Science.gov

Sample records for air injection wells

  1. Theoretical analysis of injecting the compressed air through a defensive well into aquifer aimed to separate between polluted and fresh water

    NASA Astrophysics Data System (ADS)

    Boger, M.; Ravina, I.

    2012-12-01

    Injecting a compressed air, through a well, located between the sea or a polluted lake and fresh ground water, creates a "hydraulic barrier" that prevents their mixing. Steady influx of air to a saturated soil produces a pressure gradient from the well and replacement of water by air, hence the interface between air and water increases. After the compression process is stopped, the soil pores are filled with air, so that saturated soil becomes unsaturated with a decreased conductivity. Creating such a barrier, first by the air pressure and second by blocking of the pores, is welcomed at the interface sea-fresh water area, for example. It prevents the loss of fresh water to the sea and it decreases sea water movement into the aquifer. Another positive effect of the air injection is the air flow through unsaturated zone, above the ground water, that decreases polluted water down-seepage from the surface thus defending the fresh ground water against pollution. The regular water well or special drilled one will be used as defensive well. The radius of defensive well can be smaller than the one of the water well. The explanation of the defensive well exploitation in the field for one and multi layer aquifers is presented. Analytical evaluations of the pressure loss and shape of the air-water interfaces in saturated soil are presented for: (a) steady air flow for a one layer aquifer and for a three layer one (leaky aquifer case), (b) transient air flow for a one layer aquifer. It is shown that the shape of air-water interfaces is generally an inverted cone, where the decrease of air pressure in the aquifer with the distance from the well is approximately logarithmic. The necessary pressure to create the effective air flow in the aquifer is only about tens percent higher than static water pressure in the well.

  2. Well injection systems

    SciTech Connect

    Cooksev, A.G.

    1990-05-01

    This patent describes a well system. It comprises: a casing in the well, the casing having perforations opposite and earth formation; a flow conduit in the casing; a packer on the flow conduit. The packer set in the casing above the formation; perforations below the packer in the casing, the perforations communicating the formation with the inside of the casing; a landing nipple in the flow conduit below the packer, the nipple having therein upper profile grooving, a seal bore below the grooving, a no-go landing shoulder below the bore, orienting pins below the shoulder, wall flow openings in the nipple below the pins, and smaller seal bore below the openings, the orienting pins above the lower seal bore; and mandrel means.

  3. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Class V injection wells are also described in 40 CFR 144.81. Class V wells include: (1) Air... hazardous waste beneath the lowermost formation containing, within one quarter (1/4) mile of the well bore... inject fluids beneath the lowermost formation containing, within one quarter mile of the well bore,...

  4. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... types of Class V injection wells are also described in 40 CFR 144.81. Class V wells include: (1) Air... hazardous waste beneath the lowermost formation containing, within one quarter (1/4) mile of the well bore... inject fluids beneath the lowermost formation containing, within one quarter mile of the well bore,...

  5. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... types of Class V injection wells are also described in 40 CFR 144.81. Class V wells include: (1) Air... hazardous waste beneath the lowermost formation containing, within one quarter (1/4) mile of the well bore... inject fluids beneath the lowermost formation containing, within one quarter mile of the well bore,...

  6. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... types of Class V injection wells are also described in 40 CFR 144.81. Class V wells include: (1) Air... hazardous waste beneath the lowermost formation containing, within one quarter (1/4) mile of the well bore... inject fluids beneath the lowermost formation containing, within one quarter mile of the well bore,...

  7. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... types of Class V injection wells are also described in 40 CFR 144.81. Class V wells include: (1) Air... hazardous waste beneath the lowermost formation containing, within one quarter (1/4) mile of the well bore... inject fluids beneath the lowermost formation containing, within one quarter mile of the well bore,...

  8. RADIUS OF PRESSURE INFLUENCE OF INJECTION WELLS

    EPA Science Inventory

    It is often necessary, in injection well design, to predict the probable rate of pressure increase in the injection reservoir that would be expected to result from a proposed injection program. Areas of application include oilfield brine injection, waterflooding for secondary oil...

  9. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    SciTech Connect

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected

  10. Boise geothermal injection well: Final environmental assessment

    SciTech Connect

    1997-12-31

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

  11. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  12. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  13. Severe Scapular Pain Following Unintentional Cervical Epidural Air Injection.

    PubMed

    Henthorn, Randall W; Murray, Kerra

    2016-03-01

    This a unique case of severe scapular pain following unintentional epidural space air injection during epidural steroid injection.A 70-year-old woman presented for a fluoroscopically guided C7-T1 interlaminar epidural steroid injection. Three injection attempts were made using the loss of resistance with air technique. On the first attempt the epidural space was entered, but contrast injection showed that the needle was intravenous. On the second attempt an equivocal loss of resistance with air was perceived and 5 mL of air was lost from the syringe. The needle was withdrawn and redirected, and upon the third needle passage the contrast injection showed appropriate epidural space filling up to the C4-5 level. Injection of betamethasone mixed in lidocaine was initially uneventful.However, 20 minutes post-injection the patient experienced sudden sharp and continuous pain along the medial edge of the scapula. After failing to respond to multiple intravascular analgesics, the patient was transferred to the emergency room. Her pain subsided completely following an intravenous diazepam injection. Cervical spine computerized tomography showed obvious air in the posterior epidural space from C4-5 to C6-7 as well as outside the spinal canal from (C4-T2). Having recovered fully, she was discharged the following morning. In reviewing the procedure, the equivocal loss of resistance on the second passage was actually a true loss of resistance to epidural space and air was unintentionally injected. Surprisingly, severe scapular pain resulted in a delayed manner after the steroid solution was injected. The authors theorize that unintentional prefilling of the epidural space with air prior to the injection of the subsequent steroid mixture added sufficient pressure to the epidural space to cause right-sided C4 nerve root stretching/entrapment and ensuing radicular pain to the right scapular border. The subsequent intravenous diazepam provided cervical muscle relaxation and

  14. EPA proposes new rules for injection wells

    NASA Astrophysics Data System (ADS)

    The U.S. Environmental Protection Agency (EPA) has proposed rule changes to strengthen regulations protecting underground sources of drinking water from underground injection of hazardous wastes. The action is authorized by the Resource Conservation and Recovery Act (RCRA) and the Safe Drinking Water Act. The proposed rules were published in Federal Register August 27, 1987.“This proposal assures that hazardous wastes will either be properly treated or placed in an area where they can't contaminate underground sources of drinking water,” said Lawrence J. Jensen, EPA Assistant Administrator for Water. “The regulations would prohibit the migration of untreated hazardous waste out of the injection zone.”

  15. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressure, and perform a final external mechanical integrity test. (b) Well plugging plan. The owner or... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner...

  16. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressure, and perform a final external mechanical integrity test. (b) Well plugging plan. The owner or... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner...

  17. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure, and perform a final external mechanical integrity test. (b) Well plugging plan. The owner or... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner...

  18. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressure, and perform a final external mechanical integrity test. (b) Well plugging plan. The owner or... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner...

  19. Secondary air injection system and method

    DOEpatents

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  20. Productivity and injectivity of horizontal wells

    SciTech Connect

    Aziz, Khalid

    2000-03-06

    One of the key issues addressed was pressure drop in long horizontal wells and its influence on well performance. Very little information is available in the literature on flow in pipes with influx through pipe walls. Virtually all of this work has been in small diameter pipes and with single-phase flow. In order to address this problem new experimental data on flow in horizontal and near horizontal wells have been obtained. Experiments were conducted at an industrial facility on typical 6 1/8 ID, 100 feet long horizontal well model. The new data along with available information in the literature have been used to develop new correlations and mechanistic models. Thus it is now possible to predict, within reasonable accuracy, the effect of influx through the well on pressure drop in the well.

  1. Microemulsion method for improving the injectivity of a well

    SciTech Connect

    Prukop, G.

    1992-03-17

    This patent describes a method for improving the injectivity of an injection well for water or gas injection into an underground hydrocarbon formation penetrated by the injection well. It comprises injecting into an underground hydrocarbon formation through an injection well a sufficient amount of a solvent-in-water microemulsion to treat the formation within a radial distance of about 5 to about 100 feet from the injection well, the solvent-in-water microemulsion comprising about 0.5% to about 5% by weight of an alkoxylated linear alcohol having about 10 to about 16 carbon atoms in the linear alcohol moiety and an average of about 5 to about 12 alkoxylate groups, about 0.5% to about 5% by weight of an alkylbenzene sulfonate having an alkyl chain of about 8 to about 20 carbon atoms, about 1% to about 10% by weight of an ethylene glycol alkylether solvent, and water.

  2. Test monitoring of prototype injection well, Waiale, Maui, Hawaii

    USGS Publications Warehouse

    Soroos, Ronald L.

    1979-01-01

    A high-capacity prototype injection well was tested in the isthmus area of Maui, Hawaii. Pumping tests were made on April 14 and 15, 1978, and 10 injection tests were made between May 12 and June 30, 1978. Selected tests were monitored in order to obtain data which could be used to assess the effects of subsurface disposal on the ground water in the basal aquifer. Pumping and injection rates were measured. Basal-water head responses to pumping and injection were observed at the prototype well and at two observation wells located 435 and 6 ,100 feet from the prototype well. Water-quality samples were collected at the prototype well and the nearest observation well prior to testing. Samples of the injection water, as well as samples from the observation wells, were collected prior to and after the final test. The head data and water-quality data are presented in this report. (USGS)

  3. Water-cooled insulated steam-injection wells

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Jaffe, L. D.

    1980-01-01

    Water is used as insulated coolant and heat-transfer medium for steam-injection oil wells. Approach is somewhat analogous to cooling system in liquid-propellant rocket. In addition to trapping and delivering heat to steam-injection point, water will also keep casing cooler, preventing or reducing casing failures caused by thermal stresses.

  4. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Injection well construction requirements. 146.86 Section 146.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER..., corrosiveness, temperature, and density) and formation fluids; (iii) Maximum proposed injection pressure;...

  5. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Injection well construction requirements. 146.86 Section 146.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER..., corrosiveness, temperature, and density) and formation fluids; (iii) Maximum proposed injection pressure;...

  6. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Injection well construction requirements. 146.86 Section 146.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER..., corrosiveness, temperature, and density) and formation fluids; (iii) Maximum proposed injection pressure;...

  7. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Injection well construction requirements. 146.86 Section 146.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER..., corrosiveness, temperature, and density) and formation fluids; (iii) Maximum proposed injection pressure;...

  8. DETECTING WATER FLOW BEHIND PIPE IN INJECTION WELLS

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. The external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water ...

  9. DETECTING WATER FLOW BEHIND PIPE IN INJECTION WELLS

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. he external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water th...

  10. TEMPERATURE, RADIOACTIVE TRACER, AND NOISE LOGGING FOR INJECTION WELL INTEGRITY

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. The external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water ...

  11. Results of deep-well injection testing at Mulberry, Florida

    USGS Publications Warehouse

    Hickey, John J.; Wilson, W.E.

    1982-01-01

    At the Kaiser Aluminum and Chemical Corporation plant, Mulberry, Fla., high-chloride, acidic liquid wastes are injected into a dolomite section at depths below about 4,000 feet below land surface. In 1975, a satellite monitor well was drilled 2,291 feet from the injection well and a series of three injection tests were performed. Duration of the tests ranged from 240 to 10,020 minutes and injection rates ranged from 110 to 230 gallons per minute. Based on an evaluation of factors that affect hydraulic response, water-level data suitable for interpretation of hydraulic characteristics of the injection zone were identified to occur from 200 to 1,000 minutes during the 10,020-minute test. Transmissivity of the injection zone was computed to be within the range from 700 to 1,000 feet squared per day and storage coefficient of the injection zone was computed to be within the range from .00001 to .00005. The confining bed accepting most of the leakage appears to be the underlying bed. Also, it appears that the overlying beds are probably relatively impermeable and significantly retard the vertical movement of neutralized waste effluent. (USGS)

  12. Multiple-orifice liquid injection into hypersonic air streams.

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.

    1972-01-01

    Review of oblique water and fluorocarbon injection test results obtained in experimental studies of the effects of multiple-orifice liquid injection into hypersonic air streams. The results include the finding that maximum lateral penetration from such injections increases linearly with the square root of the jet-to-freestream dynamic-pressure ratio and is proportional to an equivalent orifice diameter.

  13. Modeling the vertical confinement of injection-well thermal fractures

    SciTech Connect

    Clifford, P.J.; Berry, P.J.; Gu, H. )

    1991-11-01

    Cooling of rock by water injection frequently causes fracturing of wells. This paper describes a 3D simulation model of thermally induced fracturing. It is used to show that fractures often tend to grow vertically into permeable zones. Procedures are outlined for confining fracture growth in wells where it will assist waterflood sweep performance.

  14. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  15. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  16. Evolution of injected air stream in granular bed

    NASA Astrophysics Data System (ADS)

    Maiti, Ritwik; Das, Gargi; Das, Prasanta

    2015-11-01

    An air stream injected through an orifice into a granular bed creates intriguing but aesthetically exotic patterns. The interaction of air with an aggregate of cohesionless granules presents evolution of patterns from stationary bubble to meandering filament and finally to a floating canopy with the increase of air velocity.

  17. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high level and transuranic waste and spent nuclear fuel covered by 40 CFR part 191) shall comply with the... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Radioactive waste injection wells....

  18. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high level and transuranic waste and spent nuclear fuel covered by 40 CFR part 191) shall comply with the... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Radioactive waste injection wells....

  19. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high level and transuranic waste and spent nuclear fuel covered by 40 CFR part 191) shall comply with the... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Radioactive waste injection wells....

  20. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high level and transuranic waste and spent nuclear fuel covered by 40 CFR part 191) shall comply with the... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Radioactive waste injection wells....

  1. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high level and transuranic waste and spent nuclear fuel covered by 40 CFR part 191) shall comply with the... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Radioactive waste injection wells....

  2. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  3. Well completion technology. Multiuse polymer protects injection well during drilling, underreaming, gravel packing

    SciTech Connect

    Davis, K.E.; Jarrell, M.D.

    1983-12-12

    Fluids for drilling, gravel-packing, and completion were optimized for an expensive injection well. Successful engineering gave maximum injection rates and no skin damage, while accomplishing all the fundamental drilling and suspension functions of fluids. Formation protection was critical. The approximately $5-million well was planned for chemical waste disposal, and plant capacity is limited by injectivity. This work describes the fluid, hardware, and techniques used. The 3 distinct fluids were variations on the same polymer-based system. Results of tests showed that Kelzan XCD Polymer, a dispersible form of xanthan gum, had the most applicable overall properties.

  4. Cerro Prieto cold water injection: effects on nearby production wells

    SciTech Connect

    Truesdell, A.H.; Lippmann, M.J.; De Leon, J.; Rodriguez, M.H.

    1999-07-01

    The liquid-dominated Cerro Prieto geothermal field of northern Baja California, Mexico has been under commercial exploitation since 1973. During the early years of operation, all waste brines were sent to an evaporation pond built west of the production area. In 1989, cooled pond brines began to be successfully injected into the reservoir along the western boundary of the geothermal system. The injection rate varied over the years, and is at present about 20% of the total fluid extracted. As expected under the continental desert conditions prevailing in the area, the temperature and salinity of the pond brines change with the seasons, being higher during the summer and lower during the winter. The chemistry of pond brines is also affected by precipitation of silica, oxidation of H{sub 2}S and reaction with airborne clays. Several production wells in the western part of the field (CP-I area) showed beneficial effects from injection. The chemical (chloride, isotopic) and physical (enthalpy, flow rate) changes observed in producers close to the injectors are reviewed. Some wells showed steam flow increases, in others steam flow decline rates flattened. Because of their higher density, injected brines migrated downward in the reservoir and showed up in deep wells.

  5. Gas injection apparatus. [Air or steam

    SciTech Connect

    Ostrov, A.A.

    1986-04-22

    A gas injection apparatus is described in combination with a lined vessel wherein the lined vessel includes a vessel wall and an inner liner. The inner liner consists of a series of parallel tubes radially joined together by web members, the inner liner being spaced apart from the vessel wall and having an inner surface and an outer surface. The gas injection apparatus consists of at least one plenum assembly sealably attached to the outer surface of the inner liner; the inner liner having openings positioned and arranged to provide communication between the interior of the vessel and the area defined by the plenum assembly and the inner liner for injection of gas into the interior of the vessel perpendicularly to the plane of the inner liner; the gas injection apparatus further comprising an expansible supply duct attached to and extending between the vessel wall and the plenum assembly.

  6. Leachate injection using vertical wells in bioreactor landfills.

    PubMed

    Khire, Milind V; Mukherjee, Moumita

    2007-01-01

    Leachate recirculation or liquid injection in municipal solid waste landfills offers economic and environmental benefits. The key objective of this study was to carry out numerical evaluation of key design variables for leachate recirculation system consisting of vertical wells. In order to achieve the objective, numerical modeling was carried out using the finite-element model HYDRUS-2D. The following design parameters were evaluated by simulating liquid pressure head on the liner and the wetted width of the waste under steady-state flow conditions: (1) hydraulic conductivities of the waste and vertical well backfill; (2) liquid injection rate and dosing frequency; (3) well diameter, screen height and screen depth; and (4) hydraulic conductivity of the leachate collection system, slope of the leachate collection system and spacing of the leachate collection pipes. The key findings of this study are as follows. The well diameter, hydraulic conductivity of the well drainage pack, and screen height and screen depth of the well have very little effect on the wetted width for a given liquid flux. The wetted width and the injection pressure for a given liquid flux decrease with the increase in the hydraulic conductivity of the waste. The pressure head on the liner increases with the decrease in the vertical distance between the bottom of the well screen and the top of leachate collection system. The liquid injection flux increases with the decrease in hydraulic conductivity of the leachate collection system. Unlike sand (k approximately 10(-4)m/s), pea gravel (k approximately 0.01 m/s) resulted in less than 0.3m pressure head on the liner for all simulations carried out in this study. PMID:17015007

  7. Aerodynamic performance of a Wells air turbine

    NASA Astrophysics Data System (ADS)

    Raghunathan, S.; Tan, C. P.

    1983-06-01

    Experiments were performed in a unidirectional flow rig to assess the performance of the Wells self-rectifying air turbine. Results indicated that the efficiency of the turbine was very sensitive to the Reynolds number based on blade chord. Increase in Reynolds number by a factor of three resulted in an increase in peak efficiency from 37 to 60 percent. Increases in the solidity of the blade produced increases in pressure drop and power output but decreases in efficiency. The hub-to-tip ratio had only a weak influence on the turbine performance but is critical for starting conditions. It is concluded that a hub-to-tip ratio of 0.6 and a solidity of 0.6 are the most favorable values, taking into consideration both the starting and running performances.

  8. Commercial air travel after intraocular gas injection.

    PubMed

    Houston, Stephen; Graf, Jürgen; Sharkey, James

    2012-08-01

    Passengers with intraocular gas are at risk of profound visual loss when exposed to reduced absolute pressure within the cabin of a typical commercial airliner. Information provided on the websites of the world's 10 largest airlines offer a considerable range of opinion as to when it might be safe to fly after gas injection. Physicians responsible for clearing pseassengers as 'fit to fly' should be aware modern retinal surgical techniques increasingly employ long-acting gases as vitreous substitutes. The kinetics of long-acting intraocular gases must be considered when deciding how long after surgery it is safe to travel. It is standard practice to advise passengers not to fly in aircraft until the gas is fully resorbed. To achieve this, it may be necessary to delay travel for approximately 2 wk after intraocular injection of sulfur hexafluoride (SF6) and for 6 wk after injection of perfluoropropane (C3F8). PMID:22872998

  9. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contains an aquifer which has been exempted pursuant to 40 CFR 146.04). (e) Class V. Injection wells not... 40 Protection of Environment 23 2011-07-01 2011-07-01 false What is a Class V injection well? 144... Injection Wells Definition of Class V Injection Wells § 144.80 What is a Class V injection well?...

  10. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contains an aquifer which has been exempted pursuant to 40 CFR 146.04). (e) Class V. Injection wells not... 40 Protection of Environment 24 2012-07-01 2012-07-01 false What is a Class V injection well? 144... Injection Wells Definition of Class V Injection Wells § 144.80 What is a Class V injection well?...

  11. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... contains an aquifer which has been exempted pursuant to 40 CFR 146.04). (e) Class V. Injection wells not... 40 Protection of Environment 23 2014-07-01 2014-07-01 false What is a Class V injection well? 144... Injection Wells Definition of Class V Injection Wells § 144.80 What is a Class V injection well?...

  12. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contains an aquifer which has been exempted pursuant to 40 CFR 146.04). (e) Class V. Injection wells not... 40 Protection of Environment 24 2013-07-01 2013-07-01 false What is a Class V injection well? 144... Injection Wells Definition of Class V Injection Wells § 144.80 What is a Class V injection well?...

  13. CONCURRENT INJECTION OF COSOLVENT AND AIR FOR ENHANCED PCE REMOVAL

    EPA Science Inventory

    The goal of this study was to use preferential flow of air to improve the dynamics of cosolvent displacement in order to enhance DNAPL displacement and dissolution. The concurrent injection of cosolvent and air was evaluated in a glass micromodel for a DNAPL remediation technolog...

  14. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  15. Casing strength degradation in thermal environment of steam injection wells

    NASA Astrophysics Data System (ADS)

    Hidayat, M. I. P.; Irawan, S.; Zaki Abdullah, Mohamad

    2016-04-01

    Degradation of the casing strength in relation with thermal cycles of steam injection process is still less explored in literature. In this paper, three-dimensional finite element (FE) analysis of casing strength degradation in thermal environment of steam injection wells is presented. 3D FE models consisting of casing-cement-formation system are developed in this study. Grade N80 casing is employed with the casing length of 3.048 m. In the analysis, cyclic thermal stresses induced on the casing in thermal environment of steam injection wells from 25 °C to 360 °C are first examined to verify the feasibility of the 3D FE models. Degradation of the casing strength in the thermal environment is subsequently investigated by applying an external pressure that represents formation pressure to the casing-cement system. The results show that the casing capability to resist the pressure is lowering as the number of thermal cycles extends, thus causing casing strength degradation in the thermal application. It is also shown that the casing may fail under external pressure below its specified collapse strength i.e. 10 % lower than the reference casing strength obtained at 360 °C.

  16. Effect of timed secondary-air injection on automotive emissions

    NASA Technical Reports Server (NTRS)

    Coffin, K. P.

    1973-01-01

    A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.

  17. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate...

  18. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate...

  19. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate...

  20. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate...

  1. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving

  2. In situ air stripping using horizontal wells. Innovative technology summary report

    SciTech Connect

    1995-04-01

    In-situ air stripping employs horizontal wells to inject or sparge air into the ground water and vacuum extract VOC`S from vadose zone soils. The horizontal wells provide better access to the subsurface contamination, and the air sparging eliminates the need for surface ground water treatment systems and treats the subsurface in-situ. A full-scale demonstration was conducted at the Savannah River Plant in an area polluted with trichloroethylene and tetrachloroethylene. Results are described.

  3. Innovative technology summary report: in situ air stripping using horizontal wells

    SciTech Connect

    1995-04-01

    In situ air stripping (ISAS) technology was developed to remediate soils and ground water contaminated with volatile organic compounds (VOCs) both above and below the water table. ISAS employs horizontal wells to inject (sparge) air into the ground water and vacuum extract VOCs from vadose zone soils. The innovation is creation of a system that combines two somewhat innovative technologies, air sparging and horizontal wells, with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation system.

  4. Effect of injection wells with partially perforated completion on CO2/brine flow distribution and injectivity

    NASA Astrophysics Data System (ADS)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Jung, N. H.

    2014-12-01

    Carbon Capture and Sequestration is a viable technology to reduce the concentration of anthropogenic carbon dioxide emitted into the atmosphere. The success of an injection project requires large amounts of dry supercritical CO2 to be injected into brine saturated aquifers within the subsurface. However, solid salt precipitation causes a reduction of permeability, having adverse effects on well injectivity as well as pressure build-up. This study evaluated the accumulation of precipitated salt, brine flux patterns, and pressure build-up for two well constructions, 1) partially completed with 4 injection intervals and 2) fully completed throughout the thickness of the target formation. This study found that when a partially completed well is implemented, precipitation of solid salt experiences a greater radial extent then a fully completed well. Both well designs showed non-localized salt precipitation in low permeability formations (5 and 50 mD) and localized salt precipitation at high permeability (250 and 500 mD). It was also found that two different brine flux patterns occurred; under low-k conditions the brine flux was primarily outward and parallel to the direction of the CO2 migration and salt precipitation became limited. While under high-k conditions there developed back-flow of the brine to the tail of the plume as the plume experienced greater vertical movement, and the counter-flowing brine sustained the precipitation process amplifying salt precipitation. When this process occurred the permeability reduction factor became orders of magnitude less then when non-localized salt precipitation occurred, and formed an impermeable barrier around the injection well. The formation of this barrier was found to have the effect of increasing the pressure build-up near the well in regions of the reservoir in which it occurred. A sensitivity analysis on the anisotropic/isotropic nature of the reservoir and the value of the critical porosity was also conducted. The

  5. Analysis of thermally induced permeability enhancement in geothermal injection wells

    SciTech Connect

    Benson, S.M.; Daggett, J.S.; Iglesias, E.; Arellano, V.; Ortiz-Ramirez, J.

    1987-02-01

    Reinjection of spent geothermal brine is a common means of disposing of geothermal effluents and maintaining reservoir pressures. Contrary to the predictions of two-fluid models (two-viscosity) of nonisothermal injection, an increase of injectivity, with continued injection, is often observed. Injectivity enhancement and thermally-affected pressure transients are particularly apparent in short-term injection tests at the Los Azufres Geothermal Field, Mexico. During an injection test, it is not uncommon to observe that after an initial pressure increase, the pressure decreases with time. As this typically occurs far below the pressure at which hydraulic fracturing is expected, some other mechanism for increasing the near-bore permeability must explain the observed behavior. This paper focuses on calculating the magnitude of the nearbore permeability changes observed in several nonisothermal injection tests conducted at the Los Azufres Geothermal Field.

  6. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pursuant to 40 CFR 146.04). (e) Class V. Injection wells not included in Class I, II, III or IV. Typically... 40 Protection of Environment 22 2010-07-01 2010-07-01 false What is a Class V injection well? 144... Injection Wells § 144.80 What is a Class V injection well? As described in § 144.6, injection wells...

  7. The long term observed effect of air and water injection into a fracture hydrothermal system

    SciTech Connect

    Mario Cesar Suarez Arriaga; Mirna Tello Lopez; Luis de Rio; Hector Gutierrez Puente

    1992-01-01

    Injection of atmospheric air mixed with waste reinjection liquid, has been occurring since 1982 at the Los Azufres, Mexico volcanic hydrothermal system. Several chemical and thermodynamical evidences show that air injection into this fractured geothermal field, could be considered as a long term natural tracer test. Nitrogen and Argon separated from the air mixture migrate from reinjection wells to production zones following preferential paths closely related to high permeability conduits. These paths can be detected, looking into the N2 solubility evolution of production wells. The anisotropic nature of the fractured volcanic rock, would demand considerably amounts of artificial tracer in order to be detected at the producing wells, specially when fluid extraction is low. This explains the unsuccessful recovery of the artificial tracer tests performed in past years at Tejamaniles, the southern field's sector. On the other hand, chloride concentrations and other salts, are increasing in the liquid produced by the oldest wells of the sector.

  8. Simultaneous inversion of air-injection tests in fractured unsaturated tuff at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Huang, K.; Tsang, Y. W.; Bodvarsson, G. S.

    1999-08-01

    Air-injection tests are being used to characterize the flow characteristics of the fractured volcanic tuffs at Yucca Mountain, Nevada, the proposed site for a high-level nuclear waste repository. As the air component flows mainly in the heterogeneous fracture system, air-injection tests can be used to determine the hydrological properties and parameters of the fracture networks. In situ air-injection tests have been carried out in 30 boreholes drilled in a fractured rock block of 13 × 21.5 × 18 m3 in the underground facility at Yucca Mountain. These in situ field tests consist of a constant rate flow injection in one of the boreholes, while the pressure response is monitored in all 30 boreholes of the rock block. This paper presents a simultaneous inversion for 21 air-injection tests in 21 separate boreholes using TOUGH2, a three-dimensional numerical code for multiphase, multicomponent transport [Pruess, 1991; Pruess et al., 1996]. Spatially variable fracture permeability is used as an adjustable parameter to fit the measured pressure responses. For most of the pneumatic experiments the calculated pressure changes match the measured data well. Estimated permeabilities range over 5 orders of magnitude, from 10-15 to 8 × 10-11 m2, indicating large spatial variability in permeability of the heterogeneous fracture system.

  9. Reducing Water/Hull Drag By Injecting Air Into Grooves

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Bushnell, Dennis M.; Weinstein, Leonard M.

    1991-01-01

    Proposed technique for reduction of friction drag on hydrodynamic body involves use of grooves and combinations of surfactants to control motion of layer on surface of such body. Surface contains many rows of side-by-side, evenly spaced, longitudinal grooves. Dimensions of grooves and sharpnesses of tips in specific case depends on conditions of flow about vessel. Requires much less air than does microbubble-injection method.

  10. Air entry into the anterior chamber post intravitreal injection of Eylea.

    PubMed

    Lim, Wei Sing; Sikandar, Munir; Jackson, Heather

    2016-01-01

    An 84-year-old man had air entry into the anterior chamber following intravitreal injection. The air bubble was reabsorbed over time without any complications. No further problems occurred with subsequent intravitreal injections. PMID:27440854

  11. Hydrologic monitoring of a waste-injection well near Milton, Florida, June 1975 - December 1976

    USGS Publications Warehouse

    Pascale, Charles A.; Martin, J.B.

    1977-01-01

    Hydraulic and chemical data were collected through a monitoring program conducted by the U.S. Geological Survey at an industrial liquid-waste injection site 6 mi southwest of Milton, Fla., in Santa Rosa County. The injection system is described. Data include injection rates, volumes, and pressures; water-level data at three monitor wells and a standby injection well, and field and laboratory analyses of water samples from four wells. Hydraulic and geochemical effects of the waste-injection system at the plant as of December 31, 1976, have been detected only in the injection zone, the lower limestone of the Floridan aquifer. Increased pressures are evident at the three wells used to monitor the injection zone. Geochemical changes have been noted only at the deep-test monitor well closest to the injection well. (Woodard-USGS)

  12. Hydrologic characteristics of the Bandelier Tuff as determined through an injection well system

    SciTech Connect

    Purtymun, W.D.; Enyart, E.A.; McLin, S.G.

    1989-08-01

    Injection wells were used to determine some of the hydrologic transmitting characteristics of the unsaturated Bandelier Tuff. At site 1, a 60-ft injection well with a 5-ft injection zone was used to conduct four tests. These preliminary tests were made in order to design an injection-well monitoring system that could track the movement of fluids in the tuff. At site 2, a second injection well with a 10-ft injection zone and seven observation holes was used to monitor the movement of 335,000 gal. of water injected into the tuff. The initial injection rate at site 2 was 5.8 gallons per minute (gpm), but that rate gradually declined to 0.4 gpm after 89 days of the test; 289 days after the test ended, the pear-shaped nephol (the shape of moisture injected into the tuff) reached a maximum depth of 210 ft and had a diameter of about 120 ft. A second test at site 2 indicated that intermittent use of an injection system would allow for short periods of higher injection rates, thereby extending the life of the system. Finally, a third test at site 2 was made using a 50-ft injection zone, which resulted in an injection rate of 15.8 gpm, or about 3 times the initial rate achieved when a 10-ft injection zone was used. 8 refs., 10 figs., 5 tabs.

  13. Characterization of injection wells in a fractured reservoir using PTS logs, Steamboat Hills Geothermal Field, Nevada, USA

    SciTech Connect

    Goranson, Colin; Combs, Jim

    1995-01-26

    The Steamboat Hills Geothermal Field in northwestern Nevada, about 15 km south of Reno, is a shallow (150m to 825m) moderate temperature (155 C to 168 C) liquid-dominated geothermal reservoir situated in highly-fractured granodiorite. Three injection wells were drilled and completed in granodiorite to dispose of spent geothermal fluids from the Steamboat II and III power plants (a 30 MW air-cooled binary-type facility). Injection wells were targeted to depths below 300m to inject spent fluids below producing fractures. First, quasi-static downhole pressure-temperature-spinner (PTS) logs were obtained. Then, the three wells were injection-tested using fluids between 80 C and 106 C at rates from 70 kg/s to 200 kg/s. PTS logs were run both up and down the wells during these injection tests. These PTS surveys have delineated the subsurface fracture zones which will accept fluid. The relative injectivity of the wells was also established. Shut-in interzonal flow within the wells was identified and characterized.

  14. The HIV/AIDS epidemic and changes in injecting drug use in Buenos Aires, Argentina.

    PubMed

    Rossi, Diana; Pawlowicz, María Pía; Rangugni, Victoria; Singh, Dhan Zunino; Goltzman, Paula; Cymerman, Pablo; Vila, Marcelo; Touzé, Graciela

    2006-04-01

    This article discusses the changes in injecting drug use from 1998 to 2003 in Buenos Aires, Argentina. The Rapid Situation Assessment and Response methodology was used to obtain the information. Quantitative and qualitative techniques were triangulated: 140 current IDUs and 35 sex partners of injection drug users (IDUs) were surveyed; 17 in-depth interviews with the surveyed IDUs and 2 focus groups were held, as well as ethnographic observations. The way in which risk and care practices among injecting drug users changed and the influence of the HIV/ AIDS epidemic on this process are described. In recent years, the frequency of injection practices and sharing of injecting equipment has decreased, while injecting drug use is a more hidden practice in a context of increasing impact of the disease in the injecting drug use social networks and changes in the price and quality of drugs. Knowledge about these changes helps build harm reduction activities oriented to IDUs in their particular social context. PMID:16612428

  15. Correlation between Changes in Seismicity Rates and Well Injection Volumes in Oklahoma

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Baker, J.; Walsh, R.; Zoback, M. D.

    2015-12-01

    We present a statistical approach to establish correlations between locations with seismicity increase in Oklahoma and nearby well injection volumes. Seismicity rates in the state have significantly increased since approximately 2008. Fluid injection into deep wells has been theorized to be the cause of this seismicity, but the increase occurred significantly after the start of injection activities in the region. Further, injection-induced earthquakes depend on the presence and orientation of basement faults and the stress state in the region. Because of these complexities, it has been difficult to directly correlate fluid injection with seismicity. Here we show that a statistical correlation between increase in seismicity and injection volumes can be established in Oklahoma. We first employ a change point method to locate the regions where a change in seismicity rates has occurred. We then use a logistic regression model to relate the injection volumes in a region with the presence or absence of seismicity change in the region. This model is further used to evaluate the relative contribution of cumulative injection volumes and monthly injection rates to seismicity. The model can be used to identify "seismically sensitive regions" where seismicity increase has been observed with little fluid injection, and "seismically stable regions" where seismicity changes have not been observed even with high fluid injection. This information can be combined with geological information in a region, and used to make decisions about acceptable volumes for injection and to identify lower-risk regions for injection.

  16. Registration of Hanford Site Class V underground injection wells. Revision 1

    SciTech Connect

    1995-08-01

    The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Streams (DOE 1994) requires that all existing Class V injection wells be registered under WAC 173--218. (Washington Underground Injection Control Program). The purpose of this document is to fulfill this requirement by registering all active Class V underground injection control wells, on the Hanford Site, under WAC 173--218. This registration will revise the registration previously submitted in 1988 (DOE 1988). In support of this registration, an extensive effort has been made to identify all injection wells on the Hanford Site. New injection wells will not be constructed on the Hanford Site except to receive uncontaminated stormwater or groundwater heatpump return flow. All changes to Miscellaneous Streams will be tracked through the Hanford Site Miscellaneous Streams Inventory Database. Table 5--2 of this injection well registration may be updated annually at the same time as the Miscellaneous Streams Inventory, if necessary.

  17. Recommended management practices for operation and closure of shallow injection wells at DOE facilities

    SciTech Connect

    Not Available

    1993-07-01

    The Safe Drinking Water Act established the Underground Injection Control (UIC) program to ensure that underground injection of wastes does not endanger an underground source of drinking water. Under UIC regulations, an injection well is a hole in the ground, deeper than it is wide, that receives wastes or other fluid substances. Types of injection wells range from deep cased wells to shallow sumps, drywells, and drainfields. The report describes the five classes of UIC wells and summarizes relevant regulations for each class of wells and for the UIC program. The main focus of the report is Class IV and V shallow injection wells. Class IV wells are prohibited and should be closed when they are identified. Class V wells are generally authorized by rule, but EPA or a delegated state may require a permit for a Class V well. This report provides recommendations on sound operating and closure practices for shallow injection wells. In addition the report contains copies of several relevant EPA documents that provide additional information on well operation and closure. Another appendix contains information on the UIC programs in 21 states in which there are DOE facilities discharging to injection wells. The appendix includes the name of the responsible regulatory agency and contact person, a summary of differences between the state`s regulations and Federal regulations, and any closure guidelines for Class IV and V wells.

  18. Fuel injection system uses air-bled nozzles

    SciTech Connect

    Gayler, R.J.

    1983-04-01

    A microprocessor-controlled fuel injection system known as ''Pijet'' has been developed by researchers at Piper FM Ltd. It is explained that air and fuel are mixed in the fuel injectors and the mixture is distributed to each cylinder via ''natural selection.'' The system consists of integrated primary pressure pump and pressure relief valve; control box, integrated with the throttle valve housing and containing throttle angle sensor and fuel metering slot valve; solenoid-operated fuel metering pulser and fuel accumulator; fuel injectors; electronic control module; engine speed sensor; and engine, air temperature, and barometric pressure sensors. It is pointed out that the Pijet system has been used successfully in a number of European and Japanese cars ranging from 1.1 to 2.0 L with operating mileage from 5000 to 30,000 miles. The application of inertia-ram tuned induction systems has shown maximum torque increases of 10-15% with a torque spread increase of 1200 rpm into the low speed range.

  19. METHODS FOR DETERMINING THE MECHANICAL INTEGRITY OF CLASS II INJECTION WELLS

    EPA Science Inventory

    The mechanical integrity of injection wells must be determined to insure that there is no significant leak in the casing, tubing or packer, and that there is no significant fluid movement through vertical channels adjacent to the injection well. Methods for mechanical integrity t...

  20. Stimulation of water injection wells in the Los Angeles basin using sodium hypochlorite and mineral acids

    SciTech Connect

    Clementz, D.M.; Patterson, D.E.; Aseltine, R.J.; Young, R.E.

    1982-01-01

    A comprehensive stimulation program was developed to improve the injectivity and vertical coverage of water injection wells in the East Beverly Hills Hills and San Vicente Fields. In recent years the wells had low to zero injectivity and very limited vertical distribution of injected water as a result of formation damage, sand face plugging, and perforation blockage. A stimulaiton strategy was developed which sequentially removed this damage. It began with redesigning the central water plant to provide clean injection brine. The casing was mechanically cleaned. Near-wellbore solids were dissolved or loosened using hydrochloric acid and/or sodium hypochlorite (bleach); then, removed from the well by reverse circulating and suction washing. Remaining damage was treated with hydrochloric/hydrofluoric acid and bleach using circulation wash and selective squeeze techniques. Two- to three-fold improvements in injectivity after stimulation were common. Vertical distribution was typically improved from an initial 0-30% coverage to 85-95% after stimulation. 10 refs.

  1. Effects of air injection on a turbocharged Teledyne Continential Motors TSIO-360-C engine

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. V.; Kempke, E. E.

    1979-01-01

    A turbocharged fuel injected aircraft engine was operated over a range of test conditions that included that EPA five-mode emissions cycle and fuel air ratio variations for individual modes while injecting air into the exhaust gas. Air injection resulted in a decrease of hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. Leanout tests indicated that the EPA standards could be met through the combined use of fuel management and air injection.

  2. The Wells turbine in an oscillating air flow

    SciTech Connect

    Raghunathan, S.; Ombaka,

    1984-08-01

    An experimental study of the performance of a 0.2 m diameter Wells self rectifying air turbine with NACA 0021 blades is presented. Experiments were conducted in an oscillating flowrig. The effects of Reynolds number and Strouhal number on the performance of the turbine were investigated. Finally comparison between the results with the predictions from uni-directional flow tests are made.

  3. 40 CFR 147.3006 - Injection pressure for existing Class II wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Injection pressure for existing Class II wells authorized by rule. 147.3006 Section 147.3006 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Lands of the...

  4. 40 CFR 146.87 - Logging, sampling, and testing prior to injection well operation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Logging, sampling, and testing prior to injection well operation. 146.87 Section 146.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS Criteria and Standards Applicable...

  5. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.; Cabe, James E.; Appriou, Delphine; McGrail, B. Peter

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  6. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect

    Davidson, C L; Bearden, Mark D; Horner, Jacob A; Appriou, Delphine; McGrail, B Peter

    2015-12-01

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  7. Hydrologic monitoring of a waste-injection well near Milton, Florida, June 1975 - June 1977

    USGS Publications Warehouse

    Pascale, Charles A.; Martin, J.B.

    1978-01-01

    This report presents the hydraulic and chemical data collected from June 1, 1975, when injection began, to June 30, 1977 through a monitoring program at a deep-well waste-injection system at the American Cyanamid Company's plant near Milton, about 12 miles northwest of Pensacola. The injection system consists of a primary injection well, a standby injection well, and two deep monitor wells all completed open hole in the lower limestone of the Floridan aquifer and one shallow-monitor well completed in the upper limestone of the Floridan aquifer. Two of the monitor wells and the standby injection well are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations 8,180 feet northeast, 1,560 feet south, and 1,025 feet southwest of the primary injection well. The shallow-monitor well, used to observe any effects in the first permeable zone above the 200-foot-thick confining bed, is 28 feet north of the primary injection well. Since injection began in June 1975, 607 million gallons of treated industrial liquid waste with a pH of 4.6 to 6.3 and containing high concentrations of nitrate, organic nitrogen and carbon have been injected into a saline-water-filled limestone aquifer. Wellhead pressure at the injection well in June 1977 average 137 pounds per square inch and the hydraulic pressure gradient was 0.53 pound per square inch per foot of depth to the top of the injection zone. Water levels rose from 36 to 74 feet at the three wells used to monitor the injection zone during the 25-month period. The water level in the shallow-monitor well declined about 8 feet. No changes were detected in the chemical character of water from the shallow-monitor well and deep-monitor well-north. Increases in concentration of bicarbonate and dissolved organic carbon were detected in water from the deep-test monitor well in February 1976 and at the standby injection well in August 1976. In addition to increases in bicarbonate and dissolved

  8. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet

  9. Air injection project breathes fire into aging West Hackberry oil field

    SciTech Connect

    Duey, R.

    1996-02-01

    Amoco, the DOE and LSU seek more oil from Gulf Coast salt dome fields with air injection technique. The West Hackberry Field in Louisiana is a water-driven reservoir. By injecting air into the high-pressure, high-temperature reservoir rock, the water is backed down, allowing the oil to drain off the steeply dipped rock.

  10. Means of atmospheric air pollution reduction during drilling wells

    NASA Astrophysics Data System (ADS)

    Shkitsa, L.; Yatsyshyn, T.; Lyakh, M.; Sydorenko, O.

    2016-08-01

    The process of drilling oil and gas wells is the source of air pollution through drilling mud evaporation containing hazardous chemical substances. The constructive solution for cleaning device of downhole tool that contains elements covering tube and clean the surface from the mud in the process of rising from the well is offered. Inside the device is filled with magnetic fluid containing the substance neutralizing hazardous substances. The use of the equipment proposed will make it possible to avoid penetration of harmful substances into the environment and to escape the harmful effects of aggressive substances for staff health and increase rig's fire safety.

  11. Measurement of injectivity indexes in geothermal wells with two permeable zones

    SciTech Connect

    Acuna, Jorge A.

    1994-01-20

    Injectivity tests in wells with two permeable zones and internal flow is analyzed in order to include the usually severe thermal transient effects. A theoretical analysis is performed and a method devised to obtain information from the thermal transient, provided that temperature is measured simultaneously with pressure. The technique is illustrated with two real tests performed at Miravalles, Costa Rica. It allows to estimate total injectivity index as well as the injectivity index of each one of the two zones separately. Correct position of measuring tools and nature of spontaneous internal flow is also discussed.

  12. Investigation of spray characteristics for flashing injection of fuels containing dissolved air and superheated fuels

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Chen, L. D.; Faeth, G. M.

    1982-01-01

    The flow, atomization and spreading of flashing injector flowing liquids containing dissolved gases (jet/air) as well as superheated liquids (Freon II) were considered. The use of a two stage expansion process separated by an expansion chamber, ws found to be beneficial for flashing injection particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.

  13. A comprehensive approach for stimulating produced water injection wells at Prudhoe Bay, Alaska

    SciTech Connect

    Fambrough, J.D.; Lane, R.H.; Braden, J.C.

    1995-11-01

    The paper presents a three-component approach to removing damage from produced water injection wells of Prudhoe Bay Field, Alaska: (1) identification of plugging material, (2) evaluation and selection of potential treatment chemicals, and (3) design and implementation of a well treatment and placement method. Plugging material was sampled anaerobically and kept frozen prior to identification and evaluation. Appropriate treatment chemicals were determined through a series of solvation, filtration, and weight-loss tests. Field treatments were designed so that the treating chemicals entered the formation under normal operating conditions, i.e., at pressures and rates similar to those present during produced water injection. A number of treatments improved injection rates and profiles, but continued injection of oil and solids-laden water caused deterioration of well performance at rates that precluded general application of the treatment at Prudhoe Bay.

  14. The stability of a horizontal interface between air and an insulating liquid subjected to charge injection

    NASA Astrophysics Data System (ADS)

    Chicón, Rafael; Pérez, Alberto T.

    2014-03-01

    This paper presents the linear stability analysis of an interface between air and an insulating liquid subjected to a perpendicular electric field, in the presence of unipolar injection of charge. Depending on the characteristics of the liquid and the depth of the liquid layer two different instability thresholds may be found. One of them is characterized by a wavelength of the order of the liquid layer thickness and corresponds to the well-known volume instability of a liquid layer subjected to charge injection. The other one is characterized by a wavelength some ten times the liquid layer thickness and corresponds to the so-called rose-window instability, an instability associated to the balance of surface stresses.

  15. Maximizing net extraction using an injection-extraction well pair in a coastal aquifer.

    PubMed

    Lu, Chunhui; Werner, Adrian D; Simmons, Craig T; Robinson, Neville I; Luo, Jian

    2013-03-01

    In this study, we examine the maximum net extraction rate from the novel arrangement of an injection-extraction well pair in a coastal aquifer, where fresh groundwater is reinjected through the injection well located between the interface toe and extraction well. Complex potential theory is employed to derive a new analytical solution for the maximum net extraction rate and corresponding stagnation-point locations and recirculation ratio, assuming steady-state, sharp-interface conditions. The injection-extraction well-pair system outperforms a traditional single extraction well in terms of net extraction rate for a broad range of well placement and pumping rates, which is up to 50% higher for an aquifer with a thickness of 20 m, hydraulic conductivity of 10 m/d, and fresh water influx of 0.24 m(2) /d. Sensitivity analyses show that for a given fresh water discharge from an inland aquifer, a larger maximum net extraction is expected in cases with a smaller hydraulic conductivity or a smaller aquifer thickness, notwithstanding physical limits to drawdown at the pumping well that are not considered here. For an extraction well with a fixed location, the optimal net extraction rate linearly increases with the distance between the injection well and the sea, and the corresponding injection rate and recirculation ratio also increase. The analytical analysis in this study provides initial guidance for the design of well-pair systems in coastal aquifers, and is therefore an extension beyond previous applications of analytical solutions of coastal pumping that apply only to extraction or injection wells. PMID:22880816

  16. Analysis of the response of the Raft River monitor wells to the 1979 injection tests

    SciTech Connect

    Spencer, S.G.; Callan, D.M.

    1980-09-01

    The geothermal resource for the Department of Energy's (DOE) Raft River Geothermal 5 MWe Power Project is located in a closed ground water basin in southcentral Idaho. Chemical analyses indicate the existence of natural communication along fractures between the geothermal reservoir and the shallower aquifers developed for irrigation. Much of the ground water that is presently used for irrigation is of poor quality. Injection of geothermal fluids at intermediate depths may increase communication between the reservoir and the aquifer, resulting in further degradation of shallow ground water quality over time. Seven monitor wells, ranging in depth from 150 m to 400 m, were drilled to evaluate the potential for this degradation. Monitoring of these wells during two 21-day injection tests at the Raft River Geothermal Injection Well-6 (RRGI-6) indicates two types of response in the shallow aquifer system. First, the water level in Monitor Well-4 (MW-4) increased an average of 0.4 m/week during injection, indicating direct fracture connection between the injection zone and the aquifer penetrated by MW-4. Second, water levels in MW-5, MW-6, and MW-7 showed a step function decrease which coincided with the period of the injection tests. Analyses indicate that this response may be caused by elastic deformation in the aquifer matrix.

  17. Effects of air injection on a turbocharged Teledyne Continental Motors TSIO-360-C engine

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. V.; Kempke, E. E.

    1979-01-01

    Results are presented for tests performed to assess the effects of exhaust manifold injection air flow rate on emissions and on exhaust gas temperature and turbine inlet temperature for a range of engine operating conditions (speed, torque, and fuel-air ratios) of a fuel-injected turbocharged six-cylinder air-cooled Teledyne Continental Motors TSIO-360-C engine. Air injection into the exhaust gas at 80 F resulted in a decrease in hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. The EPA standards could be met within present turbine inlet temperature limits using commercially available air pumps, provided that the fuel-air ratios were leaned in the taxi, climb, and approach modes.

  18. Co-injection of air and steam for the prevention of the downward migration of DNAPLs during steam enhanced extraction: an experimental evaluation of optimum injection ratio predictions.

    PubMed

    Kaslusky, Scott F; Udell, Kent S

    2005-05-01

    When steam is injected into soil containing a dense volatile non-aqueous phase liquid contaminant, the DNAPL vaporized within the heated soil region condenses and accumulates ahead of the steam condensation front. If enough DNAPL accumulates, gravitational forces can overcome trapping forces allowing the liquid contaminant to flow downward. By injecting air with steam, a portion of the DNAPL vapor remains suspended in equilibrium with the air, decreasing liquid contaminant accumulation ahead of the steam condensation front, and thus reducing the possibility of downward migration. In a previous work, a theoretical model was developed to predict the optimum injection ratio of air to steam that would eliminate accumulation of DNAPL ahead of the temperature front and thus minimize the potential for downward migration. In this work, the theoretical model is summarized, and an experiment is presented in order to evaluate the optimum injection ratio prediction. In the experiment, a two-dimensional water saturated sand pack is contaminated with a known mass of TCE (DNAPL). The system is then remediated by co-injecting air and steam at the predicted optimum injection ratio, calculated based on the average contaminant soil concentration in the sand pack. Results for the co-injection of air and steam are compared to results for the injection of pure steam or pure air. Injection at the predicted optimum injection ratio for a volumetric average NAPL saturation, reduced accumulation of the contaminant ahead of the condensation front by over 90%, as compared to steam injection alone. This indicates that the optimum injection ratio prediction is a valuable tool for limiting the spreading of DNAPL during steam-enhanced extraction. Injection at the optimum injection ratio resulted in earlier recovery of contaminant than for steam injection alone. Co-injection of steam and air is also shown to result in much higher recovery rates than air injection alone. PMID:15854722

  19. Productivity and injectivity of horizontal wells. Annual report, March 10, 1995--March 9, 1996

    SciTech Connect

    Aziz, K.; Hewett, T.

    1996-05-01

    The DOE approval for the annual renewal of the research grant to the Stanford Project on the Productivity and Injectivity of Horizontal Wells was received in early March 1995. Project goals include the advanced modeling of horizontal wells; investigation and incorporation of the effects of reservoir heterogeneities; development of improved methods of calculating multi-phase pressure drops within wellbores; development of multi-well models; testing of horizontal well models with field examples; EOR applications; and application studies and their optimization.

  20. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  1. Processes in the Vicinity of an Injection Well of a Geothermal Facility in the Malm Aquifer

    NASA Astrophysics Data System (ADS)

    Baumann, Thomas; Lafogler, Mark; Wenderoth, Frank; Bartels, Jörn

    2016-04-01

    With high temperatures, high transmissivities and low salinities the Malm Aquifer in the Bavarian Molasse Basin offers ideal conditions for the exploration of geothermal energy. In 2011 the Pullach geothermal facility was extended with a third geothermal well to account for the increasing heat demand. In the course of this extension an injection well was converted to a production well. Hence, for the first time in the history of geothermal exploration of the Malm Aquifer, data became accessible from the surrounding of an injection well which has been in operation for more than 5 years. This data, together with data froma a push-pull tracer test started 9 months before the conversion, allows unique access to the processes at the injection well and sets the baseline for an assessment of the long term behavior of geothermal heat and power plants in the Molasse Basin. The development of the production temperatures went faster than expected, after 4 years of production the initial temperatures have almost been reached. This can only be explained with a vertically heterogeneous distribution of the transmissivity. In this setting, the cold water forms a thin disc which extends much further from the injection well. Thus, the effective area of the heat exchange with the matrix of the aquifer is larger than in a homogeneous setting. The breakthrough of the tracers was affected by an unexpected delay of the start of the production. The regional flow led to a shift of the injected tracer pulses with the innermost tracer pulse being entirely transposed downstream of the injection well. The recovery rates mirror the sorption coefficients of the individual tracers as determined in batch tests and column tests. It became apparent, that the stagnation phase led to a bias towards sorption with slow kinetics and diffusion-limited matrix interactions. The hydrochemical data showed a significant increase of the concentrations of calcium, magnesium, and bicarbonate indicating a

  2. Stimulation methods applicable to thickened oil section in production and injection wells of daqing oilfield

    SciTech Connect

    Yin, L.; Pei, F.

    1983-01-01

    Daqing oil field is a multi-zone sandstone oil field. Because the natural drive energy of the reservoir is small, waterflooding was adopted to maintain reservoir energy at the initial development stage. In the oil-water transition belt, block D in SB area, the northern part of the oil field, because of the poorer reservoir characteristics and the poorer physical properties of crude oil and the lower injectivity of water injection well, the effects of development were worse than that from the net oil area. A simulation experiment on cores was performed, according to the characteristics and the existing problems in the thickened oil section in the oil-water transition belt. Based on the results of the experiment, adopting the measures of injectivity improvement of solvent and selective acidizing in water injection wells of this area, water injection was increased greatly, and the oil wells were affected continuously. At the same time, oil output per well and oil productive thickness of reservoir were increased, as to improve the results of development in block D.

  3. Evaluation of geopressured brine injectability: Department of Energy, Pleasant Bayou No. 2 well, Brazoria County, Texas

    SciTech Connect

    Owen, L.B.; Blair, C.K.; Harrar, J.E.; Netherton, R.

    1980-10-28

    A field evaluation of geopressured brine injectability was completed during September 22 to 25, 1980 at the DOE, Brazoria test site in Texas. Membrane filters, with pore sizes of 0.4-..mu..m and 10.0-..mu..m, were used as the basis for obtaining suspended solids data and for developing performance-life estimates of typical spent brine injection wells. Field measurements were made at 130/sup 0/C and line pressures up to 3800 psig. Scale inhibited (phosphonate-polyacrylate threshold-type, carbonate scale inhibitor), prefiltered-scale-inhibited, and untreated brine were evaluated. Test results indicated that raw brine was highly injectable, while scale-inhibited brine had extremely low quality. The poor injectability of scale-inhibited brine resulted from partial precipitation of the scale inhibitor.

  4. In-situ bioremediation of groundwater using a horizontal injection well in clay soil, Madisonville, TN

    SciTech Connect

    Miller, M.B.; Clark, D.A.; Handler, M.; Zhing-Ming Huang

    1996-09-01

    Tennessee`s first horizontal groundwater remediation well was installed at Madisonville located in the eastern Valley and Ridge Province. The open-ended well, drilled through clay soil, is constructed of 280 feet HDPE pipe, 2 inches in diameter, with a screen length of 100 feet at 18 feet below ground surface. The purpose of the well is to remediate gasoline contaminated groundwater that resulted from a leaking underground storage tank (UST) system. The groundwater benzene and TPH plumes covered an area of one-half acre and extended beneath a rural grocery store. Remediation is achieved by injecting aerated water, nutrients and microbes to reduce contaminant levels to drinking water standards. MODFLOW was utilized to computer-model the development of the groundwater mound that would result from injection. It was calculated that one horizontal injection well would equal the efficiency of 80 vertical injection wells. Benzene and TPH masses have been reduced by 92% and 95% respectively. BIOTRANS calculated the bio-decay rate to determine remediation time. This system will reduce project life and eliminate additional costs associated with: operations and maintenance (versus vertical pump and treat), water disposal, emissions controls, well installations, and site disturbance. A {open_quotes}Minimum Economic Plume Size{close_quotes}, the minimum plume volume required to support a horizontal system has been developed. Although costs per foot are greater for horizontal drilling than vertical drilling, project costs savings are realized later in the project.

  5. Evaluation of injection well risk management potential in the Williston Basin

    SciTech Connect

    1989-09-01

    The UIC regulations promulgated by the EPA under the Safe Drinking Water Act (SDWA) provide the EPA, or an EPA approved state agency, with authority to regulate subsurface injection of fluids to protect USDWs. Oil and gas producing industry interests are concerned primarily with Class 2 wells whose uses as defined by UIC regulations are: disposal of fluids brought to the surface and liquids generated in connection with oil and gas production (SWD); injection of fluids for enhanced oil recovery (EOR); and storage of liquid hydrocarbons. The Williston Basin was chosen for the pilot study of the feasibility of using the risk approach in managing Class 2 injection operations for the following reasons: it is one of the nine geologic basins which was classified as having a significant potential for external casing corrosion, which permitted an evaluation of the effectiveness of the injection well corrosion control measures used by industry; there are 731 active, 22 shut in and 203 temporarily abandoned SWD and water injection wells in the basin; and the basin covers three states. The broad objective of the Williston Basin study is to define requirements and to investigate the feasibility of incorporating risk management into administration of the UIC program. The study does not address the reporting aspects of UIC regulatory and compliance activities but the data base does contain essentially all the information required to develop the reports needed to monitor those activities. 16 refs., 10 figs., 11 tabs.

  6. Ground water and soil remediation: In situ air stripping using horizontal wells

    SciTech Connect

    Kaback, D.S.; Looney, B.B.; Eddy, C.A.; Hazen, T.C.

    1990-01-01

    An innovative environmental restoration technology, in situ air stripping, has been demonstrated at the US Department of Energy (DOE) Savannah River Site (SRS) in South Carolina. This process, using horizontal wells, is designed to concurrently remediate unsaturated-zone soils and ground water containing Volatile Organic Compounds (VOC). In situ technologies have the potential to substantially reduce costs and time required for remediation as well as improve effectiveness of remediation. Horizontal wells were selected to deliver and extract fluids from the subsurface because their geometry can maximize the efficiency of a remediation system and they have great potential for remediating contaminant sources under existing facilities. The first demonstration of this new technology was conducted for a period of twenty weeks. A vacuum was first drawn on the vadose zone well until a steady-state removal of VOCs was obtained. Air was then injected at three different rates and at two different temperatures. An extensive characterization program was conducted at the site and an extensive monitoring network was installed prior to initiation of the test. Significant quantities of VOCs have been removed from the subsurface (equivalent to an eleven-well, 500-gpm, pump-and-treat system at the same site). Concentrations of VOCs in the ground water have been significantly reduced in a number of the monitoring wells.

  7. Ground water and soil remediation: In situ air stripping using horizontal wells

    SciTech Connect

    Kaback, D.S.; Looney, B.B.; Eddy, C.A.; Hazen, T.C.

    1990-12-31

    An innovative environmental restoration technology, in situ air stripping, has been demonstrated at the US Department of Energy (DOE) Savannah River Site (SRS) in South Carolina. This process, using horizontal wells, is designed to concurrently remediate unsaturated-zone soils and ground water containing Volatile Organic Compounds (VOC). In situ technologies have the potential to substantially reduce costs and time required for remediation as well as improve effectiveness of remediation. Horizontal wells were selected to deliver and extract fluids from the subsurface because their geometry can maximize the efficiency of a remediation system and they have great potential for remediating contaminant sources under existing facilities. The first demonstration of this new technology was conducted for a period of twenty weeks. A vacuum was first drawn on the vadose zone well until a steady-state removal of VOCs was obtained. Air was then injected at three different rates and at two different temperatures. An extensive characterization program was conducted at the site and an extensive monitoring network was installed prior to initiation of the test. Significant quantities of VOCs have been removed from the subsurface (equivalent to an eleven-well, 500-gpm, pump-and-treat system at the same site). Concentrations of VOCs in the ground water have been significantly reduced in a number of the monitoring wells.

  8. STEAM INJECTION INTO FRACTURED LIMESTONE AT LORING AIR FORCE BASE

    EPA Science Inventory

    A research project on steam injection for the remediation of spent chlorinated solvents from fractured limestone was recently undertaken at the former Loring AFB in Limestone, ME. Participants in the project include the Maine Department of Environmental Protection, EPA Region I,...

  9. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  10. ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: SUMMARIES OF RECENT RESEARCH

    EPA Science Inventory

    The results of recent research funded by the U.S. Environmental Protection Agency on topics related to geochemical-fate assessment of deep-well-injected hazardous wastes are summarized in this document. Most of the reports summarized contain some discussion of EPA's 1988 Final Un...

  11. Assessment of Nitrification Potential in Ground Water Using Short Term, Single-Well Injection Experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the am...

  12. 40 CFR 144.89 - How do I close my Class V injection well?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... You should check with the publicly owned treatment works you might use to see if they would accept... history and records showing proper waste disposal. The use of a semi-permanent plug as the means to... Injection Wells Additional Requirements for Class V Large-Capacity Cesspools and Motor Vehicle...

  13. 40 CFR 144.89 - How do I close my Class V injection well?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... You should check with the publicly owned treatment works you might use to see if they would accept... history and records showing proper waste disposal. The use of a semi-permanent plug as the means to... Injection Wells Additional Requirements for Class V Large-Capacity Cesspools and Motor Vehicle...

  14. 40 CFR 144.89 - How do I close my Class V injection well?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... You should check with the publicly owned treatment works you might use to see if they would accept... history and records showing proper waste disposal. The use of a semi-permanent plug as the means to... Injection Wells Additional Requirements for Class V Large-Capacity Cesspools and Motor Vehicle...

  15. 40 CFR 144.89 - How do I close my Class V injection well?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... You should check with the publicly owned treatment works you might use to see if they would accept... history and records showing proper waste disposal. The use of a semi-permanent plug as the means to... Injection Wells Additional Requirements for Class V Large-Capacity Cesspools and Motor Vehicle...

  16. ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: RECENT RESEARCH

    EPA Science Inventory

    This is the second volume of a two-volume handbook which has been developed for use as a reference tool in evaluating the suitability of disposing of specific hazardous wastes in deep injection wells. his volume contains summaries of recent research. sers of this handbook will ge...

  17. HANDBOOK: ASSESSING THE FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE. Summaries of Recent Research

    EPA Science Inventory

    This handbook has been developed for use as a reference tool in evaluating the suitability of disposing of specific hazardous wastes in deep injection wells. sers of the document will get a better understanding of the factors that affect 1) geochemical waste-reservoir reactions o...

  18. Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests

    USGS Publications Warehouse

    Lessoff, S.C.; Konikow, L.F.

    1997-01-01

    Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.

  19. Assessment of nitrification potential in ground water using short term, single-well injection experiments

    USGS Publications Warehouse

    Smith, R.L.; Baumgartner, L.K.; Miller, D.N.; Repert, D.A.; Böhlke, J.K.

    2006-01-01

    Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 ??M) and ammonium (19 to 625 ??M) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with 15N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02-0.28 ??mol (L aquifer)-1 h-1 with in situ oxygen concentrations and up to 0.81 ??mol (L aquifer)-1 h-1 with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations. ?? Springer Science+Business Media, Inc. 2005.

  20. 40 CFR 147.1803 - Existing Class I and III wells authorized by rule-maximum injection pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... head pressure calculated by using the following formula: Pm = (0.8 − 0.433 Sg) d where: Pm = injection pressure at the well head in pounds per square inch Sg = specific gravity of injected fluid (unitless)...

  1. Late - Cycle Injection of Air/Oxygen - Enriched Air for Diesel Exhaust Emissions Control

    SciTech Connect

    Mather, Daniel

    2000-08-20

    Reduce the ''Engine Out'' particulates using the ''In Cylinder'' technique of late cycle auxiliary gas injection (AGI). Reduce the ''Engine Out'' NOx by combining AGI with optimization of fuel injection parameters. Maintain or Improve the Fuel Efficiency.

  2. Oxygen enrichment of room air to improve well-being and productivity at high altitude.

    PubMed

    West, J B

    1999-01-01

    Increasingly, commercial activities, such as mines, and scientific facilities, such as telescopes, are being placed at very high altitudes, up to 5,000 m. Frequently workers commute to these locations from much lower altitudes, or even from sea level. In addition, large numbers of people permanently live and work at high altitudes. The hypoxia of high altitude impairs sleep quality, mental performance, productivity, and general well-being. Recently it has become feasible to raise the oxygen concentration of room air by injecting oxygen into the air conditioning. This is remarkably effective at reducing the equivalent altitude. For example, increasing the oxygen concentration by 1% (e.g., from 21% to 22%) reduces the equivalent altitude by about 300 m. In other words, a room at an altitude of 4,500 m containing 26% oxygen is effectively at an altitude of 3,000 m. Oxygen enrichment has now been tested in several studies and shown to improve sleep quality and cognitive function. The fire hazard is less than in air at sea level. This innovative technique promises to improve productivity and well-being at high altitude. PMID:10441257

  3. The effect of air-lock technique on pain at the site of intramuscular injection

    PubMed Central

    Yilmaz, Dilek K.; Dikmen, Yurdanur; Kokturk, Furuzan; Dedeoglu, Yasemin

    2016-01-01

    Objectives: To investigate the effects of air-lock technique (ALT) on pain of intramuscular (IM) injection delivered to the ventrogluteal and dorsogluteal site (DS). Methods: A randomized controlled trial design was used to assess the pain intensity associated with IM injections administered using 2 different methods and injection sites. Recruitment of patients was carried out between April and August 2013 at the Department of Brain Surgery, Cekirge State Hospital, Bursa, Turkey. The sample comprised 60 patients who developed no complications at the IM site, and had no illness that could affect their perception of pain. The patients were randomly divided into 2 groups of 30 patients. Patients in the first group received injections in the ventrogluteal site (VS), while the DS was used for injections in the second group. Patients in each group received 2 injections, one using ALT and one not using the technique. After each injection, the pain felt by patients during the injection was immediately assessed using a visual analog scale. Results: The mean pain score after injections to the DS by the ALT was 3.30 ± 2.70, while the mean pain score after injections to the VS using the same technique was 2.53 ± 2.52. Conclusion: Although the difference between groups was not significant, the results of the study supported the idea that injections delivered to the VS by ALT are less painful than those delivered to the DS. PMID:26905354

  4. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    NASA Astrophysics Data System (ADS)

    Yeung, Chung-Hei (Simon)

    derived and expressed in terms of implementation-oriented variables such as number of injectors. For the third case, bifurcation criticality conditions are not obtained due to complexity, though linear stability property is derived. A theoretical comparison between the three algorithms is made, via the use of low-order models, to investigate pros and cons of the algorithms in the context of operability. The effects of static distortion on the compressor facility at Caltech is characterized experimentally. Results consistent with literature are obtained. Simulations via a high fidelity model (34 states) are also performed and show good qualitative as well as quantitative agreement to experiments. A non-axisymmetric pulsed air injection controller for stall is shown to be robust to static distortion.

  5. Electric Field Effects on an Injected Air Bubble at Detachment in a Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Iacona, Estelle; Herman, Cila; Chang, Shinan

    2002-01-01

    The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static and uniform electric field. Bubble formation and detachment were visualized and recorded in microgravity using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement, and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.

  6. Reducing Ultrafine Particle Emissions Using Air Injection in Wood-Burning Cookstoves.

    PubMed

    Rapp, Vi H; Caubel, Julien J; Wilson, Daniel L; Gadgil, Ashok J

    2016-08-01

    In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injection on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. The results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking. PMID:27348315

  7. An experimental study on the effect of air bubble injection on the flow induced rotational hub

    SciTech Connect

    Nouri, N.M.; Sarreshtehdari, A.

    2009-01-15

    Modification of shear stress due to air bubbles injection in a rotary device was investigated experimentally. Air bubbles inject to the water flow crosses the neighbor of the hub which can rotate just by water flow shear stresses, in this device. Increasing air void fraction leads to decrease of shear stresses exerted on the hub surface until in high void fractions, the hub motion stopped as observed. Amount of skin friction decrease has been estimated by counting central hub rotations. Wall shear stress was decreased by bubble injection in all range of tested Reynolds number, changing from 50,378 to 71,238, and also by increasing air void fraction from zero to 3.06%. Skin friction reduction more than 85% was achieved in this study as maximum measured volume of air fraction injected to fluid flow while bubbles are distinct and they do not make a gas layer. Significant skin friction reduction obtained in this special case indicate that using small amount of bubble injection causes large amount of skin friction reduction in some rotary parts in the liquid phases like as water. (author)

  8. Cactus spuds New Mexico's first CO/sub 2/ injection well

    SciTech Connect

    Not Available

    1980-04-01

    Conoco recently contracted to spud MCA No. 358, a 4100-ft shaft destined to become New Mexico's first CO/sub 2/ injection well. The 8040-acre MCA unit which occupies a large part of the Maljamar field in W. Lea County, has had recovery totals so far of 49 million bbl of oil since its 1963 waterflood start. Ultimate primary and secondary recovery using standard methods is estimated at 95 million bbl of oil, representing approximately 40% of the oil in place. The remaining 60% is the present target. The injection well in the Maljamar CO/sub 2/ pilot is the first of 7 which will be drilled on an inverted 5-spot pattern. Four will produce oil, and 2 will be used to log statistics as the slug of CO/sub 2/ passes through. A 200-ft section of the producing formation will be pressure-cored so fluids can be captured in-situ and analyzed.

  9. Method for cutting steam heat losses during cyclic steam injection of wells. Final report

    SciTech Connect

    Gondouin, M.

    1995-12-01

    Heavy Oil is abundant in California. It is a very viscous fluid, which must be thinned in order to flow from wells at economical rates. The best method of oil viscosity reduction is by cyclic steam injection into the oil-containing rock formations. Making steam in conventional generators fueled with Natural Gas is, however, a costly process. The main objective of this Project is to reduce the cost of the required steam, per Barrel of Oil produced. This is made possible by a combination of Patented new technologies with several known methods. The best known method for increasing the production rate from oil wells is to use horizontal drainholes, which provide a much greater flow area from the oil zone into the well. A recent statistic based on 344 horizontal wells in 21 Canadian Oil fields containing Heavy Oil shows that these are, on the average six times more prolific than vertical wells. The cost of horizontal wells, however, is generally two to three times that of a vertical well, in the same field, so our second goal is to reduce the net cost of horizontal wells by connecting two of them to the same vertical casing, well head and pumping system. With such a well configuration, it is possible to get two horizontal wells for the price of about one and a half times the price of a single vertical well.

  10. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the

  11. Field demonstration of in-situ air stripping using horizontal wells

    SciTech Connect

    Looney, B.B.; Kaback, D.S.

    1991-12-31

    Under sponsorship from the US Department of Energy, technical personnel from the Savannah River Laboratory and other DOE laboratories, universities and private industry have completed a full scale demonstration of environmental remediation using horizontal wells. The 139 day long test was designed to remove volatile chlorinated solvents from the subsurface using two horizontal wells. One well, approximately 90m long and 45m deep drilled below a contaminant plume in the groundwater, was used to inject air and strip the contaminants from the groundwater. A second horizontal well, approximately 50m long and 20m deep in the vadose zone, was used to extract residual contamination in the vadose zone along with the material purged from the groundwater. The test successfully removed approximately 7250 kg of contaminants. A large amount of characterization and monitoring data was collected to aid in interpretation of the test and to provide the information needed for future environmental restorations that employ directionally drilled wells as extraction or delivery systems.

  12. Field demonstration of in-situ air stripping using horizontal wells

    SciTech Connect

    Looney, B.B.; Kaback, D.S.

    1991-01-01

    Under sponsorship from the US Department of Energy, technical personnel from the Savannah River Laboratory and other DOE laboratories, universities and private industry have completed a full scale demonstration of environmental remediation using horizontal wells. The 139 day long test was designed to remove volatile chlorinated solvents from the subsurface using two horizontal wells. One well, approximately 90m long and 45m deep drilled below a contaminant plume in the groundwater, was used to inject air and strip the contaminants from the groundwater. A second horizontal well, approximately 50m long and 20m deep in the vadose zone, was used to extract residual contamination in the vadose zone along with the material purged from the groundwater. The test successfully removed approximately 7250 kg of contaminants. A large amount of characterization and monitoring data was collected to aid in interpretation of the test and to provide the information needed for future environmental restorations that employ directionally drilled wells as extraction or delivery systems.

  13. Study on the Horizontal-well Injection Profile Logging Interpretation Technology

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Yao, Xugang; He, Xiaolu; Shen, Linshu; Xu, Qingying; Liu, Dongming; Liu, Hongsheng

    2007-06-01

    In order to get higher injection capacity and raise the coefficient of water driving waves and accelerate the speed of oil extraction. Changqing field carries on the development of horizontal-well infusion exploitation in the XXQ sandstone layer oil pool district. In compare with the traditional vertical-well affusion, the effect of comprehensive result of horizontal-well infusion exploitation will enhance as five times more as the current value. Because the flow of horizontal-well varies more in compare with the level-well, many horizontal-well logging data is hard to explain from the normal regulations, because the influence of the dynamic state of well hole and the size of it. Basing on the flow state of horizontal-well and the analysis of the layer of the low degree state and the annular flow and the turbulent flow, in order to get the parameters. To make attempt research to the quantitative interpretation of the horizontal-well.

  14. Stimulation of water injection wells, in the Los Angeles basin by using sodium hypochlorite and mineral acids

    SciTech Connect

    Clementz, D.M.; Aseltine, R.J.; Patterson, D.E.; Young, R.E.

    1982-09-01

    A stimulation program was developed to improve injectivity and vertical coverage of water injection wells in the East Beverly Hills and San Vicente fields. Damage materials were removed by stimulating the wells with bleach and acid using a variety of tools and techniques. Two- to three-fold injectivity improvements were common, and vertical distribution was typically improved from an initial coverage of 0 to 30% to 85 to 95% after stimulation.

  15. Injection well with high-pressure, high-temperature in situ down-hole steam formation

    SciTech Connect

    Marr, A.W.

    1981-12-01

    A portion of an injection well adjacent an oil-bearing earth formation is sealed off by spaced-apart high-pressure-resistant plugs, and water is charged into the bore-hole space between the plugs at a sufficient rate to effect sustained water pressure in the range of from 400 to 25,000 psi. Under such pressure sufficient current is passed between two electrodes in the water to convert from 10 to 33 barrels of water per hour into steam.

  16. Ultrafast spin tunneling and injection in coupled nanostructures of InGaAs quantum dots and quantum well

    SciTech Connect

    Yang, Xiao-Jie Kiba, Takayuki; Yamamura, Takafumi; Takayama, Junichi; Subagyo, Agus; Sueoka, Kazuhisa; Murayama, Akihiro

    2014-01-06

    We investigate the electron-spin injection dynamics via tunneling from an In{sub 0.1}Ga{sub 0.9}As quantum well (QW) to In{sub 0.5}Ga{sub 0.5}As quantum dots (QDs) in coupled QW-QDs nanostructures. These coupled nanostructures demonstrate ultrafast (5 to 20 ps) spin injection into the QDs. The degree of spin polarization up to 45% is obtained in the QDs after the injection, essentially depending on the injection time. The spin injection and conservation are enhanced with thinner barriers due to the stronger electronic coupling between the QW and QDs.

  17. Effects of air injection during sap processing on maple syrup color, chemical composition and flavor volatiles.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air injection (AI) is a maple sap processing technology reported to increase the efficiency of maple syrup production by increasing production of more economically valuable light-colored maple syrup, and reducing development of loose scale mineral precipitates in syrup, and scale deposits on evapora...

  18. Preliminary investigation of the use of air injection to mitigate cavitation erosion

    SciTech Connect

    Arndt, R.E.A.; Ellis, C.R.; Paul, S.

    1995-09-01

    This project was initiated as part of a new research and development focus to improve hydropower generation. One aspect of the problem is severe cavitation erosion which is experienced when hydroturbines are operated at best power or in spinning reserve. Air injection has been used successfully to minimize or eliminate cavitation erosion in other applications. Thus, an investigation was initiated to determine whether or not air injection would be an effective solution for turbine erosion problems. A specially instrumented hydrofoil of elliptic planform and a NACA 0015 cross section was tested at flow velocities up to 20 m s{sup {minus}1}, at various values of cavitation index. Although pit sizes were measured on a soft aluminum insert, pitting rate was not measured directly but was inferred from direct measurement of impulsive pressures on the surface of the hydrofoil and by monitoring accelerometers mounted at the base of the hydrofoil. Cavitation noise was also measured by a hydrophone positioned in the water tunnel test section. Air was injected through small holes in the leading edge of the foil. Air injection was found to be very effective in minimizing erosion as inferred from all three cavitation erosion detection techniques.

  19. Types of secondary porosity of carbonate rocks in injection and test wells in southern peninsular Florida

    USGS Publications Warehouse

    Duerr, A.D.

    1995-01-01

    The types of secondary porosity present in carbonate injection intervals and in the overlying carbonate rocks were determined at 11 injection well sites and 3 test well sites in southern peninsular Florida. The hydrogeologic system consists of a thick sequence of carbonate rocks overlain by clastic deposits. Principal hydrogeologic units are the surficial aquifer system, the intermediate aquifer system or the intermediate confining unit,the Floridan aquifer system, and the sub-Floridan confining unit.The concept of apparent secondary porosity was used in this study because the secondary porosity features observed in a borehole television survey could have been caused by geologic processes as well as by drilling activities. The secondary porosity features identified in a television survey were evaluated using driller's comments and caliper, flowmeter, and temperature logs. Borehole intervals that produced or received detectable amounts of flow, as shown by flowmeter and temperature logs, provided evidence that the secondary porosity of the interval was spatially distributed and interconnected beyond the immediate vicinity of a borehole and, thus, was related to geologic processes. Features associated with interconnected secondary porosity were identified as effective secondary porosity. Fracture porosity was identified as the most common type of effective secondary porosity and was observed predominantly in dolomite and dolomitic limestone. Cavity porosity was the least common type of effective secondary porosity at the study sites. In fact, of the more than 17,500 feet of borehole studied a total of only three cavities constituting effective secondary porosity were identified at only two sites. These cavities were detected in dolomite rocks. Most apparent cavities were caused by drilling-induced collapse of naturally fractured borehole walls. Also, fractures usually were observed above and below cavities. The majority of vugs observed in the television surveys did

  20. Deep well injection of brine from Paradox Valley, Colorado: Potential major precipitation problems remediated by nanofiltration

    USGS Publications Warehouse

    Kharaka, Y.K.; Ambats, G.; Thordsen, J.J.; Davis, R.A.

    1997-01-01

    Groundwater brine seepage into the Dolores River in Paradox Valley, Colorado, increases the dissolved solids load of the Colorado River annually by ~2.0 x 108 kg. To abate this natural contamination, the Bureau of Reclamation plans to pump ~3540 m3/d of brine from 12 shallow wells located along the Dolores River. The brine, with a salinity of 250,000 mg/L, will be piped to the deepest (4.9 km) disposal well in the world and injected mainly into the Mississippian Leadville Limestone. Geochemical modeling indicates, and water-rock experiments confirm, that a huge mass of anhydrite (~1.0 x 104 kg/d) likely will precipitate from the injected brine at downhole conditions of 120??C and 500 bars. Anhydrite precipitation could increase by up to 3 times if the injected brine is allowed to mix with the highly incompatible formation water of the Leadville Limestone and if the Mg in this brine dolomitizes the calcite of the aquifer. Laboratory experiments demonstrate that nanofiltration membranes, which are selective to divalent anions, provide a new technology that remediates the precipitation problem by removing ~98% of dissolved SO4 from the hypersaline brine. The fluid pressure used (50 bars) is much lower than would be required for traditional reverse osmosis membranes because nanofiltration membranes have a low rejection efficiency (5-10%) for monovalent anions. Our results indicate that the proportion of treatable brine increases from ~60% to >85% with the addition of trace concentrations of a precipitation inhibitor and by blending the raw brine with the effluent stream.

  1. Pachymetry-guided intrastromal air injection ("pachy-bubble") for deep anterior lamellar keratoplasty.

    PubMed

    Ghanem, Ramon C; Ghanem, Marcielle A

    2012-09-01

    To evaluate an innovative technique for intrastromal air injection to achieve deep anterior lamellar keratoplasty (DALK) with bare Descemet membrane (DM). Thirty-four eyes with anterior corneal pathology, including 27 with keratoconus, underwent DALK. After 400 μm trephination with a suction trephine, ultrasound pachymetry was performed 0.8 mm internally from the trephination groove in the 11 to 1 o'clock position. In this area, a 2-mm incision was created, parallel to the groove, with a micrometer diamond knife calibrated to 90% depth of the thinnest measurement. A cannula was inserted through the incision and 0.5 mL of air was injected to dissect the DM from the stroma. After peripheral paracentesis, anterior keratectomy was carried out to bare the DM. A 0.25-mm oversized graft was sutured in place. Overall, 94.1% of eyes achieved DALK. Bare DM was achieved in 30 eyes, and a pre-DM dissection was performed in 2 eyes. Air injection was successful in detaching the DM (achieving the big bubble) in 88.2% of the eyes. In keratoconus eyes, the rate was 88.9%. All cases but one required a single air injection to achieve DM detachment. Microperforations occurred in 5 cases: 3 during manual layer-by-layer dissection after air injection failed to detach the DM, 1 during removal of the residual stroma after big-bubble formation, and 1 during the diamond knife incision. Two cases (5.9%) were converted to penetrating keratoplasty because of macroperforations. The technique was reproducible, safe, and highly effective in promoting DALK with bare DM. PMID:22367050

  2. Effect of Moderate Air Flow on the Distribution of Fuel Sprays After Injection Cut-0ff

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1935-01-01

    High-speed motion pictures were taken of fuel sprays with the NACA spray-photographic apparatus to study the distribution of the liquid fuel from the instant of injection cut-off until about 0.05 second later. The fuel was injected into a glass-walled chamber in which the air density was varied from 1 to 13 times atmospheric air density (0.0765 to 0.99 pound per cubic foot) and in which the air was at room temperature. The air in the chamber was set in motion by means of a fan, and was directed counter to the spray at velocities up to 27 feet per second. The injection pressure was varied from 2,000 to 6,000 pounds per square inch. A 0.20-inch single-orifice nozzle, an 0.008-inch single-orifice nozzle, a multiorifice nozzle, and an impinging-jets nozzle were used. The best distribution was obtained by the use of air and a high-dispersion nozzle.

  3. Monitoring of binder removal from injection molded ceramics using air-coupled ultrasound at high temperature.

    PubMed

    Wright, W D; Hutchins, D A

    1999-01-01

    A pair of capacitance-type air-coupled ultrasonic transducers have been constructed that were capable of operating in air at temperatures of 500 to 600 degrees C. These devices were then used to monitor the pyrolytic removal of organic binder from injection molded silicon nitride ceramic components using air-coupled ultrasound inside a furnace at elevated temperatures. Through-thickness waveforms were obtained in the ceramic and compared with simultaneous measurements of the mass of the sample. Both the ultrasonic velocity and signal amplitudes could be used to monitor the change in mass of the injection molded ceramic, and other phenomena (such as softening and redistribution of the binder) were observed. PMID:18238465

  4. Interpretation of injection-withdrawal tracer experiments conducted between two wells in a large single fracture.

    PubMed

    Novakowski, K S; Bickerton, G; Lapcevic, P

    2004-09-01

    Tracer experiments conducted using a flow field established by injecting water into one borehole and withdrawing water from another are often used to establish connections and investigate dispersion in fractured rock. As a result of uncertainty in the uniqueness of existing models used for interpretation, this method has not been widely used to investigate more general transport processes including matrix diffusion or advective solute exchange between mobile and immobile zones of fluid. To explore the utility of the injection-withdrawal method as a general investigative tool and with the intent to resolve the transport processes in a discrete fracture, two tracer experiments were conducted using the injection-withdrawal configuration. The experiments were conducted in a fracture which has a large aperture (>500 microm) and horizontally pervades a dolostone formation. One experiment was conducted in the direction of the hydraulic gradient and the other in the direction opposite to the natural gradient. Two tracers having significantly different values of the free-water diffusion coefficient were used. To interpret the experiments, a hybrid numerical-analytical model was developed which accounts for the arcuate shape of the flow field, advection-dispersion in the fracture, diffusion into the matrix adjacent to the fracture, and the presence of natural flow in the fracture. The model was verified by comparison to a fully analytical solution and to a well-known finite-element model. Interpretation of the tracer experiments showed that when only one tracer, advection-dispersion, and matrix diffusion are considered, non-unique results were obtained. However, by using multiple tracers and by accounting for the presence of natural flow in the fracture, unique interpretations were obtained in which a single value of matrix porosity was estimated from the results of both experiments. The estimate of porosity agrees well with independent measurements of porosity obtained from

  5. [Steam and air co-injection in removing TCE in 2D-sand box].

    PubMed

    Wang, Ning; Peng, Sheng; Chen, Jia-Jun

    2014-07-01

    Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio. PMID:25244869

  6. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    NASA Astrophysics Data System (ADS)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  7. Biocatalyzed Chemical Gels for Permeability Modification in Injection and Production Wells

    SciTech Connect

    Scott A. Bailey

    2000-05-31

    Low oil production and excessive water production cause many domestic oil wells to reach their economic limit when they still contain one-half to two-thirds of the original oil. Gelled polymer systems traditionally used to treat these wells are highly toxic and technically difficult to use. Non-toxic gels are needed to treat these marginal wells so that domestic producers can economically recover additional oil. The research objective was to use biocatalysts to gel non-petroleum based chemical gelants. This eliminates toxic compounds from the gel systems and simplifies the gelation mechanism. The result is an environmentally friendly gel system that is applicable to more domestic oil wells. The gelant was formulated and the biocatalyst was optimized to drive the gelation reaction. Performance of the biocatalyzed gel for permeability modification was tested successfully in coreflood experiments. This technology can be used in waterfloods to improve injection profiles, increase sweep efficiency, and increase oil production from previously bypassed zones. It can be applied in production wells to decrease coning, shut off excess water production, and increase oil production.

  8. Electrical injection to contactless near-surface InGaN quantum well

    SciTech Connect

    Riuttanen, L. Svensk, O.; Suihkonen, S.; Kivisaari, P.; Oksanen, J.

    2015-08-03

    Charge injection to the prevailing and emerging light-emitting devices is almost exclusively based on the double heterojunction (DHJ) structures that have remained essentially unchanged for decades. In this letter, we report the excitation of a near surface indium gallium nitride (InGaN) quantum well (QW) by bipolar carrier diffusion from a nearby electrically excited pn-homojunction. The demonstrated near surface QW emitter is covered only by a 10 nm GaN capping leaving the light-emitting mesa perfectly free of metals, other contact, or current spreading structures. The presented proof-of-principle structure, operating approximately with a quantum efficiency of one fifth of a conventional single QW reference structure, provides conclusive evidence of the feasibility of using diffusion injection to excite near surface light-emitting structures needed, e.g., for developing light emitters or photo-voltaic devices based on nanoplasmonics or free-standing nanowires. In contrast to the existing DHJ solutions or optical pumping, our approach allows exciting nanostructures without the need of forming a DHJ, absorbing layers or even electrical contacts on the device surface.

  9. High-Pressure Air Injection on a Low-Head Francis Turbine

    NASA Astrophysics Data System (ADS)

    von Fellenberg, S.; Häussler, W.; Michler, W.

    2014-03-01

    Birecik is a Turkish hydroelectric power plant located at the Euphrat River in the southeast of Turkey. During commissioning of the units, a vibration phenomenon was discovered, restricted to a small power band. The cone which supports the thrust bearing and which is braced against the turbine head cover started to vibrate at its natural frequency. Investigations showed the vibrations to be innocuous to the lifetime of the machine. Exhaustive vibration measurements on site pointed to hydraulic source for the vibration. Detailed flow simulations by means of computational fluid dynamics (CFD) were carried out. They permitted the detailed analysis of a variety of transient flow phenomena happening inside the machine. They revealed the presence of interblade vortices in the power and head range where the vibrations occurred. As a consequence, it was suggested to inject air downstream of the wicket gates through the head cover. In 2012, one unit of the Birecik power plant was equipped with such an air injection system. As soon as the air injection was turned on, the machine operated calmly in the small power band where vibrations had been observed before. The necessary air volume was considerably smaller than expected to be necessary for a calm operation.

  10. Hydrologic monitoring of a deep-well waste-injection system near Pensacola, Florida, March 1970 - March 1977

    USGS Publications Warehouse

    Pascale, Charles A.; Martin, J.B.

    1978-01-01

    This report presents hydraulic and chemical data collected at a deep-well waste-injection system near Pensacola, Florida. Since injection began in July 1963, about 13.3 billion gallons of industrial acidic waste containing nitric acid, inorganic salts and numerous organic compounds have been injected into a saline-water-filled limestone aquifer. Wellhead pressure at two injection wells averaged 180 pounds per square inch in March 1977 and the hydraulic pressure gradient was 0.53 pound per square inch per foot of depth to the top of the injection zone. Increases in pressure since 1970 at two wells used to monitor the injection zone at sites located 1.9 miles north and 1.5 miles south of the injection site have been about 22 and 29 pounds per square inch. The pressure in a shallow monitor well, penetrating the first permeable zone above the 220-foot-thick confining bed, declined about 4 pounds per square inch. No changes were detected in the chemical character of water from the shallow monitor well and the north monitor well, but since late 1973, concentrations of bicarbonate and dissolved organic carbon in water from the south monitor well have increased. (Woodard-USGS)

  11. Atomization and Dispersion of a Liquid Jet Injected Into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Seay, J. E.; Samuelson, G. S.

    1996-01-01

    In recent years, environmental regulations have become more stringent, requiring lower emissions of mainly nitrogen oxides (NOx), as well as carbon monoxide (CO) and unburned hydrocarbons (UHC). These regulations have forced the gas turbine industry to examine non-conventional combustion strategies, such as the lean burn approach. The reasoning behind operating under lean conditions is to maintain the temperature of combustion near and below temperatures required for the formation of thermal nitric oxide (NO). To be successful, however, the lean processes require careful preparation of the fuel/air mixture to preclude formation of either locally rich reaction zones, which may give rise to NO formation, or locally lean reaction zones, which may give rise to inefficient fuel processing. As a result fuel preparation is crucial to the development and success of new aeroengine combustor technologies. A key element of the fuel preparation process is the fuel nozzle. As nozzle technologies have developed, airblast atomization has been adopted for both industrial and aircraft gas turbine applications. However, the majority of the work to date has focused on prefilming nozzles, which despite their complexity and high cost have become an industry standard for conventional combustion strategies. It is likely that the new strategies required to meet future emissions goals will utilize novel fuel injector approaches, such as radial injection. This thesis proposes and demonstrates an experiment to examine, on a mechanistic level (i.e., the physics of the action), the processes associated with the atomization, evaporation, and dispersion of a liquid jet introduced, from a radial, plain-jet airblast injector, into a crossflow of air. This understanding requires the knowledge not only of what factors influence atomization, but also the underlying mechanism associated with liquid breakup and dispersion. The experimental data acquired identify conditions and geometries for improved

  12. 40 CFR 147.1803 - Existing Class I and III wells authorized by rule-maximum injection pressure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Existing Class I and III wells authorized by rule-maximum injection pressure. 147.1803 Section 147.1803 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Ohio...

  13. 40 CFR 147.1803 - Existing Class I and III wells authorized by rule-maximum injection pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Existing Class I and III wells authorized by rule-maximum injection pressure. 147.1803 Section 147.1803 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Ohio...

  14. Effects of brine injection wells, dry holes, and plugged oil/gas wells on chloride, bromide, and barium concentrations in the Gulf Coast Aquifer, southeast Texas, USA.

    PubMed

    Hudak, P F; Wachal, D J

    2001-06-01

    Data from 1,122 brine injection wells, 24,515 dry holes, 20,877 plugged oil/gas wells, and 256 water wells were mapped with a geographic information system (GIS) and statistically analyzed. There were 9, 107, and 58 water wells within 750 m of a brine injection well, dry hole, or plugged oil/gas well, respectively. Computed median concentrations were 157 mg/l for chloride, 0.8 mg/l for bromide, and 169 microg/l for barium. The maximum chloride concentration was 2,384 mg/l, close to 10 times the secondary drinking water standard. Shallow water wells and water wells near plugged oil/gas wells had significantly higher chloride and bromide levels. PMID:11485217

  15. Method for cutting steam heat losses during cyclic steam injection of wells. Fourth quarterly report

    SciTech Connect

    1995-02-01

    Effective Gravel-packing of horizontal wells is difficult to achieve, using conventional pre-slotted liners, yet it is generally required in the soft Heavy Oil reservoir rocks of California, where cyclic steam injection has been proven to be the most cost-effective oil recovery method. The proposed method of gravel placement behind a non-perforated liner, which is later perforated {open_quotes}in situ{close_quotes} with a new tool operated by coiled-tubing, is expected to greatly reduce costs resulting from sand production in horizontal wells operated under cyclic steam injection. The detailed configuration of the prototype tool is described. It includes two pairs of cutting wheels at the ends of spring-loaded pivoting arms, which are periodically pressed through the liner wall and shortly thereafter retracted, while the coiled tubing is being pulled-out. For each operating cycle of the hydraulically-operated tool, this results in a set of four narrow slots parallel to the liner axis, in two perpendicular diametral planes. The shape of the edges of each slot facilitates bridging by the gravel particles, for a more effective and compacted gravel-packing. The tool includes a few easily-assembled parts machined from surface-hardened alloy steel presenting great toughness, selected from those used in die making. The operation of the system and potential future improvements are outlined. The method of fabrication, detailed drawings and specifications are given. They will serve as a basis for negotiating subcontracts with qualified machine shops.

  16. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  17. HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-12-10

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration will being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the U.S.

  18. Field test of single well DNAPL characterization using alcohol injection/extraction

    SciTech Connect

    Jerome, K.M.; Looney, B.B.; Rhoden, M.L.; Riha, B.; Burdick, S.

    1996-10-29

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at efficient characterization or removal of DNAPL are not currently proven. The authors performed injection/extraction characterization tests in six existing wells in A/M Area. Water concentrations for TCE and/or PCE in these wells ranged from 0% to 100% of solubility. For each test, small amounts of solubilizing solution were used to try to confirm or deny the presence or absence of DNAPL in the immediate vicinity of the well screen.

  19. Instability of an interface between air and a low conducting liquid subjected to charge injection

    NASA Astrophysics Data System (ADS)

    Chicón, Rafael; Pérez, Alberto T.

    2006-10-01

    We study the linear stability of an interface between air and a low conducting liquid in the presence of unipolar injection of charge. As a consequence of charge injection, a volume charge density builds up in the air gap and a surface charge density on the interface. Above a certain voltage threshold the electrical stresses may destabilize the interface, giving rise to a characteristic cell pattern known as rose-window instability. Contrary to what occurs in the classical volume electrohydrodynamic instability in insulating liquids, the typical cell size is several times larger than the liquid depth. We analyze the linear stability through the usual procedure of decomposing an arbitrary perturbation into normal modes. The resulting homogeneous linear system of ordinary differential equations is solved using a commercial software package. Finally, an analytical method is developed that provides a solution valid in the limit of small wavenumbers.

  20. Effect of double air injection on performance characteristics of centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Takano, Mizuki; Tsujita, Hoshio

    2015-02-01

    In the operation of a centrifugal compressor of turbocharger, instability phenomena such as rotating stall and surge are induced at a lower flow rate close to the maximum pressure ratio. In this study, for the suppression of surge phenomenon resulting in the extension of the stable operating range of centrifugal compressor to lower flow rate, the compressed air at the compressor exit was re-circulated and injected into the impeller inlet by using the double injection nozzle system. The experiments were performed to find out the optimum circumferential position of the second nozzle relative to the fixed first one and the optimum inner diameter of the injection nozzles, which are able to most effectively reduce the flow rate of surge inception. Moreover, in order to examine the universality of these optimum values, the experiments were carried out for two types of compressors.

  1. Blast vibration effects upon a deep injection well and the reduction of ground vibration over depth

    SciTech Connect

    Straw, J.A.; Shinko, J.P. Jr.

    1994-12-31

    Ground vibration produced by blasting operations within South Florida, due to saturated soil conditions, generates surface vibration waves that may be measurable over distances of 3--5 miles from the source, and perceptible at distances of up to 2 miles. City of Pembroke Pines Utility Department Deep Injection Wells No. 1 and No. 2 are used for disposal of highly nutrient rich water that has completed filtration of the sewage produced within the city. Upon entering the boulder zone, the steel casing of the well is discontinued, allowing the water to enter the salt water zone and eventually intersect with the Atlantic Ocean at a point estimated to be 40 miles from the nearest coastline. Considering the importance to the City and adjacent developments, potential damage to the 2--3 million dollar wells was of great importance. The concern with the effects upon the well, and the concrete seals of the various diameter casing, caused great care to be taken in developing the diagnostics to assess the threats. Subsurface measurements were taken and used in a comprehensive monitoring plan to alleviate concern of the project engineers. Velocity, acceleration, and displacement levels were recorded and evaluated at both surface and subsurface elevations with a number of instruments. The monitoring plan developed by GeoSonics, Inc.`s, Florida Office, evaluated the vibration levels produced within the surface area, and a 50 foot deep test well, drilled in order to evaluate the effects of vibration below the surface. Using multiple instruments during the project, the vibration levels at the surface and at the 50 foot depth, were compared. Vibration attenuation rates were evaluated and compared for surface and ground vibration levels.

  2. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas

    PubMed Central

    Frohlich, Cliff

    2012-01-01

    Between November 2009 and September 2011, temporary seismographs deployed under the EarthScope USArray program were situated on a 70-km grid covering the Barnett Shale in Texas, recording data that allowed sensing and locating regional earthquakes with magnitudes 1.5 and larger. I analyzed these data and located 67 earthquakes, more than eight times as many as reported by the National Earthquake Information Center. All 24 of the most reliably located epicenters occurred in eight groups within 3.2 km of one or more injection wells. These included wells near Dallas–Fort Worth and Cleburne, Texas, where earthquakes near injection wells were reported by the media in 2008 and 2009, as well as wells in six other locations, including several where no earthquakes have been reported previously. This suggests injection-triggered earthquakes are more common than is generally recognized. All the wells nearest to the earthquake groups reported maximum monthly injection rates exceeding 150,000 barrels of water per month (24,000 m3/mo) since October 2006. However, while 9 of 27 such wells in Johnson County were near earthquakes, elsewhere no earthquakes occurred near wells with similar injection rates. A plausible hypothesis to explain these observations is that injection only triggers earthquakes if injected fluids reach and relieve friction on a suitably oriented, nearby fault that is experiencing regional tectonic stress. Testing this hypothesis would require identifying geographic regions where there is interpreted subsurface structure information available to determine whether there are faults near seismically active and seismically quiescent injection wells. PMID:22869701

  3. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas.

    PubMed

    Frohlich, Cliff

    2012-08-28

    Between November 2009 and September 2011, temporary seismographs deployed under the EarthScope USArray program were situated on a 70-km grid covering the Barnett Shale in Texas, recording data that allowed sensing and locating regional earthquakes with magnitudes 1.5 and larger. I analyzed these data and located 67 earthquakes, more than eight times as many as reported by the National Earthquake Information Center. All 24 of the most reliably located epicenters occurred in eight groups within 3.2 km of one or more injection wells. These included wells near Dallas-Fort Worth and Cleburne, Texas, where earthquakes near injection wells were reported by the media in 2008 and 2009, as well as wells in six other locations, including several where no earthquakes have been reported previously. This suggests injection-triggered earthquakes are more common than is generally recognized. All the wells nearest to the earthquake groups reported maximum monthly injection rates exceeding 150,000 barrels of water per month (24,000 m(3)/mo) since October 2006. However, while 9 of 27 such wells in Johnson County were near earthquakes, elsewhere no earthquakes occurred near wells with similar injection rates. A plausible hypothesis to explain these observations is that injection only triggers earthquakes if injected fluids reach and relieve friction on a suitably oriented, nearby fault that is experiencing regional tectonic stress. Testing this hypothesis would require identifying geographic regions where there is interpreted subsurface structure information available to determine whether there are faults near seismically active and seismically quiescent injection wells. PMID:22869701

  4. Bacteria in the injection water differently impacts the bacterial communities of production wells in high-temperature petroleum reservoirs

    PubMed Central

    Ren, Hongyan; Xiong, Shunzi; Gao, Guangjun; Song, Yongting; Cao, Gongze; Zhao, Liping; Zhang, Xiaojun

    2015-01-01

    Water flooding is widely used for oil recovery. However, how the introduction of bacteria via water flooding affects the subsurface ecosystem remains unknown. In the present study, the distinct bacterial communities of an injection well and six adjacent production wells were revealed using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. All sequences of the variable region 3 of the 16S rRNA gene retrieved from pyrosequencing were divided into 543 operational taxonomic units (OTUs) based on 97% similarity. Approximately 13.5% of the total sequences could not be assigned to any recognized phylum. The Unifrac distance analysis showed significant differences in the bacterial community structures between the production well and injection water samples. However, highly similar bacterial structures were shown for samples obtained from the same oil-bearing strata. More than 69% of the OTUs detected in the injection water sample were absent or detected in low abundance in the production wells. However, the abundance of two OTUs reached as high as 17.5 and 26.9% in two samples of production water, although the OTUs greatly varied among all samples. Combined with the differentiated water flow rate measured through ion tracing, we speculated that the transportation of injected bacteria was impacted through the varied permeability from the injection well to each of the production wells. Whether the injected bacteria predominate the production well bacterial community might depend both on the permeability of the strata and the reservoir conditions. PMID:26052321

  5. Bacteria in the injection water differently impacts the bacterial communities of production wells in high-temperature petroleum reservoirs.

    PubMed

    Ren, Hongyan; Xiong, Shunzi; Gao, Guangjun; Song, Yongting; Cao, Gongze; Zhao, Liping; Zhang, Xiaojun

    2015-01-01

    Water flooding is widely used for oil recovery. However, how the introduction of bacteria via water flooding affects the subsurface ecosystem remains unknown. In the present study, the distinct bacterial communities of an injection well and six adjacent production wells were revealed using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. All sequences of the variable region 3 of the 16S rRNA gene retrieved from pyrosequencing were divided into 543 operational taxonomic units (OTUs) based on 97% similarity. Approximately 13.5% of the total sequences could not be assigned to any recognized phylum. The Unifrac distance analysis showed significant differences in the bacterial community structures between the production well and injection water samples. However, highly similar bacterial structures were shown for samples obtained from the same oil-bearing strata. More than 69% of the OTUs detected in the injection water sample were absent or detected in low abundance in the production wells. However, the abundance of two OTUs reached as high as 17.5 and 26.9% in two samples of production water, although the OTUs greatly varied among all samples. Combined with the differentiated water flow rate measured through ion tracing, we speculated that the transportation of injected bacteria was impacted through the varied permeability from the injection well to each of the production wells. Whether the injected bacteria predominate the production well bacterial community might depend both on the permeability of the strata and the reservoir conditions. PMID:26052321

  6. Resource Conservation and Recovery Act closure report: Area 2 Bitcutter and Postshot Containment Shops Injection Wells, Correction Action Unit 90

    SciTech Connect

    1996-12-01

    This Closure Report provides documentation of the activities conducted during the Resource Conservation and Recovery Act (RCRA) closure of the Bitcutter and Postshot Containment Shops Injection Wells located in Area 2 of the Nevada Test Site (NTS), Oak Spring Quadrangle (USGS, 1986), Township 10 South, Range 53 East, Nye County, Nevada. This report discusses the Bitcutter Shop Inside Injection Well (CAU 90-A) closure-in-place and the Bitcutter Shop Outside Injection Well (CAU 90-B) and Postshot Containment Shop Injection Well (CAU 90-C) clean closures. This Closure Report provides background information about the unit, the results of the characterization activities and actions conducted to determine the closure design. It also provides a discussion of the drainage analysis, preliminary closure activities, final closure activities, waste management activities, and the Post-Closure Care requirements.

  7. Method for cutting steam heat losses during cyclic steam injection of wells. Second quarterly report

    SciTech Connect

    Not Available

    1994-08-01

    The Midway-Sunset Field (CA) is the largest Heavy Oil field in California and steam injection methods have been successfully used for more than 30 years to produce the Heavy Oil from many of its unconsolidated sand reservoirs. In partnership with another DOE/ERIP grantee, our Company has acquired an 80 ac. lease in the SE part of this field, in order to demonstrate our respective technologies in the Monarch sand, of Miocene Age, which is one of the reservoirs targeted by the DOE Class 3 Oil Program. This reservoir contains a 13 API oil, which has a much higher market value, as a Refinery Feedstock, than the 5 to 8 API Vaca Tar, used only as road paving material. This makes it easier to justify the required investment in a vertical well equipped with two horizontal drainholes. The economic viability of such a project is likely to be enhanced if Congress approves the export to Japan of a portion of the 27 API (1% Sulfur) AK North Slope oil, which currently is landed in California in preference to lighter and sweeter Far East imported crudes. This is a major cause of the depressed prices for California Heavy Oil in local refineries, which have reduced the economic viability of all EOR methods, including steam injection, in California. Two proposals, for a Near-Term (3 y.) and for a Mid-Term (6 y.) project respectively, were jointly submitted to the DOE for Field Demonstration of the Partners` new technologies under the DOE Class 3 Oil Program. The previous design of a special casing joint for the Oxnard field well was reviewed and adapted to the use of existing Downhole Hardware components from three suppliers, instead of one. The cost of drilling and completion of a well equipped with two horizontal drainholes was re-evaluated for the conditions prevailing in the Midway Sunset field, which are more favorable than in the Oxnard field, leading to considerable reductions in drilling rig time and cost.

  8. Experimental Investigations into CO2 Interactions with Injection Well Infrastructure for CO2 Storage

    NASA Astrophysics Data System (ADS)

    Syed, Amer; Shi, Ji-Quan; Durucan, Sevket; Nash, Graham; Korre, Anna

    2013-04-01

    Wellbore integrity is an essential requirement to ensure the success of a CO2 Storage project as leakage of CO2 from the injection or any other abandoned well in the storage complex, could not only severely impede the efficiency of CO2 injection and storage but also may result in potential adverse impact on the surrounding environment. Early research has revealed that in case of improper well completions and/or significant changes in operating bottomhole pressure and temperature could lead to the creation of microannulus at cement-casing interface which may constitute a preferential pathway for potential CO2 leakage during and post injection period. As a part of a European Commission funded CO2CARE project, the current research investigates the sealing behaviour of such microannulus at the cement-casing interface under simulated subsurface reservoir pressure and temperature conditions and uses the findings to develop a methodology to assess the overall integrity of CO2 storage. A full scale wellbore experimental test set up was constructed for use under elevated pressure and temperature conditions as encountered in typical CO2 storage sites. The wellbore cell consists of an assembly of concentric elements of full scale casing (Diameter= 0.1524m), cement sheath and an outer casing. The stainless steel outer ring is intended to simulate the stiffness offered by the reservoir rock to the displacement applied at the wellbore. The Central Loading Mechanism (CLM) consists of four case hardened shoes that can impart radial load onto the well casing. The radial movement of the shoes is powered through the synchronised movement of four precision jacks controlled hydraulically which could impart radial pressures up to 15 MPa. The cell body is a gas tight enclosure that houses the wellbore and the central loading mechanism. The setup is enclosed in a laboratory oven which acts both as temperature and safety enclosure. Prior to a test, cement mix is set between the casing and

  9. Measuring Changes in Fracture Aperture During Injection to Estimate Characteristics of Fractured Rock Near a Well

    NASA Astrophysics Data System (ADS)

    Schweisinger, T.; Murdoch, L.

    2002-12-01

    Fracture networks are critical to ground water flow, but details of the geometry of networks in the subsurface can be difficult to determine with currently available technology. Sheet fractures, or other flat-lying fractures, are an important component of fracture networks in crystalline rock. Using a televiewer, or other borehole geophysical technique, it is possible to determine the depth a sheet fracture intersects a borehole, but it is more difficult to determine the size of the fracture and its connectivity to other fractures in the network. The aperture of a sheet fracture will change in response to pressure changes during a hydraulic well test, and the amount that the aperture changes will depend on both the size of the crack and how it is connected to the network. We are developing a field test that measures changes in aperture during a well test to estimate fracture geometry. The test uses a borehole extensometer between straddle packers to measure changes in aperture, and transducers to measure pressure during and after a hydraulic well test conducted by injecting at a constant flow rate. In general, the fracture opens as pressure increases during injection, and closes as pressure decreases during recovery. A coupled model of deformation and fluid flow is inverted to estimate fracture parameters that best predict the records of aperture and pressure. Efforts toward developing this test have focused on designing and fabricating instrumentation for acquiring the field measurements, and deriving theoretical analyses for interpreting the results. The borehole extensometer consists of two retractable anchors separated by connecting rods attached to a submersible LVDT. The anchors are designed to lock themselves in place once actuated, thus minimizing creep over time. Another application for this device is to measure long-term changes in fracture aperture due to Earth tide or other effects, so it is important to reduce creep effects. The anchors are deployed on

  10. Groundwater thermal-effective injection systems in shallow aquifers: possible alternatives to vertical water wells

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2014-05-01

    areal extent of the thermal plume that develops around the area of injection minimizing the time and the space needed for the disappearance of the thermal plume and the restoration of undisturbed temperature conditions. The reduction in plan and temporal extension of the thermal plume would have several benefits, minimizing the use of large areas around the buildings involved by the thermal perturbation, with direct implementation benefits. In order to investigate alternatives to traditional drilled water well for the re-injection and dispersion of water in aquifer downstream of the heat pump, we modeled with FEFLOW the possible reverse use of commercial draining gabions in various types of ground configuration, geometry and interconnection with systems of pre-fabricated vertical drains on a possible reliable test-site. The results highlighted that they can represent a good and efficient alternative for the groundwater dispersion in the aquifers.

  11. A study on chemical interactions between waste fluid, formation water, and host rock during deep well injection

    SciTech Connect

    Spycher, Nicolas; Larkin, Randy

    2004-05-14

    A new disposal well was drilled in the vicinity of an injection well that had been in operation for 12 years. The drilling activities provided an opportunity to assess the fate and transport of waste products injected in the nearby well, and the impact, if any, on the host geologic formation. The origin of the fluid collected while drilling the new well and the interaction between injected waste and the formation were investigated using analyses of formation waters, waste, and formation minerals, by applying traditional graphical methods and sophisticated numerical models. This approach can be used to solve a wide range of geochemical problems related to deep well injection of waste. Trilinear Piper diagrams, Stiff diagrams, and correlation plots show that the chemical characteristics of recovered fluid at the new well are similar to those of formation water. The concentrations of most major constituents in the fluid appear diluted when compared to formation water sampled at other locations. This could be explained by mixing with waste, which is less saline than formation water. However, the waste injected near the new well consists primarily of ammonia and sulfate, and these waste constituents are not found at concentrations elevated enough to suggest that significant mixing of formation water with waste has occurred. To determine whether chemical interactions between injected waste and formation could explain the chemistry of fluid recovered from the new well, we simulated the chemical reaction between waste, formation water, and the formation rock by numerical modeling. Initial modeling calculations were done using a multicomponent geochemical reaction-path model to simulate fresh waste reacting with the formation. A more complex simulation coupling flow, transport, and reaction was then run using a multicomponent geochemical reactive transport model. These numerical simulations were carried out to calculate porosity changes and evaluate chemical processes

  12. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect

    Riuttanen, L. Nykänen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M.; Kivisaari, P.; Oksanen, J.; Tulkki, J.

    2014-02-24

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  13. Nitride based quantum well light-emitting devices having improved current injection efficiency

    SciTech Connect

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  14. Characterization of Solids Collected from H-Area Injection Wells and Injection Tank Chemistry from both F- and H-Area Water Treatment Units (WTUs)

    SciTech Connect

    Serkiz, S.M.

    1999-04-15

    This study suggests that a strong poitential exists for both chemical and biological fouling of the injection wells at the F- and H Area remediation systems. To further the potential, an evaluation of WTU process chemistry, characterization of the natural groundwater geochemistry, and analysis of microbiological activity should be performed. This report summarizes the results.

  15. Estimation of the heterogeneity of fracture permeability by simultaneous modeling of multiple air-injection tests in partially saturated fractured tuff

    NASA Astrophysics Data System (ADS)

    Tsang, Y. W.; Huang, K.; Bodvarsson, G. S.

    Air-injection tests were used to investigate the flow characteristics of the fractured volcanic tuffs at Yucca Mountain, Nevada, the potential site for a high-level nuclear waste repository. Because the tuff matrix pores are saturated over 90% with water and the matrix permeability is on the order of microdarcies, the air component of flow is mainly in the fractures. Air-injection tests can therefore help to determine the flow characteristics and heterogeneity structure of the densely fractured welded tuff. The tests were carried out in the Exploratory Studies Facility, an 8 km long underground tunnel at the Yucca Mountain site, in twelve 40 m long boreholes, forming three clusters within a cubic rock volume of approximately 40 meters on each edge. Each borehole in the test block was packed off (or isolated) into four sections (or zones) by inflatable packers. The in situ field tests consisted of constant-rate air injection into one of the isolated borehole zones while the pressure response was monitored in all the isolated zones. The pressure data showed an almost universal response in all monitored zones to injection into any borehole-zone, indicating that the fractures are well connected for airflow. Air-injection tests were performed in succession for all isolated zones. A simultaneous inversion was performed for the pressure response of all the monitoring zones for all the injection tests in the test block. TOUGH2, a 3D numerical code for multiphase, multicomponent transport, was used for this purpose. Spatially variable fracture permeability was used as an adjustable parameter to fit the simulated pressure responses to those measured, assuming fixed fracture porosity. For most of the pneumatic experiments, the calculated pressure changes matched the data well, and the estimated permeability ranged over four orders of magnitude, from 10-15 m2 to 10-11 m2.

  16. Artificial recharge of ground water by well injection for storage and recovery, Cape May County, New Jersey, 1958-92

    USGS Publications Warehouse

    Lacombe, P.J.

    1996-01-01

    Artificial recharge is used for storage and recovery of ground water in the estuarine sand and Cohansey aquifers in southern Cape May County and in the Kirkwood-Cohansey aquifer system in northern Cape May County, New Jersey. Wildwood Water Utility has injected ground water for public-supply storage since 1967 and in 1992 had four injection wells. The storage and recovery program began as a way to ensure an adequate supply of water for the summer tourist season. From 1967 through 1992 about 3.8 billion gallons was injected and about 3.3 billion gallons (about 85 percent of the injected water) was recovered. An electric company in Cape May County has used ground water for industrial-supply storage since 1965 and in 1992 had one injection well. The purpose of the storage and recovery program is to prevent saltwater encroachment and to ensure sufficient supply during times of peak demand. From 1967 through 1988 the company injected 100.0 million gallons and withdrew 60.6 million gallons, or about 61 percent of the injected water.

  17. Production/injection characteristics of slim hole and large-diameter wells at the Sumikawa Geothermal Field, JP

    SciTech Connect

    Garg, Sabody K.; Combs, Jim

    1995-01-26

    Production and injection data from slim holes and large-diameter wells at the Sumikawa Geothermal Field, Japan, were analyzed to determine the effect of wellbore diameter on (1) the productivity/injectivity indices, and (2) on the discharge rate. The injectivity indices for Sumikawa boreholes do not depend on borehole diameter in any systematic manner; furthermore, the productivity indices (for boreholes with liquid feeds) are more or less equal to the injectivity indices. For boreholes with liquid feed zones, discharge rates scale with diameter according to a relationship previously presented by Pritchett. Pritchett's scaling rule does not appear to apply to discharge data from boreholes with two-phase feed zones; however, discharge characteristics of slim holes with two-phase feed zones can be used to infer production rates from large-diameter two-phase geothermal wells.

  18. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    SciTech Connect

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability can be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.

  19. Novel use of epidural catheter: Air injection for neuroprotection during radiofrequency ablation of spinal osteoid osteoma.

    PubMed

    Doctor, J R; Solanki, S L; Patil, V P; Divatia, J V

    2016-01-01

    Osteoid osteoma (OO) is a benign bone tumor, with a male-female ratio of approximately 2:1 and mainly affecting long bones. Ten percent of the lesions occur in the spine, mostly within the posterior elements. Treatment options for OO include surgical excision and percutaneous imaging-guided radiofrequency ablation (RFA). Lesions within the spine have an inherent risk of thermal damage to the vital structure because of proximity to the neural elements. We report a novel use of the epidural catheter for air injection for the neuroprotection of nerves close to the OO of the spine. A 12-year-old and 30 kg male child with an OO of the L3 vertebra was taken up for RFA. His preoperative examinations were within normal limits. The OO was very close to the L3 nerve root. Under general anesthesia, lumbar epidural catheter was placed in the L3-L4 space under imaging guidance. Ten ml of aliquots of air was injected under imaging guidance to avoid injury to the neural structures due to RFA. The air created a gap between neural elements and the tumor and served as an insulating material thereby protecting the neural elements from damage due to the RFA. Postoperatively, the patient did not develop any neurological deficit. PMID:27375396

  20. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media

    NASA Astrophysics Data System (ADS)

    Peng, Sheng; Wang, Ning; Chen, Jiajun

    2013-10-01

    Steam and air co-injection is a promising technique for volatile and semi-volatile organic contaminant remediation in heterogeneous porous media. In this study, removal of trichloroethene (TCE) with steam-air co-injection was investigated through a series of 2D sandbox experiments with different layered sand structures, and through numerical simulations. The results show that a layered structure with coarse sand, in which steam and air convection are relatively rapid, resulted in a higher removal rate and a larger removal ratio than those observed in an experiment using finer sand; however, the difference was not significant, and the removal ratios from three experiments ranged from 85% to 94%. Slight downward movement of TCE was observed for Experiment 1 (TCE initially in a fine sand zone encased in a coarse sand), while no such movement was observed for Experiment 2 (TCE initially in two fine sand layers encased in a coarse sand) or 3 (TCE initially in a silty sand zone encased in a coarse sand). Simulations show accumulation of TCE at the interface of the layered sands, which indicates a capillary barrier effect in restraining the downward movement of TCE. This effect is illustrated further by a numerical experiment with homogeneous coarse sand, in which continuous downward TCE movement to the bottom of the sandbox was simulated. Another numerical experiment with higher water saturation was also conducted. The results illustrate a complicated influence of water saturation on TCE removal in a layered sand structure.

  1. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media.

    PubMed

    Peng, Sheng; Wang, Ning; Chen, Jiajun

    2013-10-01

    Steam and air co-injection is a promising technique for volatile and semi-volatile organic contaminant remediation in heterogeneous porous media. In this study, removal of trichloroethene (TCE) with steam-air co-injection was investigated through a series of 2D sandbox experiments with different layered sand structures, and through numerical simulations. The results show that a layered structure with coarse sand, in which steam and air convection are relatively rapid, resulted in a higher removal rate and a larger removal ratio than those observed in an experiment using finer sand; however, the difference was not significant, and the removal ratios from three experiments ranged from 85% to 94%. Slight downward movement of TCE was observed for Experiment 1 (TCE initially in a fine sand zone encased in a coarse sand), while no such movement was observed for Experiment 2 (TCE initially in two fine sand layers encased in a coarse sand) or 3 (TCE initially in a silty sand zone encased in a coarse sand). Simulations show accumulation of TCE at the interface of the layered sands, which indicates a capillary barrier effect in restraining the downward movement of TCE. This effect is illustrated further by a numerical experiment with homogeneous coarse sand, in which continuous downward TCE movement to the bottom of the sandbox was simulated. Another numerical experiment with higher water saturation was also conducted. The results illustrate a complicated influence of water saturation on TCE removal in a layered sand structure. PMID:23962760

  2. Novel use of epidural catheter: Air injection for neuroprotection during radiofrequency ablation of spinal osteoid osteoma

    PubMed Central

    Doctor, JR; Solanki, SL; Patil, VP; Divatia, JV

    2016-01-01

    Osteoid osteoma (OO) is a benign bone tumor, with a male-female ratio of approximately 2:1 and mainly affecting long bones. Ten percent of the lesions occur in the spine, mostly within the posterior elements. Treatment options for OO include surgical excision and percutaneous imaging-guided radiofrequency ablation (RFA). Lesions within the spine have an inherent risk of thermal damage to the vital structure because of proximity to the neural elements. We report a novel use of the epidural catheter for air injection for the neuroprotection of nerves close to the OO of the spine. A 12-year-old and 30 kg male child with an OO of the L3 vertebra was taken up for RFA. His preoperative examinations were within normal limits. The OO was very close to the L3 nerve root. Under general anesthesia, lumbar epidural catheter was placed in the L3-L4 space under imaging guidance. Ten ml of aliquots of air was injected under imaging guidance to avoid injury to the neural structures due to RFA. The air created a gap between neural elements and the tumor and served as an insulating material thereby protecting the neural elements from damage due to the RFA. Postoperatively, the patient did not develop any neurological deficit. PMID:27375396

  3. A novel current injected strained quantum well laser grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Tothill, J. N.; Wilkie, J. H.; Westbrook, L.; Hatch, C. B.; Halliwell, M. A. G.; Lyons, M. H.

    1990-06-01

    Conventional long wavelength (1.3 and 1.55 μm emitting) GalnAsP alloy lasers suffer from two disadvantages. Firstly, carriers in the highest lying valence band have a heavy effective mass relative to carriers in the conduction band. This asymmetry leads to an increase in the carrier density required for lasing action to occur. Secondly, non-radia-tive recombination processes, such as Auger Recombination (AR) and Inter Valence Band Absorption (IVBA), which involve occupancy of the heavy-hole (HH) states, are thought to be significant in these materials. These again lead to higher thresholds and lower values of T 0than might otherwise be the case. Recently, there has been considerable interest in the prospect of “engineering” the band structure of a 1.5 μm emitting device so as to overcome these problems. It has been reported that for a quantum well under biaxial compression, the light-hole/heavy-hole (LH/HH) degeneracy at the gamma point will be lifted such that the highest lying valence band will be LH-like in the in-plane direction. This should reduce both the effective mass asymmetry and the thermal occupancy of the HH states, lowering the threshold carrier density and reducing the AR and IVBA rates. This paper describes MOVPE growth and characterisation of the first 1.55 μm emitting current injected strained layer laser structure. The active region contains 3.5 nm thick strained quantum wells of Gao.3Ino.7As situated in the central region of a quaternary waveguide and grown on InP. TEM micrographs and x-ray data demonstrate that the lattice mismatch (approximately 1%) has been accommodated elastically, without the formation of misfit dislocations. Broad area lasers have been fabricated with lengths of 200 1200 μm and threshold current densities as low as 930 Acm-2 have been measured from the longer devices. Similar 1.55 μm emitting structures containing unstrained 7.5 nm thick Gao.47Ino.53As wells have also been grown and characterised for comparison

  4. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    SciTech Connect

    Cotte, F.P.; Doughty, C.; Birkholzer, J.

    2010-11-01

    The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computation of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation

  5. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    NASA Astrophysics Data System (ADS)

    Cotte, F.; Doughty, C.; Birkholzer, J. T.

    2010-12-01

    An essential condition for performance evaluation of enhanced geothermal systems (EGS) resides in the ability to reliably predict fluid flow and heat transport in fractured porous rocks, where fast convection-dispersive transport through the fracture network can be strongly affected by heat conduction into the adjacent rock matrix. SWIW tests are single-well tracer tests that involve an initial period of fluid and tracer injection followed by a period of fluid withdrawal. As a result of the flow field reversal, the measured breakthrough curves tend to be less sensitive to advective heterogeneities and more sensitive to matrix diffusion and sorption, making this method very valuable in characterizing fracture-matrix interaction and evaluating matrix properties. In particular, we propose using SWIW tests before and after hydrofracking operations, to help assess the means by which hydrofracking increases permeability and enhances fracture-matrix interaction. In the present study, we have modeled single-well injection-withdrawal (SWIW) tests for non-sorbing and sorbing tracers, using the mixed Eulerian-Lagrangian transport simulator TRIPOLY, which solves tracer advection and dispersion in fracture networks together with solute exchange processes between the fractures and the porous matrix. Our simulations were conducted for hypothetical but workable SWIW test designs considering a variety of statistically generated 2D fracture-matrix systems. Parameter sensitivity studies were completed on three physical parameters of the rock matrix, namely porosity, diffusion coefficient and retardation coefficient, in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, was modeled in two different ways, one by increasing the fracture aperture for flow and the other one by adding a new set of fractures to the fracture network. The results of all these different tests were analyzed by studying the population of

  6. Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.

    NASA Astrophysics Data System (ADS)

    Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias

    2015-11-01

    Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.

  7. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  8. Contingency power for small turboshaft engines using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  9. Air-stepping in neonatal rats: A comparison of L-dopa injection and olfactory stimulation.

    PubMed

    Jamon, M; Maloum, I; Riviere, G; Bruguerolle, B

    2002-12-01

    The kinematic parameters of air-stepping induced by 2 methods known to elicit locomotion (olfactory stimulation vs. L-dopa injection) were compared in 3-day-old rats. In the 1st stage, suspended pups were induced to step with an olfactory stimulus of soiled shavings from the nest. In the 2nd stage, they received a subcutaneous injection of L-dopa. Their movements were faster, with a larger amplitude and a phase delay in ipsilateral coupling. Third, the olfactory stimulus was presented in conjunction with L-dopa. The characteristics of locomotion returned to the same level as with the olfactory stimulus alone. These results suggest that olfactory stimulation involves higher nerve centers able to modulate the dopaminergic pathways. They are discussed in relation to the neural structure involved in locomotion. PMID:12492300

  10. Quality of water recovered from a municipal effluent injection well in the Floridan aquifer system, Pompano Beach, Florida

    USGS Publications Warehouse

    McKenzie, D.J.; Irwin, G.A.

    1984-01-01

    Approximately 69 million gallons of backflow from an injection well used for the disposal of secondary treated municipal effluent in the Floridan aquifer system near Pompano Beach, Florida, was periodically sampled for inorganic quality from March 1975 through March 1977. Analyses of the backflow effluent showed a concomitant increase in dissolved solids and a change in ionic composition as a function of cumulative volume of backflow. Both the increase in dissolved solids and the change in major ionic composition were directly related to an estimated 6 to 7 percent mixing of the moderately saline water in the Florida aquifer system with the injected system with the injected effluent. Although an estimated 3.5 billion gallons of effluent was injected into the aquifer system during the 16-year operation of the Collier Manor treatment plant, only 65 to 70 million gallons was backflowed before the chloride concentration approached 250 milligrams per liter. (USGS)

  11. Functional analysis of embolism induced by air injection in Acer rubrum and Salix nigra

    PubMed Central

    Melcher, Peter J.; Zwieniecki, Maciej A.

    2013-01-01

    The goal of this study was to assess the effect of induced embolism with air injection treatments on the function of xylem in Acer rubrum L. and Salix nigra Marsh. Measurements made on mature trees of A. rubrum showed that pneumatic pressurization treatments that created a pressure gradient of 5.5 MPa across pit membranes (ΔPpit) had no effect on stomatal conductance or on branch-level sap flow. The same air injection treatments made on 3-year-old potted A. rubrum plants also had no effect on whole plant transpiration. A separate study made on mature A. rubrum trees showed that 3.0 and 5.5 MPa of ΔPpit values resulted in an immediate 100% loss in hydraulic conductance (PLC) in petioles. However, the observed change in PLC was short lived, and significant hydraulic recovery occurred within 5–10 min post air-pressurization treatments. Similar experiments conducted on S. nigra plants exposed to ΔPpit of 3 MPa resulted in a rapid decline in whole plant transpiration followed by leaf wilting and eventual plant death, showing that this species lacks the ability to recover from induced embolism. A survey that measured the effect of air-pressurization treatments on seven other species showed that some species are very sensitive to induction of embolism resulting in leaf wilting and branch death while others show minimal to no effect despite that in each case, the applied ΔPpit of 5.5 MPa significantly exceeded any native stress that these plants would experience naturally. PMID:24069025

  12. An empirical model to predict the distribution of iron micro-particles around an injection well in a sandy aquifer.

    PubMed

    Comba, Silvia; Braun, Jürgen

    2012-05-01

    The distribution of micro Fe particles injected into a porous medium via a well highly depends on flow velocity and slurry properties. Column experiments were conducted to predict the filtration behavior and, hence, the micro-iron distribution around a well. Packed-bed column experiments were conducted in different experimental conditions: seepage velocity, volume of injected suspension, iron particle and guar gum concentration (viscosity) were varied. Results are used to calculate a parameter "space removal efficiency" (η(space)). Space removal efficiency is defined as the fraction of particle concentration lost by the slurry (and retained by the porous medium) while it crosses a unit length of the porous medium. η(space) was found to be inversely proportional to seepage velocity and viscosity, while it is independent of the volume of injected slurry (or injection time) and particle concentration. The obtained relationships for η(space) are used in an empirical numerical model to predict the distribution of iron particles around an injection well at a realistic field injection. To this purpose, the flow domain is discretized in shells, each characterized by a value of seepage velocity and by a distinct volume of slurry that flows through a unit of its surface. The resulting model, which is based on a large number of experimental observations (about 50 packed-bed column tests), overcomes the limit of current approaches for predicting iron particle transport, as they consider mono-dimensional flow conditions, while during injection the flow field is radial. The proposed approach ought to help bridging the gap between laboratory scale research and the field scale application of micro-iron particle technology. PMID:22406759

  13. Microbial Stimulation and Succession following a Test Well Injection Simulating CO₂ Leakage into a Shallow Newark Basin Aquifer

    PubMed Central

    O’Mullan, Gregory; Dueker, M. Elias; Clauson, Kale; Yang, Qiang; Umemoto, Kelsey; Zakharova, Natalia; Matter, Juerg; Stute, Martin; Takahashi, Taro; Goldberg, David

    2015-01-01

    In addition to efforts aimed at reducing anthropogenic production of greenhouse gases, geological storage of CO2 is being explored as a strategy to reduce atmospheric greenhouse gas emission and mitigate climate change. Previous studies of the deep subsurface in North America have not fully considered the potential negative effects of CO2 leakage into shallow drinking water aquifers, especially from a microbiological perspective. A test well in the Newark Rift Basin was utilized in two field experiments to investigate patterns of microbial succession following injection of CO2-saturated water into an isolated aquifer interval, simulating a CO2 leakage scenario. A decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), and increased bacterial cell concentrations in the recovered water. 16S ribosomal RNA gene sequence libraries from samples collected before and after the test well injection were compared to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injections, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia and microbial taxa often noted to be associated with iron and sulfate reduction. The concurrence of increased microbial cell concentrations and rapid microbial community succession indicate significant changes in aquifer microbial communities immediately following the experimental CO2 leakage event. Samples collected one year post-injection were similar in cell number to the original background condition and community composition, although not identical, began to revert toward the pre-injection condition, indicating microbial resilience following a leakage disturbance. This study provides a first glimpse into the in situ successional response of microbial communities to CO2 leakage after subsurface

  14. Microbial stimulation and succession following a test well injection simulating CO2 leakage into a shallow Newark basin aquifer.

    PubMed

    O'Mullan, Gregory; Dueker, M Elias; Clauson, Kale; Yang, Qiang; Umemoto, Kelsey; Zakharova, Natalia; Matter, Juerg; Stute, Martin; Takahashi, Taro; Goldberg, David

    2015-01-01

    In addition to efforts aimed at reducing anthropogenic production of greenhouse gases, geological storage of CO2 is being explored as a strategy to reduce atmospheric greenhouse gas emission and mitigate climate change. Previous studies of the deep subsurface in North America have not fully considered the potential negative effects of CO2 leakage into shallow drinking water aquifers, especially from a microbiological perspective. A test well in the Newark Rift Basin was utilized in two field experiments to investigate patterns of microbial succession following injection of CO2-saturated water into an isolated aquifer interval, simulating a CO2 leakage scenario. A decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), and increased bacterial cell concentrations in the recovered water. 16S ribosomal RNA gene sequence libraries from samples collected before and after the test well injection were compared to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injections, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia and microbial taxa often noted to be associated with iron and sulfate reduction. The concurrence of increased microbial cell concentrations and rapid microbial community succession indicate significant changes in aquifer microbial communities immediately following the experimental CO2 leakage event. Samples collected one year post-injection were similar in cell number to the original background condition and community composition, although not identical, began to revert toward the pre-injection condition, indicating microbial resilience following a leakage disturbance. This study provides a first glimpse into the in situ successional response of microbial communities to CO2 leakage after subsurface

  15. A Well-Controlled Nucleus Pulposus Tissue Culture System with Injection Port for Evaluating Regenerative Therapies.

    PubMed

    Arkesteijn, Irene T M; Mouser, Vivian H M; Mwale, Fackson; van Dijk, Bart G M; Ito, Keita

    2016-05-01

    In vitro evaluation of nucleus pulposus (NP) tissue regeneration would be useful, but current systems for NP culture are not ideal for injections. The aim of this study was to develop a long-term culture system for NP tissue that allows injections of regenerative agents. Bovine caudal NPs were harvested and placed in the newly designed culture system. After equilibration of the tissue to 0.3 MPa the volume was fixed and the tissue was cultured for 28 days. The cell viability and extracellular matrix composition remained unchanged during the culture period and gene expression profiles were similar to those obtained in earlier studies. Furthermore, to test the responsiveness of bovine caudal NPs in the system, samples were cultured for 4 days and injected twice (day 1 and 3) with (1) PBS, (2) Link-N, for regeneration, and (3) TNF-α, for degeneration. It was shown that TNF-α increased COX2 gene expression, whereas no effect of Link-N was detected. In conclusion, the newly designed system allows long-term culture of NP tissue, wherein tissue reactions to injected stimulants can be observed. PMID:26294008

  16. 40 CFR 147.3006 - Injection pressure for existing Class II wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND... injection pressure no greater than the pressure established by the Director for the field or formation in... pressure greater than that specified in paragraph (b)(1) of this section for the field or formation...

  17. 40 CFR 144.14 - Requirements for wells injecting hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... owner or operator shall comply with 40 CFR 264.73(a), (b)(1), and (b)(2). (6) Annual report. The owner...) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM General Program Requirements § 144.14...) Requirements. In addition to complying with the applicable requirements of this part and 40 CFR part 146,...

  18. A study on supersonic mixing by circular nozzle with various injection angles for air breathing engine

    NASA Astrophysics Data System (ADS)

    Aso, S.; Inoue, K.; Yamaguchi, K.; Tani, Y.

    2009-09-01

    SCRAM-jet engine is considered to be one of the useful system propulsion for super/hypersonic transportation vehicle and various researches were made to develop the engine. However, there are a lot of problems to be solved to develop it and one of them is the problem of supersonic mixing. In the SCRAM-jet engine combustor, main airflow is supersonic and residence time of the air is very short (about 1 ms). Hence rapid mixing of air and fuel is necessary. However, usually it is quite difficult to mix fuel with air in very short distance. Also total pressure loss occurs by flow interaction the air and fuel. Total pressure loss is not preferable because it causes the thrust loss. Therefore, supersonic mixing with very rapid mixing and lower total pressure loss ratio is highly requested. In order to develop the supersonic mixing, it is very important to understand the effect of injection angle. In present study, we investigate the effect of injection angle with circular sonic nozzle by changing the injection angle. Experimental and computational studies on supersonic mixing phenomena of two-dimensional slot injector with various injection angles were conducted. Supersonic wind tunnel was used for the experiments. The free stream Mach number is 3.8, total pressure is 1.1 MPa and total temperature is 287 K on average. As a secondary gas, helium gas was injected at sonic speed from the circular nozzle. The injection angle is 30°, 90° and 150°. Its total pressure is 0.4 MPa and total temperature is 287 K on average. The same flow field was also simulated by solving three-dimensional full Navier-Stokes equation with AUSM-DV scheme [Y. Wada, M.S. Liou, A flux splitting scheme with high-resolution and robustness for discontinuities, AIAA Paper 94-0083, 1994] for convective terms and full implicit LU-ADI factorization method [S. Obayashi, K. Matsushima, K. Fujii, K. Kuwahara, Improvements in efficiency and reliability for Navier-Stokes computations using the LU

  19. Microbial biomass, activity, and community structure of water and particulates retrieved by backflow from a waterflood injection well.

    PubMed

    McKinley, V L; Costerton, J W; White, D C

    1988-06-01

    Oil field injection water was allowed to back flow from two wells at the Packard drill site in Los Angeles, Calif., and was sampled at various times to obtain information about the biomass, potential activity, and community structure of the microbiota in the reservoir formation and in the injection water. Biomass was greatest in water samples that came from the zone near the injection site and dropped off sharply in subsequent samples, which were assumed to come from zones farther away from the well. Samples obtained from near the well also had visible exopolysaccharide blankets, as seen in scanning electron microscopic preparations. In one of the wells that was sampled, rates of glucose or acetate incorporation into microbial lipids correlated with biomass; but in the other well, activities correlated with the sampling time (volume of water that back flowed). Transmission electron micrographs showed a diverse, gram-negative bacterial population in a variety of physiological states. The analysis of the phospholipid ester-linked fatty acid profiles of the samples revealed consistently large proportions of 18:1omega7c fatty acids, indicating the presence of many anaerobes, facultative organisms, or both. Proportions of cyclopropyl fatty acids and ratios of trans/cis monoenoic compounds increased with the volume of water that back flowed (analogous with the distance into the formation), while the ratio of unsaturated/saturated compounds decreased, possibly indicating higher levels of stress or starvation in the microbial communities farthest from the injection well. Greater than 90% of the total biomass was trapped on glass fiber filters, indicating that the microbiota were largely attached to particles or were clumped. These sampling techniques and analytical methods may prove useful in monitoring for problems with microbes (e.g., plugging) in waterflood operations and in the preparation of water injection wells for enhanced oil recovery by the use of microbes. PMID

  20. Microbial Biomass, Activity, and Community Structure of Water and Particulates Retrieved by Backflow from a Waterflood Injection Well

    PubMed Central

    McKinley, Vicky L.; Costerton, J. William; White, David C.

    1988-01-01

    Oil field injection water was allowed to back flow from two wells at the Packard drill site in Los Angeles, Calif., and was sampled at various times to obtain information about the biomass, potential activity, and community structure of the microbiota in the reservoir formation and in the injection water. Biomass was greatest in water samples that came from the zone near the injection site and dropped off sharply in subsequent samples, which were assumed to come from zones farther away from the well. Samples obtained from near the well also had visible exopolysaccharide blankets, as seen in scanning electron microscopic preparations. In one of the wells that was sampled, rates of glucose or acetate incorporation into microbial lipids correlated with biomass; but in the other well, activities correlated with the sampling time (volume of water that back flowed). Transmission electron micrographs showed a diverse, gram-negative bacterial population in a variety of physiological states. The analysis of the phospholipid ester-linked fatty acid profiles of the samples revealed consistently large proportions of 18:1ω7c fatty acids, indicating the presence of many anaerobes, facultative organisms, or both. Proportions of cyclopropyl fatty acids and ratios of trans/cis monoenoic compounds increased with the volume of water that back flowed (analogous with the distance into the formation), while the ratio of unsaturated/saturated compounds decreased, possibly indicating higher levels of stress or starvation in the microbial communities farthest from the injection well. Greater than 90% of the total biomass was trapped on glass fiber filters, indicating that the microbiota were largely attached to particles or were clumped. These sampling techniques and analytical methods may prove useful in monitoring for problems with microbes (e.g., plugging) in waterflood operations and in the preparation of water injection wells for enhanced oil recovery by the use of microbes. Images

  1. Status of in-situ air stripping tests and proposed modifications: Horizontal wells AMH-1 and AMH-2 Savannah River Site

    SciTech Connect

    Kaback, D.S.; Looney, B.B.

    1989-08-01

    A project to drill and install two horizontal vapor extraction/air injection wells at the Savannah River Site (SRS), Aiken, South Carolina, was performed in September and October of 1988. The project was performed to test the feasibility of horizontal drilling technologies in shallow unconsolidated sediments. Additional study to evaluate the effectiveness of in-situ air stripping of volatile organics from the ground water and unsaturated soils is planned. This status report contains (1) a short summary of the construction details of the two horizontal wells and (2) proposed modifications to the original program plan (Kaback and Looney 1988; Looney and Kaback, 1988). The modifications include added pressure monitoring and use of an inert tracer gas (helium) to better evaluate system performance. This paper contains sections that provide information requested by the South Carolina Department Health and Environmental Control as part of the underground injection well permitting process. 3 refs., 6 figs.

  2. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  3. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles.

    PubMed

    Reges, José E O; Salazar, A O; Maitelli, Carla W S P; Carvalho, Lucas G; Britto, Ursula J B

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  4. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    SciTech Connect

    Pruess, K.; Doughty, C.

    2010-01-15

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns to fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).

  5. Enhanced current injection from a quantum well to a quantum dash in magnetic field

    NASA Astrophysics Data System (ADS)

    Paravicini-Bagliani, Gian L.; Liverini, Valeria; Valmorra, Federico; Scalari, Giacomo; Gramm, Fabian; Faist, Jérôme

    2014-08-01

    Resonant tunneling injection is a key ingredient in achieving population inversion in a putative quantum dot cascade laser. In a quantum dot based structure, such resonant current requires a matching of the wavefunction shape in k-space between the injector and the quantum dot. We show experimentally that the injection into an excited state of a dash structure can be enhanced tenfold by an in-plane magnetic field that shifts the injector distribution in k-space. These experiments, performed on resonant tunneling diode structures, show unambiguously resonant tunneling into an ensemble of InAs dashes grown between two AlInAs barrier layers. They also show that interface roughness scattering can enhance the tunneling current.

  6. HYDROLOGIC-HYDROCHEMICAL CHARACTERIZATION OF TEXAS FRIO FORMATION USED FOR DEEP-WELL INJECTION OF CHEMICAL WASTES

    EPA Science Inventory

    Hydrologic-hydrochemical investigations were conducted to determine the long-term fate of hazardous chemical waste disposed in the Texas Gulf Coast Tertiary formations by deep-well injection. he study focused on the hydrostatic section of the Frio Formation because it is the host...

  7. HYDROLOGIC-HYDROCHEMICAL CHARACTERIZATION OF TEXAS FRIO FORMATION USED FOR DEEP-WELL INJECTION OF CHEMICAL WASTES

    EPA Science Inventory

    Hydrologic hydrochemical investigations were conducted to determine the long-term fate of hazardous chemical waste disposed in the Texas Gulf Coast Tertiary formations by deep-well injection. The study focused on the hydrostatic section of the Frio Formation because it is the hos...

  8. Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2003-06-01

    This Closure Report documents the activities undertaken to close Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, according to the Federal Facility Agreement and Consent Order. Corrective Action Unit 335 was closed in accordance with the Nevada Division of Environmental Protection-approved Corrective Action Plan for Corrective Action Unit 335.

  9. REVIEW AND ASSESSMENT OF DEEP-WELL INJECTION OF HAZARDOUS WASTE. VOLUME II. APPENDICES A, B, AND C

    EPA Science Inventory

    A review and analysis of the available information related to deep-well injection, and an assessment as to the adequacy of this method for managing hazardous wastes and ensuring protecting the environment was made. This volume is comprised of Appendices A, B, and C. Appendix A is...

  10. A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells.

    PubMed

    Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M

    2015-08-01

    Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale. PMID:26186496

  11. Predicting injection related changes in seismic properties at Kevin Dome, north central Montana, using well logs and laboratory measurements

    NASA Astrophysics Data System (ADS)

    Saltiel, S.; Bonner, B. P.; Ajo Franklin, J. B.

    2014-12-01

    Time-lapse seismic monitoring (4D) is currently the primary technique available for tracking sequestered CO2 in a geologic storage reservoir away from monitoring wells. The main seismic responses to injection are those due to direct fluid substitution, changes in differential pressure, and chemical interactions with reservoir rocks; the importance of each depends on reservoir/injection properties and temporal/spatial scales of interest. As part of the Big Sky Carbon Sequestration Partnership, we are monitoring the upcoming large scale (1 million ton+) CO2 injection in Kevin Dome, north central Montana. As part of this research, we predict the relative significance of these three effects, as an aid in design of field surveys. Analysis is undertaken using existing open-hole well log data and cores from wells drilled at producer and injector pads as well as core experiments. For this demonstration site, CO2 will be produced from a natural reservoir and re-injected down dip, where the formation is saturated with brine. Effective medium models based on borehole seismic velocity measurements predict relatively small effects (less than 40 m/s change in V¬p) due to the injection of more compressible supercritical CO2. This is due to the stiff dolomite reservoir rock, with high seismic velocities (Vp~6000 m/s, Vs~3000 m/s) and fairly low porosity (<10%). Assuming pure dolomite mineralogy, these models predict a slight increase in Vp during CO2 injection. This velocity increase is due to the lower density of CO2 relative to brine; which outweighs the small change in modulus compared to the stiff reservoir rock. We present both room pressure and in-situ P/T ultrasonic experiments using core samples obtained from the reservoir; such measurements are undertaken to access the expected seismic velocities under pressurized injection. The reservoir appears to have fairly low permeability. Large-volume injection is expected to produce large local pore pressure increases, which may

  12. Geothermal well behaviour prediction after air compress stimulation using one-dimensional transient numerical modelling

    NASA Astrophysics Data System (ADS)

    Yusman, W.; Viridi, S.; Rachmat, S.

    2016-01-01

    The non-discharges geothermal wells have been a main problem in geothermal development stages and well discharge stimulation is required to initiate a flow. Air compress stimulation is one of the methods to trigger a fluid flow from the geothermal reservoir. The result of this process can be predicted by using by the Af / Ac method, but sometimes this method shows uncertainty result in several geothermal wells and also this prediction method does not take into account the flowing time of geothermal fluid to discharge after opening the well head. This paper presents a simulation of non-discharges well under air compress stimulation to predict well behavior and time process required. The component of this model consists of geothermal well data during heating-up process such as pressure, temperature and mass flow in the water column and main feed zone level. The one-dimensional transient numerical model is run based on the Single Fluid Volume Element (SFVE) method. According to the simulation result, the geothermal well behavior prediction after air compress stimulation will be valid under two specific circumstances, such as single phase fluid density between 1 - 28 kg/m3 and above 28.5 kg/m3. The first condition shows that successful well discharge and the last condition represent failed well discharge after air compress stimulation (only for two wells data). The comparison of pf values between simulation and field observation shows the different result according to the success discharge well. Time required for flow to occur as observed in well head by using the SFVE method is different with the actual field condition. This model needs to improve by updating more geothermal well data and modified fluid phase condition inside the wellbore.

  13. In situ biostimulation of petroleum hydrocarbon degradation by nitrate and phosphate injection using a dipole well configuration

    NASA Astrophysics Data System (ADS)

    Ponsin, Violaine; Coulomb, Bruno; Guelorget, Yves; Maier, Joachim; Höhener, Patrick

    2014-12-01

    The main aim of this study was to explore the feasibility of source zone bioremediation by nitrate and nutrient injection in a crude-oil contaminated aquifer using a recirculating well dipole. Groundwater pumped from a downgradient well at a rate of 2.5 m3 h- 1 was enriched with bromide (tracer), nitrate and ammonium phosphate and injected in a well 40 m upgradient. The test was run for 49 days with solute injection, followed by 65 days of dipole operation without solute addition. The resulting bromide breakthrough curve allowed quantifying a first-order leakage coefficient of 0.017 day- 1 from the dipole, whereas from the nitrate data a first-order nitrate consumption rate of 0.075 day- 1 was determined. Dissolved hydrocarbon concentrations including benzene decreased to non-detect in 84 days but experienced important rebounds after ending circulation. Nitrite accumulated temporarily but was consumed entirely when solute injection stopped. The mass balance calculations revealed that about 83% of the nitrate was used for hydrocarbon degradation, with the remaining being used for oxidation of reduced sulfur. A reactive transport model was used for the delineation of the treated zone. This model suggested that denitrification influenced flow and transport in the dipole. It is concluded that successful promotion of denitrifying hydrocarbon degradation is easily obtained in this aquifer and enables to abate dissolved concentrations, and that dipole configuration is a good option.

  14. In situ biostimulation of petroleum hydrocarbon degradation by nitrate and phosphate injection using a dipole well configuration.

    PubMed

    Ponsin, Violaine; Coulomb, Bruno; Guelorget, Yves; Maier, Joachim; Höhener, Patrick

    2014-12-15

    The main aim of this study was to explore the feasibility of source zone bioremediation by nitrate and nutrient injection in a crude-oil contaminated aquifer using a recirculating well dipole. Groundwater pumped from a downgradient well at a rate of 2.5m(3)h(-1) was enriched with bromide (tracer), nitrate and ammonium phosphate and injected in a well 40 m upgradient. The test was run for 49 days with solute injection, followed by 65 days of dipole operation without solute addition. The resulting bromide breakthrough curve allowed quantifying a first-order leakage coefficient of 0.017 day(-1) from the dipole, whereas from the nitrate data a first-order nitrate consumption rate of 0.075 day(-1) was determined. Dissolved hydrocarbon concentrations including benzene decreased to non-detect in 84days but experienced important rebounds after ending circulation. Nitrite accumulated temporarily but was consumed entirely when solute injection stopped. The mass balance calculations revealed that about 83% of the nitrate was used for hydrocarbon degradation, with the remaining being used for oxidation of reduced sulfur. A reactive transport model was used for the delineation of the treated zone. This model suggested that denitrification influenced flow and transport in the dipole. It is concluded that successful promotion of denitrifying hydrocarbon degradation is easily obtained in this aquifer and enables to abate dissolved concentrations, and that dipole configuration is a good option. PMID:25461884

  15. Lithologic Framework Modeling of the Fruitvale Oil Field Investigating Interaction Between Wastewater Injection Wells and Usable Groundwater

    NASA Astrophysics Data System (ADS)

    Treguboff, E. W.; Crandall-Bear, A. T.

    2015-12-01

    The Fruitvale Oil Field lies in a populated area where oil production, water disposal injection wells, and drinking water wells lie in close proximity. The purpose of this project is to build a lithological framework of the area that can then be used to determine if water disposal from petroleum production has a chance of reaching usable groundwater aquifers. Using the DOGGR database, data were collected from well logs. Lithologic data from drilling logs and cores were coded and entered into a relational database, where it was combined with the surface elevation and location coordinates of each well. Elevation data was acquired through ArcGIS using a USGS 24k 10 m DEM. Drillers logs that started at the surface, and were continuous, were sorted by the density of intervals recorded, in order to select high quality drillers logs for use in creating a model. About 900 wells were coded and approximately 150 wells were used in the model. These wells were entered into the modeling program (Rockworks), which allowed the wells to be visualized as strip logs and also as cross sections, and 2D fence models were created to represent subsurface conditions. The data were interpolated into 3D models of the subsurface. Water disposal wells, with the depths of the perforation intervals as well as injection volume, were added to the model, and analyzed. Techniques of interpolation used in this project included kriging, which requires statistical analysis of the data collected. This allowed correlation between widely-spaced wells. Up scaling the data to a coarse or fine texture was also been found to be effective with the kriging technique. The methods developed on this field can be used to build framework models of other fields in the Central Valley to explore the relationship between water disposal injection and usable groundwater.

  16. The influence of bowl offset on air motion in a direct injection diesel engine

    SciTech Connect

    McKinley, T.L.; Primus, R.J

    1988-01-01

    The influence of bowl offset on motored mean flow and turbulence in a direct injection diesel engine has been examined with the aid of a multi-dimensional flow code. Results are presented for three piston geometries. The bowl geometry of each piston was the same, while the offset between the bowl and the cylinder axis was varied from 0.0 to 9.6% of the bore. The swirl ratio at intake valve closing was also varied from 2.60 to 4.27. It was found that the angular momentum of the air at TDC was decreased by less than 8% when the bowl was offset. Nevertheless, the mean (squish and swirl) flows were strongly affected by the offset. In addition, the distribution of turbulent kinetic energy (predicted by the /delta/-e model) was modified. Moderate increases (10% or less) in mass averaged turbulence intensity at TDC with offset were observed.

  17. Fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Abraham, J.; Bracco, F. V.

    1989-01-01

    A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6 percent at higher loads and 2 percent at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.

  18. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, III, William B.

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  19. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  20. Development of a Detailed Stress Map of Oklahoma for Avoidance of Potentially Active Faults When Siting Wastewater Injection Wells

    NASA Astrophysics Data System (ADS)

    Alt, R. C., II; Zoback, M. D.

    2014-12-01

    We report progress on a project to create a detailed map of in situ stress orientations and relative magnitudes throughout the state of Oklahoma. It is well known that the past 5 years has seen a remarkable increase in seismicity in much of the state, potentially related to waste water injection. The purpose of this project is to attempt to utilize detailed knowledge of the stress field to identify which pre-existing faults could be potentially active in response to injection-related pore pressure increases. Over 50 new stress orientations have been obtained, principally utilizing wellbore image data provided by the oil and gas industry. These data reveal a very uniform ENE direction of maximum compressive stress through much of the state. As earthquake focal plane mechanisms indicate strike-slip faulting, the stress orientation data indicate which pre-existing faults are potentially active. The data are consistent with slip on the near-vertical, NE-trending fault associated with at least one of the M 5+ earthquakes in the Prague, OK sequence in 2011. If successful, it would demonstrate that combining detailed information about pre-existing faults and the current stress field could be used to guide the siting of injection wells so as to decrease the potential for injection-related seismicity.

  1. Microbial succession and stimulation following a test well injection simulating CO2 leakage into shallow Newark Basin aquifers

    NASA Astrophysics Data System (ADS)

    Dueker, M.; Clauson, K.; Yang, Q.; Umemoto, K.; Seltzer, A. M.; Zakharova, N. V.; Matter, J. M.; Stute, M.; Takahashi, T.; Goldberg, D.; O'Mullan, G. D.

    2012-12-01

    Despite growing appreciation for the importance of microbes in altering geochemical reactions in the subsurface, the microbial response to geological carbon sequestration injections and the role of microbes in altering metal mobilization following leakage scenarios in shallow aquifers remain poorly constrained. A Newark Basin test well was utilized in field experiments to investigate patterns of microbial succession following injection of CO2 saturated water into isolated aquifer intervals. Additionally, laboratory mesocosm experiments, including microbially-active and inactive (autoclave sterilized) treatments, were used to constrain the microbial role in mineral dissolution, trace metal release, and gas production (e.g. hydrogen and methane). Hydrogen production was detected in both sterilized and unsterilized laboratory mesocosm treatments, indicating abiotic hydrogen production may occur following CO2 leakage, and methane production was detected in unsterilized, microbially active mesocosms. In field experiments, a decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), the production of hydrogen gas, and increased bacterial cell concentrations. 16S ribosomal RNA clone libraries, from samples collected before and after the test well injection, were compared in an attempt to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injection, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia, Acidobacteria and other microbes associated with iron reducing and syntrophic metabolism. The concurrence of increased microbial cell concentration, and rapid microbial community succession, with increased concentrations of hydrogen gas suggests that abiotically produced hydrogen may serve as an ecologically-relevant energy

  2. Productivity and injectivity of horizontal wells. Annual report, March 10, 1993--March 9, 1994

    SciTech Connect

    Fayers, F.J.; Aziz, K.; Hewett, T.A.; Arbabi, S.

    1994-10-01

    In this report, the investigators review a range of reservoir scenarios in which horizontal wells can be advantageous and discuss some of the modeling problems associated with calculating well connection factors, productivity indices, coning behavior and well two-phase pressure drops. We show illustrative coning calculations and the implications of the well model on distribution of post-breakthrough gas saturations. Such calculations then open up the possibility of determining optimal recompletion strategies and/or additional hydraulic fracturing.

  3. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations. PMID:18529171

  4. Polymer treatments for D Sand water injection wells: Sooner D Sand Unit Weld County, Colorado. Final report, April 1997

    SciTech Connect

    Cannon, T.J.

    1998-10-01

    Polymer-gel treatments in injection wells were evaluated for improving sweep efficiency in the D Sandstone reservoir at the Sooner Unit, Weld County, Colorado. Polymer treatments of injection wells at the Sooner Unit were expected to improve ultimate recovery by 1.0 percent of original-oil-in-place of 70,000 bbl of oil. The Sooner D Sand Unit was a demonstration project under the US Department of Energy Class I Oil Program from which extensive reservoir data and characterization were obtained. Thus, successful application of polymer-gel treatments at the Sooner Unit would be a good case-history example for other operators of waterfloods in Cretaceous sandstone reservoirs in the Denver Basin.

  5. Productivity and injectivity of horizontal wells. Annual report, March 10, 1996--March 9, 1997

    SciTech Connect

    Aziz, K.; Hewett, T.A.; Arbabi, S.; Smith, M.

    1997-06-01

    Progress is reported on the following tasks: advanced modeling of horizontal wells; heterogeneous effects of reservoirs; development of improved methods for calculating multi-phase pressure drops within the wellbore; pseudo-functions; development of multi-well models;testing of HW models with field examples; enhanced oil recovery applications; and application studies and their optimization.

  6. 40 CFR 144.89 - How do I close my Class V injection well?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... You should check with the publicly owned treatment works you might use to see if they would accept... history and records showing proper waste disposal. The use of a semi-permanent plug as the means to... cesspool or motor vehicle waste disposal well, you must plug or otherwise close the well in a manner...

  7. Pre-injection Comparison of Methods for Sampling Formation Water and Associated Gas from a Monitoring Well at a Carbon Dioxide Injection Site, Citronelle Oil Field, Alabama

    NASA Astrophysics Data System (ADS)

    Conaway, C.; Thordsen, J. J.; Manning, M. A.; Cook, P. J.; Abedini, A. A.; Trautz, R. C.; Thomas, B.; Kharaka, Y. K.

    2012-12-01

    The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a well in the Citronelle Oil Field, Alabama, a site that will be used for a carbon dioxide injection experiment. Prior to each of the two sampling periods, the well was cleaned from the drilling fluids and KCl solutions by producing at least three pore volumes of formation water. Accurate measurements of the chemical composition of groundwater or formation water, including dissolved gasses, and gas samples is essential in understanding subsurface geochemical processes occurring as a result of geologic carbon dioxide injection, which is used for enhanced oil recovery (EOR) and has been proposed as a means of carbon sequestration. In this study, formation water and gas samples for geochemical analyses were obtained from well D-9-8 #2 at Citronelle using nitrogen lift, submersible pump, U-Tube, and a downhole (Kuster) sampler. Field chemical analyses included electrical conductivity, hydrogen sulfide, alkalinity, and pH, and laboratory analyses included major, minor and trace elements by mass spectrometry and ion chromatography, dissolved carbon, organic acid anions, free and dissolved gas species. The formation water obtained from this well is a Na-Ca-Cl brine with a salinity of 160,000 and 200,000 mg/L total dissolved solids (TDS). Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity measurements. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the downhole sampler and U-Tube system performing most favorably in this aspect.

  8. Geochemical transformations and modeling of two deep-well injected hazardous wastes

    USGS Publications Warehouse

    Roy, W.R.; Seyler, B.; Steele, J.D.; Mravik, S.C.; Moore, D.M.; Krapac, I.G.; Peden, J.M.; Griffin, R.A.

    1991-01-01

    Two liquid hazardous wastes (an alkaline brine-like solution and a dilute acidic waste) were mixed with finely ground rock samples of three injection-related lithologies (sandstone, dolomite, and siltstone) for 155 to 230 days at 325??K-10.8 MPa. The pH and inorganic chemical composition of the alkaline waste were not significantly altered by any of the rock samples after 230 days of mixing. The acidic waste was neutralized as a consequence of carbonate dissolution, ion exchange, or clay-mineral dissolution, and hence was transformed into a nonhazardous waste. Mixing the alkaline waste with the solid phases yielded several reaction products: brucite, Mg(OH)2; calcite, CaCO3; and possibly a type of sodium metasilicate. Clay-like minerals formed in the sandstone, and hydrotalcite, Mg6Al2-CO3(OH)16??4H2O, may have formed in the siltstone at trace levels. Mixing the alkaline waste with a synthetic brine yielded brucite, calcite, and whewellite (CaC2O4??H2O). The thermodynamic model PHRQPITZ predicted that brucite and calcite would precipitate from solution in the dolomite and siltstone mixtures and in the alkaline waste-brine system. The dilute acidic waste did not significantly alter the mineralogical composition of the three rock types after 155 days of contact. The model PHREEQE indicated that the calcite was thermodynamically stable in the dolomite and siltstone mixtures.

  9. Data on wells in the Edwards Air Force Base area, California

    USGS Publications Warehouse

    Dutcher, L.C.; Bader, J.S.; Hiltgen, W.J.

    1962-01-01

    The data presented In this report were collected by the U.S. Geological Survey as a phase of the investigation of ground-water geology and hydrology of the Edwards Air Force Base area. The study was made in cooperation with the Department of the Air Force but also was coincident with the U.S. Geological Survey investigation of water wells and general hydrologic conditions throughout much of the desert region of southern California. The overall study of general hydrologic conditions in the desert is part of a cooperative program with the California Department of Water Resources.

  10. Productivity and injectivity of horizontal wells. Quarterly report, January 1, 1995--March 31, 1995

    SciTech Connect

    Fayers, F.J.; Aziz, K.; Hewett, T.A.

    1995-05-01

    This report presents skin factor calculations for vertical, horizontal, and deviated wells. Calculations for perforation, damage zone, crushed zone, non-darcy flow, and pressure drop due to the gravel packs are included.

  11. Productivity and injectivity of horizontal wells. Quarterly report, January 1, 1994--March 31, 1994

    SciTech Connect

    Fayers, F.J.; Aziz, K.; Hewett, T.A.

    1994-06-01

    During the last three months we have studied coning and cresting behavior in horizontal and vertical wells using the commercial simulator, Eclipse. In our second quarterly report we compared the predications of five analytical methods for critical rates and presented the results in a table for a gas-cresting example problem. In this quarterly report, wee present simulation results for the coning and cresting critical rates for vertical and horizontal wells.

  12. Monitoring a pilot CO2 injection experiment in a shallow aquifer using 3D cross-well electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.

    2014-12-01

    Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.

  13. Assistance to state underground injection control programs and the oil and gas industry with class 2 injection well data management and technology transfer. Final technical report

    SciTech Connect

    Paque, M.J.

    1995-11-23

    The Underground Injection Practices Research Foundation (UIPRF) administered a grant project funded by the US Department of Energy relating to Class 2 injection well operations in various primacy and direct implementation states throughout the country. This effort provided substantial benefits to state regulatory agencies and oil and gas producing companies. It enhanced the protection of the environment through the protection of ground water resources and improved oil and gas production operations within affected states. This project involved the following accomplishment: (1) Completed the design and installation of the only comprehensive, fully relational PC-Based Oil and Gas regulatory data management system (the Risk Based Data Management System) in the country. Additionally, training and data conversion was conduced and the RBDMS User`s Guide and the RBDMS Administrator`s Guide were completed. (2) State wide Area-Of-Review (AOR) workshop were held in California and Oklahoma and a national three-day workshop was held in Kansas City, Missouri where 24 state oil and gas agencies were represented.

  14. Stress-dependent permeability and ground displacement during CO2 storage operation at KB-502 injection well, In Salah, Algeria

    NASA Astrophysics Data System (ADS)

    Rinaldi, A.; Rutqvist, J.

    2012-12-01

    The In Salah CO2 storage project (a joint venture among Statoil, BP, and Sonatrach) is one of the most important sites for understanding the geomechanics associated with carbon dioxide injection. InSAR data evaluated for the first years of injection show a ground-surface uplift of 5 to 10 mm per year at each of the injection wells. A double-lobe uplift pattern has been observed at KB-502, and both semi-analytical inverse deformation analysis (Vasco et al., 2010) and coupled numerical modeling of fluid flow and geomechanics (Rutqvist et al., 2011) have shown that this pattern of displacement can be explained by injection-induced deformation in a deep vertical fracture zone of fault, whose presence has been confirmed by recent 3D seismic survey (Gibson-Poole et al., 2010). Recently, Rinaldi and Rutqvist (2012) refined the previous modeling results, through the use of TOUGH-FLAC (Rutqvist et al., 2002), in order to more conclusively constrain the height of the fracture zone. Results were well in agreement with all available field observations, including all time evolutions and the shape of surface deformation, time-evolution of injection pressure, and the 3D seismic indications of the CO2 saturated fracture zone extending thousands of meters laterally. However, the analysis included a number of simplifications and uncertainties, such as time-step changes in aquifer permeability and the use of an elastic model, which preclude a good match with field data after shut in. Here we implement a new stress-dependent permeability function, to consider a more realistic changes in reservoir and fracture zone permeability, and to improve the match between field observations and modeling results, considering both the bottomhole pressure and the ground surface displacement. Furthermore, here we extent the length of the simulation to include modeling of the re-injection occurred in late 2010 for few months. A second major simplification by Rinaldi and Rutqvist (2012) is the

  15. Supra-Descemet’s Fluid Drainage with Simultaneous Air Injection: An Alternative Treatment for Descemet’s Membrane Detachment

    PubMed Central

    Ghaffariyeh, Alireza; Honarpisheh, Nazafarin; Chamacham, Tooraj

    2011-01-01

    In this report, we present an alternative technique to manage Descemet’s membrane detachment (DMD). We call the technique supra-Descemet’s fluid drainage with intracameral air injection. Under topical anesthesia, we injected air through the stab incision to fill 2/3 of the anterior chamber. Then we inserted the tip of a curved 10/0 needle through the corneal surface (entry angle at 45 degrees) into the supra-Descemet’s area 3 times to drain this fluid. In our method, we neither injected expanding gas or viscoelastic nor used a suture. Consequently, there was little chance for suture-induced astigmatism or increased intraocular pressure. This technique may be considered a relatively safe and simple surgical method for the management of postoperative DMD. PMID:21731334

  16. Evaluation of the Feasibility of Freshwater Injection Wells in Mitigating Ground-Water Quality Degradation at Selected Well Fields in Duval County, Florida

    USGS Publications Warehouse

    Sepulveda, Nicasio; Spechler, Rick M.

    2004-01-01

    The Fernandina permeable zone contains brackish water in parts of Duval County, Florida. Upward flow from the Fernandina permeable zone to the upper zone of the Lower Floridan aquifer increases chloride concentrations in ground water in parts of Duval County. Numerical models of the ground-water flow system in parts of Duval, St. Johns, and Clay Counties, Florida, were used to (1) estimate the vertical flows between the low-quality water of the Fernandina permeable zone and the high-quality water of the upper zone of the Lower Floridan aquifer in the vicinity of Deerwood 3 and Brierwood well fields, based on 2000 ground-water withdrawal rates; (2) determine how such vertical flows change as several scenarios of injection, withdrawal, and intervening rest periods are simulated in the two well fields; and (3) evaluate the effects of changes in less certain hydraulic parameters on the vertical flows between the Fernandina permeable zone and the upper zone of the Lower Floridan aquifer. The ground-water flow system was simulated with a four-layer model using MODFLOW-2000, which was developed by the U.S. Geological Survey. The first layer consists of specified-head cells simulating the surficial aquifer system with prescribed water levels. The second layer simulates the Upper Floridan aquifer. The third and fourth layers simulate the upper zone of the Lower Floridan aquifer and the Fernandina permeable zone, respectively. Average flow conditions in 2000 were approximated with a steady-state simulation. The changes in upward flow from the Fernandina permeable zone due to periods of injections and withdrawals were analyzed with transient simulations. The grid used for the ground-water flow model was uniform and composed of square 250-foot cells, with 400 columns and 400 rows. The active model area encompasses about 360 square miles in parts of Duval, St. Johns, and Clay Counties, Florida. Ground-water flow simulation was limited vertically to the bottom of the Fernandina

  17. Effects on well-being of investing in cleaner air in India.

    PubMed

    Sanderson, Warren; Striessnig, Erich; Schöpp, Wolfgang; Amann, Markus

    2013-01-01

    Over the past decade, India has experienced rapid economic growth along with increases in levels of air pollution. Our goal is to examine how alternative policies for air pollution abatement affect well-being there. In particular, we estimate the effects of policies to reduce the levels of ambient fine particulates (PM2.5), which are especially harmful to human health, on well-being, quantified using the United Nations' human development index (HDI). Two of the three dimensions of this index are based on gross domestic product (GDP) per capita and life expectancy. Our approach allows reductions in PM2.5 to affect both of them. In particular, economic growth is affected negatively through the costs of the additional pollution control measures and positively through the increased productivity of the population. We consider three scenarios of PM2.5 abatement, corresponding to no further control, current Indian legislation, and current European legislation. The overall effect in both control scenarios is that growth in GDP is virtually unaffected relative to the case of no further controls, life expectancy is higher, and well-being, as measured by the HDI, is improved. In India, air pollution abatement investments clearly improve well-being. PMID:24144316

  18. Work plan for ground water elevation data recorder/monitor well injection at Grand Junction, Colorado

    SciTech Connect

    Not Available

    1994-07-18

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Grand Junction ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Grand Junction processing site; modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing.

  19. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    SciTech Connect

    Cornish, S. Gummersall, D.; Carr, M.; Khachan, J.

    2014-09-15

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory.

  20. An Analytical Model for Simulating Heavy-Oil Recovery by Cyclic Steam Injection Using Horizontal Wells, SUPRI TR-118

    SciTech Connect

    Diwan, Utpal; Kovscek, Anthony R.

    1999-08-09

    In this investigation, existing analytical models for cyclic steam injection and oil recovery are reviewed and a new model is proposed that is applicable to horizontal wells. A new flow equation is developed for oil production during cyclic steaming of horizontal wells. The model accounts for the gravity-drainage of oil along the steam-oil interface and through the steam zone. Oil viscosity, effective permeability, geometry of the heated zone, porosity, mobile oil saturation, and thermal diffusivity of the reservoir influence the flow rate of oil in the model. The change in reservoir temperature with time is also modeled, and it results in the expected decline in oil production rate during the production cycle as the reservoir cools. Wherever appropriate, correlations and incorporated to minimize data requirements. A limited comparison to numerical simulation results agrees well, indicating that essential physics are successfully captured. Cyclic steaming appears to be a systematic met hod for heating a cold reservoir provided that a relatively uniform distribution of steam is obtained along the horizontal well during injection. A sensitivity analysis shows that the process is robust over the range of expected physical parameters.

  1. Carrier heating in quantum wells under optical and current injection of electron-hole pairs

    SciTech Connect

    Vorobjev, L. E. Vinnichenko, M. Ya.; Firsov, D. A.; Zerova, V. L.; Panevin, V. Yu.; Sofronov, A. N.; Thumrongsilapa, P.; Ustinov, V. M.; Zhukov, A. E.; Vasiljev, A. P.; Shterengas, L.; Kipshidze, G.; Hosoda, T.; Belenky, G.

    2010-11-15

    Carrier heating in GaAs/AlGaAs quantum wells (QWs) under optical interband pumping in the spontaneous-emission mode has been studied. The electron temperature was determined as a function of the pumping intensity. The effect of the electric field on the photoluminescence spectrum was examined. The change in the carrier concentration with the drive current in the spontaneous- and stimulated-emission modes in InGaAsSb/InAlGaAsSb QWs was determined from electroluminescence spectra. The rise in the temperature of hot carriers, which results in the increase in the carrier concentration with the drive current, was roughly estimated.

  2. Productivity and injectivity of horizontal wells. Quarterly report, October 1--December 31, 1993

    SciTech Connect

    Fayers, F.J.; Aziz, K.; Hewett, T.A.

    1993-03-10

    A number of activities have been carried out in the last three months. A list outlining these efforts is presented below followed by brief description of each activity in the subsequent sections of this report: Progress is being made on the development of a black oil three-phase simulator which will allow the use of a generalized Voronoi grid in the plane perpendicular to a horizontal well. The available analytical solutions in the literature for calculating productivity indices (Inflow Performance) of horizontal wells have been reviewed. The pseudo-steady state analytic model of Goode and Kuchuk has been applied to an example problem. A general mechanistic two-phase flow model is under development. The model is capable of predicting flow transition boundaries for a horizontal pipe at any inclination angle. It also has the capability of determining pressure drops and holdups for all the flow regimes. A large code incorporating all the features of the model has been programmed and is currently being tested.

  3. Productivity and injectivity of horizontal wells. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect

    Aziz, K.; Hewett, T.A.

    1995-08-01

    The following activities have been carried out in the last three months: Work on developing a three-dimensional Voronoi grid simulator is progressing. Extensive testing of the grid generation and visualization modules of the simulator is continuing while modifications and improvements are being made to these capabilities; The recently developed semi-analytical method for calculating critical cresting rates is being extended for the case of simultaneous gas and water coning toward a horizontal well; The accuracy of available correlations and analytical models for breakthrough times of horizontal wells is being investigated through simulations of a field case; Work on developing methods for coupling between reservoir and the werbore through a network modeling approach is progressing. The current stage of the study involves evaluation of available analytical methods; The necessary modifications have been made to the rig at the Marathon facility and the high rate two-phase flow experiments are about to commence; new correlations for wall friction and interfacial friction factors have been developed for the stratified flow in horizontal and inclined pipes. After further testing this new approach will be used in our mechanistic model; and this quarterly report has been entirely devoted to the task fisted in the last item above and we only present an abridged version of the Masters report of Mr. Liang-Biao Ouyang on which it is based. The complete study will be included in the next Annual Report of the Project.

  4. Reactivity of rock and well in a geological storage of CO2 : role of co-injected gases

    NASA Astrophysics Data System (ADS)

    Renard, S.; Sterpenich, J.; Pironon, J.

    2009-04-01

    The CO2 capture and geological storage from high emitting sources (coal and gas power plants) is one of a panel of solutions proposed to reduce the global greenhouse gas emissions. Different pre- , post- or oxy-combustion capture processes are now available to separate associated gases (SOx, NOx, etc…) and the CO2. However, complete purification of CO2 is unachievable for cost reasons as well as for CO2 surplus of emissions due to the separation processes. By consequence, a non-negligible part (more or less 5%) of these gases, called "annex gases", could be co-injected with the CO2. Their impact on the chemical stability of reservoir rocks, caprocks and wells has to be evaluated before any large scale injection procedure. Physico-chemical transformations could modify mechanical and injectivity properties of the site and possibly alter storage safety. One of the aims of the CCS pilot project leaded by TOTAL at Lacq (France) is to develop, through a real case study, a methodology for a long-term safe storage qualification. Greenhouse gases are captured from an oxy-combustion power plant, transported along 30 km to the carbonate reservoir of Rousse at around 4500 m in depth. The study presented here is focused on laboratory simulations of geochemical interactions between the reservoir rock (fractured dolomite), the caprock (marl) and the injected CO2 with some potential annex gases. In the same time, experiments are performed on the reactivity of reference minerals such as calcite, dolomite, muscovite, quartz and pyrite to better understand the implication of each phase on bulk rock reactivity. Moreover, well reactivity is observed through specific steel and cement used by petroleum industry. Two annex gases (SO2 and NO) have been selected.. Their reactivity is compared to that of N2 considered as an inert annex gas from a chemical point of view. Solid samples are placed in 1cm3 gold capsules in presence or not of water with a salinity of 25 NaCl g/l. Gases are

  5. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  6. Immobilization effect of air-injected blanket (AIB) for abdomen fixation

    SciTech Connect

    Ko, Young Eun; Suh, Yelin; Ahn, Seung Do; Lee, Sang-wook; Shin, Seong Soo; Kim, Jong Hoon; Choi, Eun Kyung; Yi, Byong Yong

    2005-11-15

    A new device for reducing the amplitude of breathing motion by pressing a patient's abdomen using an air-injected blanket (AIB) for external beam radiation treatments has been designed and tested. The blanket has two layers sealed in all four sides similar to an empty pillow made of urethane. The blanket is spread over the patient's abdomen with both ends of the blanket fixed to the sides of the treatment couch or a baseboard. The inner side, or patient side, of the blanket is thinner and expands more than the outer side. When inflated, the blanket balloons and effectively puts an even pressure on the patient's abdomen. Fluoroscopic observation was performed to verify the usefulness of AIB for patients with lung, breast cancer, or abdominal cancers. Internal organ movement due to breathing was monitored and measured with and without AIB. With the help of AIB, the average range of diaphragm motion was reduced from 2.6 to 0.7 cm in the anterior-to-posterior direction and from 2.7 to 1.3 cm in the superior-to-inferior direction. The motion range in the right-to-left direction was negligible, for it was less than 0.5 cm. These initial testing demonstrated that AIB is useful for reducing patients' breathing motion in the thoracic and abdominal regions comfortably and consistently.

  7. Locations and monitoring well completion logs of wells surveyed by U.S. Geological Survey at Air Force Plant 4 and Naval Air Station, Joint Reserve Base, Carswell Field, Fort Worth area, Texas

    USGS Publications Warehouse

    Williams, M.D.; Kuniansky, E.L.

    1996-01-01

    Completion logs are presented for 16 monitoring wells installed by the U.S. Geological Survey at Air Force Plant 4 and Naval Air Station, Joint Reserve Base, Carswell Field, in the Fort Worth area, Texas. Natural gamma-ray logs are presented for selected monitoring wells. Also included are survey data for eight wells installed by Geo-Marine, Inc.

  8. Embedded computer controlled premixing inline injection system for air-assisted variable-rate sprayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...

  9. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  10. Levofloxacin Injection

    MedlinePlus

    ... infections. Levofloxacin injection is also used to prevent anthrax (a serious infection that may be spread on ... in people who may have been exposed to anthrax germs in the air. Levofloxacin injection is in ...

  11. Ciprofloxacin Injection

    MedlinePlus

    ... injection is also used to prevent or treat anthrax (a serious infection that may be spread on ... in people who may have been exposed to anthrax germs in the air. Ciprofloxacin injection is in ...

  12. Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170.

    PubMed

    Nieves, I U; Geddes, C C; Mullinnix, M T; Hoffman, R W; Tong, Z; Castro, E; Shanmugam, K T; Ingram, L O

    2011-07-01

    Microaeration (injecting air into the headspace) improved the fermentation of hemicellulose hydrolysates obtained from the phosphoric acid pretreatment of sugarcane bagasse at 170°C for 10 min. In addition, with 10% slurries of phosphoric acid pretreated bagasse (180°C, 10 min), air injection into the headspace promoted xylose utilization and increased ethanol yields from 0.16 to 0.20 g ethanol/g bagasse dry weight using a liquefaction plus simultaneous saccharification and co-fermentation process (L+SScF). This process was scaled up to 80 L using slurries of acid pretreated bagasse (96 h incubation; 0.6L of air/min into the headspace) with ethanol yields of 312-347 L (82-92 gal) per tone (dry matter), corresponding to 0.25 and 0.27 g/g bagasse (dry weight). Injection of small amounts of air into the headspace may provide a convenient alternative to subsurface sparging that avoids problems of foaming, sparger hygiene, flotation of particulates, and phase separation. PMID:21531547

  13. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olson; Deanna Combs; Dhiraj Dembla

    2004-06-01

    The Bureau of Economic Geology (BEG) and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology (BEG) and the Department of Petroleum and Geosystems Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data were to be generated during the demonstration phase to improve the accuracy of the reservoir model. The demonstration phase has been delayed by Goldrus because of funding problems. Since the first of the year, Goldrus has been active in searching for partners to help finance the project. To this end it has commissioned several small consulting studies to technically support its effort to secure a partner. After financial support is obtained, the demonstration phase of the project will proceed. Since just after the beginning of the year, BEG has curtailed project activities and spending of DOE funds except for the continued support of one engineering student. This student has now completed his work and has written a thesis describing his research (titled ''Stimulating enhanced oil recovery (EOR) by high-pressure air injection (HPAI) in west Texas light oil reservoir''). We plan to recommence our work on the project as soon as the operator obtains necessary funding to carry out the demonstration phase of the project. In order to complete all activities specified in the proposal, it will be necessary to request

  14. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-06-01

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plant that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration are being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the US.

  15. Insight from simulations of single-well injection-withdrawal tracer tests on simple and complex fractures

    SciTech Connect

    Tsang, C.-F.; Doughty, C.

    2009-08-06

    The single-well injection withdrawal (SWIW) test, a tracer test utilizing only one well, is proposed as a useful contribution to site characterization of fractured rock, as well as providing parameters relevant to tracer diffusion and sorption. The usual conceptual model of flow and solute transport through fractured rock with low matrix permeability involves solute advection and dispersion through a fracture network coupled with diffusion and sorption into the surrounding rock matrix. Unlike two-well tracer tests, results of SWIW tests are ideally independent of advective heterogeneity, channeling and flow dimension, and, instead, focus on diffusive and sorptive characteristics of tracer (solute) transport. Thus, they can be used specifically to study such characteristics and evaluate the diffusive parameters associated with tracer transport through fractured media. We conduct simulations of SWIW tests on simple and complex fracture models, the latter being defined as having two subfractures with altered rock blocks in between and gouge material in their apertures. Using parameters from the Aspo site in Sweden, we calculate and study SWIW tracer breakthrough curves (BTCs) from a test involving four days of injection and then withdrawal. By examining the peak concentration C{sub pk} of the SWIW BTCs for a variety of parameters, we confirm that C{sub pk} is largely insensitive to the fracture advective flow properties, in particular to permeability heterogeneity over the fracture plane or to subdividing the flow into two subfractures in the third dimension orthogonal to the fracture plane. The peak arrival time t{sub pk} is not a function of fracture or rock properties, but is controlled by the time schedule of the SWIW test. The study shows that the SWIW test is useful for the study of tracer diffusion-sorption processes, including the effect of the so-called flow-wetted surface (FWS) of the fracture. Calculations with schematic models with different FWS values are

  16. Turbulent Boundary Layer on a Finely Perforated Surface Under Conditions of Air Injection at the Expense of External Flow Resources

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.

    2015-11-01

    The characteristics of an incompressible turbulent boundary layer on a flat plate with air blown in though a finely perforated surface from an external confined flow through an input device, located on the "idle" side of the plate, have been investigated experimentally and numerically. A stable decrease in the local values of the coefficient of surface friction along the plate length that attains 85% at the end of the perforated portion is shown. The experimental and calculated data obtained point to the possibility of modeling, under earth conditions, the process of controlling a turbulent boundary layer with air injection by using the resources of an external confined flow.

  17. Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions

    NASA Astrophysics Data System (ADS)

    Winkel, Eric S.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    2004-12-01

    As air is injected into a flowing liquid, the resultant bubble characteristics depend on the properties of the injector, near-wall flow, and flowing liquid. Previous research has shown that near-wall bubbles can significantly reduce skin-friction drag. Air was injected into the turbulent boundary layer on a test section wall of a water tunnel containing various concentrations of salt and surfactant (Triton-X-100, Union Carbide). Photographic records show that the mean bubble diameter decreased monotonically with increasing salt and surfactant concentrations. Here, 33 ppt saltwater bubbles had one quarter, and 20 ppm Triton-X-100 bubbles had one half of the mean diameter of freshwater bubbles.

  18. Use of data obtained from core tests in the design and operation of spent brine injection wells in geopressured or geothermal systems

    SciTech Connect

    Jorda, R.M.

    1980-03-01

    The effects of formation characteristics on injection well performance are reviewed. Use of data acquired from cores taken from injection horizons to predict injectivity is described. And methods for utilizing data from bench scale testing of brine and core samples to optimize injection well design are presented. Currently available methods and equipment provide data which enable the optimum design of injection wells through analysis of cores taken from injection zones. These methods also provide a means of identifying and correcting well injection problems. Methods described in this report are: bulk density measurement; porosity measurement; pore size distribution analysis; permeability measurement; formation grain size distribution analysis; core description (lithology) and composition; amount, type and distribution of clays and shales; connate water analysis; consolidatability of friable reservoir rocks; grain and pore characterization by scanning electron microscopy; grain and pore characterization by thin section analysis; permeability damage and enhancement tests; distribution of water-borne particles in porous media; and reservoir matrix acidizing effectiveness. The precise methods of obtaining this information are described, and their use in the engineering of injection wells is illustrated by examples, where applicable. (MHR)

  19. Non-Fickian dispersion in porous media: 1. Multiscale measurements using single-well injection withdrawal tracer tests

    NASA Astrophysics Data System (ADS)

    Gouze, P.; Le Borgne, T.; Leprovost, R.; Lods, G.; Poidras, T.; Pezard, P.

    2008-06-01

    We present a set of single-well injection withdrawal tracer tests in a paleoreef porous reservoir displaying important small-scale heterogeneity. An improved dual-packer probe was designed to perform dirac-like tracer injection and accurate downhole automatic measurements of the tracer concentration during the recovery phase. By flushing the tracer, at constant flow rate, for increasing time duration, we can probe distinctly different reservoir volumes and test the multiscale predictability of the (non-Fickian) dispersion models. First we describe the characteristics, from microscale to meter scale, of the reservoir rock. Second, the specificity of the tracer test setup and the results obtained using two different tracers and measurement methods (salinity-conductivity and fluorescent dye-optical measurement, respectively) are presented. All the tracer tests display strongly tailed breakthrough curves (BTC) consistent with diffusion in immobile regions. Conductivity results, measured over 3 orders of magnitude only, could have been easily interpreted by the conventional mobile-immobile (MIM) diffusive mass transfer model of asymptotic log-log slope of -2. However, the fluorescent dye sensor, which allows exploring much lower concentration values, shows that a change in the log-log slope occurs at larger time with an asymptotic value of -1.5, corresponding to the double-porosity model. These results suggest that the conventional, one-slope MIM transfer rate model is too simplistic to account for the real multiscale heterogeneity of the diffusion-dominant fraction of the reservoir.

  20. Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2015-12-01

    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.

  1. Contributing recharge areas to water-supply wells at Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Sheets, R.A.

    1994-01-01

    Wright-Patterson Air Force Base, in southwestern Ohio, has operated three well fields--Area B, Skeel Road, and the East Well Fields--to supply potable water for consumption and use for base activities. To protect these well fields from contamination and to comply with the Ohio Wellhead Protection Plan, the Base is developing a wellhead-protection program for the well fields. A three-dimensional, steady-state ground-water-flow model was developed in 1993 to simulate heads in (1) the buried-valley aquifer system that is tapped by the two active well fields, and in (2) an upland bedrock aquifer that may supply water to the wells. An advective particle-tracking algorithm that requires estimated porosities and simulated heads was used to estimate ground-water-flow pathlines and traveltimes to the active well fields. Contributing recharge areas (CRA's)--areas on the water table that contribute water to a well or well field--were generated for 1-, 5-, and 10-year traveltimes. Results from the simulation and subsequent particle tracking indicate that the CRA's for the Skeel Road Well Fields are oval and extend north- ward, toward the Mad River, as pumping at the well field increases. The sizes of the 1-, 5-, and 10-year CRA's of Skeel Road Well Field, under maximum pumping conditions, are approximately 0.5, 1.5 and 3.2 square miles, respectively. The CRA's for the Area B Well Field extend to the north, up the Mad River Valley; as pumping increases at the well field, the CRA's extend up the Mad River Valley under Huffman Dam. The sizes of the 1-, 5-, and 10-year CRA's of Area B Well Field, under maximum pumping conditions, are approximately 0.1, 0.5, and 0.9 square miles, respectively. The CRA's for the East Well Field are affected by nearby streams under average pumping conditions. The sizes of the 1-, 5-, and 10-year CRA's of the East Well Field, under maximum pumping conditions, are approximately 0.2, 1.2, and 2.4 square miles, respectively. However, as pumping increases

  2. Area 2 Bitcutter and Postshot Injection Wells Corrective Action Unit 90 Post-Closure Inspection Annual Report

    SciTech Connect

    Bechtel Nevada

    1999-08-01

    A Post-Closure Program was agreed upon in the 1996 Department of Energy, Nevada Operations Office, Resource Conservation and Recovery Act Closure Report Area 2 Bitcutter and Postshot Containment Shops Injection Wells Corrective Action Unit 90, Report No. DOE/NV--461. Post Closure care consists of: Site inspections done twice a year to evaluate the condition of the unit; Verify that the site is secure and the gates are locked; Note any subsidence or deficiencies that may compromise the integrity of the unit; Remedy those deficiencies within 60 days of discovery; Discuss them in the annual report. The report included an executive summary, copies of the inspection checklist, and recommendations and conclusions. The Post-Closure Inspection Checklists are found in Attachment A and a copy of the field notes are found in Attachment B.

  3. HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR

    EPA Science Inventory

    Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...

  4. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  5. Study of Injection of Helium into Supersonic Air Flow Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seaholtz, Richard G.; Buggele, Alvin E.

    1997-01-01

    A study of the transverse injection of helium into a Mach 3 crossflow is presented. Filtered Rayleigh scattering is used to measure penetration and helium mole fraction in the mixing region. The method is based on planar molecular Rayleigh scattering using an injection-seeded, frequency-doubled ND:YAG pulsed laser and a cooled CCD camera. The scattered light is filtered with an iodine absorption cell to suppress stray laser light. Preliminary data are presented for helium mole fraction and penetration. Flow visualization images obtained with a shadowgraph and wall static pressure data in the vicinity of the injection are also presented.

  6. MEASUREMENT OF FUGITIVE EMISSIONS AT A LANDFILL PRACTICING LEACHATE RECIRCULATION AND AIR INJECTION

    EPA Science Inventory

    Recently research has begun on operating bioreactor landfills. The bioreactor process involves the injection of liquid into the waste mass to accelerate waste degradation. Arcadis and EPA conducted a fugitive emissions characterization study at the Three Rivers Solid Waste Techno...

  7. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    NASA Astrophysics Data System (ADS)

    Mehnke, Frank; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Rass, Jens; Wernicke, Tim; Weyers, Markus; Kneissl, Michael

    2014-08-01

    The design and Mg-doping profile of AlN/Al0.7Ga0.3N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm2.

  8. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect

    Mehnke, Frank Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  9. Air-Stable, Cross-Linkable, Hole-Injecting/Transporting Interlayers for Improved Charge Injection in Organic Light-Emitting Diodes

    SciTech Connect

    Li,J.; Marks, T.

    2008-01-01

    Modification of inorganic electrode surfaces has attracted great attention in the quest to optimize organic optoelectronic devices. An air-stable, cross-linkable trimethoxysilane functionalized hole-transporting triarylamine (4,4'-bis[(p-trimethoxysilylpropylphenyl)phenylamino]biphenyl, TPD-[Si(OMe)3]2) has been synthesized and self-assembled or spin-coated onto tin-doped indium oxide (ITO) anode surfaces to form monolayers or multilayer siloxane films, respectively. The modified ITO surfaces were characterized by advancing aqueous contact angle, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and cyclic voltammetry (CV). Increased surface work function and enhanced ITO-hole transport layer (HTL) contact via robust covalent bonding are expected to facilitate hole injection from the ITO anode, resulting in organic light-emitting diode (OLED) performance enhancement versus that of a device without such interlayers. For a device having the structure ITO/spin-coated-TPD-[Si(OMe)3]2 from aqueous alcohol + acetic acid blend solution (40 nm)/NPB (20 nm)/Alq (60 nm)/LiF (1 nm)/Al (100 nm), a maximum light output of 32800 cd/m2, a 4.25 V turn-on voltage, and a maximum current efficiency of 5.8 cd/A is achieved. This performance is comparable to or superior to that of analogous devices prepared with analogous trichorosilyl precursors. The air-stable interlayer material developed here is also applicable to large-area coating techniques.

  10. Comparison of Microbial Community Compositions of Injection and Production Well Samples in a Long-Term Water-Flooded Petroleum Reservoir

    PubMed Central

    Ren, Hong-Yan; Zhang, Xiao-Jun; Song, Zhi-yong; Rupert, Wieger; Gao, Guang-Jun; Guo, Sheng-xue; Zhao, Li-Ping

    2011-01-01

    Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE fingerprints showed that the similarities of the bacterial communities between the injection water and production waters were lower than between the two production waters. It was also observed that the archaeal composition among these three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial operational taxonomic units (OTUs) and 5 out of 17 archaeal OTUs in the injection water were detected in the production waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively, suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same injection water. PMID:21858049

  11. Bulk organic matter and nitrogen removal from reclaimed water during groundwater recharge by enhanced direct injection well.

    PubMed

    Xuan, Zhao; Meng, Zhang; Xuzhou, Cheng

    2009-01-01

    Water shortages lead to increasing attention to artificial groundwater recharge by reclaimed water. A new kind of approach, enhanced direct injection-well recharge (EnDir) consisting of short- and long-term soil treatment, is considered to be suitable for large cities in China. In this paper, EnDir was simulated by soil columns in the laboratory with the secondary effluent as raw water that was ozonated before EnDir. Laboratory-scale experiments demonstrate that the short-term part of EnDir can remove 47 to 60% dissolved organic carbon (DOC), convert 5 mg/L of ammonia-nitrogen to equivalent nitrate-nitrogen, and offer preferred removal of non-UV-absorbing organics. Soluble microbial byproducts and fulvic-acid-like materials can be ozonated and then partially biodegraded. The residuals of organic matter as a refractory fraction are biodegraded continuously during the long-term part. The DOC value of 1.8 to 2.5 mg/L can be reached, and 40% of organic matter with molecular weight less than 500 Da can be removed after full-term EnDir. PMID:19280901

  12. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Alfred Wickline

    2008-03-01

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: •06-23-02, U-6a/Russet Testing Area •09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546.

  13. Numerical simulation of a turbulent flow with droplets injection in annular heated air tube using the Reynolds stress model

    NASA Astrophysics Data System (ADS)

    Merouane, H.; Bounif, A.; Abidat, M.

    2013-12-01

    This work presents computational fluid dynamics (CFD) simulations of single-phase and two-phase flow. The droplets are injected in annular heated air tube. The numerical simulation is performed by using a commercial CFD code witch uses the finite-volume method to discretize the equations of fluid flow. The Reynolds-averaged Navier-Stokes equations with Reynolds stress model were used in the computation. The governing equations are solved by using a SIMPLE algorithm to treat the pressure terms in the momentum equations. The results of prediction are compared with the experimental data.

  14. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Stephen C. Ruppel

    2006-02-01

    The field operator, Goldrus Producing Company, has been unable to secure funding needed to continue the field demonstration phase of the project. Accordingly, we have temporarily halted all project activities until necessary funding is obtained. Goldrus felt confident that funds could be acquired by third quarter 2005 at which time it would have been necessary to request a project extension to complete the originally designed study. A project extension was granted but it appears Goldrus will have difficulty securing funds. We Bureau of Economic Geology are investigating a new approach on how to fulfill our initial objectives of promoting high-pressure air injection of Ellenburger reservoirs.

  15. ENHANCED CONTACT OF COSOLVENT AND DNAPL IN POROUS MEDIA BY CONCURRENT INJECTION OF COSOLVENT AND AIR

    EPA Science Inventory

    Remediation of sites contaminated by dense nonaqueous phase liquids (DNAPLS) is a major
    environmental problem and cosolvent flooding is proposed as a remedial alternative. The
    efficacy of cosolvent flooding is a function of the degree of mixing between the injected
    remed...

  16. The injection of air/oxygen bubble into the anterior chamber of rabbits as a treatment for hyphema in patients with sickle cell disease.

    PubMed

    Ayintap, Emre; Keskin, Uğurcan; Sadigov, Fariz; Coskun, Mesut; Ilhan, Nilufer; Motor, Sedat; Semiz, Hilal; Parlakfikirer, Nihan

    2014-01-01

    Purpose. To investigate the changes of partial oxygen pressure (PaO2) in aqueous humour after injecting air or oxygen bubble into the anterior chamber in sickle cell hyphema. Methods. Blood samples were taken from the same patient with sickle cell disease. Thirty-two rabbits were divided into 4 groups. In group 1 (n = 8), there was no injection. Only blood injection constituted group 2 (n = 8), both blood and air bubble injection constituted group 3 (n = 8), and both blood and oxygen bubble injection constituted group 4 (n = 8). Results. The PaO2 in the aqueous humour after 10 hours from the injections was 78.45 ± 9.9 mmHg (Mean ± SD) for group 1, 73.97 ± 8.86 mmHg for group 2, 123.35 ± 13.6 mmHg for group 3, and 306.47 ± 16.5 mmHg for group 4. There was statistically significant difference between group 1 and group 2, when compared with group 3 and group 4. Conclusions. PaO2 in aqueous humour was increased after injecting air or oxygen bubble into the anterior chamber. We offer to leave an air bubble in the anterior chamber of patients with sickle cell hemoglobinopathies and hyphema undergoing an anterior chamber washout. PMID:24808955

  17. Corrective Action Investigation Plan for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, Nevada Test Site, Nevada

    SciTech Connect

    DOE /NV

    2000-12-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 335, Area 6 Injection Well and Drain Pit, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 335 consists of three Corrective Action Sites (CASs). The CAU is located in the Well 3 Yard in Area 6 at the Nevada Test Site. Historical records indicate that the Drain Pit (CAS 06-23-03) received effluent from truck-washing; the Drums/Oil Waste/Spill (CAS 06-20-01) consisted of four 55-gallon drums containing material removed from the Cased Hole; and the Cased Hole (CAS 06-20-02) was used for disposal of used motor oil, wastewater, and debris. These drums were transported to the Area 5 Hazardous Waste Accumulation Site in July 1991; therefore, they are no longer on site and further investigation or remediation efforts are not required. Consequently, CAS 06-20-01 will be closed with no further action and details of this decision will be described in the Closure Report for this CAU. Any spills that may have been associated with this CAS will be investigated and addressed under CAS 06-20-02. Field investigation efforts will be focused on the two remaining CASs. The scope of the investigation will center around identifying any contaminants of potential concern (COPCs) and, if present, determining the vertical and lateral extent of contamination. The COPCs for the Drain Pit include: total volatile/ semivolatile organic compounds, total petroleum hydrocarbons (gasoline-and diesel-range organics), ethylene glycol monobutyl ether, polychlorinated biphenyls, total Resource Conservation and Recovery Act metals, and radionuclides. The COPCs for the Cased Hole include: total volatile/ semivolatile organic compounds, total petroleum hydrocarbons (diesel-range organics only), and total Resource Conservation an d

  18. The effect of microstructure and chromium alloying content to the corrosion resistance of low-alloy steel well tubing in seawater injection service

    SciTech Connect

    Nice, P.I.; Ueda, M.

    1998-12-31

    Failure analysis of corroded well tubing steel grade L-80, removed from three separate seawater injection wells on two of their operated fields has revealed the importance of steel microstructure and alloying chemistry. In the first seawater injection well, marked differences in the severity of the corrosion damage between individual tubing joints could be observed. In the other two seawater injection wells it was observed that one well tubing had suffered severe corrosion damage, whereas the other wells tubing had suffered no corrosion damage. This was despite the fact that these two wells were completed within three months of one another and received seawater through the same topside deaeration treatment facility. Analysis of these tubing steels chemistry and microstructure has revealed that the tubing steel containing a mixed microstructure of tempered martensite and bainite suffered severe corrosion damage. Similarly, the tubing steel with a tempered martensitic microstructure without chromium addition (< 0.1 wt%) also suffer severe corrosion damage. But, a tubing steel with the combination of a tempered martensitic microstructure and chromium content > 0.5 wt% suffered little or no corrosion damage. These findings stress the significant role that the microstructure and alloying chemistry play in enhancing the corrosion resistance performance of grade L-8O tubing steel for seawater injection service.

  19. Autoignition in a premixing-prevaporizing fuel duct using 3 different fuel injection systems at inlet air temperatures to 1250 K

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1983-01-01

    Conditions were determined in a continuous-flow, premixing-prevaporizing duct at which autoignition occurred. Test conditions were representative of an advanced, regenerative-cycle, automotive gas turbine. The test conditions inlet air temperatures from 600 to 1250 K (a vitiated preheater was used), pressures from 170 to 600 kPa, air velocities of 10 to 30 m/sec, equivalence ratios from 0.3 to 1.0, mixing lengths from 10 to 60 cm, and residence times of 2 to 100 ms. The fuel was diesel number 2. The duct was insulated and had an inside diameter of 12 cm. Three different fuel injection systems were used: One was a single simplex pressure atomizer, and the other two were multiple-source injectors. The data obtained with the simplex and one of the multiple-source injectors agreed satisfactorily with the references and correlated with an Arrenhius expression. The data obtained with the other multiple source injector, which used multiple cones to improve the fuel-air distribution, did not correlate well with residence time.

  20. Investigation of the mechanism in Rijke pulse combustors with tangential air and fuel injection. Final report

    SciTech Connect

    Zinn, B.T.; Jagoda, J.I.; Daniel, B.R.; Bai, T.

    1993-03-01

    To study the mechanisms that control the operation of this combustor, an experimental setup is developed with access for detailed optical measurements. Propane is employed as fuel because the absence of liquid drops and combustion generated particulates in the combustion region significantly simplifies the optical diagnostics. The experimental techniques utilized include acoustic pressure measurements, space and time resolved radiation measurements, steady temperature measurements, exhaust flow chemical analysis, high speed video and intensified images of the reacting flow field by a computer based CCD camera imaging system. Flow visualization by the imaging system and the results from radiation intensity distribution measurements suggest that the periodic combustion processes caused by periodic vortex shedding and impingement provide the energy required to sustain the pressure oscillations. High radiation intensity occurs during a relatively short period of time and is in phase with the pressure oscillations, indicating that Rayleigh`s criterion is satisfied. Periodic variations of the air and fuel flow rates and, consequently, the air/fuel ratio of the reacting mixture inside the combustor appear to be another mechanism that contributes to the occurrence of periodic combustion and heat release processes. The presence of this mechanism has been uncovered by acoustic pressure measurements that revealed the presence of traveling pressure waves inside the air and fuel feed lines. These traveling waves produce periodic fuel and air feed rates which, in turn, result in periodic combustion and heat release processes within the combustor.

  1. Temperature histories in geothermal wells: Survey of rock thermomechanical properties and drilling, production, and injection case studies

    NASA Astrophysics Data System (ADS)

    Goodman, M. A.

    1981-07-01

    Thermal and mechanical properties for geothermal formations are tabulated for a range of temperatures and stress conditions. Data were obtained from the technical literature and direct contacts with industry. Heat capacity, conductivity, diffusivity and undisturbed geothermal profiles are presented. Mechanical properties include Youngs modulus and Poisson ratio. Two GEOTEMP thermal simulations of drilling, production and injection are reported. Actual drilling, production, and injection histories were simulated. Results are documented in the form of printed GEOTEMP output and plots of temperatures versus depth, radius, and time. Wellbore temperatures during drilling as a function of depth; bit temperatures over the drilling history; cement temperatures from setting to the end of drilling; and casing and formation temperatures during drilling, production, and injection are discussed.

  2. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olson

    2005-01-01

    The Bureau of Economic Geology (BEG) and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology (BEG) and the Department of Petroleum and Geosystems Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data were to be generated during the demonstration phase to improve the accuracy of the reservoir model. The demonstration phase has been delayed by Goldrus because of funding problems. Since the first of the year, Goldrus has been active in searching for partners to help finance the project. After financial support is obtained, the demonstration phase of the project will proceed. Since just after the beginning of the year, BEG has curtailed project activities and spending of DOE funds except for the continued support of one engineering student. This student has now completed his work and his thesis was reported on in the last semi-annual report. We plan to recommence our work on the project as soon as the operator obtains necessary funding to carry out the demonstration phase of the project. In order to complete all activities specified in the proposal, we requested and received an extension of the project to September 30, 2005. We are confident that Goldrus will obtain the necessary funding to continue and that we can complete the project by the end of the extension data. We strongly believe that the results of

  3. Modeling single-well injection experiments with delayed extraction in fractured bedrock aquifers - applications in CO2 geosequestration research

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Stute, M.; Zakharova, N. V.; Matter, J.; Takahashi, T.; O'Mullan, G. D.; Goldberg, D.

    2013-12-01

    Characterization of the solute transport of anthropogenically introduced solutions in fractured bedrock aquifers has practical implications on environmental problems related to CO2 geological sequestration, hydraulic fracturing, and environmental fracturing remediation. Tracer tests using conservative chemicals, such as push-pull experiments in single borehole, provide a direct and reliable method to estimate the solute transport and have been used as a basis for further understanding of the biogeochemical processes in the subsurface. Obtaining analytical solutions often requires simplification of the hydrogeological processes and usually is not practical or very difficult. For example, environmental studies often require a delayed extraction to increase the reaction time and amplify the biogeochemical signals during the push-pull experiments. Simulating these processes by numerical models demands large computation resources, but can reveal the complexity and heterogeneity of aquifer and hydrological processes. Testing the sensitivity of model parameters in such simulations allows for an understanding of the most significant parameters of these processes. In this study, seven push-pull experiments with delayed extraction after the introduction of chemical salts (e.g. NaCl and KBr), gases (SF6, SF5CF3), or isotopic tracers (18O, 13C) were conducted in a test well in the Newark Basin at two different depths. Fracture zones at these depths correspond to the contact zone (232-240 m) between the Palisades diabase sill and the underlying Newark Basin sand and clay sediments and an interval (362-366 m) within the sedimentary rock formations. This study investigates the feasibility of CO2 geological sequestration and the potential environmental impact in the event of CO2 leakage into overlying groundwater aquifers in sedimentary formations. Analytical solutions were adapted using non-Fickian models to fit the observed tracer breakthrough curves. Normalized tracer

  4. Single well field injection test of humate to enhance attenuation of uranium and other radionuclides in an acidic plume

    SciTech Connect

    Denham, M.

    2014-09-30

    This report documents the impact of the injected humate on targeted contaminants over a period of 4 months and suggests it is a viable attenuation-based remedy for uranium, potentially for I-129, but not for Sr-90. Future activities will focus on issues pertinent to scaling the technology to full deployment.

  5. Numerical simulation study of silica and calcite dissolution around a geothermal well by injecting high pH solutions with chelating agent.

    SciTech Connect

    Xu, Tianfu; Rose, Peter; Fayer, Scott; Pruess, Karsten

    2009-02-01

    Dissolution of silica, silicate, and calcite minerals in the presence of a chelating agent (NTA) at a high pH has been successfully performed in the laboratory using a high-temperature flow reactor. The mineral dissolution and porosity enhancement in the laboratory experiment has been reproduced by reactive transport simulation using TOUGHREACT. The chemical stimulation method has been applied by numerical modeling to a field geothermal injection well system, to investigate its effectiveness. Parameters from the quartz monzodiorite unit at the Enhanced Geothermal System (EGS) site at Desert Peak (Nevada) were used. Results indicate that the injection of a high pH chelating solution results in dissolution of both calcite and plagioclase minerals, and avoids precipitation of calcite at high temperature conditions. Consequently reservoir porosity and permeability can be enhanced especially near the injection well.

  6. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  7. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use

    PubMed Central

    Rostami, Ali A.; Pithawalla, Yezdi B.; Liu, Jianmin; Oldham, Michael J.; Wagner, Karl A.; Frost-Pineda, Kimberly; Sarkar, Mohamadi A.

    2016-01-01

    Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP) use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate), device specifications (aerosol mass delivery, e-liquid composition), and use behavior (number of users and usage frequency). Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time. PMID:27537903

  8. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use.

    PubMed

    Rostami, Ali A; Pithawalla, Yezdi B; Liu, Jianmin; Oldham, Michael J; Wagner, Karl A; Frost-Pineda, Kimberly; Sarkar, Mohamadi A

    2016-01-01

    Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP) use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate), device specifications (aerosol mass delivery, e-liquid composition), and use behavior (number of users and usage frequency). Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time. PMID:27537903

  9. Temperature dependent investigation of carrier transport, injection, and densities in 808 nm AlGaAs multi-quantum-well active layers for VCSELs

    NASA Astrophysics Data System (ADS)

    Engelhardt, Andreas P.; Kolb, Johanna S.; Römer, Friedhard; Weichmann, Ulrich; Moench, Holger; Witzigmann, Bernd

    2014-05-01

    The electro-optical efficiency of semiconductor vertical-cavity surface-emitting lasers (VCSELs) strongly depends on the efficient carrier injection into the quantum wells (QWs) in the laser active region. However, carrier injection degrades with increasing temperature which limits the VCSEL performance particularly in high power applications where self heating imposes high temperatures in operation. By simulation we investigate the transport of charge carriers in 808 nm AlGaAs multi-quantum-well active layers with special attention to the temperature dependence of carrier injection into the QWs. Experimental reference data was extracted from oxide-confined, top-emitting VCSELs. The transport simulations follow a drift-diffusion-model complemented by a customized, energy-resolved, semi-classical carrier capture theory. QW gain was calculated in the screened Hartree-Fock approximation with band structures from 8x8 k.p-theory. Using the gain data and by setting losses and the optical confinement factor according to experimental reference results, the appropriate threshold condition and threshold carrier densities in the QWs for a VCSEL are established in simulation for all transport considerations. With the combination of gain and transport model, we can explain experimental reference data for the injection efficiency and threshold current density. Our simulations show that the decreasing injection efficiency with temperature is not solely due to increased thermionic escape of carriers from the QWs. Carrier injection is also hampered by state filling in the QWs initiated from higher threshold carrier densities with temperature. Consequently, VCSEL properties not directly related to the active layer design like optical out-coupling or internal losses link the temperature dependent carrier injection to VCSEL mirror design.

  10. Equivalent ambipolar carrier injection of electrons and holes with Au electrodes in air-stable field effect transistors

    SciTech Connect

    Kanagasekaran, Thangavel E-mail: Shimotani@m.tohoku.ac.jp Ikeda, Susumu; Kumashiro, Ryotaro; Shimotani, Hidekazu E-mail: Shimotani@m.tohoku.ac.jp Shang, Hui; Tanigaki, Katsumi E-mail: Shimotani@m.tohoku.ac.jp

    2015-07-27

    Carrier injection from Au electrodes to organic thin-film active layers can be greatly improved for both electrons and holes by nano-structural surface control of organic semiconducting thin films using long-chain aliphatic molecules on a SiO{sub 2} gate insulator. In this paper, we demonstrate a stark contrast for a 2,5-bis(4-biphenylyl)bithiophene (BP2T) active semiconducting layer grown on a modified SiO{sub 2} dielectric gate insulator between two different modifications of tetratetracontane and poly(methyl methacrylate) thin films. Important evidence that the field effect transistor (FET) characteristics are independent of electrode metals with different work functions is given by the observation of a conversion of the metal-semiconductor contact from the Schottky limit to the Bardeen limit. An air-stable light emitting FET with an Au electrode is demonstrated.

  11. Two-year survey of earthquakes and injection/production wells in the Eagle Ford Shale, Texas, prior to the MW4.8 20 October 2011 earthquake

    NASA Astrophysics Data System (ADS)

    Frohlich, Cliff; Brunt, Michael

    2013-10-01

    Between November 2009 and September 2011 the EarthScope USArray program deployed ∼25 temporary seismograph stations on a 70-km grid in south-central Texas between 27°N-31°N and 96°W-101°W. This area includes the Eagle Ford Shale. For decades this geographic region has produced gas and oil from other strata using conventional methods, but recent developments in hydrofracturing technology has allowed extensive development of natural gas resources from within the Eagle Ford. Our study surveys small-magnitude seismic events and evaluates their correlation with fluid extraction and injection in the Eagle Ford, identifying and locating 62 probable earthquakes, including 58 not reported by the U.S. Geological Survey. The 62 probable earthquakes occur singly or in clusters at 14 foci; of these foci, two were situated near wells injecting recently increased volumes of water; eight were situated near wells extracting recently increased volumes of oil and/or water; and four were not situated near wells reporting significant injection/extraction increases. Thus in this region, while the majority of small earthquakes may be triggered/induced by human activity, they are more often associated with fluid extraction than with injection. We also investigated the MW4.8 20 October 2011 Fashing earthquake-the largest historically reported earthquake in south-central Texas-that occurred two weeks after the removal of the temporary USArray stations. A field study indicated that the highest-intensity (MMI VI) region was about 10 km south of 2010-2011 foreshock activity, and that there were no high-volume injection wells within 20 km of the MMI V-VI region or the foreshocks. However, the 20 October 2011 earthquake did coincide with a significant increase in oil/water extraction volumes at wells within the MMI V-VI region, and this was also true for previous earthquakes felt at Fashing in 1973 and 1983. In contrast, our study found significant increases in injection prior to an mbLG3

  12. REVIEW AND ASSESSMENT OF DEEP-WELL INJECTION OF HAZARDOUS WASTE. VOLUME IV. APPENDICES E, F, G, H, I, AND J

    EPA Science Inventory

    The report is comprised of Appendices E, F, G, H, I, and J. Appendix E provides limited case histories of actual industrial waste injection well operations and provide examples of unacceptable and acceptable operations. Appendix F discusses recent research on microbiological aspe...

  13. Children's well-being at schools: Impact of climatic conditions and air pollution.

    PubMed

    Salthammer, Tunga; Uhde, Erik; Schripp, Tobias; Schieweck, Alexandra; Morawska, Lidia; Mazaheri, Mandana; Clifford, Sam; He, Congrong; Buonanno, Giorgio; Querol, Xavier; Viana, Mar; Kumar, Prashant

    2016-09-01

    Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes

  14. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  15. Revised Earthquake Catalog and Relocated Hypocenters Near Fluid Injection Wells and the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico

    NASA Astrophysics Data System (ADS)

    Edel, S.; Bilek, S. L.; Garcia, K.

    2014-12-01

    Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.

  16. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    SciTech Connect

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern

  17. Using Oil and Gas Well Log Records to Understand Possible Connections Between Wastewater Injection Zones and Usable Groundwater Aquifers in California

    NASA Astrophysics Data System (ADS)

    Shimabukuro, D.; Haugen, E. A.; Battistella, C.; Treguboff, E. W.; Kale, J. M.

    2015-12-01

    Although the disposal of produced water in wastewater injection wells has been occurring in California for decades, it is not clear whether injected fluids may be migrating into usable groundwater aquifers. One problem is the poor characterization of federally-protected (<10,000 ppm TDS) water in the state. Another is the lack of publically-accessible information about the hydrological properties of confining strata adjacent to injection zones. In effort to better understand these two problems, we have begun studying the archived oil and gas well records collected by the California Division of Oil, Gas, and Geothermal Resources (DOGGR). These scanned records contain two useful sources of information. First, geophysical well logs, such those measuring resistivity and porosity, can be used to determine aquifer salinity. This allows a three-dimensional understanding of the distribution of protected groundwater. Second, driller's logs contain lithological descriptions at depth. These lithologies can be used to construct a three-dimensional texture model, which can then be used in a groundwater flow model. A large number of undergraduate researchers at CSU Sacramento and CSU Long Beach have been collecting information on well records in the Ventura Basin and the Southern San Joaquin Valley. Each well record is examined with basic metadata entered into an online database in an effort to identify appropriate geophysical well logs and driller's logs. High-quality driller's logs are coded and used to create three-dimensional framework models for each well field. The geophysical logs are digitized and will be used to determine aquifer salinity. In addition, we are using information from the DOGGR well records to investigate wellbore integrity, waste disposal and waterflood injection volumes, and the possibility of induced seismicity. This project is part of the broader effort of the California State Water Resources Control Board to implement Senate Bill 4.

  18. Injectable hybrid hydrogels of hyaluronic Acid crosslinked by well-defined synthetic polycations: preparation and characterization in vitro and in vivo.

    PubMed

    Cross, Daisy; Jiang, Xiaoze; Ji, Weihang; Han, Wenqing; Wang, Chun

    2015-05-01

    An injectable hybrid hydrogel system was developed consisting of hyaluronic acid (HA) crosslinked by well-defined block copolymers of the cationic poly(2-aminoethyl methacrylate) (PAEM) and polyethylene glycol (PEG). Robust, shear-thinning hybrid hydrogel was produced by mixing HA and 4-arm star PEG-PAEM block copolymer at 1:1 charge ratio. The encapsulation and release of highly viable human mesenchymal stem cells in physiological media was demonstrated. After subcutaneous injection of the hybrid gel in mice, mild but resolvable inflammatory response was observed. This hybrid gel could serve as a model system for studying structure-function relationship of polyelectrolyte hydrogels and as a practical injectable biomaterial for medical applications. PMID:25630277

  19. Temperature-dependent spin injection dynamics in InGaAs/GaAs quantum well-dot tunnel-coupled nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, S. L.; Kiba, T.; Yang, X. J.; Takayama, J.; Murayama, A.

    2016-03-01

    Time-resolved optical spin orientation spectroscopy was employed to investigate the temperature-dependent electron spin injection in In0.1Ga0.9As quantum well (QW) and In0.5Ga0.5As quantum dots (QDs) tunnel-coupled nanostructures with 4, 6, and 8 nm-thick GaAs barriers. The fast picosecond-ranged spin injection from QW to QD excited states (ES) was observed to speed up with temperature, as induced by pronounced longitudinal-optical (LO)-phonon-involved multiple scattering process, which contributes to a thermally stable and almost fully spin-conserving injection within 5-180 K. The LO-phonon coupling was also found to cause accelerated electron spin relaxation of QD ES at elevated temperature, mainly via hyperfine interaction with random nuclear field.

  20. Lithologic, natural-gamma, grain-size, and well-construction data for Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; De Roche, Jeffrey T.

    1991-01-01

    Wright-Patterson Air Force Base, in southwestern Ohio, overlies a buried-valley aquifer. The U.S. Geological Survey installed 35 observation wells at 13 sites on the base from fall 1988 through spring 1990. Fourteen of the wells were completed in bedrock; the remaining wells were completed in unconsolidated sediments. Split-spoon and bedrock cores were collected from all of the bedrock wells. Shelby-tube samples were collected from four wells. The wells were drilled by either the cable-tool or rotary method. Data presented in this report include lithologic and natural-gamma logs, and, for selected sediment samples, grain-size distributions of permeability. Final well-construction details, such as the total depth of well, screened interval, and grouting details, also are presented.

  1. Cartilage Tissue Engineering Application of Injectable Gelatin Hydrogel with In Situ Visible-Light-Activated Gelation Capability in Both Air and Aqueous Solution

    PubMed Central

    Lin, Hang; Cheng, Anthony Wai-Ming; Alexander, Peter G.; Beck, Angela M.

    2014-01-01

    Chondroprogenitor cells encapsulated in a chondrogenically supportive, three-dimensional hydrogel scaffold represents a promising, regenerative approach to articular cartilage repair. In this study, we have developed an injectable, biodegradable methacrylated gelatin (mGL)–based hydrogel capable of rapid gelation via visible light (VL)–activated crosslinking in air or aqueous solution. The mild photocrosslinking conditions permitted the incorporation of cells during the gelation process. Encapsulated human-bone-marrow-derived mesenchymal stem cells (hBMSCs) showed high, long-term viability (up to 90 days) throughout the scaffold. To assess the applicability of the mGL hydrogel for cartilage tissue engineering, we have evaluated the efficacy of chondrogenesis of the encapsulated hBMSCs, using hBMSCs seeded in agarose as control. The ability of hBMSC-laden mGL constructs to integrate with host tissues after implantation was further investigated utilizing an in vitro cartilage repair model. The results showed that the mGL hydrogel, which could be photopolymerized in air and aqueous solution, supports hBMSC growth and TGF-β3-induced chondrogenesis. Compared with agarose, mGL constructs laden with hBMSCs are mechanically stronger with time, and integrate well with native cartilage tissue upon implantation based on push-out mechanical testing. VL-photocrosslinked mGL scaffold thus represents a promising scaffold for cell-based repair and resurfacing of articular cartilage defects. PMID:24575844

  2. Potential Emissions of Tritium in Air from Wells on the Nevada National Security Site

    SciTech Connect

    Warren, R.

    2012-10-08

    This slide-show discusses the Nevada National Security Site (NNSS) and tritium in the groundwater. It describes the wells and boreholes and potential airflow from these sources. Monitoring of selected wells is discussed and preliminary results are presented.

  3. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    SciTech Connect

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decrease of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.

  4. Numerical Analysis of Flow Evolution in a Helium Jet Injected into Ambient Air

    NASA Technical Reports Server (NTRS)

    Satti, Rajani P.; Agrawal, Ajay K.

    2005-01-01

    A computational model to study the stability characteristics of an evolving buoyant helium gas jet in ambient air environment is presented. Numerical formulation incorporates a segregated approach to solve for the transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum using a staggered grid method. The operating parameters correspond to the Reynolds number varying from 30 to 300 to demarcate the flow dynamics in oscillating and non-oscillating regimes. Computed velocity and concentration fields were used to analyze the flow structure in the evolving jet. For Re=300 case, results showed that an instability mode that sets in during the evolution process in Earth gravity is absent in zero gravity, signifying the importance of buoyancy. Though buoyancy initiates the instability, below a certain jet exit velocity, diffusion dominates the entrainment process to make the jet non-oscillatory as observed for the Re=30 case. Initiation of the instability was found to be dependent on the interaction of buoyancy and momentum forces along the jet shear layer.

  5. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    SciTech Connect

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  6. 40 CFR 144.83 - Do I need to notify anyone about my Class V injection well?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... follows: (A) Sand or other backfill wells (40 CFR 144.81(8) and 146.5(e)(8) of this chapter); (B) Geothermal energy recovery wells (40 CFR 144.81(11) and 146.5 (e)(12) of this chapter); (C) Brine return flow wells (40 CFR 144.81(13) and 146.5 (e)(14) of this chapter); (D) Wells used in experimental...

  7. Assessment of Well Safety from Pressure and Temperature-Induced Damage during CO2 Injection in Deep Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Delfs, J.; Goerke, U.; Kolditz, O.

    2013-12-01

    Carbon dioxide Capture and Storage (CCS) technology is known for disposing a specific amount of CO2 from industrial release of flue gases into a suitable storage where it stays for a defined period of time in a safe way. Types of storage sites for CO2 are depleted hydrocarbon reservoirs, unmineable coal seams and saline aquifers. In this poster, we address the problem of CO2 sequestration into deep saline aquifers. The main advantage of this kind of site for the CO2 sequestration is its widespread geographic distribution. However, saline aquifers are very poorly characterized and typically located at one kilometer depth below the earth's surface. To demonstrate that supercritical CO2 injection into deep saline aquifers is technically and environmentally safe, it is required to perform thermo-hydro-mechanical analysis of failure moods with numerical models. In the poster, we present simple process-catching benchmark for testing the scenario of compressed CO2 injection into a multi- layered saline aquifer.The pores of the deformable matrix are initially filled with saline water at hydrostatic pressure and geothermal temperature conditions. This benchmark investigates (i) how the mechanical and thermal stresses enhance the permeability for CO2 migration; and (ii) subsequent failures mode, i.e., tensile, and shear failures. The tensile failure occurs when pore fluid pressure exceeds the principle stress whereas the Mohr-Coulomb failure criterion defines the shear failure mode. The thermo-hydro-mechanical (THM) model is based on a ';multi-componential flow' module . The coupled system of balance equations is solvedin the monolithic way. The Galerkin finite element approach is used for spatial discretization, whereas temporal discretization is performed with a generalized single step scheme. This numerical module has been implemented in the open-source scientific software OpenGeoSys.

  8. Description of wells at Beale Air Force Base and vicinity, California

    USGS Publications Warehouse

    Rockwell, Gerald L.

    1978-01-01

    The study area occupies approximately 168 square miles of the Sacramento Valley. The study area boundary is the Yuba River in the north, the Feather River in the west, the Bear River in the south, and the Sierra Nevada foothills in the east. Between December 1976 and March 1977, 640 wells were selectively canvassed and 274 water levels were taken in the wells canvassed Thirty-six water levels measured in March and April 1976 are recorded in this report. Descriptive data for water wells and water levels are recorded in table 1, and location of wells is shown on maps 1-23.

  9. Productivity and injectivity of horizontal wells. Annual report for the period, March 10, 1994--March 9, 1995

    SciTech Connect

    Fayers, F.J.

    1995-07-01

    Contents of this annual report include the following: (1) detailed well model for reservoir simulation--task 1; (2) comparative aspects of coning behavior in vertical and horizontal wells--task 1; (3) skin factor calculations for vertical, deviated, and horizontal wells--task 2; (4) a dissipation-based coarse grid system and its application to the scaleup of two phase problems--tasks 2 and 4; (5) analyses of experiments at Marathon Oil Company--task 3; (6) development of mechanistic model for multiphase flow in horizontal wells--task 3; and (7) sensitivity studies of wellbore friction and inflow for a horizontal well--task 8.

  10. 40 CFR 144.83 - Do I need to notify anyone about my Class V injection well?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... information listed in paragraph (a) (2) (iii) as follows: (A) Sand or other backfill wells (40 CFR 144.81(8) and 146.5(e)(8) of this chapter); (B) Geothermal energy recovery wells (40 CFR 144.81(11) and 146.5 (e)(12) of this chapter); (C) Brine return flow wells (40 CFR 144.81(13) and 146.5 (e)(14) of...

  11. 40 CFR 144.83 - Do I need to notify anyone about my Class V injection well?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... information listed in paragraph (a) (2) (iii) as follows: (A) Sand or other backfill wells (40 CFR 144.81(8) and 146.5(e)(8) of this chapter); (B) Geothermal energy recovery wells (40 CFR 144.81(11) and 146.5 (e)(12) of this chapter); (C) Brine return flow wells (40 CFR 144.81(13) and 146.5 (e)(14) of...

  12. 40 CFR 144.83 - Do I need to notify anyone about my Class V injection well?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information listed in paragraph (a) (2) (iii) as follows: (A) Sand or other backfill wells (40 CFR 144.81(8) and 146.5(e)(8) of this chapter); (B) Geothermal energy recovery wells (40 CFR 144.81(11) and 146.5 (e)(12) of this chapter); (C) Brine return flow wells (40 CFR 144.81(13) and 146.5 (e)(14) of...

  13. 40 CFR 144.83 - Do I need to notify anyone about my Class V injection well?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... information listed in paragraph (a) (2) (iii) as follows: (A) Sand or other backfill wells (40 CFR 144.81(8) and 146.5(e)(8) of this chapter); (B) Geothermal energy recovery wells (40 CFR 144.81(11) and 146.5 (e)(12) of this chapter); (C) Brine return flow wells (40 CFR 144.81(13) and 146.5 (e)(14) of...

  14. Large-scale high-efficiency air stripper and recovery well network for removing volatile organic chlorocarbons from ground water

    SciTech Connect

    Boone, L F; Lorfenz, R; Muska, C F; Steele, J L

    1986-05-01

    The Savannah River Plant (SRP) produces special nuclear materials for the US Government. Since 1958, chemical wastes generated by an aluminum forming/metal finishing process used to manufacture fuel and target assemblies were discharged to a settling basin. This process waste stream contained acids, alkalis, metals, and chlorinated degreasing solvents. In 1981, these solvents, specifically trichloroethylene and tetrachloroethylene, were discovered in monitor wells near the settling basin. A monitor well network was installed to define the vertical and horizontal extent of the plume. The current inventory of total chlorocarbons in the saturated zone is approximately 360,000 pounds within the 100 ppB contour interval. During 1983, air stripping technology was evaluated to remove these solvents from the ground water. A 20-gpm ground water pilot air stripper with one recovery well was tested. Performance data from this unit were then used to design a 50-gpm production prototype air stripper. This unit demonstrated that degreaser solvent concentrations in ground water could be reduced from 120,000 ppB to less than the detection limit of 1 ppB. Data from these two units were then used to design an air stripper column that would process contaminated ground water at a rate of 400 gpm. Water is fed to this column from a network of 11 recovery wells. These wells were located in the zone of contamination, as defined by analytical and numerical modeling techniques. This system has been operational since April 1985. To date, over 65,000 pounds of chlorinated degreaser solvents have been removed from an underlying aquifer. The effects of this program on the hydraulic gradient and contamination movement are currently being evaluated. The purpose of this paper is to describe the ground water remediation program at the Savannah River Plant.

  15. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  16. Analysis of ground-water data for selected wells near Holloman Air Force Base, New Mexico, 1950-95

    USGS Publications Warehouse

    Huff, G.F.

    1996-01-01

    Ground-water-level, ground-water-withdrawal, and ground- water-quality data were evaluated for trends. Holloman Air Force Base is located in the west-central part of Otero County, New Mexico. Ground-water-data analyses include assembly and inspection of U.S. Geological Survey and Holloman Air Force Base data, including ground-water-level data for public-supply and observation wells and withdrawal and water-quality data for public-supply wells in the area. Well Douglas 4 shows a statistically significant decreasing trend in water levels for 1972-86 and a statistically significant increasing trend in water levels for 1986-90. Water levels in wells San Andres 5 and San Andres 6 show statistically significant decreasing trends for 1972-93 and 1981-89, respectively. A mixture of statistically significant increasing trends, statistically significant decreasing trends, and lack of statistically significant trends over periods ranging from the early 1970's to the early 1990's are indicated for the Boles wells and wells near the Boles wells. Well Boles 5 shows a statistically significant increasing trend in water levels for 1981-90. Well Boles 5 and well 17S.09E.25.343 show no statistically significant trends in water levels for 1990-93 and 1988-93, respectively. For 1986-93, well Frenchy 1 shows a statistically significant decreasing trend in water levels. Ground-water withdrawal from the San Andres and Douglas wells regularly exceeded estimated ground-water recharge from San Andres Canyon for 1963-87. For 1951-57 and 1960-86, ground-water withdrawal from the Boles wells regularly exceeded total estimated ground-water recharge from Mule, Arrow, and Lead Canyons. Ground-water withdrawal from the San Andres and Douglas wells and from the Boles wells nearly equaled estimated ground- water recharge for 1989-93 and 1986-93, respectively. For 1987- 93, ground-water withdrawal from the Escondido well regularly exceeded estimated ground-water recharge from Escondido Canyon, and

  17. Measurement of 222Rn flux, 222Rn emanation, and 226,228Ra concentration from injection well pipe scale.

    PubMed

    Rood, A S; White, G J; Kendrick, D T

    1998-08-01

    222Rn flux (Bq s(-1)) was measured from the ends of twenty sections of produced water injection tubing (pipe) containing barite scale contaminated with naturally occurring radioactive material. Exposure measurements near the pipes were as high as 77.4 nC kg(-1)h(-1) (300 microR h(-1)). Flux measurements were accomplished by first purging the pipes with dry nitrogen and then collecting the outflow (nitrogen and radon) on charcoal columns affixed to the end of the pipe for 66 hours. As determined in this manner, 222Rn flux from the ends of the pipe ranged from 0.017 to 0.10 Bq s(-1) (0.46 to 2.7 pCi s(-1)). Following the radon flux measurements, pipe scale was removed and a representative sample was taken for 226Ra and 228Ra concentration measurements and determination of 222Rn emanation fractions (the fraction of the total radon contained in a material that is released from the material and free to migrate). The samples were also analyzed for gross mineral content. Emanation fraction measurements for 222Rn ranged from 0.020 to 0.063, while 226Ra concentrations ranged from 15.7 to 102 Bq g(-1) (424 to 2,760 pCi g(-1)). Barite was the predominate mineral in 17 of the 20 scale samples collected. Much of the previous work dealing with radon emanation fraction measurements has involved uranium mill tailings. Compared to mill tailings and natural soils which have emanation fractions that typically range from 0.1 to 0.3, the emanation fractions measured for these NORM scales are substantially lower. PMID:9685074

  18. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Rev. No. 0

    SciTech Connect

    Robert Boehlecke

    2004-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various locations and

  19. Measurement of {sup 222}Rn flux, {sup 222}Rn emanation and {sup 226}Ra concentration from injection well pipe scale

    SciTech Connect

    Rood, A.S.; Kendrick, D.T.

    1996-02-01

    The presence of Naturally Occurring Radioactive Material (NORM) has been recognized since the early 1930s in petroleum reservoirs and in oil and gas production and processing facilities. NORM was typically observed in barite scale that accumulated on the interior of oil production tubing and in storage tank and heater-treater separation sludge. Recent concern has been expressed over the health impacts from the uncontrolled release of NORM to the public. There are several potential exposure pathways to humans from oil-field NORM. Among these is inhalation of radon gas and its daughter products. For this exposure pathway to be of any significance, radon must first be released from the NORM matrix and diffuse in free air. The radon emanation fraction refers to the fraction of radon atoms produced by the decay of radium, that migrate from the bulk material as free gaseous atoms. The purpose of this investigation was to characterize the radon release rates from NORM-scale contaminated production tubing being stored above ground, characterize the radon emanation fraction of the bulk scale material when removed from the tubing, and characterize the radium concentrations of the scale. Accurate characterization of {sup 222}Rn emanation fractions from pipe scale may dictate the type of disposal options available for this waste. Characterization of radon release from stored pipes will assist in determining if controls are needed for workers or members of the public downwind from the source. Due to the sensitive nature of this data, the location of this facility is not disclosed.

  20. Hole injection from the sidewall of V-shaped pits into c-plane multiple quantum wells in InGaN light emitting diodes

    SciTech Connect

    Wu, Xiaoming; Liu, Junlin Jiang, Fengyi

    2015-10-28

    The role which the V-shaped pits (V-pits) play in InGaN/GaN multiple quantum well (MQW) light emitting diodes (LEDs) has been proposed to enable the formation of sidewall MQWs, whose higher bandgap than that of the c-plane MQWs is considered to act as an energy barrier to prevent carriers from reaching the dislocations. Here, with increasing proportion of current flowing via the V-pits, the emission of the c-plane MQWs broadens across the short-wavelength band and shows a blueshift successively. This phenomenon is attributed to hole injection from the sidewall of V-pits into the c-plane MQWs, which is a new discovery in the injection mechanism of InGaN/GaN MQW LEDs.

  1. A Study of Production/Injection Data from Slim Holes and Large-Diameter Wells at the Okuaizu Geothermal Field, Tohoku, Japan

    SciTech Connect

    Renner, Joel Lawrence; Garg, Sabodh K.; Combs, Jim

    2002-06-01

    Discharge from the Okuaizu boreholes is accompanied by in situ boiling. Analysis of cold-water injection and discharge data from the Okuaizu boreholes indicates that the two-phase productivity index is about an order of magnitude smaller than the injectivity index. The latter conclusion is in agreement with analyses of similar data from Oguni, Sumikawa, and Kirishima geothermal fields. A wellbore simulator was used to examine the effect of borehole diameter on the discharge capacity of geothermal boreholes with two-phase feedzones. Based on these analyses, it appears that it should be possible to deduce the discharge characteristics of largediameter wells using test data from slim holes with two-phase feeds.

  2. Area 2 Bitcutter and Post-Shot Injection Wells Corrective Action Unit 90 Post-Closure Annual Report

    SciTech Connect

    Glen Richardson

    2002-09-01

    Area 2 Bitcutter and Post-Shot Containment Wells Corrective Action Unit (CAU) 90 Post-Closure Monitoring requirements are described in Section VII.B.8.b of the Nevada Test Site Resource Conservation and Recovery Act Permit for a Hazardous Waste Management Facility No. NEV HW009, Revision 4, reissued on November 20, 2000.

  3. Radon water to air transfer measured in a bathroom in an energy-efficient home with a private well.

    PubMed

    Harley, Naomi H; Chittaporn, Passaporn; Cook, Gordon B; Fisenne, Isabel M

    2014-07-01

    Monthly measurements of radon in kitchen and bath tap water along with indoor air concentrations were made from 1994 to 1996 in an energy-efficient home with a private well. The well supplies all water to the home. The radon in cold and hot kitchen water averaged 69±2 and 52±2 Bq l(-1), respectively. Radon in cold and hot water from the bath/shower room shower head averaged 60±1 and 38±2 Bq l(-1), respectively, whereas hot water collected in the shower at the tub base averaged 5±1 Bq l(-1) or a 92% radon loss to air. While the calculated transfer factor of 1/10,000, i.e. radon concentration in air to radon in water, conventionally applies to the whole house, measurements for the specific water release during showering in a bathroom exhibit a larger transfer factor of 1/2300, due to smaller room volume. PMID:24803512

  4. Development and Calibration of a Variable-Density Numerical Model of a Deep-well Injection Site near the Southeastern Florida Coast

    NASA Astrophysics Data System (ADS)

    Dausman, A.; Langevin, C.; Sukop, M.; Walsh, V.

    2006-12-01

    The South District Wastewater Treatment Plant (SDWWTP), located in southeastern Miami-Dade County about 1 mi west of the Biscayne Bay coastline, is the largest capacity deep-well injection plant in the United States. Currently, about 100 Mgal/d of partially treated, essentially fresh (less than 1000 mg/L total dissolved solids) effluent is injected through 17 wells (each approximately 2500 ft below land surface) into the highly transmissive, lower-temperature, saline Boulder Zone composed of highly fractured dolomite. A thin confining unit called the Delray Dolomite, which is 8-16 ft thick, overlies the intended injection zone at the site. Although the Delray Dolomite has a vertical hydraulic conductivity estimated between 0.001 and 0.00001 ft/d, well casings for 10 of the 17 wells do not extend beneath the unit. A 700-ft-thick middle confining unit, with estimated vertical hydraulic conductivities between 0.1 and 28 ft/d, overlies the Delray Dolomite and separates it from the Upper Floridan aquifer. Protected by the Safe Drinking Water Act (SDWA), the Upper Floridan aquifer contains water that is less than 10,000 mg/L total dissolved solids. In southern Florida, this aquifer is used for reverse osmosis, blending with other waters, and as a reservoir for aquifer storage and recovery. At the SDWWTP, ammonia concentrations that exceed background conditions have been observed in monitoring wells open in and above the middle confining unit, indicating upward vertical migration of effluent, possibly toward the Upper Floridan aquifer. The U.S. Geological Survey currently is developing a variable-density groundwater flow and solute transport model for the Floridan aquifer system in Miami-Dade County. This model includes the injection of treated wastewater at the SDWWTP. The developed numerical model uses SEAWAT, a code that calculates variable- density flow as a function of salinity, to capture the buoyancy effects at the site and along the coast. Simulation efforts have

  5. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    USGS Publications Warehouse

    Pitt, William A., Jr.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  6. Area 2 Bitcutter and Post-Shot Injection Wells Corrective Action Unit 90 Post-Closure Inspection Annual Report

    SciTech Connect

    D. S. Tobiason

    2001-09-01

    Area 2 Bitcutter and Post-Shot Containment Wells Corrective Action Unit (CAU) 90 Post-Closure Monitoring requirements are described in {section} VIIB.8.b of the Nevada Test Site Resource Conservation and Recovery Act Permit for a Hazardous Waste Management Facility No. NEV HW009, reissued November 20, 2000, Revision 4. Post-closure care consists of the following: Semiannual inspections of the unit using an inspection checklist; photographic documentation; field note documentation; and preparation and submittal of an annual report. The report includes copies of the inspection checklist, photographs, and recommendations and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachment C.

  7. Development of a Data Management System for Assistance in Conducting Area of Reviews (AORS) on Class II Injection Wells in Oklahoma

    SciTech Connect

    Battles, Michael S.

    2002-06-17

    The purpose of this project was to provide the resources and capabilities necessary to permit the State of Oklahoma to conduct Area of Review (AOR) variance analysis on a statewide level. The project allows for the analysis and identification of areas which may qualify for AOR variances, the correlation of information from various databases and automated systems to conduct AORs in area which do not qualify for variances, the evaluation of the risk of pollution, during permitting and monitoring, using risk-based data analysis, and the ability to conduct spatial analysis of injection well data in conjunction with other geographically referenced information.

  8. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  9. Intravitreal injection

    MedlinePlus

    Retinal vein occlusion-intravitreal injection; Triamcinolone-intravitreal injection; Dexamethasone-intravitreal injection; Lucentis-intravitreal injection; Avastin-intravitreal injection; Bevacizumab-intravitreal injection; Ranibizumab- ...

  10. Direct large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry determination of artificial sweeteners sucralose and acesulfame in well water.

    PubMed

    Wu, Minghuo; Qian, Yichao; Boyd, Jessica M; Hrudey, Steve E; Le, X Chris; Li, Xing-Fang

    2014-09-12

    Acesulfame (ACE) and sucralose (SUC) have become recognized as ideal domestic wastewater contamination indicators. Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis is commonly used; however, the sensitivity of SUC is more than two orders of magnitude lower than that of ACE, limiting the routine monitoring of SUC. To address this issue, we examined the ESI behavior of both ACE and SUC under various conditions. ACE is ionic in aqueous solution and efficiently produces simple [M-H](-) ions, but SUC produces multiple adduct ions, limiting its sensitivity. The formic acid (FA) adducts of SUC [M+HCOO](-) are sensitively and reproducibly generated under the LC-MS conditions. When [M+HCOO](-) is used as the precursor ion for SUC detection, the sensitivity increases approximately 20-fold compared to when [M-H](-) is the precursor ion. To further improve the limit of detection (LOD), we integrated the large volume injection approach (500μL injection) with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which reduced the method detection limit (MDL) to 0.2ng/L for ACE and 5ng/L for SUC. To demonstrate the applicability of this method, we analyzed 100 well water samples collected in Alberta. ACE was detected in 24 wells at concentrations of 1-1534ng/L and SUC in 8 wells at concentrations of 65-541ng/L. These results suggest that wastewater is the most likely source of ACE and SUC impacts in these wells, suggesting the need for monitoring the quality of domestic well water. PMID:25085815

  11. The effects of air temperature on office workers' well-being, workload and productivity-evaluated with subjective ratings.

    PubMed

    Lan, Li; Lian, Zhiwei; Pan, Li

    2010-12-01

    Productivity bears a close relationship to the indoor environmental quality (IEQ), but how to evaluate office worker's productivity remains to be a challenge for ergonomists. In this study, the effect of indoor air temperature (17 °C, 21 °C, and 28 °C) on productivity was investigated with 21 volunteered participants in the laboratory experiment. Participants performed computerized neurobehavioral tests during exposure in the lab; their physiological parameters including heart rate variation (HRV) and electroencephalograph (EEG) were also measured. Several subjective rating scales were used to tap participant's emotion, well-being, motivation and the workload imposed by tasks. It was found that the warm discomfort negatively affected participants' well-being and increased the ratio of low frequency (LF) to high frequency (HF) of HRV. In the moderately uncomfortable environment, the workload imposed by tasks increased and participants had to exert more effort to maintain their performance and they also had lower motivation to do work. The results indicate that thermal discomfort caused by high or low air temperature had negative influence on office workers' productivity and the subjective rating scales were useful supplements of neurobehavioral performance measures when evaluating the effects of IEQ on productivity. PMID:20478555

  12. Evaluation of passive diffusion bag and dialysis samplers in selected wells at Hickam Air Force Base, Hawaii, July 2001

    USGS Publications Warehouse

    Vroblesky, Don A.; Pravecek, Tasha

    2002-01-01

    Field comparisons of chemical concentrations obtained from dialysis samplers, passive diffusion bag samplers, and low-flow samplers showed generally close agreement in most of the 13 wells tested during July 2001 at Hickam Air Force Base, Hawaii. The data for chloride, sulfate, iron, alkalinity, arsenic, and methane appear to show that the dialysis samplers are capable of accurately collecting a passive sample for these constituents. In general, the comparisons of volatile organic compound concentrations showed a relatively close correspondence between the two different types of diffusion samples and between the diffusion samples and the low-flow samples collected in most wells. Divergence appears to have resulted primarily from the pumping method, either producing a mixed sample or water not characteristic of aquifer water moving through the borehole under ambient conditions. The fact that alkalinity was not detected in the passive diffusion bag samplers, highly alkaline waters without volatilization loss from effervescence, which can occur when a sample is acidified for preservation. Both dialysis and passive diffusion bag samplers are relatively inexpensive and can be deployed rapidly and easily. Passive diffusion bag samplers are intended for sampling volatile organic compounds only, but dialysis samplers can be used to sample both volatile organic compounds and inorganic solutes. Regenerated cellulose dialysis samplers, however, are subject to biodegradation and probably should be deployed no sooner than 2 weeks prior to recovery. 1 U.S. Geological Survey, Columbia, South Carolina. 2 Air Florce Center for Environmental Excellence, San Antionio, Texas.

  13. Corrective Action Investigation Plan for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    David A. Strand

    2005-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 219, Septic Systems and Injection Wells, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 219 is located in Areas 3, 16, and 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 219 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  14. Can the Dupuit-Thiem equation accurately describe the flow pattern induced by injection in a laboratory scale aquifer-well system?

    NASA Astrophysics Data System (ADS)

    Bonilla, Jose; Kalwa, Fritz; Händel, Falk; Binder, Martin; Stefan, Catalin

    2016-04-01

    The Dupuit-Thiem equation is normally used to assess flow towards a pumping well in unconfined aquifers under steady-state conditions. For the formulation of the equation it is assumed that flow is laminar, radial and horizontal towards the well. It is well known that these assumptions are not met in the vicinity of the well; some authors restrict the application of the equation only to a radius larger than 1.5-fold the aquifer thickness. In this study, the equation accuracy to predict the pressure head is evaluated as a simple and quick analytical method to describe the flow pattern for different injection rates in the LSAW. A laboratory scale aquifer-well system (LSAW) was implemented to study the aquifer recharge through wells. The LSAW consists of a 1.0 m-diameter tank with a height of 1.1 meters, filled with sand and a screened well in the center with a diameter of 0.025 m. A regulated outflow system establishes a controlled water level at the tank wall to simulate various aquifer thicknesses. The pressure head at the bottom of the tank along one axis can be measured to assess the flow profile every 0.1 m between the well and the tank wall. In order to evaluate the accuracy of the Dupuit-Thiem equation, a combination of different injection rates and aquifer thicknesses were simulated in the LSAW. Contrary to what was expected (significant differences between the measured and calculated pressure heads in the well), the absolute difference between the calculated and measured pressure head is less than 10%. Beside this, the highest differences are not observed in the well itself, but in the near proximity of it, at a radius of 0.1 m. The results further show that the difference between the calculated and measured pressure heads tends to decrease with higher flow rates. Despite its limitations (assumption of laminar and horizontal flow throughout the whole aquifer), the Dupuit-Thiem equation is considered to accurately represent the flow system in the LSAW.

  15. Development of a real-time chemical injection system for air-assisted variable-rate sprayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A chemical injection system is an effective method to minimize chemical waste and reduce the environmental pollution in pesticide spray applications. A microprocessor controlled injection system implementing a ceramic piston metering pump was developed to accurately dispense chemicals to be mixed wi...

  16. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0 with ROTC 1

    SciTech Connect

    Boehlecke, Robert

    2004-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various locations and

  17. Analytical Models of the Transport of Deep-Well Injectate at the North District Wastewater Treatment Plant, Miami-Dade County, Florida, U.S.A

    NASA Astrophysics Data System (ADS)

    King, J. N.; Walsh, V.; Cunningham, K. J.; Evans, F. S.; Langevin, C. D.; Dausman, A.

    2009-12-01

    The Miami-Dade Water and Sewer Department (MDWASD) injects buoyant effluent from the North District Wastewater Treatment Plant (NDWWTP) through four Class I injection wells into the Boulder Zone---a saline (35 parts per thousand) and transmissive (105 to 106 square meters per day) hydrogeologic unit located approximately 1000 meters below land surface. Miami-Dade County is located in southeast Florida, U.S.A. Portions of the Floridan and Biscayne aquifers are located above the Boulder Zone. The Floridan and Biscayne aquifers---underground sources of drinking water---are protected by U.S. Federal Laws and Regulations, Florida Statutes, and Miami-Dade County ordinances. In 1998, MDWASD began to observe effluent constituents within the Floridan aquifer. Continuous-source and impulse-source analytical models for advective and diffusive transport of effluent are used in the present work to test contaminant flow-path hypotheses, suggest transport mechanisms, and estimate dispersivity. MDWASD collected data in the Floridan aquifer between 1996 and 2007. A parameter estimation code is used to optimize analytical model parameters by fitting model data to collected data. These simple models will be used to develop conceptual and numerical models of effluent transport at the NDWWTP, and in the vicinity of the NDWWTP.

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 546: Injection Well and Surface Releases Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Alfred Wickline

    2008-12-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 546, Injection Well and Surface Releases, at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended February 2008). Corrective Action Unit (CAU) 546 is comprised of two corrective action sites (CASs): • 06-23-02, U-6a/Russet Testing Area • 09-20-01, Injection Well The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 546. To achieve this, corrective action investigation (CAI) activities were performed from May 5 through May 28, 2008, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada (NNSA/NSO, 2008). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: • Determine whether a contaminant of concern is present at a given CAS. • Determine whether sufficient information is available to evaluate potential corrective action alternatives at each CAS. The CAU 546 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Because DQO data needs were met, and corrective actions have been implemented, it has been determined that no further corrective action (based on risk to human receptors) is necessary for the CAU 546 CASs. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • No further corrective actions are needed for CAU 546 CASs. • No Corrective Action Plan is required. • A Notice of Completion to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site

  19. Denosumab Injection

    MedlinePlus

    ... injection is in a class of medications called RANK ligand inhibitors. It works by decreasing bone breakdown ... medicines you are taking, as well as any products such as vitamins, minerals, or other dietary supplements. ...

  20. Geochemical effects of deep-well injection of the Paradox Valley brine into Paleozoic carbonate rocks, Colorado, U.S.A.

    USGS Publications Warehouse

    Rosenbauer, R.J.; Bischoff, J.L.; Kharaka, Y.K.

    1992-01-01

    Brine seepage into the Dolores River from ground water in Paradox Valley, Colorado constitutes a major source of salt to the Colorado River. Plants are enderway to remove this source of salt by drawing down the Paradox Valley brine (PVB) and forcibly injecting it into a deep disposal well (4.8 km). Experiments were conducted to determine the effects of deep-well injection of PVB. The results show that PVB is near saturation with anhydrite at 25??C, and that heating results in anhydrite precipitation. The amount and the rate at which anhydrite forms is temperature, pressure, and substrate dependent. Paradox Valley brine heated in the presence of Precambrian rocks from the drill core produces the same amount of anhydrite as PVB heated alone, but at a greatly accelerated rate. A 30% dilution of PVB with Dolores River water completely eliminates anhydrite precipitation when the fluid is heated with the Precambrian rocks. Interaction of PVB and Leadville Limestone is characterized by dolomitization of calcite by brine Mg which releases Ca to solution. This added Ca reacts with SO4 to form increased amounts of anhydrite. A 20% dilution of PVB by Dolores River water has no effect on dolomitization and reduces the amount of anhydrite only slightly. A 65% dilution of PVB by Dolores River water still does not prevent dolomitization but does suppress anhydrite formation. Computer modeling of PVB by programs utilizing the Pitzer ion-interaction parameters is in general agreement with the experimental results. Ion-activity products calculated by both SOLMINEQ and PHRQPITZ are close to equilibrium with both anhydrite and dolomite whenever these phases are present experimentally, although the calculations over-estimate by a factor of 2 the degree of saturation. Some discrepancies in the calculated results between the two programs are due largely to differences in mineral solubility data. ?? 1992.

  1. A Study of a Striated Positive Column after Ethanol Impurity Injection in an Air DC Glow Discharge

    NASA Astrophysics Data System (ADS)

    Berzak, Laura; Post Zwicker, Andrew

    2003-04-01

    In a glow discharge when ethanol (CH3CH2OH) was injected, a series of atypical striations formed through the positive column. When the pressure decreased as the ethanol evaporated and was evacuated by the vacuum pump, this behavior decayed away until only an anode glow or normal discharge remained. Varying interelectrode spacings and quantities of ethanol yielded similar patterns. The typical evolution as the pressure decreased consisted of a visible traveling wave traveling from the anode to the cathode followed by numerous, thin ( 1.6 mm) striations evenly spaced down the entire length of the positive column. These, shifted back toward the anode and transformed into bent striations with the tip of the 'V' pointing toward the cathode, and finally, the 'V' striations grouped into fours and took on the appearance of beats. The unusual 'V' striations may be due in part to a contraction of the column, causing the equipotential surfaces to shift from smooth convex to the observed striation shape. The conditions for this contraction effect include a nonlinearly increasing dependence of electron production rate on electron density and a bulk recombination rate higher than that at the tube walls. Visible emission spectra indicated the presence of carbon monoxide (CO), signifying that the striations are due to not only vibrational excitation of the ethanol molecule but also to decomposition and subsequent excitation of the decomposition products as well. One possible mechanism of decomposition is the formation of a radical cation from the ethanol molecule and the ensuing loss of a proton to yield formaldehyde; this then would follow an analogous decomposition to produce carbon monoxide. Thus, there may exist additional charged species which can then contribute to the unique observations. Further analysis, if possible, will include higher temporal resolution spectroscopy and a detailed model of the positive column under these specific conditions.

  2. A Multitracer Approach to Detecting Wastewater Plumes from Municipal Injection Wells in Nearshore Marine Waters at Kihei and Lahaina, Maui, Hawaii

    USGS Publications Warehouse

    Hunt, Charles D., Jr.; Rosa, Sarah N.

    2009-01-01

    Municipal wastewater plumes discharging from aquifer to ocean were detected by nearshore wading surveys at Kihei and Lahaina, on the island of Maui in Hawaii. Developed in cooperation with the Hawaii State Department of Health, the survey methodology included instrument trolling to detect submarine groundwater discharge, followed by analysis of water and macroalgae for a suite of chemical and isotopic constituents that constitute a 'multitracer' approach. Surveys were conducted May 6-28, 2008, during fair-weather conditions and included: (1) wading and kayak trolling with a multiparameter water-quality sonde, (2) marine water-column sampling, and (3) collection of benthic algae samples. Instrument trolling helped guide the water sampling strategy by providing dense, continuous transects of water properties on which groundwater discharge zones could be identified. Water and algae samples for costly chemical and isotopic laboratory analyses were last to be collected but were highly diagnostic of wastewater presence and nutrient origin because of low detection levels and confirmation across multiple tracers. Laboratory results confirmed the presence of wastewater constituents in marine water-column samples at both locales and showed evidence of modifying processes such as denitrification and mixing of effluent with surrounding groundwater and seawater. Carbamazepine was the most diagnostic pharmaceutical, detected in several marine water-column samples and effluent at both Kihei and Lahaina. Heavy nitrogen-isotope compositions in water and algae were highly diagnostic of effluent, particularly where enriched to even heavier values than effluent source compositions by denitrification. Algae provided an added advantage of time-integrating their nitrogen source during growth. The measured Kihei plume coincided almost exactly with prior model predictions, but the Lahaina plume was detected well south of the expected direct path from injection wells to shore and may be

  3. In situ bioremediation using horizontal wells

    SciTech Connect

    1995-04-01

    In Situ Bioremediation (ISB), which is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation, remediates soils and ground water contaminated with volatile organic compounds (VOCs) both above and below the water table. ISB involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove .VOCs from the vadose zone concomitant with biodegradation of VOCs. The innovation is in the combination of 3 emerging technologies, air stripping, horizontal wells, and bioremediation via gaseous nutrient injection with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation system.

  4. Water-surface elevations of wetlands and nearby wells at Arnold Air Force Base, near Manchester, Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; League, D.E.

    1996-01-01

    Surface-water stage, ground-water elevations, rainfall, and streamflow were monitored at or near four wetland sites at Arnold Air Force Base, Tennessee. Two of the wetland sites (Sinking Pond and Westall Swamp) included sinkholes with internal relief greater than 7 feet. The other two wetlands (Tupelo Swamp and Goose Pond) were shallow depressions with less than 5 feet internal relief. Stage rose and fell abruptly in the two sinkhole wetlands. Water depths ranged from 0 to 11.4 feet in Sinking Pond and from 0 to 8.5 feet in Westall Swamp. Water levels in wells adjacent to the sinkhole wetlands also rose and fell abruptly. The two shallow depressions filled and drained more gradually and remained flooded longer than the sinkhole wetlands. The maximum recorded water depths were 3.5 feet in Tupelo Swamp and 2.3 feet in Goose Pond. Water levels in nearby wells remained lower than surface-water elevations in the shallow depressions throughout the study period.

  5. The effect of air injection on the parameters of swirling flow in a Turbine-99 draft tube model

    NASA Astrophysics Data System (ADS)

    Skripkin, S. G.; Kuibin, P. A.; Shtork, S. I.

    2015-07-01

    Results of experimental modeling of a swirling flow in a Turbine-99 draft tube prototype are presented. The influence of gas phase injection into the flow has been studied. Experiments were performed on a closed hydrodynamic setup containing a working stage with the Turbine-99 draft tube geometry. It is established that the gas content affects the flow structure. Gas injection leads to a change in the frequency of precession of the vortex core formed in the draft tube cone, which is not related to an increase in the gas-liquid mixture flow rate.

  6. Design and preliminary tests of a blade tip air mass injection system for vortex modification and possible noise reduction on a full-scale helicopter rotor

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Hosier, R. N.; Balcerak, J. C.; Johnson, H. K.

    1975-01-01

    Full-scale tests were conducted on the Langley helicopter rotor test facility as part of a study to evaluate the effectiveness of a turbulent blade tip air mass injection system in alleviating the impulsive noise (blade slap) caused by blade-vortex interaction. Although blade-slap conditions could not be induced during these tests, qualitative results from flow visualization studies using smoke showed that the differential velocity between the jet velocity and the rotor tip speed was a primary parameter controlling the vortex modification.

  7. A case study: bulk organic matters and nitrogen removal from reclaimed water by enhanced direct injection-well groundwater recharge system.

    PubMed

    Xuan, Zhao; Xuzhou, Cheng; Meng, Zhang

    2009-01-01

    A new kind of artificial groundwater recharge approach named enhanced direct injection-well recharge (EnDir), consisting of short-term artifical vadose treatment and long-term aquifer treatment, is put forward and demonstrated in Beijing. The results reveal that granular activated carbon (GAC) could remove bulk organic matters with the DOC value decrease from 6.0 mg/L to 4.6 mg/L. The short-term vadose treatment of EnDir exhibited additional organic carbon removal and effective nitrification. DOC and AOX values were reduced to 4.1 mg/L and 56.8 microg/L respectively. Ammonia-N of 3.81 mg/L was converted into equivalent nitrate-N. The long-term aquifer treatment offers favorable denitrification and lower nitrate-N content in the aquifer. The bulk parameters of DOC, SUVA, AOX and ammonia-N detected in the monitoring wells are as the same level as that of local groundwater. Brief financial analysis demonstrated the promising economic aspects of EnDir system in Beijing. PMID:19657170

  8. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions

    SciTech Connect

    Zhang, Feng; Ikeda, Masao Liu, Jianping; Zhang, Shuming; Zhou, Kun; Yang, Hui; Liu, Zongshun

    2015-07-21

    Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.

  9. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  10. Well-construction, water-level, and water-quality data for ground-water monitoring wells for the J4 hydrogeologic study, Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Haugh, C.J.

    1996-01-01

    Between December 1993 and March 1994, 27 wells were installed at 12 sites near the J4 test cell at Arnold Engineering Development Center in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. This information will be used to help understand the effects of dewatering operations at the J4 test cell on the local ground-water-flow system. The J4 test cell, extending approximately 250 feet below land surface, is used in the testing of rocket motors. Ground water must be pumped continuously from around the test cell to keep it structurally intact. The amount of water discharged from the J4 test cell was monitored to estimate the average rate of ground-water withdrawal at the J4 test cell. Ground- water levels were monitored continuously at 14 wells for 12 months. Water-quality samples were collected from 26 of the new wells, 9 existing wells, and the ground-water discharge from the J4 test cell. All samples were analyzed for common inorganic ions, trace metals, and volatile organic compounds.

  11. A well-developed cleanup technology

    SciTech Connect

    Schrauf, T.W.

    1996-05-01

    This article describes a new in-well aeration systems (density-driven convection-DDC) which remediates hydrocarbons in ground water and soil by injecting oxygen into well to promote natural aerobic activity. Topics include biodegradation process; in situ pump and treat method; advantages over conventional air sparging; how the DDC works.

  12. Appraisal of potential for injection-well recharge of the Hueco bolson with treated sewage effluent : preliminary study at the northeast El Paso area, Texas

    USGS Publications Warehouse

    Garza, Sergio; Weeks, Edwin P.; White, Donald E.

    1980-01-01

    The proposed injection water will require strict water-quality controls, which may involve chlorination and the removal of suspended solids. Mixing of the proposed injection water with the native ground water probably will not clog the aquifer by mineral precipitation. The relatively large concentrations of sodium in the injection water may reduce the hydraulic conductivity of the clay layers in the aquifer, but the permeable sands should not be seriously affected. Plans for an artificial-recharge program need to include an experimental installation to evaluate the system under field conditions.

  13. Injection of lightning-produced NOx, water vapor, wildfire emissions, and stratospheric air to the UT/LS as observed from DC3 measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Biggerstaff, M. I.; Betten, D. P.; Hair, J. W.; Butler, C. F.; Schwartz, M. J.; Barth, M. C.

    2016-06-01

    During the Deep Convective Clouds and Chemistry (DC3) experiment in summer 2012, airborne measurements were performed in the anvil inflow/outflow of thunderstorms over the Central U.S. by three research aircraft. A general overview of Deutsches Zentrum für Luft- und Raumfahrt (DLR)-Falcon in situ measurements (CO, O3, SO2, CH4, NO, NOx, and black carbon) is presented. In addition, a joint flight on 29 May 2012 in a convective line of isolated supercell storms over Oklahoma is described based on Falcon, National Science Foundation/National Center for Atmospheric Research Gulfstream-V (NSF/NCAR-GV), and NASA-DC8 trace species in situ and lidar measurements. During DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state's history were burning, which strongly influenced air quality in the DC3 thunderstorm inflow and outflow region. Lofted biomass burning (BB) plumes were frequently observed in the mid- and upper troposphere (UT) in the vicinity of deep convection. The impact of lightning-produced NOx (LNOx) and BB emissions was analyzed on the basis of mean vertical profiles and tracer-tracer correlations (CO-NOx and O3-NO). On a regular basis DC3 thunderstorms penetrated the tropopause and injected large amounts of LNOx into the lower stratosphere (LS). Inside convection, low O3 air (~80 nmol mol-1) from the lower troposphere was rapidly transported to the UT/LS region. Simultaneously, O3-rich stratospheric air masses (~100-200 nmol mol-1) were present around and below the thunderstorm outflow and enhanced UT-O3 mixing ratios significantly. A 10 year global climatology of H2O data from the Aura Microwave Limb Sounder confirmed that the Central U.S. is a preferred region for convective injection into the LS.

  14. Corrective Action Decision Document/Closure Report for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    David Strand

    2006-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 219, Septic Systems and Injection Wells, in Areas 3, 16, and 23 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 219 is comprised of the following corrective action sites (CASs): (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 219 with no further corrective action beyond the application of a use restriction at CASs 16-04-01, 16-04-02, and 16-04-03. To achieve this, corrective action investigation (CAI) activities were performed from June 20 through October 12, 2005, as set forth in the CAU 219 Corrective Action Investigation Plan and Record of Technical Change No. 1. A best management practice was implemented at CASs 16-04-01, 16-04-02, and 16-04-03, and corrective action was performed at CAS 23-20-01 between January and April 2006. In addition, a use restriction will be applied to CASs 16-04-01, 16-04-02, and 16-04-03 to provide additional protection to Nevada Test Site personnel. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 219 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs

  15. Premixed direct injection disk

    SciTech Connect

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  16. Glassy-winged sharpshooter feeding does not cause air embolisms in xylem of well-watered plants.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant xylem vessels are under negative hydrostatic pressure (tension) as evapotranspiration of water from the leaf surface pulls the column of water in xylem upwards. When xylem fluid flux is under extreme tension, any puncture or breakage of the xylem vessel wall can cause formation of air embolis...

  17. Addendum to the Closure Report for Corrective Action Unit 322: Areas 1 & 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the June 2006, Closure Report for Corrective Action Unit 322: Areas 1 & 3 Release Sites and Injection Wells as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 01-25-01, AST Release • CAS 03-25-03, Mud Plant AST Diesel Release These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to

  18. Addendum to the Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit Nevada Test Site, Nevada, Revison 0

    SciTech Connect

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the June 2003, Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 06-20-02, 20-inch Cased Hole • CAS 06-23-03, Drain Pit These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because

  19. Eribulin Injection

    MedlinePlus

    ... tests to check your body's response to eribulin injection.It is important for you to keep a written list of all of the prescription and nonprescription (over-the-counter) medicines you are taking, as well as any products such as vitamins, minerals, or other dietary supplements. You should bring ...

  20. Pegaptanib Injection

    MedlinePlus

    ... to 7 days after you receive each pegaptanib injection.It is important for you to keep a written list of all of the prescription and nonprescription (over-the-counter) medicines you are taking, as well as any products such as vitamins, minerals, or other dietary supplements. You should bring ...

  1. Assessment of Volatile Organic Compound and Hazardous Air Pollutant Emissions from Oil and Natural Gas Well Pads using Mobile Remote and On-site Direct Measurements

    EPA Science Inventory

    Emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from oil and natural gas production were investigated using direct measurements of component-level emissions on well pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-...

  2. Injection of Lightning-Produced NOx, Water Vapor, Wildfire Emissions, and Stratospheric Air to the UT/LS as Observed from DC3 Measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Minikin, A.; Weinzierl, B.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Hair, J. W.; Schwartz, M. J.; Rappenglück, B.; Pickering, K. E.; Cummings, K.; Biggerstaff, M. I.; Heimerl, K.; Pucik, T.; Fütterer, D.; Ackermann, L.; Betten, D.; Butler, C. F.; Barth, M. C.

    2015-12-01

    In summer 2012 the Deep Convective Clouds and Chemistry Project (DC3) field campaign investigated a number of severe thunderstorms over the Central U.S. and their impact on the upper tropospheric (UT) - lower stratospheric (LS) composition and chemistry. In addition, during DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state history were burning, influencing the air quality in the DC3 thunderstorm inflow and outflow region. Besides three instrumented aircraft platforms measuring a variety of trace species in-situ and remotely (e.g. CO, O3, SO2, NOx, VOC, CN, and black carbon), dense networks of ground-based instruments (e.g. radar and lightning) complemented the airborne measurements. Satellite measurements (e.g. GOES, MODIS, and GOME-2) and model forecasts (e.g. WRF-Chem and FLEXPART) were used to monitor the rapid development of the thunderstorms (which frequently developed huge anvils with overshooting tops) and the spread of smoke plumes in the vicinity of the storms. In-situ probing of fresh and aged (12-24 h) anvil outflows showed injection of lightning-produced NOx and wildfire emissions into the UTLS. Vertical cross sections of lidar and Doppler radar measurements supported these observations and gave detailed information on dynamical processes within and in the vicinity of the storms. Besides very strong updrafts in the storm core, surrounding downdrafts caused a direct in-mixing of O3-rich LS air masses into the boundaries of the anvil outflow. The wrapping of O3-rich LS air masses around and below the anvil outflow was also a prominent feature in several storms. The in-situ probing of the aged anvil outflow showed a pronounced influence on the UT composition and chemistry with average O3 enhancements in the range of 20-50 nmol mol-1 and evidence of new particle formation. A 10-year global climatology of H2O data from Aura-MLS confirms that the Central U.S. is a preferred region for convective injection into the LS.

  3. Reprint of: Two-year survey of earthquakes and injection/production wells in the Eagle Ford Shale, Texas, prior to the MW4.8 20 October 2011 earthquake

    NASA Astrophysics Data System (ADS)

    Frohlich, Cliff; Brunt, Michael

    2014-09-01

    Between November 2009 and September 2011 the EarthScope USArray program deployed ∼25 temporary seismograph stations on a 70-km grid in south-central Texas between 27°N-31°N and 96°W-101°W. This area includes the Eagle Ford Shale. For decades this geographic region has produced gas and oil from other strata using conventional methods, but recent developments in hydrofracturing technology has allowed extensive development of natural gas resources from within the Eagle Ford. Our study surveys small-magnitude seismic events and evaluates their correlation with fluid extraction and injection in the Eagle Ford, identifying and locating 62 probable earthquakes, including 58 not reported by the U.S. Geological Survey. The 62 probable earthquakes occur singly or in clusters at 14 foci; of these foci, two were situated near wells injecting recently increased volumes of water; eight were situated near wells extracting recently increased volumes of oil and/or water; and four were not situated near wells reporting significant injection/extraction increases. Thus in this region, while the majority of small earthquakes may be triggered/induced by human activity, they are more often associated with fluid extraction than with injection. We also investigated the MW4.8 20 October 2011 Fashing earthquake-the largest historically reported earthquake in south-central Texas-that occurred two weeks after the removal of the temporary USArray stations. A field study indicated that the highest-intensity (MMI VI) region was about 10 km south of 2010-2011 foreshock activity, and that there were no high-volume injection wells within 20 km of the MMI V-VI region or the foreshocks. However, the 20 October 2011 earthquake did coincide with a significant increase in oil/water extraction volumes at wells within the MMI V-VI region, and this was also true for previous earthquakes felt at Fashing in 1973 and 1983. In contrast, our study found significant increases in injection prior to an mbLG3

  4. Process and device for injecting a liquid agent used for treating a geological formation in the vicinity of a well bore traversing this formation

    SciTech Connect

    Colonna, J.; Fitremann, Jm.; Genin, R.; Sarda, Jp.

    1984-02-14

    A technique is disclosed for liquid treating a geological formation. It comprises spraying the liquid with a pressurized carrier gas, using a spraying pipe whose length and diameter are adjusted as a function of the pressure prevailing at the level of the formation and of the characteristics of the injected liquid and the pressurized carrier gas, so that the size of the liquid droplets at the outlet of the spraying pipe has a narrow range of distribution about a single preselected value.

  5. Radioactive air emissions notice of construction use of a portable exhauster on single shell tanks (SSTs) during salt well pumping

    SciTech Connect

    GRANDO, C.J.

    1999-11-18

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping. Table 1-1 lists 18 SSTs covered by this NOC. This NOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping.

  6. Golimumab Injection

    MedlinePlus

    ... it.Golimumab injection comes in prefilled syringes and auto-injection devices for subcutaneous injection. Use each syringe ... method.Do not remove the cap from the auto-injection device or the cover from the prefilled ...

  7. Models, data available, and data requirements for estimating the effects of injecting saltwater into disposal wells in the greater Altamont- Bluebell oil and gas field, northern Uinta Basin, Utah

    USGS Publications Warehouse

    Freethey, Geoffrey W.

    1988-01-01

    Permits for disposing of salty oil-production water have been issued for 19 wells in the Greater Altamont-Bluebell field, Utah. During 1986 more than 500 million gal of production water were injected into the Duchesne River, the Uinta, and the Green River Formations through 18 of these wells. The physical and chemical effects of injecting this water on aquifers containing potable water are poorly understood. Interfingering and the structural configuration of these formations add complexity to the description of the geometry and hydrogeology of the groundwater system. A preliminary assessment of the problem indicates that numerical modeling may offer a method of estimating the hydrologic and hydrochemical effects of injection. Modeling possibilities include variable-density, three-dimensional flow, sectional transport, and areal transport modeling. Data needed to develop these models can be derived from a synthesis of geologic, hydrologic, and hydrochemical data already available in the files of State and Federal agencies, oil companies, and private data-base companies. Results from each modeling phase would contribute information for implementing the following phase. The result would be a better understanding of how water moves naturally through the groundwater system, the extent of alterations of both vertical and horizontal flow near the disposal wells, and an overall concept of the effects of deep injection on near-surface aquifers. (USGS)

  8. Radioactive air emissions notice of construction use of a portable exhauster on single-shell tanks during salt well pumping

    SciTech Connect

    HOMAN, N.A.

    1999-07-14

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on singleshell tanks (SSTs) during salt well pumping. Table 1-1 lists SSTs covered by this NOC. This GOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping. The primary objective of providing active ventilation to these SSTs during salt well pumping is to reduce the risk of postulated accidents to remain within risk guidelines. It is anticipated that salt well pumping will release gases entrapped within the waste as the liquid level is lowered, because of less hydrostatic force keeping the gases in place. Hanford Site waste tanks must comply with the Tank Farms authorization basis (DESH 1997) that requires that the flammable gas concentration be less than 25 percent of the lower flammability limit

  9. Results from air-injection and tracer testing in the upper Tiva Canyon, Bow Ridge Fault, and upper Paintbrush contact alcoves of the Exploratory Studies Facility, August 1994 through July 1996, Yucca Mountain, Nevada

    USGS Publications Warehouse

    LeCain, Gary D.

    1998-01-01

    Air-injection and tracer testing were conducted in the upper Tiva Canyon, Bow Ridge Fault, and upper Paintbrush contact alcoves in the Exploratory Studies Facility at Yucca Mountain, Nevada, from August 1994 to July 1991. The study was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy.

  10. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-10-01

    Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  11. Evaluation of passive diffusion bag samplers, dialysis samplers, and nylon-screen samplers in selected wells at Andersen Air Force Base, Guam, March-April 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.

    2003-01-01

    During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.

  12. Hydrogeologic setting, water levels, and quality of water from supply wells at the US Marine Corps Air Station, Cherry Point, North Carolina

    USGS Publications Warehouse

    Lloyd, O.B., Jr.; Daniel, C. C., III

    1988-01-01

    The Marine Corps Air Station is located in the Coastal Plain province of North Carolina. Four freshwater aquifers of sand and limestone underlie the area to a depth of about 500 feet. Saline water occurs below this depth. The aquifers are separated by three confining units that are thin and discontinuous in the southern part. Water supply is obtained from 195- to 330 feet wells in the Castle Hayne aquifer. Many wells are near landfills that have received hazardous wastes. Groundwater withdrawals have reduced hydraulic heads in the Castle Hayne some 20 feet around active production wells, creating potential for downward movement of contaminated water from the surface and for upward movement of saline water that occurs at depth. Chemical analyses of water from the Castle Hayne aquifer indicate median concentrations of iron and manganese are 0.78 and 0.08 milligrams per liter, respectively, and lead and (or) nickel exceed drinking water standards in three wells. Chloride increased from 10 to more than 40 milligrams per liter in the deepest operating well over a 45-year period. Benzene concentrations range from 0.5 to 1.9 milligrams per liter in the southern part of the Air Station but were below the 5 milligrams per liter maximum contaminant level for drinking water. Fatty acids were found in concentrations as much as 28 micrograms per liter in water from wells in an area centered around the intersection of Roosevelt Boulevard and Slocum Road. Resampling is needed to verify all constituents that indicate contamination.

  13. Injectors for Multipoint Injection

    NASA Technical Reports Server (NTRS)

    Prociw, Lev Alexander (Inventor); Ryon, Jason (Inventor)

    2015-01-01

    An injector for a multipoint combustor system includes an inner air swirler which defines an interior flow passage and a plurality of swirler inlet ports in an upstream portion thereof. The inlet ports are configured and adapted to impart swirl on flow in the interior flow passage. An outer air cap is mounted outboard of the inner swirler. A fuel passage is defined between the inner air swirler and the outer air cap, and includes a discharge outlet between downstream portions of the inner air swirler and the outer air cap for issuing fuel for combustion. The outer air cap defines an outer air circuit configured for substantially unswirled injection of compressor discharge air outboard of the interior flow passage.

  14. Shale fracturing injections at Oak Ridge National Laboratory: 1977-1979 series

    SciTech Connect

    Weeren, H.O.

    1980-09-01

    Intermediate-level waste solution generated at ORNL is periodically mixed with a cement-base blend of dry solids and injected into an impermeable shale formation at an approximate depth of 240 m (800 ft). The grout mix sets shortly after the injection, permanently fixing the radionuclides in the shale formation. A series of four injections of intermediate-level waste solution was made between 1977 and 1979. A total of 1.2 million l (314,000 gal) of waste solution containing 81,780 Ci of radionuclides was injected. This report is an account of this injection series - preparations, injections, results, and conclusions. The volumes and activities that were injected are summarized. In Injection ILW-15 a small leak of grout to the waste pit eroded the drain valves and forced a shutdown of the injection while repairs were made. The injection was completed 2 days later. Injection ILW-16 was terminated about two-thirds through the injection when the diesel drive of the injection pump blew a connecting rod through the block. The facility and well were washed down with the standby pump. Prior to Injection ILW-17, air pads were installed on all bulk solids storage bins. All subsequent injections have been marked by a much more even flow of solids and a resulting improvement in the mix ratio control. Injections ILW-17 and ILW-18 were made without notable incidents. Logs of the observation wells indicated that all grout sheets were within the disposal zone.

  15. Radioactive air emissions notice of construction: Use of a portable exhauster on 241-A-101 tank during salt well pumping

    SciTech Connect

    Hays, C.B.

    1996-04-17

    This document serves as a notice of construction (NOC) for the use of a portable exhauster on 241-A-101 single-shell tank (SST) during salt well pumping and other routine activities at the tank. Approval for salt well pumping is not being requested as this is a routine activity performed to manage the waste within the SST Tank System. The primary objective of providing active ventilation to the 241-A-101 tank is to satisfy the requirements of a Los Alamos National Laboratories (LANL) Safety Analysis Report (SAR) that requires postulated accidents to remain within risk guidelines. It is anticipated that salt well pumping will release gases entrapped within the waste as the liquid level is lowered, because of less hydrostatic force keeping the gases in place. Other routine activities also have the potential to release trapped gases by interrupting gas pockets within the waste. Hanford Site waste tanks must comply with the National Fire Protection Association guidelines, which mandate that flammable gas concentration be less than 25 percent of the lower flammability limits. The LANL SAR indicates that the lower flammability limit may be exceeded during certain postulated accident scenarios. Also, the potentials for electrical (pump motor, heat tracing) and mechanical (equipment installation) spark sources exist. Therefore, because of the presence of ignition sources and the increase in released flammable gases, active ventilation will be required to reduce the ``time at risk`` while performing routine operations at the tank.

  16. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  17. Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology

    SciTech Connect

    Hessel, R P; Aceves, S M; Flowers, D L

    2006-03-06

    The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

  18. A simple method for well-defined and clean all-SiC nano-ripples in ambient air

    NASA Astrophysics Data System (ADS)

    Ma, Yuncan; Khuat, Vanthanh; Pan, An

    2016-07-01

    Well-defined and clean all-SiC nano-ripples with a period of about 150 nm are produced via the combination of 800-nm femtosecond laser irradiation and chemical selective etching with mixture solution of 65 wt% HNO3 acid (20 mL) and 40 wt% HF acid (20 mL). The incorporation mechanism of oxygen (O) species into the laser induced obscured nano-ripples is attributed to femtosecond laser induced trapping effect of dangling bonds, while that of chemical etching induced well-defined and clean nano-ripples is assigned to chemical reactions between mixture acid solution and amorphous silicon carbide (SiC) or silicon oxide (SiO2). Results from EDX analysis show that the incorporated foreign O species (atomic percentages of 9.39%) was eliminated effectively via chemical etching, while the atomic percentages of silicon (Si) and carbon (C) were about 47.82% and 52.18% respectively, which were similar to those of original SiC material. And the influences of laser irradiation parameters on the nano-ripples are also discussed.

  19. Effects of northbound long-haul international air travel on sleep quantity and subjective jet lag and wellness in professional Australian soccer players.

    PubMed

    Fowler, Peter; Duffield, Rob; Howle, Kieran; Waterson, Adam; Vaile, Joanna

    2015-07-01

    The current study examined the effects of 10-h northbound air travel across 1 time zone on sleep quantity, together with subjective jet lag and wellness ratings, in 16 male professional Australian football (soccer) players. Player wellness was measured throughout the week before (home training week) and the week of (away travel week) travel from Australia to Japan for a preseason tour. Sleep quantity and subjective jet lag were measured 2 d before (Pre 1 and 2), the day of, and for 5 d after travel (Post 1-5). Sleep duration was significantly reduced during the night before travel (Pre 1; 4.9 [4.2-5.6] h) and night of competition (Post 2; 4.2 [3.7-4.7] h) compared with every other night (P<.01, d>0.90). Moreover, compared with the day before travel, subjective jet lag was significantly greater for the 5 d after travel (P<.05, d>0.90), and player wellness was significantly lower 1 d post-match (Post 3) than at all other time points (P<.05, d>0.90). Results from the current study suggest that sleep disruption, as a result of an early travel departure time (8 PM) and evening match (7:30 PM), and fatigue induced by competition had a greater effect on wellness ratings than long-haul air travel with a minimal time-zone change. Furthermore, subjective jet lag may have been misinterpreted as fatigue from sleep disruption and competition, especially by the less experienced players. Therefore, northbound air travel across 1 time zone from Australia to Asia appears to have negligible effects on player preparedness for subsequent training and competition. PMID:25569181

  20. Analyzing axial stress and deformation of tubular for steam injection process in deviated wells based on the varied (T, P) fields.

    PubMed

    Liu, Yunqiang; Xu, Jiuping; Wang, Shize; Qi, Bin

    2013-01-01

    The axial stress and deformation of high temperature high pressure deviated gas wells are studied. A new model is multiple nonlinear equation systems by comprehensive consideration of axial load of tubular string, internal and external fluid pressure, normal pressure between the tubular and well wall, and friction and viscous friction of fluid flowing. The varied temperature and pressure fields were researched by the coupled differential equations concerning mass, momentum, and energy equations instead of traditional methods. The axial load, the normal pressure, the friction, and four deformation lengths of tubular string are got ten by means of the dimensionless iterative interpolation algorithm. The basic data of the X Well, 1300 meters deep, are used for case history calculations. The results and some useful conclusions can provide technical reliability in the process of designing well testing in oil or gas wells. PMID:24163623

  1. Analyzing Axial Stress and Deformation of Tubular for Steam Injection Process in Deviated Wells Based on the Varied (T, P) Fields

    PubMed Central

    Liu, Yunqiang; Xu, Jiuping; Wang, Shize; Qi, Bin

    2013-01-01

    The axial stress and deformation of high temperature high pressure deviated gas wells are studied. A new model is multiple nonlinear equation systems by comprehensive consideration of axial load of tubular string, internal and external fluid pressure, normal pressure between the tubular and well wall, and friction and viscous friction of fluid flowing. The varied temperature and pressure fields were researched by the coupled differential equations concerning mass, momentum, and energy equations instead of traditional methods. The axial load, the normal pressure, the friction, and four deformation lengths of tubular string are got ten by means of the dimensionless iterative interpolation algorithm. The basic data of the X Well, 1300 meters deep, are used for case history calculations. The results and some useful conclusions can provide technical reliability in the process of designing well testing in oil or gas wells. PMID:24163623

  2. Golimumab Injection

    MedlinePlus

    ... at golimumab injection before injecting it. Check the expiration date printed on the auto-injection device or carton and do not use the medication if the expiration date has passed. Do not use a prefilled syringe ...

  3. Hydrologic and chemical data from selected wells and springs in southern Elmore County, including Mountain Home Air Force Base, southwestern Idaho, Fall 1989

    SciTech Connect

    Parliman, D.J.; Young, H.W.

    1990-01-01

    Hydrologic and chemical data were collected during September through November 1989 from 90 wells and 6 springs in southern Elmore County, southwestern Idaho. These data were collected to characterize the chemical quality of water in major water-yielding zones in areas near Mountain Home and Mountain Home Air Force Base. The data include well and spring locations, well-construction and water level information, and chemical analyses of water from each well and spring inventoried. Groundwater in the study area is generally suitable for most uses. In localized areas, water is highly mineralized, and pH, concentrations of dissolved sulfate, chloride, or nitrite plus nitrate and nitrogen exceed national public drinking-water limits. Fecal coliform and fecal streptococci bacteria were detected in separate water samples. One or more volatile organic compounds were detected in water samples from 15 wells, and the concentration of benzene exceeded the national public drinking-water limit in a water sample from one well. 5 refs., 4 figs., 6 tabs.

  4. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  5. Ground-Water Levels and Water-Quality Data for Wells in the Crumpton Creek Area near Arnold Air Force Base, Tennessee, November 2001 to January 2002

    USGS Publications Warehouse

    Williams, Shannon D.

    2003-01-01

    From November 2001 to January 2002, a study of the ground-water resources in the Crumpton Creek area of Middle Tennessee was conducted to determine whether volatile organic compounds (VOCs) from Arnold Air Force Base (AAFB) have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. VOC samples were collected from private wells that were not included in previous sampling efforts conducted in the Crumpton Creek area near AAFB. Ground-water-flow directions were investigated by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 68 private wells, 82 monitoring wells, and 1 cave during the period of study. Ground-water levels were determined for 42 of the private wells and for all 82 monitoring wells. Of the 82 monitoring wells, 81 withdraw water from the Manchester aquifer and 1 well withdraws water from the overlying shallow aquifer. The Manchester aquifer wells range in depth from 20 to 150 feet. Water-level altitudes for the Manchester aquifer ranged from 956 to 1,064 feet above the National Geodetic Vertical Datum of 1929. Water levels ranged from approximately 6 feet above land surface to 94 feet below land surface. Water-quality samples were collected from all 68 private wells, 8 of the monitoring wells, and the 1 cave. Of the 55 VOCs analyzed, 42 were not detected. Thirteen VOCs were detected; however, only tetrachloroethylene (PCE), methylene chloride, and toluene were detected at concentrations equal to or above reporting levels for the analytical method used. PCE was detected in water samples from 15 private wells and was the only VOC that exceeded drinking water maximum contaminant levels for public water systems. PCE concentrations in samples from five of the wells were below the reporting level and ranged from estimated concentrations of 0.46 to 0.80 microgram per liter (?g/L). Samples from 10

  6. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  7. Hydrogeologic and water-quality data from well clusters near the wastewater-treatment plant, U.S. Marine Corps Air Station, Cherry Point, North Carolina

    USGS Publications Warehouse

    Murray, L.C., Jr.; Daniel, C. C., III

    1990-01-01

    Hydrogeologic and ground-water quality data were collected near the wastewater-treatment plant and associated polishing lagoons at the Marine Corps Air Station, Cherry Point, North Carolina, in 1988. Between March and May 1988, two observation wells were installed upgradient and six wells were installed downgradient of the polishing lagoons and sampled for organic and inorganic U.S. Environmental Protection Agency priority pollutants. Placement of the well screens allowed sampling from both the upper and lower parts of the surficial aquifer. Natural gamma-ray geophysical logs were run in the four deepest wells. Lithologic logs were prepared from split-spoon samples collected during the drilling operations. Laboratory hydraulic conductivity tests were conducted on samples of fine-grained material recovered from the two confining units that separate the surficial aquifer and the drinking-water supply aquifer; values ranged from 0.011 to 0.014 foot per day (4x10-6 to 5x10-6 centimeters per second). Static water levels were recorded on April 25, 1988. Relatively low concentrations of purgeable organic compounds (up to 2.2 micrograms per liter for dichlorodifluoromethane), acid and base/neutral extractable compounds (up to 58 micrograms per liter for bis(2-ethylhexyl) phthalate), or pesticides (up to 0.03 micrograms per liter for diazinon and methyl parathion) were detected in water samples collected from all of the wells. Trace metals were detected in concentrations above minimum detectable limits in all of the wells and were found to be higher in water samples collected from the downgradient wells (up to 320 micrograms per liter for zinc) than in water samples from the upgradient wells.

  8. Development of an Ultrasonic Phased Array System for Wellbore Integrity Evaluation and Near-Wellbore Fracture Network Mapping of Injection and Production Wells in Geothermal Energy Systems

    SciTech Connect

    Almansouri, Hani; Foster, Benjamin; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie

    2016-01-01

    This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, and provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.

  9. Water Injected Turbomachinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    From antiquity, water has been a source of cooling, lubrication, and power for energy transfer devices. More recent applications in gas turbines demonstrate an added facet, emissions control. Fogging gas turbine inlets or direct injection of water into gas turbine combustors, decreases NOx and increases power. Herein we demonstrate that injection of water into the air upstream of the combustor reduces NOx by factors up to three in a natural gas fueled Trapped Vortex Combustor (TVC) and up to two in a liquid JP-8 fueled (TVC) for a range in water/fuel and fuel/air ratios.

  10. Ground-water levels and water-quality data for wells in the Spring Creek area near Arnold Air Force Base, Tennessee, April and May 2000

    USGS Publications Warehouse

    Williams, Shannon D.; Aycock, Robert A.

    2001-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. Numerous site-specific ground-water contamination investigations have been conducted at designated solid waste management units (SWMU?s) at AAFB. Several synthetic volatile organic compounds (VOC?s), primarily chlorinated solvents, have been identified in groundwater samples collected from monitoring wells near SWMU 8 in the Spring Creek area. During April and May 2000, a study of the groundwater resources in the Spring Creek area was conducted to determine if VOC?s from AAFB have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. The study focused on sampling private wells located within the Spring Creek area that are used as a source of drinking water. Ground-water-flow directions were determined by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 35 private wells and 22 monitoring wells during the period of study. Depths to ground water were determined for 22 of the private wells and all 22 of the monitoring wells. The wells ranged in depth from 21 to 105 feet. Water-level altitudes ranged from 930 to 1,062 feet above sea level. Depths to water ranged from 8 to 83 feet below land surface. Water-quality samples were collected from 29 private wells which draw water from either gravel zones in the upper part of the Manchester aquifer, fractured bedrock in the lower part of the Manchester aquifer, or a combination of these two zones. Concentrations of 50 of the 55 VOC?s analyzed for were less than method detection limits. Chloroform, acetone, chloromethane, 2-butanone, and tetrachloroethylene were detected in concentrations exceeding the method detection limits. Only chloroform and acetone were detected in concentrations equal to or exceeding reporting limits. Chloroform was detected in a sample

  11. How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures

    NASA Astrophysics Data System (ADS)

    Way, Danielle A.; Oren, Ram; Kim, Hyun-Seok; Katul, Gabriel G.

    2011-12-01

    Future carbon and water fluxes within terrestrial ecosystems will be determined by how stomatal conductance (gs) responds to rising atmospheric CO2and air temperatures. While both short- and long-term CO2 effects on gs have been repeatedly studied, there are few studies on how gs acclimates to higher air temperatures. Six gs models were parameterized using leaf gas exchange data from black spruce (Picea mariana) seedlings grown from seed at ambient (22/16°C day/night) or elevated (30/24°C) air temperatures. Model performance was independently assessed by how well carbon gain from each model reproduced estimated carbon costs to close the seedlings' seasonal carbon budgets, a `long-term' indicator of success. A model holding a constant intercellular to ambient CO2ratio and the Ball-Berry model (based on stomatal responses to relative humidity) could not close the carbon balance for either treatment, while the Jarvis-Oren model (based on stomatal responses to vapor pressure deficit,D) and a model assuming a constant gs each closed the carbon balance for one treatment. Two models, both based on gs responses to D, performed best overall, estimating carbon uptake within 10% of carbon costs for both treatments: the Leuning model and a linear optimization model that maximizes carbon gain per unit water loss. Since gsresponses in the optimization model are not a priori assumed, this approach can be used in modeling land-atmosphere exchange of CO2 and water in future climates.

  12. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    SciTech Connect

    2005-01-01

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good.

  13. Giving an insulin injection

    MedlinePlus

    ... One Type of Insulin Wash your hands with soap and water. Dry them well. Check the insulin ... syringe before injecting it. Wash your hands with soap and water. Dry them well. Check the insulin ...

  14. Evaluations of Radionuclides of Uranium, Thorium, and Radium Associated with Produced Fluids, Precipitates, and Sludges from Oil, Gas, and Oilfield Brine Injection Wells in Mississippi

    SciTech Connect

    Ericksen, R.L.

    1999-10-28

    There is an unsurpassed lack of scientific data with respect to the concentrations and isotopic compositions of uranium, thorium, and radium in the produced formation fluids (brine), precipitates, and sludges generated with the operation of oil and gas wells in Mississippi. These radioactive elements when contained in the formation fluids have been given the term NORM, which is an acronym for naturally occurring radioactive materials. When they are technologically enhanced during oil and gas production activities resulting in the formation of scale (precipitates) and sludges they are termed TENORM (technologically enhanced naturally occurring radioactive materials). As used in this document, NORM and TENORM will be considered equivalent terms and the occurrence of NORM in the oilfield will be considered the result of production operations. As a result of the lack of data no scientifically sound theses may be developed concerning the presence of these radionuclides in the fluid brine, precipitate (scale), or sludge phases. Over the period of just one year, 1997 for example, Mississippi produced over 39,372,963,584 liters (10,402,368,186 gallons or 247,675,433 barrels) of formation water associated with hydrocarbon production from 41 counties across the state.

  15. Lean direct wall fuel injection method and devices

    NASA Technical Reports Server (NTRS)

    Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)

    2000-01-01

    A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.

  16. EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI

    SciTech Connect

    Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

    2004-03-01

    Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal

  17. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  18. Room temperature spin injection into (110) GaAs quantum wells using Fe/x-AlO{sub x} contacts in the regime of current density comparable to laser oscillation

    SciTech Connect

    Yokota, Nobuhide Aoshima, Yohei; Ikeda, Kazuhiro; Kawaguchi, Hitoshi; Nishizawa, Nozomi; Munekata, Hiro

    2015-10-28

    We investigate the electrical spin injection into (110) GaAs single quantum wells (SQWs) and multiple quantum wells (MQWs) using light-emitting diodes (LEDs) having Fe/crystalline-AlO{sub x} (x-AlO{sub x}) tunnel barrier contacts. A degree of circular polarization (P{sub c}) of 5.0% is obtained for the SQW LED at 4 K with the current density of 1 kA/cm{sup 2} which is comparable to that for the laser oscillation in vertical-cavity surface-emitting lasers (VCSELs). On the basis of electron spin relaxation time and carrier lifetime in the (110) GaAs SQW measured by time-dependent photoluminescence and the value of P{sub c} = 5.0%, the degree of spin polarization of initially injected electrons (P{sub 0}) in the SQW is estimated to be 6.6% at 4 K. By using the MQW LED having a much stronger electroluminescence, a P{sub c} value of 2.6% is obtained at room temperature (RT) with the current density of 1.5 kA/cm{sup 2}. The temperature and current density dependences of P{sub c} are found to be weak in both the SQW and MQW LEDs. The estimated P{sub 0} of 9.3% at RT suggests that the Fe/x-AlO{sub x} contacts can be used for the RT electrical spin injection for spin-controlled VCSELs.

  19. Heat Transfer to Fuel Sprays Injected into Heated Gases

    NASA Technical Reports Server (NTRS)

    Selden, Robert F; Spencer, Robert C

    1938-01-01

    This report presents the results of a study made of the influence of several variables on the pressure decrease accompanying injection of a relatively cool liquid into a heated compressed gas. Indirectly, this pressure decrease and the time rate of change of it are indicative of the total heat transferred as well as the rate of heat transfer between the gas and the injected liquid. Air, nitrogen, and carbon dioxide were used as ambient gases; diesel fuel and benzene were the injected liquids. The gas densities and gas-fuel ratios covered approximately the range used in compression-ignition engines. The gas temperatures ranged from 150 degrees c. to 350 degrees c.

  20. Results of borehole geophysical logging and hydraulic tests conducted in Area D supply wells, former US Naval Air Warfare Center, Warminster, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Grazul, Kevin E.

    1998-01-01

    Borehole geophysical logging, aquifer tests, and aquifer-isolation (packer) tests were conducted in four supply wells at the former U.S. Naval Air Warfare Center (NAWC) in Warminster, PA to identify the depth and yield of water-bearing zones, occurrence of borehole flow, and effect of pumping on nearby wells. The study was conducted as part of an ongoing evaluation of ground-water contamination at the NAWC. Caliper, natural-gamma, single-point resistance, fluid resistivity, and fluid temperature logs and borehole television surveys were run in the supply wells, which range in depth from 242 to 560 ft (feet). Acoustic borehole televiewer and borehole deviation logs were run in two of the wells. The direction and rate of borehole-fluid movement under non-pumping conditions were measured with a high-resolution heatpulse flowmeter. The logs were used to locate water-bearing fractures, determine probable zones of vertical borehole-fluid movement, and determine the depth to set packers. An aquifer test was conducted in each well to determine open-hole specific capacity and the effect of pumping the open borehole on water levels in nearby wells. Specific capacities ranged from 0.21 to 1.7 (gal/min)/ft (gallons per minute per foot) of drawdown. Aquifer-isolation tests were conducted in each well to determine depth-discrete specific capacities and to determine the effect of pumping an individual fracture or fracture zone on water levels in nearby wells. Specific capacities of individual fractures and fracture zones ranged from 0 to 2.3 (gal/min)/ft. Most fractures identified as water-producing or water-receiving zones by borehole geophysical methods produced water when isolated and pumped. All hydrologically active fractures below 250 ft below land surface were identified as water-receiving zones and produced little water when isolated and pumped. In the two wells greater then 540 ft deep, downward borehole flow to the deep water-receiving fractures is caused by a large

  1. Corrective Action Investigation Plan for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 322 consists of three Corrective Action Sites (CASs): 01-25-01, AST Release (Area 1); 03-25-03, Mud Plant AST Diesel Release (Area 3); 03-20-05, Injection Wells (Area 3). Corrective Action Unit 322 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. The investigation of three CASs in CAU 322 will determine if hazardous and/or radioactive constituents are present at concentrations and locations that could potentially pose a threat to human health and the environment. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  2. Paclitaxel Injection

    MedlinePlus

    ... with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... cancer, and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  3. Mipomersen Injection

    MedlinePlus

    ... become pregnant during your treatment, stop using mipomersen injection and call your doctor immediately. ... Mipomersen injection may cause side effects. Tell your doctor if any of these ... and tiredness that are most likely to occur during the first 2 days ...

  4. Romidepsin Injection

    MedlinePlus

    ... with at least one other medication given by mouth or by injection. Romidepsin injection is in a ... antifungals such as itraconazole (Sporanox), ketoconazole (Nizoral), and voriconazole (Vfend); cisapride (Propulsid) (not available in the U.S.); ...

  5. Degarelix Injection

    MedlinePlus

    Degarelix injection is used to treat advanced prostate cancer (cancer that begins in the prostate [a male reproductive gland]). Degarelix injection is in a class of medications called gonadotropin-releasing hormone (GnRH) ...

  6. Paclitaxel Injection

    MedlinePlus

    ... other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  7. Glatiramer Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS; a disease in which ... to inject glatiramer, inject it around the same time every day. Follow the directions on your prescription ...

  8. Daratumumab Injection

    MedlinePlus

    ... any laboratory test, tell your doctor and the laboratory personnel that you are receiving or received daratumumab injection. ... a blood transfusion, tell your doctor and the laboratory personnel that you are receiving or received daratumumab injection. ...

  9. Pralatrexate Injection

    MedlinePlus

    ... will need to take folic acid and vitamin B12 during your treatment with pralatrexate injection to help ... that you will need to receive a vitamin B12 injection no more than 10 weeks before your ...

  10. Cefoxitin Injection

    MedlinePlus

    ... injection is used to treat infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephamycin antibiotics. It works by killing bacteria.Antibiotics such as cefoxitin injection will not work ...

  11. Chloramphenicol Injection

    MedlinePlus

    ... treat certain types of serious infections caused by bacteria when other antibiotics cannot be used. Chloramphenicol injection ... antibiotics. It works by stopping the growth of bacteria..Antibiotics such as chloramphenicol injection will not work ...

  12. Oxacillin Injection

    MedlinePlus

    ... is used to treat infections caused by certain bacteria. Oxacillin injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as oxacillin injection will not work ...

  13. Nafcillin Injection

    MedlinePlus

    ... to treat infections caused by certain types of bacteria. Nafcillin injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as nafcillin injection will not work ...

  14. Doripenem Injection

    MedlinePlus

    ... tract, kidney, and abdomen that are caused by bacteria. Doripenem injection is not approved by the Food ... medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as doripenem injection will not work ...

  15. Medroxyprogesterone Injection

    MedlinePlus

    ... Medroxyprogesterone injection is a very effective method of birth control but does not prevent the spread of human ... you have been using a different method of birth control and are switching to medroxyprogesterone injection, your doctor ...

  16. Chloramphenicol Injection

    MedlinePlus

    Chloramphenicol injection is used to treat certain types of serious infections caused by bacteria when other antibiotics cannot be used. Chloramphenicol injection is in a class of medications called ...

  17. Levoleucovorin Injection

    MedlinePlus

    ... injection is used to prevent harmful effects of methotrexate (Rheumatrex, Trexall) when methotrexate is used to to treat certain types of ... people who have accidentally received an overdose of methotrexate or similar medications. Levoleucovorin injection is in a ...

  18. Estrogen Injection

    MedlinePlus

    ... forms of estrogen injection are used to treat hot flushes (hot flashes; sudden strong feelings of heat and sweating) ... If you are using estrogen injection to treat hot flushes, your symptoms should improve within 1 to ...

  19. Palonosetron Injection

    MedlinePlus

    Palonosetron injection is used to prevent nausea and vomiting that may occur within 24 hours after receiving ... occur several days after receiving certain chemotherapy medications. Palonosetron injection is in a class of medications called ...

  20. Leuprolide Injection

    MedlinePlus

    ... normal number of red blood cells) caused by uterine fibroids (noncancerous growths in the uterus). Leuprolide injection is ... Your doctor will tell you how long your treatment with leuprolide injection will last. When used in ...

  1. Naltrexone Injection

    MedlinePlus

    Naltrexone injection is used along with counseling and social support to help people who have stopped drinking large ... injection is also used along with counseling and social support to help people who have stopped abusing opiate ...

  2. Posaconazole Injection

    MedlinePlus

    Posaconazole injection is used to prevent fungal infections in people with a weakened ability to fight infection. Posaconazole injection is in a class of medications called azole antifungals. It works ...

  3. Epinephrine Injection

    MedlinePlus

    Adrenalin® Chloride Solution ... a pre-filled automatic injection device containing a solution (liquid) to inject under the skin or into ... device when this date passes. Look at the solution in the device from time to time. If ...

  4. Trastuzumab Injection

    MedlinePlus

    Trastuzumab injection is used along with other medications or after other medications have been used to treat ... has spread to other parts of the body. Trastuzumab injection is also used during and after treatment ...

  5. Fondaparinux Injection

    MedlinePlus

    ... using fondaparinux injection while you are in the hospital at least 6 to 8 hours after your ... you will continue to use fondaparinux after your hospital stay, you can inject fondaparinux yourself or have ...

  6. Doxycycline Injection

    MedlinePlus

    Doxycycline injection is used to treat or prevent bacterial infections, including pneumonia and other respiratory tract infections. ... certain skin, genital, intestine, and urinary system infections. Doxycycline injection may be used to treat or prevent ...

  7. Medroxyprogesterone Injection

    MedlinePlus

    ... Medroxyprogesterone subcutaneous injection is also used to treat endometriosis (a condition in which the type of tissue ... parts of the body in women who have endometriosis. Medroxyprogesterone injection is a very effective method of ...

  8. Ferumoxytol Injection

    MedlinePlus

    Ferumoxytol injection is used to treat iron-deficiency anemia (a lower than normal number of red blood ... and may cause the kidneys to stop working). Ferumoxytol injection is in a class of medications called ...

  9. Aripiprazole Injection

    MedlinePlus

    ... aripiprazole injection and aripiprazole extended-release injection developed gambling problems or other intense urges or behaviors that ... even if you do not realize that your gambling or any other intense urges or unusual behaviors ...

  10. Productivity and Injectivity of Horizontal Wells

    SciTech Connect

    Aziz, Khalid; Hewett, Thomas A.; Arbabi, Sepehr; Smith, Marilyn

    1999-11-16

    The generation of suitable simulation grids for heterogeneous media and specific discretization issues that arise. Streamlines and equipotentials are used to define our base grids. Since streamlines are concentrated in high velocity regions they provide a natural means of clustering fine grid cells in crucial flow regions. For complex configurations and particularly for strongly heterogeneous regions the resulting grid cells can become very distorted due to extremely high curvatures. Two types of cell centered formulation are examined together with a cell vertex-point distributed scheme. Important distinctions are found for highly distorted cells. The new grids are tested for accuracy in terms of critical breakthrough parameters and it is shown that a much higher level of grid resolution is required by conventional simulators in order to achieve results that are comparable with those computed on relatively coarse streamline-potential grids.

  11. Hydrogeologic, water-level, and water-quality data from monitoring wells at the US Marine Corps Air Station, Cherry Point, North Carolina

    USGS Publications Warehouse

    Murray, L.C., Jr.; Keoughan, K.M.

    1990-01-01

    Unlined hazardous-waste disposal sites at the U.S. Marine Corps Air Station, Cherry Point, North Carolina, are located near drinking-water supply wells that tap the Castle Hayne aquifer. Hydrogeologic and water-quality data were collected near 2 of these sites from 12 monitoring wells installed in May through June 1987. Near the northernmost landfill site, differences in hydraulic head between the surficial, intermediate Yorktown, and Castle Hayne aquifers indicate a potential for migration of contaminants downward into the intermediate Yorktown and Castle Hayne aquifers. Movement would be impeded, however, by two confining units of silty sand to sandy clay that separate these aquifers. Geophysical and lithologic data show the upper confining unit to be approximately 26 feet thick near this landfill. Near the southernmost landfill, these confining units are thin and discontinuous in an area that coincides with the location of a buried paleochannel. Static water-level data collected in this area indicate that both the Castle Hayne and Yorktown aquifers discharge into the surficial aquifer, minimizing the potential for downward contaminant movement. Ground water in the surficial aquifer at both landfills moves laterally away from nearby drinking-water supply wells and toward Slocum Creek, a tributary of the Neuse River. Concentrations of organic compounds and trace inorganic constituents included on the U.S. Environmental Protection Agency?s list of priority pollutants were determined for water samples from the surficial and Yorktown aquifers. High concentrations of two purgeable organic compounds, trichloroethylene and 1,2-dichloroethene (4,600 and 4,800 micrograms per liter, respectively), were detected in water samples collected from the surficial aquifer near the southernmost landfill; much smaller concentrations of trichloroethylene and 1,2-dichloroethene were detected in samples from wells in the Yorktown aquifer (up to 16 and 12 micrograms per liter

  12. Hole transport assisted by the piezoelectric field in In{sub 0.4}Ga{sub 0.6}N/GaN quantum wells under electrical injection

    SciTech Connect

    Zhang, Shuailong; Gu, Erdan E-mail: huxd@pku.edu.cn; Xie, Enyuan; Herrnsdof, Johannes; Gong, Zheng; Watson, Ian M.; Dawson, Martin D.; Yan, Tongxing; Yang, Wei; Hu, Xiaodong E-mail: huxd@pku.edu.cn

    2015-09-28

    The authors observe the significant penetration of electrically injected holes through InGaN/GaN quantum wells (QWs) with an indium mole fraction of 40%. This effect and its current density dependence were analysed by studies on micro-pixel light-emitting diodes, which allowed current densities to be varied over a wide range up to 5 kA/cm{sup 2}. The systematic changes in electroluminescence spectra are discussed in the light of the piezoelectric field in the high-indium-content QWs and its screening by the carriers. Simulations were also carried out to clarify the unusual hole transport mechanism and the underlying physics in these high-indium QWs.

  13. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual Report, July 1, 1995--June 30, 1996

    SciTech Connect

    Chimahusky, J.S.; Hallenbeck, L.D.; Harpole, K.J.; Dollens, K.B.

    1997-05-01

    The work reported herein covers select tasks remaining in Budget Phase I and many of the tasks of Budget Phase II. The principal Tasks in Budget Phase I included in this report are Reservoir Analysis and Characterization; Advanced Technical Studies; and Technology Transfer, Reporting and Project Management Activities for Budget Phase I. The principle Task in Budget Phase II included in this report is Field Demonstration. Completion of these tasks has enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual CO{sub 2} injection scheduled for start-up in mid-July, 1996. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take-or-pay provisions, CO{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreements (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics. The Grayburg-San Andres section had previously been divided into multiple zones based on the core study and gamma ray markers that correlate wells within the Unit. Each zone was mapped as continuous across the field. Previous core studies concluded that the reservoir quality in the South Cowden Unit (SCU) is controlled primarily by the distribution of a bioturbated and diagenetically-altered rock type with a distinctive {open_quotes}chaotic{close_quotes} texture. The {open_quotes}chaotic{close_quotes} modifier is derived from the visual effect of pervasive, small-scale intermixing of tan oil-stained reservoir rock with tight gray non-reservoir rock.

  14. Study of Forebody Injection and Mixing with Application to Hypervelocity Airbreathing Propulsion

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2012-01-01

    The use of premixed, shock-induced combustion in the context of a hypervelocity, airbreathing vehicle requires effective injection and mixing of hydrogen fuel and air on the vehicle forebody. Three dimensional computational simulations of fuel injection and mixing from flush-wall and modified ramp and strut injectors are reported in this study. A well-established code, VULCAN, is used to conduct nonreacting, viscous, turbulent simulations on a flat plate at conditions relevant to a Mach 12 flight vehicle forebody. In comparing results of various fuel injection strategies, it is found that strut injection provides the greatest balance of performance between mixing efficiency and stream thrust potential.

  15. The effects of engine speed and injection characteristics on the flow field and fuel/air mixing in motored two-stroke diesel engines

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Carpenter, M. H.; Ramos, J. I.

    1987-01-01

    A numerical analysis is presented on the effects of the engine speed, injection angle, droplet distribution function, and spray cone angle on the flow field, spray penetration and vaporization, and turbulence in a turbocharged motored two-stroke diesel engine. The results indicate that the spray penetration and vaporization, velocity, and turbulence kinetic energy increase with the intake swirl angle. Good spray penetration, vaporization, and mixing can be achieved by injecting droplets of diameters between 50 and 100 microns along a 120-deg cone at about 315 deg before top-dead-center for an intake swirl angle of 30 deg. The spray penetration and vaporization were found to be insensitive to the turbulence levels within the cylinder. The results have also indicated that squish is necessary in order to increase the fuel vaporization rate and mixing.

  16. Development of an empirical model of a variable speed vapor injection compressor used in a Modelica-based dynamic model of a residential air source heat pump

    NASA Astrophysics Data System (ADS)

    Dechesne, Bertrand; Bertagnolio, Stephane; Lemort, Vincent

    2015-08-01

    This paper presents a steady-state model of a variable speed vapour injection scroll compressor. Two compressors were investigated. The developed empirical model is based on five dimensionless polynomials that were fitted using experimental data from a 2.7kW scroll compressor. A second set of data was used to show the prediction of the presented model for an other device which exhibits a different swept volume. In both cases, the suction and injection mass flow rate were respectively predicted with a coefficient of determination equal to 99.9 and 94.3% and for the consumed power, 98.4% and 95.6%. A Modelica based dynamic model is then presented. The steady-state validation of the main components models is performed. Finally the control of the cycle using two PID controllers is presented and commented.

  17. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    SciTech Connect

    Williams, Ben; Ewart, Paul; Wang, Xiaowei; Stone, Richard; Ma, Hongrui; Walmsley, Harold; Cracknell, Roger; Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different

  18. Lacosamide Injection

    MedlinePlus

    ... may be prescribed for other uses; ask your doctor or pharmacist for more information. ... Before using lacosamide injection,tell your doctor and pharmacist if you are allergic to lacosamide, any other medications, or any of the ingredients in lacosamide injection. Ask your pharmacist for a ...

  19. Dexamethasone Injection

    MedlinePlus

    ... lines under the skin skin depressions at the injection site increased body fat or movement to different areas of your body inappropriate happiness difficulty falling asleep or staying asleep extreme ... increased appetite injection site pain or redness Some side effects can ...

  20. Pralatrexate Injection

    MedlinePlus

    ... you that you will need to receive a vitamin B12 injection no more than 10 weeks before your first ... tests to check your body's response to pralatrexate injection.Ask your ... such as vitamins, minerals, or other dietary supplements. You should bring ...

  1. Leucovorin Injection

    MedlinePlus

    ... lack of vitamin B12 or inability to absorb vitamin B12. Your doctor will not prescribe leucovorin injection to treat this type of anemia.tell your ... tests to check your body's response to leucovorin injection.It is ... such as vitamins, minerals, or other dietary supplements. You should bring ...

  2. Etanercept Injection

    MedlinePlus

    ... and colorless. The liquid may contain small white particles, but should not contain large or colored particles. Do not use a syringe or dosing pen ... liquid is cloudy or contains large or colored particles.The best place to inject etanercept injection is ...

  3. Musculoskeletal Injection

    PubMed Central

    Wittich, Christopher M.; Ficalora, Robert D.; Mason, Thomas G.; Beckman, Thomas J.

    2009-01-01

    Patients commonly present to primary care physicians with musculoskeletal symptoms. Clinicians certified in internal medicine must be knowledgeable about the diagnosis and management of musculoskeletal diseases, yet they often receive inadequate postgraduate training on this topic. The musculoskeletal problems most frequently encountered in our busy injection practice involve, in decreasing order, the knees, trochanteric bursae, and glenohumeral joints. This article reviews the clinical presentations of these problems. It also discusses musculoskeletal injections for these problems in terms of medications, indications, injection technique, and supporting evidence from the literature. Experience with joint injection and the pharmacological principles described in this article should allow primary care physicians to become comfortable and proficient with musculoskeletal injections. PMID:19720781

  4. Premixed direct injection nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas Edward; Lacy, Benjamin Paul; Ziminsky, Willy Steve

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  5. Modeling Ignition and Combustion in Direct Injection Compression Ignition Engines Employing Very Early Injection Timing

    NASA Astrophysics Data System (ADS)

    Miyamoto, Takeshi; Tsurushima, Tadashi; Shimazaki, Naoki; Harada, Akira; Sasaki, Satoru; Hayashi, Koichi; Asaumi, Yasuo; Aoyagi, Yuzo

    An ignition and combustion model has been developed to predict the heat release rate in direct injection compression ignition engines employing very early injection timing. The model describes the chemical reactions, including low-temperature oxidation. The KIVA II computer code was modified with the present ignition and combustion model. The numerical results indicate that the model developed in this work reproduces major features of two-stage autoignition, as well as experimentally observed trends in NOx and unburned fuel emissions. The computational results show that fuel injection timing significantly influences NOx emissions. Results also indicate that fuel droplets that enter the squish region possibly become unburned fuel emissions. Some graphical results demonstrate the relationships among the in-cylinder fuel spray distributions, fuel-air equivalence ratio, temperature, and mass fractions of NO and unburned fuel.

  6. DEMONSTRATION OF IN SITU DEHALOGENATION OF DNAPL THROUGH INJECTION OF EMULSIFIED ZERO-VALIENT IRON AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    EPA Science Inventory

    The purpose of this project was to evaluate the technical and cost performance of emulsified zero-valent iron (EZVI) technology when applied to DNAPL contaminants in the saturated zone. This demonstration was conducted at Launch Complex 34, Cape Canaveral Air Force Station, FL, w...

  7. Fuel injection

    SciTech Connect

    Iiyoshi, A.; Vogoshi, S.

    1983-12-01

    The Plasma Physics Laboratory and the Dept. of Electrical Engineering report on three types of pellet injectors which have different applications: injection of a pellet into a magnetic bottle for magnetic confinement; injection of a pellet into a vacuum chamber for an inertial confinement experiment; and injection of a pellet into a magnetic bottle where the pellet is ionized by high-power laser irradiation for target plasma production. The requirements of pellet injectors are summarized in a table. Theoretical studies on pellet ablation in hot plasma and ablated particle diffusion are underway.

  8. Deformational injection rate measuring method

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2002-09-01

    After completing the diesel engine endurance testing, we detected various traces of thermal load on the walls of combustion chambers located in the engine pistons. The engines were fitted with ω combustion chambers. The thermal load of different intensity levels occurred where the spray of fuel, fuel vapor, and air interacted with the combustion chamber wall. The uneven thermal load distribution of the combustion chamber wall results from varying injection rates in each injection nozzle hole. The most widely applied controlling methods so far for injection rate measurement, such as the Zeuch and Bosch concepts, allow measurement of only the total injection rate in multihole nozzles, without providing any indication whatsoever of the injection rate differences in individual injection nozzle holes. The new deformational measuring method described in the article allows the injection rate to be measured in each hole of the multihole nozzle. The results of the measurements using this method showed that the differences occurred in injection rates of individual injection nozzle holes. These differences may be the cause of various thermal loads on the combustion chamber walls. The criterion for injection rate is the deformation of the membrane due to an increase in the fuel quantity in the measuring space and due to the pressure waves resulting from the fuel being injected into the measuring space. The membrane deformation is measured using strain gauges, glued to the membrane and forming the Wheatstone's bridge. We devoted special attention to the temperature compensation of the Wheatstone's bridge and the membrane, heated up during the measurements.

  9. Certolizumab Injection

    MedlinePlus

    ... has not improved when treated with other medications, rheumatoid arthritis (a condition in which the body attacks its ... continues. When certolizumab injection is used to treat rheumatoid arthritis, it is usually given every other week and ...

  10. Ramucirumab Injection

    MedlinePlus

    ... dose of ramucirumab injection. Tell your doctor or nurse if you experience any of the following while you receive ramucirumab: uncontrollable shaking of a part of the body; back pain or spasms; chest pain and tightness; chills; flushing; ...

  11. Topotecan Injection

    MedlinePlus

    ... organs where eggs are formed) and small cell lung cancer (a type of cancer that begins in the ... topotecan injection is used to treat ovarian or lung cancer, it is usually given once a day for ...

  12. Colistimethate Injection

    MedlinePlus

    ... antibiotic, to help treat your infection. The drug will be either injected directly into a vein through ... catheter or added to an intravenous fluid that will drip through a needle or catheter into a ...

  13. Mitoxantrone Injection

    MedlinePlus

    ... medications to relieve pain in people with advanced prostate cancer who did not respond to other medications. Mitoxantrone ... doses). When mitoxantrone injection is used to treat prostate cancer, it is usually given once every 21 days. ...

  14. Palivizumab Injection

    MedlinePlus

    ... this medicine each month during RSV season. Your health care provider will let you know when the monthly injections are no longer needed.Your child's health care provider (doctor, nurse, or pharmacist) may measure ...

  15. Terbutaline Injection

    MedlinePlus

    Terbutaline injection is used to treat wheezing, shortness of breath, coughing, and chest tightness caused by asthma, chronic bronchitis, and emphysema. Terbutaline is in a class of medications called beta ...

  16. Leuprolide Injection

    MedlinePlus

    ... of the body and causes pain, heavy or irregular menstruation [periods], and other symptoms). Leuprolide injection (Lupron ... mention any of the following: certain medications for irregular heartbeat such as amiodarone (Cordarone), disopyramide (Norpace), procainamide ( ...

  17. Sumatriptan Injection

    MedlinePlus

    ... accompanied by nausea and sensitivity to sound and light). Sumatriptan injection is also used to treat the ... children. Store it at room temperature, away from light, excess heat, and moisture (not in the bathroom). ...

  18. Insulin Injection

    MedlinePlus

    ... contraceptives (birth control pills, patches, rings, injections, or implants); niacin (Niacor, Niaspan, Slo-Niacin); octreotide (Sandostatin);oral ... cramps abnormal heartbeat large weight gain in a short period of time swelling of the arms, hands, ...

  19. Fondaparinux Injection

    MedlinePlus

    ... had a serious allergic reaction (difficulty breathing or swallowing or swelling of the face, throat, tongue, lips, ... the face, throat, tongue, lips, or eyes difficulty swallowing or breathing Fondaparinux injection may cause other side ...

  20. Daclizumab Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS; a disease in which ... injections. Before you use daclizumab yourself the first time, read the written instructions that come with it. ...

  1. Haloperidol Injection

    MedlinePlus

    ... emotions). Haloperidol injection is also used to control motor tics (uncontrollable need to repeat certain body movements) ... people who have Tourette's disorder (condition characterized by motor or verbal tics). Haloperidol is in a class ...

  2. Certolizumab Injection

    MedlinePlus

    ... causes pain, swelling, and damage) including the following: Crohn's disease (a condition in which the body attacks the ... home. When certolizumab injection is used to treat Crohn's disease, it is usually given every two weeks for ...

  3. Natalizumab Injection

    MedlinePlus

    ... prevent episodes of symptoms in people who have Crohn's disease (a condition in which the body attacks the ... If you are receiving natalizumab injection to treat Crohn's disease, your symptoms should improve during the first few ...

  4. Daptomycin Injection

    MedlinePlus

    ... blood infections or serious skin infections caused by bacteria. Daptomycin injection is in a class of medications called cyclic lipopeptide antibiotics. It works by killing bacteria. Antibiotics will not work for treating colds, flu, ...

  5. Ciprofloxacin Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria. Ciprofloxacin injection is also used to prevent or ... of antibiotics called fluoroquinolones. It works by killing bacteria that cause infections. Antibiotics will not work for ...

  6. Gentamicin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as gentamicin injection will not work ...

  7. Ertapenem Injection

    MedlinePlus

    ... abdominal (stomach area) infections, that are caused by bacteria. It is also used for the prevention of ... medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as ertapenem injection will not work ...

  8. Cefepime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia, and skin, urinary tract, and kidney ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefepime injection will not work ...

  9. Ceftriaxone Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria such as gonorrhea (a sexually transmitted disease), pelvic ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftriaxone injection will not work ...

  10. Moxifloxacin Injection

    MedlinePlus

    ... skin, and abdominal (stomach area) infections caused by bacteria. Moxifloxacin injection is in a class of antibiotics called fluoroquinolones. It works by killing the bacteria that cause infections. Antibiotics will not work against ...

  11. Ceftaroline Injection

    MedlinePlus

    ... infections and pneumonia (lung infection) caused by certain bacteria. Ceftaroline is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftaroline injection will not work ...

  12. Tobramycin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as tobramycin injection will not work ...

  13. Cefazolin Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including skin, bone, joint, genital, blood, heart valve, ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefazolin injection will not work ...

  14. Cefotaxime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotaxime injection will not work ...

  15. Amikacin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as amikacin injection will not work ...

  16. Ampicillin Injection

    MedlinePlus

    ... to treat certain infections that are caused by bacteria such as meningitis (infection of the membranes that ... of medications called penicillins. It works by killing bacteria.Antibiotics such as ampicillin injection will not work ...

  17. Cefuroxime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefuroxime injection will not work ...

  18. Vancomycin Injection

    MedlinePlus

    ... medications called glycopeptide antibiotics. It works by killing bacteria that cause infections.Antibiotics such as vancomycin injection ... infection may not be completely treated and the bacteria may become resistant to antibiotics.

  19. Ceftazidime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftazidime injection will not work ...

  20. Telavancin Injection

    MedlinePlus

    ... serious skin infections caused by certain types of bacteria. Telavancin injection is in a class of medications ... antibiotics. It works by stopping the growth of bacteria. Antibiotics will not work for colds, flu, or ...

  1. Teduglutide Injection

    MedlinePlus

    ... injection, prefilled syringes containing diluent (liquid to be mixed with teduglutide powder), needles to attach to the diluent syringe, dosing syringes with needles attached, and alcohol swab pads. Throw away needles, syringes, and vials ...

  2. Cefoxitin Injection

    MedlinePlus

    ... is in a class of medications called cephamycin antibiotics. It works by killing bacteria.Antibiotics such as cefoxitin injection will not work for colds, flu, or other viral infections. Taking antibiotics when they are not needed increases your risk ...

  3. Nafcillin Injection

    MedlinePlus

    ... medications called penicillins. It works by killing bacteria.Antibiotics such as nafcillin injection will not work for colds, flu, or other viral infections. Taking antibiotics when they are not needed increases your risk ...

  4. Cefepime Injection

    MedlinePlus

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefepime injection will not work for colds, flu, or other viral infections. Using antibiotics when they are not needed increases your risk ...

  5. Oxacillin Injection

    MedlinePlus

    ... medications called penicillins. It works by killing bacteria.Antibiotics such as oxacillin injection will not work for colds, flu, or other viral infections. Taking antibiotics when they are not needed increases your risk ...

  6. Dexamethasone Injection

    MedlinePlus

    ... severe allergic reactions. It is used in the management of certain types of edema (fluid retention and ... needed for normal body functioning) and in the management of certain types of shock. Dexamethasone injection is ...

  7. Pembrolizumab Injection

    MedlinePlus

    ... treat a certain type of non-small-cell lung cancer that has spread to nearby tissues or to ... successfully with other medications for non-small-cell lung cancer. Pembrolizumab injection is in a class of medications ...

  8. Ibandronate Injection

    MedlinePlus

    ... Ibandronate is in a class of medications called bisphosphonates. It works by preventing bone breakdown and increasing ... while receiving this medication.Being treated with a bisphosphonate medication such as ibandronate injection for osteoporosis may ...

  9. Omalizumab Injection

    MedlinePlus

    ... asthma attacks (sudden episodes of wheezing, shortness of breath, and trouble breathing) in people with allergic asthma ( ... receiving a dose of omalizumab injection shortness of breath coughing up blood skin sores severe pain, numbness ...

  10. Necitumumab Injection

    MedlinePlus

    ... chest pain; shortness of breath; dizziness; loss of consciousness; or fast, irregular, or pounding heartbeat.Keep all appointments with your doctor and the laboratory.Talk to your doctor about the risks of receiving necitumumab injection.

  11. Dolasetron Injection

    MedlinePlus

    ... receiving cancer chemotherapy medications. Dolasetron is in a class of medications called serotonin 5-HT3 receptor antagonists. ... stiff or twitching muscles seizures coma (loss of consciousness) Dolasetron injection may cause other side effects. Call ...

  12. Topotecan Injection

    MedlinePlus

    ... also used together with other medications to treat cervical cancer (cancer that begins in the opening of the ... days. When topotecan injection is used to treat cervical cancer, it is usually given once a day for ...

  13. Ertapenem Injection

    MedlinePlus

    Ertapenem injection is used to treat certain serious infections, including pneumonia and urinary tract, skin, diabetic foot, ... for the prevention of infections following colorectal surgery. Ertapenem is in a class of medications called carbapenem ...

  14. Octreotide Injection

    MedlinePlus

    ... immediate-release injection is also used to control diarrhea and flushing caused by carcinoid tumors (slow-growing ... symptoms are severe or do not go away: diarrhea constipation pale, bulky, foul-smelling stools constantly feeling ...

  15. Infliximab Injection

    MedlinePlus

    ... injection may cause serious allergic reactions during an infusion and for 2 hours afterward. A doctor or ... the following symptoms during or shortly after your infusion: hives; rash; itching; swelling of the face, eyes, ...

  16. Vedolizumab Injection

    MedlinePlus

    ... injection may cause serious allergic reactions during an infusion and for several hours afterward. A doctor or ... of the following symptoms during or after your infusion: rash; itching; swelling of the face, eyes, mouth, ...

  17. Panitumumab Injection

    MedlinePlus

    ... as a solution (liquid) to be given by infusion (injected into a vein). It is usually given ... doctor or nurse in a doctor's office or infusion center. Panitumumab is usually given once every 2 ...

  18. Tositumomab Injection

    MedlinePlus

    ... is in a class of medications called monoclonal antibodies with radioisotopes. It works by attaching to cancer ... you receive tositumomab injection, your body may develop antibodies (substances in the blood that help the immune ...

  19. Ibritumomab Injection

    MedlinePlus

    ... is in a class of medications called monoclonal antibodies with radioisotopes. It works by attaching to cancer ... you receive ibritumomab injection, your body may develop antibodies (substances in the blood that help the immune ...

  20. Temozolomide Injection

    MedlinePlus

    Temozolomide is used to treat certain types of brain tumors. Temozolomide is in a class of medications called ... injected once a day. For some types of brain tumors, temozolomide is given daily for 42 to 49 ...