

    2002-12-01

    Soon after its inception, R/P FLIP was used to study the interaction of the atmosphere and ocean due to its unique stability and low flow distortion. A number of campaigns have been conducted to measure the surface fluxes of heat, water vapor and horizontal momentum of the wind with instrumentation as used over land, supported by the Office of Naval Research and the National Science Foundation. The size of FLIP allows for simultaneous ocean wave and mixed-layer measurements as well. Air-sea interaction was a prime component of BOMEX in 1968, where FLIP transited the Panama Canal. The methods used were similar to the over-land "Kansas" experiment of AFCRL in 1968. BOMEX was followed by many experiments in the north Pacific off San Diego, northern California, and Hawaii. Diverse results from FLIP include identification of the mechanism that causes erroneous fluctuating temperature measurements in the salt-aerosol-laden marine atmosphere, the role of humidity on optical refractive index fluctuations, and identification of Miles' critical layer in the air flow over waves.

  7. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  8. Junge relationships in measurement data for cyclic siloxanes in air.

    PubMed

    MacLeod, Matthew; Kierkegaard, Amelie; Genualdi, Susie; Harner, Tom; Scheringer, Martin

    2013-10-01

    In 1974, Junge postulated a relationship between variability of concentrations of gases in air at remote locations and their atmospheric residence time, and this Junge relationship has subsequently been observed empirically for a range of trace gases. Here, we analyze two previously-published datasets of concentrations of cyclic volatile methyl siloxanes (cVMS) in air and find Junge relationships in both. The first dataset is a time series of concentrations of decamethylcyclopentasiloxane (D5) measured between January and June, 2009 at a rural site in southern Sweden that shows a Junge relationship in the temporal variability of the measurements. The second dataset consists of measurements of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4) and D5 made simultaneously at 12 sites in the Global Atmospheric Passive Sampling (GAPS) network that shows a Junge relationship in the spatial variability of the three cVMS congeners. We use the Junge relationship for the GAPS dataset to estimate atmospheric lifetimes of dodecamethylcyclohexasiloxane (D6), 8:2-fluorotelomer alcohol and trichlorinated biphenyls that are within a factor of 3 of estimates based on degradation rate constants for reaction with hydroxyl radical determined in laboratory studies.

  9. Absorption of sound in air - High-frequency measurements

    NASA Technical Reports Server (NTRS)

    Bass, H. E.; Shields, F. D.

    1977-01-01

    The absorption of sound in air at frequencies from 4 to 100 kHz in 1/12 octave intervals, for temperatures from 255.4 K (0 F) to 310.9 K (100 F) in 5.5 K (10 F) intervals, and at 10% relative-humidity increments between 0% and saturation has been measured. The values of free-field absorption have been analyzed to determine the relaxation frequency of oxygen for each of the 92 combinations of temperature and relative humidity studied and the results are compared to an empirical expression. The relaxation frequencies of oxygen have been analyzed to determine the microscopic energy-transfer rates.

  10. Empowering smartphone users with sensor node for air quality measurement

    NASA Astrophysics Data System (ADS)

    Oletic, Dinko; Bilas, Vedran

    2013-06-01

    We present an architecture of a sensor node developed for use with smartphones for participatory sensing of air quality in urban environments. Our solution features inexpensive metal-oxide semiconductor gas sensors (MOX) for measurement of CO, O3, NO2 and VOC, along with sensors for ambient temperature and humidity. We focus on our design of sensor interface consisting of power-regulated heater temperature control, and the design of resistance sensing circuit. Accuracy of the sensor interface is characterized. Power consumption of the sensor node is analysed. Preliminary data obtained from the CO gas sensors in laboratory conditions and during the outdoor field-test is shown.

  11. Infiltration in ASHRAE's Residential Ventilation Standards

    SciTech Connect

    Sherman, Max

    2008-10-01

    The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

  12. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  13. The impact of European measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S.; Butt, E. W.; Richardson, T.; Mann, G.; Forster, P.; Haywood, J. M.; Crippa, M.; Janssens-Maenhout, G. G. A.; Johnson, C.; Bellouin, N.; Spracklen, D. V.; Carslaw, K. S.; Reddington, C.

    2015-12-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, resulting in improved air quality and benefits to human health but also an unintended impact on regional climate. Here we used a coupled chemistry-climate model and a new policy relevant emission scenario to determine the impact of air pollutant emission reductions over Europe. The emission scenario shows that a combination of technological improvements and end-of-pipe abatement measures in the energy, industrial and road transport sectors reduced European emissions of sulphur dioxide, black carbon and organic carbon by 53%, 59% and 32% respectively. We estimate that these emission reductions decreased European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, black carbon (BC) by 56% and particulate organic matter (POM) by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 107,000 (40,000-172,000, 5-95% confidence intervals) premature deaths annually from cardiopulmonary disease and lung cancer across the EU member states. The decrease in aerosol concentrations caused a positive all-sky aerosol radiative forcing at the top of atmosphere over Europe of 2.3±0.06 W m-2 and a positive clear-sky forcing of 1.7±0.05 W m-2. Additionally, the amount of solar radiation incident at the surface over Europe increased by 3.3±0.07 W m-2 under all-sky and by 2.7±0.05 W m-2 under clear-sky conditions. Reductions in BC concentrations caused a 1 Wm-2 reduction in atmospheric absorption. We use an energy budget approximation to show that the aerosol induced radiative changes caused both temperature and precipitation to increase globally and over Europe. Our results show that the implementation of European legislation to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as altered the regional radiative balance and climate.

  14. The prediction of transducer element performance from in air measurements

    NASA Astrophysics Data System (ADS)

    Schafer, M. E.

    1982-01-01

    A technique has been developed which accurately predicts the performance of underwater acoustic arrays prior to array construction. The technique is based upon the measurement of lumped-parameter equivalent circuit values for each element in the array, and is accurate in predicting the array transmit, receive and beam pattern response. The measurement procedure determines the shunt electrical and motional circuit elements from electrical imittance measurements. The electromechanical transformation ratio is derived from in-air measurements of the radiating face velocity and the input current to the transducer at resonance. The equivalent circuit values of a group of Tonpilz-type transducers were measured, and the self and mutual interaction acoustic loadings for a specific array geometry were calculated. The response of the elements was then predicted for water-loaded array conditions. Based on the predictions, a selection scheme was developed which minimized the effects of inter-element variability on array performance. The measured transmitting, receiving and beam pattern characteristics of a test array, built using the selected elements, were compared to predictions made before the array was built. The results indicated that the technique is accurate over a wide frequency range.

  15. Air toxics being measured more accurately, controlled more effectively

    SciTech Connect

    1995-04-01

    In response to the directives of the Clean Air Act Amendments, Argonne National Laboratory is developing new or improved pollutant control technologies for industries that burn fossil fuels. This research continues Argonne`s traditional support for the US DOE Flue Gas Cleanup Program. Research is underway to measure process emissions and identify new and improved control measures. Argonne`s emission control research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing to pilot-scale field tests of several technologies. Whenever appropriate, the work has emphasized integrated or combined control systems as the best approach to technologies that offer low cost and good operating characteristics.

  16. High performance target measurement flights from Vandenberg Air Force Base

    NASA Astrophysics Data System (ADS)

    Chalfant, C. P.; Rosen, H.; Jerger, J. H.

    A description is presented of a new launch facility which is being prepared for the High Performance Target Measurement (HPTEM) booster at Vandenberg Air Force Base (VAFB). A deactivated Atlas launch complex is currently being modified to allow the rocket to be launched from a semisilo. The underground launch operations building will contain a new control center and instrumentation room. Attention is given to the Multi-Spectral Measurement Program (MSMP), details concerning the launch facility, and a target and flight safety trajectory analysis. Construction and modification of the facility is scheduled to be completed in mid-1983. The first HPTEM launch is planned to occur in April 1984. The HPTEM launch facility can also be utilized to launch Aries I (single stage) and Aries II (two-stage) probes with minor modification.

  17. Projection Moire Interferometry Measurements of Micro Air Vehicle Wings

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-01-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  18. Infiltration modeling guidelines for commercial building energy analysis

    SciTech Connect

    Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.

    2009-09-30

    This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistent with building location and weather data.

  19. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  20. Acoustic measurements of air entrainment by breaking waves

    NASA Astrophysics Data System (ADS)

    Terrill, Eric James

    1998-11-01

    Wave breaking at the surface of the ocean plays an important role in air-sea interaction processes. Bubbles entrained by breaking waves not only enhance the transfer of atmospheric gases to the ocean, but also modify the phase speed and attenuation of acoustic waves propagating through the bubbly medium. The development of acoustic instruments to measure bubbles and the results obtained from a number of field and laboratory experiments are presented. The first part of this dissertation addresses sound speed measurements made in the North Atlantic as part of the Acoustic Surface Reverberation Experiment (ASREX). An autonomous buoy system that directly measures the sound speed in the surface wave layer was developed. Data obtained with the instrument spanned several storm cycles with wind speeds and significant wave heights reaching 20 m/s and 8 m, respectively. The use of Wood's relation (1946) allows the calculation of the void fraction of air based on the low-frequency sound speed measurements. The highly variable near-surface sound speed/void fraction field is analyzed with respect to wind and surface wave- breaking parameters. The second part of this dissertation presents the development of a broadband acoustic technique which simultaneously measures the phase speed and attenuation at acoustic frequencies ranging from 4-100 kHz. The acoustic data is inverted for the size distribution of bubbles using algorithms that are based upon the physics of sound propagation through a bubbly mixture. This acoustic technique was evaluated in the large wave channel at the Hydraulics Laboratory, Scripps Institution of Oceanography, using mechanically generated breaking waves in seawater. Field measurements of bubble concentrations that result from wave breaking were made in both shallow water off Scripps Pier, California and in deep water near Point Conception, California using the broadband technique. Significant variability is observed in the bubble field, characterized by

  1. Mobile Air Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005-2010

    ERIC Educational Resources Information Center

    Adams, Matthew D.; DeLuca, Patrick F.; Corr, Denis; Kanaroglou, Pavlos S.

    2012-01-01

    This paper examines the change in air pollutant concentrations between 2005 and 2010 occurring in the City of Hamilton, Ontario, Canada. After analysis of stationary air pollutant concentration data, we analyze mobile air pollutant concentration data. Air pollutants included in the analysis are CO, PM[subscript 2.5], SO[subscript 2], NO,…

  2. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-05-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lens elements. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far commercial measurement systems were not available for testing of IR objectives since many materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The fiber-optic set-up is based on a Michelson-Interferometer in which the light from a broadband super-luminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a photo detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative lens' surface distances are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. The set-up allows the contactless determination of thicknesses and air gaps inside of assembled infrared objective lenses with accuracy in the micron range. It therefore is a tool for the precise manufacturing or quality control.

  3. Photonic crystal waveguide created by selective infiltration

    NASA Astrophysics Data System (ADS)

    Casas Bedoya, A.; Domachuk, P.; Grillet, C.; Monat, C.; Mägi, E. C.; Li, E.; Eggleton, B. J.

    2012-06-01

    The marriage of photonics and microfluidics ("optofluidics") uses the inherent mobility of fluids to reversibly tune photonic structures beyond traditional fabrication methods by infiltrating voids in said structures. Photonic crystals (PhCs) strongly control light on the wavelength scale and are well suited to optofluidic tuning because their periodic airhole microstructure is a natural candidate for housing liquids. The infiltration of a single row of holes in the PhC matrix modifies the effective refractive index allowing optical modes to be guided by the PhC bandgap. In this work we present the first experimental demonstration of a reconfigurable single mode W1 photonic crystal defect waveguide created by selective liquid infiltration. We modified a hexagonal silicon planar photonic crystal membrane by selectively filling a single row of air holes with ~300nm resolution, using high refractive index ionic liquid. The modification creates optical confinement in the infiltrated region and allows propagation of a single optical waveguide mode. We describe the challenges arising from the infiltration process and the liquid/solid surface interaction in the photonic crystal. We include a detailed comparison between analytic and numerical modeling and experimental results, and introduce a new approach to create an offset photonic crystal cavity by varying the nature of the selective infiltration process.

  4. Species measurements in a hypersonic, hydrogen-air, combustion wake

    SciTech Connect

    Skinner, K.A.; Stalker, R.J.

    1996-09-01

    A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water, and nitric oxide at stagnation enthalpies ranging from 5.6 MJ/kg to 12.2 MJ/kg and at a distance of approximately 100s times the thickness of the initial hydrogen jet. The amount of hydrogen mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, despite the fact that the proportion of hydrogen in the wake was increased with stagnation enthalpy. Roughly 50% of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

  5. Species measurements in a hypersonic, hydrogen-air, combustion wake

    NASA Technical Reports Server (NTRS)

    Skinner, K. A.; Stalker, R. J.

    1995-01-01

    A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, which were conducted in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water and nitric oxide at stagnation enthalpies ranging from 5.6 MJ kg(exp -1) to 1.2 MJ kg(exp -1) and at a distance of approximately 100 times the thickness of the initial hydrogen jet. The amount of hydrogen that was mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, in spite of the fact that the proportion of hydrogen in the wake increased with stagnation enthalpy. Roughly 50 percent of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

  6. Measurement of Strontium Monoxide in Methane-Air Flames.

    PubMed

    Wimberly, Bobby J; Hornkohl, James O; Parigger, Christian G

    2017-02-01

    The spectroscopy of alkaline earth metal compounds is stimulated by the use of these compounds in practical areas ranging from technology to medicine. Applications in the field of pyrotechnics were the motivation for a series of flame emission spectroscopy experiments with strontium-containing compounds. Specifically, strontium monoxide (SrO) was studied as a candidate radiator for the diagnosis of methane-air flames. Strontium monoxide emissions have been observed in flames with temperatures in the range 1200 K to 1600 K for two compounds: strontium hydroxide and strontium chloride. Comparisons are made of the measured SrO spectra to simulated spectra in the near-infrared region of 700 nm to 900 nm.

  7. Prototypes of Cognitive Measures for Air Force Officers: Test Development and Item Banking

    DTIC Science & Technology

    1990-05-01

    AFHRL-TP-89-737 3, COPY AIR FORCE PROTOTYPES OF COGNITIVE MEASURES FOR AIR FORCE OFFICERS: TEST DEVELOPMENT AND ITEM BANKING DTIC f1 ELECTF H Frances...Jacobina Skinner MANPOWER AND PERSONNEL DIVISION R Brooks Air Force Base, Texas 78235-5601 E S O May 1990U Final Technical Paper for Period September 1987...November 1989 R C Approved for public release; distribution is unlimited. E S LABORATORY AIR FORCE SYSTEMS COMMAND BROOKS AIR FORCE BASE, TEXAS

  8. Infiltration in Swelling Soils

    NASA Astrophysics Data System (ADS)

    Giraldez, Juan V.; Sposito, Garrison

    1985-01-01

    Infiltration phenomena in swelling soils were investigated theoretically. The approach taken consisted of applying both the approximate analytical techniques developed by J.-Y. Parlange and co-workers and conventional finite difference numerical methods to study the generalized Richards equation for one-dimensional infiltration in a swelling soil. Equations were derived for the ponding time and the post-ponding infiltration rate that are generalizations of the Parlange-Smith model expressions for rigid soils. Ponding times for swelling soils were shown to be shorter than those for nonswelling analogs, and post-ponding infiltration rates in swelling soils were shown to approach zero instead of becoming equal to the hydraulic conductivity, as in rigid soils. These results were confirmed, both qualitatively and quantitatively, with the numerical model, which also provided instantaneous moisture profiles and surface swelling predictions in agreement with field observations. A three-parameter infiltration equation proposed recently by J.-Y. Parlange et al. (1982) was generalized to describe swelling soils and shown to be in good agreement with published laboratory and field data. It appears that the generalized analytical model equations developed can be employed conveniently in hydrologic applications which do not require high accuracy in predictions.

  9. Wash-out of ambient air contaminations for breath measurements.

    PubMed

    Maurer, F; Wolf, A; Fink, T; Rittershofer, B; Heim, N; Volk, T; Baumbach, J I; Kreuer, S

    2014-06-01

    In breath analysis, ambient air contaminations are ubiquitous and difficult to eliminate. This study was designed to investigate the reduction of ambient air background by a lung wash-out with synthetic air. The reduction of the initial ambient air volatile organic compound (VOC) intensity was investigated in the breath of 20 volunteers inhaling synthetic air via a sealed full face mask in comparison to inhaling ambient air. Over a period of 30 minutes, breath analysis was conducted using ion mobility spectrometry coupled to a multi-capillary column. A total of 68 VOCs were identified for inhaling ambient air or inhaling synthetic air. By treatment with synthetic air, 39 VOCs decreased in intensity, whereas 29 increased in comparison to inhaling ambient air. In total, seven VOCs were significantly reduced (P-value < 0.05). A complete wash-out of VOCs in this setting was not observed, whereby a statistically significant reduction up to 65% as for terpinolene was achieved. Our setting successfully demonstrated a reduction of ambient air contaminations from the airways by a lung wash-out with synthetic air.

  10. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  11. Integrating Energy Efficiency and Renewable Energy Measures in the Air Quality Planning Process

    EPA Pesticide Factsheets

    This guidance provides state and local air quality officials with valuable information on how to incorporate energy efficiency and renewable energy (EE/RE) measures into their air quality plan, also known as the State Implementation Plan (SIP).

  12. A METHOD OF ASSESSING AIR TOXICS CONCENTRATIONS IN URBAN AREAS USING MOBILE PLATFORM MEASUREMENTS

    EPA Science Inventory

    The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxic assessments in Environmental Justice applications, epidemiological studies...

  13. EPA scientists develop Federal Reference & Equivalent Methods for measuring key air pollutants

    EPA Pesticide Factsheets

    EPA operates a nationwide air monitoring network to measure six primary air pollutants: carbon monoxide, lead, sulfur dioxide, ozone, nitrogen dioxide, and particulate matter as part of its mission to protect human health and the environment.

  14. Next Generation Air Measurements for Fugitive, Area Source, and Fence Line Applications

    EPA Science Inventory

    Next generation air measurements (NGAM) is an EPA term for the advancing field of air pollutant sensor technologies, data integration concepts, and geospatial modeling strategies. Ranging from personal sensors to satellite remote sensing, NGAM systems may provide revolutionary n...

  15. Monitoring Preferential Flow During Infiltration Experiments

    NASA Astrophysics Data System (ADS)

    Jelinkova, V.; Votrubova, J.; Sanda, M.; Cislerova, M.

    2006-12-01

    Field ponded infiltration experiments monitored by electrical resistivity tomography (ERT) were conducted at the experimental site Liz, Sumava Mts., Southern Bohemia. Single-ring ponded infiltration experiments were carried out repeatedly using a set of permanently installed plastic infiltration rings and additional ring made of concrete. The preferential flow occurring during the infiltration experiment was monitored by means of invasive and non-invasive visualization of flow paths. For the noninvasive visualization two geophysical methods were tested, namely TDR and ERT. Geophysical measurements were taken before, during and after the infiltration. TDR measurements were conducted using Tektronix 1502C cable tester connected to three steel electrodes 1- m long installed vertically in the centre of the infiltration ring. ERT was done using the ARES device (the multi electrode VES employing the Wenner-Schlumberger method). After the initial period of clean water infiltration 10g/l NaCl solute was used to improve the ERT signal. The electrical resistivity images were reconstructed using RES2DINV (Geotomo software). In ERT images the evolution of infiltration processes is clearly visible however the preferential character of the flow is completely smeared. This is clear from the comparison of ERT images with the images of Brilliant Blue dye distribution taken from the dug out horizons at the end of infiltration. In addition, the ERT results show some inconsistencies, which are most probably related to the design and the scale of the ERT network which is not fully consistent with the assumption of the methods employed. The research has been performed in the frame of research projects VaV/650/5/03 and GACR 103/04/0663.

  16. Flammability measurements of difluoromethane in air at 100 C

    SciTech Connect

    Grosshandler, W.L.; Donnelly, M.K.; Womeldorf, C.

    1999-07-01

    Difluoromethane (CH{sub 2}F{sub 2}, or R-32) is a candidate to replace currently used ozone-depleting chlorofluorocarbon refrigerants. Because CH{sub 2}F{sub 2} is flammable, it is necessary to assess the hazard posed by a leak in a refrigeration machine. The currently accepted method for determining flammability, ASTM E 681, has difficulty discerning the flammability boundary for weak fuels such as CH{sub 2}F{sub 2}. This paper describes an alternative approach to identify the limits of flammability, using a twin, premixed counter-flow flame. By using the extinction of an already established flame, the point dividing flammable from non-flammable becomes unambiguous. The limiting extinction mixture changes with stretch rate, so it is convenient to report the flammability limit as the value extrapolated to a zero stretch condition. In the burner, contoured nozzles with outlet diameters of 12 mm are aligned counter to each other and spaced 12 mm apart. The lean flammability limit of CH{sub 2}F{sub 2} in dry air at room temperature was previously reported by the authors to be a mole fraction of 0.14, using the twin counter-flow flame method. In the current study, relative humidity was not found to affect the lean limit. Increasing the temperature of the premixed fuel and air to 100 C is shown to extend the flammability limit in the lean direction to 0.13. The rich limit of CH{sub 2}F{sub 2} found using the counter-flow method is around 0.27. The uncertainties of the measurements are presented and the results compared to data in the literature.

  17. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    SciTech Connect

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  18. Mobile system for on-road measurements of air pollutants

    NASA Astrophysics Data System (ADS)

    Katulski, Ryszard J.; Namieśnik, Jacek; Sadowski, Jarosław; Stefański, Jacek; Szymańska, Krystyna; Wardencki, Waldemar

    2010-04-01

    The paper presents a prototype of a mobile monitoring system for measuring the levels of the main traffic air pollutants (C6H6, NO2, NOx, CO, and CO2,) in cities. The novelty of the proposed system lies in the fact that it can be utilized to monitor emissions from urban traffic along roads and areas where traditional monitoring stations cannot be placed. In the proposed system, the monitoring device can be mounted on any moving vehicle (such as a car, bus, or truck) rather than be attached to a dedicated van, as most systems of this kind found in literature are. Analyzers used in this system are small portable structures that contain an electronic instrument to measure, record, and transmit relevant data on concentrations of the pollutants to a website. The model outcome for carbon monoxide obtained in functional tests in real conditions is also presented here. Data on temporal changes of carbon monoxide concentration are compared against meteorological parameters and speed of the vehicle. Spatial interpolation techniques are applied to obtain a nonplanar visualization of carbon monoxide and benzene concentrations in the main arteries of a city.

  19. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  20. Modeling Environmental Tobacco Smoke (ETS) Infiltration in Low-Income Multifamily Housing before and after Building Energy Retrofits.

    PubMed

    Fabian, Maria Patricia; Lee, Sharon Kitman; Underhill, Lindsay Jean; Vermeer, Kimberly; Adamkiewicz, Gary; Levy, Jonathan Ian

    2016-03-16

    Secondhand exposure to environmental tobacco smoke (ETS) in multifamily housing remains a health concern despite strong recommendations to implement non-smoking policies. Multiple studies have documented exposure to ETS in non-smoking units located in buildings with smoking units. However, characterizing the magnitude of ETS infiltration or measuring the impact of building interventions or resident behavior on ETS is challenging due to the complexities of multifamily buildings, which include variable resident behaviors and complex airflows between numerous shared compartments (e.g., adjacent apartments, common hallways, elevators, heating, ventilating and air conditioning (HVAC) systems, stack effect). In this study, building simulation models were used to characterize changes in ETS infiltration in a low income, multifamily apartment building in Boston which underwent extensive building renovations targeting energy savings. Results suggest that exterior wall air sealing can lead to increases in ETS infiltration across apartments, while compartmentalization can reduce infiltration. The magnitude and direction of ETS infiltration depends on apartment characteristics, including construction (i.e., level and number of exterior walls), resident behavior (e.g., window opening, operation of localized exhaust fans), and seasonality. Although overall ETS concentrations and infiltration were reduced post energy-related building retrofits, these trends were not generalizable to all building units. Whole building smoke-free policies are the best approach to eliminate exposure to ETS in multifamily housing.

  1. Modeling Environmental Tobacco Smoke (ETS) Infiltration in Low-Income Multifamily Housing before and after Building Energy Retrofits

    PubMed Central

    Fabian, Maria Patricia; Lee, Sharon Kitman; Underhill, Lindsay Jean; Vermeer, Kimberly; Adamkiewicz, Gary; Levy, Jonathan Ian

    2016-01-01

    Secondhand exposure to environmental tobacco smoke (ETS) in multifamily housing remains a health concern despite strong recommendations to implement non-smoking policies. Multiple studies have documented exposure to ETS in non-smoking units located in buildings with smoking units. However, characterizing the magnitude of ETS infiltration or measuring the impact of building interventions or resident behavior on ETS is challenging due to the complexities of multifamily buildings, which include variable resident behaviors and complex airflows between numerous shared compartments (e.g., adjacent apartments, common hallways, elevators, heating, ventilating and air conditioning (HVAC) systems, stack effect). In this study, building simulation models were used to characterize changes in ETS infiltration in a low income, multifamily apartment building in Boston which underwent extensive building renovations targeting energy savings. Results suggest that exterior wall air sealing can lead to increases in ETS infiltration across apartments, while compartmentalization can reduce infiltration. The magnitude and direction of ETS infiltration depends on apartment characteristics, including construction (i.e., level and number of exterior walls), resident behavior (e.g., window opening, operation of localized exhaust fans), and seasonality. Although overall ETS concentrations and infiltration were reduced post energy-related building retrofits, these trends were not generalizable to all building units. Whole building smoke-free policies are the best approach to eliminate exposure to ETS in multifamily housing. PMID:26999174

  2. Porous body infiltrating method

    DOEpatents

    Corman, Gregory Scot

    2002-01-01

    A mixture is formed that comprises at least some to about 10 wt % boron nitride and silicon. A body comprising a component that is wetted by or reacts with silicon is contacted with the mixture and the contacted body is infiltrated with silicon from the mixture.

  3. MEASUREMENT OF HYDROPEROXIDES DURING THE TEXAS 2000 AIR QUALITY STUDY.

    SciTech Connect

    ZHENG,J.; ALAOUIE,A.; WEINSTEIN-LLOYD,J.B.; SPRINGSTON,S.R.; NUNNERMACKER,L.J.; LEE,Y.N.; BRECHTEL,F.; KLEINMAN,L.; DAUM,P.

    2002-01-17

    Hydroperoxides are important atmospheric oxidants. They are responsible for most of the oxidation of aqueous-phase SO{sub 2} to sulfate in the northeastern United States, resulting in the formation of acid precipitation and visibility-reducing sulfate aerosol (Penkett et al., 1979; Lind et al., 1987; Madronich and Calvert, 1990; Tanner and Schorran, 1995). Atmospheric hydrogen peroxide (H{sub 2}O{sub 2} or HP) is produced by the self-reaction of hydroperoxyl radicals (HO{sub 2}); higher organic peroxides are produced by reaction of HO{sub 2} with alkylperoxyl radicals (RO{sub 2}). Peroxyl radicals, along with OH, are chain carriers in the complex photochemical process that produces tropospheric ozone. Thus, concentrations of peroxides and their free radical precursors depend on solar intensity and ambient concentrations of water vapor, ozone, NO{sub x} (NO + NO{sub 2}), and VOCs (volatile organic compounds). Several investigators have demonstrated that HP and hydroxymethyl hydroperoxide (HOCH2 OOH or HMHP) also may be formed when ozone reacts with alkenes in moist air (Becker et al., 1990; Hewitt and Kok, 1991; Gaeb et al., 1995). Peroxides are the expected sink for peroxyl radicals when concentrations of NO are low. Otherwise, these radicals react with NO to form NO{sub 2}. Under high NO{sub x} conditions, NO{sub z} (oxidation products of NO and NO{sub 2}) becomes the principal radical sink. Therefore, formation rates of peroxides relative to NO{sub z} provide information about the history of an air mass and the expected sensitivity of ozone production to reduced emissions (Kleinman et al., 1997; Sillman, 1995; 1997). Through photolysis and reaction with OH, peroxides also act as a radical source; thus, reliable peroxide measurements are necessary for calculating ozone production rates. In this paper, we will summarize peroxide observations at the Williams Tower, and aboard the U.S. Department of Energy G-1 research aircraft in Houston, TX, during August and

  4. Geophysical methods for monitoring infiltration in soil

    NASA Astrophysics Data System (ADS)

    Coquet, Yves; Pessel, Marc; Saintenoy, Albane

    2015-04-01

    Geophysics provides useful tools for monitoring water infiltration in soil essentially because they are non-invasive and have a good time-resolution. We present some results obtained on different soils using two geophysical techniques: electrical resistivity tomography (ERT) and ground-penetrating radar (GPR). Infiltration in a loamy soil was monitored using a 2D Wenner array set up under a tension disc infiltrometer. A good imaging of the infiltration bulb below the infiltrometer could be achieved provided a sufficient resistivity contrast between the wet and the dry soil zones. ERT data could be used to invert soil hydraulic properties. However, we found that the information provided by the ERT could be of limited importance in regard to the information provided by the infiltration rate dynamics if the ERT spatial resolution is not small enough to capture the details of the infiltration front at the limit between the wet and dry soil zones. GPR was found to be a good tool to monitor the progression of the infiltration front in a sandy soil. By combining a water transport simulation model (HYDRUS-1D), a method for transforming water content into dielectric permittivity values (CRIM), and an electromagnetic wave propagation model (GprMax), the Mualem-van Genuchten hydraulic parameters could be retrieved from radargrams obtained under constant or falling head infiltration experiments. Both ERT and GPR methods have pros and cons. Time and spatial resolutions are of prime importance to achieve a sufficient sensitivity to all soil hydraulic parameters. Two exploration fields are suggested: the combination of different geophysical methods to explore infiltration in heterogeneous soils, and the development of integrated infiltrometers that allow geophysical measurements while monitoring water infiltration rate in soil.

  5. Rainier Mesa CAU Infiltration Model using INFILv3

    SciTech Connect

    Levitt, Daniel G.; Kwicklis, Edward M.

    2012-07-13

    The outline of this presentation are: (1) Model Inputs - DEM, Precipitation, Air temp, Soil props, Surface geology, Vegetation; (2) Model Pre-processing - Runoff Routing and sinks, Slope and Azimuth, Soil Ksat reduction with slope (to mitigate bathtub ring), Soil-Bedrock Interface permeabilities; (3) Model Calibration - ET using PEST, Chloride mass balance data, Streamflow using PEST; (4) Model Validation - Streamflow data not used for calibration; (5) Uncertainty Analysis; and (6) Results. Conclusions are: (1) Average annual infiltration rates =11 to 18 mm/year for RM domain; (2) Average annual infiltration rates = 7 to 11 mm/year for SM domain; (3) ET = 70% of precipitation for both domains; (4) Runoff = 8-9% for RM; and 22-24% for SM - Apparently high average runoff is caused by the truncation of the lowerelevation portions of watersheds where much of the infiltration of runoff waters would otherwise occur; (5) Model results are calibrated to measured ET, CMB data, and streamflow observations; (6) Model results are validated using streamflow observations discovered after model calibration was complete; (7) Use of soil Ksat reduction with slope to mitigate bathtub ring was successful (based on calibration results); and (8) Soil-bedrock K{_}interface is innovative approach.

  6. Comparisons of Air Radiation Model with Shock Tube Measurements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... location must be within 10 cm of the engine intake system (i.e., the air cleaner, for most engines.) (b... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19...

  8. Demonstrations of Magnetic Phenomena: Measuring the Air Permeability Using Tablets

    ERIC Educational Resources Information Center

    Lara, V. O. M.; Amaral, D. F.; Faria, D.; Vieira, L. P.

    2014-01-01

    We use a tablet to experimentally determine the dependencies of the magnetic field (B) on the electrical current and the axial distance from a coil (z). Our data shows good precision on the inverse cubic dependence of the magnetic field on the axial distance, B?z[superscript -3]. We obtain the value of air permeability µ[subscript air] with good…

  9. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  10. Microwave assisted chemical vapor infiltration

    SciTech Connect

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-12-31

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ``inside out`` deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs.

  11. Measurement of Vehicle Air Conditioning Pull-Down Period

    SciTech Connect

    Thomas, John F.; Huff, Shean P.; Moore, Larry G.; West, Brian H.

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  12. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  13. Resin infiltration transfer technique

    DOEpatents

    Miller, David V.; Baranwal, Rita

    2009-12-08

    A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

  14. Measuring the Air Quality and Transportation Impacts of Infill Development

    EPA Pesticide Factsheets

    This report summarizes three case studies. The analysis shows how standard forecasting tools can be modified to capture at least some of the transportation and air quality benefits of brownfield and infill development.

  15. A Conductivity Device for Measuring Sulfur Dioxide in the Air

    ERIC Educational Resources Information Center

    Craig, James C.

    1972-01-01

    Described is a general electroconductivity device enabling students to determine sulfur dioxide concentration in a particular location, hopefully leading to a deeper understanding of the problem of air pollution. (DF)

  16. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  17. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  18. Spatial and temporal variations of ponded infiltration in a grid of permanent infiltration rings

    NASA Astrophysics Data System (ADS)

    Votrubová, Jana; Dohnal, Michal; Dušek, Jaromír; Vogel, Tomáš; Tesař, Miroslav; Císlerová, Milena

    2016-04-01

    The soil at Liz experimental site (Volynka headwater catchment, Sumava Mountains, southern Bohemia) has been subject to a long term research on the soil infiltration properties since 2003. For this purpose, 18 permanent infiltration rings were installed at a gently sloped grass-covered experimental plot (300 sq.m). Using this set-up, the single-ring ponded infiltration experiments have been conducted annually. Since 2005, a procedure of repeating the same ponded infiltration experiments in two successive days has been implemented. For the soil type of the study area (sandy loam developed upon gneiss bedrock), a large spatial variability of soil hydraulic properties had been reported before. The focus of the present study has been primarily the temporal variability of the soil infiltration properties. Results of a supplementary dye-tracer experiment conducted in 2005 demonstrate that in the soil studied the infiltration process is strongly dominated by preferential flow. As expected, infiltration rates varied considerably among the infiltration ring. With regard to the impact of the initial soil moisture conditions, general decrease of the infiltration rates observed on two subsequent days was detected. Surprisingly, the spatial variations between separate measuring points were vastly overridden by a huge overall increase of the infiltration rates observed throughout the years. The observed variability of the experimental data was further examined in numerical simulations of hypothetical scenarios reflecting possible variations of soil profile and experimental set-up. Axisymmetric 3D simulations were performed using S2D code. The dual-continuum model was able to describe part of the variability of infiltration curves associated with soil structure heterogeneity. None of the tested factors could explain the wide range of infiltration rate variations observed. Nevertheless, better agreement between simulated and observed infiltration characteristics could be achieved

  19. Simultaneous Measurement of Air Temperature and Humidity Based on Sound Velocity and Attenuation Using Ultrasonic Probe

    NASA Astrophysics Data System (ADS)

    Motegi, Takahiro; Mizutani, Koichi; Wakatsuki, Naoto

    2013-07-01

    In this paper, an acoustic technique for air temperature and humidity measurement in moist air is described. The previous ultrasonic probe can enable the estimation of temperature from sound velocity in dry air by making use of the relationship between sound velocity and temperature. However, temperature measurement using the previous ultrasonic probe is not suitable in moist air because sound velocity also depends on humidity, and the temperature estimated from the sound velocity measured in moist air must be adjusted. Moreover, a method of humidity measurement by using only an ultrasonic probe has not been established. Thus, we focus on sound attenuation, which depends on temperature and humidity. Our proposed technique utilizes two parameters, sound velocity and attenuation, and can measure both temperature and humidity simultaneously. The acoustic technique for temperature and humidity measurement has the advantages that instantaneous temperature and humidity can be measured, and the measurement is not affected by thermal radiation because air itself is used as a sensing element. As an experiment, temperature and humidity are measured in a chamber, and compared with the reference values. The experimental results indicate the achievement of a practical temperature measurement accuracy of within +/-0.5 K in moist air, of which the temperature is 293-308 K and relative humidity (RH) is 50-90% RH, and the simultaneous measurement of temperature and humidity.

  20. Air-Supported Anti-Infiltration Barrier.

    DTIC Science & Technology

    1966-08-01

    traff isuon tho r ation its cant in an nanner an u thorix orson i rohibito by low. EX OMf E DOWNGRADDTOROM CNFIDENTIL TO U0C -IN ACCORDANCE WJWH...Murray Kamrass and Dr. W. Scott Payne, of IDA/RESD, for gathering much of the background information on costs and sortie capability that made these

  1. 30 CFR 75.320 - Air quality detectors and measurement devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air quality detectors and measurement devices... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.320 Air quality detectors and measurement devices. (a) Tests for methane shall be made by a qualified person...

  2. Monte Carlo simulation of air sampling methods for the measurement of radon decay products.

    PubMed

    Sima, Octavian; Luca, Aurelian; Sahagia, Maria

    2017-02-21

    A stochastic model of the processes involved in the measurement of the activity of the (222)Rn decay products was developed. The distributions of the relevant factors, including air sampling and radionuclide collection, are propagated using Monte Carlo simulation to the final distribution of the measurement results. The uncertainties of the (222)Rn decay products concentrations in the air are realistically evaluated.

  3. A Simple Experiment To Measure the Content of Oxygen in the Air Using Heated Steel Wool

    ERIC Educational Resources Information Center

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The typical experiment to measure the oxygen content in the atmosphere uses the rusting of steel wool inside a closed volume of air. Two key aspects of this experiment that make possible a successful measurement of the content of oxygen in the air are the use of a closed atmosphere and the use of a chemical reaction that involves the oxidation of…

  4. 30 CFR 75.320 - Air quality detectors and measurement devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air quality detectors and measurement devices... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.320 Air quality detectors and measurement devices. (a) Tests for methane shall be made by a qualified person...

  5. Air-bearing spin facility for measuring energy dissipation

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.

    1976-01-01

    The air-bearing spin facility was developed to determine experimentally the effect of energy dissipation upon the motion of spinning spacecraft. The facility consists of an air-bearing spin table, a telemetry system, a command system, and a ground control station. The air-bearing spin table was designed to operate in a vacuum chamber. Tests were run on spacecraft components such as fuel tanks, nutation dampers, reaction wheels, and active nutation damper systems. Each of these items affected the attitude of a spinning spacecraft. An experimental approach to determine these effects was required because the dissipation of these components could not be adequately analyzed. The results of these experiments have been used, with excellent results, to predict spacecraft motion.

  6. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  7. Eosinophilic Liver Infiltration

    PubMed Central

    Figueroa Rivera, Ivonne; Toro, Doris H.; Gutierrez, Jose; Acosta, Eduardo

    2015-01-01

    Eosinophilic liver infiltration is a commonly encountered focal eosinophil-related inflammation with or without necrosis, which can be seen on computed tomography (CT) in the presence of peripheral eosinophilia. Although this entity has a relatively benign course, it is related to numerable conditions for which diagnosis may be challenging and requires substantial diagnostic work-up for proper management and care of the underlying disease. We report a case of a 60-year-old man who presented with a 1-week history of right upper quadrant abdominal pain with multiple ill-defined liver hypodensities associated with significant eosinophilia. PMID:26504883

  8. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1991-01-01

    Progress was made on the preparation of carbon fiber composites using advanced polymer resins. Processes reported include powder towpreg process, weaving towpreg made from dry powder prepreg, composite from powder coated towpreg, and toughening of polyimide resin (PMR) composites by semi-interpenetrating networks. Several important areas of polymer infiltration into fiber bundles will be researched. Preparation to towpreg for textile preform weaving and braiding and for automated tow placement is a major goal, as are the continued development of prepregging technology and the various aspects of composite part fabrication.

  9. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1995-01-01

    Polymer infiltration investigations were directed toward development of methods by which to produce advanced composite material for automated part fabrication utilizing textile and robotic technology in the manufacture of subsonic and supersonic aircraft. Significant progress was made during the project on the preparation of carbon fiber composites using advanced polymer resins. The findings and results of the project are summarized in the attached paper entitled 'Powder-Coated Towpreg: Avenues to Near Net Shape Fabrication of High Performance Composite.' Also attached to this report is the second of two patent applications submitted as a result of these studies.

  10. High-precision diode-laser-based temperature measurement for air refractive index compensation

    SciTech Connect

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

  11. Water and Air Measures That Make 'PureSense'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Each day, we read about mounting global concerns regarding the ability to sustain supplies of clean water and to reduce air contamination. With water and air serving as life s most vital elements, it is important to know when these environmental necessities may be contaminated, in order to eliminate exposure immediately. The ability to respond requires an understanding of the conditions impacting safety and quality, from source to tap for water, and from outdoor to indoor environments for air. Unfortunately, the "time-to-know" is not immediate with many current technologies, which is a major problem, given the greater likelihood of risky situations in today s world. Accelerating alert and response times requires new tools, methods, and technologies. New solutions are needed to engage in more rapid detection, analysis, and response. This is the focus of a company called PureSense Environmental, Inc., which evolved out of a unique relationship with NASA. The need for real-time management and operations over the quality of water and air, and the urgency to provide new solutions, were reinforced by the events of September 11, 2001. This, and subsequent events, exposed many of the vulnerabilities facing the multiple agencies tasked with working in tandem to protect communities from harmful disaster. Much has been done since September 11 to accelerate responses to environmental contamination. Partnerships were forged across the public and private sectors to explore, test, and use new tools. Methods and technologies were adopted to move more astutely from proof-of-concept to working solutions.

  12. Measurement of air pollutants from satellites. I - Feasibility considerations

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Griggs, M.; Malkmus, W.; Bartle, E. R.

    1974-01-01

    The feasibility of observing air pollutants from satellite-borne sensors is investigated. Radiative transfer calculations, using both line-by-line and band-model methods, are made to establish the signal changes that originate from the presence of various amounts of pollutants in the atmosphere. The effect of interfering species is considered.

  13. Measurements of vertical air currents in the atmosphere

    NASA Technical Reports Server (NTRS)

    Lange, K O

    1931-01-01

    To summarize, the experiments with balloons, sailplanes and light airplanes conducted thus far, reveal the vertical velocities of the air to be primarily dependent on the vertical temperature distribution. Stable stratifications result in up-and-down currents forced by the contour of the ground, which are readily recognized in flight and, if need be, may be avoided.

  14. Jena Reference Air Set (JRAS): a multi-point scale anchor for isotope measurements of CO2 in air

    NASA Astrophysics Data System (ADS)

    Wendeberg, M.; Richter, J. M.; Rothe, M.; Brand, W. A.

    2013-03-01

    The need for a unifying scale anchor for isotopes of CO2 in air was brought to light at the 11th WMO/IAEA Meeting of Experts on Carbon Dioxide in Tokyo 2001. During discussions about persistent discrepancies in isotope measurements between the worlds leading laboratories, it was concluded that a unifying scale anchor for Vienna Pee Dee Belemnite (VPDB) of CO2 in air was desperately needed. Ten years later, at the 2011 Meeting of Experts on Carbon Dioxide in Wellington, it was recommended that the Jena Reference Air Set (JRAS) become the official scale anchor for isotope measurements of CO2 in air (Brailsford, 2012). The source of CO2 used for JRAS is two calcites. After releasing CO2 by reaction with phosphoric acid, the gases are mixed into CO2-free air. This procedure ensures both isotopic stability and longevity of the CO2. That the reference CO2 is generated from calcites and supplied as an air mixture is unique to JRAS. This is made to ensure that any measurement bias arising from the extraction procedure is eliminated. As every laboratory has its own procedure for extracting the CO2, this is of paramount importance if the local scales are to be unified with a common anchor. For a period of four years, JRAS has been evaluated through the IMECC1 program, which made it possible to distribute sets of JRAS gases to 13 laboratories worldwide. A summary of data from the six laboratories that have reported the full set of results is given here along with a description of the production and maintenance of the JRAS scale anchors. 1 IMECC refers to the EU project "Infrastructure for Measurements of the European Carbon Cycle" (http://imecc.ipsl.jussieu.fr/).

  15. Wind estimation using air data probe measurements to evaluate meteorological measurements made during Space Shuttle entries

    NASA Technical Reports Server (NTRS)

    Kelly, G. M.; Findlay, J. T.; Compton, H. R.

    1982-01-01

    Deterministic and weighted least squares methods for obtaining estimates of the horizontal winds encountered during the Shuttle entry phase are described. The estimates are based on in situ Air Data System (ADS) measurements of angle-of-attack, side-slip angle and true airspeed, in conjunction with inertial trajectory parameters obtained from the post flight trajectory reconstruction. Accuracies in the wind estimates obtained from each method are assessed using both theoretical arguments and flight results. Comparisons of derived winds with meteorological measurements taken during the first three Shuttle entries have demonstrated: (1) the usefulness of the wind estimators for evaluating meteorological measurements below 50 kft, and (2) the potential for adequate wind determinations in the absence of independent wind measurements. Comparisons of STS-3 flight-derived L/D versus predicted values from the LaRC aerodynamic data base are presented from 50 kft to touchdown. These results exemplify the importance of such determinations to enhance the ongoing Shuttle aerodynamic and aerothermodynamic research.

  16. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  17. A hydrologic analysis for the infiltration basins planned on Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Lee, S.; Kang, T.; Lee, J.; Kang, S.

    2010-12-01

    Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Infiltration basins can be a method to receive storm water and to let the water move into the soil. The contents of the study include a hydrologic analysis on a site and an evaluation of the capacity of infiltration basins planned on the site. Most region of Jeju Island, Korea is highly pervious. Three infiltration basins were designed on the area of the Jeju English Education City. To evaluate adequacy of the capacities of the infiltration basins, infiltration rates were measured and storm water runoff was simulated. Infiltration rates on the surface of the reserved land for infiltration basins were measured by a standard double ring infiltrometer or a small infiltrometer. A FORTRAN version of SWMM was modified to incorporate the infiltration basin and the basic equations of the infiltration basin are same as those of the infiltration trench used in MIDUSS. The code modified was used to simulate storm runoff from watersheds, infiltration from the infiltration basins, and reservoir routing of the infiltration basins. The saturated hydraulic conductivities on the reserved sites were measured by 0.0068, 0.0038, and 0.00017 cm/sec. The return period of the design rainfall is fifty years. The following results were obtained from a hydrologic analysis on the watersheds and the infiltration basins to be built. The two infiltration basins with higher infiltration rates have adequate capacities to infiltrate the total water inflow to the basins. Some water, however releases from the other infiltration basin and the capacity of the basin is not sufficient to infiltrate the total runoff after the land use change. A channel is needed in which the water released from the less pervious basin flows. The hydrologic analysis method of the study can be used for capacity evaluation of future infiltration basins on highly pervious areas in

  18. Single-zone stack-dominated infiltration modeling

    SciTech Connect

    Sherman, M.H.

    1991-09-01

    Simplified, physical models for calculating infiltration in a single zone, usually calculate the air flows from the natural driving forces separately and then combine them. For most purposes -- especially minimum ventilation or energy considerations -- the stack effect dominates and total ventilation can be calculated by treating other effects (i.e., wind and small fans) as perturbations, using superposition techniques. The stack effect is caused by differences in density between indoor and outdoor air, normally attributable to the indoor-outdoor temperature difference. This report derives an exact, but practical, expression for calculating the stack effect from the air densities and leakage distribution using the power law formulation of envelope leakage. The neutral height -- the height at which there is no stack-related indoor-outdoor pressure difference -- is a key intermediate in stack modeling. This report defines a computable parameter called stack height, which contains all of the leakage distribution information necessary for estimating stack flows, thus freeing the model from specific assumptions (e.g., that the leakage is separable into evenly distributed floor, wall, and ceiling components). Example calculations including comparisons with other models, as well as validations using measured data from dwellings, are also presented. The dimensionless neutral level, which is related to the neutral height, is often used as an indicator of leakage distribution and in superposition. Its definition and role in these regards are discussed in detail. The more exact formulation is then used to analyze the simple box cases normally assumed in infiltration modeling and other approximations. Measured ventilation data will be used to infer leakage distributions and neutral levels as well as for example calculations.

  19. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites

    NASA Astrophysics Data System (ADS)

    Poissant, Laurier; Casimir, Alain

    In order to evaluate and understand the processes of water-air and soil-air exchanges involved at background sites, an intensive field measurement campaign has been achieved during the summer of 1995 using high-time resolution techniques (10 min) at two sites (land and water) in southern Québec (Canada). Mercury flux was measured using a dynamic flux chamber technique coupled with an automatic mercury vapour-phase analyser (namely, Tekran®). The flux chamber shows that the rural grassy site acted primarily as a source of atmospheric mercury, its flux mimicked the solar radiation, with a maximum daytime value of ˜ 8.3 ng m -2 h -1 of TGM. The water surface location (St. Lawrence River site located about 3 km from the land site) shows deposition and evasion fluxes almost in the same order of magnitude (-0.5 vs 1.0 ng m -2 h -1).The latter is influenced to some extent by solar radiation but primarily by the formation of a layer of stable air over the water surface in which some redox reactions might promote evasion processes over the water surface. This process does not appear over the soil surface. As a whole, soil-air exchange rate is about 6-8 fold greater than the water-air exchange.

  20. Controlling indoor air pollution from tobacco smoke: models and measurements

    SciTech Connect

    Offermann, F.J.; Girman, J.R.; Sextro, R.G.

    1984-07-01

    The effects of smoking rate, ventilation, surface deposition, and air cleaning on the indoor concentrations of respirable particulate matter and carbon monoxide generated by cigarette smoke are examined. A general mass balance model is presented which has been extended to include the concept of ventilation efficiency. Following a review of the source and removal terms associated with respirable particles and carbon monoxide, model predictions to various health guidelines are compared. 20 references, 1 figure.

  1. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  2. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect

    Springer, David; Dakin, Bill

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  3. Culture systems: air quality.

    PubMed

    Thomas, Theodore

    2012-01-01

    Poor laboratory air quality is a known hazard to the culture of human gametes and embryos. Embryologists and chemists have employed analytical methods for identifying and measuring bulk and select air pollutants to assess the risk they pose to the embryo culture system. However, contaminant concentrations that result in gamete or embryotoxicity are poorly defined. Combating the ill effects of poor air quality requires an understanding of how toxicants can infiltrate the laboratory, the incubator, and ultimately the culture media. A further understanding of site-specific air quality can then lead to the consideration of laboratory design and management strategies that can minimize the deleterious effects that air contamination may have on early embryonic development in vitro.

  4. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  5. Measure Guideline: Air Sealing Mechanical Closets in Slab-On-Grade Homes

    SciTech Connect

    Dickson, B.

    2012-02-01

    This measure guideline describes covers two fundamental retrofit strategies for air sealing around air handling systems that are located within the living space in an enclosed closet: one in which all of the equipment is removed and being replaced, and a closet where the equipment is to remain and existing conditions are sealed. It includes the design and installation details necessary to effectively seal the air handler closet and central return system to maximize the efficiency and safety of the space conditioning system.

  6. Measure Guideline. Air Sealing Mechanical Closets in Slab-on-Grade Homes

    SciTech Connect

    Dickson, Bruce

    2012-02-01

    This measure guideline describes two fundamental retrofit strategies for air sealing around air handling systems that are located within the living space in an enclosed closet: one in which all of the equipment is removed and being replaced, and a closet where the equipment is to remain and existing conditions are sealed. It includes the design and installation details necessary to effectively seal the air handler closet and central return system to maximize the efficiency and safety of the space conditioning system.

  7. Measurements of the Air-Sea Interface from an Instrumented Small Buoy

    DTIC Science & Technology

    2011-09-01

    xiv THIS PAGE INTENTIONALLY LEFT BLANK xv LIST OF ACRONYMS AND ABBREVIATIONS ASIT Air Sea Interaction Tower ASIS Air-sea Interaction Spar...or the Air-sea Interaction Tower (ASIT, Edson et al. 2007). Research buoys are an alternative to the stabilized platforms. One such buoy is the...instrument suite was deployed on the R/V Sproul in both 2009 and 2010. The basic instruments included one or two flux measurement towers , a

  8. Thermal separation of soil particles from thermal conductivity measurement under various air pressures

    NASA Astrophysics Data System (ADS)

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-01

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  9. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    PubMed

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  10. Thermal separation of soil particles from thermal conductivity measurement under various air pressures

    PubMed Central

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-01

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation. PMID:28054663

  11. On The Valuation of Infiltration towards Meeting Residential Ventilation Needs

    SciTech Connect

    Sherman, Max H.

    2008-09-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. It can be provided by mechanical or natural means. In most homes, especially existing homes, infiltration provides the dominant fraction of the ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago.

  12. Sorptivity and liquid infiltration into dry soil

    NASA Astrophysics Data System (ADS)

    Culligan, Patricia J.; Ivanov, Vladimir; Germaine, John T.

    2005-10-01

    The sorptivity S quantifies the effect of capillarity on liquid movement in a porous material. For liquid infiltration into an initially dry material, S is a parameter that is contingent on both liquid and material properties as well as the maximum liquid content behind the infiltrating front, θm. Scaling analyses are used to derive a dimensionless, intrinsic sorptivity S∗ that is constant for different liquids, Miller-similar materials and different values of θm. The analyses confirm that S is dependent on β1/2, where β = cos ϕ is a measure of the wettability of the liquid. They also indicate a power law relationship between S and Se(av), the average liquid saturation behind the infiltrating front. Seventeen water and eleven Soltrol 220 horizontal infiltration experiments are reported in uniform, dry sand. Test results show that water is partially wetting in the sand. They also confirm that S∝Se(av)d, where d = 3.2 for the experimental conditions. The usefulness of a general, dimensionless Boltzmann variable is demonstrated to normalize infiltration profiles for the different liquids. An approximate method for sorptivity calculation is shown to provide an accurate estimate of S∗.

  13. Greatly Increased Toughness of Infiltrated Spider Silk

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Mo; Pippel, Eckhard; Gösele, Ulrich; Dresbach, Christian; Qin, Yong; Chandran, C. Vinod; Bräuniger, Thomas; Hause, Gerd; Knez, Mato

    2009-04-01

    In nature, tiny amounts of inorganic impurities, such as metals, are incorporated in the protein structures of some biomaterials and lead to unusual mechanical properties of those materials. A desire to produce these biomimicking new materials has stimulated materials scientists, and diverse approaches have been attempted. In contrast, research to improve the mechanical properties of biomaterials themselves by direct metal incorporation into inner protein structures has rarely been tried because of the difficulty of developing a method that can infiltrate metals into biomaterials, resulting in a metal-incorporated protein matrix. We demonstrated that metals can be intentionally infiltrated into inner protein structures of biomaterials through multiple pulsed vapor-phase infiltration performed with equipment conventionally used for atomic layer deposition (ALD). We infiltrated zinc (Zn), titanium (Ti), or aluminum (Al), combined with water from corresponding ALD precursors, into spider dragline silks and observed greatly improved toughness of the resulting silks. The presence of the infiltrated metals such as Al or Ti was verified by energy-dispersive x-ray (EDX) and nuclear magnetic resonance spectra measured inside the treated silks. This result of enhanced toughness of spider silk could potentially serve as a model for a more general approach to enhance the strength and toughness of other biomaterials.

  14. Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks.

    PubMed

    Brown, Andrew S; Brown, Richard J C; Coleman, Peter J; Conolly, Christopher; Sweetman, Andrew J; Jones, Kevin C; Butterfield, David M; Sarantaridis, Dimitris; Donovan, Brian J; Roberts, Ian

    2013-06-01

    The impact of human activities on the health of the population and of the wider environment has prompted action to monitor the presence of toxic compounds in the atmosphere. Toxic organic micropollutants (TOMPs) are some of the most insidious and persistent of these pollutants. Since 1991 the United Kingdom has operated nationwide air quality networks to assess the presence of TOMPs, including polycyclic aromatic hydrocarbons (PAHs), in ambient air. The data produced in 2010 marked 20 years of nationwide PAH monitoring. This paper marks this milestone by providing a novel and critical review of the data produced since nationwide monitoring began up to the end of 2011 (the latest year for which published data is available), discussing how the networks performing this monitoring has evolved, and elucidating trends in the concentrations of the PAHs measured. The current challenges in the area and a forward look to the future of air quality monitoring for PAHs are also discussed briefly.

  15. Infiltration of outdoor ultrafine particles into a test house.

    PubMed

    Rim, Donghyun; Wallace, Lance; Persily, Andrew

    2010-08-01

    Ultrafine particles (UFP) (<100 nm) have been related to adverse human health effects such as oxidative stress and cardiovascular mortality. However, human exposure to particles of outdoor origin is heavily dependent on their infiltration into homes. The infiltration factor (Finf) and its variation as a function of several factors becomes of enormous importance in epidemiological studies. The objective of this study is to investigate the transport of UFP into a residential building and to determine the functional dependence of infiltration on particle size and air change rate. A secondary objective was to estimate the values of the penetration coefficient P and composite deposition rate kcomp that enter into the definition of Finf. Using continuous measurements of indoor and outdoor concentrations of size-resolved particles ranging from 5 to 100 nm in a manufactured test house, particle penetration through the building, composite deposition, and the resulting value of Finf were calculated for two cases: closed windows and one window open 7.5 cm. Finf ranged from close to 0 (particles<10 nm) to 0.3 (particles>80 nm) with windows closed and from 0 to 0.6 with one window open. The penetration coefficient (closed windows) increased from about 0.2 for 10-nm particles to an asymptote near 0.6 for particles from 30-100 nm. Open window penetration coefficients were higher, ranging from 0.6 to 0.8. Closed-window composite deposition rates, which included losses to the furnace filter and to the ductwork as well as to interior surfaces, monotonically decreased from levels of about 1.5 h(-1) for 10-nm particles to 0.3 h(-1) for 100-nm particles. For the open-window case, composite deposition rates were higher for particles<20 nm, reaching values of 3.5 h(-1). Mean standard errors associated with estimates of P, kcomp, and Finf for two series of measurements ranged from 1.0% to 4.4%.

  16. Measurement of Pressure Dependent Fluorescence Yield of Air: Calibration Factor for UHECR Detectors

    SciTech Connect

    Belz, J.W.; Burt, G.W.; Cao, Z.; Chang, F.Y.; Chen, C.C.; Chen, C.W.; Chen, P.; Field, C.; Findlay, J.; Huntemeyer, Petra; Huang, M.A.; Hwang, W.-Y.P.; Iverson, R.; Jones, B.F.; Jui, C.C.H.; Kirn, M.; Lin, G.-L.; Loh, E.C.; Maestas, M.M.; Manago, N.; Martens, K.; /Montana U. /Utah U. /Taiwan, Natl. Taiwan U. /SLAC /Rutgers U., Piscataway

    2005-07-06

    In a test experiment at the Final Focus Test Beam of the Stanford Linear Accelerator Center, the fluorescence yield of 28.5 GeV electrons in air and nitrogen was measured. The measured photon yields between 300 and 400 nm at 1 atm and 29 C are Y(760 Torr){sup air} = 4.42 {+-} 0.73 and Y(760 Torr){sup N{sub 2}} = 29.2 {+-} 4.8 photons per electron per meter. Assuming that the fluorescence yield is proportional to the energy deposition of a charged particle traveling through air, good agreement with measurements at lower particle energies is observed.

  17. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1992-01-01

    Progress was made in several areas on the preparation of carbon fiber composites using advanced polymer resins. Polymer infiltration studies dealt with ways of preparing composite materials from advanced polymer resins and carbon fibers. This effort is comprised of an integrated approach to the process of composite part fabrication. The goal is to produce advanced composite materials for automated part fabrication using textile and robotics technology in the manufacture of subsonic and supersonic aircraft. The object is achieved through investigations at the NASA Langley Research Center and by stimulating technology transfer between contract researchers and the aircraft industry. Covered here are literature reviews, a status report on individual projects, current and planned research, publications, and scheduled technical presentations.

  18. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  19. Subsidence, Mixing and Denitrification of Polar Vortex Air Measured During Polaris

    NASA Technical Reports Server (NTRS)

    Rex, M.; Salawitch, R.; Toon, G.; Sen, B.; Margitan, J.; Osterman, G.; Blavier, J.; Gao, R.; Del Negro, L.; Donnelly, S.; Keim, E.; Neuman, J.; Fahey, D.; Webster, C.; Scott, D.; Herman, B.; May, R.; Moyer, L.; Gunson, M.; Irion, F.; Chang, A.; Rinsland, R.; Bui, P.; Loewenstein, M.

    1998-01-01

    We use the correlation between CH(sub 4) and N(sub 2)O as measured during the POLARIS campaign in spring 1997 to estimate the degree of mixing between descended air masses from the vortex and air masses from mid-latitudes.

  20. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    ERIC Educational Resources Information Center

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the…

  1. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attié, J.-L.; El Amraoui, L.; Duncan, B.

    2013-06-01

    This study tests a novel methodology to add value to satellite datasets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite dataset, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these datasets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS/TES and AIRS/MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only retrievals, and improved coverage compared with TES and MLS CO data.

  2. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attié, J.-L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  3. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  4. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  5. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent of full-scale value of the measurement device for all modes except the idle mode. For the idle mode, the measurement accuracy must be ±five percent or less of the full-scale value. The...

  6. Measurement of velocity of air flow in the sinus maxillaris.

    PubMed

    Müsebeck, K; Rosenberg, H

    1979-03-01

    Anemometry with the hot wire and hot film technique previously described, enables the rhinologist to record slow and rapidly changing air flow in the maxillary sinus. The advantages and disadvantages of this method are considered. Anemometry together with manometry may be designated sinumetry and used as a diagnostic procedure following sinuscopy in chronic maxillary sinus disease. The value of the function from velocity of time allows the estimation of flow-volume in the sinus. Furthermore, the method is useful to evaluate the optimal therapy to restore ventilation in the case of an obstructed ostium demonstrated before and after surgical opening in the inferior meatus.

  7. Evaluation of an Infiltration Model with Microchannels

    NASA Astrophysics Data System (ADS)

    Garcia-Serrana, M.; Gulliver, J. S.; Nieber, J. L.

    2015-12-01

    This research goal is to develop and demonstrate the means by which roadside drainage ditches and filter strips can be assigned the appropriate volume reduction credits by infiltration. These vegetated surfaces convey stormwater, infiltrate runoff, and filter and/or settle solids, and are often placed along roads and other impermeable surfaces. Infiltration rates are typically calculated by assuming that water flows as sheet flow over the slope. However, for most intensities water flow occurs in narrow and shallow micro-channels and concentrates in depressions. This channelization reduces the fraction of the soil surface covered with the water coming from the road. The non-uniform distribution of water along a hillslope directly affects infiltration. First, laboratory and field experiments have been conducted to characterize the spatial pattern of flow for stormwater runoff entering onto the surface of a sloped surface in a drainage ditch. In the laboratory experiments different micro-topographies were tested over bare sandy loam soil: a smooth surface, and three and five parallel rills. All the surfaces experienced erosion; the initially smooth surface developed a system of channels over time that increased runoff generation. On average, the initially smooth surfaces infiltrated 10% more volume than the initially rilled surfaces. The field experiments were performed in the side slope of established roadside drainage ditches. Three rates of runoff from a road surface into the swale slope were tested, representing runoff from 1, 2, and 10-year storm events. The average percentage of input runoff water infiltrated in the 32 experiments was 67%, with a 21% standard deviation. Multiple measurements of saturated hydraulic conductivity were conducted to account for its spatial variability. Second, a rate-based coupled infiltration and overland model has been designed that calculates stormwater infiltration efficiency of swales. The Green-Ampt-Mein-Larson assumptions were

  8. Measuring Concentrations of Particulate 140La in the Air

    SciTech Connect

    Okada, Colin E.; Kernan, Warnick; Keillor, Martin; Kirkham, Randy; Sorom, Rich D.; Van Etten, Don M.

    2016-01-01

    This article discusses deployment of air-samplers to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device experiments. Positioned 100-600 meters downwind of the release point, the filters were collected immediately and analyzed in a field laboratory. The article discusses quantities for total activity collected on the air filters as well as additional information to compute the average or integrated air concentrations. In the case of a public emergency, this type of information would be important for decision makers and responders.

  9. Optical detection of intravenous infiltration

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W.; Chou, Nee-Yin

    2006-02-01

    Infiltration of medications during infusion therapy results in complications ranging from erythema and pain to tissue necrosis requiring amputation. Infiltration occurs from improper insertion of the cannula, separation of the cannula from the vein, penetration of the vein by the cannula during movement, and response of the vein to the medication. At present, visual inspection by the clinical staff is the primary means for detecting intravenous (IV) infiltration. An optical sensor was developed to monitor the needle insertion site for signs of IV infiltration. Initial studies on simulated and induced infiltrations on a swine model validated the feasibility of the methodology. The presence of IV infiltration was confirmed by visual inspection of the infusion site and/or absence of blood return in the IV line. Potential sources of error due to illumination changes, motion artifacts, and edema were also investigated. A comparison of the performance of the optical device and blinded expert observers showed that the optical sensor has higher sensitivity and specificity, and shorter detection time than the expert observers. An improved model of the infiltration monitoring device was developed and evaluated in a clinical study on induced infiltrations of healthy adult volunteers. The performance of the device was compared with the observation of a blinded expert observer. The results show that the rates of detection of infiltrations are 98% and 82% for the optical sensor and the observer, respectively. The sensitivity and specificity of the optical sensor are 0.97 and 0.98, respectively.

  10. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  11. Instruments for measuring the amount of moisture in the air

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1978-01-01

    A summarization and discussion of the many systems available for measuring moisture in the atmosphere is presented. Conventional methods used in the field of meteorology and methods used in the laboratory are discussed. Performance accuracies, and response of the instruments were reviewed as well as the advantages and disadvantages of each. Methods of measuring humidity aloft by instrumentation onboard aircraft and balloons are given, in addition to the methods used to measure moisture at the Earth's surface.

  12. Measurements of the proton-air cross section with high energy cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Abbasi, Rasha

    2016-07-01

    Detecting Ultra High Energy Cosmic Rays (UHECRs) enables us to measure the proton-air inelastic cross section σinel p-air at energies that we are unable to access with particle accelerators. The proton-proton cross section σp-p is subsequently inferred from the proton-air cross section at these energies. UHECR experiments have been reportingon the proton-air inelastic cross section starting with the Fly's Eye in 1984 at √s =30 TeV and ending with the most recent result of the Telescope Array experiment at √s = 95 TeV in 2015. In this proceeding, I will summarize the most recent experimental results on the σinel p-air measurements from the UHECR experiments.

  13. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    NASA Technical Reports Server (NTRS)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; Supper, W.

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  14. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  15. Airborne measurements of air pollution chemistry and transport. 1: Initial survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Pitts, J. N., Jr.; Behar, J. V.; Bradburn, G. A.; Reinisch, R. F.; Zafonte, L.

    1972-01-01

    An instrumented aircraft has been used to study photochemical air pollution in the State of California. Simultaneous measurements of the most important chemical constituents (ozone, total oxidant, hydrocarbons, and nitrogen oxides, as well as several meteorological variables) were made. State-of-the-art measurement techniques and sampling procedures are discussed. Data from flights over the South Coast Air Basin, the San Francisco Bay Area, the San Joaquin Valley, the Santa Clara and Salinas Valleys, and the Pacific Ocean within 200 miles of the California coast are presented. Pollutants were found to be concentrated in distant layers up to at least 18,000 feet. In many of these layers, the pollutant concentrations were much higher than at ground level. These findings bring into serious question the validity of the present practice of depending solely on data from ground-based monitoring stations for predictive models.

  16. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    NASA Astrophysics Data System (ADS)

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the displacement antinodes enables the measurement of the wavelength of the sound that is being used. This paper describes a design that uses a speaker instead of the traditional aluminum rod as the sound source. This allows the use of multiple sound frequencies that yield a much more accurate speed of sound in air.

  17. Measurement of the Group Velocity Dispersion of air using a femtosecond comb

    NASA Astrophysics Data System (ADS)

    Al salamah, Reem

    In this thesis, the Group Velocity Dispersion (GVD) of air has been measured by using a femtosecond frequency comb at 1.5 microm. By comparing the spectra from a balanced and unbalanced Mach - Zehnder interferometer, the need for vacuum tube is eliminated. The method employs the Fast Fourier Transform of both auto- and cross correlation to find the spectral and their differences. The GVD of air is then calculated from these spectral phase differences. With twenty-five independent measurements, the GVD of air was found to be 0.0120 fs2/mm, with a standard deviation of 0.0075 fs2/mm.

  18. Flow measurement in base cooling air passages of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1974-01-01

    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent.

  19. Slip-length measurement of confined air flow using dynamic atomic force microscopy.

    PubMed

    Maali, Abdelhamid; Bhushan, Bharat

    2008-08-01

    We present an experimental measurement of the slip length of air flow close to solid surfaces using an atomic force microscope (AFM) in dynamic mode. The air was confined between a glass surface and a spherical glass particle glued to an AFM cantilever. The Knudsen number was varied continuously over three decades by varying the distance between the two surfaces. Our results show that the effect of confining the air is purely dissipative. The data are described by an isothermal Maxwell slip-boundary condition, and the measured slip-length value was 118 nm .

  20. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  1. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.

    2016-02-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human

  2. Aircraft Measurements for Understanding Air-Sea Coupling and Improving Coupled Model Predictions

    DTIC Science & Technology

    2013-09-30

    concern since we do not expect to measure turbulence at that high altitude). The LI-COR 7200 and Krypton fast humidity data were calibrated against...measurements. Our modified krypton hygrometer is a good alternative to the obsolete AIR Lyman-alpha for fast-response humidity measurements from research

  3. [Lung infiltrations in Hodgkin lymphoma].

    PubMed

    Ciurea-Löchel, A; Ciurea, A; Stey, C; Pestalozzi, B

    2001-08-02

    We report the case of a young patient presenting with cervical lymphadenopathy and interstitial pulmonary infiltrates due to Hodgkin's Disease. Although lung involvement regressed under chemotherapy, we observed new alveolar infiltrates during treatment. Steroid administration after exclusion of an infectious cause was followed by rapid clinical and radiological improvement, indicating the probable presence of pulmonary bleomycine toxicity.

  4. Ring Infiltrate in Staphylococcal Keratitis

    PubMed Central

    Wallang, Batriti S.; Sharma, Savitri; Sahu, Srikant K.; Mittal, Ruchi

    2013-01-01

    Smear and culture tests of corneal scrapings from a patient with a ring infiltrate confirmed significant growth of a Staphylococcus species resistant to fluoroquinolones. Because of nonresponse to medical management, the patient underwent therapeutic penetrating keratoplasty. Staphylococcal infection of the cornea may appear as a ring-like infiltrate that is recalcitrant to medical management. PMID:23100354

  5. Infiltration/cure modeling of resin transfer molded composite materials using advanced fiber architectures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Weideman, Mark H.; Long, Edward R., Jr.; Kranbuehl, David E.; Kinsley, Philip J.; Hart, Sean M.

    1991-01-01

    A model was developed which can be used to simulate infiltration and cure of textile composites by resin transfer molding. Fabric preforms were resin infiltrated and cured using model generated optimized one-step infiltration/cure protocols. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin infiltration and cure during processing. FDEMS measurements of infiltration time, resin viscosity, and resin degree of cure agreed well with values predicted by the simulation model. Textile composites fabricated using a one-step infiltration/cure procedure were uniformly resin impregnated and void free. Fiber volume fraction measurements by the resin digestion method compared well with values predicted using the model.

  6. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating range during the test. Overall measurement accuracy must be ±2 percent of full-scale value of the... percent or less of the full-scale value. The Administrator must be advised of the method used prior...

  7. Time-of-Flight Measurement of Sound Speed in Air

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2011-01-01

    This paper describes a set of simple experiments with a very low cost using a notebook as a measuring instrument without external hardware. The major purpose is to provide demonstration experiments for schools with very low budgets. (Contains 6 figures.)

  8. Using a choice experiment to measure the environmental costs of air pollution impacts in Seoul.

    PubMed

    Yoo, Seung-Hoon; Kwak, Seung-Jun; Lee, Joo-Suk

    2008-01-01

    Air pollution, a by-product of economic growth, has been incurring extensive environmental costs in Seoul, Korea. Unfortunately, air pollution impacts are not treated as a commercial item, and thus it is difficult to measure the environmental costs arising from air pollution. There is an imminent need to find a way to measure air pollution impacts so that appropriate actions can be taken to control air pollution. Therefore, this study attempts to apply a choice experiment to quantifying the environmental costs of four air pollution impacts (mortality, morbidity, soiling damage, and poor visibility), using a specific case study of Seoul. We consider the trade-offs between price and attributes of air pollution impacts for selecting a preferred alternative and derive the marginal willingness to pay (WTP) estimate for each attribute. According to the results, the households' monthly WTP for a 10% reduction in the concentrations of major pollutants in Seoul was found to be approximately 5494 Korean won (USD 4.6) and the total annual WTP for the entire population of Seoul was about 203.4 billion Korean won (USD 169.5 million). This study is expected to provide policy-makers with useful information for evaluating and planning environmental policies relating specifically to air pollution.

  9. High-accuracy long-distance measurements in air with a frequency comb laser.

    PubMed

    Cui, M; Zeitouny, M G; Bhattacharya, N; van den Berg, S A; Urbach, H P; Braat, J J M

    2009-07-01

    We experimentally demonstrate that a femtosecond frequency comb laser can be applied as a tool for long-distance measurement in air. Our method is based on the measurement of cross correlation between individual pulses in a Michelson interferometer. From the position of the correlation functions, distances of up to 50 m have been measured. We have compared this measurement to a counting laser interferometer, showing an agreement with the measured distance within 2 microm (4x10(-8) at 50 m).

  10. A falling-pressure method for measuring air permeability of asphalt in laboratory

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Jiao, Jiu Jimmy; Luk, Mario

    2004-01-01

    This paper presents a simple analytical solution for estimating air permeability using the test data obtained by a falling-pressure method in laboratory. The perimeter of the column-shaped sample is fixed in a steel cylinder with the upper sample surface open to the atmosphere. The lower surface of the sample and the cylinder form an air chamber. A water manometer is connected to the air chamber to measure the air pressure inside after the chamber is pressurized. The data of pressure versus time in the air chamber are recorded and analyzed. An approximate analytical solution is derived to describe the pressure-time relationship in the air chamber. The air permeability can be easily estimated using the approximate analytical solution based on the linear least-squares fitting to the recorded pressure-time test data. This method is used to estimate the falling-pressure test data of 15 asphalt samples. The agreement between the test data and the analytical prediction is satisfactory for all the samples. To investigate the error caused by the approximate analytical solution, the air permeabilities are also estimated based on fully numerical solutions. The permeability values obtained from analytical and numerical solutions are very close. The maximum relative error is less than 6% for samples with more than five pressure-time records. A quantitative condition is given under which the analytical solution applies with negligible estimation error. Compared with the common, steady-state method for measuring air permeability, the falling-pressure method has its advantages such as simplicity and economy. The steady-state method has to measure the air flux through the sample, while the falling-pressure method does not.

  11. On the feasibility of measuring urban air pollution by wireless distributed sensor networks.

    PubMed

    Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak

    2015-01-01

    Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution.

  12. Differential Absorption Lidar (DIAL) Measurements from Air and Space

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Grant, W. B.

    1998-01-01

    Differential absorption lidar (DIAL) systems have been used for the measurement of ozone, water vapor, and aerosols from aircraft platforms for over 18 years, yielding new insights into atmospheric chemistry, composition, and dynamics in large-scale field experiments conducted all over the world. The successful deployment of the lidar in-space technology experiment (LITE) in September 1994 demonstrated that space-based lidars can also collect valuable information on the global atmosphere. This paper reviews some of the contributions of the NASA Langley Research Center's airborne ozone and water vapor DIAL systems and space-based LITE system to the understanding of the atmosphere and discusses the feasibility and advantages of putting DIAL systems in space for routine atmospheric measurements of ozone and/or water vapor and aerosols and clouds. The technology and applications of the differential absorption lidar (DIAL) technique have progressed significantly since the first DIAL measurements of Schotland, and airborne DIAL measurements of ozone and water vapor are frequently being made in a wide range of field experiments. In addition, plans are underway to develop DIAL systems for use on satellites for continuous global measurements. This paper will highlight the history of airborne lidar and DIAL systems, summarize the major accomplishments of the NASA Langley DIAL program, and discuss specifications and goals for DIAL systems in space.

  13. The temperature fields measurement of air in the car cabin by infrared camera

    NASA Astrophysics Data System (ADS)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  14. Satellite measurements of large-scale air pollution: Methods

    SciTech Connect

    Kaufman, Y.J.; Fraser, R.S.; Ferrare, R.A. )

    1990-06-20

    A method is presented for simultaneous determination of the aerosol optical thickness ({tau}{sub a}), particle size (r{sub m}, geometric mean mass radius for a lognormal distribution) and the single scattering albedo ({omega}{sub 0}, ratio between scattering and scattering + absorption) from satellite imagery. The method is based on satellite images of the surface (land and water) in the visible and near-IR bands and is applied here to the first two channels of the Advanced Very High Resolution Radiometer (AVHRR) sensor. The aerosol characteristics are obtained from the difference in the upward radiances, detected by the satellite, between a clear and a hazy day. Therefore the method is mainly useful for remote sensing of large-scale air pollution (e.g., smoke from a large fire or concentrated anthropogenic pollution), which introduces dense aerosol into the atmosphere (aerosol optical thickness {ge}0.4) on top of an existing aerosol. The method is very sensitive to the stability of the surface reflectance between the clear day and the hazy day. It also requires accurate satellite calibration (preferably not more than 5% error) and stable calibration with good relative values between the two bands used in the analysis. With these requirements, the aerosol optical thickness can be derived with an error of {Delta}{tau}{sub a} = 0.08-0.15. For an assumed lognormal size distribution, the particle geometrical mean mass radius r{sub m} can be derived (if good calibration is available) with an error of {Delta}r{sub m} = {plus minus}(0.10-0.20){mu}m, and {omega}{sub 0} with {Delta}{omega}{sub 0} = {plus minus}0.03 for {omega}{sub 0} close to 1 and {Delta}{sub omega}{sub 0} = {plus minus}(0.03-0.07) for {omega}{sub 0} about 0.8. The method was applied to AVHRR images of a forest fire smoke.

  15. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s-1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  16. Humic substance formation during wastewater infiltration

    SciTech Connect

    Siegrist, R.L. ); Hildmann-Smed, R.; Filip, Z.K. , Langen . Inst. fuer Wasser-, Boden- und Lufthygiene); Jenssen, P.D. . Centre for Soil and Environmental Research)

    1991-01-01

    Soil infiltration of wastewater effluents is a widely practiced method of treatment and disposal/reuse throughout the world. Renovation of the wastewater results from a wide variety of complex physicochemical and biological processes. One set of processes is speculated to involve the accumulation of organic matter by filtration and sorption followed by formation of humic substances. This humic substance formation can effect the performance of soil treatment systems by contributing to soil pore clogging and reduction in hydraulic capacity, and by yielding reactive substances and an enhancement of purification processes. While there has been a wealth of research into the nature and genesis of humic substances in terrestrial environments, there has been limited research of humic substance formation during soil infiltration of wastewater. The purpose of the research reported herein was to determine if humic substances can form under conditions typical of those present during wastewater infiltration into natural soil systems. This work was conducted during 1989 to 1990 as a collaborative effort between the Centre for Soil and Environmental Research, located in Aas, Norway and the Institute for Water, Soil and Air Hygiene located in Langen, West Germany. 11 refs., 3 figs., 6 tabs.

  17. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  18. Fetal growth and air pollution - A study on ultrasound and birth measures.

    PubMed

    Malmqvist, Ebba; Liew, Zeyan; Källén, Karin; Rignell-Hydbom, Anna; Rittner, Ralf; Rylander, Lars; Ritz, Beate

    2017-01-01

    Air pollution has been suggested to affect fetal growth, but more data is needed to assess the timing of exposure effects by using ultrasound measures. It is also important to study effects in low exposure areas to assess eventual thresholds of effects. The MAPSS (Maternal Air Pollution in Southern Sweden) cohort consists of linked registry data for around 48,000 pregnancies from an ultrasound database, birth registry and exposure data based on residential addresses. Measures of air pollution exposure were obtained through dispersion modelling with input data from an emissions database (NOx) with high resolution (100-500m grids). Air pollution effects were assessed with linear regressions for the following endpoints; biparietal diameter, femur length, abdominal diameter and estimated fetal weight measured in late pregnancy and birth weight and head circumference measured at birth. We estimated negative effects for NOx; in the adjusted analyses the decrease of abdominal diameter and femur length were -0.10 (-0.17, -0.03) and -0.13 (-0.17, -0.01)mm, respectively, per 10µg/m(3) increment of NOx. We also estimated an effect of NOx-exposures on birth weight by reducing birth weight by 9g per 10µg/m(3) increment of NOx. We estimated small but statistically significant effects of air pollution on late fetal and birth size and reduced fetal growth late in pregnancy in a geographic area with levels below current WHO air quality guidelines.

  19. Density measurement in air with saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.

  20. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1981-01-01

    Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.

  1. Mini MAX-DOAS Measurements of Air Pollutants over China

    NASA Astrophysics Data System (ADS)

    Staadt, Steffen; Hao, Nan; Trautmann, Thomas

    2016-08-01

    This study continues the work of Clémer et al., (2010) and is aimed to improve trace gas retrievals with mini MAX-DOAS measurements in Nanjing. Based on that work, aerosol extinction vertical profiles are retrieved using the bePRO inversion algorithm developed by the Royal Belgian Institute for Space Aeronomy (BIRA- IASB). Afterwards, the tropospheric trace gas vertical profiles and vertical column densities (VCDs) are retrieved by applying the optimal estimation method to the O4 MAX-DOAS measurements. The Profiles for N O2 , S O2 , glyoxal, formaldehyde and nitrous acid are obtained with different results and different settings for the DOAS measurement. The AODs show small positive correlation against the AERONET values. For NO2, the retrieval shows reasonable concentrations in winter as opposed to summer and has small positive correlations with GOME-2 data. The SO2 VCDs are not correlated with the GOME-2 data, due to high uncertainties from MAX-DOAS and satellite retrievals, while the vertical mixing ratios (VMR) show good agreement with in-situ data (SORPES) at Nanjing. Nitrous acid shows a maximum in winter and a minimum in summer, while glyoxal has its maximum in August and September.

  2. Roadside air quality and implications for control measures: A case study of Hong Kong

    NASA Astrophysics Data System (ADS)

    Ai, Z. T.; Mak, C. M.; Lee, H. C.

    2016-07-01

    Traffic related air pollution is one of major environmental issues in densely populated urban areas including Hong Kong. A series of control measures has been implemented by Hong Kong government to cut traffic related air pollutants, including retrofitting the Euro II and Euro III buses with selective catalytic reduction (SCR) devices to lower nitrogen dioxide (NO2) emissions. In order to reveal the real-life roadside air quality and evaluate the effectiveness of the control measures, this study first analyzed the recent six-year data regarding concentrations of pollutants typically associated with traffic recorded in two governmental roadside monitoring stations and second conducted on-site measurements of concentration of pollutants at pedestrian level near five selected roads. Given that there is a possibility of ammonia leakage as a secondary pollutant from SCR devices, a special attention was paid to the measurements of ammonia level in bus stations and along roadsides. Important influencing factors, such as traffic intensity, street configuration and season, were analyzed. Control measures implemented by the government are effective to decrease the traffic emissions. In 2014, only NO2 cannot achieve the annual air quality objective of Hong Kong. However, it is important to find that particulate matters, rather than NO2, post potentially a short-term exposure risk to passengers and pedestrians. Based on the findings of this study, specific control measures are suggested, which are intended to further improve the roadside air quality.

  3. High-resolution saturated hydraulic conductivity logging of borehole cores using air permeability measurements

    NASA Astrophysics Data System (ADS)

    Rogiers, B.; Winters, P.; Huysmans, M.; Beerten, K.; Mallants, D.; Gedeon, M.; Batelaan, O.; Dassargues, A.

    2014-09-01

    Saturated hydraulic conductivity ( K s) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. The hand-held air permeameter technique was investigated for high-resolution hydraulic conductivity determination on borehole cores using a spatial resolution of ˜0.05 m. The suitability of such air permeameter measurements on friable to poorly indurated sediments was tested to improve the spatial prediction of classical laboratory-based K s measurements obtained at a much lower spatial resolution (˜2 m). In total, 368 K s measurements were made on ˜350 m of borehole cores originating from the Campine basin, northern Belgium, while ˜5,230 air permeability measurements were performed on the same cores, resulting in a K s range of seven orders of magnitude. Cross-validation demonstrated that, using air permeameter data as the secondary variable for laboratory based K s measurements, the performance increased from R 2 = 0.35 for ordinary kriging (laboratory K s only) to R 2 = 0.61 for co-kriging. The separate treatment of horizontal and vertical hydraulic conductivity revealed considerable anisotropy in certain lithostratigraphical units, while others were clearly isotropic at the sample scale. Air permeameter measurements on borehole cores provide a cost-effective way to improve spatial predictions of traditional laboratory based K s.

  4. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  5. Observation of infiltration experiments with time lapse electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Noell, Ursula; Ganz, Christina; Altfelder, Sven; Günther, Thomas; Duijnisveld, Wilhelmus; Grissemann, Christoph

    2010-05-01

    Recent progress in the development of resistivity equipment enables the real time observation of infiltration processes through the vadose zone. In order to study the advantages and limitations of the method infiltration experiments are carried out for different soil types at various locations. All sites are subsequently excavated and investigated in detail. For an improved verification of the resistivity data the most recent experiment is conducted using a colour tracer. Two infiltration experiments are carried out in sandy soil. The location is Fuhrberg, close to Hannover, Germany. The area has been intensively studied for soil research purposes for more than 30 years. During both infiltration experiments water (110 l/80 l) is infiltrated for a period of 4.5 h and 8 h, respectively, and the infiltration process is observed by ERT. The resistivity measurements are conducted using a 3D-dipole-dipole configuration with electrode distances of 20 cm in the centre of the infiltration field. The whole resistivity array consists of 200 and 300 electrodes, respectively. The second experiment uses increased electrode spacing in the border area in order to enable the resolution of the deeper groundwater table (3.5 m during the second experiment compared to about 1.2 m for the first experiment). Immediately after completion of the resistivity measurements TDR and tensiometer measurements are carried out in 5-8 slices of the excavated infiltration area over a period of several days. The colour tracer used during the second experiment clearly outlines the infiltration plume with sharp outer limits. The ERT inversion depicts the shape of the plume successfully. Time lapse ERT interpretation reveals the development of the plume in time. The combination of ERT interpretation and TDR measurements enables the construction of the relationship between water content and resistivity as reconstructed by ERT using an Archie approach. By using this function water content changes can be

  6. Transient Point Infiltration In The Unsaturated Zone

    NASA Astrophysics Data System (ADS)

    Buecker-Gittel, M.; Mohrlok, U.

    The risk assessment of leaking sewer pipes gets more and more important due to urban groundwater management and environmental as well as health safety. This requires the quantification and balancing of transport and transformation processes based on the water flow in the unsaturated zone. The water flow from a single sewer leakage could be described as a point infiltration with time varying hydraulic conditions externally and internally. External variations are caused by the discharge in the sewer pipe as well as the state of the leakage itself. Internal variations are the results of microbiological clogging effects associated with the transformation processes. Technical as well as small scale laboratory experiments were conducted in order to investigate the water transport from an transient point infiltration. From the technical scale experiment there was evidence that the water flow takes place under transient conditions when sewage infiltrates into an unsaturated soil. Whereas the small scale experiments investigated the hydraulics of the water transport and the associated so- lute and particle transport in unsaturated soils in detail. The small scale experiment was a two-dimensional representation of such a point infiltration source where the distributed water transport could be measured by several tensiometers in the soil as well as by a selective measurement of the discharge at the bottom of the experimental setup. Several series of experiments were conducted varying the boundary and initial con- ditions in order to derive the important parameters controlling the infiltration of pure water from the point source. The results showed that there is a significant difference between the infiltration rate in the point source and the discharge rate at the bottom, that could be explained by storage processes due to an outflow resistance at the bottom. This effect is overlayn by a decreasing water content decreases over time correlated with a decreasing infiltration

  7. Effects of air pollution on human health and practical measures for prevention in Iran.

    PubMed

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran.

  8. Effects of air pollution on human health and practical measures for prevention in Iran

    PubMed Central

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran. PMID:27904610

  9. Comparison of three techniques to measure unsaturated-zone air permeability at Picatinny Arsenal, NJ

    NASA Astrophysics Data System (ADS)

    Olson, Mira Stone; Tillman, Fred D.; Choi, Jee-Won; Smith, James A.

    2001-12-01

    The purpose of this study is to compare three techniques to measure the air permeability of the unsaturated zone at Picatinny Arsenal, NJ and to examine the effects of moisture content and soil heterogeneity on air permeability. Air permeability was measured in three ways: laboratory experiments on intact soil cores, field-scale air pump tests and calibration of air permeability to air pressures measured in the field under natural air pressure conditions using a numerical airflow model. The results obtained from these three methods were compared and found to be similar. Laboratory experiments performed on intact cores measured air permeability values on the order of 10 -14 to 10 -9 m 2. Low-permeability cores were found between land surface and a depth of 0.6 m. The soil core data were divided into two layers with composite vertical permeability values of 1.3×10 -13 m 2 from land surface to a 0.6-m depth and 3.8×10 -10 m 2 for the lower layer. Analyses of the field-scale pump tests were performed for two scenarios: one in which the entire unsaturated zone was open to the atmosphere and one assuming a cap of low permeability extending 0.6 m below land surface. The vertical air permeability values obtained for the open scenario ranged from 1.2×10 -9 to 1.5×10 -9 m 2, and ranged from 3.6×10 -9 to 6.8×10 -9 m 2 in the lower layer, assuming an upper cap permeability of 6.0×10 -14 m 2. The results from the open scenario are much higher than expected and the possible reasons for this ambiguity are discussed. The results from the capped scenario matched closely with those from the other methods and indicated that it is important to have background information on the study site to correctly analyze the pump test data. The optimized fit of the natural subsurface air pressure was achieved with an intrinsic permeability value of 3.3×10 -14 m 2. When the data were refitted to the model assuming two distinct layers of the unsaturated zone, the optimized fit was achieved

  10. Long-term continuous measurement of near-road air pollution in Las Vegas: Seasonal variability in traffic emissions impact on local air quality

    EPA Science Inventory

    Excess air pollution along roadways is an issue of public health concern and motivated a long-term measurement effort established by the U.S. Environmental Protection Agency in Las Vegas, Nevada. Measurements of air pollutants – including black carbon (BC), carbon monoxide (CO),...

  11. [Measurement of air leak volume after lung surgery using web-camera].

    PubMed

    Onuki, Takamasa; Matsumoto, T

    2005-05-01

    Persistent air leak from the lung is one of the major complications after lung operations, especially in the latest thoracic surgery, where a shorter hospital stay tends to be necessary. However, air leak volume has been rarely measured clinically because accustomed tools of gas flow meter were types which needed contact measure, and those were unstable in long-term use and high cost. We tried to measure air leak volume as follows: (1) Bubble was made in the water seal part of a drain bag. (2) The movement of bubbles was recorded with a web-camera. (3) The data from the movie was analyzed by Linux computer on-line. We believe this method is clinically applicable as a routine work after lung surgery because of non-contact type of measurements, its stableness in long-term, easiness to be handled, and reasonable in cost.

  12. Development and Validation of a UAV Based System for Air Pollution Measurements.

    PubMed

    Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe

    2016-12-21

    Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO₂, CO, NO₂ and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection.

  13. Air Quality Measurements-From Rubber Bands to Tapping the Rainbow.

    PubMed

    Hidy, George M; Mueller, Peter K; Altshuler, Samuel L; Chow, Judith C; Watson, John G

    2017-03-23

    It is axiomatic that good measurements are integral to good public policy for environmental protection. The generalized term for "measurements" includes sampling and quantitation, data integrity, documentation, network design, sponsorship and operations, and archiving and accessing for applications. Each of these components has evolved and advanced over the last 200 years as knowledge of atmospheric chemistry and physics has matured. Air quality was first detected by what people could see smoke and smell contaminated air. Gaseous pollutants were found to react with certain materials or chemicals, changing the color of dissolved reagents such that their light absorption at selected wavelengths could be related to both the pollutant chemistry and its concentration. Airborne particles have challenged the development of a variety of sensory devices and laboratory assays for characterization of their enormous range of physical and chemical properties. Advanced electronics made possible the sampling, concentration, and detection of gases and particles, both in situ and in laboratory analysis of collected samples. Accurate and precise measurements by these methods have made possible advanced air quality management practices that led to decreasing concentrations over time. New technologies are leading to smaller and cheaper measurement systems that can further expand and enhance current air pollution monitoring networks. Implications Ambient air quality measurement systems have a large effect on air quality management by determining compliance, tracking trends, elucidating pollutant transport and transformation, and relating concentrations to adverse effects. These systems consist of more than just instrumentation, and involve extensive support efforts for siting, maintenance, calibration, auditing, data validation, data management and access, and data interpretation. These requirements have largely been attained for criteria pollutants regulated by National Ambient Air

  14. Development and Validation of a UAV Based System for Air Pollution Measurements

    PubMed Central

    Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe

    2016-01-01

    Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO2, CO, NO2 and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection. PMID:28009820

  15. Measurements of electron avalanche formation time in W-band microwave air breakdown

    SciTech Connect

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-15

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are {approx}0.1-2 {mu}s over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  16. Measurements of electron avalanche formation time in W-band microwave air breakdown

    NASA Astrophysics Data System (ADS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  17. Air Leakage Measurements in Navy Family Housing Units at Norfolk, Virginia.

    DTIC Science & Technology

    1983-04-01

    80-4233), Prepared for Naval Construction Battalion Center (1980). 17. Lagus, P.L., "Air Leakage Measurements in Support of the Johns Manville Corporation...in the Advanced Energy Utilization Test Bed, Pt. Hueneme, California," Systems, Science and Software Report (SSS-R-78-3533), Prepared for Johns ... Manville Corporation (1978). 18. Weidt, J.L., J. Weidt, S. Selkowitz, "Field Air Leakage of Newly Installed Residential Windows," Proceedings of ASHRAE

  18. An ultrasonic air temperature measurement system with self-correction function for humidity

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Yuan; Chen, Hsin-Chieh; Liao, Teh-Lu

    2005-02-01

    This paper proposes an ultrasonic measurement system for air temperature with high accuracy and instant response. It can measure the average temperature of the environmental air by detecting the changes of the speed of the ultrasound in the air. The changes of speed of sound are computed from combining variations of time-of-flight (TOF) from a binary frequency shift-keyed (BFSK) ultrasonic signal and phase shift from continuous waves [11]. In addition, another proposed technique for the ultrasonic air temperature measurement is the self-correction functionality within a highly humid environment. It utilizes a relative humidity/water vapour sensor and applies the theory of how sound speed changes in a humid environment. The proposed new ultrasonic air temperature measurement has the capability of self-correction for the environment variable of humidity. Especially under the operational environment with high fluctuations of various humidity levels, the proposed system can accurately self-correct the errors on the conventional ultrasonic thermometer caused by the changing density of the vapours in the air. Including the high humidity effect, a proof-of-concept experiment demonstrates that in dry air (relative humidity, RH = 10%) without humidity correction, it is accurate to ±0.4 °C from 0 °C to 80 °C, while in highly humid air (relative humidity, RH = 90%) with self-correction functionality, it is accurate to ±0.3 °C from 0 °C to 80 °C with 0.05% resolution and temperature changes are instantly reflected within 100 ms.

  19. Measurement of radon/thoron and its daughter nuclides in room air.

    PubMed

    Suppian, R; Vegandraj, S; Kandaiya, S

    1992-07-01

    Pumping air through a soft tissue which acts as a membrane is a relatively easy and quick method to collect and measure radon/thoron and its daughter nuclides in air. Analysis of the activity of the radionuclides can be calculated using an alpha counter which has been calibrated. In this method the activity of radon/thoron cannot be separated from the activity of radionuclides already present in the aerosol or dust particles.

  20. Satellite measurements of large-scale air pollution - Methods

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.; Ferrare, Richard A.; Fraser, Robert S.

    1990-06-01

    A technique for deriving large-scale pollution parameters from NIR and visible satellite remote-sensing images obtained over land or water is described and demonstrated on AVHRR images. The method is based on comparison of the upward radiances on clear and hazy days and permits simultaneous determination of aerosol optical thickness with error Delta tau(a) = 0.08-0.15, particle size with error + or - 100-200 nm, and single-scattering albedo with error + or - 0.03 (for albedos near 1), all assuming accurate and stable satellite calibration and stable surface reflectance between the clear and hazy days. In the analysis of AVHRR images of smoke from a forest fire, good agreement was obtained between satellite and ground-based (sun-photometer) measurements of aerosol optical thickness, but the satellite particle sizes were systematically greater than those measured from the ground. The AVHRR single-scattering albedo agreed well with a Landsat albedo for the same smoke.

  1. Satellite measurements of large-scale air pollution - Methods

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Ferrare, Richard A.; Fraser, Robert S.

    1990-01-01

    A technique for deriving large-scale pollution parameters from NIR and visible satellite remote-sensing images obtained over land or water is described and demonstrated on AVHRR images. The method is based on comparison of the upward radiances on clear and hazy days and permits simultaneous determination of aerosol optical thickness with error Delta tau(a) = 0.08-0.15, particle size with error + or - 100-200 nm, and single-scattering albedo with error + or - 0.03 (for albedos near 1), all assuming accurate and stable satellite calibration and stable surface reflectance between the clear and hazy days. In the analysis of AVHRR images of smoke from a forest fire, good agreement was obtained between satellite and ground-based (sun-photometer) measurements of aerosol optical thickness, but the satellite particle sizes were systematically greater than those measured from the ground. The AVHRR single-scattering albedo agreed well with a Landsat albedo for the same smoke.

  2. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  3. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  4. Spatial and temporal infiltration dynamics during managed aquifer recharge.

    PubMed

    Racz, Andrew J; Fisher, Andrew T; Schmidt, Calla M; Lockwood, Brian S; Los Huertos, Marc

    2012-01-01

    Natural groundwater recharge is inherently difficult to quantify and predict, largely because it comprises a series of processes that are spatially distributed and temporally variable. Infiltration ponds used for managed aquifer recharge (MAR) provide an opportunity to quantify recharge processes across multiple scales under semi-controlled conditions. We instrumented a 3-ha MAR infiltration pond to measure and compare infiltration patterns determined using whole-pond and point-specific methods. Whole-pond infiltration was determined by closing a transient water budget (accounting for inputs, outputs, and changes in storage), whereas point-specific infiltration rates were determined using heat as a tracer and time series analysis at eight locations in the base of the pond. Whole-pond infiltration, normalized for wetted area, rose rapidly to more than 1.0 m/d at the start of MAR operations (increasing as pond stage rose), was sustained at high rates for the next 40 d, and then decreased to less than 0.1 m/d by the end of the recharge season. Point-specific infiltration rates indicated high spatial and temporal variability, with the mean of measured values generally being lower than rates indicated by whole-pond calculations. Colocated measurements of head gradients within saturated soils below the pond were combined with infiltration rates to calculate soil hydraulic conductivity. Observations indicate a brief period of increasing saturated hydraulic conductivity, followed by a decrease of one to two orders of magnitude during the next 50 to 75 d. Locations indicating the most rapid infiltration shifted laterally during MAR operation, and we suggest that infiltration may function as a "variable source area" processes, conceptually similar to catchment runoff.

  5. The temperature dependence of ponded infiltration under isothermal conditions

    USGS Publications Warehouse

    Constantz, J.; Murphy, F.

    1991-01-01

    A simple temperature-sensitive modification to the Green and Ampt infiltration equation is described; this assumes that the temperature dependence of the hydraulic conductivity is reciprocally equal to the temperature dependence of the viscosity of liquid water, and that both the transmission zone saturation and the wetting front matric potential gradient are independent of temperature. This modified Green and Ampt equation is compared with ponded, isothermal infiltration experiments run on repacked columns of Olympic Sand and Aiken Loam at 5, 25, and 60??C. Experimental results showed increases in infiltration rates of at least 300% between 5 and 60??C for both soil materials, with subsequent increases in cumulative infiltration of even greater magnitudes for the loam. There is good agreement between measured and predicted initial infiltration rates at 25??C for both soil materials, yet at 60??C, the predicted results overestimate initial infiltration rates for the sand and underestimate initial rates for the loam. Measurements of the wetting depth vs. cumulative infiltration indicate that the transmission zone saturation increased with increasing temperature for both soil materials. In spite of this increased saturation with temperature, the final infiltration rates at both 25 and 60??C were predicted accurately using the modified Green and Ampt equation. This suggests that increased saturation occurred primarily in dead-end pore spaces, so that transmission zone hydraulic conductivities were unaffected by these temperature-induced changes in saturation. In conclusion, except for initial infiltration rates at 60??C, the measured influence of temperature on infiltration rates was fully accounted for by the temperature dependence of the viscosity of liquid water. ?? 1991.

  6. An index to measure depreciation in air quality in some coal mining areas of Korba industrial belt of Chhattisgarh, India.

    PubMed

    Singh, Gurdeep

    2006-11-01

    The comparison with National Ambient Air Quality Standards does not always depict a true picture of the Air Quality Status of a study area. As an alternative an index that measures depreciation in Air Quality on more realistic terms has been proposed and applied to the ambient air monitoring data collected from some areas of Korba Coalfields in India. Results have been discussed in detail to illustrate the application of the proposed index and utility in bringing out more realistic air quality assessment.

  7. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  8. MEASUREMENT OF EFFECTIVE AIR DIFFUSION COEFFICIENTS FOR TRICHLOROETHENE IN UNDISTURBED SOIL CORES. (R826162)

    EPA Science Inventory

    Abstract

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air...

  9. Analysis of radon and thoron progeny measurements based on air filtration.

    PubMed

    Stajic, J M; Nikezic, D

    2015-02-01

    Measuring of radon and thoron progeny concentrations in air, based on air filtration, was analysed in order to assess the reliability of the method. Changes of radon and thoron progeny activities on the filter during and after air sampling were investigated. Simulation experiments were performed involving realistic measuring parameters. The sensitivity of results (radon and thoron concentrations in air) to the variations of alpha counting in three and five intervals was studied. The concentration of (218)Po showed up to be the most sensitive to these changes, as was expected because of its short half-life. The well-known method for measuring of progeny concentrations based on air filtration is rather unreliable and obtaining unrealistic or incorrect results appears to be quite possible. A simple method for quick estimation of radon potential alpha energy concentration (PAEC), based on measurements of alpha activity in a saturation regime, was proposed. Thoron PAEC can be determined from the saturation activity on the filter, through beta or alpha measurements.

  10. Historical Occupational Trichloroethylene Air Concentrations Based on Inspection Measurements From Shanghai, China

    PubMed Central

    Friesen, Melissa C.; Locke, Sarah J.; Chen, Yu-Cheng; Coble, Joseph B.; Stewart, Patricia A.; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P.; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Purpose: Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China’s growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Methods: Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Results: Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5–10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150–190mg m−3). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11mg m−3 in ‘other metal products/repair’ industries to 390mg m–3 in ‘ships/aircrafts’ industries. Conclusions: TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. PMID:25180291

  11. Measurements of lower carbonyls in Rome ambient air

    NASA Astrophysics Data System (ADS)

    Possanzini, M.; Di Palo, V.; Petricca, M.; Fratarcangeli, R.; Brocco, D.

    Ambient levels and diurnal profiles of lower carbonyls were measured in Rome during selected days of summer 1994 and winter 1995. The most abundant carbonyls were formaldehyde (up to 27 ppb) followed by ethanal (< 17 ppb) and acetone (< 9 ppb). Gas-phase concentrations of other seven carbonyls were in the 0-3 ppb range. The results were discussed with respect to direct emissions and photochemical production. Using carbonyl/CO concentration ratios mobil source emissions of carbonyls were estimated for the urban area. The secondary production of C 1-C 3 aldehydes from reactions of alkenes with O 3 and OH radicals during the early morning hours of summer days was also calculated. The daytime pattern of carbonyls was found to be similar to that of toluene in wintertime and close to that of ozone in summer periods conductive to photochemical pollution episodes.

  12. A Photonic Crystal Magnetic Field Sensor Using a Shoulder-Coupled Resonant Cavity Infiltrated with Magnetic Fluid

    PubMed Central

    Su, Delong; Pu, Shengli; Mao, Lianmin; Wang, Zhaofang; Qian, Kai

    2016-01-01

    A kind of photonic crystal magnetic field sensor is proposed and investigated numerically. The shoulder-coupled resonant cavity is introduced in the photonic crystal, which is infiltrated with magnetic fluid. Through monitoring the shift of resonant wavelength, the magnetic field sensing is realized. According to the designed infiltration schemes, both the magnetic field sensitivity and full width at half maximum increase with the number of infiltrated air holes. The figure of merit of the structure is defined to evaluate the sensing performance comprehensively. The best structure corresponding to the optimal infiltration scheme with eight air holes infiltrated with magnetic fluid is obtained. PMID:27999254

  13. A Photonic Crystal Magnetic Field Sensor Using a Shoulder-Coupled Resonant Cavity Infiltrated with Magnetic Fluid.

    PubMed

    Su, Delong; Pu, Shengli; Mao, Lianmin; Wang, Zhaofang; Qian, Kai

    2016-12-16

    A kind of photonic crystal magnetic field sensor is proposed and investigated numerically. The shoulder-coupled resonant cavity is introduced in the photonic crystal, which is infiltrated with magnetic fluid. Through monitoring the shift of resonant wavelength, the magnetic field sensing is realized. According to the designed infiltration schemes, both the magnetic field sensitivity and full width at half maximum increase with the number of infiltrated air holes. The figure of merit of the structure is defined to evaluate the sensing performance comprehensively. The best structure corresponding to the optimal infiltration scheme with eight air holes infiltrated with magnetic fluid is obtained.

  14. Strain characteristics of selectively infiltrated photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Yu, WenBing; Wang, Ying; Tian, Jie

    2015-07-01

    To obtain the strain sensing for the high sensitivity PCF (Photonic Crystal Fibers), the high refractive index mixture is infiltrated into the air hole of the PCF. In this paper, we propose to adjust the infiltrated length of the air hole in order to make the loss maximum. The goal is to realize the PCF sensor with high sensitive strain. The experimental results show that the strain sensitivity is about 4.36 pm / μ ɛ when the infiltrated length is 30mm and the refractive index of the liquid is 1.5. The experimental results are consistent with the simulation ones. This kind of device can apply to the ultrasensitive strain sensing.

  15. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator

    NASA Astrophysics Data System (ADS)

    Leconte, François; Bouyer, Julien; Claverie, Rémy; Pétrissans, Mathieu

    2016-08-01

    The urban heat island phenomenon is generally defined as an air temperature difference between a city center and the non-urbanized rural areas nearby. However, this description does not encompass the intra-urban temperature differences that exist between neighborhoods in a city. This study investigates the air temperature dynamics of neighborhoods for meteorological conditions that lead to important urban heat island amplitude. Local climate zones (LCZs) have been determined in Nancy, France, and mobile screen-height air temperature measurements are performed using an instrumented vehicle. Initially, hourly measurements are performed within four different LCZs. These results show that air temperature within LCZ demonstrates a nocturnal cooling in two phases, i.e., a first phase between 1 to 3 h before sunset and 3 to 5 h after sunset, and a second phase from 3 to 5 h after sunset to sunrise. During phase 1, neighborhoods exhibit different cooling rate values and air temperature gaps develop between districts, while during phase 2, cooling rates tend to be analogous. Then, a larger meteorological data set is used to investigate these two phases for a selection of 13 LCZs. Normalized cooling rates are calculated between daytime measures and nighttime measures in order to quantify the air temperature dynamics of the studied areas during phase 1. Considering this indicator, three groups are emerging: LCZ compact midrise and open midrise with mean normalized cooling rate values of 0.09 h -1 LCZ large lowrise and open lowrise/sparsely built with mean normalized cooling rate values of 0.011 h -1 LCZ low plants with mean normalized cooling rate values of 0.014 h -1 Results indicate that the relative position of LCZ within the conurbation does not drive air temperature dynamics during phase 1. In addition, measures performed during phase 2 tend to illustrate that cooling rates are similar to all LCZ during this period.

  16. Infiltration of fibrous preform in the centrifugal force field

    SciTech Connect

    Nishida, Yoshinori; Shirayanagi, Itaru; Sakai, Yoshibumi; Tozawa, Yasuhisa

    1994-12-31

    The pressure to infiltrate molten aluminum into alumina short fiber preform was generated by centrifugal force, and the start pressure for the infiltration was measured. The fundamental equation of infiltration phenomenon was derived from the equation of the conservation of momentum of fluid flow in the porous media in the centrifugal force field. One-dimensional solution of the equation was obtained to discuss the characteristics of fluid flow in a centrifugal force field. It was made clear that centrifugal force is effective as a motive force to infiltrate molten metal into fibrous preform, the pressure distribution of molten metal in the preform is different from that predicted by D`Arcy`s law and the infiltration is enhanced by centrifugal force.

  17. Measurement of cabin air quality aboard commercial airliners

    NASA Astrophysics Data System (ADS)

    Nagda, Niren L.; Koontz, Michael D.; Konheim, Arnold G.; Katharine Hammond, S.

    Between April and June 1989, 92 randomly selected flights were monitored to determine prevailing levels of environmental tobacco smoke (ETS) and other pollutants in the airliner cabin environment. The monitored flights included 69 smoking flights, 8 of which were international, and 23 nonsmoking flights, all of which were domestic. Selected ETS contaminants (nicotine, respirable suspended particles and carbon monoxide), as well as ozone, microbial aerosols, carbon dioxide and other environmental variables were measured in different parts of airliner cabins. Particle and nicotine concentrations were highest in the smoking section and were somewhat higher in the boundary region near smoking than in other no-smoking sections or on nonsmoking flights. Levels of these ETS tracers were correlated with smoking rates observed by field technicians, and their levels in the boundary section were higher when more proximate to the smoking section. CO 2 levels were sufficiently high and humidity levels were sufficiently low to pose potential comfort problems for aircraft occupants. Ozone levels were well within existing standards for airliner environments, and levels of microbial aerosols were below those in residential environments that have been characterized through cross-sectional studies.

  18. Improvement of air quality according to Mobile reduction measures to establish Korean Auto-oil program

    NASA Astrophysics Data System (ADS)

    Sunwoo, Y.; Jo, H.; Ma, Y.; Kim, S.; Hong, K.; Lim, Y.; Javascript:Setnextpage('sponsor')

    2011-12-01

    The mobile of NOx and PM10 emission of Korea in 2007 accounted for 42%, 23%, respectively (excluded fugitive dust). Seoul highly affected mobile emission which accounted for 46%, 49%, respectively. Korean government ,therefore, established "Special Act for improvement of air quality in Seoul metropolitan area" including mobile emission reduction measures and organized research forum including reformation of fuel and cars, risk assessment, control of greenhouse gas and assessment of air quality to establish Korean Auto-oil program This study quantitatively analyses improvement of air quality in Seoul according to the reformation of fuel and supply of DPF in Korean Auto-oil program. WRF-SMOKE-CMAQ were emploied for this study. SO2, CO, NOx, PM10 and VOCs emission are based on the INTEX-B emission inventory, NH3 were from the REAS emission inventory. Korea emission is derived by CAPSS (Clean Air Policy Support System) data. The reduction through reformation of fuel and supply of DPF is calculated by reduction ratio of air pollutants with strengthen fuel quality standard and number of car supplied DPF, refer to Metropolitan Air Quality Management Office Republic of Korea (2011) in detail. The effect of air quality is quantifiably comparing modeling results which are applied/not applied on the measures. This study will be provided basic data to establish Korean Auto-oil program through quantifying and predicting to improvement of air quality according to the mobile measures. Acknowledgement This research was supported in part by the "Assessment of risk and health benefits considering exposure characteristics of fuel" project sponsored by the Korea Automobile Environmental Association.

  19. [Characteristics of water infiltration in urban soils of Nanjing City].

    PubMed

    Yang, Jin-Ling; Zhang, Gan-Lin; Yuan, Da-Gang

    2008-02-01

    By using dual-ring method, this paper measured the water infiltration rate in urban soils under representative land use patterns in Nanjing City, and studied the characteristics of water infiltration in the soils with different compaction degree. The results showed that there was a great difference in the infiltration rate among the soils with different compactness. Soil infiltration rate decreased with increasing bulk density and decreasing porosity, and the water-transport-limiting layer existed in heavily compacted soils resulted in a dramatic decrease of final stabilized infiltration rate. There was a significant linear relationship between the initial and final infiltration rates in the same soil though their absolute values had a great difference. The urban soils in Nanjing City had a wide range of final infiltration rate varied from 1 mm X h(-1) to 679 mm X h(-1), which was highly related to the soil compactness, structural status, and skeleton grain contents. The decrease of urban soil infiltration rate could induce the increase of runoff and of the probability and intensity of flooding.

  20. A MODFLOW Infiltration Device Package for Simulating Storm Water Infiltration.

    PubMed

    Jeppesen, Jan; Christensen, Steen

    2015-01-01

    This article describes a MODFLOW Infiltration Device (INFD) Package that can simulate infiltration devices and their two-way interaction with groundwater. The INFD Package relies on a water balance including inflow of storm water, leakage-like seepage through the device faces, overflow, and change in storage. The water balance for the device can be simulated in multiple INFD time steps within a single MODFLOW time step, and infiltration from the device can be routed through the unsaturated zone to the groundwater table. A benchmark test shows that the INFD Package's analytical solution for stage computes exact results for transient behavior. To achieve similar accuracy by the numerical solution of the MODFLOW Surface-Water Routing (SWR1) Process requires many small time steps. Furthermore, the INFD Package includes an improved representation of flow through the INFD sides that results in lower infiltration rates than simulated by SWR1. The INFD Package is also demonstrated in a transient simulation of a hypothetical catchment where two devices interact differently with groundwater. This simulation demonstrates that device and groundwater interaction depends on the thickness of the unsaturated zone because a shallow groundwater table (a likely result from storm water infiltration itself) may occupy retention volume, whereas a thick unsaturated zone may cause a phase shift and a change of amplitude in groundwater table response to a change of infiltration. We thus find that the INFD Package accommodates the simulation of infiltration devices and groundwater in an integrated manner on small as well as large spatial and temporal scales.

  1. Effect of Injection Pressure of Infiltration Anesthesia to the Jawbone

    PubMed Central

    Yoshida, Kenji; Tanaka, Eri; Kawaai, Hiroyoshi; Yamazaki, Shinya

    2016-01-01

    To obtain effective infiltration anesthesia in the jawbone, high concentrations of local anesthetic are needed. However, to reduce pain experienced by patients during local anesthetic administration, low-pressure injection is recommended for subperiosteal infiltration anesthesia. Currently, there are no studies regarding the effect of injection pressure on infiltration anesthesia, and a standard injection pressure has not been clearly determined. Hence, the effect of injection pressure of subperiosteal infiltration anesthesia on local anesthetic infiltration to the jawbone was considered by directly measuring lidocaine concentration in the jawbone. Japanese white male rabbits were used as test animals. After inducing general anesthesia with oxygen and sevoflurane, cannulation to the femoral artery was performed and arterial pressure was continuously recorded. Subperiosteal infiltration anesthesia was performed by injecting 0.5 mL of 2% lidocaine containing 1/80,000 adrenaline, and injection pressure was monitored by a pressure transducer for 40 seconds. After specified time intervals (10, 20, 30, 40, 50, and 60 minutes), jawbone and blood samples were collected, and the concentration of lidocaine at each time interval was measured. The mean injection pressure was divided into 4 groups (100 ± 50 mm Hg, 200 ± 50 mm Hg, 300 ± 50 mm Hg, and 400 ± 50 mm Hg), and comparison statistical analysis between these 4 groups was performed. No significant change in blood pressure during infiltration anesthesia was observed in any of the 4 groups. Lidocaine concentration in the blood and jawbone were highest 10 minutes after the infiltration anesthesia in all 4 groups and decreased thereafter. Lidocaine concentration in the jawbone increased as injection pressure increased, while serum lidocaine concentration was significantly lower. This suggests that when injection pressure of subperiosteal infiltration anesthesia is low, infiltration of local anesthetic to the jawbone may

  2. Characterizing Heterogeneity in Infiltration Rates During Managed Aquifer Recharge.

    PubMed

    Mawer, Chloe; Parsekian, Andrew; Pidlisecky, Adam; Knight, Rosemary

    2016-11-01

    Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO-DTS) observations and the phase shift of the diurnal temperature signal between two vertically co-located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO-DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO-DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high-spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R(2)  = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates.

  3. A Tale of Two Cities - HSI-DOAS Measurements of Air Quality

    NASA Astrophysics Data System (ADS)

    Graves, Rosemarie; Leigh, Roland; Anand, Jasdeep; McNally, Michael; Lawrence, James; Monks, Paul

    2013-04-01

    Differential Optical Absorption Spectroscopy is now commonly used as an air quality measuring system; primarily through the measurements of nitrogen dioxide (NO2) both as a ground-based and satellite technique. CityScan is a Hemispherical Scanning Imaging Differential Optical Absorption Spectrometer (HSI-DOAS) which has been optimised to measure concentrations of nitrogen dioxide. CityScan has a 95˚ field of view (FOV) between the zenith and 5˚ below the horizon. Across this FOV there are 128 resolved elements which are measured concurrently, the spectrometer is rotated azimuthally 1˚ per second providing full hemispherical coverage every 6 minutes. CityScan measures concentrations of nitrogen dioxide over specific lines of sight and due to the extensive field of view of the instrument this produces measurements which are representative over city-wide scales. Nitrogen dioxide is an important air pollutant which is produced in all combustion processes and can reduce lung function; especially in sensitised individuals. These instruments aim to bridge the gap in spatial scales between point source measurements of air quality and satellite measurements of air quality offering additional information on emissions, transport and the chemistry of nitrogen dioxide. More information regarding the CityScan technique can be found at http://www.leos.le.ac.uk/aq/index.html. CityScan has been deployed in both London and Bologna, Italy during 2012. The London deployment took place as part of the large NERC funded ClearfLo project in January and July/August. CityScan was deployed in Bologna in June as part of the large EU project PEGASOS. Analysis of both of these campaigns of data will be used to give unprecedented levels of spatial information to air quality measurements whilst also showing the difference in air quality between a relatively isolated mega city and a smaller city situated in a very polluted region; in this case the Po Valley. Results from multiple City

  4. Unilateral apical infiltrate as an initial presentation of pulmonary sarcoidosis.

    PubMed

    Tice, A W

    1981-11-01

    A unilateral, apical, pulmonary infiltrate was seen in an Air Force weapon systems officer stationed in the Philippines as an initial presentation of pulmonary sarcoidosis. The most obvious diagnosis for that geographic area is tuberculosis. Diagnosis must be pursued to evaluate all differential possibilities, with resort to open-lung or bronchoscopic biopsy, if necessary.

  5. Local mean age measurements for heating, cooling, and isothermal supply air conditions

    SciTech Connect

    Han, H.; Kuehn, T.H.; Kim, Y.

    1999-07-01

    The objective of this paper is to investigate the effect on room ventilation of thermal buoyancy caused by temperature differences between surfaces and the supply air. Spatial distributions of local mean age were obtained in a half-scale environmental chamber under well-controlled temperature conditions simulating isothermal ventilation, cooling, and heating. Air was supplied and returned through slots in the ceiling. Sulfur hexafluoride (SF{sub 6}) tracer gas concentration was measured by an electron capture gas chromatograph. Tracer gas concentration was measured at various points in the chamber versus time after a pulse injection was applied in the supply air duct. The maximum local mean age (LMA) was obtained near the center of a large recirculation zone for isothermal conditions. The results for cooling conditions showed a relatively uniform LMA distribution in the space compared to the isothermal conditions, as the room air was well mixed by the cold downdraft from the supply. However, there was a large variation in local air change indices in the space for the heating condition because of stable thermal stratification. Warm supply air could not penetrate into the lower half of the space but short-circuited to the exhaust duct. The model results in the present study can be converted to full-scale situations using similitude and can be used for validating computational fluid dynamics codes.

  6. A new method to measure air-borne pyrogens based on human whole blood cytokine response.

    PubMed

    Kindinger, Ilona; Daneshian, Mardas; Baur, Hans; Gabrio, Thomas; Hofmann, Andreas; Fennrich, Stefan; von Aulock, Sonja; Hartung, Thomas

    2005-03-01

    Air-borne microorganisms, as well as their fragments and components, are increasingly recognized to be associated with pulmonary diseases, e.g. organic dust toxic syndrome, humidifier lung, building-related illness, "Monday sickness." We have previously described and validated a new method for the detection of pyrogenic (fever-inducing) microbial contaminations in injectable drugs, based on the inflammatory reaction of human blood to pyrogens. We have now adapted this test to evaluate the total inflammatory capacity of air samples. Air was drawn onto PTFE membrane filters, which were incubated with human whole blood from healthy volunteers inside the collection device. Cytokine release was measured by ELISA. The test detects endotoxins and non-endotoxins, such as fungal spores, Gram-positive bacteria and their lipoteichoic acid moiety and pyrogenic dust particles with high sensitivity, thus reflecting the total inflammatory capacity of a sample. When air from different surroundings such as working environments and animal housing was assayed, the method yielded reproducible data which correlated with other parameters of microbial burden tested. We further developed a standard material for quantification and showed that this assay can be performed with cryopreserved as well as fresh blood. The method offers a test to measure the integral inflammatory capacity of air-borne microbial contaminations relevant to humans. It could thus be employed to assess air quality in different living and work environments.

  7. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    PubMed

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H2O and BigBottle RAD-H2O. The results have shown good agreement between this method and the standard methods.

  8. Reduced exposure to air pollution on the boardwalk in Dublin, Ireland. Measurement and prediction.

    PubMed

    McNabola, A; Broderick, B M; Gill, L W

    2008-01-01

    This paper outlines an air pollution study carried out on Dublin city's recently completed boardwalk along the side of and overhanging the River Liffey. Air quality samples were taken along the length of the boardwalk to investigate whether pedestrians using the boardwalk would have a lower air pollution exposure than those using the adjoining footpath along the road. The results of the study show significant reductions in pedestrian exposure to both traffic derived particulates and hydrocarbons along the boardwalk as opposed to the footpath. Computational fluid dynamics was also used to model the outcome of these field measurements and shows the importance of the boundary wall between the footpath and boardwalk in reducing air pollution exposure for the pedestrian, the results of which are also presented herein.

  9. Real-time compensation of the refractive index of air in distance measurement.

    PubMed

    Kang, Hyun Jay; Chun, Byung Jae; Jang, Yoon-Soo; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-05

    A two-color scheme of heterodyne laser interferometer is devised for distance measurements with the capability of real-time compensation of the refractive index of the ambient air. A fundamental wavelength of 1555 nm and its second harmonic wavelength of 777.5 nm are generated, with stabilization to the frequency comb of a femtosecond laser, to provide fractional stability of the order of 3.0 × 10(-12) at 1 s averaging. Achieved uncertainty is of the order of 10(-8) in measuring distances of 2.5 m without sensing the refractive index of air in adverse environmental conditions.

  10. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  11. Measurement of Civil Engineering Customer Satisfaction in Tactical Air Command: A Prototype Evaluation Program.

    DTIC Science & Technology

    1986-09-01

    The CE organization here at Myrtle Beach AFB does a very good job. Luke does well for having so many "chiefs" to keep happy and the largest customer...BUREAU OF STANDARDS- 1963-A_ . -_- ’II I-F MEASUREMENT OF CIVIL ENGINEERING CUSTOMER SATISFACTION IN TACTICAL AIR COMMAND: A PROTOTYPE EVALUATION PROGRAM...Wright-Patterson Air Force Base, Ohio dhi ot tro Lwnivi tca1li! 111 . . AFIT/GEM/DEM/86S-23 MEASUREMENT OF CIVIL ENGINEERING CUSTOMER SATISFACTION IN

  12. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  13. High time-resolved measurements of organic air toxics in different source regimes

    NASA Astrophysics Data System (ADS)

    Logue, J. M.; Huff-Hartz, K. E.; Lambe, A. T.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    High time-resolved (HTR) measurements can provide significant insight into sources and exposures of air pollution. In this study, an automated instrument was developed and deployed to measure hourly concentrations of 18 gas-phase organic air toxics and 6 volatile organic compounds (VOCs) at three sites in and around Pittsburgh, Pennsylvania. The sites represent different source regimes: a site with substantial mobile-source emissions; a residential site adjacent to a heavily industrialized zone; and an urban background site. Despite the close proximity of the sites (less than 13 km apart), the temporal characteristic of outdoor concentrations varied widely. Most of the compounds measured were characterized by short periods of elevated concentrations or plume events, but the duration, magnitude and composition of these events varied from site to site. The HTR data underscored the strong role of emissions from local sources on exposure to most air toxics. Plume events contributed more than 50% of the study average concentrations for all pollutants except chloroform, 1,2-dichloroethane, and carbon tetrachloride. Wind directional dependence of air toxic concentrations revealed that emissions from large industrial facilities affected concentrations at all of the sites. Diurnal patterns and weekend/weekday variations indicated the effects of the mixing layer, point source emissions patterns, and mobile source air toxics (MSATs) on concentrations. Concentrations of many air toxics were temporally correlated, especially MSATs, indicating that they are likely co-emitted. It was also shown that correlations of the HTR data were greater than lower time resolution data (24-h measurements). This difference was most pronounced for the chlorinated pollutants. The stronger correlations in HTR measurements underscore their value for source apportionment studies.

  14. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  15. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  16. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  17. Measurement of horizontal air showers with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  18. Simulation of fluid, heat transport to estimate desert stream infiltration

    USGS Publications Warehouse

    Kulongoski, J.T.; Izbicki, J.A.

    2008-01-01

    In semiarid regions, the contribution of infiltration from intermittent streamflow to ground water recharge may be quantified by comparing simulations of fluid and heat transport beneath stream channels to observed ground temperatures. In addition to quantifying natural recharge, streamflow infiltration estimates provide a means to characterize the physical properties of stream channel sediments and to identify suitable locations for artificial recharge sites. Rates of winter streamflow infiltration along stream channels are estimated based on the cooling effect of infiltrated water on streambed sediments, combined with the simulation of two-dimensional fluid and heat transport using the computer program VS2DH. The cooling effect of ground water is determined by measuring ground temperatures at regular intervals beneath stream channels and nearby channel banks in order to calculate temperature-depth profiles. Additional data inputs included the physical, hydraulic, and thermal properties of unsaturated alluvium, and monthly ground temperatures measurements over an annual cycle. Observed temperatures and simulation results can provide estimates of the minimum threshold for deep infiltration, the variability of infiltration along stream channels, and also the frequency of infiltration events.

  19. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  20. Measurement of the radon diffusion through a nylon foil for different air humidities

    SciTech Connect

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-17

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  1. Measurement of the radon diffusion through a nylon foil for different air humidities

    NASA Astrophysics Data System (ADS)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-01

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  2. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  3. Temperature measurements behind reflected shock waves in air. [radiometric measurement of gas temperature in self-absorbing gas flow

    NASA Technical Reports Server (NTRS)

    Bader, J. B.; Nerem, R. M.; Dann, J. B.; Culp, M. A.

    1972-01-01

    A radiometric method for the measurement of gas temperature in self-absorbing gases has been applied in the study of shock tube generated flows. This method involves making two absolute intensity measurements at identical wavelengths, but for two different pathlengths in the same gas sample. Experimental results are presented for reflected shock waves in air at conditions corresponding to incident shock velocities from 7 to 10 km/s and an initial driven tube pressure of 1 torr. These results indicate that, with this technique, temperature measurements with an accuracy of + or - 5 percent can be carried out. The results also suggest certain facility related problems.

  4. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-09-01

    A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s-1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  5. Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure

    PubMed Central

    2013-01-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, “We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.” This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  6. Torricelli and the ocean of air: the first measurement of barometric pressure.

    PubMed

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology.

  7. Rational approach to pulmonary infiltrates in leukemia and transplantation.

    PubMed

    Kontoyiannis, Dimitrios P

    2013-09-01

    At present, a number of invasive diagnostic techniques can be used to diagnose the cause of lung infiltrates in patients with hematologic malignancies or hematopoietic stem cell transplantation recipients. Bronchoscopy with measurement of biomarkers in the bronchoalveolar lavage (BAL) will most likely become the preferred method to diagnose infectious causes of pulmonary infiltrates. However, there is no uniform approach regarding the technical parameters of the lavage procedure in cancer patients. Diagnostic protocols vary by region, center, and the expertise of the staff. This mini review discusses the issues surrounding diffuse pulmonary infiltrates and provides some recommendations to deal with these issues.

  8. Study of water infiltration in a lightweight green roof substrate

    NASA Astrophysics Data System (ADS)

    Tomankova, Klara; Holeckova, Martina; Jelinkova, Vladimira; Snehota, Michal

    2015-04-01

    Green roofs have a positive impact on the environment (e.g. improving microclimate and air quality in cities, reducing solar absorbance and storm water). A laboratory infiltration experiment was conducted on the narrow flume serving as 2D vertical model of a green roof. The lightweight Optigreen substrate Type M was used (depth of 20 cm). The front wall of the flume was transparent and inspected by digital camera. The experiment was designed to measure pressure head, volumetric water content and calculate water retention in the substrate. Experiment comprised three artificial rainfall intensities with different values of initial water content of the substrate. The experimental results confirmed that green roofs have the ability to retain rainwater and thus have a beneficial effect on reducing runoff. In the experiment with the artificial 10 minutes rainfall event (total precipitation of 29 mm), the air dry substrate retained 95.9 % of precipitation. On the other hand for moist initial condition 4.2 % of precipitations amount was captured in the substrate. Additionally, the analysis of images taken during the experiment confirmed preferential flow and uneven advancement of the wetting front. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  9. The reproducibility of indoor air pollution (IAP) measurement: a test case for the measurement of key air pollutants from the pan frying of fish samples.

    PubMed

    Kim, Ki-Hyun; Kim, Yong-Hyun; Kim, Bo-Won; Ahn, Jeong-Hyeon; Bae, Min-Suk; Brown, Richard J C

    2014-01-01

    To assess the robustness of various indoor air quality (IAQ) indices, we explored the possible role of reproducibility-induced variability in the measurements of different pollutants under similar sampling and emissions conditions. Polluted indoor conditions were generated by pan frying fish samples in a closed room. A total of 11 experiments were carried out to measure a list of key variables commonly used to represent indoor air pollution (IAP) indicators such as particulate matter (PM: PM1, PM2.5, PM10, and TSP) and a set of individual volatile organic compounds (VOCs) with some odor markers. The cooking activity conducted as part of our experiments was successful to consistently generate significant pollution levels (mean PM10: 7110 μg m(-3) and mean total VOC (TVOC): 1400 μg m(-3), resp.). Then, relative standard error (RSE) was computed to assess the reproducibility between different IAP paramters measured across the repeated experiments. If the results were evaluated by an arbitrary criterion of 10%, the patterns were divided into two data groups (e.g., <10% for benzene and some aldehydes and >10% for the remainders). Most noticeably, TVOC had the most repeatable results with a reproducibility (RSE) value of 3.2% (n = 11).

  10. The Reproducibility of Indoor Air Pollution (IAP) Measurement: A Test Case for the Measurement of Key Air Pollutants from the Pan Frying of Fish Samples

    PubMed Central

    Kim, Bo-Won; Ahn, Jeong-Hyeon; Bae, Min-Suk; Brown, Richard J. C.

    2014-01-01

    To assess the robustness of various indoor air quality (IAQ) indices, we explored the possible role of reproducibility-induced variability in the measurements of different pollutants under similar sampling and emissions conditions. Polluted indoor conditions were generated by pan frying fish samples in a closed room. A total of 11 experiments were carried out to measure a list of key variables commonly used to represent indoor air pollution (IAP) indicators such as particulate matter (PM: PM1, PM2.5, PM10, and TSP) and a set of individual volatile organic compounds (VOCs) with some odor markers. The cooking activity conducted as part of our experiments was successful to consistently generate significant pollution levels (mean PM10: 7110 μg m−3 and mean total VOC (TVOC): 1400 μg m−3, resp.). Then, relative standard error (RSE) was computed to assess the reproducibility between different IAP paramters measured across the repeated experiments. If the results were evaluated by an arbitrary criterion of 10%, the patterns were divided into two data groups (e.g., <10% for benzene and some aldehydes and >10% for the remainders). Most noticeably, TVOC had the most repeatable results with a reproducibility (RSE) value of 3.2% (n = 11). PMID:25054167

  11. Measurement of temperature and velocity fields in a convective fluid flow in air using schlieren images.

    PubMed

    Martínez-González, A; Moreno-Hernández, D; Guerrero-Viramontes, J A

    2013-08-01

    A convective fluid flow in air could be regulated if the physical process were better understood. Temperature and velocity measurements are required in order to obtain a proper characterization of a convective fluid flow. In this study, we show that a classical schlieren system can be used for simultaneous measurements of temperature and velocity in a convective fluid flow in air. The schlieren technique allows measurement of the average fluid temperature and velocity integrated in the direction of the test beam. Therefore, in our experiments we considered surfaces with isothermal conditions. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow by using optical flow techniques. The algorithm implemented analyzes motion between consecutive schlieren frames to obtain a tracked sequence and finally velocity fields. The proposed technique was applied to measure the temperature and velocity fields in natural convection of air due to unconfined and confined heated rectangular plates.

  12. The measurement of carbon monoxide and methane in the National Capital Air Quality Control Region. I - Measurement systems

    NASA Technical Reports Server (NTRS)

    Lebel, P. J.; Lamontagne, R. A.; Goldstein, H. W.

    1976-01-01

    The Carbon Monoxide Pollution Experiment (COPE) and the National Capital Air Quality Control Region (NCAQCR) undertook a series of measurements of atmospheric CO and CH4 to determine the accuracy of the airborne COPE Correlation Interfer4meter. The device, a modified Michelson interferometer, measures the atmospheric column density of CO and CH4 at 2.3 microns with tropospheric measurement sensitivities of 70 and 10 PPB, respectively. Data for evaluating the remote measurements included atmospheric column density measurements at a ground truth site using a van-mounted infrared Fourier spectrometer; continuous ground level gas chromatographic measurements; and chromatographic data from atmospheric grab samples collected by aircraft and at ground locations. The instruments and sampling techniques used in the experiment are described in detail.

  13. Performance of the Proposed New Federal Reference Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air, described in EPA regulations at 40 CFR Part 50, Appendix D, is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O

  14. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  15. Comparison of modeled traffic exposure zones using on-road air pollution measurements

    EPA Science Inventory

    Modeled traffic data were used to develop traffic exposure zones (TEZs) such as traffic delay, high volume, and transit routes in the Research Triangle area of North Carolina (USA). On-road air pollution measurements of nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxid...

  16. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  17. Effect of scintillometer height on structure parameter of the refractive index of air measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn**2). Cn**2 represents the turbulent strength of the atmosphere and describes the ability of the atmos...

  18. CORRELATIONS OF PERSONAL EXPOSURE TO PARTICLES WITH OUTDOOR AIR MEASUREMENT: A REVIEW OF RECENT STUDIES

    EPA Science Inventory

    Epidemiological studies have found a correlation between daily mortality and particle concentrations in outdoor air as measured at a central monitoring station. These studies have been the central reason for the U.S. EPA to propose new tighter particle standards. However, perso...

  19. Air Density Measurements in a Mach 10 Wake Using Iodine Cordes Bands

    NASA Technical Reports Server (NTRS)

    Balla, Robert J.; Everhart, Joel L.

    2012-01-01

    An exploratory study designed to examine the viability of making air density measurements in a Mach 10 flow using laser-induced fluorescence of the iodine Cordes bands is presented. Experiments are performed in the NASA Langley Research Center 31 in. Mach 10 air wind tunnel in the hypersonic near wake of a multipurpose crew vehicle model. To introduce iodine into the wake, a 0.5% iodine/nitrogen mixture is seeded using a pressure tap at the rear of the model. Air density was measured at 56 points along a 7 mm line and three stagnation pressures of 6.21, 8.62, and 10.0 MPa (900, 1250, and 1450 psi). Average results over time and space show rho(sub wake)/rho(sub freestream) of 0.145 plus or minus 0.010, independent of freestream air density. Average off-body results over time and space agree to better than 7.5% with computed densities from onbody pressure measurements. Densities measured during a single 60 s run at 10.0 MPa are time-dependent and steadily decrease by 15%. This decrease is attributed to model forebody heating by the flow.

  20. Measurement error in epidemiologic studies of air pollution based on land-use regression models.

    PubMed

    Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino

    2013-10-15

    Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.

  1. DNA nanofilm thickness measurement on microarray in air and in liquid using an atomic force microscope.

    PubMed

    Legay, Guillaume; Finot, Eric; Meunier-Prest, Rita; Cherkaoui-Malki, Mustapha; Latruffe, Norbert; Dereux, Alain

    2005-10-15

    The measurement of the thickness of DNA films on microarray as a function of the medium (liquid, air) is gaining importance for understanding the signal response of biosensors. Thiol group has been used to attach DNA strands to gold micropads deposited on silicon surface. Atomic force microscopy (AFM) was employed in its height mode to measure the change in the pad thickness and in its force mode to measure the indentation depth of the nanofilm. A good coherence between the height and force modes is observed for the film thickness in air. The adhesion force was found to be an alternative way to measure the surface coverage of the biolayer at nanoscopic scale. However the force analysis (compression, steric and electrostatic) provides baseline information necessary to interpret the AFM height image in liquid. Analysis of the film thickness distribution shows that the height of the DNA strands depends on both the DNA strand length (15-35 base pairs) and the environment (air, liquid). In air, longer strands lay down onto gold surface whereas the charge reversal of gold in liquid causes a repulsion of longer strands, which stand up.

  2. An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion

    ERIC Educational Resources Information Center

    Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

    2012-01-01

    In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

  3. EVALUATION OF A TEST METHOD FOR MEASURING INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPIERS

    EPA Science Inventory

    A large chamber test method for measuring indoor air emissions from office equipment was developed, evaluated, and revised based on the initial testing of four dry-process photocopiers. Because all chambers may not necessarily produce similar results (e.g., due to differences in ...

  4. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  5. Evaluation of Length-of-Stain Gas Indicator Tubes for Measuring Carbon Monoxide in Air.

    ERIC Educational Resources Information Center

    Klaubert, Earl C.; And Others

    Techniques for detection and measurement of carbon monoxide (CO) in air are of interest and utility in many aspects of automotive safety. CO concentrations may range from less than 100 parts per million (ppm), or 0.01 percent, to about 10 percent by volume. Gas indicator tubes have been used for many years primarily as detectors of hazardous gases…

  6. A balloon ozone measurement utilizing an optical absorption cell and an ejector air sampler

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Ashenfelter, T. E.

    1976-01-01

    Stratospheric ozone was measured from a balloon utilizing an ultraviolet absorption cell. The ambient air was sampled by means of an aspirator attached to the output end of the optical cell. A nominal ozone distribution was obtained from 16 km to the float altitude of 38 km.

  7. The Comparative Reactivity Method - a new tool to measure total OH reactivity in ambient air

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Williams, J.; Crowley, J. N.; Lelieveld, J.

    2007-12-01

    Hydroxyl (OH) radicals play a vital role in maintaining the oxidizing capacity of the atmosphere. To understand variations in OH radicals both source and sink terms must be understood. Currently the overall sink term, or the total atmospheric reactivity to OH, is poorly constrained. Here, we present a new on-line method to directly measure the total OH reactivity (i.e.~total loss rate of OH radicals) in a sampled air mass. In this method, a reactive molecule (X), not normally present in air, is passed through a glass reactor and its concentration is monitored with a suitable detector. OH radicals are then introduced in the glass reactor at a constant rate to react with X, first in the presence of zero air and then in the presence of ambient air containing VOCs and other OH reactive species. Comparing the amount of X exiting the reactor with and without the ambient air allows the air reactivity to be determined. In our existing set up, X is pyrrole and the detector used is a proton transfer reaction mass spectrometer. The present dynamic range for ambient air reactivity is about 6 to 300 s-1. The system has been tested and calibrated with different single and mixed hydrocarbon standards showing excellent linearity and accountability with the reactivity of the standards. Field tests in the tropical rainforest of Suriname (~53 s-1) and the urban atmosphere of Mainz (~10 s-1) Germany, show the promise of the new method and indicate that a significant fraction of OH reactive species in the tropical forests is likely missed by current measurements. Suggestions for improvements to the technique and future applications are discussed.

  8. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions

    SciTech Connect

    Zhang, J.J.; Smith, K.R.

    2007-06-15

    Nearly all China's rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. We reviewed approximately 200 publications in both Chinese- and English language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of 'Poisonous' coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China's indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector.

  9. A method to optimize sampling locations for measuring indoor air distributions

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Shen, Xiong; Li, Jianmin; Li, Bingye; Duan, Ran; Lin, Chao-Hsin; Liu, Junjie; Chen, Qingyan

    2015-02-01

    Indoor air distributions, such as the distributions of air temperature, air velocity, and contaminant concentrations, are very important to occupants' health and comfort in enclosed spaces. When point data is collected for interpolation to form field distributions, the sampling locations (the locations of the point sensors) have a significant effect on time invested, labor costs and measuring accuracy on field interpolation. This investigation compared two different sampling methods: the grid method and the gradient-based method, for determining sampling locations. The two methods were applied to obtain point air parameter data in an office room and in a section of an economy-class aircraft cabin. The point data obtained was then interpolated to form field distributions by the ordinary Kriging method. Our error analysis shows that the gradient-based sampling method has 32.6% smaller error of interpolation than the grid sampling method. We acquired the function between the interpolation errors and the sampling size (the number of sampling points). According to the function, the sampling size has an optimal value and the maximum sampling size can be determined by the sensor and system errors. This study recommends the gradient-based sampling method for measuring indoor air distributions.

  10. Air Quality in Megacities: Lessons Learned from Mexico City Field Measurements

    NASA Astrophysics Data System (ADS)

    Molina, L. T.

    2014-12-01

    More than half of the world's population now lives in urban areas because of the opportunities for better jobs, access to city services, cultural and educational activities, and a desire for more stimulating human interaction. At the same time, many of these urban centers are expanding rapidly, giving rise to the phenomenon of megacities. In recent decades air pollution has become not only one of the most important environmental problems of megacities, but also presents serious consequences to human health and ecosystems and economic costs to society. Although the progress to date in combating air pollution problems in developed and some developing world megacities has been impressive, many challenges remain including the need to improve air quality while simultaneously mitigating climate change. This talk will present the results and the lessons learned from field measurements conducted in Mexico City Metropolitan Area - one of the world's largest megacities - over the past decade. While each city has its own unique circumstances, the need for an integrated assessment approach in addressing complex environmental problems is the same. There is no single strategy in solving air pollution problems in megacities; a mix of policy measures based on sound scientific findings will be necessary to improve air quality, protect public health, and mitigate climate change.

  11. Cl2 Measurements in Polluted Coastal Air Using a Br- Addition CIMS Technique

    NASA Astrophysics Data System (ADS)

    Lawler, M. J.; Saltzman, E. S.

    2008-12-01

    Molecular chlorine (Cl2) was measured in ambient air using chemical ionization mass spectrometry (CIMS) with Br- as a reagent ion. Ionization was carried out by adding CHBr3 to ambient air and flowing the gas mixture through a 63Ni ion source maintained at 300 Torr. The resulting Cl2Br- adduct was collisionally dissociated in a triple quadrupole mass spectrometer and detected as Cl-. Ambient Cl2 measurements were made at Irvine, CA, from August 1-8, 2008. Air was drawn to the instrument from outside via a ~4m long laminar flow inlet. Inlet and instrument blanks were assessed by passing ambient air through carbonate-coated glass wool, and the instrument was calibrated with a Cl2 permeation tube. During this study, the mean detection limit for Cl2 was estimated at approximately 2 ppt. Cl2 showed a diel cycle on the days it was detectable, with nighttime mixing ratios up to about 15 ppt and daytime values of a few ppt or less. A rapid decrease in Cl2 in surface air was observed overnight in association with stagnation of the nocturnal surface layer.

  12. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    SciTech Connect

    Eberhart, Craig

    2010-08-01

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  13. A new test chamber to measure material emissions under controlled air velocity

    SciTech Connect

    Bortoli, M. de; Ghezzi, E.; Knoeppel, H.; Vissers, H.

    1999-05-15

    A new 20-L glass chamber for the determination of VOC emissions from construction materials and consumer products under controlled air velocity and turbulence is described. Profiles of air velocity and turbulence, obtained with precisely positioned hot wire anemometric probes, show that the velocity field is homogeneous and that air velocity is tightly controlled by the fan rotation speed; this overcomes the problem of selecting representative positions to measure air velocity above a test specimen. First tests on material emissions show that the influence of air velocity on the emission rate of VOCs is negligible for sources limited by internal diffusion and strong for sources limited by evaporation. In a velocity interval from 0.15 to 0.30 m s{sup {minus}1}, an emission rate increase of 50% has been observed for pure n-decane and 1,4-dichlorobenzene and of 30% for 1,2-propanediol from a water-based paint. In contrast, no measurable influence of turbulence could be observed during vaporization of 1,4-dichlorobenzene within a 3-fold turbulence interval. Investigations still underway show that the chamber has a high recovery for the heavier VOC (TXIB), even at low concentrations.

  14. High precision, fast ultrasonic thermometer based on measurement of the speed of sound in air

    NASA Astrophysics Data System (ADS)

    Huang, K. N.; Huang, C. F.; Li, Y. C.; Young, M. S.

    2002-11-01

    This study presents a microcomputer-based ultrasonic system which measures air temperature by detecting variations in the speed of sound in the air. Changes in the speed of sound are detected by phase shift variations of a 40 kHz continuous ultrasonic wave. In a test embodiment, two 40 kHz ultrasonic transducers are set face to face at a constant distance. Phase angle differences between transmitted and received signals are determined by a FPGA digital phase detector and then analyzed in an 89C51 single-chip microcomputer. Temperature is calculated and then sent to a LCD display and, optionally, to a PC. Accuracy of measurement is within 0.05 degC at an inter-transducer distance of 10 cm. Temperature variations are displayed within 10 ms. The main advantages of the proposed system are high resolution, rapid temperature measurement, noncontact measurement and easy implementation.

  15. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  16. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  17. The Comparative Reactivity Method - a new tool to measure total OH Reactivity in ambient air

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Williams, J.; Crowley, J. N.; Lelieveld, J.

    2008-04-01

    Hydroxyl (OH) radicals play a vital role in maintaining the oxidizing capacity of the atmosphere. To understand variations in OH radicals both source and sink terms must be understood. Currently the overall sink term, or the total atmospheric reactivity to OH, is poorly constrained. Here, we present a new on-line method to directly measure the total OH reactivity (i.e.~total loss rate of OH radicals) in a sampled air mass. In this method, a reactive molecule (X), not normally present in air, is passed through a glass reactor and its concentration is monitored with a suitable detector. OH radicals are then introduced in the glass reactor at a constant rate to react with X, first in the presence of zero air and then in the presence of ambient air containing VOCs and other OH reactive species. Comparing the amount of X exiting the reactor with and without the ambient air allows the air reactivity to be determined. In our existing set up, X is pyrrole and the detector used is a proton transfer reaction mass spectrometer. The present dynamic range for ambient air reactivity is about 6 to 300 s-1, with an overall maximum uncertainty of 25% above 8 s-1 and up to 50% between 6-8 s-1. The system has been tested and calibrated with different single and mixed hydrocarbon standards showing excellent linearity and accountability with the reactivity of the standards. Potential interferences such as high NO in ambient air, varying relative humidity and photolysis of pyrrole within the setup have also been investigated. While interferences due changing humidity and photolysis of pyrrole are easily overcome by ensuring that humidity in the set up does not change drastically and the photolytic loss of pyrrole is measured and taken into account, respectively, NO>10 ppb in ambient air remains a significant interference for the current configuration of the instrument. Field tests in the tropical rainforest of Suriname (~53 s

  18. Aerothermodynamic measurement and prediction for a modified orbiter at Mach 6 and 10 in air

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    1991-01-01

    Detailed heat-transfer rate distributions measured laterally over the windward surface of an orbiter-like configuration using thin-film resistance heat-transfer gages and globally using the newly developed relative intensity, two-color thermographic phosphor technique are presented for Mach 6 and 10 in air. The primary objective of this study was to provide detailed benchmark heat-transfer data for the calibration of CFD codes. Predicted laminar heat-transfer rates are in good agreement with measurements.

  19. Air Shower Events of High-Energy Cosmic Rays Measured at Seoul, South Korea

    NASA Astrophysics Data System (ADS)

    Cho, Wooram; Shin, Jae-Ik; Kim, Hongki; Lee, Seulgi; Lim, Sunin; Nam, Sinwoo; Yang, Jongmann; Cheon, Byunggu; Bang, Hyungchan; Kwon, Youngjoon

    2011-09-01

    The COsmic ray Research and Education Array (COREA) collaboration has installed an array of six detector stations at two high schools in and near Seoul, Korea for measurement of air-shower events from high-energy cosmic rays. Three stations are installed at each site, where each station consists of four plastic scintillation detectors covering an area of 2m2. In this presentation, we report the currenst status of the COREA project, describing the experimental equipment and measurement of coincident events.

  20. Air fluorescence efficiency measurements for AIRWATCH based mission: Experimental set-up

    SciTech Connect

    Biondo, B.; Catalano, O.; Celi, F.; Fazio, G.; Giarrusso, S.; La Rosa, G.; Mangano, A.; Bonanno, G.; Cosentino, R.; Di Benedetto, R.; Scuderi, S.; Richiusa, G.; Gregorio, A.

    1998-06-15

    In the framework of the AIRWATCH project we present an experimental set-up to measure the efficiency of the UV fluorescence production of the air using hard X-ray stimulus. The measures will be carried out at different pressure and temperature to emulate the same condition of the upper layers of the atmosphere where X-ray and gamma ray photons of Gamma Ray Bursts are absorbed.

  1. Spatial analysis of water infiltration in urban soils. Case study of Iasi municipality (Romania)

    NASA Astrophysics Data System (ADS)

    Cristian Vasilica, Secu; Ionut, Minea

    2013-04-01

    The post-communist period (after 1989) caused important changes in the functional structure of Iasi municipality. The partly dismantling of the industrial area, the urban sprawl against the periurban and agricultural space, the new infrastructure works, all these determined important changes of soils' physical and morphological properties (e.g. porosity, density, compaction, infiltration rate etc., in the first case, and changes in soil horizons, in the second case etc.). This study aims to prove the variability of physical properties through the combination of statistical and geostatistical methods intended for a correct spatial representation. Water infiltration in urban soils was analyzed in relation to land use and the age of parental materials. Field investigations consisted in measurements of the water infiltration (by the means of Turf Tech infiltrometer), resistance to penetration (penetrologger), moisture deficit (Theta Probe) and resistivity (EC) for 70 equally distanced points (750 m x 750 m) placed in a grid covering more than 33 km2. In the laboratory, there were determined several parameters as density, porosity (air pycnometer), gravimetric moisture and other hydrophysical indicators. Filed investigations results are very heterogeneous, because of the human intervention on soils. The curves of variation for the rate water infiltration in soils indicate a downward trend, from high values in first time interval (one minute), between 5000 and 60 mm/h-1, gradually decreasing to the interval of 5-10 minutes (between 30 and 1000 mm/ h-1 to a general trend of flattening after a large time interval (in the timeframe of 50-60 minutes, the infiltration rate ranges between 4 and 142 mm•h-1). The highest frequency (≥65%) caracterizes the infiltration rates between 20 and 65 mm•h-1. For each analyzed sector (residential areas, industrial areas, degraded lands, recreational areas - parks and botanical gardens, forests heterogeneous agricultural lands), the

  2. Water vapor isotopic composition of a stratospheric air intrusion: Measurements from the Chajnantor Plateau, Chile

    NASA Astrophysics Data System (ADS)

    Galewsky, Joseph; Samuels-Crow, Kimberly

    2014-08-01

    Measurements of water vapor isotopic composition in stratospheric air intrusions can be used to constrain the dilution of the intrusion as it mixes into the middle troposphere. The intrusion studied here occurred on 17 and 18 August 2012 with measurements obtained at an altitude of 5 km in the Chilean Andes at the Atacama Large Millimeter Array astronomical observatory on the Chajnantor Plateau. Surface ozone concentrations rose 16 ppb in 6 h and were associated with a potential vorticity intrusion on the 330 K isentropic surface. A simulated stratospheric ozone tracer reaching Chajnantor also supports the interpretation of a stratospheric intrusion. Beginning around 18:00 UTC on 17 August, the mixing ratio dropped from 3000 ppmv to 430 ppmv as the water vapor δD values dropped from -153‰ to -438‰ over 13 h while the δ18O values dropped from -20‰ to -63‰. The average mixing ratio, δD, and δ18O values during August 2012 were measured to be 1500 ppmv, -250‰, and -34‰, respectively. The minimum water vapor concentration during the intrusion was in the driest 5% of measurements made during that month, while the minimum δD and δ18O values were within the lowest 0.5% of measurements made during that month. Simple two-component models of mixing between stratospheric or upper tropospheric air with boundary layer air fail to reproduce observations, but a three-component mixing model, in which the stratospheric intrusion mixes with an upper tropospheric background air mass, as it mixes with boundary layer air on Chajnantor, matches the observations.

  3. Influence of surface crusting on infiltration of a loess plateau soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface sealing and crusting are common widespread processes that occur in many cultivated soils worldwide, especially in arid and semiarid regions. Soil crusting negatively affects water infiltration, increases surface runoff, reduces seedling emergence, restricts air exchange between the soil and ...

  4. Mexico City air quality research initiative. Volume IV. Characterization and measurement

    SciTech Connect

    Mauzy, A.

    1994-04-01

    This volume describes the methods and the data gathered in an attempt to measure and characterize the meteorological factors and the concentration of different pollutants in the Mexico City Metropolitan Area. The main objective of this document was to provide input for the simulation models and to obtain information that could be used to test and improve the models` performance. Four field campaigns were conducted, as well as routine monitoring, in order to obtain a database of atmospheric dynamics and air pollution characteristics. Sections include Airborne measurements, Remote sensing measurements, and Traditional (in situ) measurements.

  5. The nature of air pollution and the methods available for measuring it

    PubMed Central

    Ellison, J. McK.

    1965-01-01

    At present the principal sources of energy in Europe are coal and oil and fuels derived from them, and in European towns air pollution consists mainly of their combustion products. These combustion products naturally divide into two categories, gaseous and particulate, which are very different chemically and which behave very differently when they are near collecting surfaces; they therefore require very different techniques both for collecting and for estimating samples. Some methods of measurement, suitable for everyday routine use in Europe, are described; these offer a compromise between completeness and economy, and can help to give a general outline of the air pollution situation without undue complexity or prohibitive cost. PMID:14315712

  6. Cleanliness of common air sampling sorbents for application to phenolic compounds measurement using supercritical fluid extraction

    SciTech Connect

    Bowyer, J.R.; Pleil, J.D.

    1994-12-31

    The trace-level measurement of phenolic compounds in the ambient air is complicated by the acidic and polar nature of the compounds especially during recovery from the sampling medium. Recently, supercritical fluid extraction (SFE) has been proposed as an alternative extraction method to Soxhlet extraction or thermal desorption to achieve more efficient recoveries. For such methodology to become practical, the candidate sorbents must first be tested for stability and cleanliness under SFE conditions. This paper describes exploratory research results of background contamination tests and cleanup properties of some common air sampling sorbent media with respect to future application to phenolic compounds monitoring.

  7. Cleanliness of common air sampling sorbents for application to phenolic compounds measurement using supercritical fluid extraction

    SciTech Connect

    Bowyer, J.R.; Pleil, J.D.

    1994-01-01

    The trace-level measurement of phenolic compounds in the ambient air is complicated by the acidic and polar nature of the compounds especially during recovery from the sampling medium. Recently, supercritical fluid extraction (SFE) has been proposed as an alternative extraction method to Soxhlet extraction or thermal desorption to achieve more efficient recoveries. For such methodology to become practical, the candidate sorbents must first be tested for stability and cleanliness under SFE conditions. The paper describes exploratory research results of background contamination tests and cleanup properties of some common air sampling sorbent media with respect to future application to phenolic compounds monitoring.

  8. Subjective Measurement of Tactical Air Command and Control. Volume I. Background and Approach.

    DTIC Science & Technology

    1981-03-01

    77 09104 RAND CORP SANTA MONICA CA F/ 17/2SUBIJECTIVE MEASUREMENT OF TACTICAL AIR COMMAND AND CONTROL. VOL-ETC(U) UNL MAR 81 M CALLERO ,. NASLUNO, C...TACTICAL AIR COMMWI AND CGITOL--VOL. 1: BACKGROUND AND APPRAC Monti Callero , Willard Naslund, "-LI Clairice T. Veit March 1981 D ~MAY19. N- 1671/1-AF...ORG. REPORT NUMBER 7 AuTHOR(e) ., CONTRACT OR GRANT NUMBER(*) Monti Callero , Willard Naslund, Clairice T. Veit F49620-77-C-0023 9. PERFORMING

  9. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  10. Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications.

    PubMed

    Mirowsky, Jaime; Gordon, Terry

    2015-01-01

    Human exposure studies, compared with cell and animal models, are heavily relied upon to study the associations between health effects in humans and air pollutant inhalation. Human studies vary in exposure methodology, with some work conducted in controlled settings, whereas other studies are conducted in ambient environments. Human studies can also vary in the health metrics explored, as there exists a myriad of health effect end points commonly measured. In this review, we compiled mini reviews of the most commonly used noninvasive health effect end points that are suitable for panel studies of air pollution, broken into cardiovascular end points, respiratory end points, and biomarkers of effect from biological specimens. Pertinent information regarding each health end point and the suggested methods for mobile collection in the field are assessed. In addition, the clinical implications for each health end point are summarized, along with the factors identified that can modify each measurement. Finally, the important research findings regarding each health end point and air pollutant exposures were reviewed. It appeared that most of the adverse health effects end points explored were found to positively correlate with pollutant levels, although differences in study design, pollutants measured, and study population were found to influence the magnitude of these effects. Thus, this review is intended to act as a guide for researchers interested in conducting human exposure studies of air pollutants while in the field, although there can be a wider application for using these end points in many epidemiological study designs.

  11. Measured winter performance of storm windows

    SciTech Connect

    Klems, Joseph H.

    2002-08-23

    Direct comparison measurements were made between various prime/storm window combinations and a well-weatherstripped, single-hung replacement window with a low-E selective glazing. Measurements were made using an accurate outdoor calorimetric facility with the windows facing north. The doublehung prime window was made intentionally leaky. Nevertheless, heat flows due to air infiltration were found to be small, and performance of the prime/storm combinations was approximately what would be expected from calculations that neglect air infiltration. Prime/low-E storm window combinations performed very similarly to the replacement window. Interestingly, solar heat gain was not negligible, even in north-facing orientation.

  12. Participatory measurements of individual exposure to air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Madelin, Malika; Duché, Sarah; Dupuis, Vincent

    2016-04-01

    Air pollution is a major environmental issue in urban areas. Chronic and high concentration exposure presents a health risk with cardiovascular and respiratory problems and longer term nervous, carcinogenic and endocrine problems. In addition to the estimations based on simulations of both background and regional pollution and of the pollution induced by the traffic, knowing exposure of each individual is a key issue. This exposure reflects the high variability of pollution at fine spatial and time scales, according to the proximity of emission sources and the urban morphology outside. The emergence of citizen science and the progress of miniaturized electronics, low-cost and accessible to (almost) everyone, offers new opportunities for the monitoring of air pollution, but also for the citizens' awareness of their individual exposure to air pollution. In this communication, we propose to present a participatory research project 'What is your air?' (project funded by the Île-de-France region), which aims at raising awareness on the theme of air quality, its monitoring with sensors assembled in a FabLab workshop and an online participatory mapping. Beyond the discussion on technical choices, the stages of manufacture or the sensor calibration procedures, we discuss the measurements made, in this case the fine particle concentration measurements, which are dated and georeferenced (communication via a mobile phone). They show high variability between the measurements (in part linked to the substrates, land use, traffic) and low daily contrasts. In addition to the analysis of the measurements and their comparison with the official data, we also discuss the choice of representation of information, including mapping, and therefore the message about pollution to communicate.

  13. Volatile organic compounds in indoor air: A review ofconcentrations measured in North America since 1990

    SciTech Connect

    ATHodgson@lbl.gov

    2003-04-01

    Central tendency and upper limit concentrations of volatile organic compounds (VOCs) measured in indoor air are summarized and reviewed. Data were obtained from published cross-sectional studies of residential and office buildings conducted in North America from 1990through the present. VOC concentrations in existing residences reported in 12 studies comprise the majority of the data set. Central tendency and maximum concentrations are compared between new and existing residences and between existing residences and office buildings. Historical changes in indoor VOC concentrations since the Clean Air Act Amendments of 1990 are explored by comparing the current data set with two published reviews of previous data obtained primarily in the 1980s. These historical comparisons suggest average indoor concentrations of some toxic air contaminants, such as 1,1,1-trichloroethane have decreased.

  14. Comparison of three techniques to measure unsaturated-zone air permeability at Picatinny Arsenal, NJ.

    PubMed

    Olson, M S; Tillman, F D; Choi, J W; Smith, J A

    2001-12-01

    The purpose of this study is to compare three techniques to measure the air permeability of the unsaturated zone at Picatinny Arsenal, NJ and to examine the effects of moisture content and soil heterogeneity on air permeability. Air permeability was measured in three ways: laboratory experiments on intact soil cores, field-scale air pump tests and calibration of air permeability to air pressures measured in the field under natural air pressure conditions using a numerical airflow model. The results obtained from these three methods were compared and found to be similar. Laboratory experiments performed on intact cores measured air permeability values on the order of 10(-14) to 10(-9) m2. Low-permeability cores were found between land surface and a depth of 0.6 m. The soil core data were divided into two layers with composite vertical permeability values of 1.3 x 10(-13) m2 from land surface to a 0.6-m depth and 3.8 x 10(-10) m2 for the lower layer. Analyses of the field-scale pump tests were performed for two scenarios: one in which the entire unsaturated zone was open to the atmosphere and one assuming a cap of low permeability extending 0.6 m below land surface. The vertical air permeability values obtained for the open scenario ranged from 1.2 x 10(-9) to 1.5 x 10(-9) m2, and ranged from 3.6 x 10(-9) to 6.8 x 10(-9) m2 in the lower layer, assuming an upper cap permeability of 6.0 x 10(-14) m2. The results from the open scenario are much higher than expected and the possible reasons for this ambiguity are discussed. The results from the capped scenario matched closely with those from the other methods and indicated that it is important to have background information on the study site to correctly analyze the pump test data. The optimized fit of the natural subsurface air pressure was achieved with an intrinsic permeability value of 3.3 x 10(-14) m2. When the data were refitted to the model assuming two distinct layers of the unsaturated zone, the optimized fit

  15. New method to measure the attenuation of hadrons in extensive air showers

    SciTech Connect

    Apel, W. D.; Badea, F.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Gils, H. J.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Nehls, S.; Oehlschlaeger, J.

    2009-07-15

    Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth's atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment, are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 10{sup 6} to 3x10{sup 7} GeV the attenuation length obtained increases from 170 to 210 g/cm{sup 2}. The experimental results are compared to predictions of simulations based on contemporary high-energy interaction models.

  16. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-03-01

    A new laser air-motion sensor measures the true airspeed with an uncertainty of less than 0.1 m s-1 (standard error) and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard-error uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the Global Positioning System, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that the new laser air-motion sensor, combined with parametrized fits to correction factors for the measured dynamic and ambient pressure, provides a measurement of temperature that is independent of any other temperature sensor.

  17. The First Air-Temperature Measurements for the Purposes of Battlefield Operations?.

    NASA Astrophysics Data System (ADS)

    Lindgré, S.; Neumann, J.

    1986-03-01

    Close to the end of the severe winter 1808/09, a Russian force crossed the ice-bound Gulf of Bothnia from Finland to Sweden with the purpose of forcing Sweden to desist from taking sides with Great Britain against Napoléon. General major von Berg, one of the commanders of the force, took meteorological observations, including air-temperature measurements, during the crossing, a record of which he left behind in a journal. These air-temperature measurements appear to be the first of their kind in the history of land-based military forces.In the discussion of the meteorological conditions of the above-mentioned harsh winter, use is made of unpublished meteorological measurements at Umcaå, Sweden, and at Ylitomio (Över-Torneå), Finland. The latter were conducted by Johan Portin, a pioneer of meteorological observations near the Arctic Circle.

  18. Absolute group refractive index measurement of air by dispersive interferometry using frequency comb.

    PubMed

    Yang, L J; Zhang, H Y; Li, Y; Wei, H Y

    2015-12-28

    The absolute group refractive index of air at 1563 nm is measured by dispersive interferometry, and a combined uncertainty of 1.2 × 10(-8) is achieved. The group refractive index of air is calculated from the dispersive interferograms of the two beams passing through the inner and outer regions of a vacuum cell by fast-Fourier-transform. Experimental results show that the discrepancies between our method and modified Edlén equation are less than 3.43 × 10(-8) and 4.4 × 10(-8) for short-term and long-term experiments, respectively. The interferogram update rate is 15 ms, which makes it suitable for application of real-time monitoring. Furthermore, it is promising to improve the measurement uncertainty to 3.0 × 10(-9) by changing the material of the vacuum cell and measuring its length more accurately through optical interferometry.

  19. SIRS: An Experiment to Measure the Free Air Temperature from a Satellite.

    PubMed

    Wark, D Q

    1970-08-01

    The Satellite Infrared Spectrometer (SIRS) on the Nimbus III satellite was designed to measure the earth's spectral radiances in the 15-microm band of carbon dioxide. From simultaneous measurements of spectral radiances it is possible to obtain the vertical temperature profile of the atmosphere. The measurements are approximated by the integral equation of radiative transfer, modified by one or two layers of clouds. A solution requires that the surface radiative temperature and the surface air temperature be known. By iteration, a solution based upon the statistical behavior of the atmosphere is obtained for the free air temperature and the cloud heights and amounts. Examples are presented, comparing the SIRS soundings with coincident radiosonde soundings. The results from this experiment indicate that the technique can be applied as a routine observing tool for meteorological use.

  20. Mixtures of stratospheric and overshooting air measured using A-Train sensors

    NASA Astrophysics Data System (ADS)

    Iwasaki, S.; Shibata, T.; Okamoto, H.; Ishimoto, H.; Kubota, H.

    2012-06-01

    Synergetic spaceborne observations of overshooting air, defined as cloud intrusion through the level of neutral buoyancy above deep convection, are analyzed using various thresholds introduced in previous studies to detect overshooting. The brightness temperature of the overshooting air measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) is generally 2 K higher than that retrieved by the radiative transfer model, in which the size distribution of ice cloud particles is estimated from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and CloudSat data and the vertical temperature profile of cloud is assumed to follow that of the European Centre for Medium Range Weather Forecast (ECMWF). The lapse rate of overshooting whose cloud top is higher than the level of the cold-point temperature (CPT) is lower than that of an adiabatic expansion. These observations can be rationalized as being due to the overshooting air being locally warmed by a mixture of warmer stratospheric air. Analysis of CALIOP and CloudSat data by using a radar-lidar algorithm shows that the mode of averaged ice water content of the overshoot above the CPT height is 6.3-10 mg/m3. Therefore, if 5% or more of ice particles in the overshoot are sublimated and mixed into the lower stratosphere, the lower stratospheric air will be hydrated. The difference between the brightness temperatures of 6.7 and 11 μm channels observed with MODIS demonstrates that the overshoot enhances stratospheric water vapor. These results indicate that the warm stratospheric air moves downward at and around the overshoot and mixes with the overshooting air and that the overshooting hydrates the lower stratosphere.

  1. NOVEL METHODS FOR MEASURING AIR-WATER INTERFACIAL AREA IN UNSATURATED POROUS MEDIA

    PubMed Central

    Brusseau, Mark L.; Ouni, Asma El; Araujo, Juliana B.; Zhong, Hua

    2015-01-01

    Interfacial partitioning tracer tests (IPTT) are used to measure air-water interfacial area for unsaturated porous media. The standard IPTT method involves conducting tests wherein an aqueous surfactant solution is introduced into a packed column under unsaturated flow conditions. Surfactant-induced drainage has been observed to occur for this method in some cases, which can complicate data analysis and impart uncertainty to the measured values. Two novel alternative approaches for conducting IPTTs are presented herein that are designed in part to prevent surfactant-induced drainage. The two methods are termed the dual-surfactant IPTT (IPTT-DS) and the residual-air IPTT (IPTT-RA). The two methods were used to measure air-water interfacial areas for two natural porous media. System monitoring during the tests revealed no measurable surfactant-induced drainage. The measured interfacial areas compared well to those obtained with the standard IPTT method conducted in such a manner that surfactant-induced drainage was prevented. PMID:25732632

  2. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  3. On-site infiltration of road runoff using pervious pavements with subjacent infiltration trenches as source control strategy.

    PubMed

    Fach, S; Dierkes, C

    2011-01-01

    The focus in this work was on subsoil infiltration of stormwater from parking lots. With regard to operation, reduced infiltration performance due to clogging and pollutants in seepage, which may contribute to contaminate groundwater, are of interest. The experimental investigation covered a pervious pavement with a subjacent infiltration trench draining an impervious area of 2 ha. In order to consider seasonal effects on the infiltration performance, the hydraulic conductivity was measured tri-monthly during monitoring with a mobile sprinkling unit. To assess natural deposits jointing, road bed, gravel of infiltration trenches and subsoil were analysed prior to commencement of monitoring for heavy metals, polycyclic aromatic and mineral oil type hydrocarbons. Furthermore, from 22 storm events, water samples of rainfall, surface runoff, seepage and ground water were analysed with regard to the above mentioned pollutants. The study showed that the material used for the joints had a major impact on the initial as well as the final infiltration rates. Due to its poor hydraulic conductivity, limestone gravel should not be used as jointing. Furthermore, it is recommended that materials for the infiltration facilities are ensured free of any contaminants prior to construction. Polycyclic aromatic and mineral oil type hydrocarbons were, with the exception of surface runoff, below detection limits. Heavy metal concentrations of groundwater were with the exception of lead (because of high background concentrations), below the permissible limits.

  4. Remediation to improve infiltration into compact soils.

    PubMed

    Olson, Nicholas C; Gulliver, John S; Nieber, John L; Kayhanian, Masoud

    2013-03-15

    Urban development usually involves soil compaction through converting large pervious land into developed land. This change typically increases runoff during runoff events and consequently may add to flooding and additional volume of runoff. The wash off of pollutants may also create numerous water quality and environmental problems for receiving waters. To alleviate this problem many municipalities are considering low impact development. One technique to reduce runoff in an urban area is to improve the soil infiltration. This study is specifically undertaken to investigate tilling and compost addition to improve infiltration rate, and to investigate measurement tools to assess the effectiveness of remediated soil. Soil remediation was performed at three sites in an urban area metropolitan area. Each site was divided into three plots: tilled, tilled with compost addition, and a control plot with no treatment. The infiltration effectiveness within each plot was assessed by measuring saturated hydraulic conductivity (K(sat)) using the modified Philip Dunne (MPD) infiltrometer during pre- and post-treatment. In addition, the use of soil bulk density and soil strength as surrogate parameters for K(sat) was investigated. Results showed that deep tillage was effective at reducing the level of soil strength. Soil strength was approximately half that of the control plot in the first six inches of soil. At two of the sites, tilling was also ineffective at improving the infiltration capacity of the soil. The geometric mean of K(sat) was 0.5-2.3 times that of the control plot, indicating little overall improvement. Compost addition was more effective than tilling by reducing the soil strength and compaction and increasing soil infiltration. The geometric mean of K(sat) on the compost plots was 2.7-5.7 times that of the control plot. No strong correlations were observed before remediation between either soil bulk density or soil strength and K(sat). Simulation results showed

  5. Building ventilation and indoor air quality

    SciTech Connect

    Hollowell, C.D.; Berk, J.V.; Boegel, M.L.; Miksch, R.R.; Nazaroff, W.W.; Traynor, G.W.

    1980-01-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced infiltration and ventilation in buildings may significantly increase exposure to indoor contaminants and perhaps have adverse effects on occupant health and comfort. Four indoor air contaminants - carbon monoxide and nitrogen dioxide from gas appliances; formaldehyde from particleboard, plywood, urea-formaldehyde foam insulation, and gas appliances; and radon from building materials, soil, and ground water - are currently receiving considerable attention in the context of potential health risks associated with reduced infiltration and ventilation rates. These air contaminants in conventional and energy efficient buildings were measured and analyzed with a view to assessing their potential health risks and various control strategies capable of lowering pollutant concentrations. Preliminary findings suggest that further intensive studies are needed in order to develop criteria for maintaining acceptable indoor air quality without compromising energy efficiency.

  6. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  7. Simplified modeling for infiltration and radon entry

    SciTech Connect

    Sherman, M.H.

    1992-08-01

    Air leakage in the envelopes of residential buildings is the primary mechanism for provided ventilation to those buildings. For radon the same mechanisms that drive the ventilation, drive the radon entry This paper attempts to provide a simplified physical model that can be used to understand the interactions between the building leakage distribution, the forces that drive infiltration and ventilation, and indoor radon concentrations, Combining both ventilation and entry modeling together allows an estimation of Radon concentration and exposure to be made and demonstrates how changes in the envelope or ventilation system would affect it. This paper will develop simplified modeling approaches for estimating both ventilation rate and radon entry rate based on the air tightness of the envelope and the driving forces. These approaches will use conventional leakage values (i.e. effective leakage area ) to quantify the air tightness and include natural and mechanical driving forces. This paper will introduce a simplified parameter, the Radon Leakage Area, that quantifies the resistance to radon entry. To be practical for dwellings, modeling of the occupant exposures to indoor pollutants must be simple to use and not require unreasonable input data. This paper presents the derivation of the simplified physical model, and applies that model to representative situations to explore the tendencies to be expected under different circumstances.

  8. The measurement error analysis when a pitot probe is used in supersonic air flow

    NASA Astrophysics Data System (ADS)

    Zhang, XiWen; Hao, PengFei; Yao, ZhaoHui

    2011-04-01

    Pitot probes enable a simple and convenient way of measuring mean velocity in air flow. The contrastive numerical simulation between free supersonic airflow and pitot tube at different positions in supersonic air flow was performed using Navier-Stokes equations, the ENN scheme with time-dependent boundary conditions (TDBC) and the Spalart-Allmaras turbulence model. The physical experimental results including pitot pressure and shadowgraph are also presented. Numerical results coincide with the experimental data. The flow characteristics of the pitot probe on the supersonic flow structure show that the measurement gives actually the total pressure behind the detached shock wave by using the pitot probe to measure the total pressure. The measurement result of the distribution of the total pressure can still represent the real free jet flow. The similar features of the intersection and reflection of shock waves can be identified. The difference between the measurement results and the actual ones is smaller than 10%. When the pitot probe is used to measure the region of L=0-4 D, the measurement is smaller than the real one due to the increase of the shock wave strength. The difference becomes larger where the waves intersect. If the pitot probe is put at L=8 D-10 D, where the flow changes from supersonic to subsonic, the addition of the pitot probe turns the original supersonic flow region subsonic and causes bigger measurement errors.

  9. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward.

  10. Emission measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    The emissions of a lean premixed system of propane/air were measured in a flametube apparatus. Tests were conducted at inlet temperatures of 600K and 800K and pressures of 10 atm and 30 atm over a range of equivalence ratios. The data obtained were combined with previous data taken in the same apparatus to correlate nitrogen oxide emissions with operating conditions. Sampling probe design was found to have a pronounced effect on measured CO levels but did not influence measurements. The most effective probe tested was one which combined thermal and pressure quenching of the gas sample.

  11. Assessment of Human Ambulatory Speed by Measuring Near-Body Air Flow

    PubMed Central

    Bonomi, Alberto G.; Salati, Stefano

    2010-01-01

    Accurate measurements of physical activity are important for the diagnosis of the exacerbation of chronic diseases. Accelerometers have been widely employed in clinical research for measuring activity intensity and investigating the association between physical activity and adverse health conditions. However, the ability of accelerometers in assessing physical activity intensity such as walking speed has been constrained by the inter-individual variability in sensor output and by the necessity of developing unobtrusive low-power monitoring systems. This paper will present a study aimed at investigating the accuracy of a wearable measuring system of near-body air flow to determine ambulatory speed in the field. PMID:22163681

  12. Temperature measurements in hypersonic air flows using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Mckenzie, Robert L.

    1988-01-01

    An investigation is reported of the use of laser-induced fluorescence on oxygen for the measurement of air temperature and its fluctuations owing to turbulence in hypersonic wind tunnel flows. The results show that for temperatures higher than 60 K and densities higher than 0.01 amagat, the uncertainty in the temperature measurement can be less than 2 percent if it is limited by photon-statistical noise. The measurement is unaffected by collisional quenching and, if the laser fluence is kept below 1.5 J/sq cm, it is also unaffected by nonlinear effects which are associated with depletion of the absorbing states.

  13. Simultaneous measurements of temperature and density in air flows using UV laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mckenzie, R. L.

    1991-01-01

    The simultaneous measurement of temperature and density using laser-induced fluorescence of oxygen in combination with Q-branch Raman scattering of nitrogen and oxygen is demonstrated in a low-speed air flow. The lowest density and temperature measured in the experiment correspond to the freestream values at Mach 5 in the Ames 3.5-Foot Hypersonic Wind Tunnel for stagnation conditions of 100 atm and 1000 K. The experimental results demonstrate the viability of the optical technique for measurements that support the study of compressible turbulence and the validation of numerical codes in supersonic and hypersonic wind tunnel flows.

  14. Neutral air density and temperature measurements by the TOTAL instrument aboard the ROSE payloads

    NASA Astrophysics Data System (ADS)

    Friker, A.; Luebken, F.-J.

    1992-06-01

    Four ROSE payloads, launched from November 1988 to February 1989 from northern Scandinavia, carried ionization gauges ('TOTAL' instruments) for neutral air density measurements in the altitude range 90-105 km. Temperature profiles are derived by integrating the number density profiles. Density and temperature data are presented. The limitations of the measurement technique as well as instrumental errors are discussed. In one of the flights (F1) a significant temperature enhancement was observed at an altitude where plasma instabilities were detected by independent measurements.

  15. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  16. Analysis of a vortex precipitation event over Southwest China using AIRS and in situ measurements

    NASA Astrophysics Data System (ADS)

    Ni, Chengcheng; Li, Guoping; Xiong, Xiaozhen

    2017-04-01

    A strong precipitation event caused by the southwest vortex (SWV), which affected Sichuan Province and Chongqing municipality in Southwest China on 10-14 July 2012, is investigated. The SWV is examined using satellite observations from AIRS (Atmospheric Infrared Sounder), in situ measurements from the SWV intensive observation campaign, and MICAPS (Marine Interactive Computer-Aided Provisioning System) data. Analysis of this precipitation process revealed that: (1) heavy rain occurred during the development phase, and cloud water content increased significantly after the dissipation of the SWV; (2) the area with low outgoing longwave radiation values from AIRS correlated well with the SWV; (3) variation of the temperature of brightness blackbody (TBB) from AIRS reflected the evolution of the SWV, and the values of TBB reduced significantly during the SWV's development; and (4) strong temperature and water vapor inversions were noted during the development of the SWV. The moisture profile displayed large vertical variation during the SWV's puissant phase, with the moisture inversion occurring at low levels. The moisture content during the receding phase was significantly reduced compared with that during the developing and puissant phases. The vertical flux of vapor divergence explained the variation of the moisture profile. These results also indicate the potential for using AIRS products in studying severe weather over the Tibetan Plateau and its surroundings, where in situ measurements are sparse.

  17. Feasibility of Measuring Tobacco Smoke Air Pollution in Homes: Report from a Pilot Study.

    PubMed

    Rosen, Laura; Zucker, David; Hovell, Melbourne; Brown, Nili; Ram, Amit; Myers, Vicki

    2015-11-30

    Tobacco smoke air pollution (TSAP) measurement may persuade parents to adopt smoke-free homes and thereby reduce harm to children from tobacco smoke in the home. In a pilot study involving 29 smoking families, a Sidepak was used to continuously monitor home PM(2.5) during an 8-h period, Sidepak and/or Dylos monitors provided real-time feedback, and passive nicotine monitors were used to measure home air nicotine for one week. Feedback was provided to participants in the context of motivational interviews. Home PM(2.5) levels recorded by continuous monitoring were not well-accepted by participants because of the noise level. Also, graphs from continuous monitoring showed unexplained peaks, often associated with sources unrelated to indoor smoking, such as cooking, construction, or outdoor sources. This hampered delivery of a persuasive message about the relationship between home smoking and TSAP. By contrast, immediate real-time PM(2.5) feedback (with Sidepak or Dylos monitor) was feasible and provided unambiguous information; the Dylos had the additional advantages of being more economical and quieter. Air nicotine sampling was complicated by the time-lag for feedback and questions regarding shelf-life. Improvement in the science of TSAP measurement in the home environment is needed to encourage and help maintain smoke-free homes and protect vulnerable children. Recent advances in the use of mobile devices for real-time feedback are promising and warrant further development, as do accurate methods for real-time air nicotine air monitoring.

  18. Feasibility of Measuring Tobacco Smoke Air Pollution in Homes: Report from a Pilot Study

    PubMed Central

    Rosen, Laura; Zucker, David; Hovell, Melbourne; Brown, Nili; Ram, Amit; Myers, Vicki

    2015-01-01

    Tobacco smoke air pollution (TSAP) measurement may persuade parents to adopt smoke-free homes and thereby reduce harm to children from tobacco smoke in the home. In a pilot study involving 29 smoking families, a Sidepak was used to continuously monitor home PM2.5 during an 8-h period, Sidepak and/or Dylos monitors provided real-time feedback, and passive nicotine monitors were used to measure home air nicotine for one week. Feedback was provided to participants in the context of motivational interviews. Home PM2.5 levels recorded by continuous monitoring were not well-accepted by participants because of the noise level. Also, graphs from continuous monitoring showed unexplained peaks, often associated with sources unrelated to indoor smoking, such as cooking, construction, or outdoor sources. This hampered delivery of a persuasive message about the relationship between home smoking and TSAP. By contrast, immediate real-time PM2.5 feedback (with Sidepak or Dylos monitor) was feasible and provided unambiguous information; the Dylos had the additional advantages of being more economical and quieter. Air nicotine sampling was complicated by the time-lag for feedback and questions regarding shelf-life. Improvement in the science of TSAP measurement in the home environment is needed to encourage and help maintain smoke-free homes and protect vulnerable children. Recent advances in the use of mobile devices for real-time feedback are promising and warrant further development, as do accurate methods for real-time air nicotine air monitoring. PMID:26633440

  19. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  20. Air radioactivity levels following the Fukushima reactor accident measured at the Laboratoire Souterrain de Modane, France.

    PubMed

    Loaiza, P; Brudanin, V; Piquemal, F; Reyss, J-L; Stekl, I; Warot, G; Zampaolo, M

    2012-12-01

    The radioactivity levels in the air of the radionuclides released by the Fukushima accident were measured at the Laboratoire Souterrain de Modane, in the South-East of France, during the period 25 March-18 April 2011. Air-filters from the ventilation system exposed for one or two days were measured using low-background gamma-ray spectrometry. In this paper we present the activity concentrations obtained for the radionuclides (131)I, (132)Te, (134)Cs, (137)Cs, (95)Nb, (95)Zr, (106)Ru, (140)Ba/La and (103)Ru. The activity concentration of (131)I was of the order of 100 μBq/m(3), more than 100 times higher than the activities of other fission products. The highest activities of (131)I were measured as a first peak on 30 March and a second peak on 3-4 April. The activity concentrations of (134)Cs and (137)Cs varied from 5 to 30 μBq/m(3). The highest activity concentration recorded for Cs corresponded to the same period as for (131)I, with a peak on 2-3 April. The results of the radioactivity concentration levels in grass and mushrooms exposed to the air in the Modane region were also measured. Activity concentrations of (131)I of about 100 mBq/m(2) were found in grass.

  1. Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Yu, Nu; Wang, Yueyan; Zhu, Yifang

    2015-12-01

    Air exchange rates (AERs) have a direct impact on traffic-related air pollutant (TRAP) levels inside vehicles. Taxi drivers are occupationally exposed to TRAP on a daily basis, yet there is limited measurement of AERs in taxi cabs. To fill this gap, AERs were quantified in 22 representative Los Angeles taxi cabs including 10 Prius, 5 Crown Victoria, 3 Camry, 3 Caravan, and 1 Uplander under realistic driving (RD) conditions. To further study the impacts of window position and ventilation settings on taxi AERs, additional tests were conducted on 14 taxis with windows closed (WC) and on the other 8 taxis with not only windows closed but also medium fan speed (WC-MFS) under outdoor air mode. Under RD conditions, the AERs in all 22 cabs had a mean of 63 h-1 with a median of 38 h-1. Similar AERs were observed under WC condition when compared to those measured under RD condition. Under WC-MFS condition, AERs were significantly increased in all taxi cabs, when compared with those measured under RD condition. A General Estimating Equation (GEE) model was developed and the modeling results showed that vehicle model was a significant factor in determining the AERs in taxi cabs under RD condition. Driving speed and car age were positively associated with AERs but not statistically significant. Overall, AERs measured in taxi cabs were much higher than typical AERs people usually encounter in indoor environments such as homes, offices, and even regular passenger vehicles.

  2. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  3. Modeling the abnormally slow infiltration rate in mesoporous films.

    PubMed

    Berli, Claudio L A; Mercuri, Magalí; Bellino, Martín G

    2017-01-18

    Mesoporous films have been shown to exhibit striking behaviors in capillary-driven infiltration experiments. The process has been shown to follow classical Lucas-Washburn dynamics, but the effective pore radius has been calculated from hydrodynamic resistance considerations to be orders of magnitude lower than measured pore dimensions. In addition, the infiltration rate has been observed to decrease with increasing pore diameter, in contrast to the expected trend for capillary-like pores. Here, we present a simple model accounting for the mechanism behind these anomalous effects. We found the infiltration rate to be inversely proportional to the cubed ratio of pore to neck size. This physical scaling correctly modeled both the magnitude of the infiltration rate and its variation with pore diameters, for a wide range of experimental data. The model established a connection between capillary filling dynamics and nanoscale pore structure, which is of practical interest for the design and characterization of mesoporous films.

  4. Impact of heating and air conditioning system operation and leakage on ventilation and intercompartment transport: studies in unoccupied and occupied Tennessee Valley homes.

    PubMed

    Matthews, T G; Wilson, D L; Thompson, C V; Monar, K P; Dudney, C S

    1990-02-01

    Forced-air heating and air conditioning (HAC) systems caused an average and maximum increase in air infiltration rates of 1.8- and 4.3-fold, respectively, during brief whole-house studies of tracer gas decay in 39 occupied houses. An average increase in air infiltration rate of 0.33 +/- 0.37 h-1 corresponded to an incremental air leak of 240 m3/h, based on approximate house volume. More detailed tracer gas decay studies were performed in basement, kitchen and bedroom locations of six homes with low air infiltration rates (i.e., less than 0.25 h-1). The HAC mixed the indoor air efficiently between measurement sites. HAC operation also caused 1.1- to 3.6-fold increases in air infiltration rates, corresponding to absolute increases of 0.02 to 0.1 h-1. In an unoccupied research house, three-fold increases in average air infiltration rate with HAC operation (i.e., from 0.13 to 0.36 h-1) were reduced to two-fold (i.e., from 0.10 to 0.18 h-1) by sealing the external HAC unit and crawlspace ductwork system. This sealing also resulted in a 30 percent reduction in crawlspace-to-indoor transport rates with the HAC turned on. Blower door tests indicated a less than 20 percent reduction in house leakage area.

  5. Impact of air traffic emissions on airport air quality. Multi-scale modeling, test bed and field measurements

    NASA Astrophysics Data System (ADS)

    Ramaroson, R.; Vuillot, F.; Durand, Y.; Courbet, B.; Janin, F.; Copalle, A.; Guin, C.; Paux, E.; Vannier, F.; Talbaut, M.; Weill, M.

    2004-12-01

    Air traffic emissions are playing a significant role in airport air quality. Engine emissions contribute to the ozone and PM formation. There is an emergence of a need to develop advanced numerical tools and airport emission databases for air pollution studies. Field monitoring at airports necessary to support model assessment is still limited in time and space. The French ONERA AIRPUR project has focused on three objectives: emission inventories; dispersion models; field measurements. Results are presented and discussed in this paper. The ground spatial distribution of LTO emissions using realistic aircraft trajectories, aircraft-engine classification by ICAO, fuel flow methodology and diurnal variations of fleet number, is presented and discussed. Exhaust species time evolution is simulated using a chemical-dispersion model. Results show high emissions of NOx during LTO, and a maximum of CO and Hydrocarbons during taxi. Depending on seasons, the NOx lifetime is varying differently; lower concentration is calculated far away from LTO emissions. Longer-lived pollutants such as ozone are formed downstream and require the use of advanced dispersion models. For this reason, two interactive models coupling the micro and the regional scales are developed and used in this work. A 3D CFD model (CEDRE) simulates the flow characteristics around buildings and the dispersion of emissions. CEDRE boundary conditions are provided by the 3D nested dispersion model MEDIUM/MM5, which includes a surface boundary layer chemistry and calculates the concentration of pollutants from the local to the airport vicinities. The CFD results show a tracer accumulation calculated downstream beside terminals, consistent with observations at some mega-airports. Sensibility studies are conducted to highlight the impact of emissions on ozone formation with MEDIUM. Results show that longer-lived species are produced downstream, their concentration depending on NOx, aromatics and VOC released by

  6. Identification of redundant air quality measurements through the use of principal component analysis

    NASA Astrophysics Data System (ADS)

    Pires, J. C. M.; Pereira, M. C.; Alvim-Ferraz, M. C. M.; Martins, F. G.

    This study aims to show how principal component analysis (PCA) can be used to identify redundant measurements in air quality monitoring networks. The minimum number of air quality monitoring sites in Oporto Metropolitan Area (Oporto-MA) was evaluated using PCA and then compared to the one settled by the legislation. Nine sites, monitoring NO 2, O 3 and PM 10, were selected and the air pollutant concentrations were analysed from January 2003 to December 2005. PCA was applied to the data corresponding to the first two years that were divided into annual quarters to verify the persistence of the PCA results. The number of principal components (PCs) was selected by applying two criteria: Kaiser (PCs with eigenvalues greater than 1) and ODV 90 (PCs representing at least 90% of the original data variance). Each pollutant was analysed separately. The two criteria led to different results. Using Kaiser criterion for the eight analysed periods, two PCs were selected in: (i) five periods for O 3 and PM 10; and (ii) six periods for NO 2. These PCs had important contributions of the same groups of monitoring sites. The percentage of the original data variance contained in the selected PCs using this criterion was always below 90%. Thus, the results obtained using ODV 90 were considered with more confidence. Using this criterion, only five monitoring sites for NO 2, three for O 3 and seven for PM 10 were needed to characterize the region. The number of monitoring sites for NO 2 and O 3 was in agreement with what was established by the legislation. However, for PM 10, Oporto-MA needed two more monitoring sites. To validate PCA results, statistical models were determined to estimate air pollutant concentrations at removed monitoring sites using the concentrations measured at the remaining monitoring sites. These models were applied to a year's data. The good performance obtained by the models showed that the monitoring sites selected by the procedure presented in this study were

  7. Investigating Unstable Water Infiltration into Alcohol Contaminated Soils

    NASA Astrophysics Data System (ADS)

    McLeod, H. C.; Smith, J. E.; Henry, E. J.; Brodsky, Y.

    2009-05-01

    A new mechanism causing highly focused, unstable flow exists in soils contaminated with alcohols due to their surface-activity. For example, surface-active compounds can significantly decrease the interfacial tension of the air-water interface and change the pressure-head of the soil water; directly affecting water flow and solute transport in the vadose zone. This study evaluated the fundamental effects of surface-active alcohols on water infiltration into contaminated soils under controlled laboratory conditions. A small scale 3-D glass flow cell and a mini disk tension infiltrometer were used to monitor the rates and physical characteristics of water infiltration from a constant head point source into sands of various textures contaminated with a butanol solution. The results confirmed that water infiltration into these soils is fundamentally and substantially different than the current understanding of infiltration patterns, including previously described mechanisms of wetting front instability. In butanol-contaminated soils, the wetting fronts exhibited highly focused flow with smaller wetted soil volumes, deeper penetration and substantially higher infiltration rates. In addition, the extent of fingered focused flow was confirmed to be texturally dependent, decreasing with grain size and dependent on the constant head boundary. This study characterized a new mechanism of focused, unstable flow with significant implications for groundwater management and solute transport in alcohol contaminated soils.

  8. Infiltration History and Spatial Variability Derived from Chloride Mass Balance

    NASA Astrophysics Data System (ADS)

    Walton, J. C.; Jaimes, A.; Woocay, A.

    2007-12-01

    Chloride mass balance was applied to drill cuttings collected from the unsaturated zone surrounding the Yucca Mountain Project. Samples correspond to four Nye County Early Warning Drilling Program boreholes where air was used as the drilling fluid to preserve sample integrity. Infiltration dates before present and pore velocities were calculated using a range of annual chloride deposition rates obtained from the literature. The lower chloride loading corresponds to contemporary values, and the upper loading corresponds to an attempt to correct for either past greater chloride deposition or a past higher precipitation with chloride concentration remaining constant. In each borehole, pore velocities present two distinct slopes corresponding to different infiltration regimes. The first one, near the surface, presents the slowest infiltration rate. The second pore velocity corresponds to a past wetter period (late Pleistocene to early Holocene) with much faster pore velocities. Results indicate that pore velocities among the boreholes differ at most by a factor of approximately 3.5. Boreholes located in areas of little or gradual slope present faster infiltration rates than those in areas of greater slope. Borehole NC-EWDP-22S, near Fortymile Wash east of Yucca Mountain, exhibits the most rapid pore velocities where as boreholes further from the wash demonstrate lower velocities. These results denote the effects climate change, and runoff and run-on at the surface have over infiltration rates in arid regions.

  9. Trench infiltration for managed aquifer recharge to permeable bedrock

    USGS Publications Warehouse

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  10. Measurements of two types of dilatational waves in an air-filled unconsolidated sand

    SciTech Connect

    Hickey, C.J.; Sabatier, J.M.

    1997-07-01

    This study consists of laboratory measurements of dilatational waves propagating through an air-filled unconsolidated sand. One excitation technique consists of a loudspeaker suspended in the air above the packing of sand. A second excitation technique uses a mechanical shaker in contact with the sand. The transmitted signals are received using microphones and geophones located at various depths within the sand. An interpretation based on measured phase speeds indicates that the transmitted energy from the suspended loudspeaker source is partitioned primarily but not exclusively into the type-II dilatational wave. This wave attenuates rapidly and is only detected at depths of less than about 15 cm for this particular sample. At the deeper depths the detected signal is associated with the type-I dilatational wave. The mechanical shaker produces only a type-I dilatational wave. Both the geophone and microphone sensors can detect both types of dilatational waves. {copyright} {ital 1997 Acoustical Society of America.}

  11. The characterization of an air pollution episode using satellite total ozone measurements

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Shipham, Mark C.; Vukovich, Fred M.; Cahoon, Donald R.

    1987-01-01

    A case study is presented which demonstrates that measurements of total ozone from a space-based platform can be used to study a widespread air pollution episode over the southeastern U.S. In particular, the synoptic-scale distribution of surface-level ozone obtained from an independent analysis of ground-based monitoring stations appears to be captured by the synoptic-scale distribution of total ozone, even though about 90 percent of the total ozone is in the stratosphere. Additional analyses of upper air meteorological data, other satellite imagery, and in situ aircraft measurements of ozone likewise support the fact that synoptic-scale variability of tropospheric ozone is primarily responsible for the observed variability in total ozone under certain conditions. The use of the type of analysis discussed in this study may provide an important technique for understanding the global budget of tropospheric ozone.

  12. Characterization of an air pollution episode using satellite total ozone measurements

    SciTech Connect

    Fishman, J.; Vukovich, F.M.; Cahoon, D.R.; Shipham, M.C.

    1987-12-01

    A case study is presented which demonstrates that measurements of total ozone from a space-based platform can be used to study a widespread air pollution episode over the southeastern United States. In particular, the synoptic-scale distribution of surface-level ozone obtained from an independent analysis of ground-based monitoring stations appears to be captured by the synoptic-scale distribution of total ozone, even though approx. =90% of the total ozone is in the stratosphere. Additional analyses of upper air meteorological data, other satellite imagery, and in situ aircraft measurements of ozone likewise support the fact that synoptic-scale variability of tropospheric ozone is primarily responsible for the observed variability in total ozone under certain conditions. The use of the type of analysis discussed in this study may provide an important technique for understanding the global budget of tropospheric ozone.

  13. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  14. Gas chromatographic method for measuring nitrogen dioxide and peroxyacetyl nitrate in air without compressed gas cylinders

    SciTech Connect

    Burkhardt, M.R.; Maniga, N.I.; Stedman, D.H.; Paur, R.J.

    1988-04-15

    A gas chromatographic technique that measures atmospheric concentrations of peroxyacetyl nitrate (PAN) and NO/sub 2/ has been developed that uses luminol-based chemiluminescence for detection. The carrier gas is air that has been scrubbed by passing it over FeSO/sub 4/, which eliminates the need for any compressed gas cylinders. A novel gas sampling system and time enable variable sample volumes of contaminated air to be injected. Ambient PAN and NO/sub 2/ measurements can be made every 40 s with detection limits of 0.12 ppb for PAN and 0.2 ppb for NO/sub 2/. Seven other atmospheric species, including ozone, gave no interference. Linear response was observed for NO/sub 2/ from 0.2 to 170 ppb and for PAN from 1 to 70 ppb.

  15. [Non-invasive cardiac output measurement with USCOM in air rescue operation].

    PubMed

    Schedler, O; Handschak, H; Hensel, M

    2008-12-01

    In cardiac emergency events (NACA score = 3.4), a non-invasive cardiac output test involving transaortalic blood flow velocity measurement was used in the air rescue of 30 patients. An average velocity integral (Vti) of 21.9 +/- 9.9 cm was determined in the short examination time (t = 120 +/- 30 sec). Related to the middle body surface (BSA = 2.0 +/- 0.3 m (2)), the calculated cardiac index (CI) was 2.6 +/- 1.1 l/min/m (2). The CI was under 2.2 l/min/m (2) in 12 examinations (40 %). 5 patients in this group subsequently received catecholamine therapy. Thrombolysis therapy increased by 17 % in the myocardial infarction group with CI measurement. However, the results do not justify a definitive recommendation for application of the USCOM system in air rescue service.

  16. Measurement and modeling of diel variability of polybrominated diphenyl ethers and chlordanes in air.

    PubMed

    Moeckel, Claudia; Macleod, Matthew; Hungerbühler, Konrad; Jones, Kevin C

    2008-05-01

    Short-term variability of concentrations of polybrominated diphenyl ethers (PBDEs) and chlordanes in air at a semirural site in England over a 5 day period is reported. Four-hour air samples were collected during a period dominated by a high pressure system that produced stable diel (24-h) patterns of meteorological conditions such as temperature and atmospheric boundary layer height. PBDE and chlordane concentrations showed clear diel variability with concentrations in the afternoon and evening being 1.9 - 2.7 times higher than in the early morning. The measurements are interpreted using a multimedia mass balance model parametrized with forcing functions representing local temperature, atmospheric boundary layer height, wind speed and hydroxyl radical concentrations. Model results indicate that reversible, temperature-controlled air-surface exchange is the primary driver of the diel concentration pattern observed for chlordanes and PBDE 28. For higher brominated PBDE congeners (47, 99 and 100), the effect of variable atmospheric mixing height in combination with irreversible deposition on aerosol particles is dominant and explains the diel patterns almost entirely. Higher concentrations of chlordanes and PBDEs in air observed at the end of the study period could be related to likely source areas using back trajectory analysis. This is the first study to clearly document diel variability in concentrations of PBDEs in air over a period of several days. Our model analysis indicates that high daytime and low nighttime concentrations of semivolatile organic chemicals can arise from different underlying driving processes, and are not necessarily evidence of reversible air-surface exchange on a 24-h time scale.

  17. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  18. Hot-wire anemometry for turbulence measurements in helium-air mixtures

    NASA Technical Reports Server (NTRS)

    Libby, P. A.; Larue, J. C.

    1979-01-01

    The use of extended hot-wire anemometry involving an interfering probe is shown to permit measurements of variable density turbulence such as arises in the mixing of helium and air. The methods of calibration and data reduction leading to time series in one or more velocity components, in the mass fraction of helium, and in the mixture density are described. Typical results in various flows to which the technique has been applied are discussed.

  19. Temperature Measurements in an Ethylene-Air-Opposed Flow Diffusion Flame

    DTIC Science & Technology

    2012-01-01

    Temperature Measurements in an Ethylene-Air-Opposed Flow Diffusion Flame by Matthew S. Kurman, John M. Densmore, Chol -Bum M. Kweon, and...Oak Ridge Associated Universities John M. Densmore Lawrence Livermore National Laboratory Chol -Bum M. Kweon Vehicle Technology Directorate... Chol -Bum M. Kweon, and Kevin L. McNesby 5d. PROJECT NUMBER 1VP2J1 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND

  20. Time correlation measurements from extensive air showers detected by the EEE telescopes

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Agocs, A.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Miozzi, S.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Tosello, F.; Votano, L.; Williams, M. C. S.; Yanez, G.; Zichichi, A.; Zouyevski, R.

    2013-12-01

    Time correlated events due to cosmic muons from extensive air showers have been detected by means of telescope pairs of the EEE (Extreme Energy Events) Project array. The coincidence rate, properly normalized for detector acceptance, efficiency and altitude location, has been extracted as a function of the relative distance between the telescopes. The results have been also compared with additional measurements carried out by small scintillator detectors at various distances.