Science.gov

Sample records for air inlet openings

  1. Wind-Tunnel Investigation of Air Inlet and Outlet Openings on a Streamline Body

    NASA Technical Reports Server (NTRS)

    Becker, John V

    1951-01-01

    In connection with the general problem of providing air flow to an aircraft power plant located within a fuselage, an investigation was conducted in the Langley 8-foot high-speed tunnel to determine the effect on external drag and pressure distribution of air inlet openings located at the nose of a streamline body. Air outlet openings located at the tail and at the 21-percent and 63-percent stations of the body were also investigated. Boundary layer transition measurements were made and correlated with the force and the pressure data. Individual openings were investigated with the aid of a blower and then practicable combinations of inlet and outlet openings were tested. Various modifications to the internal duct shape near the inlet opening and the aerodynamic effects of a simulated gun in the duct were also studied. The results of the tests suggested that outlet openings should be designed so that the static pressure of the internal flow at the outlet would be the same as the static pressure of the external flow in the vicinity of the opening.

  2. Wind-Tunnel Investigation of Air Inlet and Outlet Openings for Aircraft, Special Report

    NASA Technical Reports Server (NTRS)

    Rogallo, Francis M.; Gauvain, William E.

    1938-01-01

    An investigation was made in the NACA 5-foot vertical wind tunnel of a large variety of duct inlets and outlets to obtain information relative to their design for the cooling or the ventilation systems on aircraft. Most of the tests were of openings in a flat plate but, in order to determine the best locations and the effects of interference, a few tests were made of openings in an airfoil. The best inlet location for a system not including a blower was found to be at the forward stagnation point; for one including a blower, the best location was found to be in the region of lowest total head, probably in the boundary layer near the trailing edge. Design recommendations are given, and it is shown that correct design demands a knowledge of the external flow and of the internal requirements in addition to that obtained from the results of the wind tunnel tests.

  3. OPEN SEGMENT OF INLET CHANNEL, KACHESS RESERVOIR TO REAR, FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OPEN SEGMENT OF INLET CHANNEL, KACHESS RESERVOIR TO REAR, FROM BERM OVER START OF BURIED CONDUIT SEGMENT OF INLET CHANNEL (6/96), LOOKING NORTHEAST - Kachess Dam, Inlet Channel, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  4. Efficiency of dust sampling inlets in calm air.

    PubMed

    Breslin, J A; Stein, R L

    1975-08-01

    Measurement of airborne dust concentrations usually involves drawing a sample of the dust-laden air into the measuring instrument through an inlet. Even if the surrounding air is calm, theoretical calculations predict that large particles may not be sampled accurately due to the combined effects of gravity and inertia on the particles near the sampling inlet. Tests were conducted to determine the conditions of particle size, inlet radius, and flow rare necessary for accurate dust sampling. A coal-dust aerosol was sampled simultaneously through inlets of different diameters at the same volume flow-rate and collected on filters. The dust was removed from the filters and the particles were counted and sized with a Coulter counter. Results showed that published criteria for inlet conditions for correct sampling are overly restrictive and that respirable-size particles are sampled correctly in the normal range or operation of most dust sampling instruments. PMID:1227283

  5. Aerodynamic characteristics of a series of single-inlet air-breathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either a single axisymmetric or a two dimensional inlet located at the bottom of the body. Two tail configurations were investigated: a tri-tail and an X-tail. The tail surfaces could be deflected to provide pitch control. A wing could be located above the inlet on the center line of the model. Tests were made at supersonic Mach numbers with the inlet open and internal flow, and at subsonic-transonic Mach numbers with the internal duct closed and no internal flow.

  6. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  7. 47. View of "dry air inlets" to waveguides entering scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  8. Morphological evolution of an ephemeral tidal inlet from opening to closure: The Albufeira inlet, Portugal

    NASA Astrophysics Data System (ADS)

    Fortunato, André B.; Nahon, Alphonse; Dodet, Guillaume; Rita Pires, Ana; Conceição Freitas, Maria; Bruneau, Nicolas; Azevedo, Alberto; Bertin, Xavier; Benevides, Pedro; Andrade, César; Oliveira, Anabela

    2014-02-01

    Like other similar coastal systems, the Albufeira lagoon is artificially opened every year to promote water renewal and closes naturally within a few months. The evolution of the Albufeira Lagoon Inlet from its opening in April 2010 to its closure 8 months later is qualitatively and quantitatively analyzed through a combination of monthly field surveys and the application of a process-based morphodynamic model. Field data alone would not cover the whole space-time domain of the morphology of the inlet during its life time, whereas the morphodynamic model alone cannot reliably simulate the morphological development. Using a nudging technique introduced herein, this problem is overcome and a reliable and complete data set is generated for describing the morphological development of the tidal inlet. The new technique is shown to be a good alternative to extensive model calibration, as it can drastically improve the model performance. Results reveal that the lagoon imported sediments during its life span. However, the whole system (lagoon plus littoral barrier) actually lost sediments to the sea. This behavior is partly attributed to the modulation of tidal asymmetry by the spring-neap cycle, which reduces flood dominance on spring tides. Results also allowed the assessment of the relationship between the spring tidal prism and the cross-section of tidal inlets (the PA relationship). While this relationship is well established from empirical, theoretical and numerical evidences, its validity in inlets that are small or away from equilibrium was unclear. Results for the Albufeira lagoon reveal an excellent match between the new data and the empirical PA relationship derived for larger inlets and equilibrium conditions, supporting the validity of the relationship beyond its original scope.

  9. Open inlet conversion: Water quality benefits of two designs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentr...

  10. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Openings, inlets, and outlets. 178.337-8 Section 178.337-8 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for...

  11. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cook Inlet Intrastate Air...

  12. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Cook Inlet Intrastate Air...

  13. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  14. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  15. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  16. Investigation of Aerodynamic and Icing Characteristics of a Flush Alternate Inlet Induction System Air Scoop

    NASA Technical Reports Server (NTRS)

    Lewis, James P.

    1953-01-01

    An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.

  17. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  18. The spatial-temporal variability of air-sea momentum fluxes observed at a tidal inlet

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Laxague, N. J. M.; Reniers, A. J. H. M.; Graber, H. C.

    2015-02-01

    Coastal waters are an aerodynamically unique environment that has been little explored from an air-sea interaction point of view. Consequently, most studies must assume that open ocean-derived parameterizations of the air-sea momentum flux are representative of the nearshore wind forcing. Observations made at the New River Inlet in North Carolina, during the Riverine and Estuarine Transport experiment (RIVET), were used to evaluate the suitability of wind speed-dependent, wind stress parameterizations in coastal waters. As part of the field campaign, a small, agile research vessel was deployed to make high-resolution wind velocity measurements in and around the tidal inlet. The eddy covariance method was employed to recover direct estimates of the 10 m neutral atmospheric drag coefficient from the three-dimensional winds. Observations of wind stress angle, near-surface currents, and heat flux were used to analyze the cross-shore variability of wind stress steering off the mean wind azimuth. In general, for onshore winds above 5 m/s, the drag coefficient was observed to be two and a half times the predicted open ocean value. Significant wind stress steering is observed within 2 km of the inlet mouth, which is observed to be correlated with the horizontal current shear. Other mechanisms such as the reduction in wave celerity or depth-limited breaking could also play a role. It was determined that outside the influence of these typical coastal processes, the open ocean parameterizations generally represent the wind stress field. The nearshore stress variability has significant implications for observations and simulations of coastal transport, circulation, mixing, and general surf-zone dynamics.

  19. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets on a cargo tank used to transport chlorine must meet the requirements of § 178.337-1(c)(2) and...

  20. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets on a cargo tank used to transport chlorine must meet the requirements of § 178.337-1(c)(2) and...

  1. Aerodynamic characteristics of a series of twin-inlet air-breathing missile configurations. 3: Axisymmetric and two-dimensional inlets at subsonic-transonic speeds

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configurated with either twin axisymmetric or two dimensional inlets. Three circumferential inlet locations were investigated: 90 deg, 115 deg, and 135 deg from the top center. Two vertical wing locations, as well as wingless configurations, were used. Three tail configurations were formed by locating the tail surfaces either on the inlet fairing or on the inlet fairing or on fairings on the body. The surfaces were used to provide pitch control. Two dimensional inlets with extended compression surfaces, used to improve the angle-of-attack performance of the inlets for wingless configurations, were also investigated. The twin axisymmetric two dimensional inlet types without internal flow are covered, and the boost configuration of an air-breathing missile is simulated.

  2. Aerodynamic characteristics of a series of twin-inlet air-breathing missile configurations. 2: Two-dimensional inlets at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either twin axisymmetric or two dimensional inlets. Three circumferential inlet locations were investigated: 90 deg, 115 deg, and 135 deg from the top center. Two vertical wing locations, as well as wingless configurations, were used. Three tail configurations were formed by locating the tail surfaces either on the inlet fairings or on fairings on the body. The surfaces were used to provide pitch control. Two dimensional inlets with extended compression surfaces, used to improve the angle-of-attack performance of the inlets for wingless configurations, were also investigated. The two dimensional inlet configurations are covered.

  3. Effect of inlet-air humidity on the formation of oxides of nitrogen in a gas-turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    Tests were conducted to determine the effect of inlet-air humidity on the formation of oxides of nitrogen from a gas-turbine combustor. Combustor inlet-air temperature ranged from 450 F to 1050 F. The tests were run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NO sub x emission index was found to decrease with increasing inlet-air humidity at a constant exponential rate of 19 percent per mass percent water vapor in the air. This decrease of NO sub x emission index with increasing humidity was found to be independent of inlet-air temperature.

  4. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  5. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  6. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  7. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  8. Evaluation of biological air filters for livestock ventilation air by membrane inlet mass spectrometry.

    PubMed

    Feilberg, Anders; Adamsen, Anders P S; Lindholst, Sabine; Lyngbye, Merete; Schäfer, Annette

    2010-01-01

    Biological air filters have been proposed as a cost-effective technology for reducing odor emissions from intensive swine production facilities. In this work we present results from the application of membrane inlet mass spectrometry (MIMS) for continuously monitoring the removal of odorous compounds in biological air filters. The sensitivity and selectivity were tested on synthetic samples of selected odorous compounds, and linearity and detection limits in the lower ppb range were demonstrated for all compounds tested (methanethiol, dimethyl sulfide, carboxylic acids, 4-methylphenol, aldehydes, indole, and skatole) except trimethylamine. The method was applied in situ at two full-scale filters installed at swine houses. The results have been compared with analyses by thermal desorption gas chromatography-mass spectrometry (TD-GC/MS), and odor was measured by olfactometry. By comparison with TD-GC/MS, observed MIMS signals were assigned to 4-methylphenol, 4-ethylphenol, indole, skatole, the sum of volatile reduced organic sulfur compounds (ROS), and three subgroups of carboxylic acids. The removal rates were observed to be related to air-water partitioning with removal efficiencies in the range of 0 to 50% for low-soluble organic sulfur compounds and high removal efficiencies (typically 80-100%) for more soluble phenols and carboxylic acids. Based on the results and published odor threshold values, it is estimated that the low removal efficiency of ROS is the main limitation for achieving a higher odor reduction. PMID:20400604

  9. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    SciTech Connect

    Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

  10. Problems in creation of modern air inlet filters of power gas turbine plants in Russia and methods of their solving

    NASA Astrophysics Data System (ADS)

    Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.

    2016-08-01

    The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.

  11. Operational test report for 241-AW tank inlet air control stations

    SciTech Connect

    Minteer, D.J., Westinghouse Hanford

    1996-07-03

    This document reports the results of operational testing on tank inlet air control stations in 241-AW tank farm. An air control station was installed on each of the six AW tanks. Operational testing consisted of a simple functional test of each station`s air flow controller, aerosol testing of each station`s HEPA filter, and final ventilation system balancing (i.e., tank airflows and vacuum level) using the air control stations. The test was successful and the units were subsequently placed into operation.

  12. Application technology progress report: Evaluation of PM-10 commercial inlets and development of an inlet for new Rocky Flats Plant surveillance air sampler, January 1986-December 1986

    SciTech Connect

    Langer, G.; Deitesfeld, C.A. (ed.0

    1987-09-10

    Work during 1986 was concerned with developing a new PM-10 inlet for use at Rocky Flats Plant (RFP), Golden, Colorado. The commercial units that we evaluated did not allow for recovery of the >10-..mu..m dust fraction as may be required by EPA and DOE for nuclear installations. One of them, the Wedding PM-10 Inlet, did not meet the PM-10 cut-point requirement, because of the build-up of vegetative fibers in the cyclone type separator. Therefore, we developed a new PM-10 inlet (patent applied for) to meet our needs, and especially one that is adaptable to our existing 60 surveillance air samplers at minimum cost. The inlet utilizes a modified slotted impactor design. This device is directly adaptable to existing EPA high-volume samplers. 9 refs., 5 figs., 1 tab.

  13. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... section, each liquid or vapor discharge outlet must be fitted with a primary discharge control system as... of a gas or liquid specified by the original valve manufacturer when piping mounted directly on the... discharge control system is not required on the following: (i) A vapor or liquid discharge opening of...

  14. The Role of Design-of-Experiments in Managing Flow in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Gridley, Marvin C.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design-of-Experiments methodologies to arrive at microscale secondary flow control array designs that maintain optimal inlet performance over a wide range of the mission variables and to explore how these statistical methods provide a better understanding of the management of flow in compact air vehicle inlets. These statistical design concepts were used to investigate the robustness properties of low unit strength micro-effector arrays. Low unit strength micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. The term robustness is used in this paper in the same sense as it is used in the industrial problem solving community. It refers to minimizing the effects of the hard-to-control factors that influence the development of a product or process. In Robustness Engineering, the effects of the hard-to-control factors are often called noise , and the hard-to-control factors themselves are referred to as the environmental variables or sometimes as the Taguchi noise variables. Hence Robust Optimization refers to minimizing the effects of the environmental or noise variables on the development (design) of a product or process. In the management of flow in compact inlets, the environmental or noise variables can be identified with the mission variables. Therefore this paper formulates a statistical design methodology that minimizes the impact of variations in the mission variables on inlet performance and demonstrates that these statistical design concepts can lead to simpler inlet flow management systems.

  15. Benefits of compressor inlet air cooling for gas turbine cogeneration plants

    SciTech Connect

    De Lucia, M.; Lanfranchi, C.; Boggio, V.

    1996-07-01

    Compressor inlet air cooling is an effective method for enhancing the performance of gas turbine plants. This paper presents a comparative analysis of different solutions for cooling the compressor inlet air for the LM6000 gas turbine in a cogeneration plant operated in base load. Absorption and evaporative cooling systems are considered and their performance and economic benefits compared for the dry low-NO{sub x} LM6000 version. Reference is made to two sites in Northern and Southern Italy, whose climate data series for modeling the variations in ambient temperature during the single day were used to account for the effects of climate in the simulation. The results confirmed the advantages of inlet air cooling systems. In particular, evaporative cooling proved to be cost effective, though capable of supplying only moderate cooling, while absorption systems have a higher cost but are also more versatile and powerful in base-load operation. An integration of the two systems proved to be able to give both maximum performance enhancement and net economic benefit.

  16. Numerical study of innovative scramjet inlets coupled to combustors using hydrocarbon-air mixture

    NASA Astrophysics Data System (ADS)

    Malo-Molina, Faure Joel

    The research objective is to use high-fidelity multi-physics Computational Fluid Dynamics (CFD) analysis to characterize 3-D scramjet flowfields in two novel streamline traced circular configurations without axisymmetric profiles. This work builds on a body of research conducted over the past several years. In addition, this research provides the modeling and simulation support, prior to ground (wind tunnel) and flight experiment programs. Two innovative inlets, Jaws and Scoop, are analyzed and compared to a Baseline inlet, a current state of the art rectangular inlet used as a baseline for on/off-design conditions. The flight trajectory conditions selected were Mach 6 and a dynamic pressure of 1,500 psf (71.82 kPa), corresponding to a static pressure of 43.7 psf (2.09 kPa) and temperature of 400.8 R° (222.67 C°). All inlets are designed for equal flight conditions, equal contraction ratios and exit cross-sectional areas, thus facilitating their comparison and integration to a common combustor design. Analysis of these hypersonic inlets was performed to investigate distortion effects downstream in common generic combustors. These combustors include a single cavity acting as flame holder and strategically positioned fuel injection ports. This research not only seeks to identify the most successful integrated scramjet inlet/combustor design, but also investigates the flow physics and quantifies the integrated performance impact of the two novel scramjet inlet designs. It contributes to the hypersonic air-breathing community by providing analysis and predictions on directly-coupled combustor numerical experiments for developing pioneering inlets or nozzles for scramjets. Several validations and verifications of General Propulsion Analysis Chemical-kinetic and Two-phase (GPACT), the CFD tool, were conducted throughout the research. In addition, this study uses 13 gaseous species and 20 reactions for an Ethylene/air finite-rate chemical model. The key conclusions of

  17. Evaluation of Air Capture Ratio of Scramjet Inlet by Multi-Point Pressure Measurement

    NASA Astrophysics Data System (ADS)

    Kitamura, Eijiro; Mitani, Tohru; Sakuranaka, Noboru; Izumikawa, Muneo; Watanabe, Syuichi; Masuya, Goro

    A method to evaluate aerodynamic performances of scramjet engines by using multi-probe rakes was proposed. The aerodynamic tests were carried out under Mach 4 flight conditions. The Pitot and static pressures were measured at 250 points in the cross sectional area of the engine exit by the rakes. Local mass flux and thrust function were evaluated from the pressure measurement at each point and integrations of these values enabled to obtain the mass flow rate and the stream thrust at the engine exit. The air capture ratios were independently measured by the rakes and a conventional choked flowmeter. The air capture ratios measured by these two methods agreed within 2%. It was found that the rakes enabled to measure the air capture ratio more simply than the flowmeter. Additionally, the effect of boundary layer ingestion to an internal drag was investigated by the rakes. The decrease of air capture ratio measured by the rakes showed that the ingested boundary layers were separated in the inlet. The pressure drag of inlet increased by the separation and the pressure thrust decreased by the decrease of air capture ratio. As a result, the internal drag increased when the forebody boundary layer was ingested.

  18. A Low-speed Investigation of an Annular Transonic Air Inlet

    NASA Technical Reports Server (NTRS)

    Nichols, Mark R; Rinkoski, Donald W

    1952-01-01

    Low-speed wind-tunnel tests were conducted as preliminary steps in the study of fuselage-air-inlet arrangements believed suitable for use at transonic speeds. The forward part of the model consisted of an NACA 1-85-050 cowling located at the base of the long protruding fuselage nose designed to maintain substream surface velocities everywhere ahead of the entrance and thereby to avoid or minimize adverse boundary-layer-shock interaction effects up to low supersonic speeds. Pressure-recovery and surface-pressure measurements are presented for the model with three fuselage nose shapes for ranges of angle of attack and inlet-velocity ratio useful for high-speed flight

  19. Design of an air ejector for boundary-layer bleed of an acoustically treated turbofan engine inlet during ground testing

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.

    1978-01-01

    An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.

  20. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOEpatents

    Rodgers, John C.

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  1. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  2. Bathymetry Estimates on Open Beaches and in Tidal Inlets via Remote Sensing

    NASA Astrophysics Data System (ADS)

    Honegger, D.; Haller, M. C.; Holman, R. A.

    2014-12-01

    Despite its vital importance to coastal hydrodynamics and maritime safety, bathymetry is often unknown or poorly constrained; remote sensing techniques show promise to help fill this gap. It has been shown that spatial gradients of cross-spectral phase can be successfully exploited to estimate highly-resolved, frequency-dependent wavenumber vectors in wave resolving image time series. These frequency-wavenumber vector pairs have proven useful for bathymetry estimation not only through basic inversion of the linear dispersion relation, but also through more complex data assimilation schemes. However, previous efforts are generally limited to open beaches. As part of the DARLA and RIVET I/II experiments (Duck, NC; New River Inlet, NC; Columbia River Mouth, OR/WA), we present application of this methodology to two complementary remote sensors (X-band marine radar and optical video) and to a range of environments, from simple (open beach) to complex (a micro-tidal inlet mouth and an energetic meso-tidal estuary mouth). Bathymetry estimates via linear wave theory (the "cBathy" algorithm), spatially resolved on the order of one wavelength, are shown to reproduce bar gaps along open beaches and the structure of ebb-tidal shoals. These quasi-continuous estimates are provided at significantly greater resolution than those calculated via 3D-FFT methods over similar domain sizes (up to 40+ km2). Mean currents can affect depth inversion estimates through the Doppler shift of the wave field. As the effect scales with the current vector component in the direction of the waves, this term is often negligible on open beaches, but it becomes significant near tidal inlets. Tidal averaging of the Doppler effect induces a depth estimate bias, but it does not appreciably deteriorate depth estimate accuracy in the presence of low-amplitude, oscillatory tidal currents. Additionally, if slack-water events can be identified, the problem can be divided into separate depth- and current-inversions.

  3. Nonuniform air flow in inlets: the effect on filter deposits in the fiber sampling cassette.

    PubMed

    Baron, P A; Chen, C C; Hemenway, D R; O'Shaughnessy, P

    1994-08-01

    Smoke stream studies were combined with a new technique for visualizing a filter deposit from samples used to monitor asbestos or other fibers. Results clearly show the effect of secondary flow vortices within the sampler under anisoaxial sampling conditions. The vortices observed at low wind velocities occur when the inlet axis is situated at angles between 45 degrees and 180 degrees to the motion of the surrounding air. It is demonstrated that the vortices can create a complex nonuniform pattern in the filter deposit, especially when combined with particle settling or electrostatic interactions between the particles and the sampler. Inertial effects also may play a role in the deposit nonuniformity, as well as causing deposition on the cowl surfaces. Changes in the sampler, such as its placement, may reduce these biases. The effects noted are not likely to occur in all sampling situations, but may explain some reports of high variability on asbestos fiber filter samples. The flow patterns observed in this study are applicable to straight, thin-walled inlets. Although only compact particles were used, the air flow patterns and forces involved will have similar effects on fibers of the same aerodynamic diameter. PMID:7942509

  4. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  5. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  6. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  7. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  8. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    NASA Astrophysics Data System (ADS)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  9. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    NASA Technical Reports Server (NTRS)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  10. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets.

    PubMed

    Miller, M F; Kessler, W J; Allen, M G

    1996-08-20

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O(2) density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1-2% of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm/s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages. PMID:21102916

  11. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  12. The comparative performance of an aviation engine at normal and high inlet air temperatures

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Schey, Oscar W

    1928-01-01

    This report presents some results obtained during an investigation to determine the effect of high inlet air temperature on the performance of a Liberty 12 aviation engine. The purpose of this investigation was to ascertain, for normal service carburetor adjustments and a fixed ignition advance, the relation between power and temperature for the range of carburetor air temperatures that may be encountered when supercharging to sea level pressure at altitudes of over 20,000 feet and without intercooling when using plain aviation gasoline and mixtures of benzol and gasoline. The results show that for the conditions of test, both the brake and indicated power decrease with increase in air temperature at a faster rate than given by the theoretical assumption that power varies inversely as the square root of the absolute temperature. On a brake basis, the order of the difference in power for a temperature difference of 120 degrees F. Is 3 to 5 per cent. The observed relation between power and temperature when using the 30-70 blend was found to be linear. But, although these differences are noted, the above theoretical assumption may be considered as generally applicable except where greater precision over a wide range of temperatures is desired, in which case it appears necessary to test the particular engine under the given conditions. (author)

  13. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Gauging devices, top loading and unloading devices... and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air inlet...). In no case shall the wall thickness be less than that specified in § 179.201-1. (f) When top...

  14. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and...

  15. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Gauging devices, top loading and unloading devices... and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air inlet...). In no case shall the wall thickness be less than that specified in § 179.201-1. (f) When top...

  16. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Gauging devices, top loading and unloading devices... and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air inlet...). In no case shall the wall thickness be less than that specified in § 179.201-1. (f) When top...

  17. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Gauging devices, top loading and unloading devices... and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air inlet...). In no case shall the wall thickness be less than that specified in § 179.201-1. (f) When top...

  18. Development and Characterization Testing of an Air Pulsation Valve for a Pulse Detonation Engine Supersonic Parametric Inlet Test Section

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert

    2005-01-01

    In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.

  19. Italy: An Open Air Museum

    NASA Astrophysics Data System (ADS)

    Pizzorusso, Ann

    2016-04-01

    Imagine if you could see the River Styx, bathe in the Fountain of Youth, collect water which enhances fertility, wear a gem that heals bodily ailments, understand how our health is affected by geomagnetic fields, venture close to the flames of Hell on Earth and much, much, more. Know something? These things exist - on Earth - today - in Italy and you can visit them because Italy is an open air museum. Ann C. Pizzorusso, in her recent book, reveals how Italy's geology has affected its art, literature, architecture, religion, medicine and just about everything else. She explores the geologic birth of the land, describing the formation of the Alps and Apennines, romantic bays of Tuscany and Lazio, volcanoes of the south and Caribbean-like beaches of Puglia. But that's not all, from the first pages of this visually stunning book, the reader has the impression of being in an art museum, where one can wander from page to page to satisfy one's curiosity-- guided from time to time by the Etruscan priests, Virgil, Dante, Goethe or Leonardo da Vinci himself. Pizzorusso stitches together widely diverse topics - such as gemology, folk remedies, grottoes, painting, literature, physics and religion - using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. Wonderfully illustrated with many photos licensed from Italian museums, HRH Elizabeth II and the Ministero Beni Culturali the book highlights the best works in Italian museums and those outside in the "open air museums." This approach can be used in any other country in the world and can be used for cultural tourism (a tour following the book has been organized for cultural and university groups), an ideal way of linking museums to the surrounding landscape.

  20. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  1. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  2. Stability and control characteristics of an air-breathing missile configuration having a forward located inlet

    NASA Technical Reports Server (NTRS)

    Sawyer, W. C.; Hayes, C.

    1976-01-01

    An investigation was made to determine the aerodynamic characteristics of an airbreathing missile configuration having a forward located inlet. Control was provided by cruciform tail surfaces. Aerodynamic data were obtained for the body-tail configuration alone and with planar or cruciform wings. At Mach numbers from 2.86 to 4.63, the model had internal flow. At Mach numbers from 1.70 to 2.86, the internal duct was closed, and an inlet fairing was installed to simulate boost conditions.

  3. Heat transfer to two-phase air/water mixtures flowing in small tubes with inlet disequilibrium

    NASA Technical Reports Server (NTRS)

    Janssen, J. M.; Florschuetz, L. W.; Fiszdon, J. P.

    1986-01-01

    The cooling of gas turbine components was the subject of considerable research. The problem is difficult because the available coolant, compressor bleed air, is itself quite hot and has relatively poor thermophysical properties for a coolant. Injecting liquid water to evaporatively cool the air prior to its contact with the hot components was proposed and studied, particularly as a method of cooling for contingency power applications. Injection of a small quantity of cold liquid water into a relatively hot coolant air stream such that evaporation of the liquid is still in process when the coolant contacts the hot component was studied. No approach was found whereby heat transfer characteristics could be confidently predicted for such a case based solely on prior studies. It was not clear whether disequilibrium between phases at the inlet to the hot component section would improve cooling relative to that obtained where equilibrium was established prior to contact with the hot surface.

  4. Optimal Micro-Vane Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-vane secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-vane secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low unit strength" micro-effector arrays. "Low unit strength" micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. Therefore, this report examines optimal micro-vane secondary flow control array designs for compact inlets through a Response Surface Methodology.

  5. Management of Total Pressure Recovery, Distortion and High Cycle Fatigue in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan

    2002-01-01

    It is the purpose of this study to demonstrate the viability and economy of Response Surface Methods (RSM) and Robustness Design Concepts (RDC) to arrive at micro-secondary flow control installation designs that maintain optimal inlet performance over a range of the mission variables. These statistical design concepts were used to investigate the robustness properties of 'low unit strength' micro-effector installations. 'Low unit strength' micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion.

  6. Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1978-01-01

    A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.

  7. 35. James River Visitor Center. Opened as an open air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. James River Visitor Center. Opened as an open air visitor center in 1962, it was enclosed and a heating system installed in 1984 to allow use through the cooler months and help reduce vandalism. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  8. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  9. Towards printable open air microfluidics.

    SciTech Connect

    Collord, Andrew; Cook, Adam W.; Clem, Paul Gilbert; Fenton, Kyle Ross; Apblett, Christopher Alan; Branson, Eric D.

    2010-04-01

    We have demonstrated a novel microfluidic technique for aqueous media, which uses super-hydrophobic materials to create microfluidic channels that are open to the atmosphere. We have demonstrated the ability to perform traditional electrokinetic operations such as ionic separations and electrophoresis using these devices. The rate of evaporation was studied and found to increase with decreasing channel size, which places a limitation on the minimum size of channel that could be used for such a device.

  10. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  11. Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.

  12. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  13. OpenFOAM investigations of cavitation in a flushed water-jet inlet

    NASA Astrophysics Data System (ADS)

    Gattoronchieri, A.; Bensow, R.

    2015-12-01

    The cavitation on the lip of a flushed water-jet inlet has been simulated with a transient RANS model and the results has been validated against experiments. The k-ω SST turbulence model has been adopted together with the cavitation correction proposed by Reboud. The defined setup shows promising results and the vortex shedding has been qualitatively predicted. Moreover, the importance of the sufficient spatial resolution to capture the cavity closure and its extension has been studied and proved to be crucial.

  14. Assessment of the capacity of vehicle cabin air inlet filters to reduce diesel exhaust-induced symptoms in human volunteers

    PubMed Central

    2014-01-01

    Background Exposure to particulate matter (PM) air pollution especially derived from traffic is associated with increases in cardiorespiratory morbidity and mortality. In this study, we evaluated the ability of novel vehicle cabin air inlet filters to reduce diesel exhaust (DE)-induced symptoms and markers of inflammation in human subjects. Methods Thirty healthy subjects participated in a randomized double-blind controlled crossover study where they were exposed to filtered air, unfiltered DE and DE filtered through two selected particle filters, one with and one without active charcoal. Exposures lasted for one hour. Symptoms were assessed before and during exposures and lung function was measured before and after each exposure, with inflammation assessed in peripheral blood five hours after exposures. In parallel, PM were collected from unfiltered and filtered DE and assessed for their capacity to drive damaging oxidation reactions in a cell-free model, or promote inflammation in A549 cells. Results The standard particle filter employed in this study reduced PM10 mass concentrations within the exposure chamber by 46%, further reduced to 74% by the inclusion of an active charcoal component. In addition use of the active charcoal filter was associated by a 75% and 50% reduction in NO2 and hydrocarbon concentrations, respectively. As expected, subjects reported more subjective symptoms after exposure to unfiltered DE compared to filtered air, which was significantly reduced by the filter with an active charcoal component. There were no significant changes in lung function after exposures. Similarly diesel exhaust did not elicit significant increases in any of the inflammatory markers examined in the peripheral blood samples 5 hour post-exposure. Whilst the filters reduced chamber particle concentrations, the oxidative activity of the particles themselves, did not change following filtration with either filter. In contrast, diesel exhaust PM passed through the

  15. the nature of air flow near the inlets of blunt dust sampling probes

    NASA Astrophysics Data System (ADS)

    Vincent, J. H.; Hutson, D.; Mark, D.

    This paper sets out to describe the nature of air flow near blunt dust samplers in a way which allows a relatively simple assessment of their performances for collecting dust particles. Of particular importance is the shape of the limiting stream surface which divides the sampled air from that which passes outside the sampler, and how this is affected by the free-stream air velocity, the sampling flow rate, and the shape of the sampler body. This was investigated for two-dimensional and axially-symmetric sampler systems by means of complementary experiments using electrolytic tank potential flow analogues and a wind tunnel respectively. For extreme conditions the flow of air entering the sampling orifice may be wholly divergent or wholly convergent. For a wide range of intermediate conditions, however, the flow first diverges then converges, exhibiting a so-called "spring onion effect". Whichever of these applies for a particular situation, the flow may be considered to consist of two parts, the outer one dominated by the flow about the sampler body and the inner one dominated by the flow into the sampling orifice. Particle transport in this two-part flow may be assessed using ideas borrowed from thin-walled probe theory.

  16. Inlet technology

    NASA Technical Reports Server (NTRS)

    Kutschenreuter, Paul

    1992-01-01

    At hypersonic flight Mach numbers, particularly above Mo = 10, the inlet compression process is no longer adiabatic, real gas chemistry takes on extra importance, and the combined effects of entropy layer and viscous effects lead to highly nonuniform flow profile characteristics at the combustor entrance. Under such conditions, traditional inlet efficiency parameters can be unnecessarily cumbersome and/or lacking in the ability to appropriately characterize the inlet flow and to provide insight into propulsion system performance. Recent experience suggests that the use of inlet entropy increases inlet efficiency in hypersonic applications.

  17. Modelling the long-term morphological evolution of a coupled open coast, inlet and estuary system to explore climate change impacts

    NASA Astrophysics Data System (ADS)

    van Maanen, Barend; Walkden, Mike; Barnes, John; Nicholls, Robert

    2016-04-01

    Coastal and shoreline management increasingly needs to account for morphological change occurring at decadal to centennial timescales. Critical aspects of geomorphic behaviour at these temporal scales emerge at a system level, such that accounting for the feedbacks between different landform components is of key importance. In this study we develop new methods to simulate the large-scale evolution of a coupled open coast - inlet - estuary system, allowing us to explore the system's response to climate change impacts and management interventions. The system explored here encompasses the Deben estuary (eastern England) and its adjacent shorelines. The estuary itself mainly consists of finer sediments. Sediments throughout the inlet, on the other hand, including the ebb-tidal delta itself, comprise a mixture of gravel and sand. The ebb-tidal shoals and sediment bypassing show broadly cyclic behaviour on a 10 to 30 year timescale. Neighbouring beaches consist of mixed sediment and are partially backed up by sedimentary cliffs, the behaviour of which is potentially influenced by the sediment bypassing at the inlet. In addition, the open coast has undergone major transformations as a result of numerous sea defences which have altered sediment availability and supply. The interlinked behaviour of this system is approached by coupling a new inlet model (MESO_i) with an existing, and recently extended, model for the open coast (SCAPE+). MESOi simulates the evolution at the mouth of the Deben at an aggregated scale, conceptualizing the inlet by different geomorphic features that are characterized mainly by their volume. The behaviour of the inlet shoals is influenced by the estuarine tidal prism, linking estuarine processes with inlet dynamics. SCAPE+ computes the shaping of the shore profile and has proven capable of providing valuable information in terms of decadal evolution and related cliff recession rates. Simulations conducted with this composition of models highlight

  18. Two-dimensional wake characteristics of inlet vanes for open-circuit wind tunnels

    NASA Technical Reports Server (NTRS)

    Dudley, M. R.; Unnever, G.; Regan, D. R.

    1984-01-01

    This paper summarizes the near-field flow characteristics measured downstream of a half-scale two-dimensional wind-tunnel model of the inlet vanes designed for the National Full-Scale Facilities Complex at NASA Ames Research Center. Variations on this baseline were tested to determine how the downstream flow field is affected. Evaluations of the various configurations were made by the use of hot-wire surveys across the flow-field. These traverses yielded the properties of total pressure, boundary layers, and turbulence in the wake of the vanes. It was found that large variations in the flow field characteristics downstream of the vanes are achieved by the use of various arrangements of splitter vanes, vortex generators, screens, tail extensions, and honeycomb. Separation on the boat-tails of the vanes can be controlled and turbulence reduced by suitable combinations of screens or honeycomb or both. The penalties associated with each modification in terms of increased pressure loss are also presented.

  19. Effect of Inlet Air Distortion on the Steady-State and Surge Characteristics of an Axial-Flow Turbojet Compressor

    NASA Technical Reports Server (NTRS)

    Ciepluch, Carl C.

    1948-01-01

    An investigation was conducted in an altitude test chamber to determine the effects of inlet airflow distortion on the compressor steady-state and surge characteristics of a high-pressure ratio, axial-flow turbojet engine. Circumferential-type inlet flow distortions were investigated, which covered a range of distortion sector angles from 20 deg to 168 deg and distortion levels up to 22 percent. The presence of inlet airflow distortions at the compressor face resulted in a substantial increase in the local pressure ratio in the distorted region, primarily for the inlet stages. The local pressure ratio in the distorted region for the inlet stages increased as either the distortion sector angle decreased or the percent distortion increased. The average compressor-surge pressure ratio was much more sensitive to inlet airflow distortions at lower engine speeds than at engine speeds near rated. Hence, compressor-surge margin reduction due to inlet airflow distortion was quite severe at the lower engine speeds. Although the average compressor-surge pressure ratio was generally reduced with inlet flow distortion, local pressure ratios across the distorted sector of the compressor were obtained during surge and were significantly greater than the normal compressor-surge pressure ratio. This was a result of increased loading of the inlet stages in the distorted region.

  20. Numerical Simulation of Flows in a Cyclone Chamber with Different Conditions of Air Inlet and Outlet

    NASA Astrophysics Data System (ADS)

    Pitsukha, E. A.

    2014-09-01

    A numerical investigation of flows in a cyclone chamber has been carried out at the fraction of bottom blast φ =0-0.5, at the values of the dimensionless pinch diameter dout/D =0.7 with different locations and configurations of nozzles for air intake. In the simulation of swirling flows, the well-known k-ɛ and k-ω turbulence models, as well as the laminar flow model, were used. A satisfactory agreement between the results of numerical simulation and experimental data at dout/D =0.5-0.7 is obtained. For a chamber with a relative pinch diameter dout/D =0.3 the calculated flow parameters differ substantially from experimental values.

  1. Biofiltration of air contaminated by styrene: Effect of nitrogen supply, gas flow rate, and inlet concentration

    SciTech Connect

    Jorio, H.; Bibeau, L.; Heitz, M.

    2000-05-01

    The biofiltration process is a promising technology for the treatment of dilute styrene emissions in air. The efficiency of this process is however strongly dependent upon various operational parameters such as the filter bed characteristics, nutrient supplies, input contaminant concentrations, and gas flow rates. The biofiltration of air containing styrene vapors was therefore investigated, employing a novel biomass filter material, in two identical but separate laboratory scale biofiltration units (units 1 and 2), both biofilters being initially inoculated with a microbial consortium. Each biofilter was irrigated with a nutrient solution supplying nitrogen in one of two forms; i.e., mainly as ammonia for unit 1 and exclusively as nitrate for unit 2. The experimental results have revealed that greater styrene elimination rates are achieved in the biofilter supplied with ammonia as the major nitrogen source in comparison to the lesser elimination performance obtained with the nitrate provided biofilter. However, in achieving the high styrene removal rates in the ammonia supplied biofilter, the excess of biomass accumulates on the filtering pellets and causes progressive clogging of the filter media. Furthermore, the effectiveness of nitrate supply as the sole nitrogen nutrient form, on reducing or controlling the biomass accumulation in the filter media in comparison to ammonia, could not be satisfactorily demonstrated because the two biofilters operated with very different styrene elimination capacities. The monitoring of the carbon dioxide concentration profile through both biofilters revealed that the ratio of carbon dioxide produced to the styrene removed was approximately 3/1, which confirms the complete biodegradation of removed styrene, given that some of the organic carbon consumed is also used for the microbial growth. The effects of the most important design parameters, namely styrene input concentrations and gas flow rates, were investigated for each

  2. Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Singh, O.

    2012-10-01

    Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better blade cooling technology in topping cycle and enhanced heat recovery in bottoming cycle. The scope of improvement is possible through turbines having higher turbine inlet temperatures (TITs) of both gas turbine and steam turbine. Literature review shows that a combined cycle with transpiration cooled gas turbine has not been analyzed with varying gas/steam TITs. In view of above the present study has been undertaken for thermodynamic study of gas/steam combined cycle with respect to variation in TIT in both topping and bottoming cycles, for air transpiration cooled gas turbine. The performance of combined cycle with dual pressure heat recovery steam generator has been evaluated for different cycle pressure ratios (CPRs) varying from 11 to 23 and the selection diagrams presented for TIT varying from 1,600 to 1,900 K. Both the cycle efficiency and specific work increase with TIT for each pressure ratio. For each TIT there exists an optimum pressure ratio for cycle efficiency and specific work. For the CPR of 23 the best cycle performance is seen at a TIT of 1,900 K for maximum steam temperature of 570 °C, which gives the cycle efficiency of 60.9 % with net specific work of 909 kJ/kg.

  3. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  4. Investigation at supersonic and subsonic Mach numbers of auxiliary inlets supplying secondary air flow to ejector exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Hearth, Donald P; Cubbison, Robert W

    1956-01-01

    The results indicated increases in auxiliary-inlet pressure recovery with increases in scoop height relative to the boundary-layer thickness. The pressure recovery increased at about the same rate as theoretically predicted for an inlet in a boundary layer having a one-seventh power profile, but was only about 0.68 to 0.75 of the theoretically obtainable values. Under some operating conditions, flow from the primary jet was exhausted through the auxiliary inlet. This phenomenon could be predicted from the ejector pumping characteristics.

  5. The effect of different inlet conditions of air in a rectangular channel on convection heat transfer: Turbulence flow

    SciTech Connect

    Kurtbas, Irfan

    2008-10-15

    Theoretical and empirical correlations for duct flow are given for hydrodynamically and thermally developed flow in most of previous studies. However, this is commonly not a realistic inlet configuration for heat exchanger, in which coolant flow generally turns through a serpentine shaped passage before entering heat sinks. Accordingly, an experimental investigation was carried out to determine average heat transfer coefficients in uniformly heated rectangular channel with 45 and 90 turned flow, and with wall mounted a baffle. The channel was heated through bottom side with the baffle. In present work, a detailed study was conducted for three different height of entry channel (named as the ratio of the height of entry channel to the height of test section (anti H{sub c}=h{sub c}/H)) by varying Reynolds number (Re{sub Dh}). Another variable parameter was the ratio of the baffle height to the channel height (anti H{sub b}=h{sub b}/H). Only one baffle was attached on the bottom (heating) surface. The experimental procedure was validated by comparing the data for the straight channel with no baffle. Reynolds number (Re{sub Dh}) was varied from 2800 to 30,000, so the flow was considered as only turbulent regime. All experiments were conduced with air accordingly; Prandtl number (Pr) was approximately fixed at 0.71. The results showed that average Nusselt number for {theta}=45 and {theta}=90 were 9% and 30% higher, respectively, than that of the straight channel without baffle. Likewise, the pressure drop increased up to 4.4 to 5.3 times compare to the straight channel. (author)

  6. Sediment, water column, and open-channel denitrification in rivers measured using membrane-inlet mass spectrometry

    NASA Astrophysics Data System (ADS)

    Reisinger, Alexander J.; Tank, Jennifer L.; Hoellein, Timothy J.; Hall, Robert O.

    2016-05-01

    Riverine biogeochemical processes are understudied relative to headwaters, and reach-scale processes in rivers reflect both the water column and sediment. Denitrification in streams is difficult to measure, and is often assumed to occur only in sediment, but the water column is potentially important in rivers. Dissolved nitrogen (N) gas flux (as dinitrogen (N2)) and open-channel N2 exchange methods avoid many of the artificial conditions and expenses of common denitrification methods like acetylene block and 15N-tracer techniques. We used membrane-inlet mass spectrometry and microcosm incubations to quantify net N2 and oxygen flux from the sediment and water column of five Midwestern rivers spanning a land use gradient. Sediment and water column denitrification ranged from below detection to 1.8 mg N m-2 h-1 and from below detection to 4.9 mg N m-2 h-1, respectively. Water column activity was variable across rivers, accounting for 0-85% of combined microcosm denitrification and 39-85% of combined microcosm respiration. Finally, we estimated reach-scale denitrification at one Midwestern river using a diel, open-channel N2 exchange approach based on reach-scale metabolism methods, providing an integrative estimate of riverine denitrification. Reach-scale denitrification was 8.8 mg N m-2 h-1 (95% credible interval: 7.8-9.7 mg N m-2 h-1), higher than combined sediment and water column microcosm estimates from the same river (4.3 mg N m-2 h-1) and other estimates of reach-scale denitrification from streams. Our denitrification estimates, which span habitats and spatial scales, suggest that rivers can remove N via denitrification at equivalent or higher rates than headwater streams.

  7. Effect of Water Spray Evaporative Cooling at the Inlet of Regeneration Air Stream on the Performance of an Adsorption Desiccant Cooling Process

    NASA Astrophysics Data System (ADS)

    Ando, Kosuke; Kodama, Akio; Hirose, Tsutomu; Goto, Motonobu; Okano, Hiroshi

    This paper shows an influence of evaporative cooler at the inlet of regeneration air stream of an adsorptive desiccant cooling process on the cooling/dehumidifying performance. This evaporative cooling was expected to cause humidity increase in regeneration air reducing the dehumidifying performance of the honeycomb absorber, while the evaporative cooling plays an important role to produce a lower temperature in supply air. Two different airs to be used for the regeneration of the desiccant wheel were considered. One was fresh outside air (OA mode) and the other was air ventilated from the room (RA mode). Experimental results showed that the amount of dehumidified water obtained at the process without water spray evaporative cooler was actually larger than that of process with water spray evaporative cooler. This behavior was mainly due to increase of humidity or relative humidity in the regeneration air as expected. However, temperature of supply air produced by the process with the evaporator was rather lower than that of the other because of the cooled return air, resulting higher CE value. Regarding the operating mode, the evaporative cooler at the OA-mode was no longer useful at higher ambient humidity because of the difficulty of the evaporation of the water in such high humidity. It was also found that its dehumidifying performance was remarkably decreased at higher ambient humidity and lower regeneration temperature since the effective adsorption capacity at the resulting high relative humidity of the regeneration air decreased.

  8. Attic inlet technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising fuel costs have driven development of alternative heat sources for poultry growers. Attic inlets are employed to pre-heat incoming ventilation air to reduce fuel usage. Attic temperatures are at least 10 °F warmer than the outside temperature at least 80% of the time and offers a source of...

  9. Investigation of the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot using simultaneous 2-Colour-TIRE-LII

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A.; Suntz, R.; Bockhorn, H.

    2015-05-01

    The response of non-premixed swirling flames to acoustic perturbations at various frequencies (0-350 Hz) and the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot are investigated. The results obtained from these flames are of special interest for "rich-quenched-lean" (RQL) combustion concepts applied in modern gas turbines. In RQL combustion, the fuel is initially oxidized by air under fuel-rich conditions in a first stage followed by a fuel-lean combustion step in a second stage. To mimic soot formation and oxidation in RQL combustion, soot particle measurements in highly turbulent, non-premixed swirling natural gas/ethylene-confined flames at imposed air inlet velocity oscillations are performed using simultaneous 2-Colour-Time-Resolved-Laser-Induced Incandescence (simultaneous 2-Colour-TIRE-LII). The latter technique is combined with line-of-sight averaged OH*-chemiluminescence imaging, measurements of the velocity field by high-speed particle imaging velocimetry under reactive combustion conditions and measurements of the mean temperature field obtained by a thermocouple. A natural gas/ethylene mixture (Φ = 1.56, 42 % C2H4, 58 % natural gas, P th = 17.6 kW at atmospheric pressure) is used as a fuel, which is oxidized by air under fuel-rich conditions in the first combustion chamber.

  10. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  11. High-speed Tests of a Ducted Body with Various Air-outlet Openings

    NASA Technical Reports Server (NTRS)

    Becker, John V.; Baals, Donald D.

    1942-01-01

    Test of a ducted body with Internal flow were made in the 8-foot high-speed wind tunnel for the purpose of studying the effects on external drag and an critical speed of the addition of efficient inlet and outlet openings to a basic streamline shape. Drag tests of a 13.6- inch-diameter streamline body of fineness ratio 6.14 were made at Mach numbers ranging from 0.20 to 0.75. The model was centrally mounted on a 9-percent-thick airfoil and was designed to have an efficient airfoil-body juncture and a high critical speed. An air inlet at the nose and various outlets at the tail were added: drag and internal-flow data were obtained over the given speed range. The critical speed of the ducted bodies was found to be as high as that of the streamline body. The external - drag with air flow through the body did not exceed the drag of the basic streamline shape. No appreciable variation in the efficiency of the diffuser section of the internal duct occurred throughout the Mach number range of the tests.

  12. Inlet Performance Analysis Code Developed

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Barnhart, Paul J.

    1998-01-01

    The design characteristics of an inlet very much depend on whether the inlet is to be flown at subsonic, supersonic, or hypersonic speed. Whichever the case, the primary function of an inlet is to deliver free-stream air to the engine face at the highest stagnation pressure possible and with the lowest possible variation in both stagnation pressure and temperature. At high speeds, this is achieved by a system of oblique and/or normal shock waves, and possibly some isentropic compression. For both subsonic and supersonic flight, current design practice indicates that the inlet should deliver the air to the engine face at approximately Mach 0.45. As a result, even for flight in the high subsonic regime, the inlet must retard (or diffuse) the air substantially. Second, the design of an inlet is influenced largely by the compromise between high performance and low weight. This compromise involves tradeoffs between the mission requirements, flight trajectory, airframe aerodynamics, engine performance, and weight-all of which, in turn, influence each other. Therefore, to study the effects of some of these influential factors, the Propulsion System Analysis Office of the NASA Lewis Research Center developed the Inlet Performance Analysis Code (IPAC). This code uses oblique shock and Prandtl-Meyer expansion theory to predict inlet performance. It can be used to predict performance for a given inlet geometric design such as pitot, axisymmetric, and two-dimensional. IPAC also can be used to design preliminary inlet systems and to make subsequent performance analyses. It computes the total pressure, the recovery, the airflow, and the drag coefficients. The pressure recovery includes losses associated with normal and oblique shocks, internal and external friction, the sharp lip, and diffuser components. Flow rate includes captured, engine, spillage, bleed, and bypass flows. The aerodynamic drag calculation includes drags associated with spillage, cowl lip suction, wave, bleed

  13. Changes in Clinical Symptoms, Functions, and the Median Nerve Cross-Sectional Area at the Carpal Tunnel Inlet after Open Carpal Tunnel Release

    PubMed Central

    Koh, Young-Do; Kim, Jong Oh; Choi, Shin Woo

    2016-01-01

    Background The aim of this study was to investigate the relationship between clinical symptoms and cross-sectional area (CSA) of the median nerve at the carpal tunnel inlet before and after open carpal tunnel release (CTR). Methods Thirty-two patients (53 hands) that underwent open CTR for idiopathic carpal tunnel syndrome were prospectively enrolled. Median nerve CSA at the carpal tunnel inlet was measured preoperatively and at 2 and 12 weeks after CTR by high resolution ultrasonography. The Boston carpal tunnel questionnaire (BCTQ) was also completed at these times. Results BCTQ symptom (BCTQ-S) score was significantly improved at 2 weeks postoperatively, but BCTQ function (BCTQ-F) score and CSA were significantly improved at 12 weeks postoperatively. Preoperative CSA was significantly correlated with preoperative BCTQ-S and BCTQ-F scores but was not significantly correlated with postoperative BCTQ scores or postoperative changes in BCTQ scores. Postoperative median nerve CSA was not significantly correlated with postoperative BCTQ-S or BCTQ-F scores, and postoperative changes in median nerve CSA were not significantly correlated with postoperative changes in BCTQ-S or BCTQ-F scores. Conclusions The study shows clinical symptoms resolve rapidly after open CTR, but median nerve swelling and clinical function take several months to recover. In addition, preoperative median nerve swelling might predict preoperative severities of clinical symptoms and functional disabilities. However, postoperative reductions in median nerve swelling were not found to reflect postoperative reductions in clinical symptoms or functional disabilities. PMID:27583113

  14. Inlet nozzle assembly

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  15. Inlet nozzle assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  16. Correlation of Forced-convection Heat-transfer Data for Air Flowing in Smooth Platinum Tube with Long-approach Entrance at High Surface and Inlet-air Temperatures

    NASA Technical Reports Server (NTRS)

    Desmon, Leland G; Sams, Eldon W

    1950-01-01

    A heat-transfer investigation was conducted with air in an electrically heated platinum tube with long-approach entrance, inside diameter of 0.525 inch, and effective heat-transfer length of 24 inches over ranges of Reynolds number up to 320,000, average inside-tube-wall temperature up to 3053 degrees R, and inlet-air temperature up to 1165 degrees R. Correlation of data by the conventional Nusselt relation resulted in separation of data with tube-wall temperature. Good correlation was obtained, however, by use of a modified Reynolds number.

  17. 40 CFR 90.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine...

  18. 40 CFR 90.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine...

  19. 40 CFR 90.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine...

  20. 40 CFR 90.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine...

  1. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  2. EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN BURNING

    EPA Science Inventory

    A detailed literature search was performed to collect and collate available data reporting emissions of toxic organic substances into the air from open burning sources. Availability of data varied according to the source and the class of air toxics of interest. Volatile organic c...

  3. CFD Analysis to Study Effect of Circular Vortex Generator Placed in Inlet Section to Investigate Heat Transfer Aspects of Solar Air Heater

    PubMed Central

    Gawande, Vipin B.; Dhoble, A. S.; Zodpe, D. B.

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251

  4. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater.

    PubMed

    Gawande, Vipin B; Dhoble, A S; Zodpe, D B

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251

  5. Two-dimensional symmetrical inlets with external compression

    NASA Technical Reports Server (NTRS)

    Ruden, P

    1950-01-01

    The purpose of inlets like, for instance, those of air-cooled radiators and scoops is to take a certain air quantity out of the free stream and to partly convert the free-stream velocity into pressure. In the extreme case this pressure conversion may occur either entirely in the interior of the inlet (inlet with internal compression) or entirely in the free stream ahead of the inlet (inlet with external compression). In this report a theory for two-dimensional inlets with external compression is developed and illustrated by numerical examples. Intermediary forms between inlets with internal and external compression which can be derived from the latter are briefly discussed.

  6. Autoignition in a premixing-prevaporizing fuel duct using 3 different fuel injection systems at inlet air temperatures to 1250 K

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1983-01-01

    Conditions were determined in a continuous-flow, premixing-prevaporizing duct at which autoignition occurred. Test conditions were representative of an advanced, regenerative-cycle, automotive gas turbine. The test conditions inlet air temperatures from 600 to 1250 K (a vitiated preheater was used), pressures from 170 to 600 kPa, air velocities of 10 to 30 m/sec, equivalence ratios from 0.3 to 1.0, mixing lengths from 10 to 60 cm, and residence times of 2 to 100 ms. The fuel was diesel number 2. The duct was insulated and had an inside diameter of 12 cm. Three different fuel injection systems were used: One was a single simplex pressure atomizer, and the other two were multiple-source injectors. The data obtained with the simplex and one of the multiple-source injectors agreed satisfactorily with the references and correlated with an Arrenhius expression. The data obtained with the other multiple source injector, which used multiple cones to improve the fuel-air distribution, did not correlate well with residence time.

  7. Wind tunnel tests of a zero length, slotted-lip engine air inlet for a fixed nacelle V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.; Beck, W. E., Jr.; Glasgow, E. R.

    1982-01-01

    Zero length, slotted lip inlet performance and associated fan blade stresses were determined during model tests using a 20 inch diameter fan simulator in the NASA-LeRC 9 by 15 foot low speed wind tunnel. The model configuration variables consisted of inlet contraction ratio, slot width, circumferential extent of slot fillers, and length of a constant area section between the inlet throat and fan face. The inlet performance was dependent on slot gap width and relatively independent of inlet throat/fan face spacer length and slot flow blockage created by 90 degree slot fillers. Optimum performance was obtained at a slot gap width of 0.36 inch. The zero length, slotted lip inlet satisfied all critical low speed inlet operating requirements for fixed horizontal nacelles subsonic V/STOL aircraft.

  8. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Gauging devices, top loading and unloading devices... DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air...). In no case shall the wall thickness be less than that specified in § 179.201-1. (f) When top...

  9. Low flight speed acoustic results for a supersonic inlet with auxiliary inlet doors

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Glaser, F. W.; Lucas, J. G.

    1982-01-01

    A model supersonic inlet with auxiliary inlet doors and bounday layer bleeds was acoustically tested in simulated low speed flight up to Mach 0.2 in the NASA Lewis 9x15 Anechoic Wind Tunnel and statically in the NASA Lewis Anechoic Chamber. A JT8D refan model was used as the noise source. Data were also taken for a CTOL inlet and for an annular inlet with simulated centerbody support struts. Inlet operation with open auxiliary doors increased the blade passage tone by about 10 dB relative to the closed door configuration although noise radiation was primarily through the main inlet rather than the doors. Numerous strong spikes in the noise spectra were associated with the bleed system, and were strongly affected by the centerbody location. The supersonic inlet appeared to suppress multiple pure tone (MPT) generation at the fan source. Inlet length and the presence of support struts were shown not to cause this MPT suppression.

  10. Actuated Attic Inlets: A Progress Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attic inlets are being widely employed by poultry growers to alleviate high fuel costs during the brooding period. Pre-heated inlet air can reduce fuel usage and estimates for fuel savings were derived from field reports. Fuel usage was estimated for both large and small bird flocks for one year’...

  11. Oscillations of a sessile droplet in open air

    NASA Astrophysics Data System (ADS)

    Korenchenko, A. E.; Beskachko, V. P.

    2013-11-01

    The open system consisting of a sessile drop, a neutral gas, and a substrate is analyzed by numerical methods. The mode with constant contact angle is considered. The model takes into account evaporation from drop surface, free and forced convection in gas, buoyancy, and Marangoni effect in the liquid phase. It was established that every considered mechanical and thermodynamical disturbance of the system leads to the drop surface oscillations, and thus a drop in an open air oscillates almost inevitably. The displacement of the liquid-gas interface due to oscillations is analyzed in terms of its impact on the accuracy of measurement of the surface tension by sessile drop method.

  12. Design and performance of large telescopes operated in open air

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo

    1986-01-01

    Innovative designs of enclosures are being studied for the generation of large telescopes which are presently being developed, essentially in order to keep costs from increasing unacceptably with the size of the telescopes. These studies and the generally positive experience with MMT-type buildings, largely open to the wind during observation times, are confirming the trend toward a radical change of philosophy in the concept for telescope enclosures. The aim of the preliminary studies was to achieve a comprehensive view of the different aspects of the open air environment and their influence on the design of the telescope and its performance. The paper describes some of these studies.

  13. Oscillations of a sessile droplet in open air

    SciTech Connect

    Korenchenko, A. E.; Beskachko, V. P.

    2013-11-15

    The open system consisting of a sessile drop, a neutral gas, and a substrate is analyzed by numerical methods. The mode with constant contact angle is considered. The model takes into account evaporation from drop surface, free and forced convection in gas, buoyancy, and Marangoni effect in the liquid phase. It was established that every considered mechanical and thermodynamical disturbance of the system leads to the drop surface oscillations, and thus a drop in an open air oscillates almost inevitably. The displacement of the liquid-gas interface due to oscillations is analyzed in terms of its impact on the accuracy of measurement of the surface tension by sessile drop method.

  14. Internal Performance of Several Auxiliary Air Inlets Immersed in a Turbulent Boundary Layer at Mach Numbers of 1.3, 1.5, and 2.0

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G; Anderson, Arthur R

    1957-01-01

    Internal performance of normal-shock rectangular, circular, and scoop inlets and of external-compression inlets experimentally obtained with varying immersion in a turbulent boundary layer. Recoveries varied from about 95 percent of theoretical in the free stream to 80 percent with complete immersion, while the corresponding mass flows were usually above 95 percent of theoretical. Turning of the flow through 10 degrees caused losses in pressure recovery of 0.03 to 0.07. External compression did not improve pressure recovery in the boundary layer. Average distortion at critical operation for all inlets was 5 percent.

  15. Synthesis of carbon nanotubes by arc discharge in open air.

    PubMed

    Paladugu, Mohan Chand; Maneesh, K; Nair, P Kesavan; Haridoss, Prathap

    2005-05-01

    In this work Carbon nanotubes have been synthesized by arc discharge in open air. A TIG welding ac/dc inverter was used as the power source for arc discharge. During each run of the arc discharge based synthesis, the anode was a low purity (approximately 85% C by weight) graphite rod. The effect of varying the atmosphere on the yield of soot of the carbon nanotube containing carbon soot has been studied. Various soots were produced, purified by oxidation and characterized to confirm formation of carbon nanotubes and their relative quality, using transmission electron microscopy, Raman spectroscopy, and XRD. It was found that the yield of soot formed on the cathode is higher when synthesis is carried out in open air than when carried out in a flowing argon atmosphere. When synthesized in open air, using a 7.2-mm-diameter graphite rod as anode, the yield of soot was around 50% by weight of the graphite consumed. Current and voltage for arcing were at identical starting values in all the experiments. This modified method does not require a controlled atmosphere as in the case of a conventional arc discharge method of synthesis and hence the cost of production may be reduced. PMID:16010933

  16. Numerical Analysis of Thermal Comfort at Open Air Spaces

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  17. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  18. Tests of Hypersonic Inlet Oscillatory Flows in a Shock Tunnel

    NASA Astrophysics Data System (ADS)

    Li, Zhufei; Gao, Wenzhi; Jiang, Hongliang; Yang, Jiming

    For efficient operation, hypersonic air breathing engine requires the inlet to operate in a starting mode [1]. High backpressure induced by the combustion may cause the inlet to unstart in the engine actual operation [2].When unstarted, shock wave oscillations are typically observed in the inlet, a phenomenon known as buzz.

  19. Cloud-Droplet Ingestion in Engine Inlets with Inlet Velocity Ratios of 1.0 and 0.7

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J

    1957-01-01

    The paths of cloud droplets into two engine inlets have been calculated for a wide range of meteorological and flight conditions. The amount of water in droplet form ingested by the inlets and the amount and distribution of water impinging on the inlet walls are obtained from these droplet-trajectory calculations. In both types of inlet, a prolate ellipsoid of revolution represents either part or all of the forebody at the center of an annular inlet to an engine. The configurations can also represent a fuselage of an airplane with side ram-scoop inlets. The studies were made at an angle of attack of 0 degree. The principal difference between the two inlets studied is that the inlet-air velocity of one is 0.7 that of the other. The studies of the two velocity ratios lead to some important general concepts of water ingestion in inlets.

  20. Inlet Housing for a Partial-Admission Turbine

    NASA Technical Reports Server (NTRS)

    Moye, Ralph; Myers, William; Baker, Kevin

    2004-01-01

    An inlet housing for a partial-admission turbine has been designed to cause the inlet airflow to make a smooth transition from an open circular inlet to an inlet slot. The smooth flow is required for purposes of measuring inlet flow characteristics and maximizing the efficiency of the turbine. A partial-admission turbine is a turbine in which the inlet slot occupies less than a complete circle around the rotor axis. In this case, the inlet slot occupies a 90 arc. The present special inlet-housing design is needed because the "bull nose" shape of a conventional turbine inlet housing fails to provide the required smooth transition in a partial-admission configuration and thereby gives rise to a loss of turbine efficiency and inaccuracies in inlet flow measurements. Upon entering the inlet housing through the circular opening, the flow encounters a "tongue"-shaped passageway, which serves as a ramp that diverts the flow to the first of two straight passages. This first passageway occupies a 90 arc and has a length equal to two passage heights. Instrumentation rakes for measuring the characteristics of the inlet flow are installed in this passageway. Just past the first straight passageway is the second one, which is narrower and leads to the 90 turbine inlet slot. This passageway is used to smooth the flow immediately prior to its passage through the turbine inlet slot. The length of this second passageway equals the length of the chord of a turbine vane. The inlet housing incorporates small ports for measuring static pressures at various locations of the flow, and incorporates bosses for the installation of the instrumentation rakes. The inlet housing also includes a flange at its inlet end for attachment to a circular inlet duct and a flange at its outlet end for attachment to the outer casing of the turbine.

  1. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGESBeta

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  2. Surface charge accumulation of particles containing radionuclides in open air

    SciTech Connect

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.

  3. Open air demolition of facilities highly contaminated with plutonium

    SciTech Connect

    Lloyd, E.R.; Lackey, M.B.; Stevens, J.M.; Zinsli, L.C.

    2007-07-01

    The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than 'hands on' techniques. (authors)

  4. OPEN AIR DEMOLITION OF FACILITIES HIGHLY CONTAMINATED WITH PLUTONIUM

    SciTech Connect

    LLOYD, E.R.

    2007-05-31

    The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than ''hands on'' techniques.

  5. Wave and Wind Effects on Inlet Circulation

    NASA Astrophysics Data System (ADS)

    Raubenheimer, B.; Wargula, A.; Orescanin, M. M.; Hopkins, J.; Elgar, S.

    2014-12-01

    Observations and numerical simulations of the water circulation and morphological change in two separate, well-mixed inlets will be compared with each other. Tides, winds, waves, and currents were measured from May 1 to 28, 2012 in and near New River Inlet, NC. Offshore significant wave heights were 0 to 3 m, and wind speeds ranged from 0 to 16 m/s. The long, narrow inlet is about 1000 m wide where it opens onto the ebb shoal, narrows to 100 m wide about 1000 m inland, and connects to the Intracoastal Waterway (which connects to additional ocean inlets about 12 and 36 km north and south, respectively) about 3000 m inland. Tides in the inlet are progressive and inlet flows are in phase with water depths. Measurements also were collected during the summers of 2011-2014, including during Hurricanes Irene and Sandy (offshore significant wave heights > 5 m and winds > 15 m/s), in Katama Bay, MA, which connects to Vineyard Sound via Edgartown Channel and to the Atlantic Ocean via Katama Inlet. During this period, Katama Inlet migrated east about 1000 m, narrowed from 400 to 100 m wide, changed depth from 7 to 2 m, and lengthened from 200 to 1000 m. Tidal flows in Katama Inlet are forced by sea level gradients resulting from the 3-hr phase lag between tides in Vineyard Sound and the Atlantic Ocean. Analyses of the momentum balances suggest that waves drive flows into the mouths of the inlets during storms. The timing of the storms relative to ebb and flood, and wind effects, may affect the discharge and sediment transport through the inlet. Winds and waves also drive alongshore flows on the ebb shoals. Lateral flows at bends in New River Inlet, which may be important to the along-inlet transfer of momentum and to mixing, are affected by winds. The importance of connections to additional inlets in multi-inlet systems will be discussed. Funded by ONR, ASD(R&E), NSF, Sea Grant, and NDSEG.

  6. Airflow control system for supersonic inlets

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A. (Inventor); Sanders, B. W.

    1974-01-01

    In addition to fixed and variable bleed devices provided for controlling the position of a terminal shock wave in a supersonic inlet, a plurality of free piston valves are disposed around the periphery of a cowling of a supersonic engine inlet. The free piston valves are disposed in dump passageways, each of which begin at a bleed port in the cowling that is located in the throat region of the inlet, where the diameter of the centerbody is near maximum, and terminates at an opening in the cowling adjacent a free piston valve. Each valve is controlled by reference pressure.

  7. Rapid breakdown mechanisms of open air nanosecond dielectric barrier discharges.

    PubMed

    Ito, Tsuyohito; Kanazawa, Tatsuya; Hamaguchi, Satoshi

    2011-08-01

    The discharge initiation mechanism of nanosecond dielectric barrier discharges in open air has been clarified with time-dependent measurement of the discharge electric field by electric-field-induced coherent Raman scattering and optical emission. Our experimental observations have revealed that, in the prebreakdown phase of a nanosecond dielectric barrier discharge, the externally applied fast-rising electric field is strongly enhanced near the cathode due to large accumulation of space charge, which then strongly enhances ionization near the cathode. Once a sufficiently large number of ionizations take place, the location of peak ionization forms a front and propagates toward the cathode with strong optical emission, which establishes the discharge. This process is essentially different from the well-known Townsend mechanism for slower discharges. PMID:21902331

  8. Rapid Breakdown Mechanisms of Open Air Nanosecond Dielectric Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito; Kanazawa, Tatsuya; Hamaguchi, Satoshi

    2011-08-01

    The discharge initiation mechanism of nanosecond dielectric barrier discharges in open air has been clarified with time-dependent measurement of the discharge electric field by electric-field-induced coherent Raman scattering and optical emission. Our experimental observations have revealed that, in the prebreakdown phase of a nanosecond dielectric barrier discharge, the externally applied fast-rising electric field is strongly enhanced near the cathode due to large accumulation of space charge, which then strongly enhances ionization near the cathode. Once a sufficiently large number of ionizations take place, the location of peak ionization forms a front and propagates toward the cathode with strong optical emission, which establishes the discharge. This process is essentially different from the well-known Townsend mechanism for slower discharges.

  9. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  10. Attic Inlet Technology Update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attic inlets are a popular addition for new construction and energy saving retrofits. Proper management of attic inlets is necessary to get maximum benefits from the system and reduce the likelihood of moisture-related problems in the structure. Solar energy levels were determined for the continen...

  11. Experimental and numerical study of open-air active cooling

    NASA Astrophysics Data System (ADS)

    Al-Fifi, Salman Amsari

    The topic of my thesis is Experimental and Numerical Study of Open Air Active Cooling. The present research is intended to investigate experimentally and Numerically the effectiveness of cooling large open areas like stadiums, shopping malls, national gardens, amusement parks, zoos, transportation facilities and government facilities or even in buildings outdoor gardens and patios. Our cooling systems are simple cooling fans with different diameters and a mist system. This type of cooling systems has been chosen among the others to guarantee less energy consumption, which will make it the most favorable and applicable for cooling such places mentioned above. In the experiments, the main focus is to study the temperature domain as a function of different fan diameters aerodynamically similar in different heights till we come up with an empirical relationship that can determine the temperature domain for different fan diameters and for different heights of these fans. The experimental part has two stages. The first stage is devoted to investigate the maximum range of airspeed and profile for three different fan diameters and for different heights without mist, while the second stage is devoted to investigate the maximum range of temperature and profile for the three different diameter fans and for different heights with mist. The computational study is devoted to built an experimentally verified mathematical model to be used in the design and optimization of water mist cooling systems, and to compare the mathematical results to the experimental results and to get an insight of how to apply such evaporative mist cooling for different places for different conditions. In this study, numerical solution is presented based on experimental conditions, such dry bulb temperature, wet bulb temperature, relative humidity, operating pressure and fan airspeed. In the computational study, all experimental conditions are kept the same for the three fans except the fan airspeed

  12. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...

  13. Extra-Curricular Social Studies in an Open Air History Museum

    ERIC Educational Resources Information Center

    Morris, Ronald Vaughan

    2008-01-01

    This article discusses extra-curricular social studies in an Open Air History Museum. Open Air History Museum, Conner Prairie Interpretive Park in Fishers, Indiana, is a cultural institution that encourages and supports talented students as they participate in an extra-curricular program. Ten-to sixteen-year-old youths "apply for jobs" as youth…

  14. Dual-Comb Spectroscopy in the Open Air

    NASA Astrophysics Data System (ADS)

    Rieker, Greg B.; Klose, Andrew; Diddams, Scott; Coddington, Ian; Giorgetta, Fabrizio; Sinclair, Laura; Baumann, Esther; Truong, Gar-Wing; Ycas, Gabriel; Swann, William C.; Newbury, Nathan R.

    2015-06-01

    Dual-comb spectroscopy is arguably the natural successor to FTIR. Based on the interference between two frequency combs, this technique can record broadband spectra with a resolution better than 0.0003 wn. Like FTIR, dual-comb spectroscopy measures an entire spectrum simultaneously, allowing for suppression of systematic errors related to temporal dynamics of the sample. Unlike FTIR it records the entire spectrum with virtually no instrument lineshape or error in the frequency axis. The lack of moving parts in dual-comb spectroscopy means that spectra can be recorded in milliseconds to microseconds with the desired signal-to-noise being the only real constrain on the minimum recording time. Finally the high spacial beam quality of the frequency combs allows for increased sensitivity through long interaction paths either in free-space, multi-pass cells or enhancement cavities. This talk will explore the recent use of dual-comb spectroscopy in the near-infrared to measure atmospheric carbon dioxide, methane and water concentrations over a 2-km outdoor open-air path. Due to many of the strengths just mentioned, precisions of <1 ppm for CO_2 and <3 ppb for CH_4 in 5 min are achieved making this system very attractive for carbon monitoring at length scales relevant to carbon transport models. Additionally this presentation will address recent work on robust, compact, and portable dual-comb spectrometers as well as dual-comb spectroscopy further into the IR.

  15. Improving commercial broiler attic inlet ventilation thorugh CFD analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of solar heated attic air is an area of increasing interest in commercial poultry production. Attic inlets satisfy the demand for alternative heating while being simple to implement in an existing poultry house. A number of demonstration projects have suggested that attic inlets may decrease...

  16. The "Trotter" Open-Air School, Milan (1922-1977): A City of Youth or Risky Business?

    ERIC Educational Resources Information Center

    Thyssen, Geert

    2009-01-01

    This article inserts the concept of risk in the context of open-air schools and investigates its implications, capacities and limits. It is contended that applying at-risk labels to pupils who attended open-air schools is itself a risky business. The category to some extent constitutes an anomaly within most open-air schools' histories, as much of…

  17. Hypersonic Inlet for a Laser Powered Propulsion System

    NASA Astrophysics Data System (ADS)

    Harrland, Alan; Doolan, Con; Wheatley, Vincent; Froning, Dave

    2011-11-01

    Propulsion within the lightcraft concept is produced via laser induced detonation of an incoming hypersonic air stream. This process requires suitable engine configurations that offer good performance over all flight speeds and angles of attack to ensure the required thrust is maintained. Stream traced hypersonic inlets have demonstrated the required performance in conventional hydrocarbon fuelled scramjet engines, and has been applied to the laser powered lightcraft vehicle. This paper will outline the current methodology employed in the inlet design, with a particular focus on the performance of the lightcraft inlet at angles of attack. Fully three-dimensional turbulent computational fluid dynamics simulations have been performed on a variety of inlet configurations. The performance of the lightcraft inlets have been evaluated at differing angles of attack. An idealized laser detonation simulation has also been performed to validate that the lightcraft inlet does not unstart during the laser powered propulsion cycle.

  18. Analysis of Scramjet Inlets

    NASA Technical Reports Server (NTRS)

    Kumar, A.

    1986-01-01

    NASCRIN analyzes two-dimensional flow fields in supersonic combustion ramjet (scramjet) inlets. Solves two-dimensional Euler or Navier-Strokes equations in conservative form by unsplit, explicit, two-step finitedifference method. More recent explicit/implicit, two-step scheme also incorporated for viscous flow analysis. Algebraic, two-layer eddy-viscosity model used for turbulent flow calculations.

  19. VIEW OF TUMALO FEED CANAL INLET STRUCTURE TO PIPELINE BETWEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TUMALO FEED CANAL INLET STRUCTURE TO PIPELINE BETWEEN THE CONCRETE CHANNEL AND UNLINED OPEN CHANNEL NEAR THE BEND FEED CANAL INTERSECTION. LOOKING NORTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  20. EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN BURNING: A COMPREHENSIVE REVIEW

    EPA Science Inventory

    A detailed literature search was performed to collect and collate available data reporting emissions of organic air toxics from open burning sources. Availability of data varied according to the source and the class of air toxics of interest, and there were several sources for wh...

  1. Air filtering device

    SciTech Connect

    Backus, A.L.

    1992-07-28

    This patent describes a room air cleaning device. It comprises: a box housing having an air inlet and an air outlet provided therein; a vertical baffle coupled to the box housing opposite the air outlet and spaced form the box housing such that an air egress outlet is formed between the vertical baffle and the box housing; air cleansing means substantially disposed within the box housing and cleansing air passing into the inlet and out of the air egress outlet; a fan disposed within the box housing, the fan providing air movement through the air inlet and the air egress outlet; wherein air exits the room air cleaning device through the air egress outlet as a vertical plane of moving air; and wherein formation of the vertical plane of moving air contributes to the formation of a low pressure area drawing impure air toward the air inlet.

  2. The effect of aircraft inlets on the behaviour of aero engine axial flow compressors

    NASA Astrophysics Data System (ADS)

    Freeman, Christopher J.

    The air inlet and its effect on turbocompressors are described, covering the following: the engine aircraft operating envelopes, inlet loading, interaction between inlet and compressor, compression distortion tolerance, response of compressor to inlet total pressure distortion, inlet and outlet static pressure distribution, and other threats to compressor stability due to inlet. The following conclusions are made: the aircraft operating envelope is demanding of the inlet when the pressures to reduce size cost, weight, and drag are obvious; the inlet separates at the edges of the envelope; the separation can be reduced by applying well known scaling laws; this asymmetric separation can degrade the compressor surge margin; and the stability margin of the engine can be affected by other features of the inlet.

  3. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control...

  4. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control...

  5. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control...

  6. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control...

  7. Automatic calibration of the inlet pressure sensor for the implantable continuous-flow ventricular assist device.

    PubMed

    Shi, Wei; Saito, Itsuro; Isoyama, Takashi; Nakagawa, Hidemoto; Inoue, Yusuke; Ono, Toshiya; Kouno, Akimasa; Imachi, Kou; Abe, Yusuke

    2011-06-01

    Significant progress in the development of implantable ventricular assist devices using continuous-flow blood pumps has been made recently. However, a control method has not been established. The blood pressure in the inflow cannula (inlet pressure) is one of the candidates for performing an adequate control. This could also provide important information about ventricle sucking. However, no calibration method for an inlet pressure sensor exists. In this study, an automatic calibration algorithm of the inlet pressure sensor from the pressure waveform at the condition of ventricle sucking was proposed. The calibration algorithm was constructed based on the consideration that intrathoracic pressure could be substituted for atmospheric pressure because the lung is open to air. We assumed that the inlet pressure at the releasing point of the sucking would represent the intrathoracic pressure, because the atrial pressure would be low owing to the sucking condition. A special mock circulation system that can reproduce ventricle sucking was developed to validate the calibration algorithm. The calibration algorithm worked well with a maximum SD of 2.1 mmHg for 3-min measurement in the mock circulation system. While the deviation was slightly large for an elaborate calibration, it would still be useful as a primitive calibration. The influence of the respiratory change and other factors as well as the reliability of the calibration value should be investigated with an animal experiment as a next step. PMID:21373781

  8. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  9. Analysis of Scramjet Inlets

    NASA Technical Reports Server (NTRS)

    Kumar, A.

    1987-01-01

    NASCRIN program analyzes two-dimensional flow fields in supersoniccombustion ramjet (scramjet) inlets. Solves two-dimensional Euler or Navier-Stokes equations in conservative form by unsplit, explicit, two-step finite-difference method. More recent explicit/implicit, two-step scheme incorporated by analysis of viscous flow. Algebraic, two-layer eddy-viscosity model used for turbulent-flow calculations. Vectorized version, written for CDC CYBER 205, whereas scalar version, can be run on CRAY or other scalar computers.

  10. Using Open and Interoperable Ways to Publish and Access LANCE AIRS Near-Real Time Data

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Lynnes, C.; Vollmer, B.; Savtchenko, A. K.; Yang, W.

    2011-12-01

    Atmospheric Infrared Sounder (AIRS) Near-Real Time (NRT) data from the Land Atmosphere Near real time Capability for EOS (LANCE) provide the information on the global and regional atmospheric state with very low latency. An open and interoperable platform is useful to facilitate access to and integration of LANCE AIRS NRT data. This paper discusses the use of open-source software components to build Web services for publishing and accessing AIRS NRT data in the context of Service Oriented Architecture (SOA). The AIRS NRT data have also been made available through an OPeNDAP server. OPeNDAP allows several open-source netCDF-based tools such as Integrated Data Viewer, Ferret and Panoply to directly display the Level 2 data over the network. To enable users to locate swath data files in the OPeNDAP server that lie within a certain geographical area, graphical "granule maps" are being added to show the outline of each file on a map of the Earth. The metadata of AIRS NRT data and services is then explored to implement information advertisement and discovery in catalogue systems. Datacasting, an RSS-based technology for accessing Earth Science data and information to facilitate the subscriptions to AIRS NRT data availability, filtering, downloading and viewing data, is also discussed. To provide an easy entry point to AIRS NRT data and services, a Web portal designed for customized data downloading and visualization is introduced.

  11. Open-loop heat-recovery dryer

    SciTech Connect

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  12. Antarctic Air Visits Paranal — Opening New Science Windows

    NASA Astrophysics Data System (ADS)

    Kerber, F.; Kuntschner, H.; Querel, R. R.; van den Ancker, M.

    2014-03-01

    Extremely low humidity (precipitable water vapour [PWV] of ~ 0.1 mm) in the atmosphere above Paranal has been measured by a water vapour radiometer over a period of about 12 hours. PWV values < 0.2 mm are usually only found at very high altitude or in Antarctica. In fact a pocket of Antarctic air has been shown to be responsible for this phenomenon and it may occur a few times per year at Paranal. We highlight the science opportunities — created by new atmospheric windows — that arise in such conditions. The community is invited to provide feedback on how to make best use of low PWV with the VLT.

  13. Operating method for gas turbine with variable inlet vanes

    SciTech Connect

    Morishita, Susumu; Miyake, Yoshiyaki; Uchida, Seishi.

    1993-07-06

    A method is described of operating a gas turbine engine having a centrifugal compressor which is driven by a high-pressure turbine, and wherein the centrifugal compressor is the only compressor of the engine, comprising the steps of: positioning a variable inlet guide vane at an inlet air passage of the centrifugal compressor for adjusting the air flow rate through the engine; and changing the orientation of the guide vane while keeping the speed of rotation of the engine at a high level near its rated value to control the output of the engine by controlling the air flow rate through the engine.

  14. Air Brayton Solar Receiver, phase 1

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1979-01-01

    A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.

  15. Outbreaks associated to large open air festivals, including music festivals, 1980 to 2012.

    PubMed

    Botelho-Nevers, E; Gautret, P

    2013-01-01

    In the minds of many, large scale open air festivals have become associated with spring and summer, attracting many people, and in the case of music festivals, thousands of music fans. These festivals share the usual health risks associated with large mass gatherings, including transmission of communicable diseases and risk of outbreaks. Large scale open air festivals have however specific characteristics, including outdoor settings, on-site housing and food supply and the generally young age of the participants. Outbreaks at large scale open air festivals have been caused by Cryptosporium parvum, Campylobacter spp., Escherichia coli, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, hepatitis A virus, influenza virus, measles virus, mumps virus and norovirus. Faecal-oral and respiratory transmissions of pathogens result from non-compliance with hygiene rules, inadequate sanitation and insufficient vaccination coverage. Sexual transmission of infectious diseases may also occur and is likely to be underestimated and underreported. Enhanced surveillance during and after festivals is essential. Preventive measures such as immunisations of participants and advice on-site and via social networks should be considered to reduce outbreaks at these large scale open air festivals. PMID:23517872

  16. Ice Protection of Turbojet Engines by Inertia Separation of Water III : Annular Submerged Inlets

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing studies were conducted on a one-half-scale model of an annular submerged inlet for use with axial-flow turbojet engines. Pressure recoveries, screen radial-velocity profiles, circumferential mass-flow variations, and icing characteristics were determined at the compressor inlet. In order to be effective in maintaining water-free induction air, the inlet gap must be extremely small and ram-pressure recoveries consequently are low, the highest achieved being 65 percent at inlet-velocity ratio of 0.86. All inlets exhibited considerable screen icing. Severe mass-flow shifts occurred at angles of attack.

  17. Effect of alternative surface inlet designs on sediment and phosphorus drainage losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...

  18. Jet engine air intake system

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E.; Latham, E. A. (Inventor)

    1977-01-01

    An axisymmetric air intake system for a jet aircraft engine comprising a fixed cowl extending outwardly from the face of the engine, a centerbody coaxially disposed within the cowl, and an actuator for axially displacing the centerbody within the cowl was developed. The cowl and centerbody define a main airflow passageway therebetween, the configuration of which is changed by displacement of the centerbody. The centerbody includes a forwardly-located closeable air inlet which communicates with a centerbody auxiliary airflow passageway to provide auxiliary airflow to the engine. In one embodiment, a system for opening and closing the centerbody air inlet is provided by a dual-member centerbody, the forward member of which may be displaced axially with respect to the aft member.

  19. Experimental Investigation of Actuators for Flow Control in Inlet Ducts

    NASA Astrophysics Data System (ADS)

    Vaccaro, John; Elimelech, Yossef; Amitay, Michael

    2010-11-01

    Attractive to aircraft designers are compact inlets, which implement curved flow paths to the compressor face. These curved flow paths could be employed for multiple reasons. One of which is to connect the air intake to the engine embedded in the aircraft body. A compromise must be made between the compactness of the inlet and its aerodynamic performance. The aerodynamic purpose of inlets is to decelerate the oncoming flow before reaching the engine while minimizing total pressure loss, unsteadiness and distortion. Low length-to-diameter ratio inlets have a high degree of curvature, which inevitably causes flow separation and secondary flows. Currently, the length of the propulsion system is constraining the overall size of Unmanned Air Vehicles (UAVs), thus, smaller more efficient aircrafts could be realized if the propulsion system could be shortened. Therefore, active flow control is studied in a compact (L/D=1.5) inlet to improve performance metrics. Actuation from a spanwise varying coanda type ejector actuator and a hybrid coanda type ejector / vortex generator jet actuator is investigated. Special attention will be given to the pressure recovery at the AIP along with unsteady pressure signatures along the inlet surface and at the AIP.

  20. OpenAQ: A Platform to Aggregate and Freely Share Global Air Quality Data

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.; Flasher, J. C.; Veerman, O.; DeWitt, H. L.

    2015-12-01

    Thousands of ground-based air quality monitors around the world publicly publish real-time air quality data; however, researchers and the public do not have access to this information in the ways most useful to them. Often, air quality data are posted on obscure websites showing only current values, are programmatically inaccessible, and/or are in inconsistent data formats across sites. Yet, historical and programmatic access to such a global dataset would be transformative to several scientific fields, from epidemiology to low-cost sensor technologies to estimates of ground-level aerosol by satellite retrievals. To increase accessibility and standardize this disparate dataset, we have built OpenAQ, an innovative, open platform created by a group of scientists and open data programmers. The source code for the platform is viewable at github.com/openaq. Currently, we are aggregating, storing, and making publicly available real-time air quality data (PM2.5, PM10, SO2, NO2, and O3) via an Application Program Interface (API). We will present the OpenAQ platform, which currently has the following specific capabilities: A continuous ingest mechanism for some of the most polluted cities, generalizable to more sources An API providing data-querying, including ability to filter by location, measurement type and value and date, as well as custom sort options A generalized, chart-based visualization tool to explore data accessible via the API At this stage, we are seeking wider participation and input from multiple research communities in expanding our data retrieval sites, standardizing our protocols, receiving feedback on quality issues, and creating tools that can be built on top of this open platform.

  1. The Effect of the Inlet Mach Number and Inlet-boundary-layer Thickness on the Performance of a 23 Degree Conical-diffuser-tail-pipe Combination

    NASA Technical Reports Server (NTRS)

    Persh, Jerome

    1950-01-01

    An investigation was conducted to determine the effect of the inlet Mach number and entrance-boundary-layer thickness on the performance of a 23 degree 21-inch conical-diffuser - tail-pipe combination with a 2:1 area ratio. The air flows used in this investigation covered an inlet Mach number range from 0.17 to 0.89 and corresponding Reynolds numbers of 1,700,000 to 7,070,000. Results are reported for two inlet-boundary-layer thicknesses. Over the entire range of flows, the mean value of the inlet displacement thickness is about 0.034 inch for the thinner inlet boundary layer and about 0.170 inch for the case of the thicker inlet boundary layer. The performance of the diffuser - tail-pipe combination is presented together with examples of longitudinal static-pressure distribution and the results of boundary-layer pressure surveys made at six points along the diffuser wall. The results indicated a progressive diminution of the static-pressure recovery and a steady increase in the total-pressure losses as the inlet Mach number was increased for both inlet-boundary-layer thicknesses. The ratio of actual static-pressure rise to that theoretically possible was much less and the total-pressure losses were greater for the case of the thicker inlet boundary layer throughout the speed range investigated. With the thinner inlet boundary layer, flow separation occurred at the diffuser exit at all inlet Mach numbers.Unseparated flow alternating with separated flow was observed near the inlet at the higher velocities. For the case of the thicker inlet boundary layer, the origin of the separated region occurred in the vicinity of the inlet-duct-diffuser junction section at all Mach numbers.

  2. Effect of end-wall boundary layer and inlet turbulence on the flow field structures in the turbine stage

    NASA Astrophysics Data System (ADS)

    Jelinek, Tomas; Straka, Petr; Uruba, Vaclav

    2016-06-01

    The article deals with the effects of the inlet flow parameters on the flow field structures in axial turbine stage. The experiment was performed on the axial turbine stage rig with an air as a working medium. The variable inlet channel produced the different inlet turbulence intensity and different inlet end-wall boundary layer thickness, resp. different inlet velocity distribution was applied. The turbulence was measured by CTA probes. The measured parameters of the inlet velocity distribution and turbulence intensity across the inlet channel height are presented. Based on the experimental inlet parameters the CFD fully turbulent calculation of the flow field was made. The differences in outlet kinetic energy loss, outlet vane angle and the turbulence distribution in the vane mid-span section are depicted. Changes of secondary flow structures with the different inlet end-wall boundary layer thickness were observed on the vane outlet parameters.

  3. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  4. Ultra-high vacuum force, low air consumption pumps

    SciTech Connect

    Lasto, C.S.

    1989-11-14

    This patent describes a multi stage ejector assembly. It includes a solid elongate housing, a longitudinal cylindrical bore through the housing comprising a first venturi pump having a first converging-diverging venturi inlet nozzle opening through a first vacuum chamber in the cylindrical bore into the converging entrance of a first exit passage which opens through a second vacuum chamber into a second vacuum chamber into a second exit passage communicating with an outlet end of the cylindrical bore, first and second transverse bores inwardly from a side of the housing and each opening into the cylindrical bore at the first vacuum chamber, and a third transverse bore inwardly from a side of the housing and opening into the cylindrical bore at the second vacuum chamber. The first transverse bore comprising a second venturi pump having a second venturi inlet nozzle having an air flow consumption which is from about 5 to 15 times smaller than the air flow consumption of the first venturi inlet nozzle. The second venturi inlet nozzle opening through a maximum vacuum chamber into a converging-diverging venturi exit passage which opens into the cylindrical bore at the first vacuum chamber of the first venturi pump adjacent the converging entrance of the first exit passage.

  5. Radon-222 concentrations and decay-product equilibrium in dwellings and in the open air.

    PubMed

    Keller, G; Folkerts, K H

    1984-09-01

    Results are presented of measurements of the activity concentrations of 222Rn and its short-lived decay products and the 212Pb/212Bi concentrations in more than 200 dwellings in West Germany and in the open air. For more than 130 measurements of the equilibrium factor F in dwellings the median value was found to be 0.3. Measurements of F in the open air under various conditions resulted in a mean value of about 0.4. The results of the investigations showed that indoors F depends only slightly on ventilation, indoor 222Rn concentration and other parameters. The equilibrium factor F in the open air, however, was found to depend on meteorological conditions. Empirical correlations from the data obtained for the daughter/222Rn concentration ratios were derived to provide relations for the prediction of the individual daughter product concentrations at a measured 222Rn level. It was established that the daughter/222Rn concentration ratios for indoor air do not change within the range of 222Rn concentrations investigated (1-370 Bq X m-3). These relations, however, are not valid for the daughter/222Rn concentration ratios in outdoor air. The correlations derived further suggest that the individual daughter product concentrations may be assessed with sufficient accuracy by only measuring the 222Rn concentrations. Thus the daughter ratios obtained in this way should enable good estimates of the lung dose for members of the public due to inhalation of the short-lived 222Rn daughters and the dose contribution of the individual 222Rn-daughter products. PMID:6094394

  6. Storage corrosion of materials and equipment: Temperature-humidity and aerochemical regimes indoors and in the open air

    SciTech Connect

    Strekalov, P.V.

    1994-07-01

    The following storage factors are considered: (1) the temperature-humidity complex (THC) in the open air at representative sites with cold, moderate, and subtropical humid climate; (2) the temperature and humidity differences between the open air and an atmospheric of semiclosed spaces; (3) the THC inside storage-spaces in a humid tropical climate; (4) the concentration of SO{sub 2} and Cl{sup -} in the open air and in different storage-spaces; (5) the categories of corrosivity of the atmosphere and methods for its evaluation indoors and outdoors.

  7. Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things

    PubMed Central

    Kotsev, Alexander; Schade, Sven; Craglia, Massimo; Gerboles, Michel; Spinelle, Laurent; Signorini, Marco

    2016-01-01

    The widespread diffusion of sensors, mobile devices, social media and open data are reconfiguring the way data underpinning policy and science are being produced and consumed. This in turn is creating both opportunities and challenges for policy-making and science. There can be major benefits from the deployment of the IoT in smart cities and environmental monitoring, but to realize such benefits, and reduce potential risks, there is an urgent need to address current limitations, including the interoperability of sensors, data quality, security of access and new methods for spatio-temporal analysis. Within this context, the manuscript provides an overview of the AirSensEUR project, which establishes an affordable open software/hardware multi-sensor platform, which is nonetheless able to monitor air pollution at low concentration levels. AirSensEUR is described from the perspective of interoperable data management with emphasis on possible use case scenarios, where reliable and timely air quality data would be essential. PMID:26999160

  8. Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things.

    PubMed

    Kotsev, Alexander; Schade, Sven; Craglia, Massimo; Gerboles, Michel; Spinelle, Laurent; Signorini, Marco

    2016-01-01

    The widespread diffusion of sensors, mobile devices, social media and open data are reconfiguring the way data underpinning policy and science are being produced and consumed. This in turn is creating both opportunities and challenges for policy-making and science. There can be major benefits from the deployment of the IoT in smart cities and environmental monitoring, but to realize such benefits, and reduce potential risks, there is an urgent need to address current limitations, including the interoperability of sensors, data quality, security of access and new methods for spatio-temporal analysis. Within this context, the manuscript provides an overview of the AirSensEUR project, which establishes an affordable open software/hardware multi-sensor platform, which is nonetheless able to monitor air pollution at low concentration levels. AirSensEUR is described from the perspective of interoperable data management with emphasis on possible use case scenarios, where reliable and timely air quality data would be essential. PMID:26999160

  9. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  10. Evaluation of inlets used for the airborne measurement of formaldehyde

    NASA Astrophysics Data System (ADS)

    Wert, B. P.; Fried, A.; Henry, B.; Cartier, S.

    2002-07-01

    The performance of three aircraft inlets used for sampling gas-phase formaldehyde (CH2O) was evaluated. These 1.5 m long inlets were operated with the National Center for Atmospheric Research Tunable Diode Laser Absorption Spectrometer (TDLAS) at flow rates between 7 and 9 standard liters per minute. Laboratory tests were performed on the 1997 North Atlantic Regional Experiment (NARE 97) TDLAS inlet, involving a wide range of sample temperatures (-40° to 25°C), pressures (250-625 torr), relative humidities (<1 to 85%), and CH2O concentrations (0-25 ppbv). Standard additions on ambient air were performed in the field with another inlet. Sampling artifacts were not observed in either case at CH2O levels less than about 10 ppbv to within the measurement precision (25-120 parts per trillion by volume (1 min, 1σ)) and/or accuracy of standard generation (+/-6%). Desorption associated with the Herriott Cell was measured under highly polluted conditions, and was largely corrected for by subtracting a frequently acquired instrument background. Inlet shielding and heating minimized error due to liquid water collection. Common inlet materials such as PFA Teflon and silica-coated steel efficiently transmitted CH2O.

  11. Active Control of Rotating Stall Demonstrated for a Multistage Compressor With Inlet Distortion

    NASA Technical Reports Server (NTRS)

    VanSchalkwyk, Christian; Bright, Michelle M.; Suder, Kenneth L.; Straziar, Anthony J.; Thorp, Scott A.

    2001-01-01

    Aircraft compressors can suffer debilitating consequences as a result of rotating stall and surge events caused by inlet distortions. This is particularly true of aircraft during takeoff, when the compressor is operating at peak performance close to the surge line. Significant research has been conducted by the NASA Glenn Research Center in the area of compressor stability enhancement through active and passive control methods. Most recently, an experiment was conducted at the Wright Patterson Air Force Base Research Laboratory on a two-stage fan with inlet guide vanes and inlet distortion. In this joint Small Business Innovation Research effort between Scientific Systems and Glenn, control of rotating stall was demonstrated in a multistage transonic fan. This twostage fan with inlet guide vanes was tested under clean and distorted inlet conditions. The compressor was also configured with a circumferential distortion screen capable of 180 of distortion and with 14 high-velocity injectors upstream of the first rotor. Twelve of these injectors could oscillate up to frequencies of 450 Hz. The additional two injectors were located next to each other and were used in concert with each other as a single, on/off, high-authority actuator. In a first test of injection in this multistage environment, 12 of the valves were opened 50 percent of their full stroke to assess steady injection through the compressor. This baseline injection is shown in the compressor characteristic of the following figure, and stall margin improvements are tracked from this baseline condition. The compressor was then tested with clean inlet conditions using 12 injectors and active control. Pressure disturbances were tracked before rotating stall, and a constant gain control scheme reduced the stalling mass flow by 10.8 percent over the baseline. With the distortion screen present in the inlet, a pole-zero cancellation control scheme was used to achieve a 6.4-percent decrease in stalling mass flow

  12. An Autosampler and Field Sample Carrier for Maximizing Throughput Using an Open-Air, Surface Sampling Ion Source for MS

    EPA Science Inventory

    A recently developed, commercially available, open-air, surface sampling ion source for mass spectrometers provides individual analyses in several seconds. To realize its full throughput potential, an autosampler and field sample carrier were designed and built. The autosampler ...

  13. DESIGN AND PERFORMANCE OF A LOW FLOW RATE INLET

    EPA Science Inventory

    Several ambient air samplers that have been designated by the U. S. EPA as Federal Reference Methods (FRMs) for measuring particulate matter nominally less than 10 um (PM10) include the use of a particular inlet design that aspirates particulate matter from the atmosphere at 1...

  14. Experimental Surveys for Submerged Inlet

    NASA Astrophysics Data System (ADS)

    Jovanovic, Vasilije; Taskinoglu, Ezgi; Elliott, Gregory; Knight, Doyle

    2003-11-01

    The objective of the study is to define the Pareto set of designs for a subsonic submerged inlet that minimizes flow distortion and swirl at the engine face. A series of experimental surveys are performed to validate the accompanying computations and to provide additional information regarding the Pareto set. A stainless steel model with a removable submerged inlet (built using an FDM system) has been fabricated and installed in the Rutgers University subsonic wind tunnel. Boundary layer measurements upstream of the inlet are obtained by a computer-controlled traversing pitot tube. The estimated boundary layer thickness agrees closely with the computed profile. Detailed experiments are focused on the measurement of total pressure three diameters downstream of the exit of the inlet. A rotating multi-element pitot rack is fabricated and installed in the model, which is attached to the suction side of a blower to yield the appropriate mass flow rate through the inlet. Motion control, pressure and temperature data acquisition as well as management of the wind tunnel operations for all experiments are controlled by a LabView program developed at Rutgers University.

  15. Experimental investigation of cavitation in pump inlet

    NASA Astrophysics Data System (ADS)

    Sikora, Roman; Bureček, Adam; Hružík, Lumír; Vašina, Martin

    2015-05-01

    The article deals with experimental research of cavitation development in inlet tube of hydraulic pump. The pressures in inlet and outlet tube of the pump and flow rate were measured. Mineral oil was used as working fluid. The cavitation was visually evaluated in transparent inlet tube. The inlet tube underpressure was achieved by throttle valve. The relationship between the generation of bubbles and the inlet pressure is evaluated.

  16. Investigation of Aerodynamic and Icing Characteristics of Water-Inertia-Separation Inlets for Turbojet Engines

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Blatz, R. E.

    1950-01-01

    The results of an investigation of several internal water-inertia-separation inlets consisting of a main duct and an alternate duct designed to prevent automatically the entrance of large quantities of water into a turbojet engine in icing conditions are presented. Total-pressure losses and icing characteristics for a direct-ram inlet and the inertia-separation inlets are compared at similar aerodynamic and simulated icing conditions. Complete ice protection for inlet guide vanes could not be achieved with the inertia-separation inlets investigated. Approximately 8 percent of the volume of water entering the nacelles remained. In the air passing into the compressor inlet. Heavy alternate-duct-elbow ice formations caused by secondary inertia separation resulted in rapid total-pressure losses and decreases in mass flow. The duration in an icing condition for an inertia-separation- inlet, without local surface heating, was increased approximately four times above that for a direct-ram inlet with a compressor-inlet screen. For normal nonicing operation, the inertia-separation- inlet total-pressure losses were comparable to a direct-ram installation. The pressure losses and the circumferential uniformity of the mass flow in all the inlets were relatively independent of angle of attack. Use of an inertia-separation inlet would in most cases require a larger diameter nacelle than a direct-ram inlet in order to obtain an alternate duct sufficiently large to pass the required engine air flow at duct Mach numbers below 1.0 at the minimum area.

  17. 77 FR 420 - Drawbridge Operation Regulation; Corson Inlet, Stathmere, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... operation of the draw span; no openings will be allowed during the course of the project, while the railings on the moveable span portion of the bridge are replaced. DATES: This deviation is effective from 5 a... south through Townsends Inlet. Though the span will be closed for the project, the 15 feet of...

  18. Open hardware air quality station for monitoring ozone in port area

    NASA Astrophysics Data System (ADS)

    Massabo, Marco; Lima, Marco; Fedi, Adriano; Ferrari, Daniele; Pintus, Fabio; Bruzzone, Gabriele

    2015-04-01

    Improve the quality of the air is one of the most important challenges we are facing especially in urban area. The open hardware paradigm can promote the positive connection of institution and scientific community with citizen. The goal of this work is to describe how a well-known pollution sensing technology, such as the electrochemical one, may be adopted in an open hardware paradigm in order to realize a ground level ozone sensor station. Our approach is to use this type of sensors to complement and empower traditional measuring networks in order to provide a better support to the models and to the identification of the pollution sources. The calibration methodology is based on the online coupling of new sensor measurements and observations of official network. Several linear calibration and a linear error correction algorithm based on temperature are performed and evaluated. The new air quality station allows to increase the frequency of sampling up to minutes and, due to the low cost, can stimulate the utilization by no-professionals. We test the air quality station in portal area and compare the results with traditional observations.

  19. Using Open and Interoperable Ways to Publish and Access LANCE AIRS Near-Real Time Data

    NASA Technical Reports Server (NTRS)

    Zhao, Peisheng; Lynnes, Christopher; Vollmer, Bruce; Savtchenko, Andrey; Theobald, Michael; Yang, Wenli

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) Near-Real Time (NRT) data from the Land Atmosphere Near real-time Capability for EOS (LANCE) element at the Goddard Earth Sciences Data and Information Services Center (GES DISC) provides information on the global and regional atmospheric state, with very low temporal latency, to support climate research and improve weather forecasting. An open and interoperable platform is useful to facilitate access to, and integration of, LANCE AIRS NRT data. As Web services technology has matured in recent years, a new scalable Service-Oriented Architecture (SOA) is emerging as the basic platform for distributed computing and large networks of interoperable applications. Following the provide-register-discover-consume SOA paradigm, this presentation discusses how to use open-source geospatial software components to build Web services for publishing and accessing AIRS NRT data, explore the metadata relevant to registering and discovering data and services in the catalogue systems, and implement a Web portal to facilitate users' consumption of the data and services.

  20. Design and Analysis Tools for Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Folk, Thomas C.

    2009-01-01

    Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.

  1. Margaret and Rachel McMillan: Their Influences on Open-Air Nursery Education and Early Years Teacher Education

    ERIC Educational Resources Information Center

    Liebovich, Betty

    2014-01-01

    Rachel and Margaret McMillan created an open-air nursery in Deptford, London that has influenced early years education for 100 years. Their vision for young children living in poverty and deprivation to have access to fresh air through outdoor learning, nutritious meals, and an enriching environment to explore and develop has been embraced and…

  2. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  3. Design and performance of an atmospheric pressure inlet system for lithium ion attachment mass spectrometry.

    PubMed

    Selvin, P Christopher; Iwase, Keiichiro; Fujii, Toshihiro

    2002-05-01

    We designed a simple and efficient inlet system to act as an interface between samples at atmospheric pressure and the high vacuum inside a mass spectrometer. The newly designed stainless steel orifice leak sample inlet system is simple and rugged and fulfills all the basic requirements. With this inlet system coupled with a lithium ion attachment mass spectrometer, it is possible to detect any chemical species at atmospheric pressure, including radical intermediates, on a real-time basis. For illustrative purposes, the sampling efficiency of the inlet probe coupled with a lithium ion attachment mass spectrometer is discussed for laboratory air and polyethylene pyrolysis. PMID:12033306

  4. A preliminary design study of supersonic through-flow fan inlets

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1988-01-01

    From Mach 3.20 cruise propulsion systems, preliminary design studies for two supersonic through-flow fan primary inlets and a single core inlet were undertaken. Method of characteristics and one dimensional performance techniques were applied to assess the potential improvements supersonic through-flow fan technology has over more conventional systems. A fixed geometry supersonic through-flow fan primary inlet was found to have better performance than a conventional inlet design on the basis of total pressure recovery, air flow, aerodynamic drag and size and weight.

  5. A preliminary design study of supersonic through-flow fan inlets

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1988-01-01

    From Mach 3.20 cruise propulsion systems, preliminary design studies for two supersonic through-flow fan primary inlets and a single core inlet were undertaken. Method of characteristics and one-dimensional performance techniques were applied to assess the potential improvements supersonic through-flow fan technology has over more conventional systems. A fixed geometry supersonic through-flow fan primary inlet was found to have better performance than a conventional inlet design on the basis of total pressure recovery, air flow, aerodynamic drag and size and weight.

  6. An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010

    PubMed Central

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  7. An open-access modeled passenger flow matrix for the global air network in 2010.

    PubMed

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  8. Respiratory Symptoms of Vendors in an Open-Air Hawker Center in Brunei Darussalam

    PubMed Central

    Nazurah bt Abdul Wahid, Nurul Nor; Balalla, N. B. P; Koh, David

    2014-01-01

    Objectives: We studied respiratory problems among vendors exposed to cooking fumes in an open-air hawker center. Exposure to cooking fumes from either the use of fossil fuels or liquefied petroleum gas (LPG) has been shown to be associated with adverse respiratory health effects. Methods: We conducted a cross-sectional study among 67 food vendors exposed to cooking fumes as well as 18 merchandise sellers at an open-air hawker center in Brunei Darussalam. Past medical and smoking history and exposure to cooking fumes were obtained. The validated American Thoracic Society Questionnaire with a translated Malay version was used to ask for respiratory symptoms. Results: Compared to merchandise sellers (n = 18), cooking vendors (n = 67) had a higher self-reported respiratory symptoms (50.7% for those cooking and 33.3% for merchandise sellers). Cough (28.3%) was the main respiratory symptom experienced in cooking vendors and breathlessness (22.2%) among merchandise sellers. Half (50.0%) of cooking vendors who worked for more than 10 years had cough and 27.3% had phlegm. Those cooking with charcoal were two times more likely to have cough than those cooking with LPG. Cooking vendors with a job duration of more than 10 years were thrice more likely to have cough. Conclusion: Cooking vendors in the open-air hawker center exposed to cooking fumes had more respiratory symptoms compared to non-exposed merchandise sellers. The type of fuel used for cooking and duration of work was associated with increased prevalence of cough. PMID:25325051

  9. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    NASA Astrophysics Data System (ADS)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  10. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  11. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  12. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  13. Low speed test of the aft inlet designed for a tandem fan V/STOL nacelle

    NASA Technical Reports Server (NTRS)

    Rhoades, W. W.; Ybarra, A. H.

    1980-01-01

    An approximately .25 scale model of a Tandem Fan nacelle designed for a Type A V/STOL aircraft configuration was tested in a 10-by-10 foot wind tunnel. A 12 inch, tip driven, turbofan simulator was used to provide the suction source for the aft fan inlet. The front fan inlet was faired over for this test entry. Model variables consisted of a long aft inlet cowl, a short aft inlet cowl, a shaft simulator, blow-in door passages and diffuser vortex generators. Inlet pressure recovery, distortion, inlet angle of attack separation limits were evaluated at tunnel velocities from 0 to 240 knots, angles of attack from -10 to 40 degrees and inlet flow rates representative of throat Mach numbers of 0.1 to 0.6. High inlet performance and stable operation was verified at all design forward speed and angle of attack conditions. The short aft inlet configuration provided exceptionally high pressure recovery except at the highest combination of angle of attack and forward speed. The flow quality at the fan face was somewhat degraded by the addition of blow-in door passages to the long aft inlet configuration due to the pressure disturbances generated by the flow entering the diffuser through the auxiliary air passages.

  14. Inlet Flow Valve Engine Analyses

    NASA Technical Reports Server (NTRS)

    Champagne, G. A.

    2004-01-01

    Pratt&Whitney, under Task Order 13 of the NASA Large Engine Technology (LET) Contract, conducted a study to determine the operating characteristics, performance and weights of Inlet Flow Valve (IFV) propulsion concepts for a Mach 2.4 High Speed Civil Transport (HSCT).

  15. IPAC-Inlet Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1997-01-01

    A series of analyses have been developed which permit the calculation of the performance of common inlet designs. The methods presented are useful for determining the inlet weight flows, total pressure recovery, and aerodynamic drag coefficients for given inlet geometric designs. Limited geometric input data is required to use this inlet performance prediction methodology. The analyses presented here may also be used to perform inlet preliminary design studies. The calculated inlet performance parameters may be used in subsequent engine cycle analyses or installed engine performance calculations for existing uninstalled engine data.

  16. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  17. Analysis of an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1992-01-01

    A time marching Navier-Stokes code called PARC (PARC2D for 2-D/axisymmetric and PARC3D for 3-D flow simulations) was validated for an advanced ducted propeller (ADP) subsonic inlet. The code validation for an advanced ducted propeller (ADP) subsonic inlet. The code validation was implemented for a non-separated flow condition associated with the inlet operating at angles-of-attack of 0 and 25 degrees. The inlet test data were obtained in the 9 x 15 ft Low Speed Wind Tunnel at NASA Lewis Research Center as part of a cooperative study with Pratt and Whitney. The experimental study focused on the ADP inlet performance for take-off and approach conditions. The inlet was tested at a free stream Mach number of 0.2, at angles-of-attack between O and 35 degrees, and at a maximum propeller speed of 12,000 RPM which induced a corrected air flow rate of about 46 lb/sec based on standard day conditions. The computational grid and flow boundary conditions (BC) were based on the actual inlet geometry and the funnel flow conditions. At the propeller face, two types of BC's were applied: a mass flow BC and a fixed flow properties BC. The fixed flow properties BC was based on a combination of data obtained from the experiment and calculations using a potential flow code. Comparison of the computational results with the test data indicates that the PARC code with the propeller face fixed flow properties BC provided a better prediction of the inlet surface static pressures than the predictions when the mass flow BC was used. For an angle-of-attack of 0 degrees, the PARC2D code with the propeller face mass flow BC provided a good prediction of inlet static pressures except in the region of high pressure gradient. With the propeller face fixed flow properties BC, the PARC2D code provided a good prediction of the inlet static pressures. For an angle-of-attack of 25 degrees with the mass flow BC, the PARC3D code predicted statis pressures which deviated significantly from the test data

  18. Microbiological quality of fresh produce from open air markets and supermarkets in the Philippines.

    PubMed

    Vital, Pierangeli G; Dimasuay, Kris Genelyn B; Widmer, Kenneth W; Rivera, Windell L

    2014-01-01

    This study is the first in the Philippines to conduct a comprehensive assessment of the prevalence of bacterial pathogens and somatic phages in retailed fresh produce used in salad preparation, namely, bell pepper, cabbage, carrot, lettuce, and tomato, using culture and molecular methods. Out of 300 samples from open air and supermarkets, 16.7% tested positive for thermotolerant Escherichia coli, 24.7% for Salmonella spp., and 47% for somatic phages. Results show that counts range from 0.30 to 4.03 log10 CFU/g for E. coli, 0.66 to ≥ 2.34 log10 MPN/g for Salmonella spp., and 1.30 to ≥ 3.00 log 10 PFU/g for somatic phages. Statistical analyses show that there was no significant difference in the microbial counts between open air and supermarkets (α = 0.05). TaqMan and AccuPower Plus DualStar real-time polymerase chain reaction (RT-PCR) was used to confirm the presence of these organisms. The relatively high prevalence of microorganisms observed in produce surveyed signifies reduction in shelf-life and a potential hazard to food safety. This information may benefit farmers, consumers, merchants, and policy makers for foodborne disease detection and prevention. PMID:24963502

  19. Review of open-cycle desiccant air-conditioning concepts and systems

    SciTech Connect

    Wurm, J.

    1986-08-01

    This paper attempts to overview the development status of desiccant cooling. Over the past 30 years of progressively intensifying attention, this promising technology has become a domain of interest of many research agencies and manufacturing companies. As a result, the market potential for machines based on desiccant processes, particularly in comfort cooling and agricultural applications, is getting close to realization. One of the most important incentives of developing heat-activated, open-cycle desiccant cooling machines (air conditioners) has always been its potential simplicity. Such premise has been deceiving to a degree that in many instances has slowed the progress. However, the persistent analytical and material research brought some desiccant systems close to the marketplace. They provide attractive alternatives to consumers and utilities, offering particularly effective humidity and temperature control in cases of high fresh-air-makeup requirements. The control of bacteria, airborne particulates, as well as CO/sub 2/, combined with effective heating capability make them attractive for controlled-atmosphere agriculture. Finally, the capability of using low-temperature waste heat to drive the cycle becomes an important attribute of a desiccant concept, specifically when combined with a regular vapor-compression cooling machine in energy saving space-conditioning concepts. The presented assessment concludes that, particularly for specialized applications, machines based on open-cycle desiccant cooling processes are very close to playing an important role in the space-conditioning (including comfort control) marketplace.

  20. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    PubMed

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost. PMID:27295924

  1. 30 CFR 75.507-1 - Electric equipment other than power-connection points; outby the last open crosscut; return air...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... points; outby the last open crosscut; return air; permissibility requirements. 75.507-1 Section 75.507-1... other than power-connection points; outby the last open crosscut; return air; permissibility requirements. (a) All electric equipment, other than power-connection points, used in return air outby the...

  2. 30 CFR 75.507-1 - Electric equipment other than power-connection points; outby the last open crosscut; return air...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... points; outby the last open crosscut; return air; permissibility requirements. 75.507-1 Section 75.507-1... other than power-connection points; outby the last open crosscut; return air; permissibility requirements. (a) All electric equipment, other than power-connection points, used in return air outby the...

  3. Experimental Investigation of Flow Control in a Compact Inlet Duct

    NASA Astrophysics Data System (ADS)

    Debronsky, Brian; Amitay, Michael

    2012-11-01

    Attractive to aircraft designers are compact inlets, which implement curved flow paths from the air intake of the engine to the compressor face. A compromise must be made between the compactness of the inlet and its aerodynamic performance. The aerodynamic purpose of inlets is to decelerate the oncoming flow before reaching the engine while minimizing total pressure loss, unsteadiness and distortion. Low length-to-diameter ratio inlets have a high degree of curvature, which inevitably causes flow separation and secondary flows. To address this issue, active flow control was implemented on a compact (L/D = 1.6) inlet to improve its performance metrics. The experiments were conducted at a Mach number of 0.44, where the actuation from an array of skewed and pitched jets produced streamwise vortices opposite to the secondary flow structures. The actuation resulted in an improved pressure recovery at the aerodynamic interface plane (AIP), where both the strength of the secondary structures and the flow unsteadiness were significantly reduced. Northrop Grumman Corporation.

  4. A framework for air quality monitoring based on free public data and open source tools

    NASA Astrophysics Data System (ADS)

    Nikolov, Hristo; Borisova, Denitsa

    2014-10-01

    In the recent years more and more widely accepted by the Space agencies (e.g. NASA, ESA) is the policy toward provision of Earth observation (EO) data and end products concerning air quality especially in large urban areas without cost to researchers and SMEs. Those EO data are complemented by increasing amount of in-situ data also provided at no cost either from national authorities or having crowdsourced origin. This accessibility together with the increased processing capabilities of the free and open source software is a prerequisite for creation of solid framework for air modeling in support of decision making at medium and large scale. Essential part of this framework is web-based GIS mapping tool responsible for dissemination of the output generated. In this research an attempt is made to establish a running framework based solely on openly accessible data on air quality and on set of freely available software tools for processing and modeling taking into account the present status quo in Bulgaria. Among the primary sources of data, especially for bigger urban areas, for different types of gases and dust particles, noted should be the National Institute of Meteorology and Hydrology of Bulgaria (NIMH) and National System for Environmental Monitoring managed by Bulgarian Executive Environmental Agency (ExEA). Both authorities provide data for concentration of several gases just to mention CO, CO2, NO2, SO2, and fine suspended dust (PM10, PM2.5) on monthly (for some data on daily) basis. In the framework proposed these data will complement the data from satellite-based sensors such as OMI instrument aboard EOS-Aura satellite and from TROPOMI instrument payload for future ESA Sentinel-5P mission. Integral part of the framework is the modern map for the land use/land cover which is provided from EEA by initiative GIO Land CORINE. This map is also a product from EO data distributed at European level. First and above all, our effort is focused on provision to the

  5. An approach to optimum subsonic inlet design

    NASA Technical Reports Server (NTRS)

    Luidens, R. W.; Stockman, N. O.; Diedrich, J. H.

    1978-01-01

    Inlet operating requirements are compared with estimated inlet separation characteristics to identify the most critical inlet operating condition. This critical condition is taken to be the design point and is defined by the values of inlet mass flow, free-stream velocity and inlet angle of attack. Optimum flow distributions on the inlet surface were determined to be a high, flat top Mach number distribution on the inlet lip to turn the flow quickly into the inlet and a flat bottom skin-friction distribution on the diffuser wall to diffuse the flow rapidly and efficiently to the velocity required at the fan face. These optimum distributions are then modified to achieve other desirable flow characteristics. Example applications are given.

  6. An approach to optimum subsonic inlet design

    NASA Technical Reports Server (NTRS)

    Luidens, R. W.; Stockman, N. O.; Diedrich, J. H.

    1979-01-01

    The approach consists of comparing inlet operating requirements with estimated inlet separation characteristics to identify the most critical inlet operating condition. This critical condition is taken to be the design point and is defined by the values of inlet mass flow, free stream velocity, and inlet angle of attack. Optimum flow distributions on the inlet surface are determined to be a high, flat top Mach number distribution on the inlet lip to turn the flow quickly into the inlet and a low, flat bottom skin friction distribution on the diffuser wall to diffuse the flow rapidly and efficiently to the velocity required at the fan face. These optimum distributions are then modified to achieve other desirable flow characteristics. Example applications are given. Extension of the method is suggested.

  7. Effect of piano-key shape inlet on critical submergence at a vertical pipe intake

    NASA Astrophysics Data System (ADS)

    Shemshi, R.; Kabiri-Samani, A.

    2012-11-01

    Intake vortices are the result of angular momentum conservation at the flow constriction, where angular velocity increases with a decrease in the cross sectional area. The common solution for avoiding air-entrainment and swirl is to provide sufficient submergence to the intake. If the required approach flow conditions can not be met to avoid swirl and air entrainment, other approaches for preventing vortices at water intakes are considered. There are several means of avoiding air-entrainment, where the most cost-effective option is often determined by a physical model study. Among the most economical and common measures of reducing the effect of air-entrainment and swirl strength, is the optimized shape of inlet for instance by installing a Piano-Key inlet over the pipe intake. If Piano-Key inlet is used, then, its' optimum geometry should be studied experimentally. Since there is not any realized guidance for the use of Piano-Key inlets in pipe intakes, hence, a comprehensive set of model experiments have been carried out using Piano-Key inlets with different dimensions, with respect to the vertical pipe intakes, and four different pipe diameters of (D=) 75, 100, 125 and 150 mm. Results showed that by employing a Piano-Key inlet over the vertical pipe intake, the critical submergence reduces significantly. Fianally, according to the results, the effect of Piano-Key inlet geometry on critical submergence were evaluated in the form of realized relationships which would be of practical interest for design engineers.

  8. Air quality impact assessment of multiple open pit coal mines in northern Colombia.

    PubMed

    Huertas, José I; Huertas, María E; Izquierdo, Sebastián; González, Enrique D

    2012-01-01

    The coal mining region in northern Colombia is one of the largest open pit mining regions of the world. In 2009, there were 8 mining companies in operation with an approximate coal production of ∼70 Mtons/year. Since 2007, the Colombian air quality monitoring network has reported readings that exceed the daily and annual air quality standards for total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter smaller than 10 μm (PM₁₀) in nearby villages. This paper describes work carried out in order to establish an appropriate clean air program for this region, based on the Colombian national environmental authority requirement for modeling of TSP and PM(10) dispersion. A TSP and PM₁₀ emission inventory was initially developed, and topographic and meteorological information for the region was collected and analyzed. Using this information, the dispersion of TSP was modeled in ISC3 and AERMOD using meteorological data collected by 3 local stations during 2008 and 2009. The results obtained were compared to actual values measured by the air quality monitoring network. High correlation coefficients (>0.73) were obtained, indicating that the models accurately described the main factors affecting particle dispersion in the region. The model was then used to forecast concentrations of particulate matter for 2010. Based on results from the model, areas within the modeling region were identified as highly, fairly, moderately and marginally polluted according to local regulations. Additionally, the contribution particulate matter to the pollution at each village was estimated. Using these predicted values, the Colombian environmental authority imposed new decontamination measures on the mining companies operating in the region. These measures included the relocation of three villages financed by the mine companies based on forecasted pollution levels. PMID:22054578

  9. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  10. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet

  11. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test is to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III space suit across a range of workload and flow rates. As a secondary objective, results will be compared to the predicted CO2 concentrations and used to refine existing CFD models. These CFD models will then be used to help design an inlet vent configuration for the Z-2 space suit, which maximizes oronasal CO2 washout. This test has not been completed, but is planned for January 2014. The results of this test will be incorporated into this paper. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects will be tested in the Mark-III space suit with each subject performing two test sessions to allow for comparison between tests. Six different helmet inlet vent configurations will be evaluated during each test session. Suit pressure will be maintained at 4.3 psid. Subjects will wear the suit while walking on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) will be tested at each workload. Subjects will wear an oronasal mask with an open port in front of the mouth and will be allowed to

  12. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Realtime metabolic rate measurements were

  13. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements were

  14. Generic Hypersonic Inlet Module Analysis

    NASA Technical Reports Server (NTRS)

    Cockrell, Chares E., Jr.; Huebner, Lawrence D.

    2004-01-01

    A computational study associated with an internal inlet drag analysis was performed for a generic hypersonic inlet module. The purpose of this study was to determine the feasibility of computing the internal drag force for a generic scramjet engine module using computational methods. The computational study consisted of obtaining two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) solutions using the Euler and parabolized Navier-Stokes (PNS) equations. The solution accuracy was assessed by comparisons with experimental pitot pressure data. The CFD analysis indicates that the 3D PNS solutions show the best agreement with experimental pitot pressure data. The internal inlet drag analysis consisted of obtaining drag force predictions based on experimental data and 3D CFD solutions. A comparative assessment of each of the drag prediction methods is made and the sensitivity of CFD drag values to computational procedures is documented. The analysis indicates that the CFD drag predictions are highly sensitive to the computational procedure used.

  15. Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia.

    PubMed

    He, Congrong; Miljevic, Branka; Crilley, Leigh R; Surawski, Nicholas C; Bartsch, Jennifer; Salimi, Farhad; Uhde, Erik; Schnelle-Kreis, Jürgen; Orasche, Jürgen; Ristovski, Zoran; Ayoko, Godwin A; Zimmermann, Ralf; Morawska, Lidia

    2016-05-01

    Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10 to 30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning

  16. Characterization of a storm surge exposed arctic inlet: Shaktoolik, Alaska

    NASA Astrophysics Data System (ADS)

    Ohman, K. A.; Erikson, L. H.; Kinsman, N.

    2011-12-01

    The Inupiaq community of Shaktoolik, in northwestern Alaska is constructed on a low-lying barrier spit located on Norton Sound. The inhabited portion of the spit is ~200m across and vulnerable to flooding from both the open water and lagoon sides during storm events. Previously modeled storm events estimate elevated sea surfaces reaching a maximum storm surge of 6.4m (21 feet) in the Norton Sound region. Historical storm events have been documented every few years in the region, usually occurring during the fall, but storm surge heights in Shaktoolik have never been recorded. An inlet is located at the northern terminus of the barrier spit, adjacent to the community, and provides access for fishing boats to and from the sheltered lagoon. This research focuses on the responses of Shaktoolik's inlet to storm surge and subsequent flooding of the spit. Fieldwork conducted in July 2011 focused on mapping the on land and nearshore coastal morphology of the barrier system. Prior to this, limited baseline data about the Shaktoolik coastal zone was available. The research goals for this project are to understand the morphodynamics of the inlet and surrounding coastal area and to analyze impacts on the inlet by storm surge events. This study is in support of a larger geohazard mapping project with the Alaska Department of Geological and Geophysical Surveys. Onshore, beach profiles and wrackline positions were surveyed, and grain size samples were collected north and south of the inlet. These data provide insight into the longshore sediment transport patterns, past flood levels, and the extent of possible flooding and inundation in the future. In the nearshore, bathymetric data, current velocity measurements, and suspended and bedload sediment samples were obtained seaward of the spit, in the inlet, and within the lagoon. Nearshore measurements characterize the inlet channel depths and composition, and locate areas of sediment deposition. In addition, three months of fall

  17. Optimal control of a supersonic inlet to minimize frequency of inlet unstart

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Zeller, J. R.; Geyser, L. C.

    1978-01-01

    A preliminary investigation into the use of modern control theory for the design of controls for a supersonic inlet is described. In particular, the task of controlling a mixed-compression supersonic inlet is formulated as a linear optimal stochastic control and estimation problem. An inlet can exhibit an undesirable instability due to excessive inlet normal shock motion. For the optimal control formulation of the inlet problem, a non quadratic performance index, which is equal to the expected frequency of inlet unstarts, is used. This physically meaningful performance index is minimized for a range of inlet disturbance and measurement noise covariances.

  18. Flow interaction between multiple cross-flow inlets in a horizontal pipe or channel

    NASA Astrophysics Data System (ADS)

    Jha, Pranab N.; Smith, Chuck; Metcalfe, Ralph W.

    2013-11-01

    Incompressible flow in horizontal channels and pipes with multiple cross-flow inlets was studied numerically. Flow interference among the inlets was studied using an axisymmetric pipe flow model with five cross-flow inlets. Three basic flow regimes - trickle flow, partially blocked flow and fully blocked flow - were identified with respect to the blocking of upstream inlets by the downstream ones. The effects of inlet pressure and inlet size on the flow regimes under steady state conditions were studied. The presence of these regimes was supported by field data obtained from a horizontal natural gas well at two different times in the production cycle. Using a hydrostatic pressure model of reservoirs as the inlet boundary condition that drained fluid into the channel, the dynamic interaction of the inlets was studied. The transient behavior of the flow regimes was simulated and the key time-scales involved were identified. This is supported by field data where a similar behavior can be observed over time. Initially, the upstream inlets were in a blocked state, but opened up at a later time, leading to a trickle flow regime. Supported in Part by Apache Corporation.

  19. Determination of Nanogram Microparticles from Explosives after Real Open-Air Explosions by Confocal Raman Microscopy.

    PubMed

    Zapata, Félix; García-Ruiz, Carmen

    2016-07-01

    Explosives are increasingly being used for terrorist attacks to cause devastating explosions. The detection of their postblast residues after an explosion is a high challenge, which has been barely investigated, particularly using spectroscopic techniques. In this research, a novel methodology using confocal Raman microscopy has been developed for the analysis of postblast residues from 10 open-air explosions caused by 10 different explosives (TNT, RDX, PETN, TATP, HMTD, dynamite, black powder, ANFO, chloratite, and ammonal) commonly used in improvised explosive devices. The methodology for the determination of postblast particles from explosives consisted of examining the samples surfaces with both the naked eye, first, and microscopically (10× and 50×), immediately afterward; and finally, analyzing the selected residues by confocal Raman spectroscopy in order to identify the postblast particles from explosives. Interestingly, confocal Raman microscopy has demonstrated to be highly suitable to rapidly, selectively, and noninvasively analyze postblast microscopic particles from explosives up to the nanogram range. PMID:27281604

  20. Heat transfer from an open-wedge cavity to a symmetrically impinging slot air jet

    NASA Astrophysics Data System (ADS)

    Rahimi, Mostafa; Mazraeh, Adel Etefagh

    2014-08-01

    Heat transfer from an open-wedge cavity to a symmetrically impinging slot air jet is investigated at the present study. The effect of the cavity angle was mainly examined on the Nusselt number distribution. Based on the results, heat transfer was generally poor at the vicinity of the apex, rising to form a maximum at the impingement and then followed by a moderate decline at further distances. The region of maximum heat transfer on the surfaces shifted outward the cavity as the cavity angle was decreased. Also, average Nusselt number over an effective length of the surface remained almost constant and independent of the cavity angle for a specified jet Reynolds number and nozzle-to-apex spacing.

  1. Inlet Jet Interaction in Horizontal Pipe Flow

    NASA Astrophysics Data System (ADS)

    Jha, Pranab; Smith, Chuck; Metcalfe, Ralph

    2012-11-01

    Laminar incompressible flow (Re < 1000) inside a horizontal channel with multiple cross-flow inlets was studied numerically. First, two cross-flow inlets were used to observe the flow interference phenomenon between the inlets. This concept was extended to axisymmetric pipe flow with five cross-flow inlets. Three basic flow regimes - trickle flow, partially blocked flow and fully blocked flow - were identified with respect to the blocking of upstream inlets by the downstream ones. The effects of inlet pressure and different inlet sizes on the flow regimes under steady state condition were studied. A hydrostatic model of fluid reservoirs draining into the channel was constructed using a linear function for pressure at the inlet boundaries to study the dynamic behavior of the inlets. Three different time scales related to the depletion of the reservoirs were identified. The dynamic behavior of two cross-flow inlets was observed with the initial conditions corresponding to the three flow regimes. Similar study was carried out for a five-inlet case and the dynamic behavior of individual reservoirs was observed. The change of flow regimes in the system over time with reservoir draining was evident and the different time-scales involved were identified. Supported in Part by Apache Corporation.

  2. Scramjet including integrated inlet and combustor

    SciTech Connect

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  3. Dynamic simulation and safety evaluation of high-speed trains meeting in open air

    NASA Astrophysics Data System (ADS)

    Li, Songyan; Zheng, Zhijun; Yu, Jilin; Qian, Chunqiang

    2015-08-01

    Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with a multi-body dynamics method. The variations of degrees of freedom (DOFs: horizontal movement, roll angle, and yaw angle), the lateral wheel-rail force, the derailment coefficient, and the rate of wheel load reduction with time when two carriages meet in open air are obtained and compared with the results of a single train travelling at specified speeds. Results show that the rate of wheel load reduction increases with the increase of train speed and meets some safety standard at a certain speed, but exceeding the value of the rate of wheel load reduction does not necessarily mean derailment. The evaluation standard of the rate of wheel load reduction is somewhat conservative and may be loosened. The pressure pulse has significant effects on the train DOFs, and the evaluations of these safety indexes are strongly suggested in practice. The pressure pulse has a limited effect on the derailment coefficient and the lateral wheel-rail force, and, thus, their further evaluations may be not necessary.

  4. LOPES — Recent Results and Open Questions on the Radio Detection of Air Showers

    NASA Astrophysics Data System (ADS)

    Schröder, F. G.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schoo, S.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2015-08-01

    LOPES was a digital antenna array operating for approximately 10 years until spring 2013 at the Karlsruhe Institute of Technology (KIT). Triggered by the co-located KASCADE-Grande air-shower experiment, it measured the radio signal of around 1000 cosmic-ray air showers with energies E ≳ 1017 eV in an effective band of 43 - 74 MHz. Using the interferometric technique of cross-correlation beamforming, LOPES could reconstruct the shower direction with an accuracy < 0.7°, the shower energy with a precision < 20%, and the atmospheric depth of the shower maximum, Xmax, with a precision < 95g/cm2. In particular the reconstruction of the shower maximum suffers from significant measurement uncertainties due to the radio-loud environment of the site. This article summarizes our latest results on the reconstruction of the shower maximum, using two independent methods: the steepness of the hyperbolic radio wavefront and the slope of the lateral distribution of the radio amplitude. Moreover, we show vectorial measurements of the electric field with the tripole antennas of the latest LOPES setup. Finally, we discuss open questions as well as the potential impact of the lessons learned at LOPES for future antenna arrays.

  5. Dynamic simulation and safety evaluation of high-speed trains meeting in open air

    NASA Astrophysics Data System (ADS)

    Li, Songyan; Zheng, Zhijun; Yu, Jilin; Qian, Chunqiang

    2016-04-01

    Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with a multi-body dynamics method. The variations of degrees of freedom (DOFs: horizontal movement, roll angle, and yaw angle), the lateral wheel-rail force, the derailment coefficient, and the rate of wheel load reduction with time when two carriages meet in open air are obtained and compared with the results of a single train travelling at specified speeds. Results show that the rate of wheel load reduction increases with the increase of train speed and meets some safety standard at a certain speed, but exceeding the value of the rate of wheel load reduction does not necessarily mean derailment. The evaluation standard of the rate of wheel load reduction is somewhat conservative and may be loosened. The pressure pulse has significant effects on the train DOFs, and the evaluations of these safety indexes are strongly suggested in practice. The pressure pulse has a limited effect on the derailment coefficient and the lateral wheel-rail force, and, thus, their further evaluations may be not necessary.

  6. Ultra-lean combustion at high inlet temperatures

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Combustion at inlet-air temperatures of 1100 to 1250 K was studied for application to advanced automotive gas turbine engines. Combustion was initiated by the hot environment, and therefore no external ignition source was used. Combustion was stabilized without a flameholder. The tests were performed in a 12-cm-diameter test section at a pressure of 250,000 Pa, with reference velocities of 32 to 60 m/s and at maximum combustion temperatures of 1350 to 1850 K. Number 2 diesel fuel was injected by means of a multiple-source fuel injector. Unburned hydrocarbon emissions were negligible for all test conditions. Nitrogen oxide emissions were less than 1.9 g NO2/kg fuel for combustion temperatures below 1680 K. Carbon monoxide emissions were less than 16 g CO/kg fuel for combustion temperatures greater than 1600 K, inlet-air temperatures higher than 1150 K, and residence times greater than 4.3 ms.

  7. Tailored synthesis of nanostructures by laser irradiation of a precursor microdroplet stream in open-air.

    PubMed

    Palanco, S; Marino, S; Gabás, M; Ayala, L; Ramos-Barrado, J R

    2015-01-14

    A method to synthesize multicomponent nanostructures in open-air is presented. A microdroplet precursor target is irradiated with a nanosecond laser pulse to induce plasma. At low droplet dispensing rates, the precursor and solvent are fully atomized without debris to produce nanoparticles and nanofilaments during plasma cooling. More complex structures like nanolayers or nanofoams can be synthetised at kilohertz droplet dispensing rates as additional droplets in the vicinity of the target droplet are subjected to the laser-induced plasma and its associated shockwave. Examples of both low- and fast-rate mechanisms are presented for Mn-Fe bi-metal oxide nanoparticles and zinc oxide nanoparticles, nanofilaments and nanofoams. Real-time diagnostics were carried out with time-resolved imaging, atomic emission spectroscopy, light scattering and shadowgraphy. In addition to overcoming some of the difficulties associated with pulsed-laser deposition (PLD), the use of a liquid precursor whose composition can be tailored on a droplet-to-droplet basis opens a number of possibilities. PMID:25407984

  8. Wind Stress Variability Directly Measured at a Tidal Inlet from a Mobile Vessel

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2014-12-01

    Tidal inlets are characterized by a dynamic coupling of waves, currents, wind, and topography and to better understand these processes the Riverine and Estuarine Transport (RIVET) experiment was conducted during the month of May 2012 at New River Inlet, North Carolina. As a part of that effort, the Surface Physics Experimental Catamaran (SPEC) was outfitted with a suite of concurrently sampled atmospheric and oceanographic sensors. These included a meteorological mast capable of measuring the air-sea momentum flux, paired subsurface ADV's, a downward looking ADCP, and a bow-mounted wave-staff array. Using a mobile platform enabled capturing the fine-scale dynamical features across this highly sheared zone, without compromising spatial or temporal resolution. The SPEC was deployed, in part, to make direct wind stress measurements and the eddy covariance method was used to calculate the 10 m neutral drag coefficients from the observed wind shear velocities. In general, for any given wind speed, measured drag coefficients were about 2.5 times greater than those derived from bulk relations (e.g. Smith, 1988). Observations of the wind stress angle show significant wind stress steering, up to about 70o off the mean wind direction, within 2 km off-shore of the inlet mouth. The causes for the departure of these observations from conventional open ocean results remains under investigation, although it is highly likely that these findings highlight processes unique to coastal waters that are not regarded in the well-established algorithms (e.g. depth-limited wave breaking and wave-current interactions). Preliminary results from the second installment in the RIVET campaign, which took place at the Mouth of the Columbia River during the spring of 2013, will also be shown.

  9. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    NASA Technical Reports Server (NTRS)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  10. Differential Responses in Two Varieties of Winter Wheat to Elevated Ozone Concentration Under Fully Open-air Field Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two modern cultivars (Yangmai16 (Y16) and Yangfumai 2 (Y2)) of winter wheat (Triticum aestivum L.) of almost identical phenology were investigated for impacts of elevated ozone concentration (E-O3) on physiological characters related to photosynthesis under fully open-air field conditions in China. ...

  11. Limitations to soybean photosynthesis at elevated carbon dioxide in free-air enrichment and open top chamber systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been suggested that the stimulation of soybean photosynthesis by elevated carbon dioxide concentration was less in free-air carbon dioxide enrichment (FACE) systems than in open top chambers (OTC). However, this has not been tested using the same cultivars grown in the same location. We tes...

  12. WIND TUNNEL STUDY OF THE FLOW FIELD WITHIN AND AROUND OPEN-TOP CHAMBERS USED FOR AIR POLLUTION STUDIES

    EPA Science Inventory

    The EPA Meteorological Wind Tunnel was used to examine the flow field in and around models of open-top field plant growth chambers used to assess the effects of pollutant gases on plant growth. Baffles designed to reduce the ingress of ambient air into the chamber through the ope...

  13. CHARACTERIZATION OF AIR EMISSIONS AND RESIDUAL ASH FROM OPEN BURNING OF ELECTRONIC WASTES DURING SIMULATED RUDIMENTALRY RECYCLING OPERATIONS

    EPA Science Inventory

    Air emissions and residual ash measurements were made from open, uncontrolled combustion of electronic waste (e-waste) during simulations of practices associated with rudimentary e-waste recycling operations. Circuit boards and insulated wires were separately burned to simulate p...

  14. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the open electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY...

  15. Visualizing Discipline of the Body in a German Open-Air School (1923-1939): Retrospection and Introspection

    ERIC Educational Resources Information Center

    Thyssen, Geert

    2007-01-01

    This article considers how historians might use imagery in the context of an open-air school in Germany, Senne I-Bielefeld (1922-1939). In considering the "nature" of such images, issues and problems associated with their interpretation are illuminated and discussed. First, two images selected from the pre-Nazi period of the school are examined…

  16. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste

    EPA Science Inventory

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used in chemistry and climate modeling applications. This paper presents th...

  17. Stomatal Opening in Isolated Epidermal Strips of Vicia faba. I. Response to Light and to CO2-free Air 1

    PubMed Central

    Fischer, R. A.

    1968-01-01

    This paper reports a consistent and large opening response to light + CO2-free air in living stomata of isolated epidermal strips of Vicia faba. The response was compared to that of non-isolated stomata in leaf discs floating on water; stomatal apertures, guard cell solute potentials and starch contents were similar in the 2 situations. To obtain such stomatal behavior, it was necessary to float epidermal strips on dilute KCl solutions. This suggests that solute uptake is necessary for stomatal opening. The demonstration of normal stomatal behavior in isolated epidermal strips provides a very useful system in which to investigate the mechanism of stomatal opening. It was possible to show independent responses in stomatal aperture to light and to CO2-free air. PMID:16656995

  18. Open hardware, low cost, air quality stations for monitoring ozone in coastal area

    NASA Astrophysics Data System (ADS)

    Lima, Marco; Donzella, Davide; Pintus, Fabio; Fedi, Adriano; Ferrari, Daniele; Massabò, Marco

    2014-05-01

    Ozone concentrations in urban and coastal area are a great concern for citizens and, consequently regulator. In the last 20 years the Ozone concentration is almost doubled and it has attracted the public attention because of the well know harmful impacts on human health and biosphere in general. Official monitoring networks usually comprise high precision, high accuracy observation stations, usually managed by public administrations and environmental agency; unfortunately due to their high costs of installation and maintenance, the monitoring stations are relatively sparse. This kind of monitoring networks have been recognized to be unsuitable to effectively characterize the high variability of air quality, especially in areas where pollution sources are various and often not static. We present a prototype of a low cost station for air quality monitoring, specifically developed for complementing the official monitoring stations improving the representation of air quality spatial distribution. We focused on a semi-professional product that could guarantee the highest reliability at the lowest possible cost, supported by a consistent infrastructure for data management. We test two type of Ozone sensor electrochemical and metal oxide. This work is integrated in the ACRONET Paradigm ® project: an open-hardware platform strongly oriented on environmental monitoring. All software and hardware sources will be available on the web. Thus, a computer and a small amount of work tools will be sufficient to create new monitoring networks, with the only constraint to share all the data obtained. It will so possible to create a real "sensing community". The prototype is currently able to measure ozone level, temperature and relative humidity, but soon, with the upcoming changes, it will be able also to monitor dust, carbon monoxide and nitrogen dioxide, always through the use of commercial sensors. The sensors are grouped in a compact board that interfaces with a data

  19. Axisymmetric inlet minimum weight design method

    NASA Technical Reports Server (NTRS)

    Nadell, Shari-Beth

    1995-01-01

    An analytical method for determining the minimum weight design of an axisymmetric supersonic inlet has been developed. The goal of this method development project was to improve the ability to predict the weight of high-speed inlets in conceptual and preliminary design. The initial model was developed using information that was available from inlet conceptual design tools (e.g., the inlet internal and external geometries and pressure distributions). Stiffened shell construction was assumed. Mass properties were computed by analyzing a parametric cubic curve representation of the inlet geometry. Design loads and stresses were developed at analysis stations along the length of the inlet. The equivalent minimum structural thicknesses for both shell and frame structures required to support the maximum loads produced by various load conditions were then determined. Preliminary results indicated that inlet hammershock pressures produced the critical design load condition for a significant portion of the inlet. By improving the accuracy of inlet weight predictions, the method will improve the fidelity of propulsion and vehicle design studies and increase the accuracy of weight versus cost studies.

  20. Radial inlet guide vanes for a combustor

    SciTech Connect

    Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

    2013-02-12

    A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

  1. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  2. Afterburner performance of film-vaporizing V-gutters for inlet temperatures up to 1255 K

    NASA Technical Reports Server (NTRS)

    Branstetter, J. R.; Reck, G. M.

    1973-01-01

    Combustion tests of five variations of an integral, spray-bar - flameholder combination were conducted in a 0.49-m-diameter duct. Emphasis was on low levels of augmentation. Fuel impinged on guide plates, mixed with a controlled amount of inlet air, vaporized, and was guided into the V-gutter wake. Combustor length was 0.92 m. Good performance was demonstrated at fuel-air ratios less than 0.025 for inlet temperatures of 920 to 1255 K. Maximum combustion efficiency occured in the vicinity of fuel-air ratios of 0.02 and was 92 to 100 percent, depending on the inlet temperature. Lean blowout fuel-air ratios were in the vicinity of 0.005. Improvements in rich-limit blowout resulted from enlarging the guide-flow passageway areas. Other means of extending the operating range are suggested. A simplified afterburner concept for application to advanced engines is described.

  3. Laser electric field measurement in open-air dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito; Kanazawa, Tatsuya; Hamaguchi, Satoshi

    2011-10-01

    Electric field induced coherent Raman scattering (E-CRS) measurement is a promising technique for measuring electric field in high-pressure environments. In this study, the discharge initiation mechanism of nanosecond dielectric barrier discharges (DBDs) in open air has been examined with time dependent measurement of the discharge electric field by E-CRS. Two pulsed ns laser beams (532 nm and 607 nm) are employed. In the presence of nitrogen molecules the two laser beams together with the electric field induce a coherent IR signal at a wavelength of 4.29 μm and the normal coherent anti-Stokes Raman scattering (CARS) signal at 473 nm. The ratio of these two signals (IR and CARS) is a function of the electric field strength, so that the magnitude of the electric field can be estimated. Our experimental observations have revealed that, in the pre-breakdown phase of a nanosecond DBD discharge, the externally applied fast-rising electric field is strongly enhanced near the cathode due to large accumulation of space charge, which then strongly enhances ionization near the cathode. This process is essentially different from the well-known Townsend mechanism for slower discharges.

  4. Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean

    NASA Astrophysics Data System (ADS)

    Chuck, Adele L.; Turner, Suzanne M.; Liss, Peter S.

    2005-10-01

    Surface seawater and atmospheric concentrations of methyl iodide, chloroiodomethane, bromoform, dichlorobromomethane, and chlorodibromethane were measured during three open ocean cruises in the Atlantic and Southern oceans. The measurements spanned a longitudinal range of 115°, between 50°N and 65°S. The saturation anomalies and the instantaneous air-sea fluxes of the gases during one of these cruises (ANT XVIII/1) are presented and discussed. Methyl iodide and chloroiodomethane were highly supersaturated (>1000%) throughout the temperate and tropical regions, with calculated mean fluxes of 15 and 5.5 nmol m-2 d-1, respectively. The oceanic emissions of the brominated compounds were less substantial, and a significant area of the temperate Atlantic Ocean was found to be a sink for bromoform. Correlation analyses have been used to investigate possible controls on the concentrations of these gases. In particular, the relationship of CH3I with sea surface temperature and light is discussed, with the tentative conclusion that this compound may be formed abiotically.

  5. An open-source software package for multivariate modeling and clustering: applications to air quality management.

    PubMed

    Wang, Xiuquan; Huang, Guohe; Zhao, Shan; Guo, Junhong

    2015-09-01

    This paper presents an open-source software package, rSCA, which is developed based upon a stepwise cluster analysis method and serves as a statistical tool for modeling the relationships between multiple dependent and independent variables. The rSCA package is efficient in dealing with both continuous and discrete variables, as well as nonlinear relationships between the variables. It divides the sample sets of dependent variables into different subsets (or subclusters) through a series of cutting and merging operations based upon the theory of multivariate analysis of variance (MANOVA). The modeling results are given by a cluster tree, which includes both intermediate and leaf subclusters as well as the flow paths from the root of the tree to each leaf subcluster specified by a series of cutting and merging actions. The rSCA package is a handy and easy-to-use tool and is freely available at http://cran.r-project.org/package=rSCA . By applying the developed package to air quality management in an urban environment, we demonstrate its effectiveness in dealing with the complicated relationships among multiple variables in real-world problems. PMID:25966889

  6. Open air biocathode enables effective electricity generation with microbial fuel cells.

    PubMed

    Clauwaert, Peter; Van der Ha, David; Boon, Nico; Verbeken, Kim; Verhaege, Marc; Rabaey, Korneel; Verstraete, Willy

    2007-11-01

    The reduction of oxygen at the cathode is one of the major bottlenecks of microbial fuel cells (MFCs). While research so far has mainly focused on chemical catalysis of this oxygen reduction, here we present a continuously wetted cathode with microorganisms that act as biocatalysts for oxygen reduction. We combined the anode of an acetate oxidizing tubular microbial fuel cell with an open air biocathode for electricity production. The maximum power production was 83 +/- 11 W m(-3) MFC (0.183 L MFC) for batch-fed systems (20-40% Coulombic yield) and 65 +/- 5 W m(-3) MFC for a continuous system with an acetate loading rate of 1.5 kg COD m(-3) day(-1) (90 +/- 3% Coulombic yield). Electrochemical precipitation of manganese oxides on the cathodic graphite felt decreased the start-up period with approximately 30% versus a non-treated graphite felt. After the start-up period, the cell performance was similar for the pretreated and non-treated cathodic electrodes. Several reactor designs were tested, and it was found that enlargement of the 0.183 L MFC reactor by a factor 2.9-3.8 reduced the volumetric power output by 60-67%. Biocathodes alleviate the need to use noble or non-noble catalysts for the reduction of oxygen, which increases substantially the viability and sustainability of MFCs. PMID:18044542

  7. FLOW FIELDS IN SUPERSONIC INLETS

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1994-01-01

    This computer program is designed to calculate the flow fields in two-dimensional and three-dimensional axisymmetric supersonic inlets. The method of characteristics is used to compute arrays of points in the flow field. At each point the total pressure, local Mach number, local flow angle, and static pressure are calculated. This program can be used to design and analyze supersonic inlets by determining the surface compression rates and throat flow properties. The program employs the method of characteristics for a perfect gas. The basic equation used in the program is the compatibility equation which relates the change in stream angle to the change in entropy and the change in velocity. In order to facilitate the computation, the flow field behind the bow shock wave is broken into regions bounded by shock waves. In each region successive rays are computed from a surface to a shock wave until the shock wave intersects a surface or falls outside the cowl lip. As soon as the intersection occurs a new region is started and the previous region continued only in the area in which it is needed, thus eliminating unnecessary calculations. The maximum number of regions possible in the program is ten, which allows for the simultaneous calculations of up to nine shock waves. Input to this program consists of surface contours, free-stream Mach number, and various calculation control parameters. Output consists of printed and/or plotted results. For plotted results an SC-4020 or similar plotting device is required. This program is written in FORTRAN IV to be executed in the batch mode and has been implemented on a CDC 7600 with a central memory requirement of approximately 27k (octal) of 60 bit words.

  8. Atheroembolization and potential air embolization during aortic declamping in open repair of a pararenal aortic aneurysm: A case report

    PubMed Central

    Dregelid, Einar Børre; Lilleng, Peer Kåre

    2016-01-01

    Introduction When ischemic events ascribable to microembolization occur during open repair of proximal abdominal aortic aneurysms, a likely origin of atheroembolism is not always found. Presentation of case A 78-year old man with enlargement of the entire aorta underwent open repair for a pararenal abdominal aortic aneurysm using supraceliac aortic clamping for 20 min. Then the graft was clamped, the supraceliac clamp was removed, and the distal and right renal anastomoses were also completed. The patient was stable throughout the operation with only transient drop in blood pressure on reperfusion. Postoperatively the patient developed ischemia, attributable to microembolization, in legs, small intestine, gall bladder and kidneys. He underwent fasciotomy, small bowel and gall bladder resections. Intestinal absorptive function did not recover adequately and he died after 4 months. Microscopic examination of hundreds of intestinal, juxtaintestinal mesenteric, and gall bladder arteries showed a few ones containing cholesterol emboli. Discussion It is unsure whether a few occluded small arteries out of several hundred could have caused the ischemic injury alone. There had been only moderate backbleeding from aortic branches above the proximal anastomosis while it was sutured. Inadvertently, remaining air in the graft, aorta, and aortic branches may have been whipped into the pulsating blood, resulting in air microbubbles, when the aortic clamp was removed. Conclusion Although both atheromatous particles and air microbubbles are well-known causes of iatrogenic microembolization, the importance of air microembolization in open repair of pararenal aortic aneurysms is not known and need to be studied. PMID:27100956

  9. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  10. SIMULTANEOUS CALIBRATION OF OPEN-PATH AND CONVENTIONAL POINT MONITORS FOR MEASURING AMBIENT AIR CONCENTRATIONS OF SULPHUR DIOXIDE, OZONE, AND NITROGEN DIOXIDE

    EPA Science Inventory

    A two-stage dilution system and an associated procedure to simultaneously calibrate both open-path (long-path) and conventional point air monitors have been used successfully during a comparison test study of open-path monitoring systems in Houston during August, 1 993. wo open-p...

  11. Influence of cathode opening size and wetting properties of diffusion layers on the performance of air-breathing PEMFCs

    NASA Astrophysics Data System (ADS)

    Schmitz, A.; Tranitz, M.; Eccarius, S.; Weil, A.; Hebling, C.

    Air-breathing PEMFCs consist of an open cathodic side to allow an entirely passive supply of oxygen by diffusion. Furthermore, a large fraction of the produced water is removed by evaporation from the open cathode. Gas diffusion layers (GDLs) and the opening size of the cathode have a crucial influence on the performance of an air-breathing PEMFC. In order to assure an unobstructed supply of oxygen the water has to be removed efficiently and condensation in the GDL has to be avoided. On the other hand good humidification of the membrane has to be achieved to obtain high protonic conductivity. In this paper the influence of varying cathodic opening sizes (33%, 50% and 80% opening ratios) and of GDLs with different wetting properties are analysed. GDLs with hydrophobic and hydrophilic properties are prepared by coating of untreated GDLs (Toray ® carbon paper TGP-H-120, thickness of 350 μm). The air-breathing PEMFC test samples are realised using printed circuit board (PCB) technology. The cell samples were characterised over the entire potential range (0-0.95 V) by extensive measurements of the current density, the temperature and the cell impedance at 1 kHz. Additionally, measurements of the water balance were carried out at distinct operation points. The best cell performance was achieved with the largest opening ratio (80%) and an untreated GDL. At the maximum power point, this cell sample achieved a power density of 100 mW cm -2 at a moderate cell temperature of 43 °C. Furthermore, it could be shown that GDLs with hydrophilic or intense hydrophobic properties do not improve the performance of an air-breathing PEMFC. Based on the extensive characterisations, two design rules for air-breathing PEMFCs could be formulated. Firstly, it is crucial to maximise the cathode opening as far as an appropriate compression pressure of the cell assembly and therewith low contact resistance can be assured. Secondly, it is advantageous to use an untreated, slightly hydrophobic

  12. External-Compression Supersonic Inlet Design Code

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  13. Experimental Evaluation of Pool Fire Suppression Performance of Sodium Leak Collection Tray in Open Air

    SciTech Connect

    Parida, F.C.; Rao, P.M.; Ramesh, S.S.; Malarvizhi, B.; Gopalakrishnan, V.; Rao, E.H.V.M.; Kasinathan, N.; Kannan, S.E.

    2006-07-01

    In the event of sodium leakage from heat transfer circuits of fast breeder reactors (FBR), liquid sodium catches fire in ambient air leading to production of flame, smoke and heat. One of the passive fire protection methods involves immediate collection of the leaking sodium to a sodium hold-up vessel (SHV) covered with a sloping cover tray (SCT) having a few drain pipes and one vent pipe (as in Fig. 1). As soon as the liquid sodium falls on the sloping cover tray, gravity guides the sodium through drain pipes into the bottom tray in which self-extinction occurs due to oxygen starvation. This sodium fire protection equipment called leak collection tray (LCT) works without the intervention of an operator and external power source. A large number of LCTs are strategically arranged under the sodium circulating pipe lines in the FBR plants to serve as passive suppression devices. In order to test the efficacy of the LCT, four tests were conducted. Two tests were with LCT having three drain pipes and rest with one. In each experiment, nearly 40 kg of hot liquid sodium at 550 deg. C was discharged on the LCT in the open air. Continuous on-line monitoring of temperature at strategic locations ({approx} 28 points) were carried out. Colour video-graphy was employed for taking motion pictures of various time-dependent events like sodium dumping, appearance of flame and release of smoke through vent pipes. After self-extinction of sodium fire, the LCT was allowed to cool overnight in an argon atmosphere. Solid samples of sodium debris in the SCT and SHV were collected by manual core drilling machine. The samples were subjected to chemical analysis for determination of unburnt and burnt sodium. The results of the four tests revealed an interesting feature: LCT with three drain pipes showed far lower sodium collection efficiency and much higher sodium combustion than that with just one drain pipe. Thermal fluctuations in temperature sensor located near the tip of the drain pipe

  14. Overview of the SAMPSON smart inlet

    NASA Astrophysics Data System (ADS)

    Dunne, James P.; Hopkins, Mark A.; Baumann, Erwin W.; Pitt, Dale M.; White, Edward V.

    1999-07-01

    The SAMPSON program will demonstrate the application of Smart Materials and Structures to large-scale aircraft and marine propulsion systems and show that smart materials can be used to significantly enhance vehicle performance, thereby enabling new missions and/or expanding current missions. Two demonstrations will be executed in relevant environments and at scales representations of actual vehicle components. The demonstrations will serve to directly address questions of scalability and technology readiness, thereby improving the opportunities and reducing the risk for transitioning the technology into applications. The aircraft application to be examined is the in-flight structural variation of a fighter engine inlet. Smart technologies will be utilized to actively deform the inlet into predetermined configurations to improve the performance of the inlet at all flight conditions. The inlet configurations to be investigated consists of capture area control, compression ramp generation, leading edge blunting, and porosity control. The operation and demonstration of this Smart Inlet is described in detail.

  15. Experimental study on the inlet fogging system using two-fluid nozzles

    NASA Astrophysics Data System (ADS)

    Suryan, Abhilash; Kim, Dong Sun; Kim, Heuy Dong

    2010-04-01

    Large-capacity compressors in industrial plants and the compressors in gas turbine engines consume a considerable amount of power. The compression work is a strong function of the ambient air temperature. This increase in compression work presents a significant problem to utilities, generators and power producers when electric demands are high during the hot months. In many petrochemical process industries and gas turbine engines, the increase in compression work curtails plant output, demanding more electric power to drive the system. One way to counter this problem is to directly cool the inlet air. Inlet fogging is a popular means of cooling the inlet air to air compressors. In the present study, experiments have been performed to investigate the suitability of two-fluid nozzle for inlet fogging. Compressed air is used as the driving working gas for two-fluid nozzle and water at ambient conditions is dragged into the high-speed air jet, thus enabling the entrained water to be atomized in a very short distance from the exit of the two-fluid nozzle. The air supply pressure is varied between 2.0 and 5.0 bar and the water flow rate entrained is measured. The flow visualization and temperature and relative humidity measurements are carried out to specify the fogging characteristics of the two-fluid nozzle.

  16. Aerodynamic analysis of VTOL inlets and definition of a short, blowing-lip inlet

    NASA Technical Reports Server (NTRS)

    Syberg, J.; Jones, A. L.

    1982-01-01

    The results indicated that, without boundary layer control, either a very long inlet or an inlet with a very high contraction ratio lip will be required to meet the stringent design requirements. It is shown that active boundary layer control is an effective means of preventing separation and that a significant reduction in inlet size can be achieved by removing only a small amount of bleed in the throat region of the inlet. A short, blowing-lip model was designed and fabricated. This model features an adjustable, blowing slot located near the hilite on the windward side of the inlet.

  17. Electrically heated particulate matter filter with recessed inlet end plugs

    DOEpatents

    Gonze, Eugene V.; Ament, Frank

    2012-02-21

    A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

  18. Deactivating bacteria with RF Driven Hollow Slot Microplasmas in Open Air at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Yu, Zengqi; Pruden, Amy; Sharma, Ashish; Collins, George

    2003-10-01

    A hollow slot discharge operating in open air at atmospheric pressure has demonstrated its ability to deactivate bacterial growth on nearby surfaces exposed to the RF driven plasma. The cold plasma exits from a hollow slot with a width of 0.2 mm and variable length of 1-35 cm. An internal electrode was powered by 13.56 MHz radio-frequency power at a voltage below 200 V. External electrically grounded slots face the work piece. The plasma plume extends millimeters to centimeter beyond the hollow slot toward the work piece to be irradiated. Argon-Oxygen gas mixtures, at 33 liters per minute flow, were passed through the electrodes and the downstream plasma was employed for the process, with treatment exposure time varied from 0.06 to 0.18 seconds. Bacterial cultures were fixed to 0.22 micron cellulose filter membranes and passed under the plasma at a controlled rate at a distance of about 5-10 millimeters from the grounded slot electrode. Preliminary studies on the effectiveness of the plasma for sterilization were carried out on E. coli. Cultures were grown overnight on the membranes after exposure and the resulting colony forming units (cfu) were determined in treated and untreated groups. In the plasma treated group, a 98.2% kill rate was observed with the lowest exposure time, and increased to 99.8% when the exposure time was tripled. These studies clearly demonstrate the ability of the RF-driven hollow slot atmospheric plasma to inhibit bacterial growth on surfaces.

  19. Sensitivity of rainfall-runoff processes in the Hydrological Open Air Laboratory

    NASA Astrophysics Data System (ADS)

    Széles, Borbála; Parajka, Juraj; Blöschl, Günter; Oismüller, Markus; Hajnal, Géza

    2016-04-01

    The objective of the present study was to simulate the rainfall response and analyse the sensitivity of rainfall-runoff processes of the Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, a small experimental watershed (66 ha) located in the western part of Lower Austria and dominated by agricultural land use. Due to the extensive monitoring network in the HOAL, the spatial and temporal heterogeneity of hydro-meteorological elements are exceptionally well represented on the catchment scale. The study aimed to exploit the facilities of the available database collected by innovative sensing techniques to advance the understanding of various rainfall-runoff processes. The TUWmodel, a lumped, conceptual hydrological model, following the structure of the HBV model was implemented on the catchment. In addition to the surface runoff at the catchment outlet, several different runoff generation mechanisms (tile drainage flow, saturation excess runoff from wetlands and groundwater discharge from springs) were also simulated, which gave an opportunity to describe the spatial distribution of model parameters in the study area. This helped to proceed from the original lumped model concept towards a spatially distributed one. The other focus of this work was to distinguish the dominant model parameters from the less sensitive ones for each tributary with different runoff type by applying two different sensitivity analysis methods, the simple local perturbation and the global Latin-Hypercube-One-Factor-At-a-Time (LH-OAT) tools. Moreover, the impacts of modifying the initial parameters of the LH-OAT method and the applied objective functions were also taken into consideration. The results and findings of the model and sensitivity analyses were summarized and future development perspectives were outlined. Key words: spatial heterogeneity of rainfall-runoff mechanisms, sensitivity analysis, lumped conceptual hydrological model

  20. Research on Supersonic Inlet Bleed

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Vyas, Manan A.; Slater, John W.

    2012-01-01

    Phase I data results of the Fundamental Inlet Bleed Experiments project at NASA Glenn Research Center (GRC) are presented which include flow coefficient results for two single-hole boundary-layer bleed configurations. The bleed configurations tested are round holes at inclination angles of 90deg and 20deg both having length-to-diameter ratios of 2.0. Results were obtained at freestream Mach numbers of 1.33, 1.62, 1.98, 2.46, and 2.92 and unit Reynolds numbers of 0.984, 1.89, and 2.46 10(exp 7)/m. Approach boundary-layer data are presented for each flow condition and the flow coefficient results are compared to existing multi-hole data obtained under similar conditions. For the 90deg hole, the single and multi-hole distributions agree fairly well with the exception that under supercritical operation, the multi-hole data chokes at higher flow coefficient levels. This behavior is also observed for the 20deg hole but to a lesser extent. The 20deg hole also shows a markedly different characteristic at subcritical operation. Also presented are preliminary results of a Computational Fluid Dynamics (CFD) analysis of both configurations at the Mach 1.33 and a unit Reynolds number of 2.46 10(exp 7)/m. Comparison of the results shows the agreement to be very good.

  1. A comparative study of the decomposition of pig carcasses in a methyl methacrylate box and open air conditions.

    PubMed

    Li, Liangliang; Wang, Jiangfeng; Wang, Yu

    2016-08-01

    Analysis of the process of decomposition is essential in establishing the postmortem interval. However, despite the fact that insects are important players in body decomposition, their exact function within the decay process is still unclear. There is also limited knowledge as to how the decomposition process occurs in the absence of insects. In the present study, we compared the decomposition of a pig carcass in open air with that of one placed in a methyl methacrylate box to prevent insect contact. The pig carcass in the methyl methacrylate box was in the fresh stage for 1 day, the bloated stage from 2 d to 11 d, and underwent deflated decay from 12 d. In contrast, the pig carcass in open air went through the fresh, bloated, active decay and post-decay stages; and 22.3 h (0.93 d), 62.47 h (2.60 d), 123.63 h (5.15 d) and 246.5 h (10.27 d) following the start of the experiment respectively, prior to entering the skeletonization stage. A large amount of soft tissue were remained on the pig carcass in the methyl methacrylate box on 26 d, while only scattered bones remained on the pig carcass in open air. The results indicate that insects greatly accelerate the decomposition process. PMID:27314973

  2. An inlet/sampling duct for airborne OH and sulfuric acid measurements

    NASA Astrophysics Data System (ADS)

    Eisele, F. L.; Mauldin, R. L.; Tanner, D. J.; Fox, J. R.; Mouch, T.; Scully, T.

    1997-12-01

    An inlet assembly has been designed, tested, and used for the airborne measurements of OH and sulfuric acid. The inlet sampling duct, which incorporates a shroud connected to two nested, restricted flow ducts, slows air velocity by approximately a factor of 16 while maintaining a uniform and well-defined flow. Qualitative wind tunnel tests showed that an inlet shroud that incorporates a 3:1 inner surface and 4.5:1 outer elliptical front surface can straighten the airflow at angles of attack of up to 18°-20° with no visible signs of turbulence. Tests using a Pitot tube to scan the flow velocity profile of the restricted flow ducts showed that the shroud, coupled to inlet ducts, could slow the flow and provide a relatively flat average velocity profile across the central portion of the ducts at angles of attack up to 17°. Tests performed using a chemical tracer showed that at angles of attack where the Pitot tube measurements began to indicate slight flow instabilities (17°-24°), there was no mixing from the walls into the center of the inlet. The inlet assembly also possesses the ability to produce a fairly uniform concentration of OH in the relatively constant velocity portion of the inner duct for instrument calibration. Actual measurements of rapidly changing OH and H2SO4 provide both additional evidence of proper inlet operation and new insight into H2SO4 production and loss in and around clouds.

  3. Experimental Studies on High Speed Air Intakes

    NASA Astrophysics Data System (ADS)

    Panigrahy, Amit Kumar; Muruganandam, T. M.

    All high speed air breathing engines require an inlet to decelerate air from free stream velocity to a lower velocity conducive to combustion. The inlet is designed to capture and deliver the required mass flow to combustion chamber with minimum pressure loss, along with minimum flow distortion. Inlet buzz can occur due to several reasons, such as large internal area contraction ratio, serious shock-boundary layer interactions, and high back pressure. Inlet buzz is detrimental to thrust and can even cause structural damage. Thus a detailed back pressure and over contraction based study of inlet behavior is needed.

  4. Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator

    SciTech Connect

    Haque, Shah M.E.; Deev, A.V.; Subaschandar, N.; Rasul, M.G.; Khan, M.M.K.

    2009-01-15

    The influence of the velocity profile at the inlet boundary on the simulation of air velocity distribution inside an electrostatic precipitator is presented in this study. Measurements and simulations were performed in a duct and an electrostatic precipitator (ESP). A four-hole cobra probe was used for the measurement of velocity distribution. The flow simulation was performed by using the computational fluid dynamics (CFD) code FLUENT. Numerical calculations for the air flow were carried out by solving the Reynolds-averaged Navier-Stokes equations coupled with the realizable k-{epsilon} turbulence model equations. Simulations were performed with two different velocity profiles at the inlet boundary - one with a uniform (ideal) velocity profile and the other with a non-uniform (real) velocity profile to demonstrate the effect of velocity inlet boundary condition on the flow simulation results inside an ESP. The real velocity profile was obtained from the velocity measured at different points of the inlet boundary whereas the ideal velocity profile was obtained by calculating the mean value of the measured data. Simulation with the real velocity profile at the inlet boundary was found to predict better the velocity distribution inside the ESP suggesting that an experimentally measured velocity profile could be used as velocity inlet boundary condition for an accurate numerical simulation of the ESP. (author)

  5. Observations of wave effects on inlet circulation

    NASA Astrophysics Data System (ADS)

    Orescanin, Mara; Raubenheimer, Britt; Elgar, Steve

    2014-07-01

    Observations of water levels, winds, waves, and currents in Katama Bay, Edgartown Channel, and Katama Inlet on Martha's Vineyard, Massachusetts are used to test the hypothesis that wave forcing is important to circulation in inlet channels of two-inlet systems and to water levels in the bay between the inlets. Katama Bay is connected to the Atlantic Ocean via Katama Inlet and to Vineyard Sound via Edgartown Channel. A numerical model based on the momentum and continuity equations that uses measured bathymetry and is driven with observed water levels in the ocean and sound, ocean waves, and local winds predicts the currents observed in Katama Inlet more accurately when wave forcing is included than when waves are ignored. During Hurricanes Irene and Sandy, when incident (12-m water depth) significant wave heights were greater than 5 m, breaking-wave cross-shore (along-inlet-channel) radiation stress gradients enhanced flows from the ocean into the bay during flood tides, and reduced (almost to zero during Irene) flows out of the bay during ebb tides. Model simulations without the effects of waves predict net discharge from the sound to the ocean both during Hurricane Irene and over a 1-month period with a range of conditions. In contrast, simulations that include wave forcing predict net discharge from the ocean to the sound, consistent with the observations.

  6. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  7. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  8. Examination of the long-path open-air FTIR technique for air monitoring in the state of Kentucky

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dilip K.

    1995-05-01

    The Kentucky Department for Environmental Protection has been developing on-site monitoring capability for the measurement of air pollutants. The department has purchased a mobile laboratory equipped with a GC/MS for point monitoring and a long-path Fourier transform infrared (FT-IR) remote sensor unit for monitoring air pollutants at different locations in the State. Prior to deploying the FT-IR instrument in the field, the instrument has been evaluated for precision and accuracy with 15 certified gases (CO, NO, NH3, COS, CS2, SO2, (CH3)2S, acetone, benzene, CH3OH, CH4, CCl4, CCl3H, C2H5OH, and H2S) against the vendor provided calibration spectra by using a 15 cm quality control internal cell. Results of this study are presented. Some other studies include the cases of strong spectral overlaps and structured spectral features. Results of some short-term field study at Calvert City, Western Kentucky are also presented.

  9. Gas Turbine Engine Inlet Wall Design

    NASA Technical Reports Server (NTRS)

    Florea, Razvan Virgil (Inventor); Matalanis, Claude G. (Inventor); Stucky, Mark B. (Inventor)

    2016-01-01

    A gas turbine engine has an inlet duct formed to have a shape with a first ellipse in one half and a second ellipse in a second half. The second half has an upstream most end which is smaller than the first ellipse. The inlet duct has a surface defining the second ellipse which curves away from the first ellipse, such that the second ellipse is larger at an intermediate location. The second ellipse is even larger at a downstream end of the inlet duct leading into a fan.

  10. Nonmarine upper cretaceous rocks, Cook Inlet, Alaska

    SciTech Connect

    Magoon, L.B.; Griesbach, F.B.; Egbert, R.M.

    1980-08-01

    A section of Upper Cretaceous (Maestrichtian) nonmarine sandstone, conglomerate, and siltstone with associated coal is exposed near Saddle mountain on the northwest flank of Cook Inlet basin, the only known surface exposure of nonmarine Upper Cretaceous rocks in the Cook Inlet area. The section, at least 83.3 m thick, unconformably overlies the Upper Jurassic Naknek Formation and is unconformably overlain by the lower Tertiary West Foreland Formation. These upper Cretaceous rocks correlate lithologically with the second or deeper interval of nonmarine Upper Cretaceous rocks penetrated in the lower Cook Inlet COST 1 well.

  11. Wind- and Tide-Driven Cross-Inlet Circulation at New River Inlet, NC

    NASA Astrophysics Data System (ADS)

    Wargula, A.; Raubenheimer, B.; Elgar, S.

    2014-12-01

    The importance of cross-channel wind forcing to inlet circulation is examined using observations of winds, waves, water levels, and currents collected in and near New River Inlet, NC during May 2012. Although the direct effect of local wind forcing may be neglected in the subtidal along-inlet momentum balance, which is dominated by the pressure gradient, wave radiation stress gradient, and bottom friction, cross-inlet winds may have a significant effect on along-inlet dynamics by driving cross-inlet flows (approximately 0.1 to 0.3 m/s), which can mix lateral and vertical gradients in momentum and water properties. New River Inlet is 1000 m wide at the mouth and tapers to 100 m wide about 1000 m away from the mouth after two sharp 90° bends. Five colocated pressure gages and current profilers were deployed from the shallow (2-3 m water depth) ebb shoal outside the mouth through the deep (5-10 m depth) inlet channel to 200 m beyond the first 90° bend. The inlet is well mixed, and along-inlet tidal currents ranged from +/- 1.5 m/s, offshore significant wave heights from 0.5 to 2.5 m, and wind speeds from 0 to 16 m/s. Time series of currents and winds were lowpass-filtered to examine subtidal wind effects. At the first 90° bend, both surface and bottom cross-inlet flows were correlated (r2 = 0.6) with cross-inlet wind velocity. On the shallow ebb shoal, the cross-inlet flows also were correlated with cross-inlet wind velocity (r2 = 0.6). Cross-inlet flows exhibited a two-layer response to the wind inside the inlet and a depth-uniform response outside the mouth. The observations will be used to examine the momentum balance governing temporal and spatial variations in cross-inlet wind effects on inlet circulation. Funding provided by the Office of Naval Research, the Assistant Secretary of Defense for Research and Engineering, and a National Defense Science and Engineering Graduate Fellowship.

  12. Shock Positioning Controls Designs for a Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.

    2010-01-01

    Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The supersonic inlet design that is utilized to efficiently compress the incoming air and deliver it to the engine has many design challenges. Among those challenges is the shock positioning of internal compression inlets, which requires active control in order to maintain performance and to prevent inlet unstarts due to upstream (freestream) and downstream (engine) disturbances. In this paper a novel feedback control technique is presented, which emphasizes disturbance attenuation among other control performance criteria, while it ties the speed of the actuation system(s) to the design of the controller. In this design, the desired performance specifications for the overall control system are used to design the closed loop gain of the feedback controller and then, knowing the transfer function of the plant, the controller is calculated to achieve this performance. The innovation is that this design procedure is methodical and allows maximization of the performance of the designed control system with respect to actuator rates, while the stability of the calculated controller is guaranteed.

  13. The Origin of Inlet Buzz in a Mach 1.7 Low Boom Inlet Design

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Weir, Lois

    2014-01-01

    Supersonic inlets with external compression, having a good level performance at the critical operating point, exhibit a marked instability of the flow in some subcritical operation below a critical value of the capture mass flow ratio. This takes the form of severe oscillations of the shock system, commonly known as "buzz". The underlying purpose of this study is to indicate how Detached Eddy Simulation (DES) analysis of supersonic inlets will alter how we envision unsteady inlet aerodynamics, particularly inlet buzz. Presented in this paper is a discussion regarding the physical explanation underlying inlet buzz as indicated by DES analysis. It is the normal shock wave boundary layer separation along the spike surface which reduces the capture mass flow that is the controlling mechanism which determines the onset of inlet buzz, and it is the aerodynamic characteristics of a choked nozzle that provide the feedback mechanism that sustains the buzz cycle by imposing a fixed mean corrected inlet weight flow. Comparisons between the DES analysis of the Lockheed Martin Corporation (LMCO) N+2 inlet and schlieren photographs taken during the test of the Gulfstream Large Scale Low Boom (LSLB) inlet in the NASA 8x6 ft. Supersonic Wind Tunnel (SWT) show a strong similarity both in turbulent flow field structure and shock wave formation during the buzz cycle. This demonstrates the value of DES analysis for the design and understanding of supersonic inlets.

  14. Plasma control of shock wave configuration in off-design mode of M = 2 inlet

    NASA Astrophysics Data System (ADS)

    Falempin, Francois; Firsov, Alexander A.; Yarantsev, Dmitry A.; Goldfeld, Marat A.; Timofeev, Konstantin; Leonov, Sergey B.

    2015-03-01

    The objective of this work was to study the steering effect of a weakly ionized plasma on a supersonic flow structure in a two-dimensional aerodynamic configuration with a three-shock compression ramp in an off-design operational mode. Experiments were performed in wind tunnel T-313 of ITAM SB RAS, with the model air inlet designed for operation at a flow of Mach number M = 2. The inlet was tested at M = 2, 2.5, and 3 and with Re = (25-36) × 106/m and an angle of attack AoA = 0°, 5°, and 8°. For the regulation of the inlet characteristics, a plasma generator with electrical power W pl = 2-10 kW was flush-mounted upstream of the compression ramp. A significant plasma effect on the shock configuration at the inlet and on the flow parameters after air compression is considered. It is shown that the main shock wave angle is controllable by means of the plasma power magnitude and, therefore, can be accurately adjusted to the cowl lip of an inlet with a fixed geometry. An additional plasma effect has been demonstrated through a notable increase in the pressure recovery coefficient in a flowpass extension behind the inlet because of an nearly isentropic pattern of flow compression with the plasma turned on. Numerical simulation brings out the details of 3D distribution of the flow structure and parameters throughout the model at thermal energy deposition in inlet near the compression surfaces. We conclude that the plasma-based technique may be a feasible method for expanding supersonic inlet operational limits.

  15. Numerical Study of a Boundary Layer Bleedfor a Rocket-Based Combined-Cycle Inlet in Ejector Mode

    NASA Astrophysics Data System (ADS)

    Shi, Lei; He, Guoqiang; Qin, Fei; Wei, Xianggeng

    2014-12-01

    Fully integrated numerical simulations were performed for a ready-made central strut-based rocket-based combined-cycle (RBCC) engine operating in ejector mode, and the applicability of using a boundary layer bleed in the RBCC inlet designed for supersonic speeds was investigated in detail. The operational mechanism of the boundary layer bleed and its effects on the RBCC inlet and the engine under different off-design conditions in ejector mode were determined. The boundary layer bleed played different roles in the RBCC inlet for different flight regimes. When the RBCC engine took off, some air was entrained into the inlet through the bleed block, thereby inducing significant flow separation and a low-speed vortex, which deteriorated the inner flow and reduced the entraining air mass flow rate: thus, the total pressure loss increased and extra drag was exerted on the inlet. In the low subsonic regime, the bleed block had almost no impact on the RBCC engine and its inlet. However, as the RBCC engine accelerated into a high subsonic flight regime, the boundary layer bleed had a clearly positive effect, comprehensively improving the performance of the RBCC inlet. A boundary layer bleed operation strategy for the RBCC inlet in ejector mode was also developed in this study.

  16. The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypothesis-driven observatory

    NASA Astrophysics Data System (ADS)

    Blöschl, G.; Blaschke, A. P.; Broer, M.; Bucher, C.; Carr, G.; Chen, X.; Eder, A.; Exner-Kittridge, M.; Farnleitner, A.; Flores-Orozco, A.; Haas, P.; Hogan, P.; Kazemi Amiri, A.; Oismüller, M.; Parajka, J.; Silasari, R.; Stadler, P.; Strauss, P.; Vreugdenhil, M.; Wagner, W.; Zessner, M.

    2016-01-01

    Hydrological observatories bear a lot of resemblance to the more traditional research catchment concept, but tend to differ in providing more long-term facilities that transcend the lifetime of individual projects, are more strongly geared towards performing interdisciplinary research, and are often designed as networks to assist in performing collaborative science. This paper illustrates how the experimental and monitoring set-up of an observatory, the 66 ha Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, Lower Austria, has been established in a way that allows meaningful hypothesis testing. The overarching science questions guided site selection, identification of dissertation topics and the base monitoring. The specific hypotheses guided the dedicated monitoring and sampling, individual experiments, and repeated experiments with controlled boundary conditions. The purpose of the HOAL is to advance the understanding of water-related flow and transport processes involving sediments, nutrients and microbes in small catchments. The HOAL catchment is ideally suited for this purpose, because it features a range of different runoff generation processes (surface runoff, springs, tile drains, wetlands), the nutrient inputs are known, and it is convenient from a logistic point of view as all instruments can be connected to the power grid and a high-speed glassfibre local area network (LAN). The multitude of runoff generation mechanisms in the catchment provides a genuine laboratory where hypotheses of flow and transport can be tested, either by controlled experiments or by contrasting sub-regions of different characteristics. This diversity also ensures that the HOAL is representative of a range of catchments around the world, and the specific process findings from the HOAL are applicable to a variety of agricultural catchment settings. The HOAL is operated jointly by the Vienna University of Technology and the Federal Agency for Water Management and takes

  17. The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypotheses driven observatory

    NASA Astrophysics Data System (ADS)

    Blöschl, G.; Blaschke, A. P.; Broer, M.; Bucher, C.; Carr, G.; Chen, X.; Eder, A.; Exner-Kittridge, M.; Farnleitner, A.; Flores-Orozco, A.; Haas, P.; Hogan, P.; Kazemi Amiri, A.; Oismüller, M.; Parajka, J.; Silasari, R.; Stadler, P.; Strauß, P.; Vreugdenhil, M.; Wagner, W.; Zessner, M.

    2015-07-01

    Hydrological observatories bear a lot of resemblance to the more traditional research catchment concept but tend to differ in providing more long term facilities that transcend the lifetime of individual projects, are more strongly geared towards performing interdisciplinary research, and are often designed as networks to assist in performing collaborative science. This paper illustrates how the experimental and monitoring setup of an observatory, the 66 ha Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, Lower Austria, has been established in a way that allows meaningful hypothesis testing. The overarching science questions guided site selection, identifying dissertation topics and the base monitoring. The specific hypotheses guided the dedicated monitoring and sampling, individual experiments, and repeated experiments with controlled boundary conditions. The purpose of the HOAL is to advance the understanding of water related flow and transport processes involving sediments, nutrients and microbes in small catchments. The HOAL catchment is ideally suited for this purpose, because it features a range of different runoff generation processes (surface runoff, springs, tile drains, wetlands), the nutrient inputs are known, and it is convenient from a logistic point of view as all instruments can be connected to the power grid and a high speed glassfibre Local Area Network. The multitude of runoff generation mechanisms in the catchment provide a genuine laboratory where hypotheses of flow and transport can be tested, either by controlled experiments or by contrasting sub-regions of different characteristics. This diversity also ensures that the HOAL is representative of a range of catchments around the world and the specific process findings from the HOAL are applicable to a variety of agricultural catchment settings. The HOAL is operated jointly by the Vienna University of Technology and the Federal Agency for Water Management and takes advantage of the

  18. Discharge coefficients of cooling holes with radiused and chamfered inlets

    NASA Astrophysics Data System (ADS)

    Hay, N.; Spencer, A.

    1991-06-01

    The flow of cooling air within the internal passages of gas turbines is controlled and metered using holes in disks and casings. The effects of inlet radiusing and chamfering of these holes on the discharge coefficient are discussed. Experimental results for a range of radiusing and chamfering ratios for holes of different length to diameter ratios are presented, covering the range of pressure ratios of practical interest. The results indicate that radiusing and chamfering are both beneficial in increasing the discharge coefficient. Increases of 10-30 percent are possible. Chamfered holes give the more desirable performance characteristics in addition to being easier to produce than radiused holes.

  19. Icing Characteristics and Anti-Icing Heat Requirements for Hollow and Ternally Modified Gas-Heated Inlet Guide Vanes

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H.; Bowden, Dean T.

    1950-01-01

    A two-dimensional inlet-guide-vane cascade was investigated to determine the effects of ice formations on the pressure losses across the guide vanes and to evaluate the heated gas flow and temperature required to prevent Icing at various conditions. A gas flow of approximately 0.4 percent of the inlet-air flow was necessary for anti-icing a hollow guide-vane stage at an inlet-gas temperature of 500 F under the following icing conditions: air velocity, 280 miles per hour; water content, 0.9 gram per cubic meter; and Inlet-air static temperature, 00 F. Also presented are the anti-icing gas flows required with modifications of the hollow Internal gas passage, which show heatinput savings greater than 50 percent.

  20. Sample inlet tube for ion source

    DOEpatents

    Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

    2002-09-24

    An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

  1. The Peel Inlet-Harvey Estuary Study.

    ERIC Educational Resources Information Center

    Walker, Warren; Black, Ronald

    1979-01-01

    Describes how the department of physics of the Western Australian Institute of Technology (WAIT) has been involved in the Peel Inlet-Harvey Estuary study. An appendix which presents the departmental approach to curriculum matters is also included. (HM)

  2. Circulation exchange patterns in Sinclair Inlet, Washington

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt J.; Paulson, Anthony J.; Gartner, Anne L.

    2013-01-01

    In 1994, the U.S. Geological Survey (USGS), in cooperation with the U.S. Navy, deployed three sets of moorings in Sinclair Inlet, which is a relatively small embayment on the western side of Puget Sound (fig. 1). This inlet is home to the Puget Sound Naval Shipyard. One purpose of the measurement program was to determine the transport pathways and fate of contaminants known to be present in Sinclair Inlet. Extensive descriptions of the program and the resultant information about contaminant pathways have been reported in Gartner and others (1998). This report primarily focused on the bottom boundary layer and the potential for resuspension and transport of sediments on the seabed in Sinclair Inlet as a result of tides and waves. Recently (2013), interest in transport pathways for suspended and dissolved materials in Sinclair Inlet has been rekindled. In particular, the USGS scientists in Washington and California have been asked to reexamine the datasets collected in the earlier study to refine not only our understanding of transport pathways through the inlet, but to determine how those transport pathways are affected by subtidal currents, local wind stress, and fresh water inputs. Because the prior study focused on the bottom boundary layer and not the water column, a reanalysis of the datasets could increase our understanding of the dynamic forces that drive transport within and through the inlet. However, the early datasets are limited in scope and a comprehensive understanding of these transport processes may require more extensive datasets or the development of a detailed numerical model of transport processes for the inlet, or both.

  3. Effect of inlet disturbances on fan inlet noise during a static test

    NASA Technical Reports Server (NTRS)

    Bekofske, K. L.; Sheer, R. E., Jr.; Wang, J. C. F.

    1977-01-01

    Measurements of fan rotor inlet noise taken during static test situations are at variance with aircraft engine flight data. In particular, static tests generally yield a significantly higher tone at blade passage frequency than that measured during flight. To explain this discrepancy, the extent of the influence of inlet ground vortices and large-scale inlet turbulence on the forward-radiated fan noise measured at a static test facility was investigated. While such inlet disturbances were generated intentionally in an anechoic test chamber, far-field acoustic measurements and inlet flow-field hot-film mappings of a fan rotor were obtained. Experimental results indicate that the acoustic effect of such disturbances appears to be less severe for supersonic than for subsonic tip speeds. Further, a reverse flow that occurs on the exterior cowl in static test facilities appears to be an additional prime candidate for creating inlet disturbances and causing variance between flight and static acoustic data.

  4. Small inlet optical panel and a method of making a small inlet optical panel

    DOEpatents

    Veligdan, James T.; Slobodin, David

    2001-01-01

    An optical panel having a small inlet, and a method of making a small inlet optical panel, are disclosed, which optical panel includes a individually coating, stacking, and cutting a first plurality of stacked optical waveguides to form an outlet face body with an outlet face, individually coating, stacking, and cutting a second plurality of stacked optical waveguides to form an inlet face body with an inlet face, and connecting an optical coupling element to the first plurality and to the second plurality, wherein the optical coupling element redirects light along a parallel axis of the inlet face to a parallel axis of the outlet face. In the preferred embodiment of the present invention, the inlet face is disposed obliquely with and askew from the outlet face.

  5. Admiralty Inlet Advanced Turbulence Measurements: June 2014

    DOE Data Explorer

    Kilcher, Levi

    2014-06-30

    This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. Each ttm was deployed with two ADVs. The 'top' ADV head was positioned 0.5m above the 'bottom' ADV head. The TTMs were placed in 58m of water. The position of the TTMs were: ttm01 : (48.1525, -122.6867) ttm01b : (48.15256666, -122.68678333) ttm02b : (48.152783333, -122.686316666) Deployments TTM01b and TTM02b occurred simultaneously and were spaced approximately 50m apart in the cross-stream direction. Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.

  6. Admiralty Inlet Advanced Turbulence Measurements: May 2015

    DOE Data Explorer

    Kilcher, Levi

    2015-05-18

    This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). These platforms position ADV heads above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring and buoy motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. The TTM was deployed with one ADV, it's position was: 48 09.145', -122 41.209' The StableMoor was deployed twice, the first time it was deployed in 'wing-mode' with two ADVs ('Port' and 'Star') at: 48 09.166', -122 41.173' The second StableMoor deployment was in 'Nose' mode with one ADV at: 48 09.166', -122 41.174' Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.

  7. A dynamic thermal model for design and control of an 800-element open-air radio telescope

    NASA Astrophysics Data System (ADS)

    Bremer, Michael; Greve, Albert

    2011-09-01

    In earlier work we have described the thermal modelling for design and control of a fully insulated, and sometimes ventilated, high precision radio telescope. For such an insulated telescope the modelling of the time-variable dynamic influence of the thermal environment (air, sky and ground radiation, insolation) is relatively simple. The modelling becomes however quite complex for an open-air radio telescope where each individual member of the reflector backup structure (BUS) and the support structure (fork or yoke) is exposed under a different and time-dependent aspect angle to the thermal environment, which applies in particular to solar radiation. We present a time-dependent 800-element thermal model of an open-air telescope. Using the IRAM 30-m radio telescope as the basic mechanical structure, we explain how the temperature induced, real-time pointing and reflector surface deformations can be derived when using as input the day of the year, the thermal environment, and the geographic position of the telescope and its changing pointing direction. Thermal modelling and results similar to those reported here can be used for radio telescope design and real-time control of pointing and surface adjustment of a telescope with active panels.

  8. Atmospheric pressure sample inlet for mass spectrometers

    NASA Astrophysics Data System (ADS)

    Dheandhanoo, Seksan; Ciotti, Ralph J.; Ketkar, Suhas N.

    2000-12-01

    An inlet for a mass spectrometer has been developed for direct sampling of gases over a wide range of pressure (1-760 Torr). The sample inlet is composed of two small orifices that form a pressure reduction region. These orifices are used to limit the flow of sample gas into the mass spectrometer. The pressure inside the pressure reduction region is regulated by a needle valve and a vacuum pump. The flow of gas through the orifices is viscous. The inlet is made of stainless steel and operated at high temperature to prevent surface adsorption and corrosion. Its adaptability to a wide range of pressures is very useful for monitoring process gases during manufacturing processes of microelectronic devices. This inlet can be used for effluent gas analysis at 760 Torr as well as for in situ monitoring of the semiconductor equipment at pressures less than 5 Torr. The inlet provides a fast response to changes in the constituents of gas samples without memory effects. The sample inlet has been tested extensively in the laboratory as well as in field environments.

  9. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2008-01-01

    An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.

  10. Effects of Inlet Icing on Performance of Axial-flow Turbojet Engine in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Acker, Loren W; Kleinknecht, Kenneth S

    1950-01-01

    A flight investigation in natural icing conditions was conducted to determine the effect of inlet ice formations on the performance of axial-flow turbojet engines. The results are presented for icing conditions ranging from a liquid-water content of 0.1 to 0.9 gram per cubic meter and water-droplet size from 10 to 27 microns at ambient-air temperature from 13 to 26 degrees F. The data show time histories of jet thrust, air flow, tail-pipe temperature, compressor efficiency, and icing parameters for each icing encounter. The effect of inlet-guide-vane icing was isolated and shown to account for approximately one-half the total reduction in performance caused by inlet icing.

  11. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.

    PubMed

    Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi

    2013-08-01

    An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2)  m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. PMID:23564676

  12. Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants

    NASA Astrophysics Data System (ADS)

    Tao, Lei; Sun, Kang; Miller, David J.; Pan, Dan; Golston, Levi M.; Zondlo, Mark A.

    2015-04-01

    A low-power mobile sensing platform has been developed with multiple open-path gas sensors to measure the ambient concentrations of greenhouse gases and air pollutants with high temporal and spatial resolutions over extensive spatial domains. The sensing system consists of four trace gas sensors including two custom quantum cascade laser-based open-path sensors and two LICOR open-path sensors to measure CO2, CO, CH4, N2O, NH3, and H2O mixing ratios simultaneously at 10 Hz. In addition, sensors for meteorological and geolocation data are incorporated into the system. The system is powered by car batteries with a low total power consumption (~200 W) and is easily transportable due to its low total mass (35 kg). Multiple measures have been taken to ensure robust performance of the custom, open-path sensors located on top of the vehicle where the optics are exposed to the harsh on-road environment. The mobile sensing system has been integrated and installed on top of common passenger vehicles and participated in extensive field campaigns (>400 h on-road time with >18,000 km total distance) in both the USA and China. The simultaneous detection of multiple trace gas species makes the mobile sensing platform a unique and powerful tool to identify and quantify different emission sources through mobile mapping.

  13. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized-coal furnace under deep-air-staging conditions.

    PubMed

    Kuang, Min; Li, Zhengqi; Wang, Zhihua; Jing, Xinjing; Liu, Chunlong; Zhu, Qunyi; Ling, Zhongqian

    2014-01-01

    Deep-air-staging combustion conditions, widely used in tangential-fired and wall-arranged furnaces to significantly reduce NOx emissions, are premature up to now in down-fired furnaces that are designed especially for industry firing low-volatile coals such as anthracite and lean coal. To uncover combustion and NOx emission characteristics under deep-air-staging conditions within a newly operated 600 MWe down-fired furnace and simultaneously understand the staged-air effect on the furnace performance, full-load industrial-size measurements taken of gas temperatures and species concentrations in the furnace, CO and NOx emissions in flue gas, and carbon in fly ash were performed at various staged-air damper openings of 10%, 20%, 30%, and 50%. Increasing the staged-air damper opening, gas temperatures along the flame travel (before the flame penetrating the staged-air zone) increased initially but then decreased, while those in the staged-air zone and the upper part of the hopper continuously decreased and increased, respectively. On opening the staged-air damper to further deepen the air-staging conditions, O2 content initially decreased but then increased in both two near-wall regions affected by secondary air and staged air, respectively, whereas CO content in both two regions initially increased but then decreased. In contrast to the conventional understanding about the effects of deep-air-staging conditions, here increasing the staged-air damper opening to deepen the air-staging conditions essentially decreased the exhaust gas temperature and carbon in fly ash and simultaneously increased both NOx emissions and boiler efficiency. In light of apparently low NOx emissions and high carbon in fly ash (i.e., 696-878 mg/m(3) at 6% O2 and 9.81-13.05%, respectively) developing in the down-fired furnace under the present deep-air-staging conditions, further adjustments such as enlarging the staged-air declination angle to prolong pulverized-coal residence times in the

  14. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the present study, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the study is to advance the current understanding of the flow interaction between two different ultra-compact inlets and a transonic fan for future design applications. Both URANS and LES approaches are used to calculate the unsteady flow field and are compared with the available measured data. The present study indicates that stall inception is mildly affected by the distortion pattern generated by the inlet with the current test set-up. The numerical study indicates that the inlet distortion pattern decays significantly before it reaches the fan face for the current configuration. Numerical results with a shorter distance between the inlet and fan show that counter-rotating vortices near the rotor tip due to the serpentine diffuser affects fan characteristics significantly.

  15. Liquefied Bleed for Stability and Efficiency of High Speed Inlets

    NASA Technical Reports Server (NTRS)

    Saunders, J. David; Davis, David; Barsi, Stephen J.; Deans, Matthew C.; Weir, Lois J.; Sanders, Bobby W.

    2014-01-01

    A mission analysis code was developed to perform a trade study on the effectiveness of liquefying bleed for the inlet of the first stage of a TSTO vehicle. By liquefying bleed, the vehicle weight (TOGW) could be reduced by 7 to 23%. Numerous simplifying assumptions were made and lessons were learned. Increased accuracy in future analyses can be achieved by: Including a higher fidelity model to capture the effect of rescaling (variable vehicle TOGW). Refining specific thrust and impulse models ( T m a and Isp) to preserve fuel-to-air ratio. Implementing LH2 for T m a and Isp. Correlating baseline design to other mission analyses and correcting vehicle design elements. Implementing angle-of-attack effects on inlet characteristics. Refining aerodynamic performance (to improve L/D ratio at higher Mach numbers). Examining the benefit with partial cooling or densification of the bleed air stream. Incorporating higher fidelity weight estimates for the liquefied bleed system (heat exchange and liquid storage versus bleed duct weights) could be added when more fully developed. Adding trim drag or 6-degree-of-freedom trajectory analysis for higher fidelity. Investigating vehicle optimization for each of the bleed configurations.

  16. Ultra-lean combustion at high inlet temperatures

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Combustion at inlet air temperatures of 1100 to 1250 K was studied for application to advanced automotive gas turbine engines. Combustion was initiated by the hot environment, and therefore no external ignition source was used. Combustion was stabilized without a flameholder. The tests were performed in a 12 cm diameter test section at a pressure of 2.5 x 10 to the 5th power Pa, with reference velocities of 32 to 60 m/sec and at maximum combustion temperatures of 1350 to 1850 K. Number 2 diesel fuel was injected by means of a multiple source fuel injector. Unburned hydrocarbons emissions were negligible for all test conditions. Nitrogen oxides emissions were less than 1.9 g NO2/kg fuel for combustion temperatures below 1680 K. Carbon monoxide emissions were less than 16 g CO/kg fuel for combustion temperatures greater than 1600 K, inlet air temperatures higher than 1150 K, and residence times greater than 4.3 microseconds.

  17. Multistage open-tube trap for enrichment of part-per-trillion trace components of low-pressure (below 27-kPa) air samples

    NASA Technical Reports Server (NTRS)

    Ohara, D.; Vo, T.; Vedder, J. F.

    1985-01-01

    A multistage open-tube trap for cryogenic collection of trace components in low-pressure air samples is described. The open-tube design allows higher volumetric flow rates than densely packed glass-bead traps commonly reported and is suitable for air samples at pressures below 27 kPa with liquid nitrogen as the cryogen. Gas blends containing 200 to 2500 parts per trillion by volume each of ethane and ethene were sampled and hydrocarbons were enriched with 100 + or - 4 percent trap efficiency. The multistage design is more efficient than equal-length open-tube traps under the conditions of the measurements.

  18. Investigation of normal shock inlets for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Martin, A. W.

    1977-01-01

    Concepts are investigated for obtaining both low cowl drag and good inlet performance at high angles of attack. The effect of a canard on inlet performance for a kidney shaped inlet in each of two vertical locations is discussed along with a sharp lip two dimensional inlet on a canardless forebody.

  19. Turbine Inlet Analysis of Injected Water Droplet Behavior

    NASA Astrophysics Data System (ADS)

    Hargrave, Kevin

    Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the hotter months various cooling methods are used such as refrigeration inlet cooling systems, evaporative methods, and thermal energy storage systems. One of the more widely used is the evaporative systems because it is one of the safest and easiest to utilize method. However, the behavior of water droplets within the inlet to the turbine has not been extensively studied or documented. It is important to understand how the droplets behave within the inlet so that water droplets above a critical diameter will not enter the compressor and cause damage to the compressor blades. In order to do this a FLUENT simulation was constructed in order to determine the behavior of the water droplets and if any droplets remain at the exit of the inlet, along with their size. In order to do this several engineering drawings were obtained from SRP and studies in order to obtain the correct dimensions. Then the simulation was set up using data obtained from SRP and Parker-Hannifin, the maker of the spray nozzles. Then several sets of simulations were run in order to see how the water droplets behaved under various conditions. These results were then analyzed and quantified so that they could be easily understood. The results showed that the possible damage to the compressor increased with increasing temperature at a constant relative humidity. This is due in part to the fact that in order to keep a constant relative humidity at varying temperatures the mass fraction of water vapor in the air must be changed. As temperature increases the water vapor mass fraction must increase in order to maintain a constant relative humidity. This in turn makes it slightly increases the evaporation time of the water

  20. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  1. Local and regional effects of reopening a tidal inlet on estuarine water quality, seagrass habitat, and fish assemblages

    NASA Astrophysics Data System (ADS)

    Milbrandt, Eric C.; Bartleson, Richard D.; Coen, Loren D.; Rybak, Olexandr; Thompson, Mark A.; DeAngelo, Jacquelyn A.; Stevens, Philip W.

    2012-06-01

    Blind Pass is an inlet that separates Sanibel and Captiva Islands in southwest Florida but has historically closed and opened by both anthropogenic and natural processes. In July 2010, a dredging project to open the small inlet between the two barrier islands was completed. The objective of this study was to use and supplement ongoing estuary-monitoring programs to examine the responses of water quality, seagrass habitat metrics, and fish assemblages both in the immediate vicinity of the inlet and at broader scales (up to 40 km2). As far as we are aware, there are no previous studies with this intensity of sampling, both before and after an inlet opening. Significant increases in salinity and turbidity were observed inside Blind Pass, with significant decreases in CDOM and chlorophyll a, however, the effects were not far-reaching and limited to less than 1.7 km from the inlet within Pine Island Sound. Seagrass habitat metrics were expected to respond rapidly after the inlet was opened given the reduced light attenuation. However, there were no changes in shoot densities, species composition, and epiphytic algae within the approximately one-year duration of the study. The reopening of the pass did not substantially change fish assemblage structure, except for those from deeper habitats. Although immediate increases in the abundances of estuarine-dependent species were predicted in shallow habitats post opening, this did not occur. In conclusion, the effects of reopening a relatively small ocean inlet on water quality were apparent in the immediate vicinity of the inlet (within 1.7 km), but far-reaching effects on water quality, seagrass metrics, and fish assemblages were not immediately apparent in this well-flushed estuary. If subtle changes in tidal exchange and circulation affect productivity of seagrasses or its fish assemblages at broad scales, it may take several years to reach a steady state.

  2. MTR, TRA603. SUBBASEMENT FLOOR PLAN. INLET/OUTLET TUNNELS FOR COOLANT WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. SUB-BASEMENT FLOOR PLAN. INLET/OUTLET TUNNELS FOR COOLANT WATER (NORTH SIDE) AND AIR (SOUTH SIDE). RABBIT CANAL AND BULKHEADS. SUMPS AND DRAINS. BLAW-KNOX 3150-3-7, 3/1950. INL INDEX NO. 531-0603-00-098-100006, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Analysis of Buzz in a Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2012-01-01

    A dual-stream, low-boom supersonic inlet designed for use on a small, Mach 1.6 aircraft was tested experimentally in the 8- by 6-Foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center (GRC). The tests showed that the inlet had good recovery and stable operation over large mass flow range. The inlet went into buzz at mass flows well below that needed for engine operation, and the experiments generated a wealth of data during buzz. High frequency response pressure measurements and high-speed schlieren videos were recorded for many buzz events. The objective of the present work was to use computational fluid dynamics (CFD) to predict some of the experimental data taken during buzz, compare those predictions to the experimental data, and to use both datasets to explain the physics of the buzz cycle. The calculations were done with the Wind-US CFD code using a second-order time-accurate differencing scheme and the SST turbulence model. Computed Mach number contours were compared with schlieren images, and ensemble-averaged unsteady pressures were compared to data. The results showed that the buzz cycle consisted partly of spike buzz, an unsteady oscillation of the main shock at the spike tip while the inlet pressure dropped, and partly of choked flow while the inlet repressurized. Most of the results could be explained by theory proposed by Dailey in 1954, but did not support commonly used acoustic resonance explanations.

  4. Inlet contour and flow effects on radiation

    NASA Technical Reports Server (NTRS)

    Ville, J. M.; Silcox, R. J.

    1980-01-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  5. Inlet contour and flow effects on radiation

    NASA Astrophysics Data System (ADS)

    Ville, J. M.; Silcox, R. J.

    1980-06-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  6. Parametric Inlet Tested in Glenn's 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Davis, David O.; Solano, Paul A.

    2005-01-01

    The Parametric Inlet is an innovative concept for the inlet of a gas-turbine propulsion system for supersonic aircraft. The concept approaches the performance of past inlet concepts, but with less mechanical complexity, lower weight, and greater aerodynamic stability and safety. Potential applications include supersonic cruise aircraft and missiles. The Parametric Inlet uses tailored surfaces to turn the incoming supersonic flow inward toward an axis of symmetry. The terminal shock spans the opening of the subsonic diffuser leading to the engine. The external cowl area is smaller, which reduces cowl drag. The use of only external supersonic compression avoids inlet unstart--an unsafe shock instability present in previous inlet designs that use internal supersonic compression. This eliminates the need for complex mechanical systems to control unstart, which reduces weight. The conceptual design was conceived by TechLand Research, Inc. (North Olmsted, OH), which received funding through NASA s Small-Business Innovation Research program. The Boeing Company (Seattle, WA) also participated in the conceptual design. The NASA Glenn Research Center became involved starting with the preliminary design of a model for testing in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10 10 SWT). The inlet was sized for a speed of Mach 2.35 while matching requirements of an existing cold pipe used in previous inlet tests. The parametric aspects of the model included interchangeable components for different cowl lip, throat slot, and sidewall leading-edge shapes and different vortex generator configurations. Glenn researchers used computational fluid dynamics (CFD) tools for three-dimensional, turbulent flow analysis to further refine the aerodynamic design.

  7. Open and Closed Loop Stability of Hingeless Rotor Helicopter Air and Ground Resonance

    NASA Technical Reports Server (NTRS)

    Young, M. I.; Bailey, D. J.; Hirschbein, M. S.

    1974-01-01

    The air and ground resonance instabilities of hingeless rotor helicopters are examined on a relatively broad parametric basis including the effects of blade tuning, virtual hinge locations, and blade hysteresis damping, as well as size and scale effects in the gross weight range from 5,000 to 48,000 pounds. A special case of a 72,000 pound helicopter air resonance instability is also included. The study shows that nominal to moderate and readily achieved levels of blade inertial hysteresis damping in conjunction with a variety of tuning and/or feedback conditions are highly effective in dealing with these instabilities. Tip weights and reductions in pre-coning angles are also shown to be effective means for improving the air resonance instability.

  8. Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model

    SciTech Connect

    Ruiz, Elisa; Martinez, Pedro J.

    2010-01-15

    In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)

  9. The city model as a tool for participatory urban planning - a case study: The Bilotti open air museum of Cosenza

    NASA Astrophysics Data System (ADS)

    Artese, S.

    2014-05-01

    The paper describes the implementation of the 3D city model of the pedestrian area of Cosenza, which in recent years has become the Bilotti Open Air Museum (MAB). For this purpose were used both the data available (regional technical map, city maps, orthophotos) and acquired through several surveys of buildings and "Corso Mazzini" street (photos, topographic measurements, laser scanner point clouds). In addition to the urban scale model, the survey of the statues of the MAB was carried out. By means of data processing, the models of the same statues have been created, that can be used as objects within the city model. The 3D model of the MAB open air museum has been used to implement a Web-GIS allowing the citizen's participation, understanding and suggestions. The 3D city model is intended as a new tool for urban planning, therefore it has been used both for representing the current situation of the MAB and for design purposes, by acknowledging suggestions regarding a possible different location of the statues and a new way to enjoy the museum.

  10. Investigation of Flow Instabilities in the Inlet Ducts of DP-1C VTOL Aircraft

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2008-01-01

    An investigation of flow instabilities in the inlet ducts of a two-engine vertical takeoff and landing aircraft DP-1C is described in this report. Recent tests revealed that the engines stall during run ups while the aircraft is operating on the ground. These pop stalls occurred at relatively low power levels, sometimes as low as 60 percent of the engine full speed. Inability to run the engines up to the full speed level is attributed to in-ground effects associated with hot gas ingestion. Such pop stalls were never experienced when the aircraft was tested on a elevated grid platform, which ensured that the aircraft was operating in out-of-the-ground-effect conditions. Based on available information on problems experienced with other vertical takeoff and landing aircraft designs, it was assumed that the engine stalls were caused by partial ingestion of hot gases streaming forward from the main exit nozzle under the aircraft inlets, which are very close to the ground. It was also suggested that the nose wheel undercarriage, located between the inlets, may generate vortices or an unstable wake causing intense mixing of hot exit gases with incoming inlet flow, which would enhance the hot gas ingestion. After running a short three-day series of tests with fully instrumented engine inlets, it is now believed the most probable reason for engine pop stalls are random ingestions of a vortex generated between the two streams moving in opposite directions: outbound hot gas stream from the main nozzle close to the ground and inbound inlet flow above. Originally, the vortex is in a horizontal plane. However, at a certain velocity ratio of these two streams, the vortex attaches either to the ground or the aircraft surface at one end and the other end is swallowed by one of the aircraft inlets. Once the vortex enters the inlet duct, a puff of hot air can be sucked through the vortex core into the engine, which causes a serious inlet flow field distortion followed by an engine

  11. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  12. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, R.F.; Dietrich, D.D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.

  13. Turbofan blade stresses induced by the flow distortion of a VTOL inlet at high angles of attack

    NASA Technical Reports Server (NTRS)

    Williams, R. C.; Diedrich, J. H.; Shaw, R. J.

    1983-01-01

    A 51-cm-diameter turbofan with a tilt-nacelle VTOL inlet was tested in the Lewis Research Center's 9- by 15-Ft Low Speed Wind Tunnel at velocities up to 72 m/s and angles of attack up to 120 deg. Fan-blade vibratory stress levels were investigated over a full aircraft operating range. These stresses were due to inlet air flow distortion resulting from (1) internal flow separation in the inlet, and (2) ingestion of the exterior nacelle wake. Stress levels are presented, along with an estimated safe operating envelope, based on infinite blade fatigue life.

  14. Comparison of Inlet Geometry in Microfluidic Cell Affinity Chromatography

    PubMed Central

    Li, Peng; Tian, Yu; Pappas, Dimitri

    2011-01-01

    Cell separation based on microfluidic affinity chromatography is a widely used methodology in cell analysis research when rapid separations with high purity are needed. Several successful examples have been reported with high separation efficiency and purity; however, cell capture at the inlet area and inlet design has not been extensively described or studied. The most common inlets—used to connect the microfluidic chip to pumps, tubing, etc—are vertical (top-loading) inlets and parallel (in-line) inlets. In this work, we investigated the cell capture behavior near the affinity chip inlet area and compared the different performance of vertical inlet devices and parallel inlet devices. Vertical inlet devices showed significant cell capture capability near the inlet area, which led to the formation of cell blockages as the separation progressed. Cell density near the inlet area was much higher than the remaining channel, while for parallel inlet chips cell density at the inlet area was similar to the rest of the channel. In this paper, we discuss the effects of inlet type on chip fabrication, nonspecific binding, cell capture efficiency, and separation purity. We also discuss the possibility of using vertical inlets in negative selection separations. Our findings show that inlet design is critical and must be considered when fabricating cell affinity microfluidic devices. PMID:21207967

  15. Influence of the penstock design on the operation of the inlet spherical valves

    NASA Astrophysics Data System (ADS)

    Kolesnikov, A.; Nikiforov, A.

    2014-03-01

    Spherical valves are supplied for high-head turbines. The drive of spherical valves designed and manufactured by Power Machines/LMZ provides opening by means of servomotors, and closing under the action of the moment created by counterweights. Selection of parameters for the spherical valve and its design are based on the assumption continuity of the water flow entering the turbine through the penstock. In case, when two or more hydro-units are installed at the HPP, the penstocks usually have pipe bifurcations (Fig.1). The design of the penstock should provide a uniform supply of water to all units without spin, rupture of continuity and pulsation. Given in the paper is an example of the HPP with two (2) hydro-units equipped with inlet spherical valves. In the course of operation valve rotor oscillations with different periods in time (T ≈ 15 sec.) were detected. When analyzing, no faults in the valve design and its mechanism of operation were detected. In the course of the tests, vibration parameters of the spherical valves were determined in the following operating conditions: each of the hydro-units running separately and both of them running simultaneously for different power output values. Based on the test results, operating conditions with maximum vibration of were located. The reasons of surging of perturbing forces acting on the rotor of the spherical valve were detected in the course of analysis of the penstock design. Possibility of accumulation of air at the penstock pipe bifurcations was found. When the air transported by the water achieved its critical value, this air appeared to be the cause of instability in the valve operation. The attention was drawn to necessity of taking into account this circumstance when designing penstock pipe bifurcations.

  16. THE EFFECT OF OPENING WINDOWS ON AIR CHANGE RATES IN TWO HOMES

    EPA Science Inventory

    Over 300 air change rate experiments were completed in two occupied residences: a two-story detached house in Redwood City, CA and a three-story townhouse in Reston, VA. A continuous monitor was used to measure the decay of sulfur hexafluoride tracer gas over periods of 1 to 1...

  17. Arabidopsis Transcript and Metabolite Profiles: Ecotype-specific Acclimation to Open-air Elevated [CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A FACE (Free-Air CO2 Enrichment) experiment compared physiological parameters, and transcript and metabolite profiles of Arabidopsis thaliana ecotypes Col-0 and Cvi-0 at ambient (~375ppm) and elevated (~550ppm) CO2 concentration ([CO2]). Photosynthesis and photoassimilate pool sizes were enhanced in...

  18. An Inexpensive Autosampler to Maximize Throughput for an Ion Source that Samples Surfaces in Open Air

    EPA Science Inventory

    An autosampler was built to pull cotton swab heads mounted into a 3-foot long, square Al rod in ambient air through the He ionizing beam of a Direct Analysis in Real Time (DART) ion source interfaced to an orthogonal acceleration, time-of-flight mass spectrometer. The cost of th...

  19. Teaching Botanical Identification to Adults: Experiences of the UK Participatory Science Project "Open Air Laboratories"

    ERIC Educational Resources Information Center

    Stagg, Bethan C.; Donkin, Maria

    2013-01-01

    Taxonomic education and botany are increasingly neglected in schools and universities, leading to a "missed generation" of adults that cannot identify organisms, especially plants. This study pilots three methods for teaching identification of native plant species to forty-three adults engaged in the participatory science project "Open Air…

  20. CHARACTERIZATION OF AIR EMISSIONS FROM THE SIMULATED OPEN COMBUSTION OF FIBERGLASS MATERIALS

    EPA Science Inventory

    The report identifies and quantifies a broad range of pollutants that are discharged during small-scale, simulated, open combustion of fiberglass, and reports these emissions relative to the mass of fiberglass material combusted. Two types of fiberglass materials (representing t...

  1. CHARACTERIZATION OF AIR EMISSIONS FROM THE SIMULATED OPEN COMBUSTION OF FIBERGLASS MATERIALS

    EPA Science Inventory

    The report identifies and quantifies a broad range of pollutants that are discharged during small-scale, simulated, open combustion of fiberglass, and reports these emissions relative to the mass of fiberglass material combusted. wo types of fiberglass materials (representing the...

  2. Distribution and sources of polychlorinated biphenyls in Woods Inlet, Lake Worth, Fort Worth, Texas, 2003

    USGS Publications Warehouse

    Besse, Richard E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2005-01-01

    Woods Inlet is a flooded stream channel on the southern shore of Lake Worth along the western boundary of Air Force Plant 4 in Fort Worth, Texas, where elevated polychlorinated biphenyl (PCB) concentrations in sediment were detected in a previous study. In response, the U.S. Geological Survey, in cooperation with the U.S. Air Force, conducted a study in 2003 to map the extent of elevated PCB concentrations in Woods Inlet and to identify possible sources (or more specifically, source areas) of PCBs in the watershed of Woods Inlet. Three gravity cores (penetration to pre-reservoir sediment at three sites) and 17 box cores (surficial bottom sediment samples) were collected in Woods Inlet. Suspended sediment in stormwater runoff and streambed sediment were sampled in tributaries to Woods Inlet following storms. Assemblages of PCB congeners in surficial inlet sediments and suspended and streambed sediments were analyzed to indicate sources of PCBs in the inlet sediments on the basis of chemical signatures of PCBs. Woods Inlet receives runoff primarily from three tributaries: (1) Gruggs Park Creek, (2) the small unnamed creek that drains a Texas National Guard maintenance facility, called TNG Creek for this report, and (3) Meandering Road Creek. Twenty-seven of 209 possible PCB congeners were analyzed. The sum of the congeners was used as a measure of total PCB. The spatial distribution of total PCB concentrations in the inlet indicates that most PCBs are originating in the Meandering Road Creek watershed. Peak total PCB concentrations in the three gravity cores occurred at depths corresponding to sediment deposition dates of about 1960 for two of the cores and about 1980 for the third core. The magnitudes of peak total PCB concentrations in the gravity cores followed a spatial distribution generally similar to that of surficial bottom sediment concentrations. Total PCB concentrations in suspended and streambed sediment varied greatly between sites and indicated a likely

  3. Elimination of temperature stratification in a low-speed open-return wind tunnel

    NASA Astrophysics Data System (ADS)

    Cimbala, J. M.; Park, W. J.

    1989-06-01

    It is noted that temperature stratification can be a significant source of error during hot-wire measurements in low-speed, open-return wind tunnels that operate in an enclosed room. The stratification is suggested to be eliminated by resort to a thorough mixing of the air just upstream of the wind-tunnel inlet. Since the facility is equipped with adequate turbulence management, mixing can be accomplished without reduction of flow quality.

  4. Effect of a part span variable inlet guide vane on TF34 fan performance

    NASA Technical Reports Server (NTRS)

    Alvarez, J.; Schneider, P. W.

    1981-01-01

    Experimental aerodynamic and performance data were obtained from a TF34 engine. Part span variable inlet guide vanes mounted in front of the fan on the TF34 engine were tested to demonstrate the feasibility of modulating air flow and thrust for vertical takeoff aircraft systems. The fan was mapped to stall for a range of speeds and variable inlet guide were settings. Modulated fan tip performance and unmodulated hub performance were evaluated with a without an extended fan bypass splitter. The effect of a crosswind distortion screen on performance was also evaluated.

  5. Experimental Investigation of a Hypersonic Inlet with Variable Sidewall for Flow Control

    NASA Astrophysics Data System (ADS)

    Rolim, T. C.; Lu, F. K.

    The main function of a scramjet inlet is to decelerate and compress the air for subsequent reaction with the fuel inside the combustor and, of course, contribute toward meeting the thrust requirement for the entire mission by providing adequate mass flow. It is desirable that the inlet be lightweight and that its geometry be capable of producing a uniform flow in an appropriate state to permit efficient mixing and subsequent combustion. Engine cycle analysis indicates that high contraction ratios CR are desirable for achieving high overall engine efficiency.

  6. Air pollutant emissions from MSW landfills - the {open_quotes}sleeper{close_quotes} issue for landfill design and regulation

    SciTech Connect

    Minott, D.H.

    1995-05-01

    Five years have passed since US EPA adopted the now well-known hierarchy for management of MSW - source reduction, recycling, waste-to-energy, and, for waste that cannot be practically recycled or combusted, landfilling. Despite US EPA`s preferred waste-management hierarchy, the United States, as a country, continues to rely on landfilling as its principal means of MSW management. This disparity is also true locally, in the case of the nation`s most populous city, New York City. The City deposits most residential MSW in its Fresh Kills Landfill on Staten Island, some four million tons of MSW per year. What is more, while the City is indeed implementing recycling, its formal waste-management plans also call for continued heavy reliance on the Fresh Kills Landfill for 10 years or more into the future. Because landfills continue to serve as the MSW management {open_quotes}workhorse{close_quotes} in many locales, it is believed that a full accounting of landfill environmental emissions is called for, to enable adequate environmental safeguards in the design of landfills, appropriate regulation of landfill environmental emissions, and informed public decision-making about MSW management in general. Evidence is presented that air pollutant emissions, in particular, from landfills pose a significant environmental threat that is largely unrecognized by most people. Locally in New York City, there is an awakening to the issue of landfill air-pollutant emissions, as evidenced by the recent undertaking of a study of air quality near the Fresh Kills Landfill by Federal, State, and local agencies. In general, however, the public`s concern over landfill air-pollutant emissions is limited to odor nuisance.

  7. Design and operation considerations for attic inlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving energy efficiency and environmental control in poultry facilities is essential for profitability. Increases in energy costs have prompted evaluation of solar energy systems and passive solar systems such as attic inlets have been adopted as a means to reduce fuel usage. Successful implem...

  8. Fiber Optics For Aircraft Engine/Inlet Control

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1982-01-01

    A review of NASA programs which focus on the use of fiber optics for aircraft engine/inlet control is presented. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible, eliminating the need for electrical wires to be connected between sensors and computers. Using low level optical signals to control actuators is also feasible when power is generated at the actuator. For engine/inlet control applications, fiber optic cables and cornectors will be subjected to nacelle air temperatures. These temperatures range between -55°C to 260°C. Each application of fiber optics for aircraft control has different requirements for both the optical cables and optical connectors. Sensors that measure position and speed using slotted plates can use lossy cables and bundle type connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cable and optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically-switched actuators that operate at 250°C is also described.

  9. Analysis of thrust augmentation of turbojet engines by water injection at compressor inlet including charts for calculating compression processes with water injection

    NASA Technical Reports Server (NTRS)

    Wilcox, E Clinton; Trout, Arthur M

    1951-01-01

    A psychrometric chart having total pressure (sum of partial pressures of air and water vapor) as a variable, a Mollier diagram for air saturated with water vapor, and charts showing the thermodynamic properties of various air-water vapor and exhaust gas-water vapor mixtures are presented as aids in calculating the thrust augmentation of a turbojet engine resulting from the injection of water at the compressor inlet. Curves are presented that show the theoretical performance of the augmentation method for various amounts of water injected and the effects of varying flight Mach number, altitude, ambient-air temperature, ambient relative humidity, compressor pressure ratio, and inlet-diffuser efficiency. Numerical examples, illustrating the use of the psychrometric chart and the Mollier diagram in calculating both compressor-inlet and compressor-outlet conditions when water is injected at the compressor inlet, are presented.

  10. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the study presented, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft engines require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the current study is to advance the understanding of the flow interaction between a modern ultra-compact inlet and a transonic fan for future design applications. Many experimental/ analytical studies have been reported on the aerodynamics of compact inlets in aircraft engines. On the other hand, very few studies have been reported on the effects of flow distortion from these inlets on the performance of the following fan/compressor stages. The primary goal of the study presented is to investigate how flow interaction between an ultra-compact inlet and a transonic compressor influence the operating margin of the compressor. Both Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) approaches are used to calculate the unsteady flow field, and the numerical results are used to study the flow interaction. The present study indicates that stall inception of the following compressor stage is affected directly based on how the distortion pattern evolves before it interacts with the fan/compressor face. For the present compressor, the stall initiates at the tip section with clean inlet flow and distortion pattern away from the casing itself seems to have limited impacts on the stall inception of the compressor. A counter-rotating swirl, which is generated due to flow separation inside the s-shaped compact duct, generates an increased flow angle near the blade tip. This increased flow angle near the rotor tip due to the secondary flow from the counter-rotating vortices is the primary reason for the reduced compressor stall margin.

  11. A new species of open-air processional column termite, Hospitalitermes nigriantennalis sp. n. (Termitidae), from Borneo.

    PubMed

    Syaukani, Syaukani; Thompson, Graham J; Zettel, Herbert; Pribadi, Teguh

    2016-01-01

    A new species of open-air processional column termite is here described based on the soldier and worker castes from eight colonies in north Barito, central Kalimantan. Hospitalitermes nigriantennalis sp. n. is readily distinguished in the field from related Hospitalitermes spp. by the light brown to orangish coloration of the soldier head capsule that, further, is with vertex yellowish and nasus brownish. The soldier antenna and the maxillary and labial palps are blackish. By contrast, soldiers from other species of Hospitalitermes from this region have a uniformly black head capsule and antennae. Finally, Hospitalitermes nigriantennalis sp. n. has a minute indentation in the middle of the posterior part of head capsule, which further helps to differentiate this new species from other Hospitalitermes from the Indo-Malayan and Austro-Malayan regions. PMID:26877678

  12. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  13. Optimisation of air cooled, open-cathode fuel cells: Current of lowest resistance and electro-thermal performance mapping

    NASA Astrophysics Data System (ADS)

    Meyer, Quentin; Ronaszegi, Krisztian; Pei-June, Gan; Curnick, Oliver; Ashton, Sean; Reisch, Tobias; Adcock, Paul; Shearing, Paul R.; Brett, Daniel J. L.

    2015-09-01

    Selecting the ideal operating point for a fuel cell depends on the application and consequent trade-off between efficiency, power density and various operating considerations. A systematic methodology for determining the optimal operating point for fuel cells is lacking; there is also the need for a single-value metric to describe and compare fuel cell performance. This work shows how the 'current of lowest resistance' can be accurately measured using electrochemical impedance spectroscopy and used as a useful metric of fuel cell performance. This, along with other measures, is then used to generate an 'electro-thermal performance map' of fuel cell operation. A commercial air-cooled open-cathode fuel cell is used to demonstrate how the approach can be used; in this case leading to the identification of the optimum operating temperature of ∼45 °C.

  14. A new species of open-air processional column termite, Hospitalitermes nigriantennalis sp. n. (Termitidae), from Borneo

    PubMed Central

    Syaukani, Syaukani; Thompson, Graham J.; Zettel, Herbert; Pribadi, Teguh

    2016-01-01

    Abstract A new species of open-air processional column termite is here described based on the soldier and worker castes from eight colonies in north Barito, central Kalimantan. Hospitalitermes nigriantennalis sp. n. is readily distinguished in the field from related Hospitalitermes spp. by the light brown to orangish coloration of the soldier head capsule that, further, is with vertex yellowish and nasus brownish. The soldier antenna and the maxillary and labial palps are blackish. By contrast, soldiers from other species of Hospitalitermes from this region have a uniformly black head capsule and antennae. Finally, Hospitalitermes nigriantennalis sp. n. has a minute indentation in the middle of the posterior part of head capsule, which further helps to differentiate this new species from other Hospitalitermes from the Indo-Malayan and Austro-Malayan regions. PMID:26877678

  15. Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb

    NASA Astrophysics Data System (ADS)

    Nugent-Glandorf, Lora; Giorgetta, Fabrizio R.; Diddams, Scott A.

    2015-05-01

    A mid-infrared frequency comb is produced via an optical parametric oscillator pumped by an amplified 100 MHz Yb:fiber mode-locked laser. We use this source to make measurements of the concentration of the atmospherically relevant species of CH4 and H2O over a bandwidth of 100 nm centered at 3.25 μm. Multiple absorption lines for each species are detected with millisecond acquisition time using a virtual-image phased array spectrometer. The measured wavelength-dependent absorption profile is compared to and fitted by a model, yielding quantitative values of the atmospheric concentration of both CH4 and H2O in a controlled indoor environment, as well as over a 26-m open-air outdoor path.

  16. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    SciTech Connect

    Hoye, Robert L. Z. E-mail: jld35@cam.ac.uk; Ievskaya, Yulia; MacManus-Driscoll, Judith L. E-mail: jld35@cam.ac.uk; Brandt, Riley E.; Buonassisi, Tonio; Heffernan, Shane; Musselman, Kevin P.

    2015-02-01

    Electrochemically deposited Cu{sub 2}O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu{sub 2}O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells.

  17. Time and space in the middle paleolithic: Spatial structure and occupation dynamics of seven open-air sites.

    PubMed

    Clark, Amy E

    2016-05-01

    The spatial structure of archeological sites can help reconstruct the settlement dynamics of hunter-gatherers by providing information on the number and length of occupations. This study seeks to access this information through a comparison of seven sites. These sites are open-air and were all excavated over large spatial areas, up to 2,000 m(2) , and are therefore ideal for spatial analysis, which was done using two complementary methods, lithic refitting and density zones. Both methods were assessed statistically using confidence intervals. The statistically significant results from each site were then compiled to evaluate trends that occur across the seven sites. These results were used to assess the "spatial consistency" of each assemblage and, through that, the number and duration of occupations. This study demonstrates that spatial analysis can be a powerful tool in research on occupation dynamics and can help disentangle the many occupations that often make up an archeological assemblage. PMID:27312187

  18. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet

    NASA Technical Reports Server (NTRS)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined, where the second cone of a two cone center body collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  19. A Tale of Two Inlets: Tidal Currents at Two Adjacent Inlets in the Indian River Lagoon

    NASA Astrophysics Data System (ADS)

    Webb, B. M.; Weaver, R. J.

    2012-12-01

    The tidal currents and hydrography at two adjacent inlets of the Indian River Lagoon estuary (Florida) were recently measured using a personal watercraft-based coastal profiling system. Although the two inlets—Sebastian Inlet and Port Canaveral Inlet—are separated by only 60 km, their characteristics and dynamics are quite unique. While Sebastian Inlet is a shallow (~4 m), curved inlet with a free connection to the estuary, Port Canaveral Inlet is dominated by a deep (~13 m), straight ship channel and has limited connectivity to the Banana River through a sector gate lock. Underway measurements of tidal currents were obtained using a bottom tracking acoustic Doppler current profiler; vertical casts of hydrography were obtained with a conductivity-temperature-depth profiling instrument; and continuous underway measurements of surface water hydrography were made using a Portable SeaKeeper system. Survey transects were performed to elucidate the along-channel variability of tidal flows, which appears to be significant in the presence of channel curvature. Ebb and flood tidal currents in Sebastian Inlet routinely exceeded 2.5 m/s from the surface to the bed, and an appreciable phase lag exists between tidal stage and current magnitude. The tidal currents at Port Canaveral Inlet were much smaller (~0.2 m/s) and appeared to be sensitive to meteorological forcing during the study period. Although the lagoon has free connections to the ocean 145 km to the north and 45 km to the south, Sebastian Inlet likely drains much of the lagoon to its north, an area of ~550 sq. km.

  20. A sensor management architecture concept for monitoring emissions from open-air demil operations.

    SciTech Connect

    Johnson, Michael M.; Robinson, Jerry D.; Stoddard, Mary Clare; Horn, Brent A.; Lipkin, Joel; Foltz, Greg W.

    2005-09-01

    Sandia National Laboratories, CA proposed a sensor concept to detect emissions from open-burning/open-detonation (OB/OD) events. The system would serve two purposes: (1) Provide data to demilitarization operations about process efficiency, allowing process optimization for cleaner emissions and higher efficiency. (2) Provide data to regulators and neighboring communities about materials dispersing into the environment by OB/OD operations. The proposed sensor system uses instrument control hardware and data visualization software developed at Sandia National Laboratories to link together an array of sensors to monitor emissions from OB/OD events. The suite of sensors would consist of various physical and chemical detectors mounted on stationary or mobile platforms. The individual sensors would be wirelessly linked to one another and controlled through a central command center. Real-time data collection from the sensors, combined with integrated visualization of the data at the command center, would allow for feedback to the sensors to alter operational conditions to adjust for changing needs (i.e., moving plume position, increased spatial resolution, increased sensitivity). This report presents a systems study of the problem of implementing a sensor system for monitoring OB/OD emissions. The goal of this study was to gain a fuller understanding of the political, economic, and technical issues for developing and fielding this technology.

  1. Supersonic Inlet with Pylons Set and Star-Shaped Forebody for Mixing, Combustion and Thrust Enhancement

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Gonor, A. L.; Khaikine, V. A.; Blankson, I. M.

    2003-01-01

    Two new approaches are discussed in this paper for application in the Scramjet inlet of an air-breathing propulsion system: 1) In the first approach, the pylon set is installed in the rectangular inlet near the cowl front edge. For a quasi-axisymmetric inlet, a similar set is installed along the Star-shaped forebody axis. This set contains 3 - 4 airfoil-shaped strips or cross-sectional rings depending on the type of inlet. The inlets: rectangular, axisymmetric or star-shaped, are located at different distances from the forebody. Fuel injection takes place through these pylons, which provides for uniform mixing downstream. The locations, sizes and angles of these pylons are very important for efficient application. Optimal values of geometrical parameters were determined from multi-parametric NSE-based numerical simulations of the laminar and turbulent external/internal flows. These simulations have shown significant benefits for mixing, combustion and thrust of the proposed approach by comparison with traditional well-known designs. Experimental tests will be conducted soon at the NASA LaRC and Institute of Mechanics at Moscow State University. Preliminary estimates are very promising.

  2. Influence of combustion-preheating vitiation on operability of a hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Liu, K.; Zhu, Y.; Gao, W.; Yang, J.; Jin, Y.; Wu, Y.

    2015-12-01

    Vitiation of the test flow with combustion products is inherent in combustion wind tunnels, and its effect on experimental results needs to be clarified. In this study, the influence of air vitiation on the startability and performance of a hypersonic inlet is investigated through two-dimensional (2D) numerical simulation. The study examines the vitiation effects introduced by carbon dioxide and water vapor, on the basis of maintaining the static pressure, static temperature and Mach number of the incoming flow. The starting Mach number limits of the inlet are estimated, and it is found that both of these vitiation components lower the starting limit of the inlet. This suggests that the experimental results acquired by tests in combustion wind tunnels overestimate the startability of an inlet and, therefore, combustion-preheated facilities may not be completely trusted in this respect. Deviations in the inlet performance caused by the vitiation are also detected. These are nevertheless minor as long as the flow is at the same started or unstarted condition. A further analysis reveals that it is mainly the increase in the heat capacity, and the resulting weaker shock/compression waves and shock-wave/boundary-layer interactions that account for the aforementioned effects.

  3. Investigation of an innovative method for DC flow suppression of double-inlet pulse tube coolers

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Luo, E. C.; Wu, Z. H.; Dai, W.; Zhu, S. L.

    2007-05-01

    The use of double-inlet mode in the pulse tube cooler opens up a possibility of DC flow circulating around the regenerator and the pulse tube. The DC flow sometimes deteriorates the performance of the cryocooler because such a steady flow adds an unwanted thermal load to the cold heat exchanger. It seems that this problem is still not well solved although a lot of effort has been made. Here we introduce a membrane-barrier method for DC flow suppression in double-inlet pulse tube coolers. An elastic membrane is installed between the pulse tube cooler inlet and the double-inlet valve to break the closed-loop flow path of DC flow. The membrane is acoustically transparent, but would block the DC flow completely. Thus the DC flow is thoroughly suppressed and the merit of double-inlet mode is remained. With this method, a temperature reduction of tens of Kelvin was obtained in our single-stage pulse tube cooler and the lowest temperature reached 29.8 K.

  4. Individual determinants of fish choosing in open-air street markets from Santo André, SP/Brazil.

    PubMed

    Vasconcellos, Juliana Parreira; Vasconcellos, Silvio Arruda; Pinheiro, Sonia Regina; de Oliveira, Thaís Helena Nishikata; Ribeiro, Naassom Almeida Souza; Martins, Cassia Neves; Porfírio, Bruno Augusti; Sanches, Sandra Abelardo; de Souza, Orlando Bispo; Telles, Evelise Oliveira; Balian, Simone de Carvalho

    2013-09-01

    The objective of this study was to identify the determinants of fish consumption in the population that attends open-air street markets in the city of Santo André, SP, Brazil.We performed a survey, covering approximately 482 people in 49 street markets.It consisted of free-answer questions, half open choice and half multiple-choice options, for the identification and evaluation of socioeconomic factors that facilitate and hinder fish consumption.A descriptive analysis of the data and further tests were used to determine the association between variables and linearity with consumption, with a significance level of 5%. The most commonly cited types of fish consumed were hake, sardine and dogfish. The factors that facilitate the purchase and consumption of fish are listed as follows: a preference for purchasing fish at street markets, appearance, firmness, fresh presentation, frozen presentation, as well as the respondent's education and individual monthly income. Limiting factors were identified as the price and the presence of spines. Perishability, odour, ethnicity, proximity to points of sale of residence and work, gender, age, number of people in the household, presence of children and acquisition supermarket were not characteristics that influenced decisions about fish consumption. PMID:23643568

  5. Flow Control in a Compact Inlet

    NASA Astrophysics Data System (ADS)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  6. Patterning process and actuation in open air of micro-beam actuator based on conducting IPNs

    NASA Astrophysics Data System (ADS)

    Khaldi, Alexandre; Plesse, Cédric; Soyer, Caroline; Chevrot, Claude; Teyssié, Dominique; Vidal, Frédéric; Cattan, Eric

    2012-04-01

    We report on new method to obtain micrometric electroactive polymer actuators operating in air. High speed conducting Interpenetrating Polymer Network (IPN) microactuators are synthesized and fully characterized. The IPN architecture used in this work allows solving the interface and adhesion problems, which have been reported in the design of classical conducting polymer-based actuators. We demonstrated that it is possible to reduce the thickness of these actuators by a specific synthetic pathway. IPN host matrixes based on polyethylene oxide / polytetrahydrofurane have been shaped by hot pressing. Then, the resulting thin host matrixes (below 10 μm) are compatible with the microfabrication technologies. After interpenetration of poly(3,4-ethylenedioxythiophene) (PEDOT), these electroactive materials are micro-sized using dry etching process. Frequency responses and displacement have been characterized by scanning electronic microscopy. These conducting IPN microactuators can be considered as potential candidates in numerous low frequency applications, including micro-valves, micro-optical instrumentation and micro-robotics.

  7. Air cleaning system

    SciTech Connect

    Tidwell, J.H.

    1987-06-16

    This patent describes an air cleaning system comprising: a motor housing; a motor mounted within the housing; a fan attached to and rotatably driven by the motor; a fan chamber surrounding the fan and having an air inlet and outlet; a separator housing means mounted adjacent to and in spaced relation with the motor housing, the separator housing means having an inlet disposed in communication with a chamber within separator housing means; an outlet disposed in communication with the fan chamber; an air driven separator means mounted in chamber of the separator housing means to receive airflow from inlet for rotation of the separator means and removal of foreign matter from airflow by centrifugal force responsive to rotation of the separator means; the airflow is further directed through the outlet of separator housing means to the fan chamber to be ejected by the fan.

  8. East rear, north part. Original power inlet is visible to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East rear, north part. Original power inlet is visible to the right of the current power inlet - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  9. 1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING SOUTHWEST - Presidio Water Treatment Plant, Lobos Creek Inlet Structure, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  10. Bottom up approach to estimate air pollution of rice residue open burning in Thailand

    NASA Astrophysics Data System (ADS)

    Cheewaphongphan, Penwadee; Garivait, Savitri

    2013-02-01

    Rice residue open burning is a farmer activity potentially contributes to global warming. This study was conducted with the objective of examining the spatial and temporal distribution of emissions from rice residue open burning in Thailand by using questionnaire survey and field experimentation. A sample of 1000 Thai farmers was interviewed in order to study the fire behaviours of farmers. One hundred and twenty rice sampling plots were selected for measuring rice residue characteristics. Of the farmer's fire behaviour, 45% of farmer regularly uses prescribed burning technique for land preparation activities. The amount of rice residue was approximately 117.7 Mt. Although nearly 60% of total residue was subjected to burning in the fields, only 15% of rice residue is actually burned in the fields because the residue and soil have high moisture content. The burning emissions are computed at 1.67 Mt of CO, 0.04 Mt of NOx, 0.35 Mt of PM2.5, 0.12 Mt of PM10, and 0.01 Mt of BC. Approximately 30%, 26%, and 17% of all emissions are contributed by the lower-northern, central, and western regions of Thailand, respectively. Moreover, 31% and 30% of all emissions are annually emitted from December to January and April to May over one month periods following each harvesting season. The comparisons of rice residue burning emissions provided by this study and previous studies have found the emissions discovered in this study to range from one to five times higher than the finding of previous studies. This finding demonstrates the importance of the assessment of activity data specific to farming fire characteristics.

  11. Le site acheuléen de plein air d'Holon (Israël) : premiers résultatsThe Acheulian open-air site from Holon (Israel): preliminary results

    NASA Astrophysics Data System (ADS)

    Chazan, Michael; Monchot, Hervé; Porat, Naomi; Lister, Adrian; Davies, Paul; Kolska Horwitz, Liora

    2001-02-01

    The open-air site of Holon (Israel), dated to an age of 200 000 years has yielded a large Acheulean bone and lithic assemblage. The association between the lithics and fauna clearly demonstrates that Hominids were the prime agents in creating the assemblage. The site of Holon plays a major role in understanding the Lower Palaeolithic of the Levantine coastal area.

  12. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  13. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2014-05-13

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  14. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2013-12-03

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  15. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... parts exterior to the cargo tank or mating flange must not prevent effective seating of the valve. All... less. Linkages between closures and remote operators must be corrosion resistant and effective in all... operators must be corrosion resistant and effective in all types of environmental conditions incident...

  16. Openings

    PubMed Central

    Selwyn, Peter A.

    2015-01-01

    Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687

  17. Openings.

    PubMed

    Selwyn, Peter A

    2015-01-01

    Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687

  18. 6. View southwest, culvert inlet with canal bank completely removed. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View southwest, culvert inlet with canal bank completely removed. Left to right: back of headwall; tops of high inlet barrels; vertical transition wall between high inlet barrels and low, interior, inlet barrels; tops of low interior barrels; vertical heartening planks and low cutoff wall along former edge of canal bank; dewatered canal bed. - Delaware & Raritan Canal, Ten Mile Run Culvert, 1.5 miles South of Blackwells Road, East Millstone, Somerset County, NJ

  19. Evaluation of effect of continuous positive airway pressure during cardiopulmonary bypass on cardiac de-airing after open heart surgery in randomized clinical trial

    PubMed Central

    Mansour, Mojtaba; Massodnia, Nasim; Mirdehghan, Abolghasem; Bigdelian, Hamid; Massoumi, Gholamreza; Alavi, Zeinab Rafieipour

    2014-01-01

    Background: Cardiac and pulmonary veins de-airing are of the most important steps during open heart surgery. This study evaluates the effect of continuous positive airway pressure (CPAP) on air trapping in pulmonary veins and on quality of de-airing procedure. Materials and Methods: This randomized prospective double blind clinical trial conducted on 40 patients. In the control group: During cardiopulmonary bypass (CPB), the ventilator was turned off and adjustable pressure limit (APL) valve was placed in SPONT position. In CPAP group: During CPB, after turning the ventilator off, the flow of oxygen flow was maintained at the rate of 0.5 L/min and the APL valve was placed in MAN position on 20 mbar. During cardiopulmonary bypass (CPB) weaning, the patients were observed for air bubbles in left atrium by using transesophageal echocardiography. Results: The mean de-airing time after the start of mechanical ventilation in CPAP group (n = 20) was significantly lower than the control group (n = 20) (P = 0.0001). The mean time of the left atrium air bubbles occupation as mild (P = 0.004), moderate (P = 0.0001) and severe (P = 0.015) grading was significantly lower in CPAP group. Conclusions: By CPAP at 20 mbar during CPB in open heart surgery, de-airing process can be down in better quality and in significantly shorter time. PMID:24949307

  20. A Numerical Study of Hypersonic Forebody/Inlet Integration Problem

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay

    1991-01-01

    A numerical study of hypersonic forebody/inlet integration problem is presented in the form of the view-graphs. The following topics are covered: physical/chemical modeling; solution procedure; flow conditions; mass flow rate at inlet face; heating and skin friction loads; 3-D forebogy/inlet integration model; and sensitivity studies.

  1. 40 CFR 89.328 - Inlet and exhaust restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Inlet and exhaust restrictions. 89.328... Equipment Provisions § 89.328 Inlet and exhaust restrictions. (a) The manufacturer is liable for emission... engine. (b) Perform testing at the following inlet and exhaust restriction settings. (1) Equip the...

  2. Testing of high-volume sampler inlets for the sampling of atmospheric radionuclides.

    PubMed

    Irshad, Hammad; Su, Wei-Chung; Cheng, Yung S; Medici, Fausto

    2006-09-01

    Sampling of air for radioactive particles is one of the most important techniques used to determine the nuclear debris from a nuclear weapon test in the Earth's atmosphere or those particles vented from underground or underwater tests. Massive-flow air samplers are used to sample air for any indication of radionuclides that are a signature of nuclear tests. The International Monitoring System of the Comprehensive Nuclear Test Ban Treaty Organization includes seismic, hydroacoustic, infrasound, and gaseous xenon isotopes sampling technologies, in addition to radionuclide sampling, to monitor for any violation of the treaty. Lovelace Respiratory Research Institute has developed a large wind tunnel to test the outdoor radionuclide samplers for the International Monitoring System. The inlets for these samplers are tested for their collection efficiencies for different particle sizes at various wind speeds. This paper describes the results from the testing of two radionuclide sampling units used in the International Monitoring System. The possible areas of depositional wall losses are identified and the losses in these areas are determined. Sampling inlet type 1 was tested at 2.2 m s wind speed for 5, 10, and 20-microm aerodynamic diameter particles. The global collection efficiency was about 87.6% for 10-microm particles for sampling inlet type 1. Sampling inlet type 2 was tested for three wind speeds at 0.56, 2.2, and 6.6 m s for 5, 10, and 20-microm aerodynamic diameter particles in two different configurations (sampling head lowered and raised). The global collection efficiencies for these configurations for 10-microm particles at 2.2 m s wind speed were 77.4% and 82.5%, respectively. The sampling flow rate was 600 m h for both sampling inlets. PMID:16891894

  3. Investigation of "6X" Scramjet Inlet Configurations

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2012-01-01

    This work represents an initial attempt to determine what, if any, issues arise from scaling demonstration supersonic combustion scramjets to a flight scale making the engine a viable candidate for both military weapon and civilian access to space applications. The original vehicle sizes tested and flown to date, were designed to prove a concept. With the proven designs, use of the technology for applications as weapon systems or space flight are only possible at six to ten times the original scale. To determine effects of scaling, computations were performed with hypersonic inlets designed to operate a nominal Mach 4 and Mach 5 conditions that are possible within the eight foot high temperature tunnel at NASA Langley Research Center. The total pressure recovery for these inlets is about 70%, while maintaining self start conditions, and providing operable inflow to combustors. Based on this study, the primary scaling effect detected is the strength of a vortex created along the cowl edge causing adverse boundary layer growth in the inlet.

  4. Terminal-shock and restart control of a Mach 2.5, mixed compression inlet coupled to a turbofan engine

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.; Batterton, P. G.; Daniele, C. J.

    1974-01-01

    Results of an experimental program conducted on a mixed-compression inlet coupled to a turbofan engine are presented. Open-loop frequency response data are presented that show the response of shock position (as measured by an average inlet static pressure) to sinusoidal airflow disturbances produced at the compressor face station. Also presented are results showing the effect of different passive terminations (a choke plate or a long duct) on the characteristics of the inlet. Transfer functions obtained by using experimental data are presented and compared to the experimental data. Closed-loop frequency response of shock position (with a proportional-plus-integral controller) is presented. In addition, transient data are presented that show the unstart-restart characteristics of the inlet.

  5. Supplemental air valve for internal combustion engine

    SciTech Connect

    Pankow, C.W.

    1987-12-29

    A valve for attachment in the PCV system of an internal combustion engine for regulating the admission of supplemental air to the crank case blow-by return, comprising: (a) a valve body defining a bore, the body having an inlet and an outlet connection defining a passageway through the valve for the blow-by return, the body further defining a port for air; (b) a valve member reciprocal within the bore having a piston member dividing at least a portion of the bore into two pressure chambers, the pressure chambers having means for connection of each to a source of engine vacuum; (c) the valve member being shiftable from and open position permitting air to enter through the port to the passageway and having a closed position blocking admission of air through the port to the passageway; and (d) resilient means normally urging the valve body to the closed position, the resilient means being selectively adjustable to provide a predetermined biasing force whereby the piston is shiftable to the open position in response to changes in engine vacuum to admit supplemental air to the engine.

  6. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  7. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of Soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on 1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the ma...

  8. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  9. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  10. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  11. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  12. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  13. PCDD/Fs in air and soil around an e-waste dismantling area with open burning of insulated wires in south China.

    PubMed

    Ren, M; Tang, Y H; Peng, P A; Cai, Y

    2015-05-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air and farmland soil sampled in 2006 around an e-waste dismantling area with open burning of insulated wires in Longtang in south China were investigated. The total toxic equivalent concentrations of PCDD/Fs were 3.2-31.7 pg/m(3) in air and 5.8 12.4 ng/kg in farmland soil at an e-waste site and 0.063-0.091 pg/m(3) in air at a background site. PCDD/Fs in the air at the e-waste site were characterized with dominant 1,2,3,4,6,7,8-HpCDF and OCDF and higher concentrations of furans than dioxins, suggesting open burning of insulated wires was likely to be the main source of PCDD/Fs. Compared with the results in this study, the level of PCDD/F tended to lessen with the average TEQ concentration decreasing by 41 % and the pattern changed to be dominated by OCDD in the air of Longtang in 2010 when insulated wires were openly burned in only a small scale. Our results indicate that the lower chlorinated congeners with higher vapor pressures have enhanced atmospheric transport tendencies. PMID:25749620

  14. Landscapes, depositional environments and human occupation at Middle Paleolithic open-air sites in the southern Levant, with new insights from Nesher Ramla, Israel

    NASA Astrophysics Data System (ADS)

    Zaidner, Yossi; Frumkin, Amos; Friesem, David; Tsatskin, Alexander; Shahack-Gross, Ruth

    2016-04-01

    Middle Paleolithic human occupation in the Levant (250-50 ka ago) has been recorded in roofed (cave and rockshelter) and open-air sites. Research at these different types of sites yielded different perspectives on the Middle Paleolithic human behavior and evolution. Until recently, open-air Middle Paleolithic sites in the Levant were found in three major sedimentary environments: fluvial, lake-margin and spring. Here we describe a unique depositional environment and formation processes at the recently discovered open-air site of Nesher Ramla (Israel) and discuss their contribution to understanding site formation processes in open-air sites in the Levant. The site is 8-m-thick Middle Paleolithic sequence (OSL dated to 170-80 ka) that is located in a karst sinkhole formed by gravitational deformation and sagging into underground voids. The sedimentary sequence was shaped by gravitational collapse, cyclic colluviation of soil and gravel into the depression, waterlogging, in situ pedogenesis and human occupation. Original bedding and combustion features are well-preserved in the Lower archaeological sequence, a rare occurrence in comparison to other open-air archaeological sites. This phenomenon coincides with episodes of fast sedimentation/burial, which also allowed better preservation of microscopic remains such as ash. The Upper archaeological sequence does not exhibit bedding or preservation of ash, despite presence of heat-affected lithic artifacts, which makes it similar to other open-air sites in the Levant. We suggest that rate of burial is the major factor that caused the difference between the Upper and Lower sequences. The differences in the burial rate may be connected to environmental and vegetation changes at the end of MIS 6. We also identified an interplay between sediment in-wash and density of human activity remains, i.e. during episodes of low natural sediment input the density of artifacts is higher relative to episodes with high rate of sediment in

  15. Air-cooled overhead-valve engine

    SciTech Connect

    Shirai, T.

    1987-06-16

    This patent describes an air-cooled overhead-valve internal combustion engine. The engine is composed of a crankcase with a crankshaft, a cylinder block with a cylinder head and a combustion chamber mounted in the crankcase. At least a pair of intake and exhaust valves installed in intake and exhaust ports are formed in the cylinder head. A valve drive system mounted adjacent to the cylinder block drives the intake and exhaust valves through cam-driven push rods. An intake pipe is connected at one end of the intake port and at its opposite end to an air cleaner and a carburetor. An exhaust duct is connected at one end of the exhaust port. A flywheel is joined to the crankshaft at the other end of the output side end of the crankshaft and a cooling fan mounted on the flywheel. The improvements are where the cooling fan is housed, together with the crankcase and flywheel, in a fan casing having a pair of inlet and outlet openings bored in opposite walls. The inlet opening is located at the flywheel side of the crankshaft, while the outlet opening is located at the opposite side of the crankshaft from the flywheel. The cam-driven push rods are located in the crankcase on that side of the cylinder block far remote from where the intake pipe is connected to the intake port. The cooling fan is mounted in the fan casing in such a manner that the cooling air from the cooling fan is allowed to flow in a direction substantially parallel with the axis of the crankshaft, along the surface of the cylinder block and cylinder head.

  16. Measurement of Urban Air Quality by an Open-Path Quantum Cascade Laser Absorption Spectrometer in Beijing During Summer 2008

    NASA Astrophysics Data System (ADS)

    Michel, A. P.; Liu, P. Q.; Yeung, J. K.; Zhang, Y.; Baeck, M. L.; Pan, X.; Dong, H.; Wang, Z.; Smith, J. A.; Gmachl, C. F.

    2009-05-01

    The 2008 Olympic Games focused attention on the air quality of Beijing, China and served as an important test-bed for developing, deploying, and testing new technologies for analysis of air quality and regional climate in urban environments. Poor air quality in urban locations has a significant detrimental effect on the health of residents while also impacting both regional and global climate change. As a result, there exists a great need for highly sensitive trace gas sensors for studying the atmosphere of the urban environment. Open-path remote sensors are of particular interest as they can obtain data on spatial scales similar to those used in regional climate models. Quantum cascade lasers (QCLs) can be designed for operation in the mid-infrared (mid-IR) with a central wavelength anywhere between 3 to 24 μm and made tunable over a wavelength interval of over 0.1 μm. The Quantum Cascade Laser Open-Path System (QCLOPS) is a mid-infrared laser absorption spectrometer that uses a tunable, thermoelectrically cooled, pulsed Daylight Solutions Inc. QCL for measurement of trace gases. The system is aimed at applications with path lengths ranging from approximately 0.1 to 1.0 km. The system is designed to continuously monitor multiple trace gases [water vapor (H2O), ozone (O3), ammonia (NH3), and carbon dioxide (CO2)] in the lower atmosphere. A field campaign from July to September 2008 in Beijing used QCLOPS to study trace gas concentrations before, during, and after the Olympic Games in an effort to capture changes induced by emissions reduction methods. QCLOPS was deployed at the Institute of Atmospheric Physics - Chinese Academy of Sciences on the roof of a two-story building, at an approximate distance of 2 miles from the Olympic National Stadium ("The Bird's Nest.") QCLOPS operated with an open-path round trip distance of approximately 75 m. The system ran with minimal human interference, twenty-four hours per day for the full campaign period. In order to

  17. 7. View north at back (canal side) of culvert inlet, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View north at back (canal side) of culvert inlet, with canal bank completely removed. Background to foreground: back of inlet headwall with tops of high inlet barrels exposed; vertical transition wall between high inlet barrels and low, interior, inlet barrels; tops of low interior barrels; vertical heartening planks and low cutoff wall at site of former canal edge of canal bank; dewatered canal bed and plank sheathing on top of culvert barrels beneath canal bed. - Delaware & Raritan Canal, Ten Mile Run Culvert, 1.5 miles South of Blackwells Road, East Millstone, Somerset County, NJ

  18. Zero-length inlets for subsonic V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Glasgow, E. R.; Beck, W. E.; Woollett, R. R.

    1981-01-01

    Zero-length inlet performance and associated fan blade stresses were determined during model tests in the NASA-LeRC 9-by 15-foot low-speed wind tunnel. The inlet models, which were installed on a 20-inch diameter fan unit, had different inlet lip contraction ratios as well as unslotted, slotted, and double slotted inlet lips. The inlet angle-of-attack boundaries for onset of flow separation were identified and compared to the operating requirements of several generically different subsonic V/STOL aircraft. The zero-length inlets, especially those with slotted lips, were able to satisfy these requirements without compromising the maximum cowl forebody radius. As an aid to the inlet design process, a unique relationship was established between the maximum surface Mach number associated with the separation boundary and the maximum-to-throat surface velocity ratio.

  19. A new approach for the design of hypersonic scramjet inlets

    NASA Astrophysics Data System (ADS)

    Raj, N. Om Prakash; Venkatasubbaiah, K.

    2012-08-01

    A new methodology has been developed for the design of hypersonic scramjet inlets using gas dynamic relations. The approach aims to find the optimal inlet geometry which has maximum total pressure recovery at a prescribed design free stream Mach number. The design criteria for inlet is chosen as shock-on-lip condition which ensures maximum capture area and minimum intake length. Designed inlet geometries are simulated using computational fluid dynamics analysis. The effects of 1D, 2D inviscid and viscous effects on performance of scramjet inlet are reported here. A correction factor in inviscid design is reported for viscous effects to obtain shock-on-lip condition. A parametric study is carried out for the effect of Mach number at the beginning of isolator for the design of scramjet inlets. Present results show that 2D and viscous effects are significant on performance of scramjet inlet. Present simulation results are matching very well with the experimental results available from the literature.

  20. Advanced Technology Inlet Design, NRA 8-21 Cycle II: DRACO Flowpath Hypersonic Inlet Design

    NASA Technical Reports Server (NTRS)

    Sanders, Bobby W.; Weir, Lois J.

    1999-01-01

    The report outlines work performed in support of the flowpath development for the DRACO engine program. The design process initiated to develop a hypersonic axisymmetric inlet for a Mach 6 rocket-based combined cycle (RBCC) engine is discussed. Various design parametrics were investigated, including design shock-on-lip Mach number, cone angle, throat Mach number, throat angle. length of distributed compression, and subsonic diffuser contours. Conceptual mechanical designs consistent with installation into the D-21 vehicle were developed. Additionally, program planning for an intensive inlet development program to support a Critical Design Review in three years was performed. This development program included both analytical and experimental elements and support for a flight-capable inlet mechanical design.

  1. Effect of afterburner lights and inlet unstarts on a mixed compression inlet turbofan engine operating at Mach 2.5

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.; Batterton, P. G.; Daniele, C. J.

    1975-01-01

    Data are presented to show the response of an uncontrolled inlet to afterburner lightoff disturbances when a mixed-compression inlet is coupled to a turbofan engine. The results show a significant upstream shock excursion when the afterburner lights which is a result of the direct communication between the afterburner region and the inlet by means of the fan duct and fan stages. In addition results of a waveform analysis on the inlet pressure response to the afterburner light is presented. Inlet unstarts and their effect on operation of the propulsion system is also discussed.

  2. The effect of high dose on residual radicals in open air irradiated α-T UHMWPE resin powder

    NASA Astrophysics Data System (ADS)

    Mehmood, Malik S.; Shah, Jahan M.; Mishra, Sanjay R.; Walters, Benjamin M.

    2013-03-01

    Powder samples of UHMWPE (GUR 1020) containing 0.1 wt%. vitamin E (α-tocopherol, α-T) were irradiated at room temperature in air for doses of 30-kGy, 65-kGy or 100-kGy (60Co). After irradiation, they were stored at -78.5 °C (dry ice temperature) for 1 year and then opened to air at room temperature. Following the decay of the primary alkyl and allyl radicals (at room temperature in air), growth of the carbon-centered polyenyl R1 (-˙CH-[-CHCH-]m-, m≥3), and the oxygen-centered di- or tri-enyl R2 (-˙OCH-[-CHCH-]m-, m≤3) residual radicals were measured for 8 weeks. An X-band electron spin resonance (ESR) spectrometer was used for radical measurements. The initial relative radical concentrations (R2/R1) were found to be 10.13, 4.6 and 3.7 for the 65-kGy, 30-kGy and 100-kGy samples, respectively. R1 and R2 were both found to grow significantly in the 65-kGy sample while they grew only slightly in the 30-kGy and 100-kGy samples. In 65-kGy sample, R1 grew faster than R2 and the relative concentration R2/R1 was reduced from 10.13 to 2.9 for the 65-kGy sample while those for the 30-kGy and 100-kGy samples reduced only slightly, from 4.6 to 3.5 and 3.7 to 3.2, respectively. The behavior of the residual radicals can be explained by Raman spectroscopic data which suggest that the 65-kGy samples had a higher percentage of amorphous regions when compared to the 30-kGy or 100-kGy ones (21.7 compared to 15.7 or 17.9) and also suggest a lower percentage of interfacial regions (16.4 compared to 25.6 or 17.5) and a lower level of structural disorder (0.26 compared to 0.44 or 0.27).

  3. A wind tunnel study of the flow field within and around open-top chambers used for air pollution studies

    NASA Astrophysics Data System (ADS)

    Davis, J. M.; Riordan, A. J.; Lawson, R. E.

    1983-02-01

    The EPA Meteorological Wind Tunnel was used to examine the flow field in and around models of open-top field-plant growth chambers used to assess the effects of pollutant gases on plant growth. Baffles designed to reduce the ingress of ambient air into the chamber through the open top were tested; the mean flow and turbulence in the simulated boundary layer with and without the chambers were compared (the chamber was operated with and without the pollutant flow system on); and the effects of surrounding chambers on the concentration field were measured. Results showed that a baffle with a reduced opening vertically above the test area maintained the highest uniform concentration in the test area. The major differences between the three (no chamber and the chamber with flow on and off) mean velocity profiles occurred below z/h = 2.0 ( h is chamber height) and at z/h ≤ 4.2. The three Reynolds stress profiles were similar above z/h = 2.0. Downwind of the chamber, the Reynolds stresses in the on-mode were greater than those in the off-mode above z/h = 1.1. The reverse was true below that point. Both longitudinal and vertical intensities above and downwind of the chamber were greater with the mixture flow system on rather than off, below about z/h < 1.5. Lateral variations in the mean wind indicated that the mean velocity was greater with the mixture flow system on except near the centerline where the reverse was true. The concentrations in the downwind wake resembled those for a cube. The location of a cylinder within a regular array had some effect on its internal gas concentration. Locations near the upwind and downwind edges of the array were associated with lower concentrations, although for all locations the highest internal values were always found at the lowest portion of the upwind wall. With active cylinders downwind, the gas plume emitted from a source cylinder at the windward edge of the array was forced 0.5 h higher and the centerline meandered laterally

  4. Transient analysis of single stage GM type double inlet pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Gujarati, P. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    2015-12-01

    Transient analysis of single stage GM type double inlet pulse tube cryocooler is carried out using a one dimensional numerical model based on real gas properties of helium. The model solves continuity, momentum and energy equation for gas and solid to analyse the physical process occurring inside of the pulse tube cryocooler. Finite volume method is applied to discretize the governing equations with realistic initial and boundary conditions. Input data required for solving the model are the design data and operating parameters viz. pressure waveform from the compressor, regenerator matrix data, and system geometry including pulse tube, regenerator size and operating frequency for pulse tube cryocooler. The model investigates the effect of orifice opening, double inlet opening, pressure ratio, system geometry on no load temperature and refrigeration power at various temperatures for different charging pressure. The results are compared with experimental data and reasonable agreement is observed. The model can further be extended for designing two stage pulse tube cryocooler.

  5. Numerical simulation of turbulent mixing and combustion near the inlet of a burner

    SciTech Connect

    Cloutman, L.D.

    1993-02-01

    The COYOTE computer program was used to simulate the flow field and turbulent mixing near the fuel and air inlets in a simplified burner that was proposed for experimental study at the Combustion Laboratory at the University of California at Irvine. Four cases are presented, with and without chemical reactions, with two different outflow boundary conditions, and with two different swirl numbers. These preliminary results demonstrate the ability of COYOTE to simulate burners, and they illustrate some limitations and requirements of such modeling.

  6. Improving an Inlet for Underwater Volatile Analyses

    NASA Astrophysics Data System (ADS)

    Chua, E.; Michel, A.; Wankel, S. D.; Kapit, J.

    2014-12-01

    Although the deep ocean remains a challenging place to study, recent progress in technologies such as advanced in situ chemical sensors is beginning to broaden the scope of ocean exploration by enabling more comprehensive measurements at higher spatial and temporal resolutions. Such sensors are designed to be compatible with remotely and human operated vehicles and thus shed light on the geochemical composition of, and processes occurring in, seafloor environments. Among these sensors is a recently-developed in situ laser-based analyzer which utilizes Off-Axis Integrated Cavity Output Spectroscopy (ICOS). This instrument is capable of measuring stable carbon isotope ratios of methane (δ13CCH4), making it a powerful tool for assessing biogeochemical activity in the deep sea. With the aim of improving the sensitivity of this membrane inlet-based chemical sensor, a Membrane Inlet Dissolved Gas Extractor (MIDGE) was developed. Recent work on the MIDGE focused on improving design elements with the aim of enhancing gas transport through the membrane and reducing water vapour in the gas stream. This was accomplished by implementing a newly-designed membrane flow-through inlet geometry, testing a variety of membrane materials, and incorporating an acidification module to evolve dissolved inorganic carbon (DIC) to gaseous CO2. We will report on results from a September 2014 research cruise, in which the MIDGE ICOS is to be deployed as part of an interdisciplinary mission conducting the first-ever in situ chemical and stable isotopic exploration of two seafloor sites in the Caribbean: the Barbados Mud Volcanoes and Kick 'em Jenny (KEJ). The goals of this project are to 1) use in situ measurements of methane and DIC carbon isotopes to enable biogeochemical exploration and mapping of methane seeps, and 2) measure the composition of bubble streams emanating from the crater of KEJ.

  7. Modeling and experimental validation on pressure drop in a reverse-flow cyclone separator at high inlet solid loading

    NASA Astrophysics Data System (ADS)

    Wu, Xuezhi; Liu, Jie; Xu, Xiang; Xiao, Yunhan

    2011-08-01

    High inlet solid loading is one of the most important features of cyclone separators in high density circulating fluidized beds (CFB). In this work, the effect of high solid loading on pressure drop in a reverse-flow cyclone was experimentally studied. The particles used were sand and γ-Al2O3. An extended range of inlet solid loadings ( M), up to 30 kg of solids/ kg of air was tested at different inlet air velocities ( V in=16˜24 m/s), well beyond the solid loading range reported before. The experiments showed that, in the tested range of solid loadings, the cyclone pressure drop decreased dramatically with increasing solid loading when M<7.5 kg/kg and then almost remained constant. A new semi-empirical model for predicting cyclone pressure drop was also developed. The calculated and experimental results showed good agreement for particle free flow and particle laden flow.

  8. Acute O3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment

    SciTech Connect

    Darbah, J.N.; Nagy, J.; Jones, W. S.; Burton, A. J.; Kubiske, M. E.

    2011-10-01

    We studied the effect of high ozone (O{sub 3}) concentration (110-490 nmol mol{sup -1}) on regenerating aspen (Populus tremuloides) and maple (Acer saccharum) trees at an open-air O{sub 3} pollution experiment near Rhinelander WI USA. This study is the first of its kind to examine the effects of acute O{sub 3} exposure on aspen and maple sprouts after the parent trees, which were grown under elevated O{sub 3} and/or CO{sub 2} for 12 years, were harvested. Acute O{sub 3} damage was not uniform within the crowns of aspen suckers; it was most severe in the mature, fully expanded photosynthesizing leaves. Young expanding leaves showed no visible signs of acute O{sub 3} damage contrary to expectations. Stomatal conductance played a primary role in the severity of acute O{sub 3} damage as it directly controlled O{sub 3} uptake. Maple sprouts, which had lower stomatal conductance, smaller stomatal aperture, higher stomatal density and larger leaf surface area, were tolerant of acute O{sub 3} exposure. Moreover, elevated CO{sub 2} did not ameliorate the adverse effects of acute O{sub 3} dose on aspen and maple sprouts, in contrast to its ability to counteract the effects of long-term chronic exposure to lower O{sub 3} levels.

  9. Ozone deposition to an oat crop ( Avena sativa L.) grown in open-top chambers and in the ambient air

    NASA Astrophysics Data System (ADS)

    Pleijel, H.; Wallin, G.; Karlsson, P. E.; Skarby, L.; Sellden, G.

    Fluxes and deposition velocities for ozone were determined for open-top chambers with and without an oat crop, and for the adjacent field, using a resistance analogue model and the aerodynamic wind-profile method, respectively. During a period when the canopy was green and the ambient wind speeds modest, the fluxes and deposition velocities were higher in the chamber with plants than in the field crop. The deposition to chamber walls and soil in the chamber only accounted for part of that difference. The deposition velocity for ozone to the crop was light-dependent both in the chamber with plants and in the ambient air. With increasing plant senescence, the deposition velocity declined and the light dependence disappeared. Fluctuations in deposition velocity superimposed on the overall declining trend followed the same temporal pattern in the chambers with and without plants. These fluctuations in deposition velocity may partly be explained by variations in surface wetness. Differences in boundary layer conductance between chamber and ambient, which under certain conditions may significantly influence the validity of the chamber as a test system, were observed.

  10. Engineering Schottky Contacts in Open-Air Fabricated Heterojunction Solar Cells to Enable High Performance and Ohmic Charge Transport

    PubMed Central

    2014-01-01

    The efficiencies of open-air processed Cu2O/Zn1–xMgxO heterojunction solar cells are doubled by reducing the effect of the Schottky barrier between Zn1–xMgxO and the indium tin oxide (ITO) top contact. By depositing Zn1–xMgxO with a long band-tail, charge flows through the Zn1–xMgxO/ITO Schottky barrier without rectification by hopping between the sub-bandgap states. High current densities are obtained by controlling the Zn1–xMgxO thickness to ensure that the Schottky barrier is spatially removed from the p–n junction, allowing the full built-in potential to form, in addition to taking advantage of the increased electrical conductivity of the Zn1–xMgxO films with increasing thickness. This work therefore shows that the Zn1–xMgxO window layer sub-bandgap state density and thickness are critical parameters that can be engineered to minimize the effect of Schottky barriers on device performance. More generally, these findings show how to improve the performance of other photovoltaic system reliant on transparent top contacts, e.g., CZTS and CIGS. PMID:25418326

  11. Engineering Schottky contacts in open-air fabricated heterojunction solar cells to enable high performance and ohmic charge transport.

    PubMed

    Hoye, Robert L Z; Heffernan, Shane; Ievskaya, Yulia; Sadhanala, Aditya; Flewitt, Andrew; Friend, Richard H; MacManus-Driscoll, Judith L; Musselman, Kevin P

    2014-12-24

    The efficiencies of open-air processed Cu2O/Zn(1-x)Mg(x)O heterojunction solar cells are doubled by reducing the effect of the Schottky barrier between Zn(1-x)Mg(x)O and the indium tin oxide (ITO) top contact. By depositing Zn(1-x)Mg(x)O with a long band-tail, charge flows through the Zn(1-x)Mg(x)O/ITO Schottky barrier without rectification by hopping between the sub-bandgap states. High current densities are obtained by controlling the Zn(1-x)Mg(x)O thickness to ensure that the Schottky barrier is spatially removed from the p-n junction, allowing the full built-in potential to form, in addition to taking advantage of the increased electrical conductivity of the Zn(1-x)Mg(x)O films with increasing thickness. This work therefore shows that the Zn(1-x)Mg(x)O window layer sub-bandgap state density and thickness are critical parameters that can be engineered to minimize the effect of Schottky barriers on device performance. More generally, these findings show how to improve the performance of other photovoltaic system reliant on transparent top contacts, e.g., CZTS and CIGS. PMID:25418326

  12. Highly efficient photocatalytic TiO2 coatings deposited by open air atmospheric pressure plasma jet with aerosolized TTIP precursor

    NASA Astrophysics Data System (ADS)

    Fakhouri, H.; Ben Salem, D.; Carton, O.; Pulpytel, J.; Arefi-Khonsari, F.

    2014-07-01

    A simple method to deposit photocatalytic TiO2 coatings, at a high rate (20-40 µm s-1), and with a high porosity, is reported in this paper. This method, which allows the treatment of membranes (with an 800 nm pore size), is based on the introduction of a liquid precursor sprayed into an open-air atmospheric pressure plasma jet (APPJ). The photocatalytic activity of the TiO2 thin films prepared by APPJ have been compared with our best N-doped TiO2 thin films, deposited by reactive radio frequency (RF) magnetron sputtering, previously reported in the literature. The morphology, chemical composition, photoelectrochemical, and photocatalytic properties of the coatings have been studied in this paper. Significant control of the porosity and crystallinity was achieved by varying the deposition parameters and the annealing temperature. Under optimized conditions, the TiO2 coatings deposited by APPJ are characterized by a higher photocatalytic activity as compared to the optimized thin films deposited by RF sputtering. This difference can be explained by the higher specific surface of the APPJ coatings. Finally, the most interesting characteristic of this APPJ-liquid spray process is its capacity to treat membranes without blocking the pores, and to produce photocatalytic membranes which can efficiently combine filtration and photocatalysis for water treatment.

  13. Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments

    SciTech Connect

    Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica"Rocasolano"C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L'Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

    2007-12-28

    A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

  14. Conditions for the use of infrared camera diagnostics in energy auditing of the objects exposed to open air space at isothermal sky

    NASA Astrophysics Data System (ADS)

    Kruczek, Tadeusz

    2015-03-01

    Convective and radiation heat transfer take place between various objects placed in open air space and their surroundings. These phenomena bring about heat losses from pipelines, building walls, roofs and other objects. One of the main tasks in energy auditing is the reduction of excessive heat losses. In the case of a low sky temperature, the radiation heat exchange is very intensive and the temperature of the top part of the horizontal pipelines or walls is lower than the temperature of their bottom parts. Quite often this temperature is also lower than the temperature of the surrounding atmospheric air. In the case of overhead heat pipelines placed in open air space, it is the ground and sky that constitute the surroundings. The aforementioned elements of surroundings usually have different values of temperature. Thus, these circumstances bring about difficulties during infrared inspections because only one ambient temperature which represents radiation of all surrounding elements must be known during the thermovision measurements. This work is aimed at the development of a method for determination of an equivalent ambient temperature representing the thermal radiation of the surrounding elements of the object under consideration placed in open air space, which could be applied at a fairly uniform temperature of the sky during the thermovision measurements as well as for the calculation of radiative heat losses.

  15. Study of inlet materials for sampling atmospheric nitric acid

    SciTech Connect

    Neuman, J.A.; Huey, L.G.; Ryerson, T.B.; Fahey, D.W. |

    1999-04-01

    The adsorption of nitric acid (HNO{sub 3}) from a flowing gas stream is studied for a variety of wall materials to determine their suitability for use in atmospheric sampling instruments. Parts per billion level mixtures of HNO{sub 3} in synthetic air flow through tubes of different materials such that >80% of the molecules interact with the walls. A chemical ionization mass spectrometer with a fast time response and high sensitivity detects HNO{sub 3} that is not adsorbed on the tube walls. Less than 5% of available HNO{sub 3} is adsorbed on Teflon fluoropolymer tubing after 1 min of HNO{sub 3} exposure, whereas >70% is lost on walls made of stainless steel, glass, fused silica, aluminum, nylon, silica-steel, and silane-coated glass. Glass tubes exposed to HNO{sub 3} on the order of hours passivate with HNO{sub 3} adsorption dropping to zero. The adsorption of HNO{sub 3} on PFA Teflon tubing (PFA) is nearly temperature-independent from 10 to 80 C, but below {minus}10 C nearly all HNO{sub 3} that interacts with PFA is reversibly adsorbed. In ambient and synthetic air, humidity increases HNO{sub 3} adsorption. The results suggest that Teflon at temperatures above 10 C is an optimal choice for inlet surfaces used for in situ measurements of HNO{sub 3} in the ambient atmosphere.

  16. Total-Pressure Distortion and Recovery of Supersonic Nose Inlet with Conical Centerbody in Subsonic Icing Conditions

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F

    1957-01-01

    Ice was formed on a full-scale unheated supersonic nose inlet in the NACA Lewis icing tunnel to determine its effect on compressor-face total-pressure distortion and recovery.Inlet angle of attack was varied from 0degrees to 12 degrees, free-stream Mach number from 0.17 to 0.28, and compressor-face Mach number from 0.10 to 0.47. Icing-cloud liquid-water content was varied from 0.65 to 1.8 grams per cubic meter at free-stream static air temperatures of 15 degrees and 0 degrees F. The addition of ice to the inlet components increased total-pressure-distortion levels and decreased recovery values compared withclear0air results, the losses increasing with time in ice. The combination of glaze ice, high corrected weight flow, and high angle of attack yielded the highest levels of distortion and lowest values of recovery. The general character of compressor-face distortion with an iced inlet was the same as that for the clean inlet, the total-pressure gradients being predominantly radial, with circumferential gradients occurring at angle of attack. At zero angle of attack, free-stream Mach number of 0.27, and a constant corrected weight flow of 150 pounds per second (compressor-face Mach number of 0.43), compressor-face total-pressure-distortion level increased from about 6 percent in clear air to 12 percent after 21 minutes of heavy glaze icing; concurrently, total-pressure recovery decreased from about 0.98 to 0.945. For the same operating conditions but with the inlet at 12 deg angle of attack, a change in distortion level occurred from about 9 percent in clear air to 14 percent after 2-1/4 minutes of icing, with a decrease in recovery from about 0.97 to 0.94.

  17. Investigation of REST-Class Hypersonic Inlet Designs

    NASA Technical Reports Server (NTRS)

    Gollan, Rowan; Ferlemann, Paul G.

    2011-01-01

    Rectangular-to-elliptical shape-transition (REST) inlets are of interest for use on scramjet engines because they are efficient and integrate well with the forebody of a planar vehicle. The classic design technique by Smart for these inlets produces an efficient inlet but the complex three-dimensional viscous effects are only approximately included. Certain undesirable viscous features often occur in these inlets. In the present work, a design toolset has been developed which allows for rapid design of REST-class inlet geometries and the subsequent Navier-Stokes analysis of the inlet performance. This gives the designer feedback on the complex viscous effects at each design iteration. This new tool is applied to design an inlet for on-design operation at Mach 8. The tool allows for rapid investigation of design features that was previously not possible. The outcome is that the inlet shape can be modified to affect aspects of the flow field in a positive way. In one particular example, the boundary layer build-up on the bodyside of the inlet was reduced by 20% of the thickness associated with the classically designed inlet shape.

  18. NASCRIN - NUMERICAL ANALYSIS OF SCRAMJET INLET

    NASA Technical Reports Server (NTRS)

    Kumar, A.

    1994-01-01

    The NASCRIN program was developed for analyzing two-dimensional flow fields in supersonic combustion ramjet (scramjet) inlets. NASCRIN solves the two-dimensional Euler or Navier-Stokes equations in conservative form by an unsplit, explicit, two-step finite-difference method. A more recent explicit-implicit, two-step scheme has also been incorporated in the code for viscous flow analysis. An algebraic, two-layer eddy-viscosity model is used for the turbulent flow calculations. NASCRIN can analyze both inviscid and viscous flows with no struts, one strut, or multiple struts embedded in the flow field. NASCRIN can be used in a quasi-three-dimensional sense for some scramjet inlets under certain simplifying assumptions. Although developed for supersonic internal flow, NASCRIN may be adapted to a variety of other flow problems. In particular, it should be readily adaptable to subsonic inflow with supersonic outflow, supersonic inflow with subsonic outflow, or fully subsonic flow. The NASCRIN program is available for batch execution on the CDC CYBER 203. The vectorized FORTRAN version was developed in 1983. NASCRIN has a central memory requirement of approximately 300K words for a grid size of about 3,000 points.

  19. Localization and imaging of gangliosides in mouse brain tissue sections by laserspray ionization inlet[S

    PubMed Central

    Richards, Alicia L.; Lietz, Christopher B.; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2012-01-01

    A new ionization method for the analysis of fragile gangliosides without undesired fragmentation or salt adduction is presented. In laserspray ionization inlet (LSII), the matrix/analyte sample is ablated at atmospheric pressure, and ionization takes place in the ion transfer capillary of the mass spectrometer inlet by a process that is independent of a laser wavelength or voltage. The softness of LSII allows the identification of gangliosides up to GQ1 with negligible sialic acid loss. This is of importance to the field of MS imaging, as undesired fragmentation has made it difficult to accurately map the spatial distribution of fragile ganglioside lipids in tissue. Proof-of-principle structural characterization of endogenous gangliosides using MSn fragmentation of multiply charged negative ions on a LTQ Velos and subsequent imaging of the GD1 ganglioside is demonstrated. This is the first report of multiply charged negative ions using inlet ionization. We find that GD1 is detected at higher levels in the mouse cortex and hippocampus compared with the thalamus. In LSII with the laser aligned in transmission geometry relative to the inlet, images were obtained in approximately 60 min using an inexpensive nitrogen laser. PMID:22262808

  20. Investigation on inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Wang, Yingjun; Lao, Dazhong; Tong, Ding; Wei, Longyu; Liu, Yixiong

    2016-08-01

    The inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet structures were studied in numerical method, mainly focused on three issues including the amounts and differences of the inlet recirculation in different working conditions, the circumferential non-uniform distributions of the inlet recirculation, the recirculation velocity distributions of the upstream slot of the rear impeller. The results show that there are some differences between the recirculation of the front impeller and that of the rear impeller in whole working conditions. In design speed, the recirculation flow rate of the rear impeller is larger than that of the front impeller in the large flow range, but in the small flow range, the recirculation flow rate of the rear impeller is smaller than that of the front impeller. In different working conditions, the recirculation velocity distributions of the front and rear impeller are non-uniform along the circumferential direction and their non-uniform extents are quite different. The circumferential non-uniform extent of the recirculation velocity varies with the working conditions change. The circumferential non-uniform extent of the recirculation velocity of front impeller and its distribution are determined by the static pressure distribution of the front impeller, but that of the rear impeller is decided by the coupling effects of the inlet flow distortion of the rear impeller, the circumferential unsymmetrical distribution of the upstream slot and the asymmetric structure of the volute. In the design flow and small flow conditions, the recirculation velocities at different circumferential positions of the mean line of the upstream slot cross-section of the rear impeller are quite different, and the recirculation velocities distribution forms at both sides of the mean line are different. The recirculation velocity distributions in the cross-section of the upstream slot depend on the static pressure

  1. Effect of Blowing on Boundary Layer of Scarf Inlet

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.

    2004-01-01

    When aircraft operate in stationary or low speed conditions, airflow into the engine accelerates around the inlet lip and pockets of turbulence that cause noise and vibration can be ingested. This problem has been encountered with engines equipped with the scarf inlet, both in full scale and in model tests, where the noise produced during the static test makes it difficult to assess the noise reduction performance of the scarf inlet. NASA Langley researchers have implemented boundary layer control in an attempt to reduce the influence of the flow nonuniformity in a 12-in. diameter model of a high bypass fan engine mounted in an anechoic chamber. Static pressures and boundary layer profiles were measured in the inlet and far field acoustic measurements were made to assess the effectiveness of the blowing treatment. The blowing system was found to lack the authority to overcome the inlet distortions. Methods to improve the implementation of boundary layer control to reduce inlet distortion are discussed.

  2. Method of making a small inlet optical panel

    DOEpatents

    Veligdan, James T.; Slobodin, David E.

    2004-02-03

    An optical panel having a small inlet, and a method of making a small inlet optical panel, are disclosed, which optical panel includes a individually coating, stacking, and cutting a first plurality of stacked optical waveguides to form an outlet face body with an outlet face, individually coating, stacking, and cutting a second plurality of stacked optical waveguides to form an inlet face body with an inlet face, and connecting an optical coupling element to the first plurality and second plurality of stacked optical waveguides, wherein the optical coupling element redirects light along a parallel axis of the inlet face to a parallel axis of the outlet face. In the preferred embodiment of the present invention, the inlet face is disposed obliquely with and askew from the outlet face.

  3. Boundary-layer-ingesting inlet flow control system

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)

    2010-01-01

    A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.

  4. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  5. Improved Air-Treatment Canister

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1982-01-01

    Proposed air-treatment canister integrates a heater-in-tube water evaporator into canister header. Improved design prevents water from condensing and contaminating chemicals that regenerate the air. Heater is evenly spiraled about the inlet header on the canister. Evaporator is brazed to the header.

  6. Assessing Resistance to Change During Shifting from Legacy to Open Web-Based Systems in the Air Transport Industry

    NASA Astrophysics Data System (ADS)

    Brewer, Denise

    The air transport industry (ATI) is a dynamic, communal, international, and intercultural environment in which the daily operations of airlines, airports, and service providers are dependent on information technology (IT). Many of the IT legacy systems are more than 30 years old, and current regulations and the globally distributed workplace have brought profound changes to the way the ATI community interacts. The purpose of the study was to identify the areas of resistance to change in the ATI community and the corresponding factors in change management requirements that minimize product development delays and lead to a successful and timely shift from legacy to open web-based systems in upgrading ATI operations. The research questions centered on product development team processes as well as the members' perceived need for acceptance of change. A qualitative case study approach rooted in complexity theory was employed using a single case of an intercultural product development team dispersed globally. Qualitative data gathered from questionnaires were organized using Nvivo software, which coded the words and themes. Once coded, themes emerged identifying the areas of resistance within the product development team. Results of follow-up interviews with team members suggests that intercultural relationship building prior to and during project execution; focus on common team goals; and, development of relationships to enhance interpersonal respect, understanding and overall communication help overcome resistance to change. Positive social change in the form of intercultural group effectiveness evidenced in increased team functioning during major project transitions is likely to result when global managers devote time to cultural understanding.

  7. Trapping the Pasture Odorscape Using Open-Air Solid-Phase Micro Extraction, a Tool to Assess Grassland Value

    PubMed Central

    Cornu, Agnès; Farruggia, Anne; Leppik, Ene; Pinier, Centina; Fournier, Florence; Genoud, David; Frérot, Brigitte

    2015-01-01

    Besides supporting cattle feeding, grasslands are home to a diversity of plants and insects that interact with each other by emitting volatile compounds. The aim of this work was to develop a method to determine permanent grassland odorscape and relate it to flower-visiting insects. Two grasslands were chosen for their contrasting levels of botanical diversity, resulting from differing grazing managements. Measurements were made over two periods of three consecutive days at the beginning of grazing, and just after the cows had left the plots. Volatile compounds were trapped using solid-phase microextraction (SPME) fibers exposed eight hours a day in three exclosures per plot, and then analyzed by gas-chromatography-mass spectrometry (GC-MS). Insects were trapped using pan traps and a net, sorted and counted. The open air SPME method yielded volatile compound profiles that were richer than maize field profiles, comprising the common green leaf volatiles (GLV) and more specific ones. Differences between the odorscapes of the two grasslands were found, but they were not as marked as expected from their botanical composition. By contrast, there were sharp differences between the two periods, resulting from the combined effects of changes in weather conditions, plant phenological stage and grazing progress. Several correlations between insect counts and volatile compounds were found. Although their correlation coefficients were low, some of them were confirmed when tested by Spearman rank correlation, and could be logically explained. This method of grassland odorscape deserves to be developed because it can provide information on many aspects of grassland function and on the stresses that grassland plants undergo. PMID:26536369

  8. Trapping the Pasture Odorscape Using Open-Air Solid-Phase Micro Extraction, a Tool to Assess Grassland Value.

    PubMed

    Cornu, Agnès; Farruggia, Anne; Leppik, Ene; Pinier, Centina; Fournier, Florence; Genoud, David; Frérot, Brigitte

    2015-01-01

    Besides supporting cattle feeding, grasslands are home to a diversity of plants and insects that interact with each other by emitting volatile compounds. The aim of this work was to develop a method to determine permanent grassland odorscape and relate it to flower-visiting insects. Two grasslands were chosen for their contrasting levels of botanical diversity, resulting from differing grazing managements. Measurements were made over two periods of three consecutive days at the beginning of grazing, and just after the cows had left the plots. Volatile compounds were trapped using solid-phase microextraction (SPME) fibers exposed eight hours a day in three exclosures per plot, and then analyzed by gas-chromatography-mass spectrometry (GC-MS). Insects were trapped using pan traps and a net, sorted and counted. The open air SPME method yielded volatile compound profiles that were richer than maize field profiles, comprising the common green leaf volatiles (GLV) and more specific ones. Differences between the odorscapes of the two grasslands were found, but they were not as marked as expected from their botanical composition. By contrast, there were sharp differences between the two periods, resulting from the combined effects of changes in weather conditions, plant phenological stage and grazing progress. Several correlations between insect counts and volatile compounds were found. Although their correlation coefficients were low, some of them were confirmed when tested by Spearman rank correlation, and could be logically explained. This method of grassland odorscape deserves to be developed because it can provide information on many aspects of grassland function and on the stresses that grassland plants undergo. PMID:26536369

  9. A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Keller, Dennis J.

    2001-01-01

    It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and

  10. Some design considerations for supersonic cruise mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Bowditch, D. N.

    1973-01-01

    A mixed compression inlet designed for supersonic cruise has very demanding requirements for high total pressure recovery and low bleed and cowl drag. However, since the optimum inlet for supersonic cruise performance may have other undesirable characteristics, it is necessary to establish trade-offs between inlet performance and other inlet characteristics. Some of these trade-offs between the amount of internal compression, aerodynamic performance and angle-of-attack tolerance are reviewed. Techniques for analysis of boundary layer control and subsonic diffuser flow are discussed.

  11. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  12. Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.

  13. Computational study of inlet injection for a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine

    NASA Technical Reports Server (NTRS)

    Gonzalez, D. E.

    1995-01-01

    A computational simulation of reacting 2-D and 3-D flowfields in a model inlet section of a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine concept was performed. LARCK, a multi-dimensional Navier-Stokes code with finite-rate kinetics chemistry developed at NASA LaRC by J.A. White, was adapted for this simulation. The flow conditions in the simulation match those envisioned for the PM/SIC engine experiments currently planned at LaRC. The reacting flowfields were Mach 6.3 freestream air and Mach 2 hydrogen at various pressure and temperature conditions injected through a slot injector at the base of the inlet section. In the PM/SIC engine, fuel is injected at the inlet section upstream of the combustor, and reaction is initiated by the shock wave at the inlet which increases the gas temperature and pressure beyond the kinetic limits for reaction. Many challenges exist prior to establishing shock-controlled combustion as a practical engine concept. These challenges include fuel injection schemes that can provide proper fuel-air mixing without creating large losses in the inlet section, and control of the combustion process so that early ignition or combustion propagation through the inlet boundary layer does not occur. For this project, a parametrics study was carried out to model the fuel injection of hydrogen at different flow conditions. It was found that, as the fuel temperature and pressure were increased, the potential for pre-ignition was high at a short distance downstream of the slot injector. The next stage of this work will investigate injection techniques for enhancing mixing of fuel and air in a manner that prevents or reduces the potential for premature ignition observed numerically.

  14. Diagnosis of abnormal patterns in multivariate microclimate monitoring: a case study of an open-air archaeological site in Pompeii (Italy).

    PubMed

    Merello, Paloma; García-Diego, Fernando-Juan; Zarzo, Manuel

    2014-08-01

    Chemometrics has been applied successfully since the 1990s for the multivariate statistical control of industrial processes. A new area of interest for these tools is the microclimatic monitoring of cultural heritage. Sensors record climatic parameters over time and statistical data analysis is performed to obtain valuable information for preventive conservation. A case study of an open-air archaeological site is presented here. A set of 26 temperature and relative humidity data-loggers was installed in four rooms of Ariadne's house (Pompeii). If climatic values are recorded versus time at different positions, the resulting data structure is equivalent to records of physical parameters registered at several points of a continuous chemical process. However, there is an important difference in this case: continuous processes are controlled to reach a steady state, whilst open-air sites undergo tremendous fluctuations. Although data from continuous processes are usually column-centred prior to applying principal components analysis, it turned out that another pre-treatment (row-centred data) was more convenient for the interpretation of components and to identify abnormal patterns. The detection of typical trajectories was more straightforward by dividing the whole monitored period into several sub-periods, because the marked climatic fluctuations throughout the year affect the correlation structures. The proposed statistical methodology is of interest for the microclimatic monitoring of cultural heritage, particularly in the case of open-air or semi-confined archaeological sites. PMID:24814033

  15. Inlet distortion in engines on VSTOL aircraft

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.; Greitzer, Edward M.

    1994-01-01

    This report presents the results of a research program on inlet distortion in engines on VSTOL aircraft carried out at the MIT Gas Turbine Laboratory during the period Oct. 1989 - Dec. 1993. The program focused on the development of three dimensional flow computational methodology for predicting the effects of nonuniform flow on the performance of aircraft engines in VSTOL aircraft, the development of a three dimensional instability analysis of flow in multistage axial compressors, and the preliminary applications of these newly developed methodologies for elucidating the effects of flow three dimensionality. The accomplishments of the program are brought out when the current status of predictive capabilities for three dimensional flow instabilities in compressors is assessed against that in 1989.

  16. Geologic framework of lower Cook Inlet, Alaska

    USGS Publications Warehouse

    Fisher, M.A.; Magoon, L.B.

    1978-01-01

    Three seismic reflectors are present throughout the lower Cook Inlet basin and can be correlated with onshore geologic features. The reflections come from unconformities at the base of the Tertiary sequence, at the base of Upper Cretaceous rocks, and near the base of Upper Jurassic strata. A contour map of the deepest horizon shows that Mesozoic rocks are formed into a northeast-trending syncline. Along the southeast flank of the basin, the northwest-dipping Mesozoic rocks are truncated at the base of Tertiary rocks. The Augustine-Seldovia arch trends across the basin axis between Augustine Island and Seldovia. Tertiary rocks thin onto the arch from the north and south. Numerous anticlines, smaller in structural relief and breadth than the Augustine-Seldovia arch, trend northeast parallel with the basin, and intersect the arch at oblique angles. The stratigraphic record shows four cycles of sedimentation and tectonism that are bounded by three regional unconformities in lower Cook Inlet and by four thrust faults and the modern Benioff zone in flysch rocks of the Kenai Peninsula and the Gulf of Alaska. The four cycles of sedimentation are, from oldest to youngest, the early Mesozoic, late Mesozoic, early Cenozoic, and late Cenozoic. Data on organic geochemistry of the rocks from one well suggest that Middle Jurassic strata may be a source of hydrocarbons. Seismic data show that structural traps are formed by northeast-trending anticlines and by structures formed at the intersections of these anticlines with the transbasin arch. Stratigraphic traps may be formed beneath the unconformity at the base of Tertiary strata and beneath unconformities within Mesozoic strata.

  17. Evolution and Impacts of a New Inlet Formed in Fire Island National Park by Superstorm Sandy (Invited)

    NASA Astrophysics Data System (ADS)

    Flood, R. D.; Flagg, C. N.; Goff, J. A.; Austin, J. A.; Schwab, W. C.; Denny, J. F.; Christensen, B. A.; Browne, C. M.; Saustrup, S.

    2013-12-01

    Superstorm Sandy impacted the New York / New Jersey area on October 29, 2012 and brought a storm surge of 1.5 to 2.5 m and waves with a significant wave height of 9.5 m to the south shore of Long Island, New York. The storm cut three inlets across Fire Island barrier islands. Two of the inlets were closed mechanically, but the third inlet, cut through a wilderness area of the Fire Island National Seashore, remains open and provides a rare opportunity to study the evolution and dynamics of an unmanaged inlet. This new inlet formed where Fire Island is narrow and is near the site of an earlier inlet that closed in 1825. Great South Bay (GSB) is located between Fire Island and the Long Island mainland. The salinity in GSB increased by 5 salinity units following the breach and has remained high. GSB has had chronic water quality issues associated with a high population density that may be moderated by flow related to the new inlet. Water flow through the new inlet is controlled by the difference between offshore tide and GSB tide, but GSB tide does not appear to have been altered by flow through the inlet. This is different from the traditional view of inlet dynamics where a balance is sought between channel cross-sectional area, tidal prism (which together give channel velocity) and longshore sediment transport. At SoMAS we have been monitoring the evolution of the new inlet since its formation. We have conducted overflights at 1 to 3 week intervals to track the changing inlet geometry and the location of flood-tidal and ebb-tidal deltas. We have also done small-boat bathymetric surveys of the channel itself every 3 to 5 weeks to track the shape and cross-sectional area of the channel. The channel was quite small shortly after the breach with a depth of about 2 m. The channel grew fast as it cut into underlying fine-grain sediments, reaching a depth of over 6 m following several late winter storms. The inlet channel initially migrated quickly to the west, but its

  18. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug

    2003-01-01

    A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.

  19. Inlet Development for a Rocket Based Combined Cycle, Single Stage to Orbit Vehicle Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.

    1999-01-01

    Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.

  20. Effect of inducer inlet and diffuser throat areas on performance of a low pressure ratio sweptback centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Klassen, H. A.

    1975-01-01

    A low-pressure-ratio centrifugal compressor was tested with nine combinations of three diffuser throat areas and three impeller inducer inlet areas which were 75, 100, and 125 percent of design values. For a given inducer inlet area, increases in diffuser area within the range investigated resulted in increased mass flow and higher peak efficiency. Changes in both diffuser and inducer areas indicated that efficiencies within one point of the maximum efficiency were obtained over a compressor specific speed range of 27 percent. The performance was analyzed of an assumed two-spool open-cycle engine using the 75 percent area inducer with a variable area diffuser.

  1. Critical Propulsion Components. Volume 4; Inlet and Fan/Inlet Accoustics Team

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.

  2. Modeling the acoustical and airflow performance of natural ventilation inlet and outlet units

    NASA Astrophysics Data System (ADS)

    Oldham, David J.; Kang, Jian; Brocklesby, Martin

    2005-04-01

    One aspect of the trend towards designing green buildings has been the increasing use of natural ventilation for buildings which otherwise might have required mechanical ventilation or even full air conditioning. However, the pressure differentials available to drive the natural ventilation process are small and hence relatively large inlets and outlets with low resistance to flow are required. These apertures constitute significant acoustic weak points on building facades and hence need to be treated to reduce noise ingress. Although there are a number of natural ventilation units available they have frequently been designed from the application of simple principles without any attempt to optimise both their airflow and acoustical performance. In this paper the results of a series of computer modeling exercises are described using acoustic FEM and BEM plus Computational Fluid Dynamics (CFD) which seeks to establish recommendations for the optimum design of natural ventilation inlet and outlet devices for both acoustical and airflow performance.

  3. Tangential blowing for control of strong normal shock - Boundary layer interactions on inlet ramps

    NASA Technical Reports Server (NTRS)

    Schwendemann, M. F.; Sanders, B. W.

    1982-01-01

    The use of tangential blowing from a row of holes in an aft facing step is found to provide good control of the ramp boundary layer, normal shock interaction on a fixed geometry inlet over a wide range of inlet mass flow ratios. Ramp Mach numbers of 1.36 and 1.96 are investigated. The blowing geometry is found to have a significant effect on system performance at the highest Mach number. The use of high-temperature air in the blowing system, however, has only a slight effect on performance. The required blowing rates are significantly high for the most severe test conditions. In addition, the required blowing coefficient is found to be proportional to the normal shock pressure rise.

  4. Frequency response of an axial-flow compressor exposed to inlet pressure perturbations

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Wenzel, L. M.; Paulovich, F. J.

    1974-01-01

    Experimental results of a series of engine tests designed to obtain the stage dynamics of an eight-stage axial-flow compressor over the frequency range of 0.5 to 200 hertz are presented. The total pressure at the compressor face was varied by means of a secondary air jet system installed in the engine inlet and positioned to oppose the primary airflow. Total-pressure probes located at each compressor stage were used to obtain the frequency response of each compressor-stage total pressure to the average compressor-inlet total pressure. The engine operating conditions were chosen to illustrate the effects of changing the rotor speed, changing the exhaust nozzle area, and isolating the compressor discharge pressure perturbations from the fuel control and hence, the fuel flow.

  5. Leading edge sweep effects in generic three-dimensional sidewall compression scramjet inlets

    NASA Technical Reports Server (NTRS)

    Cozart, Aaron B.; Holland, Scott D.; Trexler, Carl A.; Perkins, John N.

    1992-01-01

    A computational and experimental study of generic 3D sidewall compression inlets is conducted to examine the effects of fore and aft leading edge sweep on the internal shock structure. Inlets with leading edge sweeps of +30 deg and -30 deg with sidewall compression angles of 6 deg were tested in the NASA Langley Mach 4 air tunnel at a geometric contraction ratio of 1.87. The principal difference in performance was determined to be in the mass capture. Spillage was identified as having two components: a pressure induced component and a sweep induced component. It was found that while the direction of the leading edge sweep had a large influence on the spillage, the pressure effects were more important.

  6. Smart actuation of inlet guide vanes for small turbine engine

    NASA Astrophysics Data System (ADS)

    Rusovici, Razvan; Kwok Choon, Stephen T.; Sepri, Paavo; Feys, Joshuo

    2011-04-01

    Unmanned Aerial Vehicles (UAVs) have gained popularity over the past few years to become an indispensable part of aerial missions that include reconnaissance, surveillance, and communication [1]. As a result, advancements in small jet-engine performance are needed to increase the performance (range, payload and efficiency) of the UAV. These jet engines designed especially for UAV's are characterized by thrust force on the order of 100N and due to their size and weight limitations, may lack advanced flow control devices such as IGV [2]. The goal of the current study was to present a conceptual design of an IGV smart-material based actuation mechanism that would be simple, compact and lightweight. The compressor section of an engine increases the pressure and conditions the flow before the air enters the combustion chamber [3]. The airflow entering the compressor is often turbulent due to the high angle of incidence between engine inlet and free-stream velocity, or existing atmospheric turbulence. Actuated IGV are used to help control the relative angle of incidence of the flow that enters the engine compressor, thereby preventing flow separation, compressor stall and thus extending the compressor's operating envelope [4]. Turbine jet- engines which employ variable IGV were developed by Rolls Royce (Trent DR-900) and General Electric (J79).

  7. 46 CFR 42.15-60 - Scuppers, inlets, and discharges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Scuppers, inlets, and discharges. 42.15-60 Section 42.15-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Conditions of Assignment of Freeboard § 42.15-60 Scuppers, inlets, and discharges. (a) Discharges led through the shell either...

  8. 40 CFR 91.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine inlet and exhaust systems. 91... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.407 Engine inlet and exhaust systems. (a) The marine engine manufacturer is liable for emission...

  9. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Inlet, engine, and exhaust compatibility..., engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both...), and exhaust must be shown to function properly under all operating conditions for which approval...

  10. Isolated testing of highly maneuverable inlet con cepts

    NASA Technical Reports Server (NTRS)

    Norby, W. P.; Haeffele, B. A.; Burley, R. R.

    1986-01-01

    Ten percent scale models of a Mach 2.2 two dimensional inlet and a Mach 2.0 axisymmetric inlet were tested in the NASA Lewis Research Center 8'x6' Supersonic Wind Tunnel as part of a cooperative effort with the McDonnell Aircraft Company. The objective of this effort was to test methods designed to increase the maneuvering performance of fighter aircraft inlets. Maneuvering improvement concepts were tested up to 40-deg angle of attack for Mach numbers of 0.6 and 0.9, and up to 25 deg for Mach numbers 1.2 and 1.4. Maneuvering improvement concepts included a rotating cowl lip, auxiliary inlets aft of the inlet throat, and a retracting centerbody for the axisymmetric inlet. Test results show that the rotating cowl design was effective in improving subsonic maneuvering performance for both inlets. Auxiliary inlets did not produce significant performance increases for either model. The retracted centerbody resulted in some performance benefits at high angles of attack. None of the maneuvering improvement concepts were effective at Mach 1.2 and 1.4.

  11. Aerodynamic and directional acoustic performance of a scoop inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Dietrich, D. A.

    1977-01-01

    Aerodynamic and directional acoustic performances of a scoop inlet were studied. The scoop inlet is designed with a portion of the lower cowling extended forward to direct upward any noise that is propagating out the front of the engine toward the ground. The tests were conducted in an anechoic wind tunnel facility at free stream velocities of 0, 18, 41, and 61 m/sec and angles of attack from -10 deg to 120 deg. Inlet throat Mach number was varied from 0.30 to 0.75. Aerodynamically, at a free stream velocity of 41 m/sec, the design throat Mach number (0.63), and an angle of attack of 50 deg, the scoop inlet total pressure recovery was 0.989 and the total pressure distortion was 0.15. The angles of attack where flow separation occurred with the scoop inlet were higher than those for a conventional symmetric inlet. Acoustically, the scoop inlet provided a maximum noise reduction of 12 to 15 db below the inlet over the entire range of throat Mach number and angle of attack at a free-stream velocity of 41 m/sec.

  12. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Inlets and discharge piping: Valves. 45.155 Section 45... LINES Conditions of Assignment § 45.155 Inlets and discharge piping: Valves. (a) Except as provided in... have— (1) An automatic nonreturn valve with a positive means for closing; or (2) Two...

  13. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Inlets and discharge piping: Valves. 45.155 Section 45... LINES Conditions of Assignment § 45.155 Inlets and discharge piping: Valves. (a) Except as provided in... have— (1) An automatic nonreturn valve with a positive means for closing; or (2) Two...

  14. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Inlets and discharge piping: Valves. 45.155 Section 45... LINES Conditions of Assignment § 45.155 Inlets and discharge piping: Valves. (a) Except as provided in... have— (1) An automatic nonreturn valve with a positive means for closing; or (2) Two...

  15. 46 CFR 153.354 - Venting system inlet.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Venting system inlet. 153.354 Section 153.354 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.354 Venting system inlet....

  16. 33 CFR 334.1240 - Sinclair Inlet; naval restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Sinclair Inlet; naval restricted...; naval restricted areas. (a) Sinclair Inlet: naval restricted areas—(1) Area No. 1. All the waters of... Navy. No person, vessel, craft, article or thing, except those under supervision of military or...

  17. 33 CFR 334.1240 - Sinclair Inlet; naval restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sinclair Inlet; naval restricted...; naval restricted areas. (a) Sinclair Inlet: naval restricted areas—(1) Area No. 1. All the waters of... Navy. No person, vessel, craft, article or thing, except those under supervision of military or...

  18. Validation of WIND for a Series of Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Abbott, John M.; Cavicchi, Richard H.

    2002-01-01

    Validation assessments compare WIND CFD simulations to experimental data for a series of inlet flows ranging in Mach number from low subsonic to hypersonic. The validation procedures follow the guidelines of the AIAA. The WIND code performs well in matching the available experimental data. The assessments demonstrate the use of WIND and provide confidence in its use for the analysis of aircraft inlets.

  19. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Inlets and discharge piping: Valves. 45.155 Section 45... LINES Conditions of Assignment § 45.155 Inlets and discharge piping: Valves. (a) Except as provided in... not have continuous bilge water monitoring, a valve described in paragraph (a)(1) of this section...

  20. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Inlets and discharge piping: Valves. 45.155 Section 45... LINES Conditions of Assignment § 45.155 Inlets and discharge piping: Valves. (a) Except as provided in... not have continuous bilge water monitoring, a valve described in paragraph (a)(1) of this section...

  1. Admiralty Inlet Hub-Height Turbulence Measurements from June 2012

    DOE Data Explorer

    Kilcher, Levi

    2012-06-18

    This data is from measurements at Admiralty Head, in admiralty inlet. The measurements were made using an IMU equipped ADV mounted on a mooring, the 'Tidal Turbulence Mooring' or 'TTM'. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity may have some 'persistent motion contamination' due to mooring sway. The ADV was positioned 11m above the seafloor in 58m of water at 48.1515N, 122.6858W. Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. For additional details on this dataset see the included Marine Energy Technology Symposium paper.

  2. Views to the past: Faunal and geophysical analysis of the open-air Upper Paleolithic site of Verberie

    NASA Astrophysics Data System (ADS)

    Thompson, Jason Randall

    , real-time process of prey item evaluation. Not all animals are equal in nutritional terms hence not all carcasses are evaluated equally. A Ground-penetrating radar study is also included to answer two substantive questions: 1) How representative of the entire site assemblage is the currently excavated sample?; and 2) Are there data visible that are indicative of multiple, interacting "households" as at Pincevent, or does the material scale, configuration, and distribution appear limited to a single household? GPR has proven to be a highly informative and productive near-surface geophysical technique for investigating many archaeological sites, and this research details one of the earliest such applications in a Paleolithic open-air context. At VBC, GPR was highly effective in locating anthropogenic accumulations of unexcavated archaeological materials which were field-tested through excavations during the 2009 field season.

  3. The design of an air-cooled metallic high temperature radial turbine

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.; Roelke, Richard J.

    1988-01-01

    Recent trends in small advanced gas turbine engines call for higher turbine inlet temperatures. Advances in radial turbine technology have opened the way for a cooled metallic radial turbine capable of withstanding turbine inlet temperatures of 2500 F while meeting the challenge of high efficiency in this small flow size range. In response to this need, a small air-cooled radial turbine has been designed utilizing internal blade coolant passages. The coolant flow passage design is uniquely tailored to simultaneously meet rotor cooling needs and rotor fabrication constraints. The rotor flow-path design seeks to realize improved aerodynamic blade loading characteristics and high efficiency while satisfying rotor life requirements. An up-scaled version of the final engine rotor is currently under fabrication and, after instrumentation, will be tested in the warm turbine test facility at the NASA Lewis Research Center.

  4. Uranium Isotope Systematic in Saanich Inlet

    NASA Astrophysics Data System (ADS)

    Amini, M.; Holmden, C.; Francois, R.

    2008-12-01

    As a redox-sensitive element Uranium has become the focus of stable isotope studies. Based on the nuclear field shift effect [1], U isotope fractionation was predicted as a function of U(IV)-U(VI) exchange reactions with the insoluble reduced U(IV) species being heavier than the soluble oxidized U(VI) species. Recently, variations in 238U/235U were reported in low temperature aqueous and sedimentary environments [2,3] indicating that U deposited in well-oxygenated environments is characterized by light isotopic composition, whereas suboxic and anoxic deposits tend towards a heavy isotopic signature. U isotope fractionation has been hence proposed as a promising new paleo-redox proxy. In order to test the efficacy of U isotope fractionation to record oxidation states in marine systems, we are investigating sediment samples deposited over a range of redox conditions in the seasonally anoxic Saanich Inlet, on the east coast of Vancouver Island. We have also made δ238U measurements for water samples from above and below the redoxcline. The measurements were carried out by MC-ICPMS using 233U/236U-double spike technique. The data are reported as δ238U relative to NBL 112a with a 238U/235U ratio of 137.88 (2sd). External precision is better than 0.10 permil (2sd). Eleven analyses of seawater performed over the course of this work yielded δ238U of -0.41±0.07 permil (2sd). No clear difference in δ238U values has been found, thus far, in water samples collected at 10m (O2~380μM) and 200m (O2~1μM) depths from a single location in the middle of the inlet. The mean of two measurements of the deepwater sample yielded -0.43±0.01 permil (2sd). Two measurements of the shallow water sample yielded a mean value of -0.38±0.03 permil (2sd). The δ238U values for HF-HNO3 digestions of the organic rich sediments, one taken in the middle of the basin (3.11% organic carbon) below seasonally anoxic bottom waters (-0.22±0.01 permil, n=2), and the other taken from the sill (1

  5. Minimum weight design of a generic axisymmetric inlet

    NASA Technical Reports Server (NTRS)

    Nadell, Shari-Beth

    1996-01-01

    A new minimum weight design method for high-speed axisymmetric inlets was demonstrated on a generic inlet. The method uses Classical Beam Theory and shell buckling to determine the minimum required equivalent isotropic thickness for a stiffened shell based on prescribed structural design requirements and load conditions. The optimum spacing and equivalent isotropic thickness of ring frame supports are computed to prevent buckling. The method thus develops a preliminary structural design for the inlet and computes the structural weight. Finite element analyses were performed on the resulting inlet design to evaluate the analytical results. Comparisons between the analytical and finite element stresses and deflections identified areas needing improvement in the analytical method. The addition of the deflection due to shear and a torsional buckling failure mode to the new method brought its results in line with those from the finite element analyses. Final validation of the new method will be made using data from actual inlets.

  6. Inlet and outlet devices for rotary blood pumps.

    PubMed

    Song, Xinwei; Wood, Houston G; Allaire, Paul E; Antaki, James F; Olsen, Don B

    2004-10-01

    The purposes of inlet and outlet devices for rotary blood pumps, including inducers and diffusers for axial pumps, inlet and exit volutes for centrifugal pumps, and inlet and outlet cannulas, are to guide the blood into the impeller, where the blood is accelerated, and to convert the high kinetic energy into pressure after the impeller discharge, respectively. The designs of the inlet and outlet devices have an important bearing on the pump performance. Their designs are highly dependent on computational fluid dynamics (CFD) analysis, guided by intuition and experience. For inlet devices, the design objectives are to eliminate separated flow, to minimize recirculation, and to equalize the radial components of velocity. For outlet devices, the design goals are to reduce speed, to minimize energy loss, and to avoid flow separation and whirl. CFD analyses indicate the velocity field and pressure distribution. Geometrical optimization of these components has been implemented in order to improve the flow pattern. PMID:15384997

  7. Inlet flow field investigation. Part 1: Transonic flow field survey

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Salemann, V.; Sussman, M. B.

    1984-01-01

    A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.

  8. Computational Analysis of a Low-Boom Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2011-01-01

    A low-boom supersonic inlet was designed for use on a conceptual small supersonic aircraft that would cruise with an over-wing Mach number of 1.7. The inlet was designed to minimize external overpressures, and used a novel bypass duct to divert the highest shock losses around the engine. The Wind-US CFD code was used to predict the effects of capture ratio, struts, bypass design, and angles of attack on inlet performance. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center. Test results showed that the inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a stable operating range much larger than that of an engine. Predictions generally compared very well with the experimental data, and were used to help interpret some of the experimental results.

  9. Baseline HSR Inlet and Engine Bay Cowl Seal Requirements

    NASA Technical Reports Server (NTRS)

    Sandquist, David

    2006-01-01

    The two dimensinal bifurcated inlet, down selected for the HSR program, and the engine bay cowling consist of many sealing interfaces. The variable geometry characteristics of this inlet and the size of the propulsion system impose new sealing requirements for commercial transport aircraft. Major inlet systems requiring seal development and testing include the ramp system, the bypass/take-off system, and the inlet/engine interface. Engine bay cowling seal interfaces include the inlet/cowling interface, the keel split line, the hinge beam/engine bay cowling, and the nozzle/cowling interface. These seals have to withstand supersonic flight operating temperatures and pressures with typical commercial aircraft reliability and lives. The operating conditions and expected seal lives will be identified for the various interfaces. Boeing's SST seal development program will also be discussed.

  10. Results from computational analysis of a mixed compression supersonic inlet

    NASA Technical Reports Server (NTRS)

    Saunders, J. D.; Keith, T. G.

    1991-01-01

    A numerical study was performed to simulate the critical flow through a supersonic inlet. This flow field has many phenomena such as shock waves, strong viscous effects, turbulent boundary layer development, boundary layer separations, and mass flow suction through the walls, (bleed). The computational tools used were two full Navier-Stokes (FNS) codes. The supersonic inlet that was analyzed is the Variable Diameter Centerbody, (VDC), inlet. This inlet is a candidate concept for the next generation supersonic involved effort in generating an efficient grid geometry and specifying boundary conditions, particularly in the bleed region and at the outflow boundary. Results for a critical inlet operation compare favorably to Method of Characteristics predictions and experimental data.

  11. Analytical and experimental studies of a short compact subsonic diffuser for a two-dimensional supersonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Burley, Richard R.; Johns, Albert L.

    1993-01-01

    An experimental study of a two-dimensional supersonic inlet with a short compact subsonic diffuser, length to exit diameter (dl/d) ratio of 1.25, was conducted to investigate the impact of the short diffuser on inlet performance at low speeds and to assess the diffuser subsonic performance for a simulated diffuser flow corresponding to high-speed inlet conditions near the design flight Mach number of 2.2. For the low-speed testing, a drooped lip was employed to improve the inlet performance at a high angle of attack. For the simulated high-speed testing, air was blown through slots or discrete nozzles as an active boundary-layer control. The results from the low-speed performance test were compared with the results from a previous test program on the same inlet with a long subsonic diffuser (dl/d = 4.5). The comparison indicates that inlet recovery was not affected by the use of the short diffuser for either the baseline (no droop) or the drooped cowl lip configuration. However, the inlet baseline distortion for the short diffuser configuration was substantially higher than for the long diffuser. A comparison of the two configurations with a 70 deg drooped lip showed no significant difference in distortion. For the portion of the experimental program in which diffuser conditions for high-speed flight were simulated, diffuser-induced flow separation occurred. This separation was predicted from an analytical study that used the Hess potential flow panel method and the Herring two-dimensional boundary-layer analysis computer codes. The flow separated mainly on the diffuser ramp. Subsequent tests in which boundary-control systems were utilized showed that blowing with either slots or discrete nozzles could suppress the flow separation in the short subsonic diffuser, thereby substantially improving the diffuser performance.

  12. The European Fixed point Open Ocean Observatory network (FixO3): Multidisciplinary observations from the air-sea interface to the deep seafloor

    NASA Astrophysics Data System (ADS)

    Lampitt, Richard; Cristini, Luisa; Alexiou, Sofia

    2015-04-01

    The Fixed point Open Ocean Observatory network (FixO3, http://www.fixo3.eu/ ) integrates 23 European open ocean fixed point observatories and improves access to these infrastructures for the broader community. These provide multidisciplinary observations in all parts of the oceans from the air-sea interface to the deep seafloor. Started in September 2013 with a budget of 7 Million Euros over 4 years, the project has 29 partners drawn from academia, research institutions and SME's coordinated by the National Oceanography Centre, UK. Here we present the programme's achievements in the 18 months and the activities of the 12 Work Packages which have the objectives to: • integrate and harmonise the current procedures and processes • offer free access to observatory infrastructures to those who do not have such access, and free and open data services and products • innovate and enhance the current capability for multidisciplinary in situ ocean observation Open ocean observation is a high priority for European marine and maritime activities. FixO3 provides important data and services to address the Marine Strategy Framework Directive and in support of the European Integrated Maritime Policy. FixO3 provides a strong integrated framework of open ocean facilities in the Atlantic from the Arctic to the Antarctic and throughout the Mediterranean, enabling an integrated, regional and multidisciplinary approach to understand natural and anthropogenic change in the ocean.

  13. Model aerodynamic test results for a refined actuated inlet ejector nozzle at simulated takeoff and cruise conditions

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1983-01-01

    Wind tunnel model tests were conducted to demonstrate the aerodynamic performance improvements of a refined actuated inlet ejector nozzle. Models of approximately one-tenth scale were configured to simulate nozzle operation at takeoff, subsonic cruise, transonic cruise and supersonic cruise. Variations of model components provided a performance evaluation of ejector inlet and exit area, forebody boattail angle and ejector inlet operation in the open and closed mode. Approximately 700 data points were acquired at Mach numbers of 0, 0.36, 0.9, 1.2, and 2.0 for a wide range of nozzle flow conditions. Results show that relative to two ejector nozzles previously tested performance was improved significantly at takeoff and subsonic cruise performance, a C sub f of 0.982, was attained equal to the high performance of the previous tests. The established advanced supersonic transport propulsion study performance goals were met or closely approached at takeoff and supersonic cruise.

  14. Electromagnetic fields backscattered from an s-shaped inlet cavity with an absorber coating on its inner walls

    NASA Technical Reports Server (NTRS)

    Burkholder, R. J.; Chuang, C. W.; Pathak, P. H.

    1987-01-01

    The EM backscatter from a two-dimensional S-shaped inlet cavity is analyzed using three different techniques, namely a hybrid combination of asymptotic high frequency and modal methods, an integral equation method, and the geometrical optics ray method, respectively. This inlet has a thin absorber coating on its perfectly conducting inner walls and the planar interior termination is made perfectly conducting. The effect of the absorber on the inner wall is treated via a perturbation scheme in the hybrid approach where it is assumed that the loss is sufficiently small for the method to be valid. The results are compared with the backscatter from a straight inlet cavity to evaluate the effect of offsetting the termination in the S-bend configuration such that it is not visible from the open end of the inlet. The envelope of the backscatter pattern for the straight inlet is always seen to peak around the forward axis due to the large return from the directly visible termination, and the pattern envelope tapers off away from the forward axis. Offsetting the termination causes the envelope of the backscatter pattern to flatten out, thereby reducing the return near the forward axis by several dB. The absorber coating reduces the pattern level of the straight inlet in directions away from the forward axis but has little effect on the peak near the axis; furthermore, the absorber coating is seen to consistently reduce the backscatter from the S-bend inlet for almost all incidence angles. The hybrid method gives excellent agreement with experimental data and with the integral equation solution, whereas, the geometrical optics ray tracing method is able to generally predict the average of the bachscatter pattern but not the pattern details.

  15. Numerical and experimental analysis of unsteady heat transfer with periodic variation of inlet temperature in circular ducts

    SciTech Connect

    Brown, D.M.; Kakac, S.; Li, Weigong

    1993-11-01

    This work focuses on a numerical and experimental analysis of unsteady forced convection in hydrodynamically developed and thermally developing laminar air flow in a circular duct, subjected to a periodic variation of the inlet temperature. The experiments were conducted over a wide range of Reynolds number (281.2 {le} Re {le} 1,024.3) and inlet frequency (0.01 {le} {beta} {le} 0.20 Hz) of the periodic heat input. In the numerical study, the non-uniform inlet temperature amplitude profile derived from the experiments, was included in the numerical model. A fully explicit, second-order accurate finite difference scheme was developed and used for the solution of the unsteady energy equation. Numerical results are obtained with the fully developed parabolic velocity profile under the boundary condition of the first kind, which was verified by the experiments. Temperature variations along the centerline of the circular duct are observed to be thermal oscillations with the same frequency as the inlet periodic heat input and amplitudes that decayed exponentially with distance along the duct. Thermal response along the wall exhibits negligible amplitude variation with changes in Reynolds number and inlet frequency. The variation in the periods and amplitudes of the thermal oscillations are observed to be a function of spatial system variables only. Satisfactory agreement between the numerical and experimental results are obtained.

  16. Minimum fan turbine inlet temperature mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in turbine temperature which resulted from the application of the F-15 performance seeking control (PSC) minimum fan turbine inlet temperature (FTIT) mode during the dual-engine test phase is presented as a function of net propulsive force and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and partial afterburning power settings. The FTIT reductions for the supersonic tests are less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Subsonically at military power, FTIT reductions were above 70 R for either the left or right engines, and repeatable for the right engine. At partial afterburner and supersonic conditions, the level of FTIT reductions were at least 25 R and as much as 55 R. Considering that the turbine operates at or very near its temperature limit at these high power settings, these seemingly small temperature reductions may significantly lengthen the life of the turbine. In general, the minimum FTIT mode has performed well, demonstrating significant temperature reductions at military and partial afterburner power. Decreases of over 100 R at cruise flight conditions were identified. Temperature reductions of this magnitude could significantly extend turbine life and reduce replacement costs.

  17. Silicon Microleaks for Inlets of Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Harpold, Dan; Hasso, Niemann; Jamieson, Brian G.; Lynch, Bernard A.

    2009-01-01

    Microleaks for inlets of mass spectrometers used to analyze atmospheric gases can be fabricated in silicon wafers by means of photolithography, etching, and other techniques that are commonly used in the manufacture of integrated circuits and microelectromechanical systems. The microleaks serve to limit the flows of the gases into the mass-spectrometer vacuums to specified very small flow rates consistent with the capacities of the spectrometer vacuum pumps. There is a need to be able to precisely tailor the dimensions of each microleak so as to tailor its conductance to a precise low value. (As used here, "conductance" signifies the ratio between the rate of flow in the leak and the pressure drop from the upstream to the downstream end of the leak.) To date, microleaks have been made, variously, of crimped metal tubes, pulled glass tubes, or frits. Crimped-metal and pulled-glass-tube microleaks cannot readily be fabricated repeatably to precise dimensions and are susceptible to clogging with droplets or particles. Frits tend to be differentially chemically reactive with various gas constituents and, hence, to distort the gas mixtures to be analyzed. The present approach involving microfabrication in silicon largely overcomes the disadvantages of the prior approaches.

  18. Small airblast fuel nozzle with high efficiency inner air swirler

    SciTech Connect

    Koblish, T.R.; Bell, L.D.

    1992-02-11

    This patent describes a airblast fuel nozzle for a gas turbine engine. It comprises: a nozzle body having a longitudinal inner air swirl chamber with a downstream discharge orifice, means for discharging fuel from the nozzle body and a plurality of air inlet passages circumferentially spaced apart around the nozzle body upstream of the fuel discharge orifice and extending from the inner air swirl chamber to the exterior of the nozzle body for receiving air flow, each air inlet passage having an inner section converging toward and intersecting with the inner air swirl chamber and an outer section converging toward and intersecting with the inner section, the inner section having an outlet communicating with the inner air swirl chamber and an inlet communicating with the outer section, the outer section having an outlet communicating with the inlet of the inner section and an inlet on the exterior of the nozzle body for receiving the air flow, the convergence of the outer section and inner section being selected to provide an effective air flow area through the outer section greater than the effective air flow area through the inner section, the inner section and outer section of each air inlet passage being relatively canted in the same circumferential direction and oriented relative to the air swirl chamber to, in effect, provide a distance X between centerlines of the air swirl chamber and the inner section that increases the air swirl strength achievable in the air swirl chamber at a given air pressure value at the inlet of the outer section.

  19. Ichthyoplankton of a shallow coastal inlet in south-west Spain: Factors contributing to colonization and retention

    NASA Astrophysics Data System (ADS)

    Drake, P.; Arias, A. M.

    1991-04-01

    The ichthyoplankton of a shallow inlet was sampled for 13 months using conical tide-strained nets. The utilization of this habitat by the young stages of different fish species is analysed. Temporal and spatial distributions are discussed in relation to environmental cycles and gradients, and to feeding rhythms. A total of 110 971 individuals, belonging to 39 species and 19 families of teleosts, was collected. The postlarval stage was the most represented in the samples. Ichthyoplankton density peaked during late winter and early spring. Density was higher during flood tide, resulting in a net input of postlarvae from the bay to the inner inlet. This ecosystem functions primarily as a nursery ground for coastal pelagic spawners and, secondarily, as a spawning area for some benthic egg spawners and pouch-brooder species. Most postlarvae migrate from their spawning area (open sea) to the inlet probably cued by a decreasing gradient of water temperature and salinity, and an increasing gradient of water turbidity and suitable food concentration. The attraction of postlarvae towards the inlet mouth probably results from a combination of biotic (availability of suitable food) and abiotic (temperature, salinity and turbidity) factors. Passive transport contributes to the subsequent penetration and retention of the postlarvae within the shallow, flood-dominated inlet. Vertical migrations observed among some planktonic fish stages were related to light periods and feeding activity rather than tidal phases, and cannot act as a retention mechanism.

  20. Curved centerline air intake for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Ruehr, W. C.; Younghans, J. L.; Smith, E. B. (Inventor)

    1980-01-01

    An inlet for a gas turbine engine was disposed about a curved centerline for the purpose of accepting intake air that is flowing at an angle to engine centerline and progressively turning that intake airflow along a curved path into alignment with the engine. This curved inlet is intended for use in under the wing locations and similar regions where airflow direction is altered by aerodynamic characteristics of the airplane. By curving the inlet, aerodynamic loss and acoustic generation and emission are decreased.

  1. Air shooting system for the mining of coal or the like

    SciTech Connect

    Fitzgerald, J.E.

    1981-11-24

    An air shooting system is disclosed for use in lieu of explosives in the mining of coal employing a set of tubular shooting heads fitted in respective shot holes in a coal seam. Each shooting head is fed with air under high pressure and has a valve mechanism for triggering discharge of the air when it reaches a predetermined pressure. The source of air pressure is connected to a manifold and automatic shut-off valves are interposed between the manifold and the lines feeding the individual shooting heads. Each shutoff valve has a movable valve element biased into a normally open position to permit flow of air from inlet to outlet but which is snapped into closed position and held there by the inlet pressure when there is a sudden drop in pressure at the outlet accompanying discharge at the associated shooting head. The shooting heads are set to trigger in series at incrementally spaced pressures until all of the shut-off valves are in closed condition. A manual reset valve interposed between the source and the manifold cuts all flow from the source for resetting of the shut-off valves and prompt simultaneous venting of the lines feeding the shooting heads in readiness for a successive shot.

  2. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    PubMed

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted. PMID:24348146

  3. The performance of a centrifugal compressor with high inlet prewhirl

    SciTech Connect

    Whitfield, A.; Abdullah, A.H.

    1998-07-01

    The performance requirements of centrifugal compressors usually include a broad operating range between surge and choke. This becomes increasingly difficult to achieve as increased pressure ratio is demanded. In order to suppress the tendency to surge and extend the operating range at low flow rates, inlet swirl is often considered through the application of inlet guide vanes. To generate high inlet swirl angles efficiently, an inlet volute has been applied as the swirl generator, and a variable geometry design developed in order to provide zero swirl. The variable geometry approach can be applied to increase the swirl progressively or to switch rapidly from zero swirl to maximum swirl. The variable geometry volute and the swirl conditions generated are described. The performance of a small centrifugal compressor is presented for a wide range of inlet swirl angles. In addition to the basic performance characteristics of the compressor, the onsets of flow reversals at impeller inlet are presented, together with the development of pressure pulsations, in the inlet and discharge ducts, through to full surge. The flow rate at which surge occurred was shown, by the shift of the peak pressure condition and by the measurement of the pressure pulsations, to be reduced by over 40%.

  4. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    NASA Technical Reports Server (NTRS)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  5. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    PubMed Central

    Wang, Lei; Cao, Shibin

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted. PMID:24348146

  6. Southern Salish Sea Habitat Map Series: Admiralty Inlet

    USGS Publications Warehouse

    Cochrane, Guy R.; Dethier, Megan N.; Hodson, Timothy O.; Kull, Kristine K.; Golden, Nadine E.; Ritchie, Andrew C.; Moegling, Crescent; Pacunski, Robert E.

    2015-01-01

    Puget Sound is separated into four interconnected basins; Whidbey, Central (Main), Hood Canal, and South (Thomson, 1994). The Whidbey, Central, and Hood Canal basins are the three main branches of the Puget Sound estuary and are separated from the Strait of Juan de Fuca by a double sill at Admiralty Inlet. The Admiralty Inlet map area includes the Inlet and a portion of the Whidbey Basin (fig. 1). The shallower South Basin is separated by a sill at Tacoma Narrows and is highly branched with numerous finger inlets. Flow within Puget Sound is dominated by tidal currents of as much as 1 m/s at Admiralty Inlet, reducing to approximately 0.5 m/s in the Central Basin (Lavelle and others, 1988). The lack of silt and clay-sized sediments in the Admiralty Inlet map area is likely a result of the strong currents (see Ground-Truth Studies for the Admiralty Inlet Map Area, sheet 3). The subtidal component of flow reaches approximately 0.1 m/s and is driven by density gradients arising from the contrast in salty ocean water at the entrance and freshwater inputs from stream flow (Lavelle and others, 1988). The total freshwater input

  7. Released air during vapor and air cavitation

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Kozubková, Milada

    2016-06-01

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ɛ model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  8. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    SciTech Connect

    Zafred, Paolo R.; Gillett, James E.

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  9. Workplace and environmental air contaminant concentrations measured by open path Fourier transform infrared spectroscopy: a statistical process control technique to detect changes from normal operating conditions.

    PubMed

    Malachowski, M S; Levine, S P; Herrin, G; Spear, R C; Yost, M; Yi, Z

    1994-05-01

    Open path Fourier transform infrared (OP-FTIR) spectroscopy is a new air monitoring technique that can be used to measure concentrations of air contaminants in real or near-real time. OP-FTIR spectroscopy has been used to monitor workplace gas and vapor exposures, emissions from hazardous waste sites, and to track emissions along fence lines. This paper discusses a statistical process control technique that can be used with air monitoring data collected with an OP-FTIR spectrometer to detect departures from normal operating conditions in the workplace or along a fence line. Time series data, produced by plotting consecutive air sample concentrations in time, were analyzed. Autocorrelation in the time series data was removed by fitting dynamic models. Control charts were used with the residuals of the model fit data to determine if departures from defined normal operating conditions could be rapidly detected. Shewhart and exponentially weighted moving average (EWMA) control charts were evaluated for use with data collected under different room air flow and mixing conditions. Under rapidly changing conditions the Shewhart control chart was able to detect a leak in a simulated process area. The EWMA control chart was found to be more sensitive to drifts and slowly changing concentrations in air monitoring data. The time series and statistical process control techniques were also applied to data obtained during a field study at a chemical plant. A production area of an acrylonitrile, 1,3-butadiene, and styrene (ABS) polymer process was monitored in near-real time. Decision logics based on the time series and statistical process control technique introduced suggest several applications in workplace and environmental monitoring. These applications might include signaling of an alarm or warning, increasing levels of worker respiratory protection, or evacuation of a community, when gas and vapor concentrations are determined to be out-of-control. PMID:8012765

  10. 33 CFR 80.703 - Little River Inlet, SC to Cape Romain, SC.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Inlet, a line drawn parallel with the general trend of the highwater shoreline across Hog Inlet; thence a line drawn across the seaward ends of the Murrels Inlet jetties; thence a line drawn parallel...

  11. 33 CFR 80.703 - Little River Inlet, SC to Cape Romain, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Inlet, a line drawn parallel with the general trend of the highwater shoreline across Hog Inlet; thence a line drawn across the seaward ends of the Murrels Inlet jetties; thence a line drawn parallel...

  12. 33 CFR 80.703 - Little River Inlet, SC to Cape Romain, SC.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Inlet, a line drawn parallel with the general trend of the highwater shoreline across Hog Inlet; thence a line drawn across the seaward ends of the Murrels Inlet jetties; thence a line drawn parallel...

  13. 33 CFR 80.703 - Little River Inlet, SC to Cape Romain, SC.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Inlet, a line drawn parallel with the general trend of the highwater shoreline across Hog Inlet; thence a line drawn across the seaward ends of the Murrels Inlet jetties; thence a line drawn parallel...

  14. Investigation of Power Requirements for Ice Prevention and Cyclical De-Icing of Inlet Guide Vanes with Internal Electric Heaters

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Blatz, Robert E.

    1950-01-01

    An investigation was conducted to determine the electric power requirements necessary for ice protection of inlet guide vanes by continuous heating and by cyclical de-icing. Data are presented to show the effect of ambient-air temperature, liquid-water content, air velocity, heat-on period, and cycle times on the power requirements for these two methods of ice protection. The results showed that for a hypothetical engine using 28 inlet guide vanes under similar icing conditions, cyclical de-icing can provide a total power saving as high as 79 percent over that required for continuous heating. Heat-on periods in the order of 10 seconds with a cycle ratio of about 1:7 resulted in the best over-all performance with respect to total power requirements and aerodynamic losses during the heat-off period. Power requirements reported herein may be reduced by as much as 25 percent by achieving a more uniform surface-temperature distribution. A parameter in terms of engine mass flow, vane size, vane surface temperature, and the icing conditions ahead of the inlet guide vanes.was developed by which an extension of the experimental data to icing conditions and inlet guide vanes, other than those investigated was possible.

  15. Dynamic real-time monitoring of chloroform in an indoor swimming pool air using open-path Fourier transform infrared spectroscopy.

    PubMed

    Chen, M-J; Duh, J-M; Shie, R-H; Weng, J-H; Hsu, H-T

    2016-06-01

    This study used open-path Fourier transform infrared (OP-FTIR) spectroscopy to continuously assess the variation in chloroform concentrations in the air of an indoor swimming pool. Variables affecting the concentrations of chloroform in air were also monitored. The results showed that chloroform concentrations in air varied significantly during the time of operation of the swimming pool and that there were two peaks in chloroform concentration during the time of operation of the pool. The highest concentration was at 17:30, which is coincident with the time with the highest number of swimmers in the pool in a day. The swimmer load was one of the most important factors influencing the chloroform concentration in the air. When the number of swimmers surpassed 40, the concentrations of chloroform were on average 4.4 times higher than the concentration measured without swimmers in the pool. According to the results of this study, we suggest that those who swim regularly should avoid times with highest number of swimmers, in order to decrease the risk of exposure to high concentrations of chloroform. It is also recommended that an automatic mechanical ventilation system is installed to increase the ventilation rate during times of high swimmer load. PMID:25916255

  16. Distortion-rotor interaction noise produced by a drooped inlet

    NASA Technical Reports Server (NTRS)

    Smith, E. B.; Moore, M. T.; Gliebe, P. R.

    1980-01-01

    The 'drooped' inlet used on most wing mounted engines produces a wall static pressure distortion at the fan face of about plus or minus 2%. The interaction of the fan rotor with this fixed distortion pattern produces blade passing frequency and harmonic tone levels in flight which contribute to forward radiated engine noise spectra. Data from a wind tunnel test, using both a drooped inlet and an inlet with no droop, show large changes in forward radiated noise levels over a limited fan speed range. An analytical model of this fan noise mechanism is developed and is used to account for the major features of the measured results.

  17. Analysis of an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1992-01-01

    It is shown that a time marching Navier-Stokes code called PARC can be utilized to provide a reasonable prediction of the flow field within an inlet for an advanced ducted propeller. The code validation was implemented for a nonseparated flow condition associated with the inlet functioning at angles-of-attack of zero and 25 deg. Comparison of the computational results with the test data shows that the PARC code with the propeller face fixed flow properties boundary conditions (BC) provided a better prediction of the inlet surface static pressures than the prediction when the mass flow BC was employed.

  18. Performance and boundary-layer evaluation of a sonic inlet

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Ruggeri, R. S.

    1976-01-01

    Tests were conducted to determine the boundary layer characteristics and aerodynamic performance of a radial vane sonic inlet with a length/diameter ratio of 1 for several vane configurations. The sonic inlet was designed with a slight wavy wall type of diffuser geometry, which permits operation at high inlet Mach numbers (sufficiently high for good noise suppression) without boundary layer flow separation and with good total pressure recovery. A new method for evaluating the turbulent boundary layer was developed to separate the boundary layer from the inviscid core flow, which is characterized by a total pressure variation from hub to tip, and to determine the experimental boundary layer parameters.

  19. Heavy minerals in surficial sediments from lower Cook Inlet, Alaska

    USGS Publications Warehouse

    Wong, F.L.

    1984-01-01

    Amphiboles, orthopyroxenes, and clinopyroxenes dominate the heavy mineral suite of surficial sediments in lower Cook Inlet, Alaska. Sources for these sediments include the igneous arc terrane of the northeast Alaska Range, reworked intrabasinal sediments, and local drainages in lower Cook Inlet. The distribution of these deposits is a reflection of both the tidal currents and the prevailing southerly net movement from the head of Cook Inlet. The heavy mineral studies concur with similar findings from gravel analyses, clay mineral investigations, and quartz microtexture observations. ?? 1984 Springer-Verlag New York Inc.

  20. Feasibility study of inlet shock stability system of YF-12

    NASA Technical Reports Server (NTRS)

    Blausey, G. C.; Coleman, D. M.; Harp, D. S.

    1972-01-01

    The feasibility of self actuating bleed valves as a shock stabilization system in the inlet of the YF-12 is considered for vortex valves, slide valves, and poppet valves. Analytical estimation of valve performance indicates that only the slide and poppet valves located in the inlet cowl can meet the desired steady state stabilizing flows, and of the two the poppet valve is substantially faster in response to dynamic disturbances. The poppet valve is, therefore, selected as the best shock stability system for the YF-12 inlet.

  1. Should we attempt global (inlet engine airframe) control design?

    NASA Technical Reports Server (NTRS)

    Carlin, C. M.

    1980-01-01

    The feasibility of multivariable design of the entire airplane control system is briefly addressed. An intermediate step in that direction is to design a control for an inlet engine augmentor system by using multivariable techniques. The supersonic cruise large scale inlet research program is described which will provide an opportunity to develop, integrate, and wind tunnel test a control for a mixed compression inlet and variable cycle engine. The integrated propulsion airframe control program is also discussed which will introduce the problem of implementing MVC within a distributed processing avionics architecture, requiring real time decomposition of the global design into independent modules in response to hardware communication failures.

  2. Numerical simulation of three-dimensional supersonic inlet flow fields

    NASA Technical Reports Server (NTRS)

    Kawamura, T.; Chyu, W. J.; Bencze, D. P.

    1987-01-01

    Supersonic inlet flows with mixed external-internal compressions of an axisymmetric inlet model were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows typically found in supersonic inlets such as shock-wave intersections, flow spillage around the cowl lip, shock-wave/boundary-layer interactions, control of shock-induced flow separation by means of boundary layer bleed, internal normal (terminal) shocks, and the effects of flow incidence. Computed results were compared with available wind tunnel data.

  3. Prediction of sound radiation from different practical jet engine inlets

    NASA Technical Reports Server (NTRS)

    Zinn, B. T.; Meyer, W. L.

    1981-01-01

    Computer codes, capable of producing accurate results for nondimensional wave numbers (based on duct radius) of up to 20, were developed and used to generate results for various other inlet configurations. Both reflection coefficients and radiation patterns were calculated by the integral solution procedure for the following five inlet configurations: the NASA Langley Bellmouth, the NASA Lewis JT-15D-1 ground test nacelle, and three hyperbolic inlets of 50, 70, and 90 degrees. Results obtained are compared with results from other experimental and theoretical studies.

  4. Prediction of sound radiation from different practical jet engine inlets

    NASA Astrophysics Data System (ADS)

    Zinn, B. T.; Meyer, W. L.

    Computer codes, capable of producing accurate results for nondimensional wave numbers (based on duct radius) of up to 20, were developed and used to generate results for various other inlet configurations. Both reflection coefficients and radiation patterns were calculated by the integral solution procedure for the following five inlet configurations: the NASA Langley Bellmouth, the NASA Lewis JT-15D-1 ground test nacelle, and three hyperbolic inlets of 50, 70, and 90 degrees. Results obtained are compared with results from other experimental and theoretical studies.

  5. Distortion-rotor interaction noise produced by a drooped inlet

    NASA Astrophysics Data System (ADS)

    Smith, E. B.; Moore, M. T.; Gliebe, P. R.

    1980-06-01

    The 'drooped' inlet used on most wing mounted engines produces a wall static pressure distortion at the fan face of about plus or minus 2%. The interaction of the fan rotor with this fixed distortion pattern produces blade passing frequency and harmonic tone levels in flight which contribute to forward radiated engine noise spectra. Data from a wind tunnel test, using both a drooped inlet and an inlet with no droop, show large changes in forward radiated noise levels over a limited fan speed range. An analytical model of this fan noise mechanism is developed and is used to account for the major features of the measured results.

  6. High-speed inlet research program and supporting analysis

    NASA Technical Reports Server (NTRS)

    Coltrin, Robert E.

    1990-01-01

    The technology challenges faced by the high speed inlet designer are discussed by describing the considerations that went into the design of the Mach 5 research inlet. It is shown that the emerging three dimensional viscous computational fluid dynamics (CFD) flow codes, together with small scale experiments, can be used to guide larger scale full inlet systems research. Then, in turn, the results of the large scale research, if properly instrumented, can be used to validate or at least to calibrate the CFD codes.

  7. Variable geometry inlet design for scram jet engine

    NASA Technical Reports Server (NTRS)

    Guinan, Daniel P. (Inventor); Drake, Alan (Inventor); Andreadis, Dean (Inventor); Beckel, Stephen A. (Inventor)

    2005-01-01

    The present invention relates to an improved variable geometry inlet for a scram jet engine having at least one combustor module. The variable geometry inlet comprises each combustor module having two sidewalls. Each of the sidewalls has a central portion with a thickness and a tapered profile forward of the central portion. The tapered profile terminates in a sharp leading edge. The variable geometry inlet further comprises each module having a lower wall and a movable cowl flap positioned forward of the lower wall. The movable cowl flap has a leading edge and the leading edges of the sidewalls intersect the leading edge of the cowl flap.

  8. Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones

    NASA Astrophysics Data System (ADS)

    Erikli, Ş.; Olcay, A. B.

    2015-08-01

    This study investigates hydrocyclone performance of an oil injected screw compressor. Especially, the oil separation efficiency of a screw compressor plays a significant role for air quality and non-stop working hour of compressors has become an important issue when the efficiency in energy is considered. In this study, two separation efficiency parameters were selected to be hydrocyclone inlet diameter and flow volume height between oil reservoir surface and top of the hydrocyclone. Nine different cases were studied in which cyclone inlet diameter and flow volume height between oil reservoir surface and top were investigated in regards to separation and energy performance aspects and the effect of the parameters on the general performance appears to be causing powerful influence. Flow inside the hydrocyclone geometry was modelled by Reynolds Stress Model (RSM) and hydro particles were tracked by Discrete Phase Model (DPM). Besides, particle break up was modelled by the Taylor Analogy Breakup (TAB) model. The reversed vortex generation was observed at different planes. The upper limit of the inlet diameter of the cyclone yields the centrifugal force on particles to decrease while the flow becomes slower; and the larger diameter implies slower flow. On the contrary, the lower limit is increment in speed causes breakup problems that the particle diameters become smaller; consequently, it is harder to separate them from gas.

  9. Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.; DeBonis, J. R.

    1999-01-01

    A study of the Trailblazer vehicle inlet was conducted using the Global Air Sampling Program (GASP) code for flight Mach numbers ranging from 4-12. Both perfect gas and finite rate chemical analysis were performed with the intention of making detailed comparisons between the two results. Inlet performance was assessed using total pressure recovery and kinetic energy efficiency. These assessments were based upon a one-dimensional stream-thrust-average of the axisymmetric flowfield. Flow visualization utilized to examine the detailed shock structures internal to this mixed-compression inlet. Kinetic energy efficiency appeared to be the least sensitive to differences between the perfect gas and finite rate chemistry results. Total pressure recovery appeared to be the most sensitive discriminator between the perfect gas and finite rate chemistry results for flight Mach numbers above Mach 6. Adiabatic wall temperature was consistently overpredicted by the perfect gas model for flight Mach numbers above Mach 4. The predicted shock structures were noticeably different for Mach numbers from 6-12. At Mach 4, the perfect gas and finite rate chemistry models collapse to the same result.

  10. Cooling Characteristics of a Pratt and Whitney R-2800 Engine Installed in an NACA Short-nose High-inlet-velocity Cowling

    NASA Technical Reports Server (NTRS)

    Corson, Blake W.; McLellan, Charles H.

    1944-01-01

    An investigation was made of the cooling characteristics of a P and W R-2800 engine with NACA short-nose high inlet-velocity cowling. The internal aerodynamics of the cowling were studied for ranges of propeller-advance ratio and inlet-velocity ratio obtained by deflection of cowling flaps. Tests included variations of engine power, fuel/air ratio and cooling-air pressure drop. Engine cooling data are presented in the form of cooling correlation curves, and an example for calculation of cooling requirements in flight is included.

  11. Effects of radial and circumferential inlet velocity profile distortions on performance of a short-length double-annular ram induction combustor

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Perkins, P. J.

    1972-01-01

    Inlet air velocity profile tests were conducted on a full-scale short-length 102-centimeter-diameter annual combustor designed for advanced gas turbine engine applications. The inlet profiles studied include radial distortions that were center peaked, and tip peaked, as well as a circumferential distortion which was center peaked for one-third of the circumference and flat for the other two-thirds. An increase in combustor pressure loss was the most significant effect of the radial air velocity distortions. With the circumferential distortion, exit temperature pattern factor doubled when compared to a flat velocity profile.

  12. Hydrogeomorphic contrast between inlet and outlet streams of a high arctic lake influence stream-groundwater exchange

    NASA Astrophysics Data System (ADS)

    Wlostowski, A. N.; Gooseff, M. N.; Bowden, W. B.; Wollheim, W. M.; Whittinghill, K. A.

    2012-12-01

    Lakes have been shown to alter basic geomorphic and hydrologic characteristics of outlet streams, compared to inlet streams. However, it is not well understood how lake-influenced differences in channel structure, open-channel hydrology, and subsurface hydrology affect solute transport mechanisms in inlet and outlet streams. Two arctic headwater streams, underlain by continuous permafrost, on Alaska's North Slope were intensively monitored from June to September 2011. Sites were selected to focus on the influence of a single high arctic lake, known as I8-Lake: I8-Inlet, a 300m reach directly upstream of the lake is un-influenced by any upstream lakes, while I8-Outlet is a 300m reach located directly downstream of the lake. Width:depth ratio at I8-Outlet was 33.33 and 20 at I8-Inlet. I8-Outlet shows consistently higher Manning's n values at all discharge conditions. Outlet:inlet discharge ratio declines from 4 to 1 over a 4 month period (June through September) as lake storage from snowmelt drained throughout the thawed season. Shallow groundwater table dynamics at I8-Inlet were largely controlled by precipitation events, whereas I8-Outlet showed a more stable shallow groundwater table, which filled quickly in the spring and remained relatively constant throughout the season. A non-parametric analysis based on objective breakthrough curve decomposition methods was used to analyze over 50 small conservative slug injections from each stream to characterize solute transport differences. We found that more tracer mass was associated with the transient storage timescale on I8-Outlet compared to I8-Inlet (p = 0.005), while more tracer mass was associated with advection/dispersion timescales on I8-Inlet compared to I8-Outlet. Conclusions from this study are twofold: 1) A high arctic lake imposes measurable hydrologic and geomorphic changes along the down-valley river continuum. 2) Hydrogeomorphic differences amongst streams above and below a small arctic lake create

  13. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    SciTech Connect

    Becker, N.M.; Vanta, E.B.

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  14. STRUCTURAL FLOOR PLAN, SHEET 2 OF 6. Oregon Inlet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STRUCTURAL FLOOR PLAN, SHEET 2 OF 6. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  15. INTERIOR TOWER ROOM LOOKING NORTHEAST. Oregon Inlet Coast Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER ROOM LOOKING NORTHEAST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  16. LOOKOUT TOWER DETAILS, SHEET 5 OF 6. Oregon Inlet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOOKOUT TOWER DETAILS, SHEET 5 OF 6. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  17. Aerodynamic and acoustic performance of high Mach number inlets

    NASA Technical Reports Server (NTRS)

    Lumsdaine, E.; Clark, L. R.; Cherng, J. C.; Tag, I.

    1977-01-01

    Experimental results were obtained for two types of high Mach number inlets, one with a translating centerbody and one with a fixed geometry (collapsing cowl) without centerbody. The aerodynamic and acoustic performance of these inlets was examined. The effects of several parameters such as area ratio and length-diameter ratio were investigated. The translating centerbody inlet was found to be superior to the collapsing cowl inlet both acoustically and aerodynamically, particularly for area ratios greater than 1.5. Comparison of length-diameter ratio and area ratio effects on performance near choked flow showed the latter parameter to be more significant. Also, greater high frequency noise attenuation was achieved by increasing Mach number from low to high subsonic values.

  18. Inlet, engine, airframe controls integration development for supercruising aircraft

    NASA Technical Reports Server (NTRS)

    Houchard, J. H.; Carlin, C. M.; Tjonneland, E.

    1983-01-01

    In connection with a consideration of advanced military aircraft systems, attention is given to research for improving the technology of the design of supersonic cruise aircraft. Syberg et al. (1981) have shown that an analytic design method is now available to accurately predict the flow characteristics of axisymmetric supersonic inlets, including off-design angle of attack operation. On the basis of information regarding the inlet flow characteristics, the control system designer can begin the inlet design and development, before wind tunnel testing has begun. The present investigation is concerned with details and status of inlet control technology. A detailed representation of a supersonic propulsion system is developed. This development demonstrates the feasibility of the selected hybrid computational concept.

  19. 28. Main water inlet and outlet pipes under central corridor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Main water inlet and outlet pipes under central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  20. Inlet total pressure loss due to acoustic wall treatment

    NASA Technical Reports Server (NTRS)

    Miller, B. A.

    1977-01-01

    The effect of diffuser wall acoustic treatment on inlet total pressure loss was experimentally determined. Data were obtained by testing an inlet model with 10 different acoustically treated diffusers differing only in the design of the Helmholtz resonator acoustic treatment. Tests were conducted in a wind tunnel at forward velocities to 41 meters per second for inlet throat Mach numbers of .5 to .8 and angles of attack as high as 50 degrees. Results indicate a pressure loss penalty due to acoustic treatment that increases linearly with the porosity of the acoustic facing sheet. For a surface porosity of 14 percent the total pressure loss was 21 percent greater than that for an untreated inlet.