Science.gov

Sample records for air injection wells

  1. Air injection system diagnostic

    SciTech Connect

    Kotzan, J.M.; Labus, G.E.

    1992-05-19

    This patent describes a method for diagnosing failures in an air control system that controls a quantity of air admitted into an exhaust path of an internal combustion engine. It comprises sensing the oxygen content of the exhaust gas of the engine at predetermined time intervals at a first predetermined point in the exhaust path of the engine, the oxygen content normally oscillating between a rich oxygen condition and a lean oxygen condition in the absence of air injected into the exhaust path above the first predetermined point; injecting a quantity of air into the exhaust path of the engine at a second predetermined point in the exhaust port, the second predetermined point being above the first predetermined point; counting the number of intervals at which the sensed oxygen content indicates a rich oxygen condition over a predetermined period of time; comparing the counted number of rich oxygen intervals to a predetermined threshold value, the threshold value being greater than a counted number of rich oxygen intervals over the predetermined period of time resulting from the normal oscillations between rich and lean oxygen conditions in the absence of air injected into the exhaust path; indicating the existence of a fault in the air control system when the number of rich oxygen intervals does not exceed the predetermined threshold value.

  2. General Information About Injection Wells

    EPA Pesticide Factsheets

    This webpage provides general background information on injection wells used to place fluids in the subsurface. It also provides information on use, different categories, and how they are regulated. Information on the protection is also provided.

  3. Injection System for Multi-Well Injection Using a Single Pump

    PubMed Central

    Wovkulich, Karen; Stute, Martin; Protus, Thomas J.; Mailloux, Brian J.; Chillrud, Steven N.

    2015-01-01

    Many hydrological and geochemical studies rely on data resulting from injection of tracers and chemicals into groundwater wells. The even distribution of liquids to multiple injection points can be challenging or expensive, especially when using multiple pumps. An injection system was designed using one chemical metering pump to evenly distribute the desired influent simultaneously to 15 individual injection points through an injection manifold. The system was constructed with only one metal part contacting the fluid due to the low pH of the injection solutions. The injection manifold system was used during a three-month pilot scale injection experiment at the Vineland Chemical Company Superfund site. During the two injection phases of the experiment (Phase I = 0.27 L/min total flow, Phase II = 0.56 L/min total flow), flow measurements were made 20 times over three months; an even distribution of flow to each injection well was maintained (RSD <4%). This durable system is expandable to at least 16 injection points and should be adaptable to other injection experiments that require distribution of air-stable liquids to multiple injection points with a single pump. PMID:26140014

  4. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    SciTech Connect

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected

  5. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  6. Boise geothermal injection well: Final environmental assessment

    SciTech Connect

    1997-12-31

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

  7. Neutron probe measurements of air saturation near an air sparging well

    SciTech Connect

    Acomb, L.J.; McKay, D.; Currier, P.; Berglund, S.T.; Sherhart, T.V.; Benediktsson, C.V.

    1995-12-31

    In situ air sparging is being used to remediate diesel-fuel-contaminated soils in the zone of water table fluctuation at a remote Alaskan Federal Aviation Administration (FAA) air navigation aid site. A neutron probe was used to measure changes in percent air saturation during air sparging in a uniform, aeolian sand. Air was injected about 15 ft below the water table at air flowrates of 4 to 16 ft{sup 3}/min (cfm). The neutron probe data show that during air sparging the distribution of injected air changed through time, initially expanding outward from the sparge well screen, then consolidating around the air sparging well, until a steady-state condition was reached. The maximum radius of influence, measured at an air flowrate of 16 cfm, was about 15 ft during steady-state flow. At all air flowrates the percent air saturation was highest near the air sparging well and decreased radially away from the sparging well. Near the sparging well, the percent air saturation ranged from about 30% to >50% at air injection rates of 4 to 16 cfm. Where the percent air saturation is similar to that in the vadose zone, volatilization and biodegradation may occur at rates similar to those in the vadose zone. Selected air saturation results are presented, and dissolved oxygen and saturated zone pressure data are summarized.

  8. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  9. Severe Scapular Pain Following Unintentional Cervical Epidural Air Injection.

    PubMed

    Henthorn, Randall W; Murray, Kerra

    2016-03-01

    This a unique case of severe scapular pain following unintentional epidural space air injection during epidural steroid injection.A 70-year-old woman presented for a fluoroscopically guided C7-T1 interlaminar epidural steroid injection. Three injection attempts were made using the loss of resistance with air technique. On the first attempt the epidural space was entered, but contrast injection showed that the needle was intravenous. On the second attempt an equivocal loss of resistance with air was perceived and 5 mL of air was lost from the syringe. The needle was withdrawn and redirected, and upon the third needle passage the contrast injection showed appropriate epidural space filling up to the C4-5 level. Injection of betamethasone mixed in lidocaine was initially uneventful.However, 20 minutes post-injection the patient experienced sudden sharp and continuous pain along the medial edge of the scapula. After failing to respond to multiple intravascular analgesics, the patient was transferred to the emergency room. Her pain subsided completely following an intravenous diazepam injection. Cervical spine computerized tomography showed obvious air in the posterior epidural space from C4-5 to C6-7 as well as outside the spinal canal from (C4-T2). Having recovered fully, she was discharged the following morning. In reviewing the procedure, the equivocal loss of resistance on the second passage was actually a true loss of resistance to epidural space and air was unintentionally injected. Surprisingly, severe scapular pain resulted in a delayed manner after the steroid solution was injected. The authors theorize that unintentional prefilling of the epidural space with air prior to the injection of the subsequent steroid mixture added sufficient pressure to the epidural space to cause right-sided C4 nerve root stretching/entrapment and ensuing radicular pain to the right scapular border. The subsequent intravenous diazepam provided cervical muscle relaxation and

  10. EPA proposes new rules for injection wells

    NASA Astrophysics Data System (ADS)

    The U.S. Environmental Protection Agency (EPA) has proposed rule changes to strengthen regulations protecting underground sources of drinking water from underground injection of hazardous wastes. The action is authorized by the Resource Conservation and Recovery Act (RCRA) and the Safe Drinking Water Act. The proposed rules were published in Federal Register August 27, 1987.“This proposal assures that hazardous wastes will either be properly treated or placed in an area where they can't contaminate underground sources of drinking water,” said Lawrence J. Jensen, EPA Assistant Administrator for Water. “The regulations would prohibit the migration of untreated hazardous waste out of the injection zone.”

  11. Productivity and injectivity of horizontal wells

    SciTech Connect

    Aziz, Khalid

    2000-03-06

    One of the key issues addressed was pressure drop in long horizontal wells and its influence on well performance. Very little information is available in the literature on flow in pipes with influx through pipe walls. Virtually all of this work has been in small diameter pipes and with single-phase flow. In order to address this problem new experimental data on flow in horizontal and near horizontal wells have been obtained. Experiments were conducted at an industrial facility on typical 6 1/8 ID, 100 feet long horizontal well model. The new data along with available information in the literature have been used to develop new correlations and mechanistic models. Thus it is now possible to predict, within reasonable accuracy, the effect of influx through the well on pressure drop in the well.

  12. Impact of Air Injection on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Norum, Tom

    2007-01-01

    The objective of this viewgraph presentation is to review the program to determine impact of core fluidic chevrons on noise produced by dual stream jets (i.e., broadband shock noise - supersonic, and mixing noise - subsonic and supersonic). The presentation reviews the sources of jet noise. It shows designs of Generation II Fluidic Chevrons. The injection impacts shock structure and stream disturbances through enhanced mixing. This may impact constructive interference between acoustic sources. The high fan pressures may inhibit mixing produced by core injectors. A fan stream injection may be required for better noise reduction. In future the modification of Gen II nozzles to allow for some azimuthal control: will allow for higher mass flow rates and will allow for shallower injection angles A Flow field study is scheduled for spring, 2008 The conclusions are that injection can reduce well-defined shock noise and injection reduces mixing noise near peak jet noise angle

  13. Pressure build-up in geothermal re-injection wells

    SciTech Connect

    Per-Gunnar Alm

    1996-01-24

    This paper presents a case study of pressure build-up in some geothermal re-injection wells in Sweden. The geothermal heat plant, in which the re-injection wells are used, has been in operation since the beginning of 1985. Each day since the start of the geothermal plant registration of the injection pressure has been done. The paper describes how a stimulation of the gravel pack outside the well screen can improve the hydraulic performance of the well. The stimulation is done by reversing the flow direction in the well. It is also shown how important it is to have a good well completion in order to receive a positive effect of well stimulation. The paper give example of recordings from two different re-injection wells. The recordings from one of the re-injection wells show that there are serious problems in the well, while the other one shows "normal" hydraulic behavior.

  14. Pressure build-up in geothermal re-injection wells

    SciTech Connect

    Alm, P.G.

    1996-12-31

    This paper presents a case study of pressure build-up in some geothermal re-injection wells in Sweden. The geothermal heat plant, in which the re-injection wells are used, has been in operation since the beginning of 1985. Each day since the start of the geothermal plant registration of the injection pressure has been done. The paper describes how a stimulation of the gravel pack outside the well screen can improve the hydraulic performance of the well. The stimulation is done by reversing the flow direction in the well. It is also shown how important it is to have a good well completion in order to receive a positive effect of well stimulation. The paper give example of recordings from two different re-injection wells. The recordings from one of the re-injection wells show that there are serious problems in the well, while the other one shows {open_quotes}normal{close_quotes} hydraulic behavior.

  15. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... geothermal energy for heating, aquaculture and production of electric power. (13) Wells used for solution... conditioning return flow wells used to return to the supply aquifer the water used for heating or cooling in a... whether what is injected is a radioactive waste or not. (9) Septic system wells used to inject the...

  16. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... geothermal energy for heating, aquaculture and production of electric power. (13) Wells used for solution... conditioning return flow wells used to return to the supply aquifer the water used for heating or cooling in a... whether what is injected is a radioactive waste or not. (9) Septic system wells used to inject the...

  17. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... geothermal energy for heating, aquaculture and production of electric power. (13) Wells used for solution... conditioning return flow wells used to return to the supply aquifer the water used for heating or cooling in a... whether what is injected is a radioactive waste or not. (9) Septic system wells used to inject the...

  18. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... geothermal energy for heating, aquaculture and production of electric power. (13) Wells used for solution... conditioning return flow wells used to return to the supply aquifer the water used for heating or cooling in a... whether what is injected is a radioactive waste or not. (9) Septic system wells used to inject the...

  19. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... geothermal energy for heating, aquaculture and production of electric power. (13) Wells used for solution... conditioning return flow wells used to return to the supply aquifer the water used for heating or cooling in a... whether what is injected is a radioactive waste or not. (9) Septic system wells used to inject the...

  20. Test monitoring of prototype injection well, Waiale, Maui, Hawaii

    USGS Publications Warehouse

    Soroos, Ronald L.

    1979-01-01

    A high-capacity prototype injection well was tested in the isthmus area of Maui, Hawaii. Pumping tests were made on April 14 and 15, 1978, and 10 injection tests were made between May 12 and June 30, 1978. Selected tests were monitored in order to obtain data which could be used to assess the effects of subsurface disposal on the ground water in the basal aquifer. Pumping and injection rates were measured. Basal-water head responses to pumping and injection were observed at the prototype well and at two observation wells located 435 and 6 ,100 feet from the prototype well. Water-quality samples were collected at the prototype well and the nearest observation well prior to testing. Samples of the injection water, as well as samples from the observation wells, were collected prior to and after the final test. The head data and water-quality data are presented in this report. (USGS)

  1. Secondary air injection system and method

    SciTech Connect

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  2. Productivity and Injectivity of Horizontal Wells

    SciTech Connect

    Khalid Aziz; Sepehr Arababi; Thomas A. Hewett

    1997-04-29

    A general wellbore flow model is presented to incorporate not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow. Influence of inflow or outflow on the wellbore pressure drop is analyzed. New friction factor correlations accounting for both inflow and outflow are also developed. The greatest source of uncertainty is reservoir description and how it is used in simulators. Integration of data through geostatistical techniques leads to multiple descriptions that all honor available data. The reality is never known. The only way to reduce this uncertainty is to use more data from geological studies, formation evaluation, high resolution seismic, well tests and production history to constrain stochastic images. Even with a perfect knowledge about reservoir geology, current models cannot do routine simulations at a fine enough scale. Furthermore, we normally don't know what scale is fine enough. Upscaling introduces errors and masks some of the physical phenomenon that we are trying to model. The scale at which upscaling is robust is not known and it is probably smaller in most cases than the scale actually used for predicting performance. Uncertainties in the well index can cause errors in predictions that are of the same magnitude as those caused by reservoir heterogeneities. Simplified semi-analytical models for cresting behavior and productivity predictions can be very misleading.

  3. Protection of gravel pack well completions during steam injection

    SciTech Connect

    Burrows, D.N.; Northrop, P.S.

    1993-08-31

    A method is described for protecting a gravel pack completion in a well through which steam is injected into a subterranean formation wherein gravel used to form said gravel pack completion contains silica; said method comprising: passing said steam through a silica-containing particulate material at the surface prior to injecting said steam through said gravel pack well completion.

  4. Air injection test on a Kaplan turbine: prototype - model comparison

    NASA Astrophysics Data System (ADS)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  5. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including...

  6. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including...

  7. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including...

  8. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including...

  9. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including...

  10. Water-cooled insulated steam-injection wells

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Jaffe, L. D.

    1980-01-01

    Water is used as insulated coolant and heat-transfer medium for steam-injection oil wells. Approach is somewhat analogous to cooling system in liquid-propellant rocket. In addition to trapping and delivering heat to steam-injection point, water will also keep casing cooler, preventing or reducing casing failures caused by thermal stresses.

  11. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quantity of material to be used in plugging. The material must be compatible with the carbon dioxide stream... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Injection well plugging. 146.92... (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS Criteria and Standards...

  12. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quantity of material to be used in plugging. The material must be compatible with the carbon dioxide stream... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Injection well plugging. 146.92... (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS Criteria and Standards...

  13. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quantity of material to be used in plugging. The material must be compatible with the carbon dioxide stream... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Injection well plugging. 146.92... (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS Criteria and Standards...

  14. Air-assist fuel injection nozzle

    SciTech Connect

    Klomp, E.D.

    1987-09-15

    An air-assist fuel injection nozzle is described for use in discharging fuel into an associate combustion chamber of an internal combustion engine. The injection nozzle includes a nozzle body means. The straight walled spray tip portion has a plurality of radial discharge orifices extending. An axial bore in the body means extends from the opposite end to define a bushing, a needle plunger reciprocably received in the bushing between a fully raised position and a fully depressed position corresponding to the end of a suction stroke and the end of a pump stroke, respectively. The needle plunger has a radial supply passage and a radial discharge ports angularly aligned with the radial discharge orifices, wherein the discharge ports are in flow communication with the blind bore. The needle plunger and the interior portion of the enclosed end of the nozzle body means define a variable volume pump chamber. The nozzle body means includes a supply passage means with a check valve in fluid communication with the radial supply passage when the needle plunger is in the raised position. The opposite end of the supply passage means is to sequentially receive a metered quantity of pressurized fuel, and the needle plunger allows aeriform fluid flow from the combustion chamber into the pump chamber. The needle plunger blocks flow through the radial discharge orifices until such time as the needle plunger has moved a predetermined axial extent so that the radial discharge ports come into alignment with the radial discharge orifices to initiate an air-assist discharge of air, fuel vapors and fuel from the radial discharge orifices.

  15. TEMPERATURE, RADIOACTIVE TRACER, AND NOISE LOGGING FOR INJECTION WELL INTEGRITY

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. The external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water ...

  16. Results of deep-well injection testing at Mulberry, Florida

    USGS Publications Warehouse

    Hickey, John J.; Wilson, W.E.

    1982-01-01

    At the Kaiser Aluminum and Chemical Corporation plant, Mulberry, Fla., high-chloride, acidic liquid wastes are injected into a dolomite section at depths below about 4,000 feet below land surface. In 1975, a satellite monitor well was drilled 2,291 feet from the injection well and a series of three injection tests were performed. Duration of the tests ranged from 240 to 10,020 minutes and injection rates ranged from 110 to 230 gallons per minute. Based on an evaluation of factors that affect hydraulic response, water-level data suitable for interpretation of hydraulic characteristics of the injection zone were identified to occur from 200 to 1,000 minutes during the 10,020-minute test. Transmissivity of the injection zone was computed to be within the range from 700 to 1,000 feet squared per day and storage coefficient of the injection zone was computed to be within the range from .00001 to .00005. The confining bed accepting most of the leakage appears to be the underlying bed. Also, it appears that the overlying beds are probably relatively impermeable and significantly retard the vertical movement of neutralized waste effluent. (USGS)

  17. Steam injection well gravel pack material of sintered bauxite

    SciTech Connect

    Elson, T. D.; Millhone, R. S.

    1985-08-27

    A packing material useful in a gravel pack for open or cased wells or in a prepack for use in steam or hot fluid injection and production wells. The packing material is a material which is insoluble in high temperature caustic fluids and subsurface formation fluids. Sintered bauxite is a claimed material.

  18. Steam injection well gravel prepack material of sintered bauxite

    SciTech Connect

    Elson, T. D.; Millhone, R. S.

    1985-10-22

    A packing material useful in a gravel pack for open or cased wells or in a prepack for use in steam or hot fluid injection and production wells. The packing material is a material which is insoluble in high temperature caustic fluids and subsurface formation fluids. Sintered bauxite is a claimed material.

  19. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  20. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  1. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dioxide stream and formation fluids; (vi) Down-hole temperatures; (vii) Lithology of injection and... composition, and temperature of the carbon dioxide stream. (2) Surface casing must extend through the base of... well bore. (5) Cement and cement additives must be compatible with the carbon dioxide stream...

  2. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dioxide stream and formation fluids; (vi) Down-hole temperatures; (vii) Lithology of injection and... composition, and temperature of the carbon dioxide stream. (2) Surface casing must extend through the base of... well bore. (5) Cement and cement additives must be compatible with the carbon dioxide stream...

  3. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dioxide stream and formation fluids; (vi) Down-hole temperatures; (vii) Lithology of injection and... composition, and temperature of the carbon dioxide stream. (2) Surface casing must extend through the base of... well bore. (5) Cement and cement additives must be compatible with the carbon dioxide stream...

  4. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  5. Use of bauxite as packing material in steam injection wells

    SciTech Connect

    Scoglio, J.; Joubert, G.; Gallardo, B.

    1995-12-31

    Cyclic steam injection, also known as steam soak, has proven to be the most efficient method for producing heavy crude oil and bitumen from unconsolidated sands. The application of steam injection may, however, generate sand production, causing, among other things, a decrease in production. The gravel pack technique is the most efficient way to prevent fines production from cold producing wells. But, once they are steam stimulated, a dissolution of quartz containing gravel material takes place reducing greatly the packing permeability and eventually sand production. Different types of packing material have been used to avoid sand production after cyclic steam injection, such as gravel, ceramics, bauxite, coated resin, and American sand. This paper presents the results of field test, using sinterized bauxite as a packing material, carried out in Venezuela`s heavy oil operations as a part of a comprehensive program aimed at increasing the packing durability and reducing sand production. This paper also verify the results of laboratory tests in which Bauxite was found to be less soluble than other packing material when steam injected.

  6. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate...

  7. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate...

  8. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate...

  9. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate...

  10. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving

  11. Commercial air travel after intraocular gas injection.

    PubMed

    Houston, Stephen; Graf, Jürgen; Sharkey, James

    2012-08-01

    Passengers with intraocular gas are at risk of profound visual loss when exposed to reduced absolute pressure within the cabin of a typical commercial airliner. Information provided on the websites of the world's 10 largest airlines offer a considerable range of opinion as to when it might be safe to fly after gas injection. Physicians responsible for clearing pseassengers as 'fit to fly' should be aware modern retinal surgical techniques increasingly employ long-acting gases as vitreous substitutes. The kinetics of long-acting intraocular gases must be considered when deciding how long after surgery it is safe to travel. It is standard practice to advise passengers not to fly in aircraft until the gas is fully resorbed. To achieve this, it may be necessary to delay travel for approximately 2 wk after intraocular injection of sulfur hexafluoride (SF6) and for 6 wk after injection of perfluoropropane (C3F8).

  12. CONCURRENT INJECTION OF COSOLVENT AND AIR FOR ENHANCED PCE REMOVAL

    EPA Science Inventory

    The goal of this study was to use preferential flow of air to improve the dynamics of cosolvent displacement in order to enhance DNAPL displacement and dissolution. The concurrent injection of cosolvent and air was evaluated in a glass micromodel for a DNAPL remediation technolog...

  13. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  14. Effect of timed secondary-air injection on automotive emissions

    NASA Technical Reports Server (NTRS)

    Coffin, K. P.

    1973-01-01

    A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.

  15. Effect of injection wells with partially perforated completion on CO2/brine flow distribution and injectivity

    NASA Astrophysics Data System (ADS)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Jung, N. H.

    2014-12-01

    Carbon Capture and Sequestration is a viable technology to reduce the concentration of anthropogenic carbon dioxide emitted into the atmosphere. The success of an injection project requires large amounts of dry supercritical CO2 to be injected into brine saturated aquifers within the subsurface. However, solid salt precipitation causes a reduction of permeability, having adverse effects on well injectivity as well as pressure build-up. This study evaluated the accumulation of precipitated salt, brine flux patterns, and pressure build-up for two well constructions, 1) partially completed with 4 injection intervals and 2) fully completed throughout the thickness of the target formation. This study found that when a partially completed well is implemented, precipitation of solid salt experiences a greater radial extent then a fully completed well. Both well designs showed non-localized salt precipitation in low permeability formations (5 and 50 mD) and localized salt precipitation at high permeability (250 and 500 mD). It was also found that two different brine flux patterns occurred; under low-k conditions the brine flux was primarily outward and parallel to the direction of the CO2 migration and salt precipitation became limited. While under high-k conditions there developed back-flow of the brine to the tail of the plume as the plume experienced greater vertical movement, and the counter-flowing brine sustained the precipitation process amplifying salt precipitation. When this process occurred the permeability reduction factor became orders of magnitude less then when non-localized salt precipitation occurred, and formed an impermeable barrier around the injection well. The formation of this barrier was found to have the effect of increasing the pressure build-up near the well in regions of the reservoir in which it occurred. A sensitivity analysis on the anisotropic/isotropic nature of the reservoir and the value of the critical porosity was also conducted. The

  16. Class I Underground Injection Control Program: Study of the Risks Associated with Class I Underground Injection Wells

    EPA Pesticide Factsheets

    The document provides describes the current Class I UIC program, the history of Class I injection, and studies of human health risks associated with Class I injection wells, which were conducted for past regulatory efforts and policy documentation.

  17. The long term observed effect of air and water injection into a fracture hydrothermal system

    SciTech Connect

    Mario Cesar Suarez Arriaga; Mirna Tello Lopez; Luis de Rio; Hector Gutierrez Puente

    1992-01-01

    Injection of atmospheric air mixed with waste reinjection liquid, has been occurring since 1982 at the Los Azufres, Mexico volcanic hydrothermal system. Several chemical and thermodynamical evidences show that air injection into this fractured geothermal field, could be considered as a long term natural tracer test. Nitrogen and Argon separated from the air mixture migrate from reinjection wells to production zones following preferential paths closely related to high permeability conduits. These paths can be detected, looking into the N2 solubility evolution of production wells. The anisotropic nature of the fractured volcanic rock, would demand considerably amounts of artificial tracer in order to be detected at the producing wells, specially when fluid extraction is low. This explains the unsuccessful recovery of the artificial tracer tests performed in past years at Tejamaniles, the southern field's sector. On the other hand, chloride concentrations and other salts, are increasing in the liquid produced by the oldest wells of the sector.

  18. Scale effects on Wells air turbine

    SciTech Connect

    Raghunathan, S.; Mitchell, D.; Gillan, M.; Tease, K.

    1996-12-31

    The main difference in aerodynamic forces between a small and a large scale is due to the lack of dynamic similarity of viscous fluid motion, which is a ratio of inertia forces to viscous forces on a body in a moving fluid. In recent years there has been considerable interest in this area, particularly to aerodynamicists. There have been methodologies developed for simulation of flow over large scale bodies with small scale tests. An objective of this paper is to highlight these methodologies for Wells turbine researchers. A comparison of tests on the Wells turbine at several scales and using some of the simulation methodologies are also discussed. The paper shows the need for considerable research effort in this area considering the prediction of the performance of large scale Wells turbines for wave energy conversion is a key issue at present.

  19. Hydrologic monitoring of a waste-injection well near Milton, Florida, June 1975 - December 1976

    USGS Publications Warehouse

    Pascale, Charles A.; Martin, J.B.

    1977-01-01

    Hydraulic and chemical data were collected through a monitoring program conducted by the U.S. Geological Survey at an industrial liquid-waste injection site 6 mi southwest of Milton, Fla., in Santa Rosa County. The injection system is described. Data include injection rates, volumes, and pressures; water-level data at three monitor wells and a standby injection well, and field and laboratory analyses of water samples from four wells. Hydraulic and geochemical effects of the waste-injection system at the plant as of December 31, 1976, have been detected only in the injection zone, the lower limestone of the Floridan aquifer. Increased pressures are evident at the three wells used to monitor the injection zone. Geochemical changes have been noted only at the deep-test monitor well closest to the injection well. (Woodard-USGS)

  20. Air entry into the anterior chamber post intravitreal injection of Eylea.

    PubMed

    Lim, Wei Sing; Sikandar, Munir; Jackson, Heather

    2016-07-20

    An 84-year-old man had air entry into the anterior chamber following intravitreal injection. The air bubble was reabsorbed over time without any complications. No further problems occurred with subsequent intravitreal injections.

  1. Hydrologic characteristics of the Bandelier Tuff as determined through an injection well system

    SciTech Connect

    Purtymun, W.D.; Enyart, E.A.; McLin, S.G.

    1989-08-01

    Injection wells were used to determine some of the hydrologic transmitting characteristics of the unsaturated Bandelier Tuff. At site 1, a 60-ft injection well with a 5-ft injection zone was used to conduct four tests. These preliminary tests were made in order to design an injection-well monitoring system that could track the movement of fluids in the tuff. At site 2, a second injection well with a 10-ft injection zone and seven observation holes was used to monitor the movement of 335,000 gal. of water injected into the tuff. The initial injection rate at site 2 was 5.8 gallons per minute (gpm), but that rate gradually declined to 0.4 gpm after 89 days of the test; 289 days after the test ended, the pear-shaped nephol (the shape of moisture injected into the tuff) reached a maximum depth of 210 ft and had a diameter of about 120 ft. A second test at site 2 indicated that intermittent use of an injection system would allow for short periods of higher injection rates, thereby extending the life of the system. Finally, a third test at site 2 was made using a 50-ft injection zone, which resulted in an injection rate of 15.8 gpm, or about 3 times the initial rate achieved when a 10-ft injection zone was used. 8 refs., 10 figs., 5 tabs.

  2. Characterization of injection wells in a fractured reservoir using PTS logs, Steamboat Hills Geothermal Field, Nevada, USA

    SciTech Connect

    Goranson, Colin; Combs, Jim

    1995-01-26

    The Steamboat Hills Geothermal Field in northwestern Nevada, about 15 km south of Reno, is a shallow (150m to 825m) moderate temperature (155 C to 168 C) liquid-dominated geothermal reservoir situated in highly-fractured granodiorite. Three injection wells were drilled and completed in granodiorite to dispose of spent geothermal fluids from the Steamboat II and III power plants (a 30 MW air-cooled binary-type facility). Injection wells were targeted to depths below 300m to inject spent fluids below producing fractures. First, quasi-static downhole pressure-temperature-spinner (PTS) logs were obtained. Then, the three wells were injection-tested using fluids between 80 C and 106 C at rates from 70 kg/s to 200 kg/s. PTS logs were run both up and down the wells during these injection tests. These PTS surveys have delineated the subsurface fracture zones which will accept fluid. The relative injectivity of the wells was also established. Shut-in interzonal flow within the wells was identified and characterized.

  3. Determination of recharge fraction of injection water in combined abstraction-injection wells using continuous radon monitoring.

    PubMed

    Lee, Kil Yong; Kim, Yong-Chul; Cho, Soo Young; Kim, Seong Yun; Yoon, Yoon Yeol; Koh, Dong Chan; Ha, Kyucheol; Ko, Kyung-Seok

    2016-12-01

    The recharge fractions of injection water in combined abstraction-injection wells (AIW) were determined using continuous radon monitoring and radon mass balance model. The recharge system consists of three combined abstraction-injection wells, an observation well, a collection tank, an injection tank, and tubing for heating and transferring used groundwater. Groundwater was abstracted from an AIW and sprayed on the water-curtain heating facility and then the used groundwater was injected into the same AIW well by the recharge system. Radon concentrations of fresh groundwater in the AIWs and of used groundwater in the injection tank were measured continuously using a continuous radon monitoring system. Radon concentrations of fresh groundwater in the AIWs and used groundwater in the injection tank were in the ranges of 10,830-13,530 Bq/m(3) and 1500-5600 Bq/m(3), respectively. A simple radon mass balance model was developed to estimate the recharge fraction of used groundwater in the AIWs. The recharge fraction in the 3 AIWs was in the range of 0.595-0.798. The time series recharge fraction could be obtained using the continuous radon monitoring system with a simple radon mass balance model. The results revealed that the radon mass balance model using continuous radon monitoring was effective for determining the time series recharge fractions in AIWs as well as for characterizing the recharge system.

  4. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or other materials used in the construction of each Class VI well must have sufficient structural..., nominal weight, length, joint specification, and construction material); (v) Corrosiveness of the carbon... construction of each Class VI well must be compatible with fluids with which the materials may be expected...

  5. ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: A REFERENCE GUIDE

    EPA Science Inventory

    The geochemical fate of deep-well-injected wastes must be thoroughly understood to avoid problems when incompatibility between the injected wastes and the injection-zone formation is a possibility. An understanding of geochemical fate will be useful when a geochemical no-migratio...

  6. Overview of underground injection control regulations relating to Class II (oil and gas associated) injection wells - past, present, and future

    SciTech Connect

    Syed, T.

    1989-04-01

    The Safe Drinking Water Act of 1974 mandates US Environmental Protection Agency (USEPA) and primacy state regulation of injection wells in order to protect underground sources of drinking water (USDW) from contamination. Currently five classes (I-V) of injection wells exist with class II wells being those used in conjunction with oil and gas production activities. In 1986, 60 million bbl of oil-field fluids were injected through 166,000 injection wells in the continental US. These disposal volumes will increase significantly in the future as the producing fields continue to be depleted. The petroleum industry's generally good track record in protecting the nation's ground-water resources, unfortunately, has not been accepted by all sectors of the public. This in turn, has led to the current reevaluation of the existing class II regulatory framework and a reassessment of the degree of protection afforded to USDW from oil and gas activities. This presentation gives an overview of the evolution, current status, and emerging trends in class II Underground Injection Control regulations. Key areas discussed include well construction, operating and monitoring requirements, mechanical integrity testing, plugging and abandonment procedures, and financial assurance demonstrations. The petroleum industry must continue to work closely with EPA and other regulatory agencies in identifying and correcting any deficiencies in current injection practices. A sincere and open approach by both parties will prevent unnecessary additional regulatory burdens and enhance the petroleum industry's image and its commitment to continued protection of the drinking water resources.

  7. Correlation between Changes in Seismicity Rates and Well Injection Volumes in Oklahoma

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Baker, J.; Walsh, R.; Zoback, M. D.

    2015-12-01

    We present a statistical approach to establish correlations between locations with seismicity increase in Oklahoma and nearby well injection volumes. Seismicity rates in the state have significantly increased since approximately 2008. Fluid injection into deep wells has been theorized to be the cause of this seismicity, but the increase occurred significantly after the start of injection activities in the region. Further, injection-induced earthquakes depend on the presence and orientation of basement faults and the stress state in the region. Because of these complexities, it has been difficult to directly correlate fluid injection with seismicity. Here we show that a statistical correlation between increase in seismicity and injection volumes can be established in Oklahoma. We first employ a change point method to locate the regions where a change in seismicity rates has occurred. We then use a logistic regression model to relate the injection volumes in a region with the presence or absence of seismicity change in the region. This model is further used to evaluate the relative contribution of cumulative injection volumes and monthly injection rates to seismicity. The model can be used to identify "seismically sensitive regions" where seismicity increase has been observed with little fluid injection, and "seismically stable regions" where seismicity changes have not been observed even with high fluid injection. This information can be combined with geological information in a region, and used to make decisions about acceptable volumes for injection and to identify lower-risk regions for injection.

  8. Air Sparging Versus Gas Saturated Water Injection for Remediation of Volatile LNAPL in the Borden Aquifer

    NASA Astrophysics Data System (ADS)

    Barker, J.; Nelson, L.; Doughty, C.; Thomson, N.; Lambert, J.

    2009-05-01

    In the shallow, rather homogeneous, unconfined Borden sand aquifer, field trials of air sparging (Tomlinson et al., 2003) and pulsed air sparging (Lambert et al., 2009) have been conducted, the latter to remediate a residual gasoline source emplaced below the water table. As well, a supersaturated (with CO2) water injection (SWI) technology, using the inVentures inFusion system, has been trialed in two phases: 1. in the uncontaminated sand aquifer to evaluate the radius of influence, extent of lateral gas movement and gas saturation below the water table, and 2. in a sheet pile cell in the Borden aquifer to evaluate the recovery of volatile hydrocarbon components (pentane and hexane) of an LNAPL emplaced below the water table (Nelson et al., 2008). The SWI injects water supersaturated with CO2. The supersaturated injected water moves laterally away from the sparge point, releasing CO2 over a wider area than does gas sparging from a single well screen. This presentation compares these two techniques in terms of their potential for remediating volatile NAPL components occurring below the water table in a rather homogeneous sand aquifer. Air sparging created a significantly greater air saturation in the vicinity of the sparge well than did the CO2 system (60 percent versus 16 percent) in the uncontaminated Borden aquifer. However, SWI pushed water, still supersaturated with CO2, up to about 2.5 m from the injection well. This would seem to provide a considerable advantage over air sparging from a point, in that gas bubbles are generated at a much larger radius from the point of injection with SWI and so should involve additional gas pathways through a residual NAPL. Overall, air sparging created a greater area of influence, defined by measurable air saturation in the aquifer, but air sparging also injected about 12 times more gas than was injected in the SWI trials. The pulsed air sparging at Borden (Lambert et al.) removed about 20 percent (4.6 kg) of gasoline

  9. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure, and perform a final external mechanical integrity test. (b) Well plugging plan. The owner or... the permit application and must include the following information: (1) Appropriate tests or measures... mechanical integrity as specified in § 146.89; (3) The type and number of plugs to be used; (4) The...

  10. Quantum well in a microcavity with injected squeezed vacuum

    SciTech Connect

    Erenso, Daniel; Vyas, Reeta; Singh, Surendra

    2003-01-01

    A quantum well with a single exciton mode in a microcavity driven by squeezed vacuum is studied in the low exciton density regime. By solving the quantum Langevin equations, we study the intensity, spectrum, and intensity correlation function for the fluorescent light. An expression for the Q function of the field inside the cavity is derived from the solutions of the quantum Langevin equations. Using the Q function, the intracavity photon number distribution and the quadrature fluctuations for both the cavity and fluorescent fields are studied. Several interesting and new effects due to squeezed vacuum are found.

  11. Recommended management practices for operation and closure of shallow injection wells at DOE facilities

    SciTech Connect

    Not Available

    1993-07-01

    The Safe Drinking Water Act established the Underground Injection Control (UIC) program to ensure that underground injection of wastes does not endanger an underground source of drinking water. Under UIC regulations, an injection well is a hole in the ground, deeper than it is wide, that receives wastes or other fluid substances. Types of injection wells range from deep cased wells to shallow sumps, drywells, and drainfields. The report describes the five classes of UIC wells and summarizes relevant regulations for each class of wells and for the UIC program. The main focus of the report is Class IV and V shallow injection wells. Class IV wells are prohibited and should be closed when they are identified. Class V wells are generally authorized by rule, but EPA or a delegated state may require a permit for a Class V well. This report provides recommendations on sound operating and closure practices for shallow injection wells. In addition the report contains copies of several relevant EPA documents that provide additional information on well operation and closure. Another appendix contains information on the UIC programs in 21 states in which there are DOE facilities discharging to injection wells. The appendix includes the name of the responsible regulatory agency and contact person, a summary of differences between the state`s regulations and Federal regulations, and any closure guidelines for Class IV and V wells.

  12. Effects of air injection on a turbocharged Teledyne Continential Motors TSIO-360-C engine

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. V.; Kempke, E. E.

    1979-01-01

    A turbocharged fuel injected aircraft engine was operated over a range of test conditions that included that EPA five-mode emissions cycle and fuel air ratio variations for individual modes while injecting air into the exhaust gas. Air injection resulted in a decrease of hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. Leanout tests indicated that the EPA standards could be met through the combined use of fuel management and air injection.

  13. In-Well Air Stripping/Bioventing Study at Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2012-08-30

    to determine the feasibility of incorporating in-well air stripping systems into the design of bioventing systems to effectively extend bioventing to...Force. This final report describes the Coupled In-Well Air Stripping/Bioventing Study conducted at Tyndall Air Force Base, Florida; the designs of the...the design of bioventing systems to effectively extend bioventing and simultaneously remediate hydrocarbon contamination in both the vadose and

  14. 40 CFR 147.3006 - Injection pressure for existing Class II wells authorized by rule.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Injection pressure for existing Class... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND... Injection pressure for existing Class II wells authorized by rule. (a) Rule-authorized Class II...

  15. 40 CFR 144.14 - Requirements for wells injecting hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Requirements for wells injecting hazardous waste. 144.14 Section 144.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM General Program Requirements §...

  16. 40 CFR 144.14 - Requirements for wells injecting hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Requirements for wells injecting hazardous waste. 144.14 Section 144.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM General Program Requirements §...

  17. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false What is a Class V injection well? 144.80 Section 144.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class...

  18. 40 CFR 144.14 - Requirements for wells injecting hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Requirements for wells injecting hazardous waste. 144.14 Section 144.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM General Program Requirements §...

  19. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false What is a Class V injection well? 144.80 Section 144.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class...

  20. 40 CFR 144.14 - Requirements for wells injecting hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Requirements for wells injecting hazardous waste. 144.14 Section 144.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM General Program Requirements §...

  1. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false What is a Class V injection well? 144.80 Section 144.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class...

  2. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false What is a Class V injection well? 144.80 Section 144.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class...

  3. 40 CFR 144.14 - Requirements for wells injecting hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Requirements for wells injecting hazardous waste. 144.14 Section 144.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM General Program Requirements §...

  4. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false What is a Class V injection well? 144.80 Section 144.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class...

  5. Implementation of pressurized air injection system in a Kaplan prototype for the reduction of vibration caused by tip vortex cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Hene, M.; Capezio, O.; Liscia, S.

    2016-11-01

    Blade tip cavitation is a well-known phenomenon that affects the performance of large-diameter Kaplan turbines and induces structural vibration. Injection of pressurized air has been found to yield promising results in reducing those damaging effects. In this work, the results of an experimental test of air injection on a 9.5-m-diameter Kaplan turbine are reported. Experiments were performed for several load conditions and for two different net heads. Accelerations, pressure pulsation and noise emission were monitored for every tested condition. Results show that, at the expense of a maximum efficiency drop of 0.2%, air injection induces a decrease on the level of vibration from 57% up to 84%, depending on the load condition. Such decrease is seen to be proportional to the air flow rate, in the range from 0.06 to 0.8‰ (respect to the discharge at the best efficiency point).

  6. Hydrologic monitoring of a waste-injection well near Milton, Florida, June 1975 - June 1977

    USGS Publications Warehouse

    Pascale, Charles A.; Martin, J.B.

    1978-01-01

    This report presents the hydraulic and chemical data collected from June 1, 1975, when injection began, to June 30, 1977 through a monitoring program at a deep-well waste-injection system at the American Cyanamid Company's plant near Milton, about 12 miles northwest of Pensacola. The injection system consists of a primary injection well, a standby injection well, and two deep monitor wells all completed open hole in the lower limestone of the Floridan aquifer and one shallow-monitor well completed in the upper limestone of the Floridan aquifer. Two of the monitor wells and the standby injection well are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations 8,180 feet northeast, 1,560 feet south, and 1,025 feet southwest of the primary injection well. The shallow-monitor well, used to observe any effects in the first permeable zone above the 200-foot-thick confining bed, is 28 feet north of the primary injection well. Since injection began in June 1975, 607 million gallons of treated industrial liquid waste with a pH of 4.6 to 6.3 and containing high concentrations of nitrate, organic nitrogen and carbon have been injected into a saline-water-filled limestone aquifer. Wellhead pressure at the injection well in June 1977 average 137 pounds per square inch and the hydraulic pressure gradient was 0.53 pound per square inch per foot of depth to the top of the injection zone. Water levels rose from 36 to 74 feet at the three wells used to monitor the injection zone during the 25-month period. The water level in the shallow-monitor well declined about 8 feet. No changes were detected in the chemical character of water from the shallow-monitor well and deep-monitor well-north. Increases in concentration of bicarbonate and dissolved organic carbon were detected in water from the deep-test monitor well in February 1976 and at the standby injection well in August 1976. In addition to increases in bicarbonate and dissolved

  7. 40 CFR 144.83 - Do I need to notify anyone about my Class V injection well?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Class V injection well? 144.83 Section 144.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class V Injection Wells Requirements for All Class V Injection Wells § 144.83 Do I need...

  8. 40 CFR 144.83 - Do I need to notify anyone about my Class V injection well?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Class V injection well? 144.83 Section 144.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class V Injection Wells Requirements for All Class V Injection Wells § 144.83 Do I need...

  9. 40 CFR 144.83 - Do I need to notify anyone about my Class V injection well?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Class V injection well? 144.83 Section 144.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class V Injection Wells Requirements for All Class V Injection Wells § 144.83 Do I need...

  10. Measurement of injectivity indexes in geothermal wells with two permeable zones

    SciTech Connect

    Acuna, Jorge A.

    1994-01-20

    Injectivity tests in wells with two permeable zones and internal flow is analyzed in order to include the usually severe thermal transient effects. A theoretical analysis is performed and a method devised to obtain information from the thermal transient, provided that temperature is measured simultaneously with pressure. The technique is illustrated with two real tests performed at Miravalles, Costa Rica. It allows to estimate total injectivity index as well as the injectivity index of each one of the two zones separately. Correct position of measuring tools and nature of spontaneous internal flow is also discussed.

  11. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet

  12. An Enhanced Method Using MODFLOW to simulate Groundwater Extraction/Injection through Wells Penetrating Multiple Aquifers

    NASA Astrophysics Data System (ADS)

    Teasdale, E.; Zhang, J.; Parrish, K.

    2007-12-01

    In a MODFLOW simulation of groundwater extraction and/or injection through a well penetrating multiple aquifers, the conventional method is to represent this type of well with a group of single-layer wells, each open to one of the model layers penetrated by the multi-layer wells Each of the single-layer wells have an individual rate specified for each stress period. Using this method, the total extraction and/or injection rate must be allocated among the individual layers. A common method of doing this is to divide the extraction and/or injection rates in proportion to the layer transmissivities. This partitioning has to be implemented by the user externally to MODFLOW for each multi-layer well and for each stress period in the MODFLOW well package. This approach fails to take into account the interconnection between various layers penetrated by the well, and is thus an incomplete solution to the problem. In both theory and practice, the extraction and/or injection rates through those well-penetrated aquifers also depend on the storativity and hydraulic head. Using transmissivity alone to partition the extraction and/or injection rates is only appropriate if both storativity and hydraulic head are very close for all well-penetrated aquifers. In cases where the top well-penetrated aquifer is unconfined, this method does not work because the storativity in an unconfined aquifer is often much higher than that of a confined aquifer. In addition, for transient flow simulations, the transmissivity of an unconfined aquifer changes with time due to the groundwater table variations resulting from extraction and/or injection (induced by constant or time-variable extraction/injection rates) or other time-variable boundary conditions such as seasonal groundwater recharge. This paper presents an enhanced method to resolve the above problem. With the new method, only the total extraction and/or injection rate of the well needs to be specified, and MODFLOW automatically allocates

  13. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect

    Davidson, C L; Bearden, Mark D; Horner, Jacob A; Appriou, Delphine; McGrail, B Peter

    2015-12-01

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  14. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.; Cabe, James E.; Appriou, Delphine; McGrail, B. Peter

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  15. Assessment of CO2 Injection Potential and Monitoring Well Location at the Mountaineer Power Plant Site

    SciTech Connect

    Bacon, Diana H.; White, Mark D.; Gupta, Neeraj; Sminchak, Joel R.; Kelley, Mark E.

    2006-11-01

    Numerical simulations of CO2 injection have been conducted as part of a program to assess the potential for geologic sequestration in a deep brine reservoir at the American Electric Power?s (AEP?s) Mountaineer Power Plant in New Haven, West Virginia. The results of the simulations will provide design guidance for injection and monitoring strategies, protocols, and permits for a demonstration project for CO2 injection in these deep saline aquifers as well as support for integrated risk assessments. The results of several three-dimensional simulations of CO2 injection into the Rose Run formation indicate that the formation is capable of receiving 666 to 837 ktonnes of CO2 at an injection pressure gradient of 1.53x104 Pa/m (0.675 psi/ft) over a period of 3 years.

  16. Use of injection wells for refinery waste disposal. Quarterly report, October 1, 1996--December 31, 1996

    SciTech Connect

    Paque, M.

    1997-01-01

    The Ground Water Protection Council has had initial discussions with the American Petroleum Institute staff and several major oil companies concerning a project that would address several technical and regulatory issues related to the use of injection wells at refineries. As currently regulated by the United States Environmental Protection Agency (USEPA), injection wells used for refinery related disposal are typically classified as either Class I hazardous or non- hazardous, depending on RCRA classification. The expense of acquiring an operating permit for these types of wells is very high and they have substantially more operational expenses than a typical Class II injection well. What is perplexing, based on general observation, is that some Class II injection wells are being permitted and allowed to dispose of waste having similar characteristics as some of those used by the refineries but classified as hazardous. Class II injection wells are authorized statutorily because the injectate is associated with fluids originating from the production of hydrocarbons. From our conversations with several state oil and gas regulatory agencies and representatives of the refinery industry, it appears that the use of Class II wells at refineries has been rejected because they are not seen as being directly associated with production of oil & gas. Examples of such refinery wastes are those associated with various treatment or process stream originating from the plant. Although these wastes are associated with produced hydrocarbons, USEPA does not consider them to be in the same category as wastes associated with Class II injection wells, even if they are characteristically similar. This project would collect sufficient data to determine whether or not (in relation to the underlying regulations) there is an inconsistency in current federal and state regulation. If one is found, refineries might be eligible for reclassification of wastes.

  17. Analysis of the response of the Raft River monitor wells to the 1979 injection tests

    SciTech Connect

    Spencer, S.G.; Callan, D.M.

    1980-09-01

    The geothermal resource for the Department of Energy's (DOE) Raft River Geothermal 5 MWe Power Project is located in a closed ground water basin in southcentral Idaho. Chemical analyses indicate the existence of natural communication along fractures between the geothermal reservoir and the shallower aquifers developed for irrigation. Much of the ground water that is presently used for irrigation is of poor quality. Injection of geothermal fluids at intermediate depths may increase communication between the reservoir and the aquifer, resulting in further degradation of shallow ground water quality over time. Seven monitor wells, ranging in depth from 150 m to 400 m, were drilled to evaluate the potential for this degradation. Monitoring of these wells during two 21-day injection tests at the Raft River Geothermal Injection Well-6 (RRGI-6) indicates two types of response in the shallow aquifer system. First, the water level in Monitor Well-4 (MW-4) increased an average of 0.4 m/week during injection, indicating direct fracture connection between the injection zone and the aquifer penetrated by MW-4. Second, water levels in MW-5, MW-6, and MW-7 showed a step function decrease which coincided with the period of the injection tests. Analyses indicate that this response may be caused by elastic deformation in the aquifer matrix.

  18. Means of atmospheric air pollution reduction during drilling wells

    NASA Astrophysics Data System (ADS)

    Shkitsa, L.; Yatsyshyn, T.; Lyakh, M.; Sydorenko, O.

    2016-08-01

    The process of drilling oil and gas wells is the source of air pollution through drilling mud evaporation containing hazardous chemical substances. The constructive solution for cleaning device of downhole tool that contains elements covering tube and clean the surface from the mud in the process of rising from the well is offered. Inside the device is filled with magnetic fluid containing the substance neutralizing hazardous substances. The use of the equipment proposed will make it possible to avoid penetration of harmful substances into the environment and to escape the harmful effects of aggressive substances for staff health and increase rig's fire safety.

  19. Investigation of spray characteristics for flashing injection of fuels containing dissolved air and superheated fuels

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Chen, L. D.; Faeth, G. M.

    1982-01-01

    The flow, atomization and spreading of flashing injector flowing liquids containing dissolved gases (jet/air) as well as superheated liquids (Freon II) were considered. The use of a two stage expansion process separated by an expansion chamber, ws found to be beneficial for flashing injection particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.

  20. 40 CFR 146.87 - Logging, sampling, and testing prior to injection well operation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... any other logs the Director requires for the given geology before the casing is installed; and (ii) A... Director. (b) The owner or operator must take whole cores or sidewall cores of the injection zone and... detailed report prepared by a log analyst that includes: Well log analyses (including well logs),...

  1. Productivity and injectivity of horizontal wells. Annual report, March 10, 1995--March 9, 1996

    SciTech Connect

    Aziz, K.; Hewett, T.

    1996-05-01

    The DOE approval for the annual renewal of the research grant to the Stanford Project on the Productivity and Injectivity of Horizontal Wells was received in early March 1995. Project goals include the advanced modeling of horizontal wells; investigation and incorporation of the effects of reservoir heterogeneities; development of improved methods of calculating multi-phase pressure drops within wellbores; development of multi-well models; testing of horizontal well models with field examples; EOR applications; and application studies and their optimization.

  2. Processes in the Vicinity of an Injection Well of a Geothermal Facility in the Malm Aquifer

    NASA Astrophysics Data System (ADS)

    Baumann, Thomas; Lafogler, Mark; Wenderoth, Frank; Bartels, Jörn

    2016-04-01

    With high temperatures, high transmissivities and low salinities the Malm Aquifer in the Bavarian Molasse Basin offers ideal conditions for the exploration of geothermal energy. In 2011 the Pullach geothermal facility was extended with a third geothermal well to account for the increasing heat demand. In the course of this extension an injection well was converted to a production well. Hence, for the first time in the history of geothermal exploration of the Malm Aquifer, data became accessible from the surrounding of an injection well which has been in operation for more than 5 years. This data, together with data froma a push-pull tracer test started 9 months before the conversion, allows unique access to the processes at the injection well and sets the baseline for an assessment of the long term behavior of geothermal heat and power plants in the Molasse Basin. The development of the production temperatures went faster than expected, after 4 years of production the initial temperatures have almost been reached. This can only be explained with a vertically heterogeneous distribution of the transmissivity. In this setting, the cold water forms a thin disc which extends much further from the injection well. Thus, the effective area of the heat exchange with the matrix of the aquifer is larger than in a homogeneous setting. The breakthrough of the tracers was affected by an unexpected delay of the start of the production. The regional flow led to a shift of the injected tracer pulses with the innermost tracer pulse being entirely transposed downstream of the injection well. The recovery rates mirror the sorption coefficients of the individual tracers as determined in batch tests and column tests. It became apparent, that the stagnation phase led to a bias towards sorption with slow kinetics and diffusion-limited matrix interactions. The hydrochemical data showed a significant increase of the concentrations of calcium, magnesium, and bicarbonate indicating a

  3. In-situ bioremediation of groundwater using a horizontal injection well in clay soil, Madisonville, TN

    SciTech Connect

    Miller, M.B.; Clark, D.A.; Handler, M.; Zhing-Ming Huang

    1996-09-01

    Tennessee`s first horizontal groundwater remediation well was installed at Madisonville located in the eastern Valley and Ridge Province. The open-ended well, drilled through clay soil, is constructed of 280 feet HDPE pipe, 2 inches in diameter, with a screen length of 100 feet at 18 feet below ground surface. The purpose of the well is to remediate gasoline contaminated groundwater that resulted from a leaking underground storage tank (UST) system. The groundwater benzene and TPH plumes covered an area of one-half acre and extended beneath a rural grocery store. Remediation is achieved by injecting aerated water, nutrients and microbes to reduce contaminant levels to drinking water standards. MODFLOW was utilized to computer-model the development of the groundwater mound that would result from injection. It was calculated that one horizontal injection well would equal the efficiency of 80 vertical injection wells. Benzene and TPH masses have been reduced by 92% and 95% respectively. BIOTRANS calculated the bio-decay rate to determine remediation time. This system will reduce project life and eliminate additional costs associated with: operations and maintenance (versus vertical pump and treat), water disposal, emissions controls, well installations, and site disturbance. A {open_quotes}Minimum Economic Plume Size{close_quotes}, the minimum plume volume required to support a horizontal system has been developed. Although costs per foot are greater for horizontal drilling than vertical drilling, project costs savings are realized later in the project.

  4. Effects of air injection on a turbocharged Teledyne Continental Motors TSIO-360-C engine

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. V.; Kempke, E. E.

    1979-01-01

    Results are presented for tests performed to assess the effects of exhaust manifold injection air flow rate on emissions and on exhaust gas temperature and turbine inlet temperature for a range of engine operating conditions (speed, torque, and fuel-air ratios) of a fuel-injected turbocharged six-cylinder air-cooled Teledyne Continental Motors TSIO-360-C engine. Air injection into the exhaust gas at 80 F resulted in a decrease in hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. The EPA standards could be met within present turbine inlet temperature limits using commercially available air pumps, provided that the fuel-air ratios were leaned in the taxi, climb, and approach modes.

  5. Evaluation of injection well risk management potential in the Williston Basin

    SciTech Connect

    1989-09-01

    The UIC regulations promulgated by the EPA under the Safe Drinking Water Act (SDWA) provide the EPA, or an EPA approved state agency, with authority to regulate subsurface injection of fluids to protect USDWs. Oil and gas producing industry interests are concerned primarily with Class 2 wells whose uses as defined by UIC regulations are: disposal of fluids brought to the surface and liquids generated in connection with oil and gas production (SWD); injection of fluids for enhanced oil recovery (EOR); and storage of liquid hydrocarbons. The Williston Basin was chosen for the pilot study of the feasibility of using the risk approach in managing Class 2 injection operations for the following reasons: it is one of the nine geologic basins which was classified as having a significant potential for external casing corrosion, which permitted an evaluation of the effectiveness of the injection well corrosion control measures used by industry; there are 731 active, 22 shut in and 203 temporarily abandoned SWD and water injection wells in the basin; and the basin covers three states. The broad objective of the Williston Basin study is to define requirements and to investigate the feasibility of incorporating risk management into administration of the UIC program. The study does not address the reporting aspects of UIC regulatory and compliance activities but the data base does contain essentially all the information required to develop the reports needed to monitor those activities. 16 refs., 10 figs., 11 tabs.

  6. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  7. Miscible porous media displacements driven by non-vertical injection wells

    NASA Astrophysics Data System (ADS)

    Upchurch, E.; Meiburg, E.

    High-resolution simulations are employed to identify and analyse the mechanisms dominating miscible porous media displacements generated by inclined injection wells. Compared to vertical injection wells, significant differences are observed that strongly influence breakthrough times and recovery rates. Constant density and viscosity displacements, for which the velocity field is potential in nature, demonstrate the existence of pronounced flow non-uniformities, due to the interaction of the inclined well with the reservoir boundaries. These non-uniformities deform the fronts during the initial displacement stages.In the presence of a viscosity difference, the non-uniformities of the potential flow field result in a focusing of the fingering instability. If the fluids also have different densities, a gravity tongue will reinforce the dominant finger along one front, while a gravitational instability leads to the disintegration of the dominant finger along the other front. Hence, the two fronts emerging from the inclined injection well usually evolve very differently from each other for variable density and viscosity displacements.For inclined injection wells and sufficiently large mobility ratios, gravity tongues are seen to evolve dendritically for an intermediate range of density contrasts. While mild gravitational forces are necessary to create the gravity tongue in the first place, large density differences will suppress the growth of the dendritic side branches. Since the dendritic branches appear along the side of the gravity tongue that should be stable according to traditional stability criteria, it can be concluded that the tip region plays a crucial role in their formation.

  8. 40 CFR 147.3006 - Injection pressure for existing Class II wells authorized by rule.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Injection pressure for existing Class II wells authorized by rule. 147.3006 Section 147.3006 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED...

  9. 40 CFR 147.3006 - Injection pressure for existing Class II wells authorized by rule.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Injection pressure for existing Class II wells authorized by rule. 147.3006 Section 147.3006 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED...

  10. Radiological dose assessment of NORM disposal in Class II injection wells

    SciTech Connect

    Smith, K.P.; Williams, G.P.; Blunt, D.L.; Arnish, J.J.

    1997-09-01

    Subsurface disposal of petroleum industry wastes containing naturally occurring radioactive material (NORM) via injection into Class II wells was modeled to estimate potential radiological doses to individuals consuming water from a shallow aquifer. A generic model was developed for the injection of 100,000 barrels of NORM waste containing 2,000 picocuries per liter of radium into a layered geologic system. In separate modeling runs, it was assumed that a casing failure released the entire volume of NORM into each successive geologic layer, including the shallow aquifer. Radionuclide concentrations and related potential doses were calculated for receptors located in the shallow aquifer from 0 to 20 miles down gradient of the injection well. The results indicated that even under conservative assumptions, calculated radionuclide concentrations and potential doses associated with subsurface disposal of NORM in Class II wells were below levels of regulatory concern. The preliminary results from a dose assessment of a specific project entailing injection of NORM into Class II wells support the conclusions of the generic study.

  11. HANDBOOK: ASSESSING THE FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE. Summaries of Recent Research

    EPA Science Inventory

    This handbook has been developed for use as a reference tool in evaluating the suitability of disposing of specific hazardous wastes in deep injection wells. sers of the document will get a better understanding of the factors that affect 1) geochemical waste-reservoir reactions o...

  12. Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone

    SciTech Connect

    Murat Altay, H.; Hudgins, Duane E.; Speth, Raymond L.; Annaswamy, Anuradha M.; Ghoniem, Ahmed F.

    2010-04-15

    The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted while varying the equivalence ratio and the inlet temperature. The secondary air temperature is always the same as the inlet temperature. We used pure propane or propane/hydrogen mixtures as fuels. Combustion dynamics are explored through simultaneous pressure and heat release-rate measurements, and high-speed video images. When the equivalence ratio of the reactant mixture is high, it causes the flame to flashback towards the inlet channel. When air is injected in the cross-stream direction, the flame anchors slightly upstream of the step, which suppresses the instability. When air is injected in the streamwise direction near the edge of step, thermoacoustic instability could be eliminated at an optimum secondary air flow rate, which depends on the operating conditions. When effective, the streamwise air injection prevents the shedding of an unsteady vortex, thus eliminating the flame-vortex interaction mechanism and resulting in a compact, stable flame to form near the step. (author)

  13. Vertical migration of municipal wastewater in deep injection well systems, South Florida, USA

    NASA Astrophysics Data System (ADS)

    Maliva, Robert G.; Guo, Weixing; Missimer, Thomas

    2007-11-01

    Deep well injection is widely used in South Florida, USA for wastewater disposal largely because of the presence of an injection zone (“boulder zone” of Floridan Aquifer System) that is capable of accepting very large quantities of fluids, in some wells over 75,000 m3/day. The greatest potential risk to public health associated with deep injection wells in South Florida is vertical migration of wastewater, containing pathogenic microorganisms and pollutants, into brackish-water aquifer zones that are being used for alternative water-supply projects such as aquifer storage and recovery. Upwards migration of municipal wastewater has occurred in a minority of South Florida injection systems. The results of solute-transport modeling using the SEAWAT program indicate that the measured vertical hydraulic conductivities of the rock matrix would allow for only minimal vertical migration. Fracturing at some sites increased the equivalent average vertical hydraulic conductivity of confining zone strata by approximately four orders of magnitude and allowed for vertical migration rates of up 80 m/year. Even where vertical migration was rapid, the documented transit times are likely long enough for the inactivation of pathogenic microorganisms.

  14. Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests

    USGS Publications Warehouse

    Lessoff, S.C.; Konikow, L.F.

    1997-01-01

    Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.

  15. Assessment of nitrification potential in ground water using short term, single-well injection experiments

    USGS Publications Warehouse

    Smith, R.L.; Baumgartner, L.K.; Miller, D.N.; Repert, D.A.; Böhlke, J.K.

    2006-01-01

    Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 ??M) and ammonium (19 to 625 ??M) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with 15N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02-0.28 ??mol (L aquifer)-1 h-1 with in situ oxygen concentrations and up to 0.81 ??mol (L aquifer)-1 h-1 with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations. ?? Springer Science+Business Media, Inc. 2005.

  16. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  17. Effect of the well of the well (WOW) system on in vitro culture for porcine embryos after intracytoplasmic sperm injection.

    PubMed

    Taka, Mikiko; Iwayama, Hiroshi; Fukui, Yutaka

    2005-08-01

    For developmental competence of porcine embryos in vitro, it is important to improve the culture environment. The present study was performed to evaluate four different culture systems for in vitro matured porcine oocytes following intracytoplasmic sperm injection (ICSI); drop, well and two sizes of the well of the well (WOW) systems (500 and 1,000 microm in diameter). The cleavage rate on Day 2 and the mean cell number in blastocysts on Day 6 were not significantly different among the four treatments. However, the 1,000 microm WOW (24.6%) resulted in a significantly higher (P<0.05) blastocyst rate than those in the other culture systems (12.9, 14.8, and 7.1% for drop, well, and 500 microm WOW, respectively). The present study indicates that the microenvironment created by the 1,000 microm diameter WOW improves blastocyst production of in vitro matured porcine oocytes after ICSI, and that the effectiveness of the WOW system is dependent on the size (diameter) of the WOW.

  18. Superposition well-test method for reservoir characterization and pressure management during CO2 injection

    NASA Astrophysics Data System (ADS)

    White, J. A.

    2014-12-01

    As a significant fraction of a carbon storage project's budget is devoted to site characterization and monitoring, there has been an intense drive in recent years to both lower cost and improve the quality of data obtained. Two data streams that are cheap and always available are pressure and flow rate measurements from the injection well. Falloff testing, in which the well is shut-in for some period of time and the pressure decline curve measured, is often used to probe the storage zone and look for indications of hydraulic barriers, fracture-dominated flow, and other reservoir characteristics. These tests can be used to monitor many hydromechanical processes of interest, including hydraulic fracturing and fault reactivation. Unfortunately, the length of the shut-in period controls how far away from the injector information may be obtained. For operational reasons these tests are typically kept short and infrequent, limiting their usefulness. In this work, we present a new analysis method in which ongoing injection data is used to reconstruct an equivalent falloff test, without shutting in the well. The entire history of injection may therefore be used as a stand in for a very long test. The method relies upon a simple superposition principle to transform a multi-rate injection sequence into an equivalent single-rate process. We demonstrate the effectiveness of the method using injection data from the Snøhvit storage project. We also explore its utility in an active pressure management scenario. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. STEAM INJECTION INTO FRACTURED LIMESTONE AT LORING AIR FORCE BASE

    EPA Science Inventory

    A research project on steam injection for the remediation of spent chlorinated solvents from fractured limestone was recently undertaken at the former Loring AFB in Limestone, ME. Participants in the project include the Maine Department of Environmental Protection, EPA Region I,...

  20. Late - Cycle Injection of Air/Oxygen - Enriched Air for Diesel Exhaust Emissions Control

    SciTech Connect

    Mather, Daniel

    2000-08-20

    Reduce the ''Engine Out'' particulates using the ''In Cylinder'' technique of late cycle auxiliary gas injection (AGI). Reduce the ''Engine Out'' NOx by combining AGI with optimization of fuel injection parameters. Maintain or Improve the Fuel Efficiency.

  1. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves

    SciTech Connect

    Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.; Gadgil, Ashok J.

    2016-06-27

    In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injection on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.

  2. Method for cutting steam heat losses during cyclic steam injection of wells. Final report

    SciTech Connect

    Gondouin, M.

    1995-12-01

    Heavy Oil is abundant in California. It is a very viscous fluid, which must be thinned in order to flow from wells at economical rates. The best method of oil viscosity reduction is by cyclic steam injection into the oil-containing rock formations. Making steam in conventional generators fueled with Natural Gas is, however, a costly process. The main objective of this Project is to reduce the cost of the required steam, per Barrel of Oil produced. This is made possible by a combination of Patented new technologies with several known methods. The best known method for increasing the production rate from oil wells is to use horizontal drainholes, which provide a much greater flow area from the oil zone into the well. A recent statistic based on 344 horizontal wells in 21 Canadian Oil fields containing Heavy Oil shows that these are, on the average six times more prolific than vertical wells. The cost of horizontal wells, however, is generally two to three times that of a vertical well, in the same field, so our second goal is to reduce the net cost of horizontal wells by connecting two of them to the same vertical casing, well head and pumping system. With such a well configuration, it is possible to get two horizontal wells for the price of about one and a half times the price of a single vertical well.

  3. Single-Well Injection-Withdrawal Experiments for Ground Flow Estimation

    NASA Astrophysics Data System (ADS)

    Holzbecher, E.; Maier, F.

    2012-04-01

    We present a closer look on the Single-Well Injection-Withdrawal Experiment (SWIW) also known as Push-Pull Experiments and its ability to determine the groundwater velocity, as one of the major parameters concerning reservoir management. SWIW are tripartite. One starts with the tracer injection, followed by a quiescence period, where the tracer transport is dominated by the ambient flow field in the reservoir. The last phase is the withdrawal where the tracer break trough curve (BTC) is recorded. From the shape of the BTC, we are able to determine the groundwater velocity. The problem is numerically modeled using COMSOL Multiphysics. We compare with an advanced inversion scheme, based on analytical solutions and implemented in MATLAB. The results show that the BTC of a SWIW experiment is highly dependent on interaction between the parameters for groundwater velocity, pumping rates and the duration of the quiescence phase as well as the reservoir geometry. For the specific tracer applied in the model a minor influence is given by diffusion, dispersion and sorption processes. In dependence of the quiescence time and the groundwater velocity one can distinguish between three characteristic BTC types for the single tracer SWIW. These are given for tracers around the well, tracer between well and stagnation point and tracer beyond the stagnation point. The transition between these different cases is also discussed. The COMSOL Multiphysics model is used to investigate observations from a SWIW experiment performed recently in Japan. The latter is performed in cooperation with Technical University Berlin. Acknowledgements: Gebo, Logro

  4. Study on the Horizontal-well Injection Profile Logging Interpretation Technology

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Yao, Xugang; He, Xiaolu; Shen, Linshu; Xu, Qingying; Liu, Dongming; Liu, Hongsheng

    2007-06-01

    In order to get higher injection capacity and raise the coefficient of water driving waves and accelerate the speed of oil extraction. Changqing field carries on the development of horizontal-well infusion exploitation in the XXQ sandstone layer oil pool district. In compare with the traditional vertical-well affusion, the effect of comprehensive result of horizontal-well infusion exploitation will enhance as five times more as the current value. Because the flow of horizontal-well varies more in compare with the level-well, many horizontal-well logging data is hard to explain from the normal regulations, because the influence of the dynamic state of well hole and the size of it. Basing on the flow state of horizontal-well and the analysis of the layer of the low degree state and the annular flow and the turbulent flow, in order to get the parameters. To make attempt research to the quantitative interpretation of the horizontal-well.

  5. System to evaluate the performance of insulated tubulars in steam injection wells

    SciTech Connect

    Eisenhawer, S. W.; Johnson, D. R.; Vigil, W. J.

    1981-01-01

    The efficiency of a thermal enhanced oil recovery project with surface steam generation can be significantly increased by using insulated tubing in the injection wells. In order to evaluate the performance of various insulated tubulars it is necessary to obtain detailed temperature measurements and accurate heat loss data under actual in-field conditions. A system to provide this information has been developed and is in operation at the Aberfeldy steam pilot near Lloydminster, Saskatchewan, Canada. Temperature measurements are made using thermocouples inside and on the outer wall of the injection string; on the outside of the casing, and in a set of three 25 mm (1 in.) ID thermowells attached to the casing. In addition, thin film heat flux sensors are bonded directly to the wall of the injection string. A probe system was designed to measure circumferential temperature variations in the thermowells at depths down to 100 m. This makes it possible to obtain detailed axial temperature profiles. Anticipated hot sports on an insulated joint will be detected in this manner. All of the data is recorded on a datalogger and detailed analysis is performed on a computer system. To date a short test has been carried out using bare 60 mm (2-3/8 in.) injection string tubing. This bare string provides data for comparison with insulated strings. High resolution radial temperature profiles were obtained during this test. Variations in heat loss from the string as functions of time and operating conditions have also been successfully monitored. Heat losses from the string during initial start up on the order of 1.0 Kw/m (1050 Btu/hr-ft) were observed with the heat flux sensors. This is in good agreement with the expected heat loss. The heat flux sensors make it possible to both simplify and improve the determination of insulated tubular thermal performance.

  6. Exogenous factors contributing to column bed heterogeneity: Part 1: Consequences of 'air' injections in liquid chromatography.

    PubMed

    Samuelsson, Jörgen; Fornstedt, Torgny; Shalliker, Andrew

    2015-08-07

    It has been shown that not only the packing homogeneity, but also factors external to the column bed, such as, frits and distributors can have important effects on the column performance. This current communication is the first in a series focusing on the impact of exogenous factors on the column bed heterogeneity. This study is based on several observations by us and others that chromatographic runs often, for technical reasons, include more or less portions of air in the injections. It is therefore extremely important to find out the impact of air on the column performance, the reliability of the results derived from analyses where air was injected, and the effect on the column homogeneity. We used a photographic approach for visualising the air transport phenomena, and found that the air transport through the column is comprised of many different types of transport phenomena, such as laminal flow, viscous fingering like flows, channels and bulbs, and pulsations. More particularly, the air clouds within the column definitely interact in the adsorption, i.e. mobile phase adsorbed to the column surface is displaced. In addition, irrespective of the type of air transport phenomena, the air does not penetrate the column homogeneously. This process is strongly flow dependent. In this work we study air transport both in an analytical scale and a semi-prep column.

  7. Excitability in optically injected semiconductor lasers: Contrasting quantum- well- and quantum-dot-based devices

    NASA Astrophysics Data System (ADS)

    Kelleher, B.; Bonatto, C.; Huyet, G.; Hegarty, S. P.

    2011-02-01

    Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.

  8. Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices.

    PubMed

    Kelleher, B; Bonatto, C; Huyet, G; Hegarty, S P

    2011-02-01

    Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.

  9. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves

    DOE PAGES

    Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.; ...

    2016-06-27

    In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less

  10. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  11. Types of secondary porosity of carbonate rocks in injection and test wells in southern peninsular Florida

    USGS Publications Warehouse

    Duerr, A.D.

    1995-01-01

    The types of secondary porosity present in carbonate injection intervals and in the overlying carbonate rocks were determined at 11 injection well sites and 3 test well sites in southern peninsular Florida. The hydrogeologic system consists of a thick sequence of carbonate rocks overlain by clastic deposits. Principal hydrogeologic units are the surficial aquifer system, the intermediate aquifer system or the intermediate confining unit,the Floridan aquifer system, and the sub-Floridan confining unit.The concept of apparent secondary porosity was used in this study because the secondary porosity features observed in a borehole television survey could have been caused by geologic processes as well as by drilling activities. The secondary porosity features identified in a television survey were evaluated using driller's comments and caliper, flowmeter, and temperature logs. Borehole intervals that produced or received detectable amounts of flow, as shown by flowmeter and temperature logs, provided evidence that the secondary porosity of the interval was spatially distributed and interconnected beyond the immediate vicinity of a borehole and, thus, was related to geologic processes. Features associated with interconnected secondary porosity were identified as effective secondary porosity. Fracture porosity was identified as the most common type of effective secondary porosity and was observed predominantly in dolomite and dolomitic limestone. Cavity porosity was the least common type of effective secondary porosity at the study sites. In fact, of the more than 17,500 feet of borehole studied a total of only three cavities constituting effective secondary porosity were identified at only two sites. These cavities were detected in dolomite rocks. Most apparent cavities were caused by drilling-induced collapse of naturally fractured borehole walls. Also, fractures usually were observed above and below cavities. The majority of vugs observed in the television surveys did

  12. Safety of 1000 CT-guided steroid injections with air used to localize the epidural space.

    PubMed

    Chang, A; Pochert, S; Romano, C; Brook, A; Miller, T

    2011-10-01

    Historically, ESIs were performed without any imaging guidance, resulting in erroneous placement in up to 30% of injections. Fluoroscopic imaging is now used to guide most procedures. Recently, several reports have described the use of CT to guide ESIs instead of fluoroscopy. CT provides the ability to use air as contrast to localize the epidural space. This retrospective review will discuss findings in 1000 CT-guided ESIs with air localization.

  13. Deep well injection of brine from Paradox Valley, Colorado: Potential major precipitation problems remediated by nanofiltration

    USGS Publications Warehouse

    Kharaka, Y.K.; Ambats, G.; Thordsen, J.J.; Davis, R.A.

    1997-01-01

    Groundwater brine seepage into the Dolores River in Paradox Valley, Colorado, increases the dissolved solids load of the Colorado River annually by ~2.0 x 108 kg. To abate this natural contamination, the Bureau of Reclamation plans to pump ~3540 m3/d of brine from 12 shallow wells located along the Dolores River. The brine, with a salinity of 250,000 mg/L, will be piped to the deepest (4.9 km) disposal well in the world and injected mainly into the Mississippian Leadville Limestone. Geochemical modeling indicates, and water-rock experiments confirm, that a huge mass of anhydrite (~1.0 x 104 kg/d) likely will precipitate from the injected brine at downhole conditions of 120??C and 500 bars. Anhydrite precipitation could increase by up to 3 times if the injected brine is allowed to mix with the highly incompatible formation water of the Leadville Limestone and if the Mg in this brine dolomitizes the calcite of the aquifer. Laboratory experiments demonstrate that nanofiltration membranes, which are selective to divalent anions, provide a new technology that remediates the precipitation problem by removing ~98% of dissolved SO4 from the hypersaline brine. The fluid pressure used (50 bars) is much lower than would be required for traditional reverse osmosis membranes because nanofiltration membranes have a low rejection efficiency (5-10%) for monovalent anions. Our results indicate that the proportion of treatable brine increases from ~60% to >85% with the addition of trace concentrations of a precipitation inhibitor and by blending the raw brine with the effluent stream.

  14. Deep well injection of brine from Paradox Valley, Colorado: Potential major precipitation problems remediated by nanofiltration

    NASA Astrophysics Data System (ADS)

    Kharaka, Yousif K.; Ambats, Gil; Thordsen, James J.; Davis, Roy A.

    1997-05-01

    Groundwater brine seepage into the Dolores River in Paradox Valley, Colorado, increases the dissolved solids load of the Colorado River annually by ˜2.0 × 108 kg. To abate this natural contamination, the Bureau of Reclamation plans to pump ˜3540 m3/d of brine from 12 shallow wells located along the Dolores River. The brine, with a salinity of 250,000 mg/L, will be piped to the deepest (4.9 km) disposal well in the world and injected mainly into the Mississippian Leadville Limestone. Geochemical modeling indicates, and water-rock experiments confirm, that a huge mass of anhydrite (˜1.0 × 104 kg/d) likely will precipitate from the injected brine at downhole conditions of 120°C and 500 bars. Anhydrite precipitation could increase by up to 3 times if the injected brine is allowed to mix with the highly incompatible formation water of the Leadville Limestone and if the Mg in this brine dolomitizes the calcite of the aquifer. Laboratory experiments demonstrate that nanofiltration membranes, which are selective to divalent anions, provide a new technology that remediates the precipitation problem by removing ˜98% of dissolved SO4 from the hypersaline brine. The fluid pressure used (50 bars) is much lower than would be required for traditional reverse osmosis membranes because nanofiltration membranes have a low rejection efficiency (5-10%) for monovalent anions. Our results indicate that the proportion of treatable brine increases from ˜60% to >85% with the addition of trace concentrations of a precipitation inhibitor and by blending the raw brine with the effluent stream.

  15. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the

  16. Optimization of air injection parameters toward optimum fuel saving effect for ships

    NASA Astrophysics Data System (ADS)

    Lee, Inwon; Park, Seong Hyeon

    2016-11-01

    Air lubrication method is the most promising commercial strategy for the frictional drag reduction of ocean going vessels. Air bubbles are injected through the array of holes or the slots installed onto the flat bottom surface of vessel and a sufficient supply of air is required to ensure the formation of stable air layer by the by the coalescence of the bubbles. The air layer drag reduction becomes economically meaningful when the power gain through the drag reduction exceeds the pumping power consumption. In this study, a model ship of 50k medium range tanker is employed to investigate air lubrication method. The experiments were conducted in the 100m long towing tank facility at the Pusan National University. To create the effective air lubrication with lower air flow rate, various configurations including the layout of injection holes, employment of side fences and static trim have been tested. In the preliminary series of model tests, the maximum 18.13%(at 15kts) of reduction of model resistance was achieved. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) through GCRC-SOP (Grant No. 2011-0030013).

  17. Interpretation of injection-withdrawal tracer experiments conducted between two wells in a large single fracture.

    PubMed

    Novakowski, K S; Bickerton, G; Lapcevic, P

    2004-09-01

    Tracer experiments conducted using a flow field established by injecting water into one borehole and withdrawing water from another are often used to establish connections and investigate dispersion in fractured rock. As a result of uncertainty in the uniqueness of existing models used for interpretation, this method has not been widely used to investigate more general transport processes including matrix diffusion or advective solute exchange between mobile and immobile zones of fluid. To explore the utility of the injection-withdrawal method as a general investigative tool and with the intent to resolve the transport processes in a discrete fracture, two tracer experiments were conducted using the injection-withdrawal configuration. The experiments were conducted in a fracture which has a large aperture (>500 microm) and horizontally pervades a dolostone formation. One experiment was conducted in the direction of the hydraulic gradient and the other in the direction opposite to the natural gradient. Two tracers having significantly different values of the free-water diffusion coefficient were used. To interpret the experiments, a hybrid numerical-analytical model was developed which accounts for the arcuate shape of the flow field, advection-dispersion in the fracture, diffusion into the matrix adjacent to the fracture, and the presence of natural flow in the fracture. The model was verified by comparison to a fully analytical solution and to a well-known finite-element model. Interpretation of the tracer experiments showed that when only one tracer, advection-dispersion, and matrix diffusion are considered, non-unique results were obtained. However, by using multiple tracers and by accounting for the presence of natural flow in the fracture, unique interpretations were obtained in which a single value of matrix porosity was estimated from the results of both experiments. The estimate of porosity agrees well with independent measurements of porosity obtained from

  18. Effects of air injection during sap processing on maple syrup color, chemical composition and flavor volatiles.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air injection (AI) is a maple sap processing technology reported to increase the efficiency of maple syrup production by increasing production of more economically valuable light-colored maple syrup, and reducing development of loose scale mineral precipitates in syrup, and scale deposits on evapora...

  19. Preliminary investigation of the use of air injection to mitigate cavitation erosion

    SciTech Connect

    Arndt, R.E.A.; Ellis, C.R.; Paul, S.

    1995-09-01

    This project was initiated as part of a new research and development focus to improve hydropower generation. One aspect of the problem is severe cavitation erosion which is experienced when hydroturbines are operated at best power or in spinning reserve. Air injection has been used successfully to minimize or eliminate cavitation erosion in other applications. Thus, an investigation was initiated to determine whether or not air injection would be an effective solution for turbine erosion problems. A specially instrumented hydrofoil of elliptic planform and a NACA 0015 cross section was tested at flow velocities up to 20 m s{sup {minus}1}, at various values of cavitation index. Although pit sizes were measured on a soft aluminum insert, pitting rate was not measured directly but was inferred from direct measurement of impulsive pressures on the surface of the hydrofoil and by monitoring accelerometers mounted at the base of the hydrofoil. Cavitation noise was also measured by a hydrophone positioned in the water tunnel test section. Air was injected through small holes in the leading edge of the foil. Air injection was found to be very effective in minimizing erosion as inferred from all three cavitation erosion detection techniques.

  20. Electrical injection to contactless near-surface InGaN quantum well

    SciTech Connect

    Riuttanen, L. Svensk, O.; Suihkonen, S.; Kivisaari, P.; Oksanen, J.

    2015-08-03

    Charge injection to the prevailing and emerging light-emitting devices is almost exclusively based on the double heterojunction (DHJ) structures that have remained essentially unchanged for decades. In this letter, we report the excitation of a near surface indium gallium nitride (InGaN) quantum well (QW) by bipolar carrier diffusion from a nearby electrically excited pn-homojunction. The demonstrated near surface QW emitter is covered only by a 10 nm GaN capping leaving the light-emitting mesa perfectly free of metals, other contact, or current spreading structures. The presented proof-of-principle structure, operating approximately with a quantum efficiency of one fifth of a conventional single QW reference structure, provides conclusive evidence of the feasibility of using diffusion injection to excite near surface light-emitting structures needed, e.g., for developing light emitters or photo-voltaic devices based on nanoplasmonics or free-standing nanowires. In contrast to the existing DHJ solutions or optical pumping, our approach allows exciting nanostructures without the need of forming a DHJ, absorbing layers or even electrical contacts on the device surface.

  1. Electrical injection to contactless near-surface InGaN quantum well

    NASA Astrophysics Data System (ADS)

    Riuttanen, L.; Kivisaari, P.; Svensk, O.; Oksanen, J.; Suihkonen, S.

    2015-08-01

    Charge injection to the prevailing and emerging light-emitting devices is almost exclusively based on the double heterojunction (DHJ) structures that have remained essentially unchanged for decades. In this letter, we report the excitation of a near surface indium gallium nitride (InGaN) quantum well (QW) by bipolar carrier diffusion from a nearby electrically excited pn-homojunction. The demonstrated near surface QW emitter is covered only by a 10 nm GaN capping leaving the light-emitting mesa perfectly free of metals, other contact, or current spreading structures. The presented proof-of-principle structure, operating approximately with a quantum efficiency of one fifth of a conventional single QW reference structure, provides conclusive evidence of the feasibility of using diffusion injection to excite near surface light-emitting structures needed, e.g., for developing light emitters or photo-voltaic devices based on nanoplasmonics or free-standing nanowires. In contrast to the existing DHJ solutions or optical pumping, our approach allows exciting nanostructures without the need of forming a DHJ, absorbing layers or even electrical contacts on the device surface.

  2. Hydrologic hydrochemical characterization of texas frio formation used for deep-well injection of chemical wastes

    NASA Astrophysics Data System (ADS)

    Kreitler, Charles W.; Akhter, M. Saleem; Donnelly, Andrew C. A.

    1990-09-01

    Hydrologic hydrochemical investigations were conducted to determine the long-term fate of hazardous chemical waste disposed in the Texas Gulf Coast Tertiary formations by deep-well injection. The study focused on the hydrostatic section of the Frio Formation because it is the host of a very large volume of injected waste and because large data bases of formation pressures and water chemistry are available. Three hydrologic regimes exist within the Frio Formation: a shallow fresh to moderately saline water section in the upper 3,000 4,000 ft (914 1,219 m); an underlying 4,000- to 5,000-ft-thick (1,219- to 1,524-m) section with moderate to high salinities: and a deeper overpressured section with moderate to high salinities. The upper two sections are normally pressured and reflect either freshwater or brine hydrostatic pressure gradients. Geopressured conditions are encountered as shallow as 6,000 ft (1,829 m). The complexity of the hydrologic environment is enhanced due to extensive depressurization in the 4,000- to 8,000-ft-depth (1,219- to 2,438-m) interval, which presumably results from the estimated production of over 10 billion barrels (208 × 106 m3) of oil equivalent and associated brines from the Frio in the past 50 yr. Because of the higher fluid density and general depressurization in the brine hydrostatic section, upward migration of these brines to shallow fresh groundwaters should not occur. Depressured oil and gas fields, however, may become sinks for the injected chemical wastes. Water samples appear to be in approximate oxygen isotopic equilibrium with the rock matrix, suggesting that active recharge of the Frio by continental waters is not occurring. In the northern Texas Gulf Coast region salt dome dissolution is a prime process controlling water chemistry. In the central and southern Frio Formation, brines from the deeper geopressured section may be leaking into the hydrostatic section. The lack of organic acids and the alteration of Frio oils

  3. Effect of Moderate Air Flow on the Distribution of Fuel Sprays After Injection Cut-0ff

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1935-01-01

    High-speed motion pictures were taken of fuel sprays with the NACA spray-photographic apparatus to study the distribution of the liquid fuel from the instant of injection cut-off until about 0.05 second later. The fuel was injected into a glass-walled chamber in which the air density was varied from 1 to 13 times atmospheric air density (0.0765 to 0.99 pound per cubic foot) and in which the air was at room temperature. The air in the chamber was set in motion by means of a fan, and was directed counter to the spray at velocities up to 27 feet per second. The injection pressure was varied from 2,000 to 6,000 pounds per square inch. A 0.20-inch single-orifice nozzle, an 0.008-inch single-orifice nozzle, a multiorifice nozzle, and an impinging-jets nozzle were used. The best distribution was obtained by the use of air and a high-dispersion nozzle.

  4. Hydrologic monitoring of a deep-well waste-injection system near Pensacola, Florida, March 1970 - March 1977

    USGS Publications Warehouse

    Pascale, Charles A.; Martin, J.B.

    1978-01-01

    This report presents hydraulic and chemical data collected at a deep-well waste-injection system near Pensacola, Florida. Since injection began in July 1963, about 13.3 billion gallons of industrial acidic waste containing nitric acid, inorganic salts and numerous organic compounds have been injected into a saline-water-filled limestone aquifer. Wellhead pressure at two injection wells averaged 180 pounds per square inch in March 1977 and the hydraulic pressure gradient was 0.53 pound per square inch per foot of depth to the top of the injection zone. Increases in pressure since 1970 at two wells used to monitor the injection zone at sites located 1.9 miles north and 1.5 miles south of the injection site have been about 22 and 29 pounds per square inch. The pressure in a shallow monitor well, penetrating the first permeable zone above the 220-foot-thick confining bed, declined about 4 pounds per square inch. No changes were detected in the chemical character of water from the shallow monitor well and the north monitor well, but since late 1973, concentrations of bicarbonate and dissolved organic carbon in water from the south monitor well have increased. (Woodard-USGS)

  5. Effects of brine injection wells, dry holes, and plugged oil/gas wells on chloride, bromide, and barium concentrations in the Gulf Coast Aquifer, southeast Texas, USA.

    PubMed

    Hudak, P F; Wachal, D J

    2001-06-01

    Data from 1,122 brine injection wells, 24,515 dry holes, 20,877 plugged oil/gas wells, and 256 water wells were mapped with a geographic information system (GIS) and statistically analyzed. There were 9, 107, and 58 water wells within 750 m of a brine injection well, dry hole, or plugged oil/gas well, respectively. Computed median concentrations were 157 mg/l for chloride, 0.8 mg/l for bromide, and 169 microg/l for barium. The maximum chloride concentration was 2,384 mg/l, close to 10 times the secondary drinking water standard. Shallow water wells and water wells near plugged oil/gas wells had significantly higher chloride and bromide levels.

  6. Field test of single well DNAPL characterization using alcohol injection/extraction

    SciTech Connect

    Jerome, K.M.; Looney, B.B.; Rhoden, M.L.; Riha, B.; Burdick, S.

    1996-10-29

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at efficient characterization or removal of DNAPL are not currently proven. The authors performed injection/extraction characterization tests in six existing wells in A/M Area. Water concentrations for TCE and/or PCE in these wells ranged from 0% to 100% of solubility. For each test, small amounts of solubilizing solution were used to try to confirm or deny the presence or absence of DNAPL in the immediate vicinity of the well screen.

  7. [Steam and air co-injection in removing TCE in 2D-sand box].

    PubMed

    Wang, Ning; Peng, Sheng; Chen, Jia-Jun

    2014-07-01

    Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio.

  8. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas.

    PubMed

    Frohlich, Cliff

    2012-08-28

    Between November 2009 and September 2011, temporary seismographs deployed under the EarthScope USArray program were situated on a 70-km grid covering the Barnett Shale in Texas, recording data that allowed sensing and locating regional earthquakes with magnitudes 1.5 and larger. I analyzed these data and located 67 earthquakes, more than eight times as many as reported by the National Earthquake Information Center. All 24 of the most reliably located epicenters occurred in eight groups within 3.2 km of one or more injection wells. These included wells near Dallas-Fort Worth and Cleburne, Texas, where earthquakes near injection wells were reported by the media in 2008 and 2009, as well as wells in six other locations, including several where no earthquakes have been reported previously. This suggests injection-triggered earthquakes are more common than is generally recognized. All the wells nearest to the earthquake groups reported maximum monthly injection rates exceeding 150,000 barrels of water per month (24,000 m(3)/mo) since October 2006. However, while 9 of 27 such wells in Johnson County were near earthquakes, elsewhere no earthquakes occurred near wells with similar injection rates. A plausible hypothesis to explain these observations is that injection only triggers earthquakes if injected fluids reach and relieve friction on a suitably oriented, nearby fault that is experiencing regional tectonic stress. Testing this hypothesis would require identifying geographic regions where there is interpreted subsurface structure information available to determine whether there are faults near seismically active and seismically quiescent injection wells.

  9. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas

    PubMed Central

    Frohlich, Cliff

    2012-01-01

    Between November 2009 and September 2011, temporary seismographs deployed under the EarthScope USArray program were situated on a 70-km grid covering the Barnett Shale in Texas, recording data that allowed sensing and locating regional earthquakes with magnitudes 1.5 and larger. I analyzed these data and located 67 earthquakes, more than eight times as many as reported by the National Earthquake Information Center. All 24 of the most reliably located epicenters occurred in eight groups within 3.2 km of one or more injection wells. These included wells near Dallas–Fort Worth and Cleburne, Texas, where earthquakes near injection wells were reported by the media in 2008 and 2009, as well as wells in six other locations, including several where no earthquakes have been reported previously. This suggests injection-triggered earthquakes are more common than is generally recognized. All the wells nearest to the earthquake groups reported maximum monthly injection rates exceeding 150,000 barrels of water per month (24,000 m3/mo) since October 2006. However, while 9 of 27 such wells in Johnson County were near earthquakes, elsewhere no earthquakes occurred near wells with similar injection rates. A plausible hypothesis to explain these observations is that injection only triggers earthquakes if injected fluids reach and relieve friction on a suitably oriented, nearby fault that is experiencing regional tectonic stress. Testing this hypothesis would require identifying geographic regions where there is interpreted subsurface structure information available to determine whether there are faults near seismically active and seismically quiescent injection wells. PMID:22869701

  10. Bacteria in the injection water differently impacts the bacterial communities of production wells in high-temperature petroleum reservoirs

    PubMed Central

    Ren, Hongyan; Xiong, Shunzi; Gao, Guangjun; Song, Yongting; Cao, Gongze; Zhao, Liping; Zhang, Xiaojun

    2015-01-01

    Water flooding is widely used for oil recovery. However, how the introduction of bacteria via water flooding affects the subsurface ecosystem remains unknown. In the present study, the distinct bacterial communities of an injection well and six adjacent production wells were revealed using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. All sequences of the variable region 3 of the 16S rRNA gene retrieved from pyrosequencing were divided into 543 operational taxonomic units (OTUs) based on 97% similarity. Approximately 13.5% of the total sequences could not be assigned to any recognized phylum. The Unifrac distance analysis showed significant differences in the bacterial community structures between the production well and injection water samples. However, highly similar bacterial structures were shown for samples obtained from the same oil-bearing strata. More than 69% of the OTUs detected in the injection water sample were absent or detected in low abundance in the production wells. However, the abundance of two OTUs reached as high as 17.5 and 26.9% in two samples of production water, although the OTUs greatly varied among all samples. Combined with the differentiated water flow rate measured through ion tracing, we speculated that the transportation of injected bacteria was impacted through the varied permeability from the injection well to each of the production wells. Whether the injected bacteria predominate the production well bacterial community might depend both on the permeability of the strata and the reservoir conditions. PMID:26052321

  11. Resource Conservation and Recovery Act closure report: Area 2 Bitcutter and Postshot Containment Shops Injection Wells, Correction Action Unit 90

    SciTech Connect

    1996-12-01

    This Closure Report provides documentation of the activities conducted during the Resource Conservation and Recovery Act (RCRA) closure of the Bitcutter and Postshot Containment Shops Injection Wells located in Area 2 of the Nevada Test Site (NTS), Oak Spring Quadrangle (USGS, 1986), Township 10 South, Range 53 East, Nye County, Nevada. This report discusses the Bitcutter Shop Inside Injection Well (CAU 90-A) closure-in-place and the Bitcutter Shop Outside Injection Well (CAU 90-B) and Postshot Containment Shop Injection Well (CAU 90-C) clean closures. This Closure Report provides background information about the unit, the results of the characterization activities and actions conducted to determine the closure design. It also provides a discussion of the drainage analysis, preliminary closure activities, final closure activities, waste management activities, and the Post-Closure Care requirements.

  12. Groundwater Quality Assessment Plan: Dickson County Landfill, Dickson County, Tennessee, including Application for Authorization for Class V Underground Injection Well

    EPA Pesticide Factsheets

    Contains site investigation plan & data for assessment of groundwater quality at Dickson County Landfill, Dickson, Tennessee, with figures, tables, appendices, November 1994, including Application for Authorization for Class V Underground Injection Well.

  13. Extinction Dynamics of a Co-flow Diffusion Flame by Very Small Water Droplets Injected into the Air Stream

    DTIC Science & Technology

    2008-07-28

    flame extinction with UFM are available in the literature. Ndubizu et al. [18-20] conducted experiments on the effects of UFM on a forced convection ...injected air Reynolds number of 4 x 105 (Re=650). This suggests that the bulk of the air is affected by the natural convection and deviates...significantly from the streamlines of the injected air at the bottom of the burner. Therefore, the fluid flow set up by the natural convection is

  14. Atomization and Dispersion of a Liquid Jet Injected Into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Seay, J. E.; Samuelson, G. S.

    1996-01-01

    In recent years, environmental regulations have become more stringent, requiring lower emissions of mainly nitrogen oxides (NOx), as well as carbon monoxide (CO) and unburned hydrocarbons (UHC). These regulations have forced the gas turbine industry to examine non-conventional combustion strategies, such as the lean burn approach. The reasoning behind operating under lean conditions is to maintain the temperature of combustion near and below temperatures required for the formation of thermal nitric oxide (NO). To be successful, however, the lean processes require careful preparation of the fuel/air mixture to preclude formation of either locally rich reaction zones, which may give rise to NO formation, or locally lean reaction zones, which may give rise to inefficient fuel processing. As a result fuel preparation is crucial to the development and success of new aeroengine combustor technologies. A key element of the fuel preparation process is the fuel nozzle. As nozzle technologies have developed, airblast atomization has been adopted for both industrial and aircraft gas turbine applications. However, the majority of the work to date has focused on prefilming nozzles, which despite their complexity and high cost have become an industry standard for conventional combustion strategies. It is likely that the new strategies required to meet future emissions goals will utilize novel fuel injector approaches, such as radial injection. This thesis proposes and demonstrates an experiment to examine, on a mechanistic level (i.e., the physics of the action), the processes associated with the atomization, evaporation, and dispersion of a liquid jet introduced, from a radial, plain-jet airblast injector, into a crossflow of air. This understanding requires the knowledge not only of what factors influence atomization, but also the underlying mechanism associated with liquid breakup and dispersion. The experimental data acquired identify conditions and geometries for improved

  15. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  16. HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-12-10

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration will being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the U.S.

  17. Groundwater thermal-effective injection systems in shallow aquifers: possible alternatives to vertical water wells

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2014-05-01

    areal extent of the thermal plume that develops around the area of injection minimizing the time and the space needed for the disappearance of the thermal plume and the restoration of undisturbed temperature conditions. The reduction in plan and temporal extension of the thermal plume would have several benefits, minimizing the use of large areas around the buildings involved by the thermal perturbation, with direct implementation benefits. In order to investigate alternatives to traditional drilled water well for the re-injection and dispersion of water in aquifer downstream of the heat pump, we modeled with FEFLOW the possible reverse use of commercial draining gabions in various types of ground configuration, geometry and interconnection with systems of pre-fabricated vertical drains on a possible reliable test-site. The results highlighted that they can represent a good and efficient alternative for the groundwater dispersion in the aquifers.

  18. Productivity and injectivity of horizontal wells. Quarterly report, July 1, 1993--September 30, 1993

    SciTech Connect

    Fayers, F.J.; Aziz, K.; Hewett, T.A.

    1993-12-01

    A number of research activities have been carried out in the last three months. A list outlining these efforts is presented below followed by brief description of each activity in the subsequent sections of this report: (1) The available analytical solutions in the literature for steady state critical rates of horizontal wells are examined. Application of these methods to a cresting example show significant uncertainties in prediction of critical rates. (2) Sensitivity computations have been run for evaluating the effects of shale distribution on the performance of horizontal wells in heterogeneous reservoirs. (3) A number of single phase (water and oil) and two-phase (water and air) experiments have been completed in the Marathon Wellbore Model and the collected data are being analyzed. (4) A presentation of our project was given in the International Technology Forum DEA-44/67 on Horizontal, Slimhole, and Coiled Tubing, held by Maurer. (5) Our draft review report entitled ``Opportunities for Horizontal Wells and Problems in Predicting Their Performance`` has been completed.

  19. 40 CFR 147.3006 - Injection pressure for existing Class II wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INJECTION CONTROL PROGRAMS Lands of the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3006... injection pressure no greater than the pressure established by the Director for the field or formation in... pressure greater than that specified in paragraph (b)(1) of this section for the field or formation...

  20. 40 CFR 147.3006 - Injection pressure for existing Class II wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INJECTION CONTROL PROGRAMS Lands of the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3006... injection pressure no greater than the pressure established by the Director for the field or formation in... pressure greater than that specified in paragraph (b)(1) of this section for the field or formation...

  1. Stimulation of waste decomposition in an old landfill by air injection.

    PubMed

    Wu, Chuanfu; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Chai, Xiaoli

    2016-12-01

    Three pilot-scale lysimeters were operated for 4.5years to quantify the change in the carbon and nitrogen pool in an old landfill under various air injection conditions. The results indicate that air injection at the bottom layer facilitated homogeneous distribution of oxygen in the waste matrix. Substantial total organic carbon (TOC) decomposition and methane generation reduction were achieved. Considerable amount of nitrogen was removed, suggesting that in situ nitrogen removal via the effective simultaneous nitrification and denitrification mechanism is viable. Moreover, material mass change measurements revealed a slight mass reduction of aged MSW (by approximately 4.0%) after 4.5years of aeration. Additionally, experiments revealed that intensive aeration during the final stage of the experiment did not further stimulate the degradation of the aged MSW. Therefore, elimination of the labile fraction of aged MSW should be considered the objective of in situ aeration.

  2. A study on chemical interactions between waste fluid, formation water, and host rock during deep well injection

    SciTech Connect

    Spycher, Nicolas; Larkin, Randy

    2004-05-14

    A new disposal well was drilled in the vicinity of an injection well that had been in operation for 12 years. The drilling activities provided an opportunity to assess the fate and transport of waste products injected in the nearby well, and the impact, if any, on the host geologic formation. The origin of the fluid collected while drilling the new well and the interaction between injected waste and the formation were investigated using analyses of formation waters, waste, and formation minerals, by applying traditional graphical methods and sophisticated numerical models. This approach can be used to solve a wide range of geochemical problems related to deep well injection of waste. Trilinear Piper diagrams, Stiff diagrams, and correlation plots show that the chemical characteristics of recovered fluid at the new well are similar to those of formation water. The concentrations of most major constituents in the fluid appear diluted when compared to formation water sampled at other locations. This could be explained by mixing with waste, which is less saline than formation water. However, the waste injected near the new well consists primarily of ammonia and sulfate, and these waste constituents are not found at concentrations elevated enough to suggest that significant mixing of formation water with waste has occurred. To determine whether chemical interactions between injected waste and formation could explain the chemistry of fluid recovered from the new well, we simulated the chemical reaction between waste, formation water, and the formation rock by numerical modeling. Initial modeling calculations were done using a multicomponent geochemical reaction-path model to simulate fresh waste reacting with the formation. A more complex simulation coupling flow, transport, and reaction was then run using a multicomponent geochemical reactive transport model. These numerical simulations were carried out to calculate porosity changes and evaluate chemical processes

  3. Effect of double air injection on performance characteristics of centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Ogawa, Tatsuya; Yasui, Ryutaro; Tsujita, Hoshio

    2017-02-01

    In the operation of a centrifugal compressor of turbocharger, instability phenomena such as rotating stall and surge are induced at a lower flow rate close to the maximum pressure ratio. In this study, the compressed air at the exit of centrifugal compressor was re-circulated and injected to the impeller inlet by using two injection nozzles in order to suppress the surge phenomenon. The most effective circumferential position was examined to reduce the flow rate at the surge inception. Moreover, the influences of the injection on the fluctuating property of the flow field before and after the surge inception were investigated by examining the frequency of static pressure fluctuation on the wall surface and visualizing the compressor wall surface by oil-film visualization technique.

  4. Nitride based quantum well light-emitting devices having improved current injection efficiency

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  5. Characterization of Solids Collected from H-Area Injection Wells and Injection Tank Chemistry from both F- and H-Area Water Treatment Units (WTUs)

    SciTech Connect

    Serkiz, S.M.

    1999-04-15

    This study suggests that a strong poitential exists for both chemical and biological fouling of the injection wells at the F- and H Area remediation systems. To further the potential, an evaluation of WTU process chemistry, characterization of the natural groundwater geochemistry, and analysis of microbiological activity should be performed. This report summarizes the results.

  6. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    SciTech Connect

    Cotte, F.P.; Doughty, C.; Birkholzer, J.

    2010-11-01

    The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computation of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation

  7. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    NASA Astrophysics Data System (ADS)

    Cotte, F.; Doughty, C.; Birkholzer, J. T.

    2010-12-01

    An essential condition for performance evaluation of enhanced geothermal systems (EGS) resides in the ability to reliably predict fluid flow and heat transport in fractured porous rocks, where fast convection-dispersive transport through the fracture network can be strongly affected by heat conduction into the adjacent rock matrix. SWIW tests are single-well tracer tests that involve an initial period of fluid and tracer injection followed by a period of fluid withdrawal. As a result of the flow field reversal, the measured breakthrough curves tend to be less sensitive to advective heterogeneities and more sensitive to matrix diffusion and sorption, making this method very valuable in characterizing fracture-matrix interaction and evaluating matrix properties. In particular, we propose using SWIW tests before and after hydrofracking operations, to help assess the means by which hydrofracking increases permeability and enhances fracture-matrix interaction. In the present study, we have modeled single-well injection-withdrawal (SWIW) tests for non-sorbing and sorbing tracers, using the mixed Eulerian-Lagrangian transport simulator TRIPOLY, which solves tracer advection and dispersion in fracture networks together with solute exchange processes between the fractures and the porous matrix. Our simulations were conducted for hypothetical but workable SWIW test designs considering a variety of statistically generated 2D fracture-matrix systems. Parameter sensitivity studies were completed on three physical parameters of the rock matrix, namely porosity, diffusion coefficient and retardation coefficient, in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, was modeled in two different ways, one by increasing the fracture aperture for flow and the other one by adding a new set of fractures to the fracture network. The results of all these different tests were analyzed by studying the population of

  8. Quality of water recovered from a municipal effluent injection well in the Floridan aquifer system, Pompano Beach, Florida

    USGS Publications Warehouse

    McKenzie, D.J.; Irwin, G.A.

    1984-01-01

    Approximately 69 million gallons of backflow from an injection well used for the disposal of secondary treated municipal effluent in the Floridan aquifer system near Pompano Beach, Florida, was periodically sampled for inorganic quality from March 1975 through March 1977. Analyses of the backflow effluent showed a concomitant increase in dissolved solids and a change in ionic composition as a function of cumulative volume of backflow. Both the increase in dissolved solids and the change in major ionic composition were directly related to an estimated 6 to 7 percent mixing of the moderately saline water in the Florida aquifer system with the injected system with the injected effluent. Although an estimated 3.5 billion gallons of effluent was injected into the aquifer system during the 16-year operation of the Collier Manor treatment plant, only 65 to 70 million gallons was backflowed before the chloride concentration approached 250 milligrams per liter. (USGS)

  9. Development of an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs

    SciTech Connect

    Jung, Yoojin

    2013-02-20

    In this study, we have developed an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs where fluid flow through the fracture is radial. The dimensionless forms of the governing equations and the initial and boundary conditions in the radial flow system can be written in a form identical to those in the linear flow system developed by Jung and Pruess [Jung, Y., and K. Pruess (2012), A Closed-Form Analytical Solution for Thermal Single-Well Injection-Withdrawal Tests, Water Resour. Res., 48, W03504, doi:10.1029/2011WR010979], and therefore the analytical solutions developed in Jung and Pruess (2012) can be applied to compute the time dependence of temperature recovery at the injection/withdrawal well in a horizontally oriented fracture with radial flow.

  10. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    SciTech Connect

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability can be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.

  11. Novel use of epidural catheter: Air injection for neuroprotection during radiofrequency ablation of spinal osteoid osteoma

    PubMed Central

    Doctor, JR; Solanki, SL; Patil, VP; Divatia, JV

    2016-01-01

    Osteoid osteoma (OO) is a benign bone tumor, with a male-female ratio of approximately 2:1 and mainly affecting long bones. Ten percent of the lesions occur in the spine, mostly within the posterior elements. Treatment options for OO include surgical excision and percutaneous imaging-guided radiofrequency ablation (RFA). Lesions within the spine have an inherent risk of thermal damage to the vital structure because of proximity to the neural elements. We report a novel use of the epidural catheter for air injection for the neuroprotection of nerves close to the OO of the spine. A 12-year-old and 30 kg male child with an OO of the L3 vertebra was taken up for RFA. His preoperative examinations were within normal limits. The OO was very close to the L3 nerve root. Under general anesthesia, lumbar epidural catheter was placed in the L3-L4 space under imaging guidance. Ten ml of aliquots of air was injected under imaging guidance to avoid injury to the neural structures due to RFA. The air created a gap between neural elements and the tumor and served as an insulating material thereby protecting the neural elements from damage due to the RFA. Postoperatively, the patient did not develop any neurological deficit. PMID:27375396

  12. Microbial Stimulation and Succession following a Test Well Injection Simulating CO₂ Leakage into a Shallow Newark Basin Aquifer

    PubMed Central

    O’Mullan, Gregory; Dueker, M. Elias; Clauson, Kale; Yang, Qiang; Umemoto, Kelsey; Zakharova, Natalia; Matter, Juerg; Stute, Martin; Takahashi, Taro; Goldberg, David

    2015-01-01

    In addition to efforts aimed at reducing anthropogenic production of greenhouse gases, geological storage of CO2 is being explored as a strategy to reduce atmospheric greenhouse gas emission and mitigate climate change. Previous studies of the deep subsurface in North America have not fully considered the potential negative effects of CO2 leakage into shallow drinking water aquifers, especially from a microbiological perspective. A test well in the Newark Rift Basin was utilized in two field experiments to investigate patterns of microbial succession following injection of CO2-saturated water into an isolated aquifer interval, simulating a CO2 leakage scenario. A decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), and increased bacterial cell concentrations in the recovered water. 16S ribosomal RNA gene sequence libraries from samples collected before and after the test well injection were compared to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injections, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia and microbial taxa often noted to be associated with iron and sulfate reduction. The concurrence of increased microbial cell concentrations and rapid microbial community succession indicate significant changes in aquifer microbial communities immediately following the experimental CO2 leakage event. Samples collected one year post-injection were similar in cell number to the original background condition and community composition, although not identical, began to revert toward the pre-injection condition, indicating microbial resilience following a leakage disturbance. This study provides a first glimpse into the in situ successional response of microbial communities to CO2 leakage after subsurface

  13. Microbial stimulation and succession following a test well injection simulating CO2 leakage into a shallow Newark basin aquifer.

    PubMed

    O'Mullan, Gregory; Dueker, M Elias; Clauson, Kale; Yang, Qiang; Umemoto, Kelsey; Zakharova, Natalia; Matter, Juerg; Stute, Martin; Takahashi, Taro; Goldberg, David

    2015-01-01

    In addition to efforts aimed at reducing anthropogenic production of greenhouse gases, geological storage of CO2 is being explored as a strategy to reduce atmospheric greenhouse gas emission and mitigate climate change. Previous studies of the deep subsurface in North America have not fully considered the potential negative effects of CO2 leakage into shallow drinking water aquifers, especially from a microbiological perspective. A test well in the Newark Rift Basin was utilized in two field experiments to investigate patterns of microbial succession following injection of CO2-saturated water into an isolated aquifer interval, simulating a CO2 leakage scenario. A decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), and increased bacterial cell concentrations in the recovered water. 16S ribosomal RNA gene sequence libraries from samples collected before and after the test well injection were compared to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injections, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia and microbial taxa often noted to be associated with iron and sulfate reduction. The concurrence of increased microbial cell concentrations and rapid microbial community succession indicate significant changes in aquifer microbial communities immediately following the experimental CO2 leakage event. Samples collected one year post-injection were similar in cell number to the original background condition and community composition, although not identical, began to revert toward the pre-injection condition, indicating microbial resilience following a leakage disturbance. This study provides a first glimpse into the in situ successional response of microbial communities to CO2 leakage after subsurface

  14. Contingency power for small turboshaft engines using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.; Clark, David A.; Berger, Brett

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  15. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  16. Microbial Biomass, Activity, and Community Structure of Water and Particulates Retrieved by Backflow from a Waterflood Injection Well

    PubMed Central

    McKinley, Vicky L.; Costerton, J. William; White, David C.

    1988-01-01

    Oil field injection water was allowed to back flow from two wells at the Packard drill site in Los Angeles, Calif., and was sampled at various times to obtain information about the biomass, potential activity, and community structure of the microbiota in the reservoir formation and in the injection water. Biomass was greatest in water samples that came from the zone near the injection site and dropped off sharply in subsequent samples, which were assumed to come from zones farther away from the well. Samples obtained from near the well also had visible exopolysaccharide blankets, as seen in scanning electron microscopic preparations. In one of the wells that was sampled, rates of glucose or acetate incorporation into microbial lipids correlated with biomass; but in the other well, activities correlated with the sampling time (volume of water that back flowed). Transmission electron micrographs showed a diverse, gram-negative bacterial population in a variety of physiological states. The analysis of the phospholipid ester-linked fatty acid profiles of the samples revealed consistently large proportions of 18:1ω7c fatty acids, indicating the presence of many anaerobes, facultative organisms, or both. Proportions of cyclopropyl fatty acids and ratios of trans/cis monoenoic compounds increased with the volume of water that back flowed (analogous with the distance into the formation), while the ratio of unsaturated/saturated compounds decreased, possibly indicating higher levels of stress or starvation in the microbial communities farthest from the injection well. Greater than 90% of the total biomass was trapped on glass fiber filters, indicating that the microbiota were largely attached to particles or were clumped. These sampling techniques and analytical methods may prove useful in monitoring for problems with microbes (e.g., plugging) in waterflood operations and in the preparation of water injection wells for enhanced oil recovery by the use of microbes. Images

  17. Petition for EPA action to protect communities from oil and gas wells toxic air pollution

    EPA Pesticide Factsheets

    Petition submitted by Earthjustice urging EPA to list oil and gas wells and associated equipment as an area sourcecategory and set national air toxics standards to protect public health from these sources.

  18. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    SciTech Connect

    Pruess, K.; Doughty, C.

    2010-01-15

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns to fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).

  19. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  20. Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2003-06-01

    This Closure Report documents the activities undertaken to close Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, according to the Federal Facility Agreement and Consent Order. Corrective Action Unit 335 was closed in accordance with the Nevada Division of Environmental Protection-approved Corrective Action Plan for Corrective Action Unit 335.

  1. 40 CFR 144.83 - Do I need to notify anyone about my Class V injection well?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Do I need to notify anyone about my Class V injection well? 144.83 Section 144.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Arizona, California, Colorado, Hawaii, Indiana, Iowa, Kentucky, Michigan, Minnesota, Montana, New...

  2. A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells.

    PubMed

    Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M

    2015-08-04

    Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale.

  3. Predicting injection related changes in seismic properties at Kevin Dome, north central Montana, using well logs and laboratory measurements

    NASA Astrophysics Data System (ADS)

    Saltiel, S.; Bonner, B. P.; Ajo Franklin, J. B.

    2014-12-01

    Time-lapse seismic monitoring (4D) is currently the primary technique available for tracking sequestered CO2 in a geologic storage reservoir away from monitoring wells. The main seismic responses to injection are those due to direct fluid substitution, changes in differential pressure, and chemical interactions with reservoir rocks; the importance of each depends on reservoir/injection properties and temporal/spatial scales of interest. As part of the Big Sky Carbon Sequestration Partnership, we are monitoring the upcoming large scale (1 million ton+) CO2 injection in Kevin Dome, north central Montana. As part of this research, we predict the relative significance of these three effects, as an aid in design of field surveys. Analysis is undertaken using existing open-hole well log data and cores from wells drilled at producer and injector pads as well as core experiments. For this demonstration site, CO2 will be produced from a natural reservoir and re-injected down dip, where the formation is saturated with brine. Effective medium models based on borehole seismic velocity measurements predict relatively small effects (less than 40 m/s change in V¬p) due to the injection of more compressible supercritical CO2. This is due to the stiff dolomite reservoir rock, with high seismic velocities (Vp~6000 m/s, Vs~3000 m/s) and fairly low porosity (<10%). Assuming pure dolomite mineralogy, these models predict a slight increase in Vp during CO2 injection. This velocity increase is due to the lower density of CO2 relative to brine; which outweighs the small change in modulus compared to the stiff reservoir rock. We present both room pressure and in-situ P/T ultrasonic experiments using core samples obtained from the reservoir; such measurements are undertaken to access the expected seismic velocities under pressurized injection. The reservoir appears to have fairly low permeability. Large-volume injection is expected to produce large local pore pressure increases, which may

  4. Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells.

    PubMed

    Kowsz, Stacy J; Young, Erin C; Yonkee, Benjamin P; Pynn, Christopher D; Farrell, Robert M; Speck, James S; DenBaars, Steven P; Nakamura, Shuji

    2017-02-20

    We report a device that monolithically integrates optically pumped (20-21) III-nitride quantum wells (QWs) with 560 nm emission on top of electrically injected QWs with 450 nm emission. The higher temperature growth of the blue light-emitting diode (LED) was performed first, which prevented thermal damage to the higher indium content InGaN of the optically pumped QWs. A tunnel junction (TJ) was incorporated between the optically pumped and electrically injected QWs; this TJ enabled current spreading in the buried LED. Metalorganic chemical vapor deposition enabled the growth of InGaN QWs with high radiative efficiency, while molecular beam epitaxy was leveraged to achieve activated buried p-type GaN and the TJ. This initial device exhibited dichromatic optically polarized emission with a polarization ratio of 0.28. Future improvements in spectral distribution should enable phosphor-free polarized white light emission.

  5. In situ biostimulation of petroleum hydrocarbon degradation by nitrate and phosphate injection using a dipole well configuration.

    PubMed

    Ponsin, Violaine; Coulomb, Bruno; Guelorget, Yves; Maier, Joachim; Höhener, Patrick

    2014-12-15

    The main aim of this study was to explore the feasibility of source zone bioremediation by nitrate and nutrient injection in a crude-oil contaminated aquifer using a recirculating well dipole. Groundwater pumped from a downgradient well at a rate of 2.5m(3)h(-1) was enriched with bromide (tracer), nitrate and ammonium phosphate and injected in a well 40 m upgradient. The test was run for 49 days with solute injection, followed by 65 days of dipole operation without solute addition. The resulting bromide breakthrough curve allowed quantifying a first-order leakage coefficient of 0.017 day(-1) from the dipole, whereas from the nitrate data a first-order nitrate consumption rate of 0.075 day(-1) was determined. Dissolved hydrocarbon concentrations including benzene decreased to non-detect in 84days but experienced important rebounds after ending circulation. Nitrite accumulated temporarily but was consumed entirely when solute injection stopped. The mass balance calculations revealed that about 83% of the nitrate was used for hydrocarbon degradation, with the remaining being used for oxidation of reduced sulfur. A reactive transport model was used for the delineation of the treated zone. This model suggested that denitrification influenced flow and transport in the dipole. It is concluded that successful promotion of denitrifying hydrocarbon degradation is easily obtained in this aquifer and enables to abate dissolved concentrations, and that dipole configuration is a good option.

  6. In situ biostimulation of petroleum hydrocarbon degradation by nitrate and phosphate injection using a dipole well configuration

    NASA Astrophysics Data System (ADS)

    Ponsin, Violaine; Coulomb, Bruno; Guelorget, Yves; Maier, Joachim; Höhener, Patrick

    2014-12-01

    The main aim of this study was to explore the feasibility of source zone bioremediation by nitrate and nutrient injection in a crude-oil contaminated aquifer using a recirculating well dipole. Groundwater pumped from a downgradient well at a rate of 2.5 m3 h- 1 was enriched with bromide (tracer), nitrate and ammonium phosphate and injected in a well 40 m upgradient. The test was run for 49 days with solute injection, followed by 65 days of dipole operation without solute addition. The resulting bromide breakthrough curve allowed quantifying a first-order leakage coefficient of 0.017 day- 1 from the dipole, whereas from the nitrate data a first-order nitrate consumption rate of 0.075 day- 1 was determined. Dissolved hydrocarbon concentrations including benzene decreased to non-detect in 84 days but experienced important rebounds after ending circulation. Nitrite accumulated temporarily but was consumed entirely when solute injection stopped. The mass balance calculations revealed that about 83% of the nitrate was used for hydrocarbon degradation, with the remaining being used for oxidation of reduced sulfur. A reactive transport model was used for the delineation of the treated zone. This model suggested that denitrification influenced flow and transport in the dipole. It is concluded that successful promotion of denitrifying hydrocarbon degradation is easily obtained in this aquifer and enables to abate dissolved concentrations, and that dipole configuration is a good option.

  7. Lithologic Framework Modeling of the Fruitvale Oil Field Investigating Interaction Between Wastewater Injection Wells and Usable Groundwater

    NASA Astrophysics Data System (ADS)

    Treguboff, E. W.; Crandall-Bear, A. T.

    2015-12-01

    The Fruitvale Oil Field lies in a populated area where oil production, water disposal injection wells, and drinking water wells lie in close proximity. The purpose of this project is to build a lithological framework of the area that can then be used to determine if water disposal from petroleum production has a chance of reaching usable groundwater aquifers. Using the DOGGR database, data were collected from well logs. Lithologic data from drilling logs and cores were coded and entered into a relational database, where it was combined with the surface elevation and location coordinates of each well. Elevation data was acquired through ArcGIS using a USGS 24k 10 m DEM. Drillers logs that started at the surface, and were continuous, were sorted by the density of intervals recorded, in order to select high quality drillers logs for use in creating a model. About 900 wells were coded and approximately 150 wells were used in the model. These wells were entered into the modeling program (Rockworks), which allowed the wells to be visualized as strip logs and also as cross sections, and 2D fence models were created to represent subsurface conditions. The data were interpolated into 3D models of the subsurface. Water disposal wells, with the depths of the perforation intervals as well as injection volume, were added to the model, and analyzed. Techniques of interpolation used in this project included kriging, which requires statistical analysis of the data collected. This allowed correlation between widely-spaced wells. Up scaling the data to a coarse or fine texture was also been found to be effective with the kriging technique. The methods developed on this field can be used to build framework models of other fields in the Central Valley to explore the relationship between water disposal injection and usable groundwater.

  8. Use of injection wells for refinery waste disposal. Quarterly technical report, January 1, 1997--March 31, 1997

    SciTech Connect

    Paque, M.

    1997-04-30

    The Ground Water Protection Council (GWPC) has had initial discussions with the American Petroleum Institute staff and several major oil companies concerning a project that would address several technical and regulatory issues related to the use of injection wells at refineries. All parties believe that this project has significant potential to save millions of dollars in operational costs by streamlining and improving both state and federal regulations which are now overly redundant and not risk-based. As currently regulated by the United States Environmental Protection Agency (USEPA), injection wells used for refinery related disposal are typically classified as either Class I hazardous or non-hazardous, depending on RCRA classification. The expense of acquiring an operating permit for these types of wells is very high and they have substantially more operational expenses than a typical Class II injection well. The combination of permitting requirements (including a {open_quotes}no-migration{close_quotes} petition), stringent construction requirements, and intensive monitoring and reporting requirements often make these wells uneconomical for otherwise legitimate waste disposal purposes.

  9. Efficacy of Vitrectomy Combined with Subretinal rtPA Injection with Gas or Air Tamponade.

    PubMed

    Waizel, M; Todorova, M G; Rickmann, A; Blanke, B R; Szurman, P

    2017-01-31

    Background Functional and anatomical outcome after vitrectomy with rtPA combined with gas or air tamponade. Patients and methods Retrospective analysis of pseudophakic patients treated with subretinal rtPA and gas or air tamponade. The primary endpoint was displacement of haemorrhage six months after surgery. The secondary endpoints were visual acuity (BCVA), haemorrhage diameter (MHD) and central macular thickness (CMT), as measured by SD-OCT. Results 53 of 85 eyes were pseudophakic. 27 of these eyes were treated with air tamponade and 26 with gas tamponade. For patients with air tamponade, the mean BCVA improved from 20/530 to 20/355 (p = 0.01). MHD and CMT decreased from 6386 ± 2281 µm to 3805 ± 2397 µm (p < 0.001) and 895 ± 592 µm to 532 ± 386 µm (p < 0.001), respectively. For patients with gas tamponade, the mean BCVA improved only slightly, from 20/471 to 20/394 (p = 0.17). MHD and CMT exhibited statistically significant decreases from 6759 ± 1773 µm to 3525 ± 1548 µm (p < 0.001) and 1089 ± 587 µm to 537 ± 251 µm (p < 0.001), respectively. Conclusions Vitrectomy with subretinal rtPA injection has strong functional and anatomical effects on submacular haemorrhages with both gas and air tamponade.

  10. Microbial biomass, activity, and community structure of water and particulates retrieved by backflow from a waterflood injection well

    SciTech Connect

    McKinley, V.L.; Costerton, J.W.; White, D.C.

    1988-06-01

    Oil field injection water was allowed to back flow from two wells at the Packard drill site in Los Angeles, Calif., and was sampled at various times to obtain information about the biomass, potential activity, and community structure of the microbiota in the reservoir formation and in the injection water. Biomass was greatest in water samples than came from the zone near the injection site and dropped off sharply in subsequent samples, which were assumed to come from zones farther away from the well. Samples obtained from near the well also had visible exopolysaccharide blankets, as seen in scanning electron microscopic preparations. In one of the wells that was sampled, rates of glucose or acetate incorporation into microbial lipids correlated with biomass; but in the other well, activities correlated with the sampling time (volume of water that back flowed). Transmission electron micrographs showed a diverse, gram-negative bacterial population in a variety of physiological states. The analysis of the phospholipid ester-linked fatty acid profiles of the samples revealed consistently large proportions of 18:1 omega7c fatty acids, indicating the presence of many anaerobes, facultative organisms, or both. Proportions of cyclopropyl fatty acids and ratios of trans/cis monoenoic compounds increased with the volume of water that back flowed (analogous with the distance into the formation), while the ratio of unsaturated/saturated compounds decreased, possibly indicating higher levels of stress or starvation in the microbial communities farthest from the injection well. Greater than 90% of the total biomass was trapped on glass fiber filters, indicating that the microbiota were largely attached to particles or were clumped.

  11. Development of a Detailed Stress Map of Oklahoma for Avoidance of Potentially Active Faults When Siting Wastewater Injection Wells

    NASA Astrophysics Data System (ADS)

    Alt, R. C., II; Zoback, M. D.

    2014-12-01

    We report progress on a project to create a detailed map of in situ stress orientations and relative magnitudes throughout the state of Oklahoma. It is well known that the past 5 years has seen a remarkable increase in seismicity in much of the state, potentially related to waste water injection. The purpose of this project is to attempt to utilize detailed knowledge of the stress field to identify which pre-existing faults could be potentially active in response to injection-related pore pressure increases. Over 50 new stress orientations have been obtained, principally utilizing wellbore image data provided by the oil and gas industry. These data reveal a very uniform ENE direction of maximum compressive stress through much of the state. As earthquake focal plane mechanisms indicate strike-slip faulting, the stress orientation data indicate which pre-existing faults are potentially active. The data are consistent with slip on the near-vertical, NE-trending fault associated with at least one of the M 5+ earthquakes in the Prague, OK sequence in 2011. If successful, it would demonstrate that combining detailed information about pre-existing faults and the current stress field could be used to guide the siting of injection wells so as to decrease the potential for injection-related seismicity.

  12. Microbial succession and stimulation following a test well injection simulating CO2 leakage into shallow Newark Basin aquifers

    NASA Astrophysics Data System (ADS)

    Dueker, M.; Clauson, K.; Yang, Q.; Umemoto, K.; Seltzer, A. M.; Zakharova, N. V.; Matter, J. M.; Stute, M.; Takahashi, T.; Goldberg, D.; O'Mullan, G. D.

    2012-12-01

    Despite growing appreciation for the importance of microbes in altering geochemical reactions in the subsurface, the microbial response to geological carbon sequestration injections and the role of microbes in altering metal mobilization following leakage scenarios in shallow aquifers remain poorly constrained. A Newark Basin test well was utilized in field experiments to investigate patterns of microbial succession following injection of CO2 saturated water into isolated aquifer intervals. Additionally, laboratory mesocosm experiments, including microbially-active and inactive (autoclave sterilized) treatments, were used to constrain the microbial role in mineral dissolution, trace metal release, and gas production (e.g. hydrogen and methane). Hydrogen production was detected in both sterilized and unsterilized laboratory mesocosm treatments, indicating abiotic hydrogen production may occur following CO2 leakage, and methane production was detected in unsterilized, microbially active mesocosms. In field experiments, a decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), the production of hydrogen gas, and increased bacterial cell concentrations. 16S ribosomal RNA clone libraries, from samples collected before and after the test well injection, were compared in an attempt to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injection, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia, Acidobacteria and other microbes associated with iron reducing and syntrophic metabolism. The concurrence of increased microbial cell concentration, and rapid microbial community succession, with increased concentrations of hydrogen gas suggests that abiotically produced hydrogen may serve as an ecologically-relevant energy

  13. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, III, William B.

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  14. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  15. Productivity and injectivity of horizontal wells. Annual report, March 10, 1993--March 9, 1994

    SciTech Connect

    Fayers, F.J.; Aziz, K.; Hewett, T.A.; Arbabi, S.

    1994-10-01

    In this report, the investigators review a range of reservoir scenarios in which horizontal wells can be advantageous and discuss some of the modeling problems associated with calculating well connection factors, productivity indices, coning behavior and well two-phase pressure drops. We show illustrative coning calculations and the implications of the well model on distribution of post-breakthrough gas saturations. Such calculations then open up the possibility of determining optimal recompletion strategies and/or additional hydraulic fracturing.

  16. Geohydrology and water quality in northern Portage County, Ohio, in relation to deep-well brine injection

    USGS Publications Warehouse

    Eberts, S.M.

    1991-01-01

    Geohydrology and water quality of the principal freshwater aquifers near oilfield and gasfield brine-injection wells in northern Portage County, Ohio, were evaluated. Since 1975, 13 wells in this part of the Country have been used to dispose of more than 4.5 million barrels of brine by injection into Silurian carbonate and sandstone rocks that generally are greater than 3,500 feet below land surface. More than 3,000 feet of interbedded shales, sandstones, carbonates, and evaporites separate the freshwater aquifers from these brine-injection zones. The shallowest brine-injection zone is greater than 2,200 feet below sea level. Native fluids in the injection zones have dissolved-solids concentrations greater than 125,000 milligrams per liter and are hydraulically isolated from the freshwater aquifers. No known faults or fracture systems are present in northern Portage County, although abandoned oil and gas wells could exist and serve as conduits for migration of injected brine. Pennsylvanian clastic units are freshwater bearing in northern Portage County, and two bedrock aquifers generally are recognized. The shallower bedrock aquifer (Connoquenessing Sandstone Member of the Pottsville Formation) principally consists of sandstone; this aquifer is separated from a deeper sandstone and conglomerate aquifer in the lower part of the Sharon Member (Pottsville Formation) by shale in the upper part of the Sharon Member that acts as a confining unit. The upper sandstone aquifer is the surficial aquifer where overlying glacial deposits are unsaturated in the uplands; glacial deposits comprise the surficial aquifer in buried valleys where the sandstone is absent. These two surficial aquifers are hydraulically connected and act as a single unit. The lower sandstone and conglomerate aquifer is the most areally extensive aquifer within the project area. From November 1987 through August 1988, ground-water levels remained at least 60 feet higher in the upper sandstone aquifer than

  17. Geothermal well behaviour prediction after air compress stimulation using one-dimensional transient numerical modelling

    NASA Astrophysics Data System (ADS)

    Yusman, W.; Viridi, S.; Rachmat, S.

    2016-01-01

    The non-discharges geothermal wells have been a main problem in geothermal development stages and well discharge stimulation is required to initiate a flow. Air compress stimulation is one of the methods to trigger a fluid flow from the geothermal reservoir. The result of this process can be predicted by using by the Af / Ac method, but sometimes this method shows uncertainty result in several geothermal wells and also this prediction method does not take into account the flowing time of geothermal fluid to discharge after opening the well head. This paper presents a simulation of non-discharges well under air compress stimulation to predict well behavior and time process required. The component of this model consists of geothermal well data during heating-up process such as pressure, temperature and mass flow in the water column and main feed zone level. The one-dimensional transient numerical model is run based on the Single Fluid Volume Element (SFVE) method. According to the simulation result, the geothermal well behavior prediction after air compress stimulation will be valid under two specific circumstances, such as single phase fluid density between 1 - 28 kg/m3 and above 28.5 kg/m3. The first condition shows that successful well discharge and the last condition represent failed well discharge after air compress stimulation (only for two wells data). The comparison of pf values between simulation and field observation shows the different result according to the success discharge well. Time required for flow to occur as observed in well head by using the SFVE method is different with the actual field condition. This model needs to improve by updating more geothermal well data and modified fluid phase condition inside the wellbore.

  18. Productivity and injectivity of horizontal wells. Annual report, March 10, 1996--March 9, 1997

    SciTech Connect

    Aziz, K.; Hewett, T.A.; Arbabi, S.; Smith, M.

    1997-06-01

    Progress is reported on the following tasks: advanced modeling of horizontal wells; heterogeneous effects of reservoirs; development of improved methods for calculating multi-phase pressure drops within the wellbore; pseudo-functions; development of multi-well models;testing of HW models with field examples; enhanced oil recovery applications; and application studies and their optimization.

  19. Geochemical transformations and modeling of two deep-well injected hazardous wastes

    USGS Publications Warehouse

    Roy, W.R.; Seyler, B.; Steele, J.D.; Mravik, S.C.; Moore, D.M.; Krapac, I.G.; Peden, J.M.; Griffin, R.A.

    1991-01-01

    Two liquid hazardous wastes (an alkaline brine-like solution and a dilute acidic waste) were mixed with finely ground rock samples of three injection-related lithologies (sandstone, dolomite, and siltstone) for 155 to 230 days at 325??K-10.8 MPa. The pH and inorganic chemical composition of the alkaline waste were not significantly altered by any of the rock samples after 230 days of mixing. The acidic waste was neutralized as a consequence of carbonate dissolution, ion exchange, or clay-mineral dissolution, and hence was transformed into a nonhazardous waste. Mixing the alkaline waste with the solid phases yielded several reaction products: brucite, Mg(OH)2; calcite, CaCO3; and possibly a type of sodium metasilicate. Clay-like minerals formed in the sandstone, and hydrotalcite, Mg6Al2-CO3(OH)16??4H2O, may have formed in the siltstone at trace levels. Mixing the alkaline waste with a synthetic brine yielded brucite, calcite, and whewellite (CaC2O4??H2O). The thermodynamic model PHRQPITZ predicted that brucite and calcite would precipitate from solution in the dolomite and siltstone mixtures and in the alkaline waste-brine system. The dilute acidic waste did not significantly alter the mineralogical composition of the three rock types after 155 days of contact. The model PHREEQE indicated that the calcite was thermodynamically stable in the dolomite and siltstone mixtures.

  20. Pre-injection Comparison of Methods for Sampling Formation Water and Associated Gas from a Monitoring Well at a Carbon Dioxide Injection Site, Citronelle Oil Field, Alabama

    NASA Astrophysics Data System (ADS)

    Conaway, C.; Thordsen, J. J.; Manning, M. A.; Cook, P. J.; Abedini, A. A.; Trautz, R. C.; Thomas, B.; Kharaka, Y. K.

    2012-12-01

    The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a well in the Citronelle Oil Field, Alabama, a site that will be used for a carbon dioxide injection experiment. Prior to each of the two sampling periods, the well was cleaned from the drilling fluids and KCl solutions by producing at least three pore volumes of formation water. Accurate measurements of the chemical composition of groundwater or formation water, including dissolved gasses, and gas samples is essential in understanding subsurface geochemical processes occurring as a result of geologic carbon dioxide injection, which is used for enhanced oil recovery (EOR) and has been proposed as a means of carbon sequestration. In this study, formation water and gas samples for geochemical analyses were obtained from well D-9-8 #2 at Citronelle using nitrogen lift, submersible pump, U-Tube, and a downhole (Kuster) sampler. Field chemical analyses included electrical conductivity, hydrogen sulfide, alkalinity, and pH, and laboratory analyses included major, minor and trace elements by mass spectrometry and ion chromatography, dissolved carbon, organic acid anions, free and dissolved gas species. The formation water obtained from this well is a Na-Ca-Cl brine with a salinity of 160,000 and 200,000 mg/L total dissolved solids (TDS). Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity measurements. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the downhole sampler and U-Tube system performing most favorably in this aspect.

  1. Protocol for laboratory research on degradation, interaction, and fate of wastes disposed by deep-well injection: Final report

    SciTech Connect

    Collins, A.G.; Crocker, M.E.

    1987-12-01

    The objective of this research investigation was to develop a laboratory protocol for use in determining degradation, interaction, and fate of organic wastes disposed in deep subsurface reservoirs via disposal wells. Knowledge of the ultimate fate of deep-well disposed wastes is important because provisions of the Resource Conservation and Recovery Act (RCRA) require that by August 1988, the Environmental Protection Agency (EPA) must show that the disposal of specified wastes by deep-well injection is safe to human health and the environment, or the practice must be stopped. The National Institute for Petroleum and Energy Research (NIPER) developed this protocol primarily by transferring some of its expertise and knowledge of laboratory protocol relevant to improved recovery of petroleum. Phenol, because it is injected into deep, subsurface reservoirs for disposal, was selected for study by the EPA. Phenol is one waste product that has been injected into the Frio formation; therefore, a decision was made to use phenol and sedimentary rock from the Frio formation for a series of laboratory experiments to demonstrate the protocol. This study investigates the adsorption properties of a specific reservoir rock which is representative of porous sedimentary geologic formations used as repositories for hazardous organic wastes. The developed protocol can be used to evaluate mobility, adsorption, and degradation of an organic hazardous waste under simulated subsurface reservoir conditions. 22 refs., 13 figs., 16 tabs.

  2. Productivity and injectivity of horizontal wells. Quarterly report, January 1, 1995--March 31, 1995

    SciTech Connect

    Fayers, F.J.; Aziz, K.; Hewett, T.A.

    1995-05-01

    This report presents skin factor calculations for vertical, horizontal, and deviated wells. Calculations for perforation, damage zone, crushed zone, non-darcy flow, and pressure drop due to the gravel packs are included.

  3. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.

  4. Assistance to state underground injection control programs and the oil and gas industry with class 2 injection well data management and technology transfer. Final technical report

    SciTech Connect

    Paque, M.J.

    1995-11-23

    The Underground Injection Practices Research Foundation (UIPRF) administered a grant project funded by the US Department of Energy relating to Class 2 injection well operations in various primacy and direct implementation states throughout the country. This effort provided substantial benefits to state regulatory agencies and oil and gas producing companies. It enhanced the protection of the environment through the protection of ground water resources and improved oil and gas production operations within affected states. This project involved the following accomplishment: (1) Completed the design and installation of the only comprehensive, fully relational PC-Based Oil and Gas regulatory data management system (the Risk Based Data Management System) in the country. Additionally, training and data conversion was conduced and the RBDMS User`s Guide and the RBDMS Administrator`s Guide were completed. (2) State wide Area-Of-Review (AOR) workshop were held in California and Oklahoma and a national three-day workshop was held in Kansas City, Missouri where 24 state oil and gas agencies were represented.

  5. Productivity and injectivity of horizontal wells. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    Aziz, K.; Hewett, T.A.

    1997-01-30

    This report describes progress on Tasks 1 and 4, Correlations for cresting behavior in horizontal wells. Research work on developing coarse grid methods to study cresting in horizontal wells was continued. The previous correlations for optimum grid size, breakthrough time, and post breakthrough behavior (i.e., water-oil ratio) were further tested and optimized. Procedures to derive pseudo-functions either using numerical correlations or coarse grid simulations have been proposed and successfully tested. The results reported here and other calculations show that the correlations developed in this work can be applied to a wide range of conditions for predicting the water break-through time (BT) and the water-oil-ratio (PBB) for horizontal wells. All of the correlations are based on the assumption of two-phase, two-dimensional flow in homogeneous reservoirs.

  6. Productivity and injectivity of horizontal wells. Quarterly report, July 1--September 30, 1995

    SciTech Connect

    Aziz, K.; Hewett, T.A.

    1995-11-01

    During this quarter the authors have extended their earlier semi-analytical method for determining critical cresting rates in horizontal wells to the case of both water and gas cresting. The method and the procedure will be briefly described below. They also show the application of the method to an example problem and compare the results with direct numerical simulation.

  7. Stress-dependent permeability and ground displacement during CO2 storage operation at KB-502 injection well, In Salah, Algeria

    NASA Astrophysics Data System (ADS)

    Rinaldi, A.; Rutqvist, J.

    2012-12-01

    The In Salah CO2 storage project (a joint venture among Statoil, BP, and Sonatrach) is one of the most important sites for understanding the geomechanics associated with carbon dioxide injection. InSAR data evaluated for the first years of injection show a ground-surface uplift of 5 to 10 mm per year at each of the injection wells. A double-lobe uplift pattern has been observed at KB-502, and both semi-analytical inverse deformation analysis (Vasco et al., 2010) and coupled numerical modeling of fluid flow and geomechanics (Rutqvist et al., 2011) have shown that this pattern of displacement can be explained by injection-induced deformation in a deep vertical fracture zone of fault, whose presence has been confirmed by recent 3D seismic survey (Gibson-Poole et al., 2010). Recently, Rinaldi and Rutqvist (2012) refined the previous modeling results, through the use of TOUGH-FLAC (Rutqvist et al., 2002), in order to more conclusively constrain the height of the fracture zone. Results were well in agreement with all available field observations, including all time evolutions and the shape of surface deformation, time-evolution of injection pressure, and the 3D seismic indications of the CO2 saturated fracture zone extending thousands of meters laterally. However, the analysis included a number of simplifications and uncertainties, such as time-step changes in aquifer permeability and the use of an elastic model, which preclude a good match with field data after shut in. Here we implement a new stress-dependent permeability function, to consider a more realistic changes in reservoir and fracture zone permeability, and to improve the match between field observations and modeling results, considering both the bottomhole pressure and the ground surface displacement. Furthermore, here we extent the length of the simulation to include modeling of the re-injection occurred in late 2010 for few months. A second major simplification by Rinaldi and Rutqvist (2012) is the

  8. Highly polarized emission from electrical spin injection into an InGaAs quantum well with free carriers

    SciTech Connect

    Li, C. H.; Jonker, B. T.; Kioseoglou, G.; Petrou, A.; Korkusinski, M.; Hawrylak, P.

    2013-11-18

    We report on a highly polarized emission from InGaAs/GaAs-quantum well light-emitting diodes in which we inject spin-polarized electrons from an Fe/Schottky contact. The emission spectra consist of the e{sub 1}h{sub 1} free exciton (FX) and a feature 12 meV below FX attributed to band-to-band (BB) recombination. The FX exhibits a maximum circular polarization of 22%, with a magnetic-field dependence characteristic of spin injection from Fe. The BB emission on the other hand exhibits a polarization that is strongly bias and temperature dependent, with intriguing magnetic-field dependence: The polarization exhibits a maximum of 78% at 2.5 T and 2 K, then decreases linearly with field and reaches −78% at 7 T, attributed to magnetic-field dependent spin relaxation in the presence of excess electrons.

  9. Productivity and injectivity of horizontal wells. [Quarterly report], March 10, 1993--June 30, 1993

    SciTech Connect

    Fayers, F.J.; Aziz, K.; Hewett, T.A.

    1993-08-01

    This project has been set up for the purpose of developing advanced performance prediction methods for horizontal wells (HWs) in heterogeneous reservoirs. The stimulus for this project arises from the fact that HWs are now being drilled in large numbers (e.g., over 900 HWs in 1992) and their benefits have provided the one example of an advanced oil recovery technique which is proving to be a general economic attraction. While the drilling techniques and completion practice have made great advances in the last 5 years, the position on reservoir engineering attributes and optimization of reservoir performance lags behind the other technical areas. This project has eight major objectives, of which in year one the following three tasks are involved: modeling horizontal wells; reservoir characterization; and experimental planning and interpretation. Technical progress of these tasks are presented.

  10. Work plan for ground water elevation data recorder/monitor well injection at Grand Junction, Colorado

    SciTech Connect

    Not Available

    1994-07-18

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Grand Junction ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Grand Junction processing site; modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing.

  11. Analysis of radial movement of an unconfined leaky aquifer due to well pumping and injection

    NASA Astrophysics Data System (ADS)

    Li, Jiang

    2007-09-01

    Radial movement of an unconfined leaky aquifer was studied with respect to hydraulic forces that are induced by well recharge and discharge. New analytic solutions in the velocity and displacement fields were found and applied to describe transient movement in an unconfined leaky aquifer. Linear momentum and mass balance of saturated porous sediments, the Darcy-Gersevanov law, and the analytic solution of hydraulic drawdown for unsteady flow within the unconfined leaky aquifer were introduced to find the new solutions. Analytic results indicate that the nonlinear relation between the initial hydraulic head (h0) and the well function has an insignificant effect on the aquifer transient movement when the drawdown s<0.02 h 0. When the well function is simplified with different assumptions and pumping conditions, the new solutions correspondingly reduce to cases that are similar to the Hantush-Jacob, Muskat, and Theis transient movement of a confined leaky aquifer. It was found that large leakance is important in slowing radial movement and reducing aquifer deformation. Flow velocity in the aquifer is more responsive to leakance than to cumulative displacement within the aquifer. The zones and boundary with tensile stress can be located using the same approach applied to a confined aquifer for risk assessment of earth fissuring.

  12. Productivity and injectivity of horizontal wells. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect

    Aziz, K.; Hewett, T.A.

    1995-08-01

    The following activities have been carried out in the last three months: Work on developing a three-dimensional Voronoi grid simulator is progressing. Extensive testing of the grid generation and visualization modules of the simulator is continuing while modifications and improvements are being made to these capabilities; The recently developed semi-analytical method for calculating critical cresting rates is being extended for the case of simultaneous gas and water coning toward a horizontal well; The accuracy of available correlations and analytical models for breakthrough times of horizontal wells is being investigated through simulations of a field case; Work on developing methods for coupling between reservoir and the werbore through a network modeling approach is progressing. The current stage of the study involves evaluation of available analytical methods; The necessary modifications have been made to the rig at the Marathon facility and the high rate two-phase flow experiments are about to commence; new correlations for wall friction and interfacial friction factors have been developed for the stratified flow in horizontal and inclined pipes. After further testing this new approach will be used in our mechanistic model; and this quarterly report has been entirely devoted to the task fisted in the last item above and we only present an abridged version of the Masters report of Mr. Liang-Biao Ouyang on which it is based. The complete study will be included in the next Annual Report of the Project.

  13. Reactivity of rock and well in a geological storage of CO2 : role of co-injected gases

    NASA Astrophysics Data System (ADS)

    Renard, S.; Sterpenich, J.; Pironon, J.

    2009-04-01

    The CO2 capture and geological storage from high emitting sources (coal and gas power plants) is one of a panel of solutions proposed to reduce the global greenhouse gas emissions. Different pre- , post- or oxy-combustion capture processes are now available to separate associated gases (SOx, NOx, etc…) and the CO2. However, complete purification of CO2 is unachievable for cost reasons as well as for CO2 surplus of emissions due to the separation processes. By consequence, a non-negligible part (more or less 5%) of these gases, called "annex gases", could be co-injected with the CO2. Their impact on the chemical stability of reservoir rocks, caprocks and wells has to be evaluated before any large scale injection procedure. Physico-chemical transformations could modify mechanical and injectivity properties of the site and possibly alter storage safety. One of the aims of the CCS pilot project leaded by TOTAL at Lacq (France) is to develop, through a real case study, a methodology for a long-term safe storage qualification. Greenhouse gases are captured from an oxy-combustion power plant, transported along 30 km to the carbonate reservoir of Rousse at around 4500 m in depth. The study presented here is focused on laboratory simulations of geochemical interactions between the reservoir rock (fractured dolomite), the caprock (marl) and the injected CO2 with some potential annex gases. In the same time, experiments are performed on the reactivity of reference minerals such as calcite, dolomite, muscovite, quartz and pyrite to better understand the implication of each phase on bulk rock reactivity. Moreover, well reactivity is observed through specific steel and cement used by petroleum industry. Two annex gases (SO2 and NO) have been selected.. Their reactivity is compared to that of N2 considered as an inert annex gas from a chemical point of view. Solid samples are placed in 1cm3 gold capsules in presence or not of water with a salinity of 25 NaCl g/l. Gases are

  14. Supra-Descemet’s Fluid Drainage with Simultaneous Air Injection: An Alternative Treatment for Descemet’s Membrane Detachment

    PubMed Central

    Ghaffariyeh, Alireza; Honarpisheh, Nazafarin; Chamacham, Tooraj

    2011-01-01

    In this report, we present an alternative technique to manage Descemet’s membrane detachment (DMD). We call the technique supra-Descemet’s fluid drainage with intracameral air injection. Under topical anesthesia, we injected air through the stab incision to fill 2/3 of the anterior chamber. Then we inserted the tip of a curved 10/0 needle through the corneal surface (entry angle at 45 degrees) into the supra-Descemet’s area 3 times to drain this fluid. In our method, we neither injected expanding gas or viscoelastic nor used a suture. Consequently, there was little chance for suture-induced astigmatism or increased intraocular pressure. This technique may be considered a relatively safe and simple surgical method for the management of postoperative DMD. PMID:21731334

  15. Effects on well-being of investing in cleaner air in India.

    PubMed

    Sanderson, Warren; Striessnig, Erich; Schöpp, Wolfgang; Amann, Markus

    2013-01-01

    Over the past decade, India has experienced rapid economic growth along with increases in levels of air pollution. Our goal is to examine how alternative policies for air pollution abatement affect well-being there. In particular, we estimate the effects of policies to reduce the levels of ambient fine particulates (PM2.5), which are especially harmful to human health, on well-being, quantified using the United Nations' human development index (HDI). Two of the three dimensions of this index are based on gross domestic product (GDP) per capita and life expectancy. Our approach allows reductions in PM2.5 to affect both of them. In particular, economic growth is affected negatively through the costs of the additional pollution control measures and positively through the increased productivity of the population. We consider three scenarios of PM2.5 abatement, corresponding to no further control, current Indian legislation, and current European legislation. The overall effect in both control scenarios is that growth in GDP is virtually unaffected relative to the case of no further controls, life expectancy is higher, and well-being, as measured by the HDI, is improved. In India, air pollution abatement investments clearly improve well-being.

  16. Ground-water resources of the Holloman Air Force Base well field area, 1967, New Mexico

    USGS Publications Warehouse

    Ballance, W.C.; Mattick, Robert E.

    1976-01-01

    Water consumption at Holloman Air Force Base (HAFB), N. Mex., reached an all time high in 1964 and 1965. Further increases in withdrawal without expansion of pumping facilities will hasten the chemical deterioration of the ground water pumped from the well fields. Saline water in the well-field area is present on the north and west sides of the potable-water area and in a thin shallow zone that overlies the potable-water sands in part of the potable-water area. The latter source is affecting quality of the water produced from most wells. The saturated thickness of material underlying the Boles well field ranges from about 3 ,500 feet in the western part of the field to about 1,200 feet in the eastern part of the field. In the Douglass and San Andres well fields, the saturated thickness ranges from 3,500 feet to about 300 feet. Expansion of the Boles and San Andres well fields to the east and southeast would move the center of pumping away from the highly saline water to the north and west. This would eliminate overpumping of the present wells that has resulted from the expanded facilities at Holloman Air Force Base. (Woodard-USGS)

  17. Shock Separation and Dead-Zone Formation from Detonations in an Internal Air-Well Geometry

    NASA Astrophysics Data System (ADS)

    Molitoris, John; Andreski, Henry; Garza, Raul; Batteux, Jan; Vitello, Peter; Souers, Clark

    2007-06-01

    Here we report on measurements of dead-zone formation due to shock separation from detonations attempting to corner-turn in an internal air-well geometry. This geometry is also known as a ``hockey-puck'' configuration. These measurements were performed on detonations in LX-17 and PBX9502 using time sequence radiography to image the event with surface contact timing pins as an additional diagnostic. In addition to an open corner in the high-explosive component we also examined the effects of steel defining the corner. In these experiments we find a long lived dead-zone consisting of shocked explosive that persists to very late times. Data and numerical modeling will be presented in addition to a comparison with previous work using an external air well. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  18. Locations and monitoring well completion logs of wells surveyed by U.S. Geological Survey at Air Force Plant 4 and Naval Air Station, Joint Reserve Base, Carswell Field, Fort Worth area, Texas

    USGS Publications Warehouse

    Williams, M.D.; Kuniansky, E.L.

    1996-01-01

    Completion logs are presented for 16 monitoring wells installed by the U.S. Geological Survey at Air Force Plant 4 and Naval Air Station, Joint Reserve Base, Carswell Field, in the Fort Worth area, Texas. Natural gamma-ray logs are presented for selected monitoring wells. Also included are survey data for eight wells installed by Geo-Marine, Inc.

  19. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  20. Immobilization effect of air-injected blanket (AIB) for abdomen fixation

    SciTech Connect

    Ko, Young Eun; Suh, Yelin; Ahn, Seung Do; Lee, Sang-wook; Shin, Seong Soo; Kim, Jong Hoon; Choi, Eun Kyung; Yi, Byong Yong

    2005-11-15

    A new device for reducing the amplitude of breathing motion by pressing a patient's abdomen using an air-injected blanket (AIB) for external beam radiation treatments has been designed and tested. The blanket has two layers sealed in all four sides similar to an empty pillow made of urethane. The blanket is spread over the patient's abdomen with both ends of the blanket fixed to the sides of the treatment couch or a baseboard. The inner side, or patient side, of the blanket is thinner and expands more than the outer side. When inflated, the blanket balloons and effectively puts an even pressure on the patient's abdomen. Fluoroscopic observation was performed to verify the usefulness of AIB for patients with lung, breast cancer, or abdominal cancers. Internal organ movement due to breathing was monitored and measured with and without AIB. With the help of AIB, the average range of diaphragm motion was reduced from 2.6 to 0.7 cm in the anterior-to-posterior direction and from 2.7 to 1.3 cm in the superior-to-inferior direction. The motion range in the right-to-left direction was negligible, for it was less than 0.5 cm. These initial testing demonstrated that AIB is useful for reducing patients' breathing motion in the thoracic and abdominal regions comfortably and consistently.

  1. Embedded computer controlled premixing inline injection system for air-assisted variable-rate sprayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...

  2. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  3. Improvement of neutral beam injection heating efficiency with magnetic field well structures in a tokamak with a low magnetic field

    NASA Astrophysics Data System (ADS)

    Kim, S. K.; Na, D. H.; Lee, J. W.; Yoo, M. G.; Kim, H.-S.; Hwang, Y. S.; Hahm, T. S.; Na, Yong-Su

    2016-10-01

    Magnetic well structures are introduced as an effective means to reduce the prompt loss of fast ions, the so-called first orbit loss from neutral beam injection (NBI), which is beneficial to tokamaks with a low magnetic field strength such as small spherical torus devices. It is found by single-particle analysis that this additional field structure can modify the gradient of the magnetic field to reduce the shift of the guiding center trajectory of the fast ion. This result is verified by a numerical calculation of following the fast ion’s trajectory. We apply this concept to the Versatile Experiment Spherical Torus [1], where NBI is under design for the purpose of achieving high-performance plasma, to evaluate the effect of the magnetic well structure on NBI efficiency. A 1D NBI analysis code and the NUBEAM code are employed for detailed NBI calculations. The simulation results show that the orbit loss can be reduced by 70%-80%, thereby improving the beam efficiency twofold compared with the reference case without the well structure. The well-shaped magnetic field structure in the low-field side can significantly decrease orbit loss by broadening the non-orbit loss region and widening the range of the velocity direction, thus improving the heating efficiency. It is found that this magnetic well can also improve orbit loss during the slowing down process.

  4. Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170.

    PubMed

    Nieves, I U; Geddes, C C; Mullinnix, M T; Hoffman, R W; Tong, Z; Castro, E; Shanmugam, K T; Ingram, L O

    2011-07-01

    Microaeration (injecting air into the headspace) improved the fermentation of hemicellulose hydrolysates obtained from the phosphoric acid pretreatment of sugarcane bagasse at 170°C for 10 min. In addition, with 10% slurries of phosphoric acid pretreated bagasse (180°C, 10 min), air injection into the headspace promoted xylose utilization and increased ethanol yields from 0.16 to 0.20 g ethanol/g bagasse dry weight using a liquefaction plus simultaneous saccharification and co-fermentation process (L+SScF). This process was scaled up to 80 L using slurries of acid pretreated bagasse (96 h incubation; 0.6L of air/min into the headspace) with ethanol yields of 312-347 L (82-92 gal) per tone (dry matter), corresponding to 0.25 and 0.27 g/g bagasse (dry weight). Injection of small amounts of air into the headspace may provide a convenient alternative to subsurface sparging that avoids problems of foaming, sparger hygiene, flotation of particulates, and phase separation.

  5. Use of data obtained from core tests in the design and operation of spent brine injection wells in geopressured or geothermal systems

    SciTech Connect

    Jorda, R.M.

    1980-03-01

    The effects of formation characteristics on injection well performance are reviewed. Use of data acquired from cores taken from injection horizons to predict injectivity is described. And methods for utilizing data from bench scale testing of brine and core samples to optimize injection well design are presented. Currently available methods and equipment provide data which enable the optimum design of injection wells through analysis of cores taken from injection zones. These methods also provide a means of identifying and correcting well injection problems. Methods described in this report are: bulk density measurement; porosity measurement; pore size distribution analysis; permeability measurement; formation grain size distribution analysis; core description (lithology) and composition; amount, type and distribution of clays and shales; connate water analysis; consolidatability of friable reservoir rocks; grain and pore characterization by scanning electron microscopy; grain and pore characterization by thin section analysis; permeability damage and enhancement tests; distribution of water-borne particles in porous media; and reservoir matrix acidizing effectiveness. The precise methods of obtaining this information are described, and their use in the engineering of injection wells is illustrated by examples, where applicable. (MHR)

  6. Neural Network approach to assess the thermal affected zone around the injection well in a groundwater heat pump system

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio

    2014-05-01

    The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple

  7. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olson; Deanna Combs; Dhiraj Dembla

    2004-06-01

    The Bureau of Economic Geology (BEG) and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology (BEG) and the Department of Petroleum and Geosystems Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data were to be generated during the demonstration phase to improve the accuracy of the reservoir model. The demonstration phase has been delayed by Goldrus because of funding problems. Since the first of the year, Goldrus has been active in searching for partners to help finance the project. To this end it has commissioned several small consulting studies to technically support its effort to secure a partner. After financial support is obtained, the demonstration phase of the project will proceed. Since just after the beginning of the year, BEG has curtailed project activities and spending of DOE funds except for the continued support of one engineering student. This student has now completed his work and has written a thesis describing his research (titled ''Stimulating enhanced oil recovery (EOR) by high-pressure air injection (HPAI) in west Texas light oil reservoir''). We plan to recommence our work on the project as soon as the operator obtains necessary funding to carry out the demonstration phase of the project. In order to complete all activities specified in the proposal, it will be necessary to request

  8. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-06-01

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plant that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration are being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the US.

  9. Instrumentation design and installation for monitoring air injection ground water remediation technologies

    SciTech Connect

    Hall, B.L.; Baldwin, C.K.; Lachmar, T.E.; Dupont, R.R.

    2000-03-31

    An in situ instrumentation bundle was designed for inclusion in monitoring wells that were installed at the Wasatch Trailer Sales site in Layton, Utah, to evaluate in situ air sparging (IAS) and in-well aeration (IWA). Sensors for the bundle were selected based on laboratory evaluation of accuracy and precision, as well as consideration of size and cost. SenSym pressure transducers, Campbell Scientific, Inc. (CSI) T-type thermocouples, and dissolved oxygen (DO) probes manufactured by Technalithics Inc. (Waco, Texas), were selected for each of the 27 saturated zone bundles. Each saturated zone bundle also included a stirring blade to mix water near the DO probe. A Figaro oxygen sensor was included in the vadose zone bundle. The monitoring wells were installed by direct push technique to minimize soil disruption and to ensure intimate contact between the 18 inch (46 cm) long screens and the soil. A data acquisition system, comprised of a CSI 21X data logger and four CSI AM416 multiplexers, was used to control the stirring blades and record signals from more than 70 in situ sensors. The instrumentation performed well during evaluation of IAS and IWA at the site. However, the SenSym pressure transducers were not adequately temperature compensated and will need to be replaced.

  10. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil.

    PubMed

    Abuarab, Mohamed; Mostafa, Ehab; Ibrahim, Mohamed

    2013-11-01

    Subsurface drip irrigation (SDI) can substantially reduce the amount of irrigation water needed for corn production. However, corn yields need to be improved to offset the initial cost of drip installation. Air-injection is at least potentially applicable to the (SDI) system. However, the vertical stream of emitted air moving above the emitter outlet directly toward the surface creates a chimney effect, which should be avoided, and to ensure that there are adequate oxygen for root respiration. A field study was conducted in 2010 and 2011, to evaluate the effect of air-injection into the irrigation stream in SDI on the performance of corn. Experimental treatments were drip irrigation (DI), SDI, and SDI with air injection. The leaf area per plant with air injected was 1.477 and 1.0045 times greater in the aerated treatment than in DI and SDI, respectively. Grain filling was faster, and terminated earlier under air-injected drip system, than in DI. Root distribution, stem diameter, plant height and number of grains per plant were noticed to be higher under air injection than DI and SDI. Air injection had the highest water use efficiency (WUE) and irrigation water use efficiency (IWUE) in both growing seasons; with values of 1.442 and 1.096 in 2010 and 1.463 and 1.112 in 2011 for WUE and IWUE respectively. In comparison with DI and SDI, the air injection treatment achieved a significantly higher productivity through the two seasons. Yield increases due to air injection were 37.78% and 12.27% greater in 2010 and 38.46% and 12.5% in 2011 compared to the DI and SDI treatments, respectively. Data from this study indicate that corn yield can be improved under SDI if the drip water is aerated.

  11. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil

    PubMed Central

    Abuarab, Mohamed; Mostafa, Ehab; Ibrahim, Mohamed

    2012-01-01

    Subsurface drip irrigation (SDI) can substantially reduce the amount of irrigation water needed for corn production. However, corn yields need to be improved to offset the initial cost of drip installation. Air-injection is at least potentially applicable to the (SDI) system. However, the vertical stream of emitted air moving above the emitter outlet directly toward the surface creates a chimney effect, which should be avoided, and to ensure that there are adequate oxygen for root respiration. A field study was conducted in 2010 and 2011, to evaluate the effect of air-injection into the irrigation stream in SDI on the performance of corn. Experimental treatments were drip irrigation (DI), SDI, and SDI with air injection. The leaf area per plant with air injected was 1.477 and 1.0045 times greater in the aerated treatment than in DI and SDI, respectively. Grain filling was faster, and terminated earlier under air-injected drip system, than in DI. Root distribution, stem diameter, plant height and number of grains per plant were noticed to be higher under air injection than DI and SDI. Air injection had the highest water use efficiency (WUE) and irrigation water use efficiency (IWUE) in both growing seasons; with values of 1.442 and 1.096 in 2010 and 1.463 and 1.112 in 2011 for WUE and IWUE respectively. In comparison with DI and SDI, the air injection treatment achieved a significantly higher productivity through the two seasons. Yield increases due to air injection were 37.78% and 12.27% greater in 2010 and 38.46% and 12.5% in 2011 compared to the DI and SDI treatments, respectively. Data from this study indicate that corn yield can be improved under SDI if the drip water is aerated. PMID:25685457

  12. Turbulent Boundary Layer on a Finely Perforated Surface Under Conditions of Air Injection at the Expense of External Flow Resources

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.

    2015-11-01

    The characteristics of an incompressible turbulent boundary layer on a flat plate with air blown in though a finely perforated surface from an external confined flow through an input device, located on the "idle" side of the plate, have been investigated experimentally and numerically. A stable decrease in the local values of the coefficient of surface friction along the plate length that attains 85% at the end of the perforated portion is shown. The experimental and calculated data obtained point to the possibility of modeling, under earth conditions, the process of controlling a turbulent boundary layer with air injection by using the resources of an external confined flow.

  13. Oxidation effects on cleaved multiple quantum well surfaces in air observed by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Howells, S.; Gallagher, M. J.; Chen, T.; Pax, P.; Sarid, D.

    1992-08-01

    The paper presents the first atomic force microscopy (AFM) images of cleaved InGaAs/InP multiple quantum wells and compares them with scanning tunneling microscopy (STM) images taken of the same heterostructure. The images were stable in air for over a day. Based on these results, it is proposed that the mechanism for contrast in the images is due to an oxide layer that grows primarily on the InGaAs wells and not on the InP barriers. Both STM and AFM clearly resolve the individual wells of the heterostructure, although STM measured a larger corrugation than an AFM. STM also exhibited superior lateral resolution of about 2 nm, while AFM had a lateral resolution of approximately 6 nm.

  14. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  15. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect

    Mehnke, Frank Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  16. HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR

    EPA Science Inventory

    Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...

  17. Contributing recharge areas to water-supply wells at Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Sheets, R.A.

    1994-01-01

    Wright-Patterson Air Force Base, in southwestern Ohio, has operated three well fields--Area B, Skeel Road, and the East Well Fields--to supply potable water for consumption and use for base activities. To protect these well fields from contamination and to comply with the Ohio Wellhead Protection Plan, the Base is developing a wellhead-protection program for the well fields. A three-dimensional, steady-state ground-water-flow model was developed in 1993 to simulate heads in (1) the buried-valley aquifer system that is tapped by the two active well fields, and in (2) an upland bedrock aquifer that may supply water to the wells. An advective particle-tracking algorithm that requires estimated porosities and simulated heads was used to estimate ground-water-flow pathlines and traveltimes to the active well fields. Contributing recharge areas (CRA's)--areas on the water table that contribute water to a well or well field--were generated for 1-, 5-, and 10-year traveltimes. Results from the simulation and subsequent particle tracking indicate that the CRA's for the Skeel Road Well Fields are oval and extend north- ward, toward the Mad River, as pumping at the well field increases. The sizes of the 1-, 5-, and 10-year CRA's of Skeel Road Well Field, under maximum pumping conditions, are approximately 0.5, 1.5 and 3.2 square miles, respectively. The CRA's for the Area B Well Field extend to the north, up the Mad River Valley; as pumping increases at the well field, the CRA's extend up the Mad River Valley under Huffman Dam. The sizes of the 1-, 5-, and 10-year CRA's of Area B Well Field, under maximum pumping conditions, are approximately 0.1, 0.5, and 0.9 square miles, respectively. The CRA's for the East Well Field are affected by nearby streams under average pumping conditions. The sizes of the 1-, 5-, and 10-year CRA's of the East Well Field, under maximum pumping conditions, are approximately 0.2, 1.2, and 2.4 square miles, respectively. However, as pumping increases

  18. Tracer Tests in a Fractured Dolomite: 3. Analysis of Mass Transfer in Single-Well Injection-Withdrawal Tests

    SciTech Connect

    Haggerty, R.; Fleming, S.W.; Meigs, L.C.; McKenna, S.A.

    1999-03-04

    We investigated multiple-rate diffusion as a possible explanation for observed behavior in a suite of single-well injection-withdrawal (SWIW) tests conducted in a fractured dolomite. We first investigated the ability of a conventional double-porosity model and a multirate diffusion model to explain the data. This revealed that the multirate diffusion hypothesis/model is most consistent with all available data, and is the only model to date that is capable of matching each of the recovery curves entirely. Second, we studied the sensitivity of the SWIW recovery curves to the distribution of diffusion rate coefficients and other parameters. We concluded that the SWIW test is very sensitive to the distribution of rate coefficients, but is relatively insensitive to other flow and transport parameters such as advective porosity and dispersivity. Third, we examined the significance of the constant double-log late-time slopes ({minus}2. 1 to {minus}2.8), which are present in several data sets. The observed late-time slopes are significantly different than would be predicted by either conventional double-porosity or single-porosity media, and are found to be a distinctive feature of multirate diffusion under SWIW test conditions. Fourth, we found that the estimated distributions of diffusion rate coefficients are very broad, with the distributions spanning a range of at least 3.6 to 5.7 orders of magnitude.

  19. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Alfred Wickline

    2008-03-01

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: •06-23-02, U-6a/Russet Testing Area •09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546.

  20. MEASUREMENT OF FUGITIVE EMISSIONS AT A LANDFILL PRACTICING LEACHATE RECIRCULATION AND AIR INJECTION

    EPA Science Inventory

    Recently research has begun on operating bioreactor landfills. The bioreactor process involves the injection of liquid into the waste mass to accelerate waste degradation. Arcadis and EPA conducted a fugitive emissions characterization study at the Three Rivers Solid Waste Techno...

  1. Mobile ultra-clean unidirectional airflow screen reduces air contamination in a simulated setting for intra-vitreal injection.

    PubMed

    Lapid-Gortzak, Ruth; Traversari, Roberto; van der Linden, Jan Willem; Lesnik Oberstein, Sarit Y; Lapid, Oren; Schlingemann, Reinier O

    2017-02-01

    The aim of this study is to determine whether the use of a mobile ultra-clean laminar airflow screen reduces the air-borne particle counts in the setting of a simulated procedure of an intra-vitreal injection. A mobile ultra-clean unidirectional airflow (UDF) screen was tested in a simulated procedure for intra-vitreal injections in a treatment room without mechanical ventilation. One UDF was passed over the instrument tray and the surgical area. The concentration of particles was measured in the background, over the instrument table, and next to the ocular area. The degree of protection was calculated at the instrument table and at the surgical site. Use of the UDF mobile screen reduced the mean particle concentration (particles > 0.3 microns) on the instrument table by a factor of at least 100.000 (p < 0.05), and over the patient's eye by at least a factor of 436 (p < 0.05), which in clinical practice translates into significantly reduced air contamination. Mobile UDF screen reduces the mean particle concentration substantially. The mobile UDF screen may therefore allow for a safer procedural environment for ambulatory care procedures such as intra-vitreal injections in treatment rooms.

  2. Studies on the mixing of liquid jets and pre-atomized sprays in confined swirling air flows for lean direct injection combustion

    NASA Astrophysics Data System (ADS)

    Huh, Jun-Young

    A lean direct injection (LDI) combustion concept was introduced recently to obtain both low NOsbx emissions and high performance for advanced aircraft gas turbine engines. It was reported that pollutant emissions, especially NOsbx, in a lean combustion mode depend significantly on the degree of mixing (mixedness) of supplied air and liquid fuel droplets. From a viewpoint of environmental protection, therefore, uniform mixing of fuel and air in a very short period of time, i.e., well-stirred mixing, is crucially important in the LDI combustion mode. In the present study, as the first stage toward understanding the combustion phenomena in a lean direct injection (LDI) mode, the hydrodynamic behavior of liquid jets and pre-atomized sprays in confined swirling air flows is investigated. Laser-based flow visualization and image analysis techniques are applied to analyze the instantaneous motion of the mixing process of the jets and pre-atomized sprays. Statistical analysis system (SAS) software is utilized to analyze the experimental data, and correlate experimental parameters. Statistical parameters, such as centrality, degree of spread, and total area ratio of particles, are defined in this study, and used to quantify the mixedness (degree of mixing) of liquid particles in confined geometry. Two empirical equations are obtained to predict jet intact lengths and spray angles, respectively, in confined swirling air flows. It is found that initial jet characteristics, such as intact length and spray angle, determine the mixing of the liquid particles resulting from the jet. It is verified that image analysis is feasible in quantitative determination of the mixedness of liquid particles. Even though substantial improvements in liquid fuel injector systems are required before they can be considered adequate for LDI combustion at high pressure and high temperature, the results and ideas obtained from the present study will help engineers find better mixing methods for LDI

  3. Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry.

    PubMed

    Companioni-Damas, E Y; Santos, F J; Galceran, M T

    2014-01-01

    In the present work, a simple and fast method for the analysis of linear and cyclic methylsiloxanes in ambient air based on active sampling combined with gas chromatography - mass spectrometry (GC-MS) was developed. The retention efficiency of five sampling sorbents (activated coconut charcoal, Carbopack B, Cromosorb 102, Cromosorb 106 and Isolute ENV+) was evaluated and Isolute ENV+ was found to be the most effective. A volume of 2700 L of air can be sampled without significant losses of the most volatile methylsiloxanes. To improve the sensitivity of the GC-MS method, concurrent solvent recondensation - large volume injection (CSR-LVI), using volumes up to 30 µl of sample extract, is proposed and limits of quantification down to 0.03-0.45 ng m(-3), good linearity (r>0.999) and precision (RSD %<9%) were obtained. The developed method was applied to the analysis of ambient air. Concentrations of linear and cyclic methylsiloxanes in indoor air ranging from 3.9 to 319 ng m(-3) and between 48 and 292668 ng m(-3), were obtained, respectively, while levels from 6 to 22 ng m(-3) for linear and between 2.2 and 439 ng m(-3) for cyclic methylsiloxanes in outdoor air from Barcelona (Spain), were found.

  4. Hydrogeology, estimated impact, and regional well monitoring of effects of subsurface wastewater injection, Tampa Bay area, Florida

    USGS Publications Warehouse

    Hickey, John J.

    1981-01-01

    Six proposed injection sites are located in Pinellas County, Fla., and the city of St. Petersburg. Projected maximum injection rate, if all sites become operational, will be about 40 million gallons per day. The injection zone at the proposed sites is in a consistently dolomitized section of the Avon Park Limestone in the lower part of the Floridan aquifer. The injection zone contains saline ground water that has a chloride concentration of 19,000 to 20,000 milligrams per liter. Pressure and velocity changes were computed at selected regional locations in the upper and lower parts of the Floridan aquifer. Results of the model computations suggest that the regional impact after 20 years of injection will be small. Three locations are proposed for regional monitoring of subsurface injection. They are in the vicinity of the intersection of highways U.S. 19 and U.S. 60 in Pinellas County, Sun City in Hillsborough County, and the intersection of Sheldon Road and Gunn Highway in Hillsborough County. (USGS)

  5. A study of production/injection data from slim holes and large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan

    SciTech Connect

    Garg, S.K.; Combs, J.; Azawa, Fumio; Gotoh, Hiroki

    1996-11-01

    Production and injection data from nine slim holes and sixteen large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan were analyzed in order to establish relationships (1) between injectivity and productivity indices, (2) between productivity/injectivity index and borehole diameter, and (3) between discharge capacity of slim holes and large-diameter wells. Results are compared with those from the Oguni and Sumikawa fields. A numerical simulator (WELBOR) was used to model the available discharge rate from Takigami boreholes. The results of numerical modeling indicate that the flow rate of large-diameter geothermal production wells with liquid feedzones can be predicted using data from slim holes. These results also indicate the importance of proper well design.

  6. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Stephen C. Ruppel

    2006-02-01

    The field operator, Goldrus Producing Company, has been unable to secure funding needed to continue the field demonstration phase of the project. Accordingly, we have temporarily halted all project activities until necessary funding is obtained. Goldrus felt confident that funds could be acquired by third quarter 2005 at which time it would have been necessary to request a project extension to complete the originally designed study. A project extension was granted but it appears Goldrus will have difficulty securing funds. We Bureau of Economic Geology are investigating a new approach on how to fulfill our initial objectives of promoting high-pressure air injection of Ellenburger reservoirs.

  7. Corrective Action Plan for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit Nevada Test Site, Nevada

    SciTech Connect

    K. B. Campbell

    2002-10-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 335, Area 6 Injection Well and Drain Pit, in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996). This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (CADD). However, there is one modification to the selected alternative. Due to the large area that would require fencing, it is proposed that instead of fencing, an appropriate number of warning signs attached to tee posts be used to delineate the use restriction area. CAU 335 is located in Area 6 of the Nevada Test Site (NTS) which is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada. CAU 335 is located in the Area 6 Well 3 Yard approximately 39 km (24 mi) north of Mercury, on the Mercury Highway and several hundred feet (ft) west along Road 6-06. CAU 335 consists of the following three Corrective Action Sites (CASs): CAS 06-20-01, Drums, Oil Waste, Spill; CAS 06-20-02, 20-inch Cased Hole; CAS 06-23-03, Drain Pit. The site history for CAU 335 is provided in the Corrective Action Investigation Plan (DOE/NV, 2000). Briefly, CAS 06-20-01, was used for storing material that was pumped out of CAS 06-20-02 and placed into four 208-liter (L) (55-gall [gal]) drums. The drums were taken to the NTS Area 5 Hazardous Waste Accumulation Site in 1991. CAS 06-20-01 will be closed with no further action required. Any spills associated with CAS 06-20-01 are addressed and considered part of CAS 06-20-02. CAS 06-20-02 was used for disposal of used motor oil, wastewater, and debris for an undetermined amount of time. In 1991, the casing was emptied of its contents, excavated, and backfilled. CAS 06-23-03 was used as a depository for effluent waste from truck-washing activities from 1960-1991.

  8. Corrective Action Investigation Plan for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, Nevada Test Site, Nevada

    SciTech Connect

    DOE /NV

    2000-12-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 335, Area 6 Injection Well and Drain Pit, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 335 consists of three Corrective Action Sites (CASs). The CAU is located in the Well 3 Yard in Area 6 at the Nevada Test Site. Historical records indicate that the Drain Pit (CAS 06-23-03) received effluent from truck-washing; the Drums/Oil Waste/Spill (CAS 06-20-01) consisted of four 55-gallon drums containing material removed from the Cased Hole; and the Cased Hole (CAS 06-20-02) was used for disposal of used motor oil, wastewater, and debris. These drums were transported to the Area 5 Hazardous Waste Accumulation Site in July 1991; therefore, they are no longer on site and further investigation or remediation efforts are not required. Consequently, CAS 06-20-01 will be closed with no further action and details of this decision will be described in the Closure Report for this CAU. Any spills that may have been associated with this CAS will be investigated and addressed under CAS 06-20-02. Field investigation efforts will be focused on the two remaining CASs. The scope of the investigation will center around identifying any contaminants of potential concern (COPCs) and, if present, determining the vertical and lateral extent of contamination. The COPCs for the Drain Pit include: total volatile/ semivolatile organic compounds, total petroleum hydrocarbons (gasoline-and diesel-range organics), ethylene glycol monobutyl ether, polychlorinated biphenyls, total Resource Conservation and Recovery Act metals, and radionuclides. The COPCs for the Cased Hole include: total volatile/ semivolatile organic compounds, total petroleum hydrocarbons (diesel-range organics only), and total Resource Conservation an d

  9. Influence of temperature on the mechanism of carrier injection in light-emitting diodes based on InGaN/GaN multiple quantum wells

    SciTech Connect

    Prudaev, I. A. Golygin, I. Yu.; Shirapov, S. B.; Romanov, I. S.; Khludkov, S. S.; Tolbanov, O. P.

    2013-10-15

    The experimental current-voltage characteristics and dependences of the external quantum yield on the current density of light-emitting diodes based on InGaN/GaN multiple quantum wells for the wide temperature range T = 10-400 K are presented. It is shown that, at low-temperatures T < 100 K, the injection of holes into the quantum wells occurs from localized acceptor states. The low-temperature injection of electrons into p-GaN occurs due to quasi-ballistic transport in the region of multiple quantum wells. An increase in temperature leads to an increase in the current which is governed by thermally activated hole and electron injection from the allowed bands of GaN.

  10. ENHANCED CONTACT OF COSOLVENT AND DNAPL IN POROUS MEDIA BY CONCURRENT INJECTION OF COSOLVENT AND AIR

    EPA Science Inventory

    Remediation of sites contaminated by dense nonaqueous phase liquids (DNAPLS) is a major
    environmental problem and cosolvent flooding is proposed as a remedial alternative. The
    efficacy of cosolvent flooding is a function of the degree of mixing between the injected
    remed...

  11. The injection of air/oxygen bubble into the anterior chamber of rabbits as a treatment for hyphema in patients with sickle cell disease.

    PubMed

    Ayintap, Emre; Keskin, Uğurcan; Sadigov, Fariz; Coskun, Mesut; Ilhan, Nilufer; Motor, Sedat; Semiz, Hilal; Parlakfikirer, Nihan

    2014-01-01

    Purpose. To investigate the changes of partial oxygen pressure (PaO2) in aqueous humour after injecting air or oxygen bubble into the anterior chamber in sickle cell hyphema. Methods. Blood samples were taken from the same patient with sickle cell disease. Thirty-two rabbits were divided into 4 groups. In group 1 (n = 8), there was no injection. Only blood injection constituted group 2 (n = 8), both blood and air bubble injection constituted group 3 (n = 8), and both blood and oxygen bubble injection constituted group 4 (n = 8). Results. The PaO2 in the aqueous humour after 10 hours from the injections was 78.45 ± 9.9 mmHg (Mean ± SD) for group 1, 73.97 ± 8.86 mmHg for group 2, 123.35 ± 13.6 mmHg for group 3, and 306.47 ± 16.5 mmHg for group 4. There was statistically significant difference between group 1 and group 2, when compared with group 3 and group 4. Conclusions. PaO2 in aqueous humour was increased after injecting air or oxygen bubble into the anterior chamber. We offer to leave an air bubble in the anterior chamber of patients with sickle cell hemoglobinopathies and hyphema undergoing an anterior chamber washout.

  12. In-well air stripping/bioventing study at Tyndall Air Force Base, Florida. Final technical report, 13 September 1991-30 November 1995

    SciTech Connect

    Alleman, B.C.

    1996-01-03

    This study was conducted to determine the feasibility of incorporating in-well air stripping systems into the design of bioventing systems to effectively extend bioventing to simultaneously remediate hydrocarbon contamination in both the vadose and saturated zones. The field study was conducted for 12 months between June 1994 and June 1995. The data demonstrated that the in-well air stripping systems were able to circulate the groundwater throughout the 25-foot radius of influence. The well systems were shown to be effective at remediating the benzene, toluene, ethylbenzene, and xylenes (BTEX) of the hydrocarbon contamination in the groundwater within the treatment cell. Conclusions made included: (1) the air lift pumping mechanism was capable of circulating groundwater in the aquifer; (2) the volatile compounds were effectively stripped from the groundwater; (3) anoxic groundwater entering the well was sufficiently oxygenated during air lift; (4) the residual oxygen in the off-gas from the in-well air stripping system was sufficient for supporting bioventing in the vadose zone; (5) volatile compounds in the off-gas from the well system were degraded in the vadose zone through bioventing when the mass loading did not exceed the degradative capacity of the microorganisms; and (6) bioventing was very effective for remediating residual hydrocarbon contamination in the vadose zone.

  13. Single well field injection test of humate to enhance attenuation of uranium and other radionuclides in an acidic plume

    SciTech Connect

    Denham, M.

    2014-09-30

    This report documents the impact of the injected humate on targeted contaminants over a period of 4 months and suggests it is a viable attenuation-based remedy for uranium, potentially for I-129, but not for Sr-90. Future activities will focus on issues pertinent to scaling the technology to full deployment.

  14. Improving environmental noise suppression for micronewton force sensing based on electrostatic by injecting air damping.

    PubMed

    Zheng, Yelong; Song, Le; Hu, Gang; Zhao, Meirong; Tian, Yanling; Zhang, Zihui; Fang, Fengzhou

    2014-05-01

    A micro/nano force can be traced to the International System of Units by means of an electrostatic force balance weight system. However, the micro/nano force measurement system is susceptible to environmental disturbances. Various methods have been proposed to reduce the effect of environmental disturbances and obtain high resolution and fast response. In this paper, we introduce a combination of air damping and inherent damping from the internal molecular friction of spring suspension. This will optimize system stability and improve environmental noise suppression. Results from the air damping model show that the damping ratio increases from 0.0005 to 0.1, which improves the vibration resistance. We found that the system with air damping has the advantages of fast response and low scatter.

  15. Numerical simulation study of silica and calcite dissolution around a geothermal well by injecting high pH solutions with chelating agent.

    SciTech Connect

    Xu, Tianfu; Rose, Peter; Fayer, Scott; Pruess, Karsten

    2009-02-01

    Dissolution of silica, silicate, and calcite minerals in the presence of a chelating agent (NTA) at a high pH has been successfully performed in the laboratory using a high-temperature flow reactor. The mineral dissolution and porosity enhancement in the laboratory experiment has been reproduced by reactive transport simulation using TOUGHREACT. The chemical stimulation method has been applied by numerical modeling to a field geothermal injection well system, to investigate its effectiveness. Parameters from the quartz monzodiorite unit at the Enhanced Geothermal System (EGS) site at Desert Peak (Nevada) were used. Results indicate that the injection of a high pH chelating solution results in dissolution of both calcite and plagioclase minerals, and avoids precipitation of calcite at high temperature conditions. Consequently reservoir porosity and permeability can be enhanced especially near the injection well.

  16. Investigation of the mechanism in Rijke pulse combustors with tangential air and fuel injection. Final report

    SciTech Connect

    Zinn, B.T.; Jagoda, J.I.; Daniel, B.R.; Bai, T.

    1993-03-01

    To study the mechanisms that control the operation of this combustor, an experimental setup is developed with access for detailed optical measurements. Propane is employed as fuel because the absence of liquid drops and combustion generated particulates in the combustion region significantly simplifies the optical diagnostics. The experimental techniques utilized include acoustic pressure measurements, space and time resolved radiation measurements, steady temperature measurements, exhaust flow chemical analysis, high speed video and intensified images of the reacting flow field by a computer based CCD camera imaging system. Flow visualization by the imaging system and the results from radiation intensity distribution measurements suggest that the periodic combustion processes caused by periodic vortex shedding and impingement provide the energy required to sustain the pressure oscillations. High radiation intensity occurs during a relatively short period of time and is in phase with the pressure oscillations, indicating that Rayleigh`s criterion is satisfied. Periodic variations of the air and fuel flow rates and, consequently, the air/fuel ratio of the reacting mixture inside the combustor appear to be another mechanism that contributes to the occurrence of periodic combustion and heat release processes. The presence of this mechanism has been uncovered by acoustic pressure measurements that revealed the presence of traveling pressure waves inside the air and fuel feed lines. These traveling waves produce periodic fuel and air feed rates which, in turn, result in periodic combustion and heat release processes within the combustor.

  17. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olson

    2005-01-01

    The Bureau of Economic Geology (BEG) and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology (BEG) and the Department of Petroleum and Geosystems Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data were to be generated during the demonstration phase to improve the accuracy of the reservoir model. The demonstration phase has been delayed by Goldrus because of funding problems. Since the first of the year, Goldrus has been active in searching for partners to help finance the project. After financial support is obtained, the demonstration phase of the project will proceed. Since just after the beginning of the year, BEG has curtailed project activities and spending of DOE funds except for the continued support of one engineering student. This student has now completed his work and his thesis was reported on in the last semi-annual report. We plan to recommence our work on the project as soon as the operator obtains necessary funding to carry out the demonstration phase of the project. In order to complete all activities specified in the proposal, we requested and received an extension of the project to September 30, 2005. We are confident that Goldrus will obtain the necessary funding to continue and that we can complete the project by the end of the extension data. We strongly believe that the results of

  18. Revised Earthquake Catalog and Relocated Hypocenters Near Fluid Injection Wells and the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico

    NASA Astrophysics Data System (ADS)

    Edel, S.; Bilek, S. L.; Garcia, K.

    2014-12-01

    Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.

  19. Using Oil and Gas Well Log Records to Understand Possible Connections Between Wastewater Injection Zones and Usable Groundwater Aquifers in California

    NASA Astrophysics Data System (ADS)

    Shimabukuro, D.; Haugen, E. A.; Battistella, C.; Treguboff, E. W.; Kale, J. M.

    2015-12-01

    Although the disposal of produced water in wastewater injection wells has been occurring in California for decades, it is not clear whether injected fluids may be migrating into usable groundwater aquifers. One problem is the poor characterization of federally-protected (<10,000 ppm TDS) water in the state. Another is the lack of publically-accessible information about the hydrological properties of confining strata adjacent to injection zones. In effort to better understand these two problems, we have begun studying the archived oil and gas well records collected by the California Division of Oil, Gas, and Geothermal Resources (DOGGR). These scanned records contain two useful sources of information. First, geophysical well logs, such those measuring resistivity and porosity, can be used to determine aquifer salinity. This allows a three-dimensional understanding of the distribution of protected groundwater. Second, driller's logs contain lithological descriptions at depth. These lithologies can be used to construct a three-dimensional texture model, which can then be used in a groundwater flow model. A large number of undergraduate researchers at CSU Sacramento and CSU Long Beach have been collecting information on well records in the Ventura Basin and the Southern San Joaquin Valley. Each well record is examined with basic metadata entered into an online database in an effort to identify appropriate geophysical well logs and driller's logs. High-quality driller's logs are coded and used to create three-dimensional framework models for each well field. The geophysical logs are digitized and will be used to determine aquifer salinity. In addition, we are using information from the DOGGR well records to investigate wellbore integrity, waste disposal and waterflood injection volumes, and the possibility of induced seismicity. This project is part of the broader effort of the California State Water Resources Control Board to implement Senate Bill 4.

  20. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use

    PubMed Central

    Rostami, Ali A.; Pithawalla, Yezdi B.; Liu, Jianmin; Oldham, Michael J.; Wagner, Karl A.; Frost-Pineda, Kimberly; Sarkar, Mohamadi A.

    2016-01-01

    Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP) use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate), device specifications (aerosol mass delivery, e-liquid composition), and use behavior (number of users and usage frequency). Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time. PMID:27537903

  1. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    SciTech Connect

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern

  2. Equivalent ambipolar carrier injection of electrons and holes with Au electrodes in air-stable field effect transistors

    SciTech Connect

    Kanagasekaran, Thangavel E-mail: Shimotani@m.tohoku.ac.jp Ikeda, Susumu; Kumashiro, Ryotaro; Shimotani, Hidekazu E-mail: Shimotani@m.tohoku.ac.jp Shang, Hui; Tanigaki, Katsumi E-mail: Shimotani@m.tohoku.ac.jp

    2015-07-27

    Carrier injection from Au electrodes to organic thin-film active layers can be greatly improved for both electrons and holes by nano-structural surface control of organic semiconducting thin films using long-chain aliphatic molecules on a SiO{sub 2} gate insulator. In this paper, we demonstrate a stark contrast for a 2,5-bis(4-biphenylyl)bithiophene (BP2T) active semiconducting layer grown on a modified SiO{sub 2} dielectric gate insulator between two different modifications of tetratetracontane and poly(methyl methacrylate) thin films. Important evidence that the field effect transistor (FET) characteristics are independent of electrode metals with different work functions is given by the observation of a conversion of the metal-semiconductor contact from the Schottky limit to the Bardeen limit. An air-stable light emitting FET with an Au electrode is demonstrated.

  3. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  4. Children's well-being at schools: Impact of climatic conditions and air pollution.

    PubMed

    Salthammer, Tunga; Uhde, Erik; Schripp, Tobias; Schieweck, Alexandra; Morawska, Lidia; Mazaheri, Mandana; Clifford, Sam; He, Congrong; Buonanno, Giorgio; Querol, Xavier; Viana, Mar; Kumar, Prashant

    2016-09-01

    Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes

  5. Radon water to air transfer measured in a bathroom in an energy-efficient home with a private well.

    PubMed

    Harley, Naomi H; Chittaporn, Passaporn; Cook, Gordon B; Fisenne, Isabel M

    2014-07-01

    Monthly measurements of radon in kitchen and bath tap water along with indoor air concentrations were made from 1994 to 1996 in an energy-efficient home with a private well. The well supplies all water to the home. The radon in cold and hot kitchen water averaged 69±2 and 52±2 Bq l(-1), respectively. Radon in cold and hot water from the bath/shower room shower head averaged 60±1 and 38±2 Bq l(-1), respectively, whereas hot water collected in the shower at the tub base averaged 5±1 Bq l(-1) or a 92% radon loss to air. While the calculated transfer factor of 1/10,000, i.e. radon concentration in air to radon in water, conventionally applies to the whole house, measurements for the specific water release during showering in a bathroom exhibit a larger transfer factor of 1/2300, due to smaller room volume.

  6. Productivity and injectivity of horizontal wells. Annual report for the period, March 10, 1994--March 9, 1995

    SciTech Connect

    Fayers, F.J.

    1995-07-01

    Contents of this annual report include the following: (1) detailed well model for reservoir simulation--task 1; (2) comparative aspects of coning behavior in vertical and horizontal wells--task 1; (3) skin factor calculations for vertical, deviated, and horizontal wells--task 2; (4) a dissipation-based coarse grid system and its application to the scaleup of two phase problems--tasks 2 and 4; (5) analyses of experiments at Marathon Oil Company--task 3; (6) development of mechanistic model for multiphase flow in horizontal wells--task 3; and (7) sensitivity studies of wellbore friction and inflow for a horizontal well--task 8.

  7. Cartilage tissue engineering application of injectable gelatin hydrogel with in situ visible-light-activated gelation capability in both air and aqueous solution.

    PubMed

    Lin, Hang; Cheng, Anthony Wai-Ming; Alexander, Peter G; Beck, Angela M; Tuan, Rocky S

    2014-09-01

    Chondroprogenitor cells encapsulated in a chondrogenically supportive, three-dimensional hydrogel scaffold represents a promising, regenerative approach to articular cartilage repair. In this study, we have developed an injectable, biodegradable methacrylated gelatin (mGL)-based hydrogel capable of rapid gelation via visible light (VL)-activated crosslinking in air or aqueous solution. The mild photocrosslinking conditions permitted the incorporation of cells during the gelation process. Encapsulated human-bone-marrow-derived mesenchymal stem cells (hBMSCs) showed high, long-term viability (up to 90 days) throughout the scaffold. To assess the applicability of the mGL hydrogel for cartilage tissue engineering, we have evaluated the efficacy of chondrogenesis of the encapsulated hBMSCs, using hBMSCs seeded in agarose as control. The ability of hBMSC-laden mGL constructs to integrate with host tissues after implantation was further investigated utilizing an in vitro cartilage repair model. The results showed that the mGL hydrogel, which could be photopolymerized in air and aqueous solution, supports hBMSC growth and TGF-β3-induced chondrogenesis. Compared with agarose, mGL constructs laden with hBMSCs are mechanically stronger with time, and integrate well with native cartilage tissue upon implantation based on push-out mechanical testing. VL-photocrosslinked mGL scaffold thus represents a promising scaffold for cell-based repair and resurfacing of articular cartilage defects.

  8. Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap Research Site: Results of steady-state test interpretation

    SciTech Connect

    Guzman, A.G.; Geddis, A.M.; Henrich, M.J.; Lohrstorfer, C.F.; Neuman, S.P.

    1996-03-01

    This document summarizes air permeability estimates obtained from single hole pneumatic injection tests in unsaturated fractured tuffs at the Covered Borehole Site (CBS) within the larger apache Leap Research Site (ALRS). Only permeability estimates obtained from a steady state interpretation of relatively stable pressure and flow rate data are included. Tests were conducted in five boreholes inclined at 45{degree} to the horizontal, and one vertical borehole. Over 180 borehole segments were tested by setting the packers 1 m apart. Additional tests were conducted in segments of lengths 0.5, 2.0, and 3.0 m in one borehole, and 2.0 m in another borehole, bringing the total number of tests to over 270. Tests were conducted by maintaining a constant injection rate until air pressure became relatively stable and remained so for some time. The injection rate was then incremented by a constant value and the procedure repeated. The air injection rate, pressure, temperature, and relative humidity were recorded. For each relatively stable period of injection rate and pressure, air permeability was estimated by treating the rock around each test interval as a uniform, isotropic porous medium within which air flows as a single phase under steady state, in a pressure field exhibiting prolate spheroidal symmetry. For each permeability estimate the authors list the corresponding injection rate, pressure, temperature and relative humidity. They also present selected graphs which show how the latter quantities vary with time; logarithmic plots of pressure versus time which demonstrate the importance of borehole storage effects during the early transient portion of each incremental test period; and semilogarithmic plots of pressure versus recovery time at the end of each test sequence.

  9. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  10. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  11. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    SciTech Connect

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decrease of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.

  12. Numerical Analysis of Flow Evolution in a Helium Jet Injected into Ambient Air

    NASA Technical Reports Server (NTRS)

    Satti, Rajani P.; Agrawal, Ajay K.

    2005-01-01

    A computational model to study the stability characteristics of an evolving buoyant helium gas jet in ambient air environment is presented. Numerical formulation incorporates a segregated approach to solve for the transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum using a staggered grid method. The operating parameters correspond to the Reynolds number varying from 30 to 300 to demarcate the flow dynamics in oscillating and non-oscillating regimes. Computed velocity and concentration fields were used to analyze the flow structure in the evolving jet. For Re=300 case, results showed that an instability mode that sets in during the evolution process in Earth gravity is absent in zero gravity, signifying the importance of buoyancy. Though buoyancy initiates the instability, below a certain jet exit velocity, diffusion dominates the entrainment process to make the jet non-oscillatory as observed for the Re=30 case. Initiation of the instability was found to be dependent on the interaction of buoyancy and momentum forces along the jet shear layer.

  13. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    SciTech Connect

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  14. Injection, atomization, ignition and combustion of liquid fuels in high-speed air streams. Annual scientific report 1 December 81-31 December 82

    SciTech Connect

    Schetz, J.A.

    1983-01-01

    A simulation approach to studying hot flow subsonic cross-stream fuel injection problems in a less complex and costly cold flow facility was developed. A typical ramjet combustion chamber fuel injection problem was posed where ambient temperature fuel (Kerosene) is injected into a hot airstream. This case was transformed through two new similarity parameters involving injection and freestream properties to a simulated case where a chilled injectant is injected into an ambient temperature airstream. Experiments for the simulated case using chilled Freon-12 injected into the Va. Tech 23 x 23 cm. blow-down wind tunnel at a freestream Mach number of 0.44 were run. The freestream stagnation pressure and temperature were held at 2.5 atm. and 300 degrees K respectively. Results showed a clear picture of the mechanisms of jet decomposition in the presence of rapid vaporization. Immediately after injection a vapor cloud was formed in the jet plume, which dissipated downstream leaving droplets on the order of 8 to 10 microns in diameter for the conditions examined. This represents a substantial reduction compared to baseline tests run at the same conditions with water which had little vaporization. The desirability of using slurry fuels for aerospace application has long been recognized, but the problems of slurry combustion have delayed their use. The present work is an experimental and numerical investigation into the break-up and droplet formation of laminar slurry jets issuing into quiescent air.

  15. Semi-analytical models of CO2 Injection into Deep Saline Aquifers: evaluation of the area of review and leakage through abandoned wells

    NASA Astrophysics Data System (ADS)

    Kraemer, S.; Digiulio, D.; Levine, A.

    2008-12-01

    This presentation will provide a conceptual preview of an Area of Review (AoR) tool being developed by EPA's Office of Research and Development that applies analytic and semi-analytical mathematical solutions to elucidate potential risks associated with geologic sequestration of carbon dioxide into deep saline subsurface formations. These solutions can be applied to commercial scale injections of supercritical CO2 and enable the zone of influence and potential endangerment to be mapped, thereby helping to delineate the AoR. We anticipate implementing the semi-analytical solutions into an open source computer modeling framework. The major risks to be evaluated by the AoR tool include: induced subsurface pressures that may force native saline waters into an underground source of drinking water (USDW), and the potential transport of CO2 away from the injection center and out of the receiving zone. Both of these phenomena are influenced by leakage and compromises of the sealing layers, such as presented by abandoned wells or other subsurface penetrations. The semi-analytical solutions will be tested against numerical solutions (TOUGH2/ECO2N) and field data associated with the Kimberlina test injection site near Bakersfield, CA. The AoR tool will be used to simulate a hypothetical commercial scale injection and to evaluate if existing or potential USDW aquifers may be adversely impacted by short-term or long-term geologic sequestration activities. The AoR tool will be useful for permit applicants and regulators evaluating potential exposure and risks associated with geoequestration under the Underground Injection Control (UIC) program. This project will benefit from partnerships with Lawrence Berkeley National Laboratory and Princeton University.

  16. Measurement of {sup 222}Rn flux, {sup 222}Rn emanation and {sup 226}Ra concentration from injection well pipe scale

    SciTech Connect

    Rood, A.S.; Kendrick, D.T.

    1996-02-01

    The presence of Naturally Occurring Radioactive Material (NORM) has been recognized since the early 1930s in petroleum reservoirs and in oil and gas production and processing facilities. NORM was typically observed in barite scale that accumulated on the interior of oil production tubing and in storage tank and heater-treater separation sludge. Recent concern has been expressed over the health impacts from the uncontrolled release of NORM to the public. There are several potential exposure pathways to humans from oil-field NORM. Among these is inhalation of radon gas and its daughter products. For this exposure pathway to be of any significance, radon must first be released from the NORM matrix and diffuse in free air. The radon emanation fraction refers to the fraction of radon atoms produced by the decay of radium, that migrate from the bulk material as free gaseous atoms. The purpose of this investigation was to characterize the radon release rates from NORM-scale contaminated production tubing being stored above ground, characterize the radon emanation fraction of the bulk scale material when removed from the tubing, and characterize the radium concentrations of the scale. Accurate characterization of {sup 222}Rn emanation fractions from pipe scale may dictate the type of disposal options available for this waste. Characterization of radon release from stored pipes will assist in determining if controls are needed for workers or members of the public downwind from the source. Due to the sensitive nature of this data, the location of this facility is not disclosed.

  17. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Rev. No. 0

    SciTech Connect

    Robert Boehlecke

    2004-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various locations and

  18. Minesweeping for Pressure Actuated Mines by Air Injection into a Water Column

    DTIC Science & Technology

    2011-09-01

    at a separation height of 14 inches from the pressure sensor. However, The installed gantry crane system and yellow stanchion would not allow for data...wide (Y Direction) and 7 feet deep (Z direction). Along the top of this tank is a computer-operated gantry system operated by a simple computer system...incorporated to protect the entire system as well as any gear that may be attached to the gantry . Figure 9 provides a visual image of how the rail

  19. Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods

    SciTech Connect

    Barate, P.; Zhang, T. T.; Vidal, M.; Renucci, P.; Marie, X.; Amand, T.; Liang, S.; Devaux, X.; Hehn, M.; Mangin, S.; Lu, Y.; Frougier, J.; Jaffrès, H.; George, J. M.; Zheng, Y.; Tao, B.; Han, X. F.

    2014-07-07

    An efficient electrical spin injection into an InGaAs/GaAs quantum well light emitting diode is demonstrated thanks to a CoFeB/MgO spin injector. The textured MgO tunnel barrier is fabricated by two different techniques: sputtering and molecular beam epitaxy. The maximal spin injection efficiency is comparable for both methods. Additionally, the effect of annealing is also investigated for the two types of samples. Both samples show the same trend: an increase of the electroluminescence circular polarization (P{sub c}) with the increase of annealing temperature, followed by a saturation of P{sub c} beyond 350 °C annealing. Since the increase of P{sub c} starts well below the crystallization temperature of the full CoFeB bulk layer, this trend could be mainly due to an improvement of chemical structure at the top CoFeB/MgO interface. This study reveals that the control of CoFeB/MgO interface is essential for an optimal spin injection into semiconductor.

  20. Description of wells at Beale Air Force Base and vicinity, California

    USGS Publications Warehouse

    Rockwell, Gerald L.

    1978-01-01

    The study area occupies approximately 168 square miles of the Sacramento Valley. The study area boundary is the Yuba River in the north, the Feather River in the west, the Bear River in the south, and the Sierra Nevada foothills in the east. Between December 1976 and March 1977, 640 wells were selectively canvassed and 274 water levels were taken in the wells canvassed Thirty-six water levels measured in March and April 1976 are recorded in this report. Descriptive data for water wells and water levels are recorded in table 1, and location of wells is shown on maps 1-23.

  1. 40 CFR 144.83 - Do I need to notify anyone about my Class V injection well?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 144.26 that were in effect prior to the issuance of this Subpart G, you must give your UIC Program...) and 146.5(e)(8) of this chapter); (B) Geothermal energy recovery wells (40 CFR 144.81(11) and 146.5 (e... information believed necessary to protect underground sources of drinking water. (1) Such...

  2. Area 2 Bitcutter and Post-Shot Injection Wells Corrective Action Unit 90 Post-Closure Annual Report

    SciTech Connect

    Glen Richardson

    2002-09-01

    Area 2 Bitcutter and Post-Shot Containment Wells Corrective Action Unit (CAU) 90 Post-Closure Monitoring requirements are described in Section VII.B.8.b of the Nevada Test Site Resource Conservation and Recovery Act Permit for a Hazardous Waste Management Facility No. NEV HW009, Revision 4, reissued on November 20, 2000.

  3. A Study of Production/Injection Data from Slim Holes and Large-Diameter Wells at the Okuaizu Geothermal Field, Tohoku, Japan

    SciTech Connect

    Renner, Joel Lawrence; Garg, Sabodh K.; Combs, Jim

    2002-06-01

    Discharge from the Okuaizu boreholes is accompanied by in situ boiling. Analysis of cold-water injection and discharge data from the Okuaizu boreholes indicates that the two-phase productivity index is about an order of magnitude smaller than the injectivity index. The latter conclusion is in agreement with analyses of similar data from Oguni, Sumikawa, and Kirishima geothermal fields. A wellbore simulator was used to examine the effect of borehole diameter on the discharge capacity of geothermal boreholes with two-phase feedzones. Based on these analyses, it appears that it should be possible to deduce the discharge characteristics of largediameter wells using test data from slim holes with two-phase feeds.

  4. Sealing of Base Wells, McClellan Air Force Base, California

    DTIC Science & Technology

    1984-02-15

    Gravel envelope 104- Fine sand109-112- Cemented oandy clay ~VC~Cemented sandy silt 124- 128 *- Fine silty sand 137- g. Sift wl layers coarse sand... CHROMATOGRAPHY . *Pairs cannot be distinguished by the above technique. Monitoring Well 2 Priority Pollutants Found (ppb) Water Surface Contaminant/Depth...predominately fine -grained material." 11-2 Analysis of the monitoring well logs which are contained in the ES report does not support the broad

  5. Analysis of ground-water data for selected wells near Holloman Air Force Base, New Mexico, 1950-95

    USGS Publications Warehouse

    Huff, G.F.

    1996-01-01

    Ground-water-level, ground-water-withdrawal, and ground- water-quality data were evaluated for trends. Holloman Air Force Base is located in the west-central part of Otero County, New Mexico. Ground-water-data analyses include assembly and inspection of U.S. Geological Survey and Holloman Air Force Base data, including ground-water-level data for public-supply and observation wells and withdrawal and water-quality data for public-supply wells in the area. Well Douglas 4 shows a statistically significant decreasing trend in water levels for 1972-86 and a statistically significant increasing trend in water levels for 1986-90. Water levels in wells San Andres 5 and San Andres 6 show statistically significant decreasing trends for 1972-93 and 1981-89, respectively. A mixture of statistically significant increasing trends, statistically significant decreasing trends, and lack of statistically significant trends over periods ranging from the early 1970's to the early 1990's are indicated for the Boles wells and wells near the Boles wells. Well Boles 5 shows a statistically significant increasing trend in water levels for 1981-90. Well Boles 5 and well 17S.09E.25.343 show no statistically significant trends in water levels for 1990-93 and 1988-93, respectively. For 1986-93, well Frenchy 1 shows a statistically significant decreasing trend in water levels. Ground-water withdrawal from the San Andres and Douglas wells regularly exceeded estimated ground-water recharge from San Andres Canyon for 1963-87. For 1951-57 and 1960-86, ground-water withdrawal from the Boles wells regularly exceeded total estimated ground-water recharge from Mule, Arrow, and Lead Canyons. Ground-water withdrawal from the San Andres and Douglas wells and from the Boles wells nearly equaled estimated ground- water recharge for 1989-93 and 1986-93, respectively. For 1987- 93, ground-water withdrawal from the Escondido well regularly exceeded estimated ground-water recharge from Escondido Canyon, and

  6. Development and Calibration of a Variable-Density Numerical Model of a Deep-well Injection Site near the Southeastern Florida Coast

    NASA Astrophysics Data System (ADS)

    Dausman, A.; Langevin, C.; Sukop, M.; Walsh, V.

    2006-12-01

    The South District Wastewater Treatment Plant (SDWWTP), located in southeastern Miami-Dade County about 1 mi west of the Biscayne Bay coastline, is the largest capacity deep-well injection plant in the United States. Currently, about 100 Mgal/d of partially treated, essentially fresh (less than 1000 mg/L total dissolved solids) effluent is injected through 17 wells (each approximately 2500 ft below land surface) into the highly transmissive, lower-temperature, saline Boulder Zone composed of highly fractured dolomite. A thin confining unit called the Delray Dolomite, which is 8-16 ft thick, overlies the intended injection zone at the site. Although the Delray Dolomite has a vertical hydraulic conductivity estimated between 0.001 and 0.00001 ft/d, well casings for 10 of the 17 wells do not extend beneath the unit. A 700-ft-thick middle confining unit, with estimated vertical hydraulic conductivities between 0.1 and 28 ft/d, overlies the Delray Dolomite and separates it from the Upper Floridan aquifer. Protected by the Safe Drinking Water Act (SDWA), the Upper Floridan aquifer contains water that is less than 10,000 mg/L total dissolved solids. In southern Florida, this aquifer is used for reverse osmosis, blending with other waters, and as a reservoir for aquifer storage and recovery. At the SDWWTP, ammonia concentrations that exceed background conditions have been observed in monitoring wells open in and above the middle confining unit, indicating upward vertical migration of effluent, possibly toward the Upper Floridan aquifer. The U.S. Geological Survey currently is developing a variable-density groundwater flow and solute transport model for the Floridan aquifer system in Miami-Dade County. This model includes the injection of treated wastewater at the SDWWTP. The developed numerical model uses SEAWAT, a code that calculates variable- density flow as a function of salinity, to capture the buoyancy effects at the site and along the coast. Simulation efforts have

  7. Area 2 Bitcutter and Post-Shot Injection Wells Corrective Action Unit 90 Post-Closure Inspection Annual Report

    SciTech Connect

    D. S. Tobiason

    2001-09-01

    Area 2 Bitcutter and Post-Shot Containment Wells Corrective Action Unit (CAU) 90 Post-Closure Monitoring requirements are described in {section} VIIB.8.b of the Nevada Test Site Resource Conservation and Recovery Act Permit for a Hazardous Waste Management Facility No. NEV HW009, reissued November 20, 2000, Revision 4. Post-closure care consists of the following: Semiannual inspections of the unit using an inspection checklist; photographic documentation; field note documentation; and preparation and submittal of an annual report. The report includes copies of the inspection checklist, photographs, and recommendations and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachment C.

  8. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    USGS Publications Warehouse

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  9. Development of a data management system for assistance in conducting area of reviews (AORS) on Class II injection wells in Oilahoma. Quarterly report, October 1 - December 31, 1996

    SciTech Connect

    Battles, M.S.; Schmidt, M.W.

    1997-01-01

    The purpose of this project is to provide the resources and capabilities necessary to permit the State of Oklahoma to conduct Area of Review (AOR) variance analysis on a statewide level. The project allows for the analysis and identification of areas which may qualify for AOR variances, the correlation of information from various databases and automated systems to conduct AORs in area which do not qualify for variances, the evaluation of the risk of pollution, during permitting and monitoring, using risk based data analysis, and the ability to conduct spatial analysis of injection well data in conjunction with other geographically referenced information.

  10. Development of a Data Management System for Assistance in Conducting Area of Reviews (AORS) on Class II Injection Wells in Oklahoma

    SciTech Connect

    Battles, Michael S.

    2002-06-17

    The purpose of this project was to provide the resources and capabilities necessary to permit the State of Oklahoma to conduct Area of Review (AOR) variance analysis on a statewide level. The project allows for the analysis and identification of areas which may qualify for AOR variances, the correlation of information from various databases and automated systems to conduct AORs in area which do not qualify for variances, the evaluation of the risk of pollution, during permitting and monitoring, using risk-based data analysis, and the ability to conduct spatial analysis of injection well data in conjunction with other geographically referenced information.

  11. Environmental Assessment for Water Well Development at Buckley Air Force Base

    DTIC Science & Technology

    2010-06-01

    Renohill soils have moderate internal drainage , varying slopes (3 to 30 percent), moderately slow to slow permeability, and moderate available water ...location of an AST on land currently designated as Open Space for the purpose of storing irrigation water pumped from existing wells would occur under...a proposed water storage tank, and installation of delivery I irrigation pipeline. The EA was prepared in accordance with requirements of the

  12. Direct large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry determination of artificial sweeteners sucralose and acesulfame in well water.

    PubMed

    Wu, Minghuo; Qian, Yichao; Boyd, Jessica M; Hrudey, Steve E; Le, X Chris; Li, Xing-Fang

    2014-09-12

    Acesulfame (ACE) and sucralose (SUC) have become recognized as ideal domestic wastewater contamination indicators. Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis is commonly used; however, the sensitivity of SUC is more than two orders of magnitude lower than that of ACE, limiting the routine monitoring of SUC. To address this issue, we examined the ESI behavior of both ACE and SUC under various conditions. ACE is ionic in aqueous solution and efficiently produces simple [M-H](-) ions, but SUC produces multiple adduct ions, limiting its sensitivity. The formic acid (FA) adducts of SUC [M+HCOO](-) are sensitively and reproducibly generated under the LC-MS conditions. When [M+HCOO](-) is used as the precursor ion for SUC detection, the sensitivity increases approximately 20-fold compared to when [M-H](-) is the precursor ion. To further improve the limit of detection (LOD), we integrated the large volume injection approach (500μL injection) with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which reduced the method detection limit (MDL) to 0.2ng/L for ACE and 5ng/L for SUC. To demonstrate the applicability of this method, we analyzed 100 well water samples collected in Alberta. ACE was detected in 24 wells at concentrations of 1-1534ng/L and SUC in 8 wells at concentrations of 65-541ng/L. These results suggest that wastewater is the most likely source of ACE and SUC impacts in these wells, suggesting the need for monitoring the quality of domestic well water.

  13. Corrective Action Investigation Plan for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    David A. Strand

    2005-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 219, Septic Systems and Injection Wells, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 219 is located in Areas 3, 16, and 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 219 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  14. Can the Dupuit-Thiem equation accurately describe the flow pattern induced by injection in a laboratory scale aquifer-well system?

    NASA Astrophysics Data System (ADS)

    Bonilla, Jose; Kalwa, Fritz; Händel, Falk; Binder, Martin; Stefan, Catalin

    2016-04-01

    The Dupuit-Thiem equation is normally used to assess flow towards a pumping well in unconfined aquifers under steady-state conditions. For the formulation of the equation it is assumed that flow is laminar, radial and horizontal towards the well. It is well known that these assumptions are not met in the vicinity of the well; some authors restrict the application of the equation only to a radius larger than 1.5-fold the aquifer thickness. In this study, the equation accuracy to predict the pressure head is evaluated as a simple and quick analytical method to describe the flow pattern for different injection rates in the LSAW. A laboratory scale aquifer-well system (LSAW) was implemented to study the aquifer recharge through wells. The LSAW consists of a 1.0 m-diameter tank with a height of 1.1 meters, filled with sand and a screened well in the center with a diameter of 0.025 m. A regulated outflow system establishes a controlled water level at the tank wall to simulate various aquifer thicknesses. The pressure head at the bottom of the tank along one axis can be measured to assess the flow profile every 0.1 m between the well and the tank wall. In order to evaluate the accuracy of the Dupuit-Thiem equation, a combination of different injection rates and aquifer thicknesses were simulated in the LSAW. Contrary to what was expected (significant differences between the measured and calculated pressure heads in the well), the absolute difference between the calculated and measured pressure head is less than 10%. Beside this, the highest differences are not observed in the well itself, but in the near proximity of it, at a radius of 0.1 m. The results further show that the difference between the calculated and measured pressure heads tends to decrease with higher flow rates. Despite its limitations (assumption of laminar and horizontal flow throughout the whole aquifer), the Dupuit-Thiem equation is considered to accurately represent the flow system in the LSAW.

  15. Film effectiveness over a flat surface with air and CO{sub 2} injection through compound angle holes using a transient liquid crystal image method

    SciTech Connect

    Ekkad, S.V.; Zapata, D.; Han, J.C.

    1997-07-01

    This paper presents detailed film effectiveness distributions over a flat surface with one row of injection holes inclined streamwise at 35 deg for three blowing ratios (M = 0.5, 1.0, 2.0). Three compound angles of 0, 45, and 90 deg with air (D.R. = 0.98) and CO{sub 2} (D.R. = 1.46) as coolants are tested at an elevated free-stream turbulence condition (Tu {approx} 8.5%). A transient liquid crystal technique is used to measure local heat transfer coefficients and film effectiveness. Detailed film effectiveness results are presented near and around film injection holes. Compound angle injection provides higher film effectiveness than simple angle injection for both coolants. Higher density injectant produces higher effectiveness for simple injection. However, lower density coolant produces higher effectiveness obtained using the transient liquid crystal technique, particularly in the near-hole region, provided a better understanding of the film cooling process in gas turbine components.

  16. Single vessel air injection estimates of xylem resistance to cavitation are affected by vessel network characteristics and sample length.

    PubMed

    Venturas, Martin D; Rodriguez-Zaccaro, F Daniela; Percolla, Marta I; Crous, Casparus J; Jacobsen, Anna L; Pratt, R Brandon

    2016-10-01

    Xylem resistance to cavitation is an important trait that is related to the ecology and survival of plant species. Vessel network characteristics, such as vessel length and connectivity, could affect the spread of emboli from gas-filled vessels to functional ones, triggering their cavitation. We hypothesized that the cavitation resistance of xylem vessels is randomly distributed throughout the vessel network. We predicted that single vessel air injection (SVAI) vulnerability curves (VCs) would thus be affected by sample length. Longer stem samples were predicted to appear more resistant than shorter samples due to the sampled path including greater numbers of vessels. We evaluated the vessel network characteristics of grapevine (Vitis vinifera L.), English oak (Quercus robur L.) and black cottonwood (Populus trichocarpa Torr. & A. Gray), and constructed SVAI VCs for 5- and 20-cm-long segments. We also constructed VCs with a standard centrifuge method and used computer modelling to estimate the curve shift expected for pathways composed of different numbers of vessels. For all three species, the SVAI VCs for 5 cm segments rose exponentially and were more vulnerable than the 20 cm segments. The 5 cm curve shapes were exponential and were consistent with centrifuge VCs. Modelling data supported the observed SVAI VC shifts, which were related to path length and vessel network characteristics. These results suggest that exponential VCs represent the most realistic curve shape for individual vessel resistance distributions for these species. At the network level, the presence of some vessels with a higher resistance to cavitation may help avoid emboli spread during tissue dehydration.

  17. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  18. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0 with ROTC 1

    SciTech Connect

    Boehlecke, Robert

    2004-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various locations and

  19. Corrective Action Decision Document/Closure Report for Corrective Action Unit 546: Injection Well and Surface Releases Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Alfred Wickline

    2008-12-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 546, Injection Well and Surface Releases, at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended February 2008). Corrective Action Unit (CAU) 546 is comprised of two corrective action sites (CASs): • 06-23-02, U-6a/Russet Testing Area • 09-20-01, Injection Well The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 546. To achieve this, corrective action investigation (CAI) activities were performed from May 5 through May 28, 2008, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada (NNSA/NSO, 2008). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: • Determine whether a contaminant of concern is present at a given CAS. • Determine whether sufficient information is available to evaluate potential corrective action alternatives at each CAS. The CAU 546 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Because DQO data needs were met, and corrective actions have been implemented, it has been determined that no further corrective action (based on risk to human receptors) is necessary for the CAU 546 CASs. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • No further corrective actions are needed for CAU 546 CASs. • No Corrective Action Plan is required. • A Notice of Completion to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site

  20. The effects of air temperature on office workers' well-being, workload and productivity-evaluated with subjective ratings.

    PubMed

    Lan, Li; Lian, Zhiwei; Pan, Li

    2010-12-01

    Productivity bears a close relationship to the indoor environmental quality (IEQ), but how to evaluate office worker's productivity remains to be a challenge for ergonomists. In this study, the effect of indoor air temperature (17 °C, 21 °C, and 28 °C) on productivity was investigated with 21 volunteered participants in the laboratory experiment. Participants performed computerized neurobehavioral tests during exposure in the lab; their physiological parameters including heart rate variation (HRV) and electroencephalograph (EEG) were also measured. Several subjective rating scales were used to tap participant's emotion, well-being, motivation and the workload imposed by tasks. It was found that the warm discomfort negatively affected participants' well-being and increased the ratio of low frequency (LF) to high frequency (HF) of HRV. In the moderately uncomfortable environment, the workload imposed by tasks increased and participants had to exert more effort to maintain their performance and they also had lower motivation to do work. The results indicate that thermal discomfort caused by high or low air temperature had negative influence on office workers' productivity and the subjective rating scales were useful supplements of neurobehavioral performance measures when evaluating the effects of IEQ on productivity.

  1. Evaluation of passive diffusion bag and dialysis samplers in selected wells at Hickam Air Force Base, Hawaii, July 2001

    USGS Publications Warehouse

    Vroblesky, Don A.; Pravecek, Tasha

    2002-01-01

    Field comparisons of chemical concentrations obtained from dialysis samplers, passive diffusion bag samplers, and low-flow samplers showed generally close agreement in most of the 13 wells tested during July 2001 at Hickam Air Force Base, Hawaii. The data for chloride, sulfate, iron, alkalinity, arsenic, and methane appear to show that the dialysis samplers are capable of accurately collecting a passive sample for these constituents. In general, the comparisons of volatile organic compound concentrations showed a relatively close correspondence between the two different types of diffusion samples and between the diffusion samples and the low-flow samples collected in most wells. Divergence appears to have resulted primarily from the pumping method, either producing a mixed sample or water not characteristic of aquifer water moving through the borehole under ambient conditions. The fact that alkalinity was not detected in the passive diffusion bag samplers, highly alkaline waters without volatilization loss from effervescence, which can occur when a sample is acidified for preservation. Both dialysis and passive diffusion bag samplers are relatively inexpensive and can be deployed rapidly and easily. Passive diffusion bag samplers are intended for sampling volatile organic compounds only, but dialysis samplers can be used to sample both volatile organic compounds and inorganic solutes. Regenerated cellulose dialysis samplers, however, are subject to biodegradation and probably should be deployed no sooner than 2 weeks prior to recovery. 1 U.S. Geological Survey, Columbia, South Carolina. 2 Air Florce Center for Environmental Excellence, San Antionio, Texas.

  2. Development of a real-time chemical injection system for air-assisted variable-rate sprayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A chemical injection system is an effective method to minimize chemical waste and reduce the environmental pollution in pesticide spray applications. A microprocessor controlled injection system implementing a ceramic piston metering pump was developed to accurately dispense chemicals to be mixed wi...

  3. Enhanced carrier injection in InGaN/GaN multiple quantum wells LED with polarization-induced electron blocking barrier

    NASA Astrophysics Data System (ADS)

    Li, Chengguo; Liu, Hongfei; Chua, Soo Jin

    2016-03-01

    In this report, we designed a light emitting diode (LED) structure in which an N-polar p-GaN layer is grown on top of Ga-polar In0.1Ga0.9N/GaN quantum wells (QWs) on an n-GaN layer. Numerical simulation reveals that the large polarization field at the polarity inversion interface induces a potential barrier in the conduction band, which can block electron overflow out of the QWs. Compared with a conventional LED structure with an Al0.2Ga0.8N electron blocking layer (EBL), the proposed LED structure shows much lower electron current leakage, higher hole injection, and a significant improvement in the internal quantum efficiency (IQE). These results suggest that the polarization induced barrier (PIB) is more effective than the AlGaN EBL in suppressing electron overflow and improving hole transport in GaN-based LEDs.

  4. Current-injection two-color lasing in a wafer-bonded coupled multilayer cavity with InGaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Minami, Yasuo; Ota, Hiroto; Lu, Xiangmeng; Kumagai, Naoto; Kitada, Takahiro; Isu, Toshiro

    2017-04-01

    Current-injection two-color lasing has been demonstrated using a GaAs/AlGaAs coupled multilayer cavity that is a good candidate for novel terahertz-emitting devices based on difference-frequency generation (DFG) inside the structure. The coupled cavity structure was fabricated by the direct wafer bonding of (001)- and (113)B-oriented epitaxial wafers for the efficient DFG of two modes in the (113)B side cavity, and two types of InGaAs multiple quantum wells (MQWs) were introduced only in the (001) side cavity as optical gain materials. The threshold behavior was clearly observed in the current–light output curve even at room temperature. Two-color lasing was successfully observed when the gain peaks of MQWs were considerably tuned to the cavity modes by the operating temperature.

  5. Geochemical effects of deep-well injection of the Paradox Valley brine into Paleozoic carbonate rocks, Colorado, U.S.A.

    USGS Publications Warehouse

    Rosenbauer, R.J.; Bischoff, J.L.; Kharaka, Y.K.

    1992-01-01

    Brine seepage into the Dolores River from ground water in Paradox Valley, Colorado constitutes a major source of salt to the Colorado River. Plants are enderway to remove this source of salt by drawing down the Paradox Valley brine (PVB) and forcibly injecting it into a deep disposal well (4.8 km). Experiments were conducted to determine the effects of deep-well injection of PVB. The results show that PVB is near saturation with anhydrite at 25??C, and that heating results in anhydrite precipitation. The amount and the rate at which anhydrite forms is temperature, pressure, and substrate dependent. Paradox Valley brine heated in the presence of Precambrian rocks from the drill core produces the same amount of anhydrite as PVB heated alone, but at a greatly accelerated rate. A 30% dilution of PVB with Dolores River water completely eliminates anhydrite precipitation when the fluid is heated with the Precambrian rocks. Interaction of PVB and Leadville Limestone is characterized by dolomitization of calcite by brine Mg which releases Ca to solution. This added Ca reacts with SO4 to form increased amounts of anhydrite. A 20% dilution of PVB by Dolores River water has no effect on dolomitization and reduces the amount of anhydrite only slightly. A 65% dilution of PVB by Dolores River water still does not prevent dolomitization but does suppress anhydrite formation. Computer modeling of PVB by programs utilizing the Pitzer ion-interaction parameters is in general agreement with the experimental results. Ion-activity products calculated by both SOLMINEQ and PHRQPITZ are close to equilibrium with both anhydrite and dolomite whenever these phases are present experimentally, although the calculations over-estimate by a factor of 2 the degree of saturation. Some discrepancies in the calculated results between the two programs are due largely to differences in mineral solubility data. ?? 1992.

  6. A Multitracer Approach to Detecting Wastewater Plumes from Municipal Injection Wells in Nearshore Marine Waters at Kihei and Lahaina, Maui, Hawaii

    USGS Publications Warehouse

    Hunt, Charles D.; Rosa, Sarah N.

    2009-01-01

    Municipal wastewater plumes discharging from aquifer to ocean were detected by nearshore wading surveys at Kihei and Lahaina, on the island of Maui in Hawaii. Developed in cooperation with the Hawaii State Department of Health, the survey methodology included instrument trolling to detect submarine groundwater discharge, followed by analysis of water and macroalgae for a suite of chemical and isotopic constituents that constitute a 'multitracer' approach. Surveys were conducted May 6-28, 2008, during fair-weather conditions and included: (1) wading and kayak trolling with a multiparameter water-quality sonde, (2) marine water-column sampling, and (3) collection of benthic algae samples. Instrument trolling helped guide the water sampling strategy by providing dense, continuous transects of water properties on which groundwater discharge zones could be identified. Water and algae samples for costly chemical and isotopic laboratory analyses were last to be collected but were highly diagnostic of wastewater presence and nutrient origin because of low detection levels and confirmation across multiple tracers. Laboratory results confirmed the presence of wastewater constituents in marine water-column samples at both locales and showed evidence of modifying processes such as denitrification and mixing of effluent with surrounding groundwater and seawater. Carbamazepine was the most diagnostic pharmaceutical, detected in several marine water-column samples and effluent at both Kihei and Lahaina. Heavy nitrogen-isotope compositions in water and algae were highly diagnostic of effluent, particularly where enriched to even heavier values than effluent source compositions by denitrification. Algae provided an added advantage of time-integrating their nitrogen source during growth. The measured Kihei plume coincided almost exactly with prior model predictions, but the Lahaina plume was detected well south of the expected direct path from injection wells to shore and may be

  7. How well have China's recent five-year plans been implemented for energy conservation and air pollution control?

    PubMed

    Mao, XianQiang; Zhou, Ji; Corsetti, Gabriel

    2014-09-02

    This study evaluates how well China's 11th and 12th Five-Year Plans have been implemented in terms of energy conservation and air pollution control and deconstructs the effects of the economic, energy, and environmental policies included in the Plans. A "counterfactual" comparative-scenario method is deployed, which assumes a business as usual scenario in which the changes in economic, energy, and environmental parameters are "frozen", and then reactivates them one by one, with the help of LEAP modeling. It is found that during the 11th Five-Year Plan period, the binding targets were basically achieved. Economic growth put a great strain upon the energy demand and the environment, but energy policy made a decisive contribution by promoting energy efficiency and structure. Environmental policy promoted the deployment of end-of-pipe treatment which led to the control of certain air pollutants but at the expense of an increase in energy use and in the emission of other pollutants. During the ongoing 12th Five-Year Plan period, energy policy's potential for efficiency improvement is shrinking, but economic policy is restraining economic growth thus making a positive contribution. Environmental policy attempts to enforce multipollutant reduction, but there is still insufficient focus on the cocontrol of different pollutants and CO2.

  8. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions

    SciTech Connect

    Zhang, Feng; Ikeda, Masao Liu, Jianping; Zhang, Shuming; Zhou, Kun; Yang, Hui; Liu, Zongshun

    2015-07-21

    Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.

  9. Injection overview

    SciTech Connect

    Prestwich, S.

    1983-12-01

    The test program was initiated at the Raft River Geothermal Field in southern Idaho in September 1982. A series of eight short-term injection and backflow tests, followed by a long-term injection test, were conducted on one well in the field. Tracers were added during injection and monitored during backflow as well. The principal objective was to determine if tracers could be effectively used as a means to assess reservoir characteristics in a one-well test. The test program resulted in a unique data set which shows promise as a means to improve understanding of the reservoir characteristics. In December 1982, an RFP was issued to obtain an industrial partner to obtain follow-on data on the injection/backflow technique in a second field, and to study any alternate advanced concepts for injection testing which the industrial community might recommend. The East Mesa Geothermal Field was selected for the second test series. Two wells were utilized for testing, and a series of ten tests were conducted in July and August 1983, aimed principally at further evaluation of the injection/backflow technique.

  10. Design and Implementation of a CO(2) Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in Shallow Shelf Carbonate Approaching Waterflood Depletion

    SciTech Connect

    1997-12-31

    The work reported herein covers select tasks in Budget Phase 11. The principle Task in Budget Phase 11 included in this report is Field Demonstration. Completion of many of the Field Demonstration tasks during the last report period enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual C0{sub 2} injection commencing in mid-July, 1996. This report summarizes activities incurred following initial project start-up, towards the goal of optimizing project performance. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative C0{sub 2} purchase agreement (no take-or-pay provisions, C0{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreement (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics. The Grayburg-San Andres section had previously been divided into multiple zones based on the core study and gamma ray markers that correlate wells within the Unit. Each zone was mapped as continuous across the field. Previous core studies concluded that the reservoir quality in the South Cowden Unit (SCU) is controlled primarily by the distribution of a bioturbated and diagenetically-altered rock type with a distinctive chaotic texture. The chaotic modifier is derived from the visual effect of pervasive, small-scale intermixing of tan oil-stained reservoir rock with tight gray non- reservoir rock. The chaotic reservoir rock extends from Zone C (4780`-4800`) to the lower part of Zone F (4640`-4680`). Zones D (4755`-4780`) and E (4680`-4755`) are considered the main floodable zones, though Zone F is also productive and Zone C is productive above the oil- water contact

  11. Design and preliminary tests of a blade tip air mass injection system for vortex modification and possible noise reduction on a full-scale helicopter rotor

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Hosier, R. N.; Balcerak, J. C.; Johnson, H. K.

    1975-01-01

    Full-scale tests were conducted on the Langley helicopter rotor test facility as part of a study to evaluate the effectiveness of a turbulent blade tip air mass injection system in alleviating the impulsive noise (blade slap) caused by blade-vortex interaction. Although blade-slap conditions could not be induced during these tests, qualitative results from flow visualization studies using smoke showed that the differential velocity between the jet velocity and the rotor tip speed was a primary parameter controlling the vortex modification.

  12. Development of a data management system for assistance in conducting Area of Reviews (AORs) on Class II injection wells in Oklahoma. Quarterly report, July--September, 1995

    SciTech Connect

    Schmidt, M.W.

    1995-10-25

    Project objectives are to provide the resources and capabilities to permit the State of Oklahoma to conduct Area of Review (AOR) variance analysis on a statewide level including: (1) the analysis and identification of areas which may qualify for AOR variances; (2) the correlation of information from various databases and automation systems to conduct AORs in areas that do not qualify for variances; (3) the evaluation of the risk of pollution, during permitting and monitoring, using risk based data analysis; and (4) the ability to conduct spatial analysis of injection well data in conjunction with other geographically referenced information. The division successfully converted its mainframe computer surety system to the new client server network and implemented it on September 29, 1995. The division currently lacks sufficient storage space to bring the existing oil and gas spatially referenced data systems in-house and fully integrate the systems for use in the determination of AORs or AOR variances. The second installment of the awarded grant allows for the purchase of the developmental server that will provide the minimum computer storage space to convert the remainder of the mainframe computer systems.

  13. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  14. Appraisal of potential for injection-well recharge of the Hueco bolson with treated sewage effluent : preliminary study at the northeast El Paso area, Texas

    USGS Publications Warehouse

    Garza, Sergio; Weeks, Edwin P.; White, Donald E.

    1980-01-01

    The proposed injection water will require strict water-quality controls, which may involve chlorination and the removal of suspended solids. Mixing of the proposed injection water with the native ground water probably will not clog the aquifer by mineral precipitation. The relatively large concentrations of sodium in the injection water may reduce the hydraulic conductivity of the clay layers in the aquifer, but the permeable sands should not be seriously affected. Plans for an artificial-recharge program need to include an experimental installation to evaluate the system under field conditions.

  15. A well-developed cleanup technology

    SciTech Connect

    Schrauf, T.W.

    1996-05-01

    This article describes a new in-well aeration systems (density-driven convection-DDC) which remediates hydrocarbons in ground water and soil by injecting oxygen into well to promote natural aerobic activity. Topics include biodegradation process; in situ pump and treat method; advantages over conventional air sparging; how the DDC works.

  16. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding.

    PubMed

    Wang, Sihong; Xie, Yannan; Niu, Simiao; Lin, Long; Liu, Chang; Zhou, Yu Sheng; Wang, Zhong Lin

    2014-10-22

    For the maximization of the surface charge density in triboelectric nanogenerators, a new method of injecting single-polarity ions onto surfaces is introduced for the generation of surface charges. The triboelectric nanogenerator's output power gets greatly enhanced and its maximum surface charge density is systematically studied, which shows a huge room for the improvement of the output of triboelectric nanogenerators by surface modification.

  17. Annual Report RCRA Post-Closure Monitoring and Inspections for Corrective Action Unit 91: Area 3 U-3fi Injection Well, Nevada Test Site, Nevada, for the Period October 2001 - October 2002

    SciTech Connect

    G. Richardson

    2003-02-01

    This annual monitoring and inspection report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Injection Well during the October 2001 to October 2002 period. The U-3fi Injection Well is located in Area 3 of the Nevada Test Site (NTS), Nye County, Nevada. Inspections of the Area 3 U-3fi Injection Well are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste disposal unit closure. The objective of the neutron logging is to monitor the soil moisture conditions along the 128-meter (m) (420-feet [ft]) ER3-3 monitoring well and detect changes that may be indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft).

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    David Strand

    2006-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 219, Septic Systems and Injection Wells, in Areas 3, 16, and 23 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 219 is comprised of the following corrective action sites (CASs): (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 219 with no further corrective action beyond the application of a use restriction at CASs 16-04-01, 16-04-02, and 16-04-03. To achieve this, corrective action investigation (CAI) activities were performed from June 20 through October 12, 2005, as set forth in the CAU 219 Corrective Action Investigation Plan and Record of Technical Change No. 1. A best management practice was implemented at CASs 16-04-01, 16-04-02, and 16-04-03, and corrective action was performed at CAS 23-20-01 between January and April 2006. In addition, a use restriction will be applied to CASs 16-04-01, 16-04-02, and 16-04-03 to provide additional protection to Nevada Test Site personnel. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 219 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs

  19. Premixed direct injection disk

    SciTech Connect

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  20. Well-construction, water-level, and water-quality data for ground-water monitoring wells for the J4 hydrogeologic study, Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Haugh, C.J.

    1996-01-01

    Between December 1993 and March 1994, 27 wells were installed at 12 sites near the J4 test cell at Arnold Engineering Development Center in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. This information will be used to help understand the effects of dewatering operations at the J4 test cell on the local ground-water-flow system. The J4 test cell, extending approximately 250 feet below land surface, is used in the testing of rocket motors. Ground water must be pumped continuously from around the test cell to keep it structurally intact. The amount of water discharged from the J4 test cell was monitored to estimate the average rate of ground-water withdrawal at the J4 test cell. Ground- water levels were monitored continuously at 14 wells for 12 months. Water-quality samples were collected from 26 of the new wells, 9 existing wells, and the ground-water discharge from the J4 test cell. All samples were analyzed for common inorganic ions, trace metals, and volatile organic compounds.

  1. Injection of lightning-produced NOx, water vapor, wildfire emissions, and stratospheric air to the UT/LS as observed from DC3 measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Biggerstaff, M. I.; Betten, D. P.; Hair, J. W.; Butler, C. F.; Schwartz, M. J.; Barth, M. C.

    2016-06-01

    During the Deep Convective Clouds and Chemistry (DC3) experiment in summer 2012, airborne measurements were performed in the anvil inflow/outflow of thunderstorms over the Central U.S. by three research aircraft. A general overview of Deutsches Zentrum für Luft- und Raumfahrt (DLR)-Falcon in situ measurements (CO, O3, SO2, CH4, NO, NOx, and black carbon) is presented. In addition, a joint flight on 29 May 2012 in a convective line of isolated supercell storms over Oklahoma is described based on Falcon, National Science Foundation/National Center for Atmospheric Research Gulfstream-V (NSF/NCAR-GV), and NASA-DC8 trace species in situ and lidar measurements. During DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state's history were burning, which strongly influenced air quality in the DC3 thunderstorm inflow and outflow region. Lofted biomass burning (BB) plumes were frequently observed in the mid- and upper troposphere (UT) in the vicinity of deep convection. The impact of lightning-produced NOx (LNOx) and BB emissions was analyzed on the basis of mean vertical profiles and tracer-tracer correlations (CO-NOx and O3-NO). On a regular basis DC3 thunderstorms penetrated the tropopause and injected large amounts of LNOx into the lower stratosphere (LS). Inside convection, low O3 air (~80 nmol mol-1) from the lower troposphere was rapidly transported to the UT/LS region. Simultaneously, O3-rich stratospheric air masses (~100-200 nmol mol-1) were present around and below the thunderstorm outflow and enhanced UT-O3 mixing ratios significantly. A 10 year global climatology of H2O data from the Aura Microwave Limb Sounder confirmed that the Central U.S. is a preferred region for convective injection into the LS.

  2. Addendum to the Closure Report for Corrective Action Unit 322: Areas 1 & 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the June 2006, Closure Report for Corrective Action Unit 322: Areas 1 & 3 Release Sites and Injection Wells as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 01-25-01, AST Release • CAS 03-25-03, Mud Plant AST Diesel Release These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to

  3. Addendum to the Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit Nevada Test Site, Nevada, Revison 0

    SciTech Connect

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the June 2003, Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 06-20-02, 20-inch Cased Hole • CAS 06-23-03, Drain Pit These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because

  4. Underground Injection Control (UIC)

    EPA Pesticide Factsheets

    Provide information on: individual injection well classes; regulations specific to each well class; technical guidance; compliance assistance; federal, state, and tribal/territory roles and responsibilities.

  5. Minimization of sample volume with air-segmented sample injection and the simultaneous determination of trace elements by ICP-MS.

    PubMed

    Noguchi, Osamu; Oshima, Mitsuko; Motomizu, Shoji

    2008-05-01

    The application of inductively coupled plasma mass spectrometry (ICP-MS) to forensic chemistry was studied. The developed method, air-segmented sample injection (ASSI) coupled with ICP-MS, allowed the determination of about 25 elements at the sub-ppb level with only 0.2 ml of a sample solution. The optimum sample flow rate was found to be 0.4 ml min(-1), along with a sample suction time of 30 s. The proposed method was validated by determining trace elements in river-water certified reference material (SLRS-4) issued by National Research Council Canada. The analytical results of the proposed method were in good agreement with the certified values. This method was successfully applied to a human hair sample, the volume of which was 3 ml.

  6. Fluidic Injection for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2010-01-01

    Investigations into fluidic injection for jet noise reduction began over 50 years ago. Studies have included water and air injection for the reduction of noise in scale model jets and jet engines and water injection for the reduction of excess overpressures on the Space Shuttle at lift-off. Injection systems have included high pressure microjets as well as larger scale injectors operating at pressures that can be achieved in real jet engines. An historical perspective highlighting noise reduction potential is presented for injection concepts investigated over the last 50 years. Results from recent investigations conducted at NASA are presented for supersonic and subsonic dual-stream jets. The noise reduction benefits achieved through fluidic contouring using an azimuthally controlled nozzle will be discussed.

  7. Enhanced detection of nitroaromatic explosive vapors combining solid-phase extraction-air sampling, supercritical fluid extraction, and large-volume injection-GC.

    PubMed

    Batlle, Ramón; Carlsson, Håkan; Tollbäck, Petter; Colmsjö, Anders; Crescenzi, Carlo

    2003-07-01

    A complete method for sampling and analyzing of energetic compounds in the atmosphere is described. The method consists of the hyphenation of several techniques: active air sampling using a solid-phase extraction cartridge to collect the analytes, extraction of the sorbed analytes by toluene/methyl tert-butyl ether modified supercritical fluid extraction (SFE), and analysis of the extract by large-volume injection GC-nitrogen/phosphorus detection. The GC system is equipped with a loop-type injection interface with an early solvent vapor exit, a utilizing concurrent solvent evaporation technique. Chemometric approaches, based on a Plackett-Burman screening design and a central composite design for response surface modeling, were used to determine the optimum SFE conditions. The relative standard deviations of the optimized method were determined to be 4.3 to 7.7%, giving raise to method detection limits ranging from 0.06 to 0.36 ng in the sampling cartridge, equivalent to 6.2-36.4 pg/L in the atmosphere, standard sampling volume 10 L. The analytical method was applied to characterize headspace composition above military grade trinitrotoluene (TNT). Results confirm that 2,4-dinitrotoluene (DNT) and 1,3-dinitrobenzene (DNB) constitute the largest vapor flux, but TNT, 2,6-DNT, and trinitrobenzene TNB were also consistently detected in all the samples.

  8. Reprint of: Two-year survey of earthquakes and injection/production wells in the Eagle Ford Shale, Texas, prior to the MW4.8 20 October 2011 earthquake

    NASA Astrophysics Data System (ADS)

    Frohlich, Cliff; Brunt, Michael

    2014-09-01

    Between November 2009 and September 2011 the EarthScope USArray program deployed ∼25 temporary seismograph stations on a 70-km grid in south-central Texas between 27°N-31°N and 96°W-101°W. This area includes the Eagle Ford Shale. For decades this geographic region has produced gas and oil from other strata using conventional methods, but recent developments in hydrofracturing technology has allowed extensive development of natural gas resources from within the Eagle Ford. Our study surveys small-magnitude seismic events and evaluates their correlation with fluid extraction and injection in the Eagle Ford, identifying and locating 62 probable earthquakes, including 58 not reported by the U.S. Geological Survey. The 62 probable earthquakes occur singly or in clusters at 14 foci; of these foci, two were situated near wells injecting recently increased volumes of water; eight were situated near wells extracting recently increased volumes of oil and/or water; and four were not situated near wells reporting significant injection/extraction increases. Thus in this region, while the majority of small earthquakes may be triggered/induced by human activity, they are more often associated with fluid extraction than with injection. We also investigated the MW4.8 20 October 2011 Fashing earthquake-the largest historically reported earthquake in south-central Texas-that occurred two weeks after the removal of the temporary USArray stations. A field study indicated that the highest-intensity (MMI VI) region was about 10 km south of 2010-2011 foreshock activity, and that there were no high-volume injection wells within 20 km of the MMI V-VI region or the foreshocks. However, the 20 October 2011 earthquake did coincide with a significant increase in oil/water extraction volumes at wells within the MMI V-VI region, and this was also true for previous earthquakes felt at Fashing in 1973 and 1983. In contrast, our study found significant increases in injection prior to an mbLG3

  9. Assessment of Volatile Organic Compound and Hazardous Air Pollutant Emissions from Oil and Natural Gas Well Pads using Mobile Remote and On-site Direct Measurements

    EPA Science Inventory

    Emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from oil and natural gas production were investigated using direct measurements of component-level emissions on well pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-...

  10. Injection of Lightning-Produced NOx, Water Vapor, Wildfire Emissions, and Stratospheric Air to the UT/LS as Observed from DC3 Measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Minikin, A.; Weinzierl, B.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Hair, J. W.; Schwartz, M. J.; Rappenglück, B.; Pickering, K. E.; Cummings, K.; Biggerstaff, M. I.; Heimerl, K.; Pucik, T.; Fütterer, D.; Ackermann, L.; Betten, D.; Butler, C. F.; Barth, M. C.

    2014-12-01

    In summer 2012 the Deep Convective Clouds and Chemistry Project (DC3) field campaign investigated a number of severe thunderstorms over the Central U.S. and their impact on the upper tropospheric (UT) - lower stratospheric (LS) composition and chemistry. In addition, during DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state history were burning, influencing the air quality in the DC3 thunderstorm inflow and outflow region. Besides three instrumented aircraft platforms measuring a variety of trace species in-situ and remotely (e.g. CO, O3, SO2, NOx, VOC, CN, and black carbon), dense networks of ground-based instruments (e.g. radar and lightning) complemented the airborne measurements. Satellite measurements (e.g. GOES, MODIS, and GOME-2) and model forecasts (e.g. WRF-Chem and FLEXPART) were used to monitor the rapid development of the thunderstorms (which frequently developed huge anvils with overshooting tops) and the spread of smoke plumes in the vicinity of the storms. In-situ probing of fresh and aged (12-24 h) anvil outflows showed injection of lightning-produced NOx and wildfire emissions into the UTLS. Vertical cross sections of lidar and Doppler radar measurements supported these observations and gave detailed information on dynamical processes within and in the vicinity of the storms. Besides very strong updrafts in the storm core, surrounding downdrafts caused a direct in-mixing of O3-rich LS air masses into the boundaries of the anvil outflow. The wrapping of O3-rich LS air masses around and below the anvil outflow was also a prominent feature in several storms. The in-situ probing of the aged anvil outflow showed a pronounced influence on the UT composition and chemistry with average O3 enhancements in the range of 20-50 nmol mol-1 and evidence of new particle formation. A 10-year global climatology of H2O data from Aura-MLS confirms that the Central U.S. is a preferred region for convective injection into the LS.

  11. Injection of Lightning-Produced NOx, Water Vapor, Wildfire Emissions, and Stratospheric Air to the UT/LS as Observed from DC3 Measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Minikin, A.; Weinzierl, B.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Hair, J. W.; Schwartz, M. J.; Rappenglück, B.; Pickering, K. E.; Cummings, K.; Biggerstaff, M. I.; Heimerl, K.; Pucik, T.; Fütterer, D.; Ackermann, L.; Betten, D.; Butler, C. F.; Barth, M. C.

    2015-12-01

    In summer 2012 the Deep Convective Clouds and Chemistry Project (DC3) field campaign investigated a number of severe thunderstorms over the Central U.S. and their impact on the upper tropospheric (UT) - lower stratospheric (LS) composition and chemistry. In addition, during DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state history were burning, influencing the air quality in the DC3 thunderstorm inflow and outflow region. Besides three instrumented aircraft platforms measuring a variety of trace species in-situ and remotely (e.g. CO, O3, SO2, NOx, VOC, CN, and black carbon), dense networks of ground-based instruments (e.g. radar and lightning) complemented the airborne measurements. Satellite measurements (e.g. GOES, MODIS, and GOME-2) and model forecasts (e.g. WRF-Chem and FLEXPART) were used to monitor the rapid development of the thunderstorms (which frequently developed huge anvils with overshooting tops) and the spread of smoke plumes in the vicinity of the storms. In-situ probing of fresh and aged (12-24 h) anvil outflows showed injection of lightning-produced NOx and wildfire emissions into the UTLS. Vertical cross sections of lidar and Doppler radar measurements supported these observations and gave detailed information on dynamical processes within and in the vicinity of the storms. Besides very strong updrafts in the storm core, surrounding downdrafts caused a direct in-mixing of O3-rich LS air masses into the boundaries of the anvil outflow. The wrapping of O3-rich LS air masses around and below the anvil outflow was also a prominent feature in several storms. The in-situ probing of the aged anvil outflow showed a pronounced influence on the UT composition and chemistry with average O3 enhancements in the range of 20-50 nmol mol-1 and evidence of new particle formation. A 10-year global climatology of H2O data from Aura-MLS confirms that the Central U.S. is a preferred region for convective injection into the LS.

  12. Investigation of the mechanism in RIJKE pulse combustors with tangential air and fuel injection. Progress report, August 1, 1992--January 31, 1993

    SciTech Connect

    Zinn, B.T.; Jagoda, J.I.; Daniel, B.R.; Bai, T.

    1993-02-01

    This report summarizes the accomplishments of DOE Contract No. DE-AS04-85AL31881. This three year investigation started in August 1989 and its objective was to elucidate the mechanisms that control the driving of pulsations in the liquid fuel burning, Rijke type, pulse combustor developed under a preceding DOE contracts. It was demonstrated in that contract that the developed Rijke type pulse combustor can burn a variety of light and heavy liquid fuel oils with high combustion efficiencies while using low excess air, which produces high thermal efficiencies. Since the elucidation of the driving mechanism in the Rijke pulse combustor required the use of optical diagnostics (e.g., radiation measurements), it was decided to perform these investigations in a Rijke pulse combustor that burned propane instead of a liquid fuel in order to avoid difficulties that are often encountered due to the presence of liquid droplets in the combustion region. Consequently, an effort was made to develop a Rijke pulse combustor that is similar to the one developed in the preceding program and demonstrated similar performance characteristics. Such a pulse combustor was developed in the early phases of this program. The developed experimental setup was provided with capabilities for measuring steady combustor temperature distributions, the characteristics of the excited pressure oscillations, the exhaust flow composition, the characteristics of the flow field and the reaction rates. This pulse combustor consists of a cylindrical tube that is attached to a decoupling chamber at each end. Fuel and air are supplied via a tangential air/fuel injection system that is located at a distance of L/4 from the combustor entrance, where L is the combustor length. Part of the combustor tube, where combustion occurs, is water cooled. This section is also equipped with flat quartz windows to permit optical diagnostics.

  13. Injectors for Multipoint Injection

    NASA Technical Reports Server (NTRS)

    Prociw, Lev Alexander (Inventor); Ryon, Jason (Inventor)

    2015-01-01

    An injector for a multipoint combustor system includes an inner air swirler which defines an interior flow passage and a plurality of swirler inlet ports in an upstream portion thereof. The inlet ports are configured and adapted to impart swirl on flow in the interior flow passage. An outer air cap is mounted outboard of the inner swirler. A fuel passage is defined between the inner air swirler and the outer air cap, and includes a discharge outlet between downstream portions of the inner air swirler and the outer air cap for issuing fuel for combustion. The outer air cap defines an outer air circuit configured for substantially unswirled injection of compressor discharge air outboard of the interior flow passage.

  14. Piezoelectric Injection Systems

    NASA Astrophysics Data System (ADS)

    Mock, R.; Lubitz, K.

    The origin of direct injection can be doubtlessly attributed to Rudolf Diesel who used air assisted injection for fuel atomisation in his first self-ignition engine. Although it became apparent already at that time that direct injection leads to reduced specific fuel consumption compared to other methods of fuel injection, it was not used in passenger cars for the moment because of its disadvantageous noise generation as the requirements with regard to comfort were seen as more important than a reduced specific consumption.

  15. Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology

    SciTech Connect

    Hessel, R P; Aceves, S M; Flowers, D L

    2006-03-06

    The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

  16. Hydrologic and chemical data from selected wells and springs in southern Elmore County, including Mountain Home Air Force Base, southwestern Idaho, Fall 1989

    USGS Publications Warehouse

    Parliman, D.J.; Young, H.W.

    1990-01-01

    Hydrologic and chemical data were collected during September through November 1989 from 90 wells and 6 springs in southern Elmore County, southwestern Idaho. These data were collected to characterize the chemical quality of water in major water-yielding zones in areas near Mountain Home and the Mountain Home Air Force Base. The data include well and spring locations, well-construction and water-level information, and chemical analysis of water from each well and spring inventoried. Ground water in the study area is generally suitable for most uses. In localized areas, water is highly mineralized, and pH, concentrations of dissolved sulfate, chloride, or nitrite plus nitrate as nitrogen exceed national public drinking water limits. Fecal coliform and fecal streptococci bacteria were detected in separate water samples. One or more volatile organic compounds were detected in water samples from 15 wells, and the concentration of benzene exceeded the national public drinking water limit in a water sample from one well.

  17. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 91: Area 3 U-3fi Injection Well, Nevada Test Site, Nevada, for the period October 2000-October 2001

    SciTech Connect

    D. S. Tobiason

    2002-02-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Injection Well during the October 2000 to October 2001 period. The U-3fi Injection Well is located in Area 3 of the Nevada Test Site (NTS), Nye County, Nevada. Inspections of the Area 3 U-3fi Injection Well are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste disposal unit closure. The objective of the neutron-logging program is to monitor the soil moisture conditions along the 128-meter (m) (420-ft) ER3-3 monitoring well and detect changes that may be indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft) or to detect changes that may be indicative of subsidence within the disposal unit itself.

  18. Radioactive air emissions notice of construction use of a portable exhauster on single shell tanks (SSTs) during salt well pumping

    SciTech Connect

    GRANDO, C.J.

    1999-11-18

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping. Table 1-1 lists 18 SSTs covered by this NOC. This NOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping.

  19. Evaluation of passive diffusion bag samplers, dialysis samplers, and nylon-screen samplers in selected wells at Andersen Air Force Base, Guam, March-April 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.

    2003-01-01

    During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.

  20. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-10-01

    Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  1. Hydrogeologic setting, water levels, and quality of water from supply wells at the US Marine Corps Air Station, Cherry Point, North Carolina

    USGS Publications Warehouse

    Lloyd, O.B.; Daniel, C. C.

    1988-01-01

    The Marine Corps Air Station is located in the Coastal Plain province of North Carolina. Four freshwater aquifers of sand and limestone underlie the area to a depth of about 500 feet. Saline water occurs below this depth. The aquifers are separated by three confining units that are thin and discontinuous in the southern part. Water supply is obtained from 195- to 330 feet wells in the Castle Hayne aquifer. Many wells are near landfills that have received hazardous wastes. Groundwater withdrawals have reduced hydraulic heads in the Castle Hayne some 20 feet around active production wells, creating potential for downward movement of contaminated water from the surface and for upward movement of saline water that occurs at depth. Chemical analyses of water from the Castle Hayne aquifer indicate median concentrations of iron and manganese are 0.78 and 0.08 milligrams per liter, respectively, and lead and (or) nickel exceed drinking water standards in three wells. Chloride increased from 10 to more than 40 milligrams per liter in the deepest operating well over a 45-year period. Benzene concentrations range from 0.5 to 1.9 milligrams per liter in the southern part of the Air Station but were below the 5 milligrams per liter maximum contaminant level for drinking water. Fatty acids were found in concentrations as much as 28 micrograms per liter in water from wells in an area centered around the intersection of Roosevelt Boulevard and Slocum Road. Resampling is needed to verify all constituents that indicate contamination.

  2. Analyzing Axial Stress and Deformation of Tubular for Steam Injection Process in Deviated Wells Based on the Varied (T, P) Fields

    PubMed Central

    Liu, Yunqiang; Xu, Jiuping; Wang, Shize; Qi, Bin

    2013-01-01

    The axial stress and deformation of high temperature high pressure deviated gas wells are studied. A new model is multiple nonlinear equation systems by comprehensive consideration of axial load of tubular string, internal and external fluid pressure, normal pressure between the tubular and well wall, and friction and viscous friction of fluid flowing. The varied temperature and pressure fields were researched by the coupled differential equations concerning mass, momentum, and energy equations instead of traditional methods. The axial load, the normal pressure, the friction, and four deformation lengths of tubular string are got ten by means of the dimensionless iterative interpolation algorithm. The basic data of the X Well, 1300 meters deep, are used for case history calculations. The results and some useful conclusions can provide technical reliability in the process of designing well testing in oil or gas wells. PMID:24163623

  3. Heat transfer coefficients over a flat surface with air and CO{sub 2} injection through compound angle holes using a transient liquid crystal image method

    SciTech Connect

    Ekkad, S.V.; Zapata, D.; Han, J.C.

    1997-07-01

    This paper presents the detailed heat transfer coefficients over a flat surface with one row of injection holes inclined streamwise at 35 deg for three blowing ratios (M = 0.5--2.0). Three compound angles of 0, 45, and 90 deg with air (D.R. = 0.98) and CO{sub 2} (D.R. = 1.46) as coolants were tested at an elevated free-stream turbulence condition (Tu {approx} 8.5%). The experimental technique involves a liquid crystal coating on the test surface. Two related transient tests obtained detailed heat transfer coefficients and film effectiveness distributions. Heat transfer coefficients increase with increasing blowing ratio for a constant density ratio, but decrease with increasing density ratio for a constant blowing ratio. Heat transfer coefficients increase for both coolants over the test surface as the compound angle increases from 0 to 90 deg. The detailed heat transfer coefficients obtained using the transient liquid crystal technique, particularly in the near-hole region, will provide a better understanding of the film cooling process in gas turbine components.

  4. Cabazitaxel Injection

    MedlinePlus

    ... injection is used along with prednisone to treat prostate cancer (cancer of a male reproductive organ) that has ... cabazitaxel injection is usually used in men with prostate cancer. If used by pregnant women, cabazitaxel injection can ...

  5. Fondaparinux Injection

    MedlinePlus

    ... fondaparinux injection.Talk to your doctor about the risk of using fondaparinux injection. ... Fondaparinux injection is used to prevent deep vein thrombosis (DVT; a blood ... Xa inhibitors. It works by decreasing the clotting ability of the blood.

  6. Morphine Injection

    MedlinePlus

    Morphine injection is used to relieve moderate to severe pain. Morphine is in a class of medications called opiate ( ... Morphine injection comes as a solution (liquid) to inject intramuscularly (into a muscle) or intravenously (into a ...

  7. Dexamethasone Injection

    MedlinePlus

    Dexamethasone injection is used to treat severe allergic reactions. It is used in the management of certain types of ... gastrointestinal disease, and certain types of arthritis. Dexamethasone injection is also used for diagnostic testing. Dexamethasone injection ...

  8. Romidepsin Injection

    MedlinePlus

    Romidepsin injection is used to treat cutaneous T-cell lymphoma (CTCL; a group of cancers of the immune system ... one other medication given by mouth or by injection. Romidepsin injection is in a class of medications ...

  9. Ondansetron Injection

    MedlinePlus

    Zofran® Injection ... Ondansetron injection is used to prevent nausea and vomiting caused by cancer chemotherapy and surgery. Ondansetron is in a ... medications: or any of the ingredients in ondansetron injection. Ask your pharmacist for a list of the ...

  10. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  11. An Assessment of the Options Available to Air Forces’ Commanders to Suppress Smoke from Oil Well Fires

    DTIC Science & Technology

    1992-09-22

    well, it has a telescopic appearance with each successive casing going from the surface deeper into the earth (Figure 1). When looking at a cross...bottom and back up the outside of the pipe, all the way to the surface of the earth where it is allowed to harden. This effectively attaches the casing...to the surrounding earth (Simms, 1991). Next, a 16-inch drill is lowered into the casing to bore through the plug and the 10 To Chrilsmas Tres E

  12. Air kerma standard for calibration of well-type chambers in Brazil using {sup 192}Ir HDR sources and its traceability

    SciTech Connect

    Di Prinzio, Renato; Almeida, Carlos Eduardo de

    2009-03-15

    In Brazil there are over 100 high dose rate (HDR) brachytherapy facilities using well-type chambers for the determination of the air kerma rate of {sup 192}Ir sources. This paper presents the methodology developed and extensively tested by the Laboratorio de Ciencias Radiologicas (LCR) and presently in use to calibrate those types of chambers. The system was initially used to calibrate six well-type chambers of brachytherapy services, and the maximum deviation of only 1.0% was observed between the calibration coefficients obtained and the ones in the calibration certificate provided by the UWADCL. In addition to its traceability to the Brazilian National Standards, the whole system was taken to University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) for a direct comparison and the same formalism to calculate the air kerma was used. The comparison results between the two laboratories show an agreement of 0.9% for the calibration coefficients. Three Brazilian well-type chambers were calibrated at the UWADCL, and by LCR, in Brazil, using the developed system and a clinical HDR machine. The results of the calibration of three well chambers have shown an agreement better than 1.0%. Uncertainty analyses involving the measurements made both at the UWADCL and LCR laboratories are discussed.

  13. Effects of northbound long-haul international air travel on sleep quantity and subjective jet lag and wellness in professional Australian soccer players.

    PubMed

    Fowler, Peter; Duffield, Rob; Howle, Kieran; Waterson, Adam; Vaile, Joanna

    2015-07-01

    The current study examined the effects of 10-h northbound air travel across 1 time zone on sleep quantity, together with subjective jet lag and wellness ratings, in 16 male professional Australian football (soccer) players. Player wellness was measured throughout the week before (home training week) and the week of (away travel week) travel from Australia to Japan for a preseason tour. Sleep quantity and subjective jet lag were measured 2 d before (Pre 1 and 2), the day of, and for 5 d after travel (Post 1-5). Sleep duration was significantly reduced during the night before travel (Pre 1; 4.9 [4.2-5.6] h) and night of competition (Post 2; 4.2 [3.7-4.7] h) compared with every other night (P<.01, d>0.90). Moreover, compared with the day before travel, subjective jet lag was significantly greater for the 5 d after travel (P<.05, d>0.90), and player wellness was significantly lower 1 d post-match (Post 3) than at all other time points (P<.05, d>0.90). Results from the current study suggest that sleep disruption, as a result of an early travel departure time (8 PM) and evening match (7:30 PM), and fatigue induced by competition had a greater effect on wellness ratings than long-haul air travel with a minimal time-zone change. Furthermore, subjective jet lag may have been misinterpreted as fatigue from sleep disruption and competition, especially by the less experienced players. Therefore, northbound air travel across 1 time zone from Australia to Asia appears to have negligible effects on player preparedness for subsequent training and competition.

  14. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  15. Ibandronate Injection

    MedlinePlus

    Boniva® Injection ... Ibandronate injection is used to treat osteoporosis (a condition in which the bones become thin and weak and break ... Ibandronate injection comes as a solution (liquid) to be injected into a vein by a doctor or nurse in ...

  16. Leuprolide Injection

    MedlinePlus

    Leuprolide injection comes as a long-acting suspension (Lupron) that is injected intramuscularly (into a muscle) by a doctor or nurse in a medical ... Depot-4 month, Lupron Depot-6 Month). Leuprolide injection also comes as a long-acting suspension (Eligard) that is injected subcutaneously (just under ...

  17. Development of an Ultrasonic Phased Array System for Wellbore Integrity Evaluation and Near-Wellbore Fracture Network Mapping of Injection and Production Wells in Geothermal Energy Systems

    SciTech Connect

    Almansouri, Hani; Foster, Benjamin; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie

    2016-01-01

    This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, and provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.

  18. Water Injected Turbomachinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    From antiquity, water has been a source of cooling, lubrication, and power for energy transfer devices. More recent applications in gas turbines demonstrate an added facet, emissions control. Fogging gas turbine inlets or direct injection of water into gas turbine combustors, decreases NOx and increases power. Herein we demonstrate that injection of water into the air upstream of the combustor reduces NOx by factors up to three in a natural gas fueled Trapped Vortex Combustor (TVC) and up to two in a liquid JP-8 fueled (TVC) for a range in water/fuel and fuel/air ratios.

  19. Stormwater Drainage Wells

    EPA Pesticide Factsheets

    Provides information for identifying stormwater drainage wells, learn how to comply with regulations for storm water drainage wells, and how to reduce the threat to ground water from stormwater injection wells.

  20. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  1. Lean direct wall fuel injection method and devices

    NASA Technical Reports Server (NTRS)

    Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)

    2000-01-01

    A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.

  2. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    SciTech Connect

    2005-01-01

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good.

  3. EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI

    SciTech Connect

    Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

    2004-03-01

    Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal

  4. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  5. Ground-Water Levels and Water-Quality Data for Wells in the Crumpton Creek Area near Arnold Air Force Base, Tennessee, November 2001 to January 2002

    USGS Publications Warehouse

    Williams, Shannon D.

    2003-01-01

    From November 2001 to January 2002, a study of the ground-water resources in the Crumpton Creek area of Middle Tennessee was conducted to determine whether volatile organic compounds (VOCs) from Arnold Air Force Base (AAFB) have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. VOC samples were collected from private wells that were not included in previous sampling efforts conducted in the Crumpton Creek area near AAFB. Ground-water-flow directions were investigated by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 68 private wells, 82 monitoring wells, and 1 cave during the period of study. Ground-water levels were determined for 42 of the private wells and for all 82 monitoring wells. Of the 82 monitoring wells, 81 withdraw water from the Manchester aquifer and 1 well withdraws water from the overlying shallow aquifer. The Manchester aquifer wells range in depth from 20 to 150 feet. Water-level altitudes for the Manchester aquifer ranged from 956 to 1,064 feet above the National Geodetic Vertical Datum of 1929. Water levels ranged from approximately 6 feet above land surface to 94 feet below land surface. Water-quality samples were collected from all 68 private wells, 8 of the monitoring wells, and the 1 cave. Of the 55 VOCs analyzed, 42 were not detected. Thirteen VOCs were detected; however, only tetrachloroethylene (PCE), methylene chloride, and toluene were detected at concentrations equal to or above reporting levels for the analytical method used. PCE was detected in water samples from 15 private wells and was the only VOC that exceeded drinking water maximum contaminant levels for public water systems. PCE concentrations in samples from five of the wells were below the reporting level and ranged from estimated concentrations of 0.46 to 0.80 microgram per liter (?g/L). Samples from 10

  6. Room temperature spin injection into (110) GaAs quantum wells using Fe/x-AlO{sub x} contacts in the regime of current density comparable to laser oscillation

    SciTech Connect

    Yokota, Nobuhide Aoshima, Yohei; Ikeda, Kazuhiro; Kawaguchi, Hitoshi; Nishizawa, Nozomi; Munekata, Hiro

    2015-10-28

    We investigate the electrical spin injection into (110) GaAs single quantum wells (SQWs) and multiple quantum wells (MQWs) using light-emitting diodes (LEDs) having Fe/crystalline-AlO{sub x} (x-AlO{sub x}) tunnel barrier contacts. A degree of circular polarization (P{sub c}) of 5.0% is obtained for the SQW LED at 4 K with the current density of 1 kA/cm{sup 2} which is comparable to that for the laser oscillation in vertical-cavity surface-emitting lasers (VCSELs). On the basis of electron spin relaxation time and carrier lifetime in the (110) GaAs SQW measured by time-dependent photoluminescence and the value of P{sub c} = 5.0%, the degree of spin polarization of initially injected electrons (P{sub 0}) in the SQW is estimated to be 6.6% at 4 K. By using the MQW LED having a much stronger electroluminescence, a P{sub c} value of 2.6% is obtained at room temperature (RT) with the current density of 1.5 kA/cm{sup 2}. The temperature and current density dependences of P{sub c} are found to be weak in both the SQW and MQW LEDs. The estimated P{sub 0} of 9.3% at RT suggests that the Fe/x-AlO{sub x} contacts can be used for the RT electrical spin injection for spin-controlled VCSELs.

  7. 77 FR 52717 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... AGENCY Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Cornerstone Chemical Company, Waggaman, LA AGENCY... granted to Cornerstone for four Class I injection wells located at Waggaman, Louisiana. The company...

  8. 78 FR 23246 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... AGENCY Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF Corporation Freeport, Texas AGENCY: Environmental... granted to BASF Corporation for three Class I injection wells located at Freeport, Texas. The company...

  9. Hydrogeologic and water-quality data from well clusters near the wastewater-treatment plant, U.S. Marine Corps Air Station, Cherry Point, North Carolina

    USGS Publications Warehouse

    Murray, L.C.; Daniel, C. C.

    1990-01-01

    Hydrogeologic and ground-water quality data were collected near the wastewater-treatment plant and associated polishing lagoons at the Marine Corps Air Station, Cherry Point, North Carolina, in 1988. Between March and May 1988, two observation wells were installed upgradient and six wells were installed downgradient of the polishing lagoons and sampled for organic and inorganic U.S. Environmental Protection Agency priority pollutants. Placement of the well screens allowed sampling from both the upper and lower parts of the surficial aquifer. Natural gamma-ray geophysical logs were run in the four deepest wells. Lithologic logs were prepared from split-spoon samples collected during the drilling operations. Laboratory hydraulic conductivity tests were conducted on samples of fine-grained material recovered from the two confining units that separate the surficial aquifer and the drinking-water supply aquifer; values ranged from 0.011 to 0.014 foot per day (4x10-6 to 5x10-6 centimeters per second). Static water levels were recorded on April 25, 1988. Relatively low concentrations of purgeable organic compounds (up to 2.2 micrograms per liter for dichlorodifluoromethane), acid and base/neutral extractable compounds (up to 58 micrograms per liter for bis(2-ethylhexyl) phthalate), or pesticides (up to 0.03 micrograms per liter for diazinon and methyl parathion) were detected in water samples collected from all of the wells. Trace metals were detected in concentrations above minimum detectable limits in all of the wells and were found to be higher in water samples collected from the downgradient wells (up to 320 micrograms per liter for zinc) than in water samples from the upgradient wells.

  10. Corrective Action Investigation Plan for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 322 consists of three Corrective Action Sites (CASs): 01-25-01, AST Release (Area 1); 03-25-03, Mud Plant AST Diesel Release (Area 3); 03-20-05, Injection Wells (Area 3). Corrective Action Unit 322 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. The investigation of three CASs in CAU 322 will determine if hazardous and/or radioactive constituents are present at concentrations and locations that could potentially pose a threat to human health and the environment. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  11. Golimumab Injection

    MedlinePlus

    ... body and causes pain, swelling, and damage) including: rheumatoid arthritis (condition in which the body attacks its own ... doctor.If golimumab injection is used to treat rheumatoid arthritis, it may also be injected intravenously (into a ...

  12. Adalimumab Injection

    MedlinePlus

    ... causes pain, swelling, and damage) including the following: rheumatoid arthritis (a condition in which the body attacks its ... If you are using adalimumab injection to treat rheumatoid arthritis, your doctor may tell you to inject the ...

  13. Aripiprazole Injection

    MedlinePlus

    ... aripiprazole injection and aripiprazole extended-release injection developed gambling problems or other intense urges or behaviors that ... even if you do not realize that your gambling or any other intense urges or unusual behaviors ...

  14. Teduglutide Injection

    MedlinePlus

    ... mix and inject it.Teduglutide comes as a kit containing vials of teduglutide powder for injection, prefilled syringes containing diluent (liquid to be mixed with teduglutide powder), needles to attach to the diluent syringe, dosing syringes ...

  15. Degarelix Injection

    MedlinePlus

    Degarelix injection is used to treat advanced prostate cancer (cancer that begins in the prostate [a male reproductive gland]). Degarelix injection is in a class of medications called gonadotropin-releasing hormone (GnRH) ...

  16. Cyclosporine Injection

    MedlinePlus

    ... injection is used with other medications to prevent transplant rejection (attack of the transplanted organ by the ... people who have received kidney, liver, and heart transplants. Cyclosporine injection should only be used to treat ...

  17. Colistimethate Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria. Colistimethate injection is in a class of medications called antibiotics. It works by killing bacteria.Antibiotics such as colistimethate injection will not work ...

  18. Chloramphenicol Injection

    MedlinePlus

    ... treat certain types of serious infections caused by bacteria when other antibiotics cannot be used. Chloramphenicol injection ... antibiotics. It works by stopping the growth of bacteria..Antibiotics such as chloramphenicol injection will not work ...

  19. Estrogen Injection

    MedlinePlus

    ... forms of estrogen injection are used to treat hot flushes (hot flashes; sudden strong feelings of heat and sweating) ... If you are using estrogen injection to treat hot flushes, your symptoms should improve within 1 to ...

  20. Medroxyprogesterone Injection

    MedlinePlus

    ... Medroxyprogesterone injection is a very effective method of birth control but does not prevent the spread of human ... you have been using a different method of birth control and are switching to medroxyprogesterone injection, your doctor ...

  1. Etanercept Injection

    MedlinePlus

    ... areas causing pain and joint damage), chronic plaque psoriasis (a skin disease in which red, scaly patches ... etanercept injection is used to treat chronic plaque psoriasis, it may be injected twice a week during ...

  2. Levoleucovorin Injection

    MedlinePlus

    Levoleucovorin injection is used to prevent harmful effects of methotrexate (Rheumatrex, Trexall) when methotrexate is used to to treat certain types of cancer. Levoleucovorin injection is also used to treat people ...

  3. Leucovorin Injection

    MedlinePlus

    Leucovorin injection is used to prevent harmful effects of methotrexate (Rheumatrex, Trexall; cancer chemotherapy medication) when methotrexate is used to to treat certain types of cancer. Leucovorin injection is used to ...

  4. Teniposide Injection

    MedlinePlus

    ... in men. You should not become pregnant or breast-feed while you are receiving teniposide injection. If you or your partner become pregnant while receiving teniposide injection, call your doctor. Teniposide may harm the fetus.

  5. Ipilimumab Injection

    MedlinePlus

    ... are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while receiving ipilimumab injection, call your doctor. Ipilimumab injection may cause your baby to be born too early or to die before birth.

  6. Pralatrexate Injection

    MedlinePlus

    Pralatrexate injection is used to treat peripheral T-cell lymphoma (PTCL; a form of cancer that begins in a ... come back after treatment with other medications. Pralatrexate injection has not been shown to help people who ...

  7. Cyanocobalamin Injection

    MedlinePlus

    Cyanocobalamin injection is used to treat and prevent a lack of vitamin B12 that may be caused by any ... organs) and permanent damage to the nerves. Cyanocobalamin injection also may be given as a test to ...

  8. Paclitaxel Injection

    MedlinePlus

    Paclitaxel injection manufactured with human albumin is used to treat breast cancer that has not improved or that has come back after treatment with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to ...

  9. Diphenhydramine Injection

    MedlinePlus

    Diphenhydramine injection is used to treat allergic reactions, especially for people who are unable to take diphenhydramine by mouth. ... is used also to treat motion sickness. Diphenhydramine injection is also used alone or along with other ...

  10. Peramivir Injection

    MedlinePlus

    Peramivir injection is used to treat some types of influenza infection ('flu') in people who have had symptoms of ... flu for no longer than 2 days. Peramivir injection is in a class of medications called neuraminidase ...

  11. Cefotetan Injection

    MedlinePlus

    Cefotetan injection is used to treat infections of the lungs, skin, bones, joints, stomach area, blood, female reproductive organs, and urinary tract. Cefotetan injection is also used before surgery to prevent infections. ...

  12. Mipomersen Injection

    MedlinePlus

    Mipomersen injection is used to decrease levels of cholesterol and other fatty substances in the blood in people who ... that removes LDL from the blood), but mipomersen injection should not be used along with this treatment. ...

  13. Romiplostim Injection

    MedlinePlus

    Romiplostim injection is used to increase the number of platelets (cells that help the blood to clot) in order ... low number of platelets in the blood). Romiplostim injection should only be used in people who cannot ...

  14. Hydrocortisone Injection

    MedlinePlus

    Hydrocortisone injection is used to treat symptoms of low corticosteroid levels (lack of certain substances that are usually produced ... also used to treat severe allergic reactions. Hydrocortisone injection is used in the management of multiple sclerosis ( ...

  15. Palivizumab Injection

    MedlinePlus

    Palivizumab injection is used to help prevent respiratory syncytial virus (RSV; common virus that can cause serious lung infections) ... or have certain heart or lung diseases. Palivizumab injection is not used to treat the symptoms of ...

  16. Naltrexone Injection

    MedlinePlus

    Naltrexone injection is used along with counseling and social support to help people who have stopped drinking large amounts of alcohol to avoid drinking again. Naltrexone injection is also used along with counseling and social ...

  17. Tesamorelin Injection

    MedlinePlus

    Tesamorelin injection is used to decrease the amount of extra fat in the stomach area in adults with human ... fat in certain areas of the body). Tesamorelin injection is not used to help with weight loss. ...

  18. Testosterone Injection

    MedlinePlus

    ... and testosterone pellet (Testopel) are forms of testosterone injection used to treat symptoms of low testosterone in ... are low before you begin to use testosterone injection. Testosterone enanthate (Delatestryl) and testosterone pellet (Testopel) are ...

  19. Tigecycline Injection

    MedlinePlus

    Tigecycline injection used to treat certain serious infections including community acquired pneumonia (a lung infection that developed in a ... area between the chest and the waist). Tigecycline injection should not be used to treat pneumonia that ...

  20. Eculizumab Injection

    MedlinePlus

    Eculizumab injection is used to treat paroxysmal nocturnal hemoglobinuria (PNH: a type of anemia in which too many red ... oxygen to all parts of the body). Eculizumab injection is also used to treat atypical hemolytic uremic ...

  1. Pembrolizumab Injection

    MedlinePlus

    Pembrolizumab injection is used to treat melanoma (a type of skin cancer) that cannot be treated with surgery or ... spread to other parts of the body. Pembrolizumab injection is also used to treat a certain type ...

  2. Methylprednisolone Injection

    MedlinePlus

    ... allergic reactions. Methylprednisolone injection is used in the management of multiple sclerosis (a disease in which the ... laboratory test, tell your doctor and the laboratory personnel that you are using methylprednisolone injection.If you ...

  3. Obinutuzumab Injection

    MedlinePlus

    Obinutuzumab injection is used with chlorambucil (Leukeran) to treat chronic lymphocytic leukemia (CLL; a type of cancer of the white blood cells). Obinutuzumab injection is in a class of medications called ...

  4. How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures

    NASA Astrophysics Data System (ADS)

    Way, Danielle A.; Oren, Ram; Kim, Hyun-Seok; Katul, Gabriel G.

    2011-12-01

    Future carbon and water fluxes within terrestrial ecosystems will be determined by how stomatal conductance (gs) responds to rising atmospheric CO2and air temperatures. While both short- and long-term CO2 effects on gs have been repeatedly studied, there are few studies on how gs acclimates to higher air temperatures. Six gs models were parameterized using leaf gas exchange data from black spruce (Picea mariana) seedlings grown from seed at ambient (22/16°C day/night) or elevated (30/24°C) air temperatures. Model performance was independently assessed by how well carbon gain from each model reproduced estimated carbon costs to close the seedlings' seasonal carbon budgets, a `long-term' indicator of success. A model holding a constant intercellular to ambient CO2ratio and the Ball-Berry model (based on stomatal responses to relative humidity) could not close the carbon balance for either treatment, while the Jarvis-Oren model (based on stomatal responses to vapor pressure deficit,D) and a model assuming a constant gs each closed the carbon balance for one treatment. Two models, both based on gs responses to D, performed best overall, estimating carbon uptake within 10% of carbon costs for both treatments: the Leuning model and a linear optimization model that maximizes carbon gain per unit water loss. Since gsresponses in the optimization model are not a priori assumed, this approach can be used in modeling land-atmosphere exchange of CO2 and water in future climates.

  5. Ground-water levels and water-quality data for wells in the Spring Creek area near Arnold Air Force Base, Tennessee, April and May 2000

    USGS Publications Warehouse

    Williams, Shannon D.; Aycock, Robert A.

    2001-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. Numerous site-specific ground-water contamination investigations have been conducted at designated solid waste management units (SWMU?s) at AAFB. Several synthetic volatile organic compounds (VOC?s), primarily chlorinated solvents, have been identified in groundwater samples collected from monitoring wells near SWMU 8 in the Spring Creek area. During April and May 2000, a study of the groundwater resources in the Spring Creek area was conducted to determine if VOC?s from AAFB have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. The study focused on sampling private wells located within the Spring Creek area that are used as a source of drinking water. Ground-water-flow directions were determined by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 35 private wells and 22 monitoring wells during the period of study. Depths to ground water were determined for 22 of the private wells and all 22 of the monitoring wells. The wells ranged in depth from 21 to 105 feet. Water-level altitudes ranged from 930 to 1,062 feet above sea level. Depths to water ranged from 8 to 83 feet below land surface. Water-quality samples were collected from 29 private wells which draw water from either gravel zones in the upper part of the Manchester aquifer, fractured bedrock in the lower part of the Manchester aquifer, or a combination of these two zones. Concentrations of 50 of the 55 VOC?s analyzed for were less than method detection limits. Chloroform, acetone, chloromethane, 2-butanone, and tetrachloroethylene were detected in concentrations exceeding the method detection limits. Only chloroform and acetone were detected in concentrations equal to or exceeding reporting limits. Chloroform was detected in a sample

  6. Busulfan Injection

    MedlinePlus

    Busulfex® Injection ... Busulfan injection is used to treat a certain type of chronic myelogenous leukemia (CML; a type of cancer of ... of 16 doses) before bone marrow transplant.Busulfan injection may cause seizures during therapy with the medication. ...

  7. Air channel distribution during air sparging: A field experiment

    SciTech Connect

    Leeson, A.; Hinchee, R.E.; Headington, G.L.; Vogel, C.M.

    1995-12-31

    Air sparging may have the potential to improve upon conventional groundwater treatment technologies. However, judging from studies published to date and theoretical analyses, it is possible that air sparging may have a limited effect on aquifer contamination. The basic mechanisms controlling air sparging are not well understood, and current monitoring practice does not appear adequate to quantitatively evaluate the process. During this study, the effective zone of influence, defined as the areas in which air channels form, was studied as a function of flowrate and depth of injection points. This was accomplished by conducting the air sparging test in an area with shallow standing water. Air sparging points were installed at various depths, and the zone of influence was determined visually.

  8. Productivity and Injectivity of Horizontal Wells

    SciTech Connect

    Aziz, Khalid; Hewett, Thomas A.; Arbabi, Sepehr; Smith, Marilyn

    1999-11-16

    The generation of suitable simulation grids for heterogeneous media and specific discretization issues that arise. Streamlines and equipotentials are used to define our base grids. Since streamlines are concentrated in high velocity regions they provide a natural means of clustering fine grid cells in crucial flow regions. For complex configurations and particularly for strongly heterogeneous regions the resulting grid cells can become very distorted due to extremely high curvatures. Two types of cell centered formulation are examined together with a cell vertex-point distributed scheme. Important distinctions are found for highly distorted cells. The new grids are tested for accuracy in terms of critical breakthrough parameters and it is shown that a much higher level of grid resolution is required by conventional simulators in order to achieve results that are comparable with those computed on relatively coarse streamline-potential grids.

  9. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual report, July 1, 1996--June 30, 1997

    SciTech Connect

    Dollens, K.B.; Harpole, K.J.; Durrett, E.G.; Bles, J.S.

    1997-12-01

    The work reported herein covers select tasks in Budget Phase 2. The principle Task in Budget Phase 2 included in this report is Field Demonstration. Completion of many of the Field Demonstration tasks during the last report period enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual CO{sub 2} injection commencing in mid-July, 1996. This report summarizes activities incurred following initial project start-up, towards the goal of optimizing project performance. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take-or-pay provisions, CO{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreement (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics.

  10. Results of borehole geophysical logging and hydraulic tests conducted in Area D supply wells, former US Naval Air Warfare Center, Warminster, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Grazul, Kevin E.

    1998-01-01

    Borehole geophysical logging, aquifer tests, and aquifer-isolation (packer) tests were conducted in four supply wells at the former U.S. Naval Air Warfare Center (NAWC) in Warminster, PA to identify the depth and yield of water-bearing zones, occurrence of borehole flow, and effect of pumping on nearby wells. The study was conducted as part of an ongoing evaluation of ground-water contamination at the NAWC. Caliper, natural-gamma, single-point resistance, fluid resistivity, and fluid temperature logs and borehole television surveys were run in the supply wells, which range in depth from 242 to 560 ft (feet). Acoustic borehole televiewer and borehole deviation logs were run in two of the wells. The direction and rate of borehole-fluid movement under non-pumping conditions were measured with a high-resolution heatpulse flowmeter. The logs were used to locate water-bearing fractures, determine probable zones of vertical borehole-fluid movement, and determine the depth to set packers. An aquifer test was conducted in each well to determine open-hole specific capacity and the effect of pumping the open borehole on water levels in nearby wells. Specific capacities ranged from 0.21 to 1.7 (gal/min)/ft (gallons per minute per foot) of drawdown. Aquifer-isolation tests were conducted in each well to determine depth-discrete specific capacities and to determine the effect of pumping an individual fracture or fracture zone on water levels in nearby wells. Specific capacities of individual fractures and fracture zones ranged from 0 to 2.3 (gal/min)/ft. Most fractures identified as water-producing or water-receiving zones by borehole geophysical methods produced water when isolated and pumped. All hydrologically active fractures below 250 ft below land surface were identified as water-receiving zones and produced little water when isolated and pumped. In the two wells greater then 540 ft deep, downward borehole flow to the deep water-receiving fractures is caused by a large

  11. Hole transport assisted by the piezoelectric field in In{sub 0.4}Ga{sub 0.6}N/GaN quantum wells under electrical injection

    SciTech Connect

    Zhang, Shuailong; Gu, Erdan E-mail: huxd@pku.edu.cn; Xie, Enyuan; Herrnsdof, Johannes; Gong, Zheng; Watson, Ian M.; Dawson, Martin D.; Yan, Tongxing; Yang, Wei; Hu, Xiaodong E-mail: huxd@pku.edu.cn

    2015-09-28

    The authors observe the significant penetration of electrically injected holes through InGaN/GaN quantum wells (QWs) with an indium mole fraction of 40%. This effect and its current density dependence were analysed by studies on micro-pixel light-emitting diodes, which allowed current densities to be varied over a wide range up to 5 kA/cm{sup 2}. The systematic changes in electroluminescence spectra are discussed in the light of the piezoelectric field in the high-indium-content QWs and its screening by the carriers. Simulations were also carried out to clarify the unusual hole transport mechanism and the underlying physics in these high-indium QWs.

  12. Geohydrologic reconnaissance of drainage wells in Florida

    USGS Publications Warehouse

    Kimrey, J.O.; Fayard, L.D.

    1984-01-01

    Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) surface-water injection wells, and (2) interaquifer connector wells. Drainage wells of the first type are further categorized as either Floridan aquifer drainage wells or Biscayne aquifer drainage wells. Floridan aquifer drainage wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Biscayne aquifer drainage wells are used locally to dispose of stormwater runoff and other surplus water in southeast Florida, where large numbers of these wells have been permitted in Dade and Broward Counties. The majority of these wells are used to dispose of water from swimming pools or to dispose of heated water from air-conditioning units. The use of Biscayne aquifer drainage wells may have minimal effect on aquifer potability so long as injection of runoff and industrial wates is restricted to zones where chloride concentrations exceed 1,500 milligrams per liter. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mines and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed

  13. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual Report, July 1, 1995--June 30, 1996

    SciTech Connect

    Chimahusky, J.S.; Hallenbeck, L.D.; Harpole, K.J.; Dollens, K.B.

    1997-05-01

    The work reported herein covers select tasks remaining in Budget Phase I and many of the tasks of Budget Phase II. The principal Tasks in Budget Phase I included in this report are Reservoir Analysis and Characterization; Advanced Technical Studies; and Technology Transfer, Reporting and Project Management Activities for Budget Phase I. The principle Task in Budget Phase II included in this report is Field Demonstration. Completion of these tasks has enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual CO{sub 2} injection scheduled for start-up in mid-July, 1996. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take-or-pay provisions, CO{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreements (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics. The Grayburg-San Andres section had previously been divided into multiple zones based on the core study and gamma ray markers that correlate wells within the Unit. Each zone was mapped as continuous across the field. Previous core studies concluded that the reservoir quality in the South Cowden Unit (SCU) is controlled primarily by the distribution of a bioturbated and diagenetically-altered rock type with a distinctive {open_quotes}chaotic{close_quotes} texture. The {open_quotes}chaotic{close_quotes} modifier is derived from the visual effect of pervasive, small-scale intermixing of tan oil-stained reservoir rock with tight gray non-reservoir rock.

  14. How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures

    NASA Astrophysics Data System (ADS)

    Way, D.; Oren, R.; Kim, H.; Katul, G. G.

    2011-12-01

    Future carbon and water fluxes within terrestrial ecosystems will be determined by how stomatal conductance (gs) responds to rising atmospheric CO2 and air temperatures. While both short- and long-term CO2 effects on gs have been repeatedly studied, there are few studies on how gs acclimates to higher air temperatures. Six gs models were parameterized using leaf gas exchange data from black spruce (Picea mariana) seedlings grown from seed at ambient (22/16 °C day/night) or elevated (30/24 °C) temperatures. Model performance was independently assessed by how well carbon gain from each model reproduced estimated carbon costs to close the seedlings' seasonal carbon budgets, an indicator of the model success at time scales commensurate with biomass changes. A model holding a constant intercellular to ambient CO2 concentration ratio and the Ball-Berry model (based on stomatal responses to relative humidity) could not close the carbon balance for either treatment, while a so-called Jarvis-Oren model (based on stomatal responses to vapor pressure deficit, D) and a model assuming a constant gs each closed the carbon balance for one temperature treatment. Two models, both based on gs responses to D, performed best overall, estimating carbon uptake within 10% of carbon costs for both treatments: the Leuning model (a semi-empirical model that links gs to photosynthetic rates) and a linear optimization model that maximizes carbon gain per unit water loss. Since gs responses in the linear optimization model are not a priori assumed, this approach may be advantageous in modeling gs responses to temperature, especially in future climates.

  15. Study of Forebody Injection and Mixing with Application to Hypervelocity Airbreathing Propulsion

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2012-01-01

    The use of premixed, shock-induced combustion in the context of a hypervelocity, airbreathing vehicle requires effective injection and mixing of hydrogen fuel and air on the vehicle forebody. Three dimensional computational simulations of fuel injection and mixing from flush-wall and modified ramp and strut injectors are reported in this study. A well-established code, VULCAN, is used to conduct nonreacting, viscous, turbulent simulations on a flat plate at conditions relevant to a Mach 12 flight vehicle forebody. In comparing results of various fuel injection strategies, it is found that strut injection provides the greatest balance of performance between mixing efficiency and stream thrust potential.

  16. Hydrogeologic, water-level, and water-quality data from monitoring wells at the US Marine Corps Air Station, Cherry Point, North Carolina

    USGS Publications Warehouse

    Murray, L.C.; Keoughan, K.M.

    1990-01-01

    Unlined hazardous-waste disposal sites at the U.S. Marine Corps Air Station, Cherry Point, North Carolina, are located near drinking-water supply wells that tap the Castle Hayne aquifer. Hydrogeologic and water-quality data were collected near 2 of these sites from 12 monitoring wells installed in May through June 1987. Near the northernmost landfill site, differences in hydraulic head between the surficial, intermediate Yorktown, and Castle Hayne aquifers indicate a potential for migration of contaminants downward into the intermediate Yorktown and Castle Hayne aquifers. Movement would be impeded, however, by two confining units of silty sand to sandy clay that separate these aquifers. Geophysical and lithologic data show the upper confining unit to be approximately 26 feet thick near this landfill. Near the southernmost landfill, these confining units are thin and discontinuous in an area that coincides with the location of a buried paleochannel. Static water-level data collected in this area indicate that both the Castle Hayne and Yorktown aquifers discharge into the surficial aquifer, minimizing the potential for downward contaminant movement. Ground water in the surficial aquifer at both landfills moves laterally away from nearby drinking-water supply wells and toward Slocum Creek, a tributary of the Neuse River. Concentrations of organic compounds and trace inorganic constituents included on the U.S. Environmental Protection Agency?s list of priority pollutants were determined for water samples from the surficial and Yorktown aquifers. High concentrations of two purgeable organic compounds, trichloroethylene and 1,2-dichloroethene (4,600 and 4,800 micrograms per liter, respectively), were detected in water samples collected from the surficial aquifer near the southernmost landfill; much smaller concentrations of trichloroethylene and 1,2-dichloroethene were detected in samples from wells in the Yorktown aquifer (up to 16 and 12 micrograms per liter

  17. Musculoskeletal Injection

    PubMed Central

    Wittich, Christopher M.; Ficalora, Robert D.; Mason, Thomas G.; Beckman, Thomas J.

    2009-01-01

    Patients commonly present to primary care physicians with musculoskeletal symptoms. Clinicians certified in internal medicine must be knowledgeable about the diagnosis and management of musculoskeletal diseases, yet they often receive inadequate postgraduate training on this topic. The musculoskeletal problems most frequently encountered in our busy injection practice involve, in decreasing order, the knees, trochanteric bursae, and glenohumeral joints. This article reviews the clinical presentations of these problems. It also discusses musculoskeletal injections for these problems in terms of medications, indications, injection technique, and supporting evidence from the literature. Experience with joint injection and the pharmacological principles described in this article should allow primary care physicians to become comfortable and proficient with musculoskeletal injections. PMID:19720781

  18. Results from air-injection and tracer testing in the Upper Tiva Canyon, Bow Ridge Fault, and upper Paintbrush contact alcoves of the Exploratory Studies Facility, August 1994 through July 1996, Yucca Mountain, Nevada

    SciTech Connect

    LeCain, G.D.

    1998-09-01

    The Yucca Mountain Project is a US Department of Energy (DOE) scientific study to evaluate the potential for geologic disposal of high-level radioactive waste in an unsaturated-zone desert environment. The US Geological Survey (USGS) has been conducting geologic and hydrologic studies of the potential repository site for the DOE. These studies are to quantify the geologic and hydrologic characteristics of Yucca Mountain and to conceptualize and model gas and liquid flow at the potential repository site. Single-hole and cross-hole air-injection and tracer testing was conducted in alcoves located in the underground Exploratory Studies Facility (ESF) to quantify the permeability and porosity values of the fractured and unfractured volcanic rocks (tuff). The permeability and porosity of these tuffs control the movement of fluids in Yucca Mountain. Study of these parameters provides an understanding of fluid flow in the unsaturated zone, and the parameters can be used in unsaturated-zone numerical modeling to estimate fluid flux through the mountain. This report presents the results from air-injection and tracer testing conducted in the upper Tiva Canyon alcove (UTCA), the Bow Ridge Fault alcove (BRFA), and the upper Paintbrush contact alcove (UPCA) by the USGS from August 1994 through July 1996. The locations of the alcoves and their relations to the potential repository are shown in a figure.

  19. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    SciTech Connect

    Williams, Ben; Ewart, Paul; Wang, Xiaowei; Stone, Richard; Ma, Hongrui; Walmsley, Harold; Cracknell, Roger; Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different

  20. Session 20: Injection Overview

    SciTech Connect

    Prestwich, Susan

    1983-12-01

    The test program was initiated at the Raft River Geothermal Field in southern Idaho in September 1982. A series of eight short-term injection and backflow tests, followed by a long-term injection test, were conducted on one well in the field. Tracers were added during injection and monitored during backflow as well. The principal objective was to determine if tracers could be effectively used as a means to assess reservoir characteristics in a one-well test. The test program resulted in a unique data set which shows promise as a means to improve understanding of the reservoir characteristics. In December 1982, an RFP was issued to obtain an industrial partner to obtain follow-on data on the injection/backflow technique in a second field, and to study any alternate advanced concepts for injection testing which the industrial community might recommend. The East Mesa Geothermal Field was selected for the second test series. Two wells were utilized for testing, and a series of ten tests were conducted in July and August 1983, aimed principally at further evaluation of the injection/backflow technique.

  1. Combined effect of grid turbulence and unsteady wake on film effectiveness and heat transfer coefficient of a gas turbine blade with air and CO{sub 2} film injection

    SciTech Connect

    Ekkad, S.V.; Mehendale, A.B.; Han, J.C.; Lee, C.P.

    1997-07-01

    Experiments were performed to study the combined effect of grid turbulence and unsteady wake on film effectiveness and heat transfer coefficient of a turbine blade model. Tests were done on a five-blade linear cascade at the chord Reynolds number of 3.0 {times} 10{sup 5} at cascade inlet. Several combinations of turbulence grids, their locations, and unsteady wake strengths were used to generate various upstream turbulence conditions. The test blade had three rows of film holes in the leading edge region and two rows each on the pressure and suction surfaces. Air and CO{sub 2} were used as injectants. Results show that Nusselt numbers for a blade with film injection are much higher than that without film holes. An increase in mainstream turbulence level causes an increase in Nusselt numbers and a decrease in film effectiveness over most of the blade surface, for both density injectants, and at all blowing ratios. A free-stream turbulence superimposed on an unsteady wake significantly affects Nusselt numbers and film effectiveness compared with only an unsteady wake condition.

  2. Certolizumab Injection

    MedlinePlus

    ... has not improved when treated with other medications, rheumatoid arthritis (a condition in which the body attacks its ... continues. When certolizumab injection is used to treat rheumatoid arthritis, it is usually given every other week and ...

  3. Natalizumab Injection

    MedlinePlus

    ... prevent episodes of symptoms in people who have Crohn's disease (a condition in which the body attacks the ... If you are receiving natalizumab injection to treat Crohn's disease, your symptoms should improve during the first few ...

  4. Vedolizumab Injection

    MedlinePlus

    ... injection may cause serious allergic reactions during an infusion and for several hours afterward. A doctor or ... of the following symptoms during or after your infusion: rash; itching; swelling of the face, eyes, mouth, ...

  5. Panitumumab Injection

    MedlinePlus

    ... as a solution (liquid) to be given by infusion (injected into a vein). It is usually given ... doctor or nurse in a doctor's office or infusion center. Panitumumab is usually given once every 2 ...

  6. Methotrexate Injection

    MedlinePlus

    ... woman's uterus while she is pregnant), breast cancer, lung cancer, certain cancers of the head and neck; certain ... Methotrexate injection is also used along with rest, physical therapy and ... treat rheumatoid arthritis by decreasing the activity of the immune system.

  7. Alirocumab Injection

    MedlinePlus

    ... injection is used along with diet and certain cholesterol-lowering medications (HMG-CoA reductase inhibitors [statins]) in ... familial heterozygous hypercholesterolemia (an inherited condition in which cholesterol cannot be removed from the body normally) or ...

  8. Evolocumab Injection

    MedlinePlus

    ... injection is used along with diet and certain cholesterol-lowering medications, HMG-CoA reductase inhibitors (statins), in ... heterozygous hypercholesterolemia (HeFH; an inherited condition in which cholesterol cannot be removed from the body normally) or ...

  9. Pentamidine Injection

    MedlinePlus

    Pentamidine injection is used to treat pneumonia caused by a fungus called Pneumocystis carinii. It is in a class of medications called antiprotozoals. It works by stopping the growth of protozoa that can cause pneumonia.

  10. Oxytocin Injection

    MedlinePlus

    Oxytocin injection is used to begin or improve contractions during labor. Oxytocin also is used to reduce bleeding after childbirth. ... other medications or procedures to end a pregnancy. Oxytocin is in a class of medications called oxytocic ...

  11. Ibritumomab Injection

    MedlinePlus

    ... is in a class of medications called monoclonal antibodies with radioisotopes. It works by attaching to cancer ... you receive ibritumomab injection, your body may develop antibodies (substances in the blood that help the immune ...

  12. Ganciclovir Injection

    MedlinePlus

    ... problems, eye problems other than CMV retinitis, or kidney disease.tell your doctor if you are pregnant or plan to become pregnant. Ganciclovir injection may cause infertility (difficulty becoming pregnant). However, if you are a ...

  13. Bendamustine Injection

    MedlinePlus

    ... a type of cancer of the white blood cells). Bendamustine injection is also used to treat a ... that begins in a type of white blood cell that normally fights infection) that is slow spreading, ...

  14. Vancomycin Injection

    MedlinePlus

    ... medications called glycopeptide antibiotics. It works by killing bacteria that cause infections.Antibiotics such as vancomycin injection ... infection may not be completely treated and the bacteria may become resistant to antibiotics.

  15. Levofloxacin Injection

    MedlinePlus

    ... of antibiotics called fluoroquinolones. It works by killing bacteria that cause infections.Antibiotics such as levofloxacin injection ... infection may not be completely treated and the bacteria may become resistant to antibiotics.

  16. Doxycycline Injection

    MedlinePlus

    ... medications called tetracycline antibiotics. It works by killing bacteria that cause infections.Antibiotics such as doxycycline injection ... infection may not be completely treated and the bacteria may become resistant to antibiotics.

  17. Sumatriptan Injection

    MedlinePlus

    ... accompanied by nausea and sensitivity to sound and light). Sumatriptan injection is also used to treat the ... children. Store it at room temperature, away from light, excess heat, and moisture (not in the bathroom). ...

  18. Alemtuzumab Injection

    MedlinePlus

    ... injection, the medication is usually given three times weekly on alternate days (usually Monday, Wednesday, and Friday) ... that you eat foods that are rich in iron such as meats, leafy green vegetables, and fortified ...

  19. Epinephrine Injection

    MedlinePlus

    Epinephrine injection is used along with emergency medical treatment to treat life-threatening allergic reactions caused by ... or stings, foods, medications, latex, and other causes. Epinephrine is in a class of medications called alpha- ...

  20. Mitoxantrone Injection

    MedlinePlus

    ... medications to relieve pain in people with advanced prostate cancer who did not respond to other medications. Mitoxantrone ... doses). When mitoxantrone injection is used to treat prostate cancer, it is usually given once every 21 days. ...

  1. Trastuzumab Injection

    MedlinePlus

    ... with other medications to treat certain types of stomach cancer that have spread to other parts of the ... weeks. When trastuzumab injection is used to treat stomach cancer, it is usually given once every 3 weeks. ...

  2. Topotecan Injection

    MedlinePlus

    ... organs where eggs are formed) and small cell lung cancer (a type of cancer that begins in the ... topotecan injection is used to treat ovarian or lung cancer, it is usually given once a day for ...

  3. Palonosetron Injection

    MedlinePlus

    ... that may occur several days after receiving certain chemotherapy medications. Palonosetron injection is in a class of medications called 5-HT3 receptor antagonists. It works by blocking the action of serotonin, a natural ...

  4. Meropenem Injection

    MedlinePlus

    ... skin and abdominal (stomach area) infections caused by bacteria and meningitis (infection of the membranes that surround ... of medications called antibiotics. It works by killing bacteria that cause infection.Antibiotics such as meropenem injection ...

  5. Amikacin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as amikacin injection will not work ...

  6. Ertapenem Injection

    MedlinePlus

    ... abdominal (stomach area) infections, that are caused by bacteria. It is also used for the prevention of ... medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as ertapenem injection will not work ...

  7. Moxifloxacin Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria such as pneumonia; ; and , skin, and abdominal (stomach ... antibiotics called fluoroquinolones. It works by killing the bacteria that cause infections.Antibiotics such as moxifloxacin injection ...

  8. Cefepime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia, and skin, urinary tract, and kidney ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefepime injection will not work ...

  9. Cefazolin Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including skin, bone, joint, genital, blood, heart valve, ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefazolin injection will not work ...

  10. Daptomycin Injection

    MedlinePlus

    ... blood infections or serious skin infections caused by bacteria. Daptomycin injection is in a class of medications called cyclic lipopeptide antibiotics. It works by killing bacteria. Antibiotics will not work for treating colds, flu, ...

  11. Aztreonam Injection

    MedlinePlus

    ... to treat certain infections that are caused by bacteria, including respiratory tract (including pneumonia and bronchitis), urinary ... abdominal (stomach area) infections, that are caused by bacteria. Aztreonam injection also may be used before, during, ...

  12. Ceftazidime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftazidime injection will not work ...

  13. Tobramycin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as tobramycin injection will not work ...

  14. Ciprofloxacin Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria such as pneumonia; and infections of the skin, ... of antibiotics called fluoroquinolones. It works by killing bacteria that cause infections.Antibiotics such as ciprofloxacin injection ...

  15. Gentamicin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as gentamicin injection will not work ...

  16. Ceftaroline Injection

    MedlinePlus

    ... infections and pneumonia (lung infection) caused by certain bacteria. Ceftaroline is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftaroline injection will not work ...

  17. Daclizumab Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS; a disease in which ... injections. Before you use daclizumab yourself the first time, read the written instructions that come with it. ...

  18. Risperidone Injection

    MedlinePlus

    ... release (long-acting) injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... do not already have diabetes. If you have schizophrenia, you are more likely to develop diabetes than ...

  19. Acyclovir Injection

    MedlinePlus

    ... chickenpox in the past) in people with weak immune systems. It is also used to treat first-time ... from time to time) in people with normal immune systems. Acyclovir injection is used to treat herpes simplex ...

  20. Omalizumab Injection

    MedlinePlus

    ... steroids. Omalizumab is also used to treat chronic hives without a known cause that cannot successfully be ... is not used to treat other forms of hives or allergic conditions. Omalizumab injection is in a ...

  1. Pegloticase Injection

    MedlinePlus

    ... doctor if you have glucose-6-phosphate dehydrogenase (G6PD) deficiency (an inherited blood disease). Your doctor may test you for G6PD deficiency before you start to receive pegloticase injection. If ...

  2. Lacosamide Injection

    MedlinePlus

    ... with other medications to control certain types of seizures in people who cannot take oral medications. Lacosamide ... If you suddenly stop using lacosamide injection, your seizures may happen more often. Your doctor will probably ...

  3. Oxacillin Injection

    MedlinePlus

    ... injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as ... and pharmacist if you are allergic to oxacillin; penicillins; cephalosporin antibiotics such as cefaclor, cefadroxil, cefazolin, cefdinir, ...

  4. Nafcillin Injection

    MedlinePlus

    ... injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as ... and pharmacist if you are allergic to nafcillin; penicillins; cephalosporin antibiotics such as cefaclor, cefadroxil, cefazolin, cefdinir, ...

  5. Ampicillin Injection

    MedlinePlus

    ... injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as ... and pharmacist if you are allergic to ampicillin; penicillins; cephalosporin antibiotics such as cefaclor, cefadroxil, cefazolin (Ancef, ...

  6. Naloxone Injection

    MedlinePlus

    ... emergency medical treatment to reverse the life-threatening effects of a known or suspected opiate (narcotic) overdose. ... is also used after surgery to reverse the effects of opiates given during surgery. Naloxone injection is ...

  7. Omacetaxine Injection

    MedlinePlus

    ... or cannot take these medications due to side effects. Omacetaxine injection is in a class of medications ... a treatment cycle if you experience serious side effects of the medication or if blood tests show ...

  8. Methylnaltrexone Injection

    MedlinePlus

    ... injection is used to treat constipation caused by opioid (narcotic) pain medications in patients with chronic (on-going) pain that is not caused by ... by protecting the bowel from the effects of opioid (narcotic) medications.

  9. Denosumab Injection

    MedlinePlus

    ... menstrual periods), who have an increased risk for fractures (broken bones) or who cannot take or did ... receiving certain treatments that increase their risk for fractures. Denosumab injection (Xgeva) is used to reduce fractures ...

  10. Rasburicase Injection

    MedlinePlus

    ... break down) in people with certain types of cancer who are being treated with chemotherapy medications. Rasburicase injection is in a class of medications called enzymes. It works by breaking down uric acid so that the body can eliminate it.

  11. Gemcitabine Injection

    MedlinePlus

    ... with surgery. Gemcitabine is also used to treat cancer of the pancreas that has spread to other parts of the ... 4 weeks. When gemcitabine is used to treat cancer of pancreas it may be injected once every week. The ...

  12. Doxercalciferol Injection

    MedlinePlus

    Doxercalciferol injection is used to treat secondary hyperparathyroidism (a condition in which the body produces too much parathyroid hormone [PTH; a natural substance needed to control the amount of calcium in ...

  13. Granisetron Injection

    MedlinePlus

    ... that may occur after surgery. Granisetron extended-release (long-acting) injection is used with other medications to prevent nausea and vomiting caused by cancer chemotherapy that may occur immediately ...

  14. Fluconazole Injection

    MedlinePlus

    ... injection is used to treat fungal infections, including yeast infections of the mouth, throat, esophagus (tube leading ... by fungus. Fluconazole is also used to prevent yeast infections in patients who are likely to become ...

  15. Docetaxel Injection

    MedlinePlus

    ... allergic to docetaxel injection or drugs made with polysorbate 80, an ingredient found in some medications. Ask ... if a medication you are allergic to contains polysorbate 80. If you experience any of the following ...

  16. Haloperidol Injection

    MedlinePlus

    ... emotions). Haloperidol injection is also used to control motor tics (uncontrollable need to repeat certain body movements) ... people who have Tourette's disorder (condition characterized by motor or verbal tics). Haloperidol is in a class ...

  17. The effects of engine speed and injection characteristics on the flow field and fuel/air mixing in motored two-stroke diesel engines

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Carpenter, M. H.; Ramos, J. I.

    1987-01-01

    A numerical analysis is presented on the effects of the engine speed, injection angle, droplet distribution function, and spray cone angle on the flow field, spray penetration and vaporization, and turbulence in a turbocharged motored two-stroke diesel engine. The results indicate that the spray penetration and vaporization, velocity, and turbulence kinetic energy increase with the intake swirl angle. Good spray penetration, vaporization, and mixing can be achieved by injecting droplets of diameters between 50 and 100 microns along a 120-deg cone at about 315 deg before top-dead-center for an intake swirl angle of 30 deg. The spray penetration and vaporization were found to be insensitive to the turbulence levels within the cylinder. The results have also indicated that squish is necessary in order to increase the fuel vaporization rate and mixing.

  18. Design and Testing of Trace Contaminant Injection and Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Broerman, Craig D.; Sweterlitsch, Jeff

    2009-01-01

    In support of the Carbon dioxide And Moisture Removal Amine Swing-bed (CAMRAS) testing, a contaminant injection system as well as a contaminant monitoring system has been developed by the Johnson Space Center Air Revitalization Systems (JSC-ARS) team. The contaminant injection system has been designed to provide trace level concentrations of contaminants generated by humans in a closed environment during space flight missions. The contaminant injection system continuously injects contaminants from three gas cylinders, two liquid reservoirs and three permeation ovens. The contaminant monitoring system has been designed to provide real time gas analysis with accurate flow, humidity and gas concentration measurements for collection during test. The contaminant monitoring system consists of an analytical real time gas analyzer, a carbon monoxide sensor, and an analyzer for ammonia and water vapor.

  19. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.

    PubMed

    Tsai, Yih-Jin

    2007-04-02

    This study develops methods to estimate the change in soil characteristics and associated air flow paths in a saturated zone during in situ air sparging. These objectives were achieved by performing combined in situ air sparging and tracer testing, and comparing the breakthrough curves obtained from the tracer gas with those obtained by a numerical simulation model that incorporates a predicted change in porosity that is proportional to the air saturation. The results reveal that revising the porosity and permeability according to the distribution of gas saturation is helpful in breakthrough curve fitting, however, these changes are unable to account for the effects of preferential air flow paths, especially in the zone closest to the points of air injection. It is not known the extent to which these preferential air flow paths were already present versus created, increased, or reduced as a result of the air sparging experiment. The transport of particles from around the sparging well could account for the overall increase in porosity and permeability observed in the study. Collection of soil particles in a monitoring well within 2m of the sparging well provided further evidence of the transport of particles. Transport of particles from near the sparging well also appeared to decrease the radius of influence (ROI). Methods for predicting the effects of pressurized air injection and water flow on the creation or modification of preferential air flow paths are still needed to provide a full description of the change in soil conditions that accompany air sparging.

  20. DEMONSTRATION OF IN SITU DEHALOGENATION OF DNAPL THROUGH INJECTION OF EMULSIFIED ZERO-VALIENT IRON AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    EPA Science Inventory

    The purpose of this project was to evaluate the technical and cost performance of emulsified zero-valent iron (EZVI) technology when applied to DNAPL contaminants in the saturated zone. This demonstration was conducted at Launch Complex 34, Cape Canaveral Air Force Station, FL, w...

  1. Fuel injection system for diesel engines

    SciTech Connect

    Holmer, H.E.

    1981-06-16

    A fuel injection system is disclosed for direct injection diesel engines with a depression in the tops of the pistons. A first injection pump has a regulator and accompanying first injector for each cylinder , the injectors being disposed to spray the fuel in a zone around the center axis of the respective piston depression. A second injection pump has a regulator and accompanying second injector for each cylinder, the second injectors being disposed to inject fuel obliquely from the side into the respective piston depression in a direction counter to the rotation of the intake air before the fuel from the first injectors is injected.

  2. Experimental study on copper cathode erosion rate and rotational velocity of magnetically driven arcs in a well-type cathode non-transferred plasma torch operating in air

    NASA Astrophysics Data System (ADS)

    Chau, S. W.; Hsu, K. L.; Lin, D. L.; Tzeng, C. C.

    2007-04-01

    The cathode erosion rate, arc root velocity and output power of a well-type cathode (WTC), non-transferred plasma torch operating in air are studied experimentally in this paper. An external solenoid to generate a magnetically driven arc and a circular swirler to produce a vortex flow structure are equipped in the studied torch system, which is designed to reduce the erosion rate at the cathode. A least square technique is applied to correlate the system parameters, i.e. current, axial magnetic field and mass flow rate, with the cathode erosion rate, arc root velocity and system power output. In the studied WTC torch system, the cathode erosion has a major thermal erosion component and a minor component due to the ion-bombardment effect. The cathode erosion increases with the increase of current due to the enhancement in both Joule heating and ion bombardment. The axial magnetic field can significantly reduce the cathode erosion by reducing the thermal loading of cathode materials at the arc root and improving the heat transfer to gas near the cathode. But, the rise in the mass flow rate leads to the deterioration of erosion, since the ion-bombardment effect prevails over the convective cooling at the cathode. The most dominant system parameter to influence the arc root velocity is the axial magnetic field, which is mainly contributed to the magnetic force driving the arc. The growth in current has a negative impact on increasing the arc root velocity, because the friction force acting at the spot due to a severe molten condition becomes the dominant component counteracting the magnetic force. The mass flow rate also suppresses the arc root velocity, as a result of which the arc root moves in the direction against that of the swirled working gas. All system parameters such as current, magnetic field and gas flow rate increase with the increase in the torch output power. The experimental evidences suggest that the axial magnetic field is the most important parameter

  3. Air Intakes for High Speed Vehicles (Prises d’Air pour Vehicules a Grande Vitesse)

    DTIC Science & Technology

    1991-09-01

    directly from material supplied by AGARD or the authors . Published aeptember 1991 Copyright C AGARD 1991 All Rights Reserved ISBN 92-835-0637-5 Printed by...of Air Intakes Committee C (Chairman: J. Leynaert) Air Intakes Testing Methods The chapters were written by the authors noted in parenthesis and...fuel injection and effect expansion waves and separation induced mixing as well as chemical kinetics. Reference shockwaves. The author points to good

  4. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual report, June 3, 1994--October 31, 1995

    SciTech Connect

    Hallenbeck, L.D.; Harpole, K.J.; Gerard, M.G.

    1996-05-01

    The work reported here covers Budget Phase I of the project. The principal tasks in Budget Phase I are the Reservoir Analysis and Characterization Task and the Advanced Technology Definition Task. Completion of these tasks have enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed and evaluated from an economic and risk analysis standpoint. Field implementation of the project has been recommended to the working interest owner of the South Cowden Unit (SCU) and approval has been obtained. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take or pay requirements, CO{sub 2} purchase price tied to West Texas Intermediate crude oil price) and gas recycle agreements (expensing cost as opposed to large capital investments for compression) were negotiated to further improve project economics. A detailed reservoir characterization study was completed by an integrated team of geoscientists and engineers. The study consisted of detailed core description, integration of log response to core descriptions, mapping of the major flow units, evaluation of porosity and permeability relationships, geostatistical analysis of permeability trends, and direct integration of reservoir performance with the geological interpretation. The study methodology fostered iterative bidirectional feedback between the reservoir characterization team and the reservoir engineering/simulation team to allow simultaneous refinement and convergence of the geological interpretation with the reservoir model. The fundamental conclusion from the study is that South Cowden exhibits favorable enhanced oil recovery characteristics, particularly reservoir quality and continuity.

  5. Pegaptanib Injection

    MedlinePlus

    ... if you have or have ever had diabetes, high blood pressure, a heart attack, or a stroke.tell your doctor if you are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while using pegaptanib injection, ...

  6. Ramucirumab Injection

    MedlinePlus

    ... doctor if you have or have ever had high blood pressure, a wound that has not healed, or liver disease.tell your doctor if you are pregnant, plan to become pregnant, or are breastfeeding. Ramucirumab injection may harm your unborn baby. You ...

  7. Reslizumab Injection

    MedlinePlus

    ... the infusion or for a short period of time after the infusion has finished.You will receive each injection of reslizumab in a doctor's office or medical facility. You will stay in the office for some time after you receive the medication so your doctor ...

  8. Dexrazoxane Injection

    MedlinePlus

    ... are used to treat or prevent certain side effects that may be caused by chemotherapy medications. Dexrazoxane ... Dexrazoxane injection may cause side effects. Tell your doctor if any of these symptoms are severe or do not go away: pain or swelling in the place ...

  9. Opacification of a hydrophilic acrylic intraocular lens with a hydrophobic surface after air injection in Descemet-stripping automated endothelial keratoplasty in a patient with Fuchs dystrophy.

    PubMed

    Mojzis, Peter; Studeny, Pavel; Werner, Liliana; Piñero, David P

    2016-03-01

    A 71-year-old woman with Fuchs endothelial dystrophy in the right eye had uneventful phacoemulsification cataract surgery with implantation of a single-piece intraocular lens (IOL) (CT47S) in January 2012. Because of corneal problems and vision loss, uneventful Descemet-stripping automated endothelial keratoplasty (DSAEK) was performed in May 2013. Four months later, a new corneal lamella (repeat DSAEK) was implanted with reinjection of an air bubble into the anterior chamber. Six months after the initial DSAEK, the patient complained of blurred vision. On examination, the cornea was transparent but the IOL presented opacification in the central area. The opacified IOL was explanted and analyzed by light microscopy, which showed the presence of thin granular deposits distributed in an overall round pattern that stained positive for calcium. The opacification of hydrophilic acrylic IOLs is a complication that can occur after uneventful endothelial keratoplasty, especially when rebubbling is necessary.

  10. In-situ air sparging under confined aquifer conditions

    SciTech Connect

    Breeding, L.B.; Swartz, T.E.; Pringle, C.C.

    1994-12-31

    In the summer of 1993, an effort to evaluate the effectiveness of in-situ air sparging (IAS) and soil vapor extraction (SVE) to remedy jet fuel condition found in Colorado River Terrace deposits was initiated by the Air Force Center for Environmental Excellence. Preliminary field tests were performed to develop air injection flow rates, IAS radius of influence, air entry pressure requirements, SVE radii of influence, SVE well head vacuum requirements, and SVE air extraction flow rates. In addition to the field tests, soil samples were, collected for formal geotechnical laboratory analysis. The information gathered from these preliminary field investigations were then used to design and install a pilot scale ground-water remediation system. The pilot scale system represents a modified version of the traditional IAS/SVE approach. Due to the presence of an overlying low permeability confining layer, the system was modified to inject and extract air from the phreatic zone. The vapor extraction wells are screened down into the saturated interval to provide an escape route for the air injected by the sparging system. This system is intended to trigger two remedial processes. The first is the physical stripping of dissolved phase volatile petroleum constituents as ground water contacts air channels forming around each sparge point. The second remedial process which may be activated by this system is enhanced aerobic biodegradation of organics due to the oxygenation of the saturated interval.

  11. Full-scale testing and early production results from horizontal air sparging and soil vapor extraction wells remediating jet fuel in soil and groundwater at JFK International Airport, New York

    SciTech Connect

    Roth, R.J.; Bianco, P.; Kirshner, M.; Pressly, N.C.

    1996-12-31

    Jet fuel contaminated soil and groundwater contaminated at the International Arrivals Building (IAB) of the JFK International Airport in Jamaica, New York, are being remediated using soil vapor extraction (SVE) and air sparging (AS). The areal extent of the contaminated soil is estimated to be 70 acres and the volume of contaminated groundwater is estimated to be 2.3 million gallons. The remediation uses approximately 13,000 feet of horizontal SVE (HSVE) wells and 7,000 feet of horizontal AS (HAS) wells. The design of the HSVE and HAS wells was based on a pilot study followed by a full-scale test. In addition to the horizontal wells, 28 vertical AS wells and 15 vertical SVE wells are used. Three areas are being remediated, thus, three separate treatment systems have been installed. The SVE and AS wells are operated continuously while groundwater will be intermittently extracted at each HAS well, treated by liquid phase activated carbon and discharged into stormwater collection sewerage. Vapors extracted by the SVE wells are treated by vapor phase activated carbon and discharged into ambient air. The duration of the remediation is anticipated to be between two and three years before soil and groundwater are remediated to New York State cleanup criteria for the site. Based on the monitoring data for the first two months of operation, approximately 14,600 lbs. of vapor phase VOCs have been extracted. Analyses show that the majority of the VOCs are branched alkanes, branched alkenes, cyclohexane and methylated cyclohexanes.

  12. Passive bioventing driven by natural air exchange

    SciTech Connect

    Foor, D.C.; Zwick, T.C.; Hinchee, R.E.; Hoeppel, R.E.; Kyburg, C.; Bowling, L.

    1995-12-31

    Bioventing wells installed in the vadose zone of petroleum-contaminated sites at the Marine Corps Air Ground Combat Center (MCAGCC) in Twentynine Palms, California, naturally inhale and exhale air. This natural air exchange appears to be driven primarily by barometric pressure changes. The natural air exchange was utilized to engineer a passive bioventing system in which a valve allows only air injection and prevents soil gas extraction. The system is effective in aerating petroleum-contaminated, oxygen-limited subsurface soils. This aeration resulted in enhanced biological activity and site remediation. The bioventing wells (vent wells) were fitted with a passive valve mechanism that opens when the atmospheric pressure overcomes the internal vent well pressure. When the valve is open it permits atmospheric air to enter the vent well and infiltrate into the soil, thereby stimulating bioremediation. When the vent well pressure overcomes atmospheric pressure, the valve is closed and inhibits soil gas extraction. The vent wells are installed in a coarse sand where the depth to groundwater is approximately 220 ft (67 m). Generally, deeper vent wells produce greater flowrates. Passive airflow rates of up to 7 cfm (12 m{sup 3}/h) have been achieved at the bioventing wells.

  13. Combustion in a Bomb with a Fuel-Injection System

    NASA Technical Reports Server (NTRS)

    Cohn, Mildred; Spencer, Robert C

    1935-01-01

    Fuel injected into a spherical bomb filled with air at a desired density and temperature could be ignited with a spark a few thousandths of a second after injection, an interval comparable with the ignition lag in fuel-injection engines. The effect of several variables on the extent and rate of combustion was investigated: time intervals between injection and ignition of fuel of 0.003 to 0.06 second and one of 5 minutes; initial air temperatures of 100 degrees C. to 250 degrees C.; initial air densities equivalent to 5, 10, and 15 absolute atmospheres pressure at 100 degrees C.; and air-fuel ratios of 5 to 25.

  14. Syringe injectable electronics

    PubMed Central

    Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.

    2015-01-01

    Seamless and minimally-invasive three-dimensional (3D) interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating syringe injection and subsequent unfolding of submicrometer-thick, centimeter-scale macroporous mesh electronics through needles with a diameter as small as 100 micrometers. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with > 90% device yield. We demonstrate several applications of syringe injectable electronics as a general approach for interpenetrating flexible electronics with 3D structures, including (i) monitoring of internal mechanical strains in polymer cavities, (ii) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (iii) in vivo multiplexed neural recording. Moreover, syringe injection enables delivery of flexible electronics through a rigid shell, delivery of large volume flexible electronics that can fill internal cavities and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics. PMID:26053995

  15. Syringe-injectable electronics

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.

    2015-07-01

    Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

  16. Syringe-injectable electronics.

    PubMed

    Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M

    2015-07-01

    Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

  17. Work Plan for Bioventing System Removal and Well Abandonment at Sites 204.1, 228, and 510.8, Hill Air Force Base (AFB), Utah

    DTIC Science & Technology

    2007-11-02

    This letter includes a brief work plan for bioventing system removal and the abandonment of vent wells (VWs), groundwater monitoring wells (MWs), and...vapor monitoring points (VMPs) at Sites 204.1, 228, and 510.8. The bioventing system at Site 924 has already been removed and is not included in this scope of work.

  18. Thermal well-test method

    DOEpatents

    Tsang, Chin-Fu; Doughty, Christine A.

    1985-01-01

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  19. Validation of an air-liquid interface toxicological set-up using Cu, Pd, and Ag well-characterized nanostructured aggregates and spheres

    NASA Astrophysics Data System (ADS)

    Svensson, C. R.; Ameer, S. S.; Ludvigsson, L.; Ali, N.; Alhamdow, A.; Messing, M. E.; Pagels, J.; Gudmundsson, A.; Bohgard, M.; Sanfins, E.; Kåredal, M.; Broberg, K.; Rissler, J.

    2016-04-01

    Systems for studying the toxicity of metal aggregates on the airways are normally not suited for evaluating the effects of individual particle characteristics. This study validates a set-up for toxicological studies of metal aggregates using an air-liquid interface approach. The set-up used a spark discharge generator capable of generating aerosol metal aggregate particles and sintered near spheres. The set-up also contained an exposure chamber, The Nano Aerosol Chamber for In Vitro Toxicity (NACIVT). The system facilitates online characterization capabilities of mass mobility, mass concentration, and number size distribution to determine the exposure. By dilution, the desired exposure level was controlled. Primary and cancerous airway cells were exposed to copper (Cu), palladium (Pd), and silver (Ag) aggregates, 50-150 nm in median diameter. The aggregates were composed of primary particles <10 nm in diameter. For Cu and Pd, an exposure of sintered aerosol particles was also produced. The doses of the particles were expressed as particle numbers, masses, and surface areas. For the Cu, Pd, and Ag aerosol particles, a range of mass surface concentrations on the air-liquid interface of 0.4-10.7, 0.9-46.6, and 0.1-1.4 µg/cm2, respectively, were achieved. Viability was measured by WST-1 assay, cytokines (Il-6, Il-8, TNF-a, MCP) by Luminex technology. Statistically significant effects and dose response on cytokine expression were observed for SAEC cells after exposure to Cu, Pd, or Ag particles. Also, a positive dose response was observed for SAEC viability after Cu exposure. For A549 cells, statistically significant effects on viability were observed after exposure to Cu and Pd particles. The set-up produced a stable flow of aerosol particles with an exposure and dose expressed in terms of number, mass, and surface area. Exposure-related effects on the airway cellular models could be asserted.

  20. 43 CFR 3276.11 - What information must I include for each well in the monthly report of well operations?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Production or injection temperature in degrees Fahrenheit (deg. F); (d) Production or injection pressure in... pressure (psia); (e) The number of days the well was producing or injecting; (f) The well status at the...