Science.gov

Sample records for air inlet passage

  1. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  2. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 1 -- Discrete-passage diffuser

    SciTech Connect

    Filipenco, V.G.; Deniz, S.; Johnston, J.M.; Greitzer, E.M.; Cumpsty, N.A.

    2000-01-01

    This is Part 1 of a two-part paper considering the performance of radial diffusers for use in a high-performance centrifugal compressor. Part 1 reports on discrete-passage diffusers, while Part 2 describes a test of a straight-channel diffuser designed for equivalent duty. Two builds of discrete-passage diffuser were tested, with 30 and 38 separate passages. Both the 30 and 38 passage diffusers investigated showed comparable range of unstalled operation and similar level of overall diffuser pressure recovery. The paper concentrates on the influence of inlet flow conditions on the pressure recovery and operating range of radial diffusers for centrifugal compressor stages. The flow conditions examined include diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity. The investigation was carried out in a specially built test facility, designed to provide a controlled inlet flow field to the test diffusers. The facility can provide a wide range of diffuser inlet velocity profile distortion and skew with Mach numbers up to unity and flow angles of 63 to 75 deg from the radical direction. The consequences of different averaging methods for the inlet total pressure distributions, which are needed in the definition of diffuser pressure recovery coefficient for nonuniform diffuser inlet conditions, were also assessed. The overall diffuser pressure recovery coefficient, based on suitably averaged inlet total pressure, was found to correlate well with the momentum-averaged flow angle into the diffuser. It is shown that the generally accepted sensitivity of diffuser pressure recovery performance to inlet flow distortion and boundary layer blockage can be largely attributed to inappropriate quantification of the average dynamic pressure at diffuser inlet. Use of an inlet dynamic pressure based on availability or mass-averaging in combination with definition of inlet flow angle based on mass average of the radial and tangential velocity at diffuser inlet

  3. Efficiency of dust sampling inlets in calm air.

    PubMed

    Breslin, J A; Stein, R L

    1975-08-01

    Measurement of airborne dust concentrations usually involves drawing a sample of the dust-laden air into the measuring instrument through an inlet. Even if the surrounding air is calm, theoretical calculations predict that large particles may not be sampled accurately due to the combined effects of gravity and inertia on the particles near the sampling inlet. Tests were conducted to determine the conditions of particle size, inlet radius, and flow rare necessary for accurate dust sampling. A coal-dust aerosol was sampled simultaneously through inlets of different diameters at the same volume flow-rate and collected on filters. The dust was removed from the filters and the particles were counted and sized with a Coulter counter. Results showed that published criteria for inlet conditions for correct sampling are overly restrictive and that respirable-size particles are sampled correctly in the normal range or operation of most dust sampling instruments. PMID:1227283

  4. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  5. 47. View of "dry air inlets" to waveguides entering scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. The effect of inlet air vitiation on combustion efficiency

    SciTech Connect

    Zuomin, F.; Yijun, J.

    1985-01-01

    Experimental results of the effect of inlet air vitiation produced by a vitiating preheater on combustion efficiency of a turbojet combustor and a model ramjet combustor are presented in this paper. An empirical correlation and a calculation method based on stirred reactor theory are derived to correct the vitiation effect. Results obtained by means of these two methods are in good agreement with test data.

  7. Transpulmonary passage of venous air emboli

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Hills, B. A.

    1985-01-01

    Twenty-seven paralyzed anesthetized dogs were embolized with venous air to determine the effectiveness of the pulmonary vasculature for bubble filtration or trapping. Air doses ranged from 0.05 to 0.40 ml/kg min in 0.05-ml increments with ultrasonic Doppler monitors placed over arterial vessels to detect any microbubbles that crossed the lungs. Pulmonary vascular filtration of the venous air infusions was complete for the lower air doses ranging from 0.05 to 0.30 ml/kg min. When the air doses were increased to 0.35 ml/kg min, the filtration threshold was exceeded with arterial spillover of bubbles occurring in 50 percent of the animals and reaching 71 percent for 0.40 ml/kg min. Significant elevations were observed in pulmonary arterial pressure and pulmonary vascular resistance. Systemic blood pressure and cardiac output decreased, whereas left ventricular end-diastolic pressure remained unchanged. The results indicate that the filtration of venous bubbles by the pulmonary vasculature was complete when the air infusion rates were kept below a threshold value of 0.30 ml/kg min.

  8. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  9. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  10. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  11. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  12. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  13. Investigation of Aerodynamic and Icing Characteristics of a Flush Alternate Inlet Induction System Air Scoop

    NASA Technical Reports Server (NTRS)

    Lewis, James P.

    1953-01-01

    An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.

  14. Northwest passage: Trade route for large air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    A conceptual vehicle and powerplant (10,000-ton) nuclear-powered air-cushion vehicle (ACV) that could open the Northwest Passage and other Arctic passages to commercial traffic is identified. The report contains a description of the conceptual vehicle, including the powerplant and operations, an assessment of technical feasibility, estimates of capital and operating costs, and identification of eligible cargo and markets. A comparison of the nuclear ACV freighter with nuclear container ships shows that for containerized or roll-on/roll-off cargo the ACV would provide greatly reduced transit time between North Atlantic and North Pacific ports at a competitive cost.

  15. Experimental study of a cylindrical air inlet designed on the basis of plane flows

    NASA Astrophysics Data System (ADS)

    Vnuchkov, D. A.; Zvegintsev, V. I.; Nalivaichenko, D. G.

    2014-04-01

    Results of an experimental study of a cylindrical air inlet designed for high flight speeds on the basis of plane flows are reported. For an air inlet intended for Mach number M = 4, the flow-rate characteristics at M = 2.85, 3.83, and 4.95 for angles of attack ranging from 0 to 9 degrees have been measured. The results of tests have shown that at free-stream Mach number M = 3.83, close to the design Mach number, the mass rate of the air flow captured by the air inlet was 96 % of its design value, and this rate increased to 99 % as the Mach number was increased to 4.95. At a lower, in comparison with the design value, free-stream Mach number, M = 2.85, the mass rate of the air flow captured by the inlet installed under zero angle of attack has decreased to 68 %. For all the examined Mach numbers, an increase in the angle of attack from 0 to 9 degrees resulted in an 8-14 % decrease of the mass rate of inlet-captured air flow. For comparison, numerical calculation of the air-inlet flow at Mach number M = 3.83 was performed. The obtained data were found to be in a qualitative agreement with experimental data.

  16. Acceptance test report, inlet air filter and control station pressure decay leak test

    SciTech Connect

    Tuck, J.A., Fluor Daniel Hanford

    1997-02-11

    This is the acceptance test report for pressure decay leak tests performed on Tank Farm primary ventilation system inlet air filter and control stations, following their installation in the field and prior to acceptance for beneficial use.

  17. Effect of inlet-air humidity on the formation of oxides of nitrogen in a gas-turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    Tests were conducted to determine the effect of inlet-air humidity on the formation of oxides of nitrogen from a gas-turbine combustor. Combustor inlet-air temperature ranged from 450 F to 1050 F. The tests were run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NO sub x emission index was found to decrease with increasing inlet-air humidity at a constant exponential rate of 19 percent per mass percent water vapor in the air. This decrease of NO sub x emission index with increasing humidity was found to be independent of inlet-air temperature.

  18. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  19. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  20. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  1. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  2. Influence of the inlet air in efficiency of photocatalytic devices for mineralization of VOCs in air-conditioning installations.

    PubMed

    Jimenez-Relinque, E; Castellote, M

    2014-10-01

    Nowadays, a large proportion of photocatalytic oxidation (PCO) devices are being implemented in heating, ventilation and air-conditioning systems. However, no systematic studies have been carried out regarding the influence of inlet air preconditioning. To analyse the impact of the inlet air-conditions into photocatalytic efficiency, a simulated air-conditioning duct with flowing gas through inside was designed. Isobutylene was chosen as the target VOCs. The concentration in the gas phase was monitored using a photoionization detector. The influence of flow rate, relative humidity and temperature on the VOC removal efficiency was analysed. Experimental results were presented in terms of gas-removal efficiency (η) and clean air delivery rate (CADR) and analysed on a kinetic basis. From them, the weight of each parameter in the global process has been determined, from bigger to smaller contribution, flow>temperature>relative humidity. Also, the relevance of the inlet air conditions has been illustrated in a model room in order to determinate the time necessary to obtain a threshold value accomplishing with enough air quality and the energy consumption of the device. Additionally, the photocatalytic decontamination has been assimilated to the "air exchange rate", a parameter commonly used in indoor air quality studies. The results show that preconditioning of air can improve the efficiency of photocatalytic devices and bring important energy savings.

  3. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    SciTech Connect

    Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

  4. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    NASA Astrophysics Data System (ADS)

    Antoniak, Z. I.; Brown, D. R.; Drost, M. K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20 percent cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20 percent more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5 percent when compared to larger gas turbines.

  5. Problems in creation of modern air inlet filters of power gas turbine plants in Russia and methods of their solving

    NASA Astrophysics Data System (ADS)

    Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.

    2016-08-01

    The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.

  6. Operational test report for 241-AW tank inlet air control stations

    SciTech Connect

    Minteer, D.J., Westinghouse Hanford

    1996-07-03

    This document reports the results of operational testing on tank inlet air control stations in 241-AW tank farm. An air control station was installed on each of the six AW tanks. Operational testing consisted of a simple functional test of each station`s air flow controller, aerosol testing of each station`s HEPA filter, and final ventilation system balancing (i.e., tank airflows and vacuum level) using the air control stations. The test was successful and the units were subsequently placed into operation.

  7. Application technology progress report: Evaluation of PM-10 commercial inlets and development of an inlet for new Rocky Flats Plant surveillance air sampler, January 1986-December 1986

    SciTech Connect

    Langer, G.; Deitesfeld, C.A. (ed.0

    1987-09-10

    Work during 1986 was concerned with developing a new PM-10 inlet for use at Rocky Flats Plant (RFP), Golden, Colorado. The commercial units that we evaluated did not allow for recovery of the >10-..mu..m dust fraction as may be required by EPA and DOE for nuclear installations. One of them, the Wedding PM-10 Inlet, did not meet the PM-10 cut-point requirement, because of the build-up of vegetative fibers in the cyclone type separator. Therefore, we developed a new PM-10 inlet (patent applied for) to meet our needs, and especially one that is adaptable to our existing 60 surveillance air samplers at minimum cost. The inlet utilizes a modified slotted impactor design. This device is directly adaptable to existing EPA high-volume samplers. 9 refs., 5 figs., 1 tab.

  8. The Role of Design-of-Experiments in Managing Flow in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Gridley, Marvin C.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design-of-Experiments methodologies to arrive at microscale secondary flow control array designs that maintain optimal inlet performance over a wide range of the mission variables and to explore how these statistical methods provide a better understanding of the management of flow in compact air vehicle inlets. These statistical design concepts were used to investigate the robustness properties of low unit strength micro-effector arrays. Low unit strength micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. The term robustness is used in this paper in the same sense as it is used in the industrial problem solving community. It refers to minimizing the effects of the hard-to-control factors that influence the development of a product or process. In Robustness Engineering, the effects of the hard-to-control factors are often called noise , and the hard-to-control factors themselves are referred to as the environmental variables or sometimes as the Taguchi noise variables. Hence Robust Optimization refers to minimizing the effects of the environmental or noise variables on the development (design) of a product or process. In the management of flow in compact inlets, the environmental or noise variables can be identified with the mission variables. Therefore this paper formulates a statistical design methodology that minimizes the impact of variations in the mission variables on inlet performance and demonstrates that these statistical design concepts can lead to simpler inlet flow management systems.

  9. Wind-Tunnel Investigation of Air Inlet and Outlet Openings on a Streamline Body

    NASA Technical Reports Server (NTRS)

    Becker, John V

    1951-01-01

    In connection with the general problem of providing air flow to an aircraft power plant located within a fuselage, an investigation was conducted in the Langley 8-foot high-speed tunnel to determine the effect on external drag and pressure distribution of air inlet openings located at the nose of a streamline body. Air outlet openings located at the tail and at the 21-percent and 63-percent stations of the body were also investigated. Boundary layer transition measurements were made and correlated with the force and the pressure data. Individual openings were investigated with the aid of a blower and then practicable combinations of inlet and outlet openings were tested. Various modifications to the internal duct shape near the inlet opening and the aerodynamic effects of a simulated gun in the duct were also studied. The results of the tests suggested that outlet openings should be designed so that the static pressure of the internal flow at the outlet would be the same as the static pressure of the external flow in the vicinity of the opening.

  10. Design of an air ejector for boundary-layer bleed of an acoustically treated turbofan engine inlet during ground testing

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.

    1978-01-01

    An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.

  11. Report on Lincoln Electric System gas turbine inlet air cooling. Final report

    SciTech Connect

    Ebeling, J.A.; Buecker, B.J.; Kitchen, B.J.; Lukas, H.; Mackie, E.I.

    1993-12-01

    As a result of increased electric power demand, the Lincoln Electric System (LES) of Lincoln, Nebraska (USA) decided to upgrade the generating capacity of their system. Based on capacity addition studies, the utility elected to improve performance of a GE MS7001B combustion turbine located at their Rokeby station. The turbine is used to meet summer-time peak loads, and as is common among combustion turbines, capacity declines as ambient air temperature rises. To improve the turbine capacity, LES decided to employ the proven technique of inlet air cooling, but with a novel approach: off-peak ice generation to be used for peak-load air cooling. EPRI contributed design concept definition and preliminary engineering. The American Public Power Association provided co-funding. Burns & McDonnell Engineering Company, under contract to Lincoln Electric System, provided detailed design and construction documents. LES managed the construction, start-up, and testing of the cooling system. This report describes the technical basis for the cooling system design, and it discusses combustion turbine performance, project economics, and potential system improvements. Control logic and P&ID drawings are also included. The inlet air cooling system has been available since the fall of 1991. When in use, the cooling system has increased turbine capacity by up to 17% at a cost of less than $200 per increased kilowatt of generation.

  12. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOEpatents

    Rodgers, John C.

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  13. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  14. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  15. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  16. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air...

  17. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  18. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air...

  19. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air...

  20. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  1. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air...

  2. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  3. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    NASA Astrophysics Data System (ADS)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  4. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  5. Southern Ocean Carbon Sink Constraints from Radiocarbon in Drake Passage Air

    NASA Astrophysics Data System (ADS)

    Lindsay, C. M.; Lehman, S.; Miller, J. B.

    2014-12-01

    The Southern Ocean is one of the earth's largest regional net carbon sinks due to strong westerly winds, which drive surface gas exchange, deep mixing and upwelling. The strength of the sink is set by complex interactions between the physical circulation, gas exchange and biological activity in surface waters. Recent work by others has predicted that global warming may weaken the sink by strengthening the regional winds, increasing upwelling and the flux of deep, naturally carbon-rich and radiocarbon-depleted water into the surface mixed layer. The resulting decrease in the air-sea pCO2 gradient is thought to overwhelm other compensating changes, causing a weakened net sink. Here we demonstrate the use of precise measurements of radiocarbon in Drake Passage air (14CO2) to detect short-term fluctuations in the Southern Ocean gross sea-to-air C flux, and by extension, possible changes in the net carbon sink and their underlying causes. Drake Passage boundary layer air has been sampled since 2006 at roughly fortnightly intervals as part of NOAA's Cooperative Air Sampling Network, resulting in a 5-year high-resolution 14CO2 time-series with accompanying same-flask CO2 concentration measurements. Atmospheric measurements at Drake Passage are representative of zonal average exchange fluxes due to strong mixing by the westerly winds. In preliminary results, anomalously low ∆14C values are correlated with positive states of the Southern Annular Mode, a hemispheric-scale indicator of stronger westerly winds in the high latitude Southern Ocean. Simulations from the TM5 atmospheric transport model with a detailed global radiocarbon budget are used to interpret the results. These results appear to support the hypothesized link between stronger westerly winds and a weaker Southern Ocean carbon sink.

  6. The effect of different inlet conditions of air in a rectangular channel on convection heat transfer: Turbulence flow

    SciTech Connect

    Kurtbas, Irfan

    2008-10-15

    Theoretical and empirical correlations for duct flow are given for hydrodynamically and thermally developed flow in most of previous studies. However, this is commonly not a realistic inlet configuration for heat exchanger, in which coolant flow generally turns through a serpentine shaped passage before entering heat sinks. Accordingly, an experimental investigation was carried out to determine average heat transfer coefficients in uniformly heated rectangular channel with 45 and 90 turned flow, and with wall mounted a baffle. The channel was heated through bottom side with the baffle. In present work, a detailed study was conducted for three different height of entry channel (named as the ratio of the height of entry channel to the height of test section (anti H{sub c}=h{sub c}/H)) by varying Reynolds number (Re{sub Dh}). Another variable parameter was the ratio of the baffle height to the channel height (anti H{sub b}=h{sub b}/H). Only one baffle was attached on the bottom (heating) surface. The experimental procedure was validated by comparing the data for the straight channel with no baffle. Reynolds number (Re{sub Dh}) was varied from 2800 to 30,000, so the flow was considered as only turbulent regime. All experiments were conduced with air accordingly; Prandtl number (Pr) was approximately fixed at 0.71. The results showed that average Nusselt number for {theta}=45 and {theta}=90 were 9% and 30% higher, respectively, than that of the straight channel without baffle. Likewise, the pressure drop increased up to 4.4 to 5.3 times compare to the straight channel. (author)

  7. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  8. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    NASA Technical Reports Server (NTRS)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  9. Carburetor fuel feed system with bidirectional passage

    SciTech Connect

    Jones, J.S.

    1986-12-30

    This patent describes a carburetor having an air inlet, an outlet, throttling means for controlling the flow through a main air path, and a venturi for reading air velocity through the carburetor located between the throttling means and the air inlet. The improvement described here comprises a bidirectional passage between the venturi and an area downstream of the throttling means for allowing free movement of air either from the venturi to the area downstream of the throttling means or from the area downstream of the throttling means to the venturi. The direction of air movement is dependent on the pressure relationship between the venturi and the area downstream of the throttling means. A means is included for receiving metered fuel into the bidirectional passage and allowing metered fuel to blend with air moving through the bidirectional passage and meet with the main air path either at the area downstream of the throttling means or at the venturi. The means for receiving metered fuel comprises a tubular section extending into the bidirectional passage adjacent the venturi, and providing a confined area of high velocity where fuel meets with air when the flow is from the venturi to the area downstream of the throttling means.

  10. The comparative performance of an aviation engine at normal and high inlet air temperatures

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Schey, Oscar W

    1928-01-01

    This report presents some results obtained during an investigation to determine the effect of high inlet air temperature on the performance of a Liberty 12 aviation engine. The purpose of this investigation was to ascertain, for normal service carburetor adjustments and a fixed ignition advance, the relation between power and temperature for the range of carburetor air temperatures that may be encountered when supercharging to sea level pressure at altitudes of over 20,000 feet and without intercooling when using plain aviation gasoline and mixtures of benzol and gasoline. The results show that for the conditions of test, both the brake and indicated power decrease with increase in air temperature at a faster rate than given by the theoretical assumption that power varies inversely as the square root of the absolute temperature. On a brake basis, the order of the difference in power for a temperature difference of 120 degrees F. Is 3 to 5 per cent. The observed relation between power and temperature when using the 30-70 blend was found to be linear. But, although these differences are noted, the above theoretical assumption may be considered as generally applicable except where greater precision over a wide range of temperatures is desired, in which case it appears necessary to test the particular engine under the given conditions. (author)

  11. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and...

  12. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and...

  13. Development of Wing Inlets

    NASA Technical Reports Server (NTRS)

    Racisz, Stanley F.

    1946-01-01

    Lift, drag, internal flow, and pressure distribution measurements were made on a low-drag airfoil incorporating various air inlet designs. Two leading-edge air inlets are developed which feature higher lift coefficients and critical Mach than the basic airfoil. Higher lift coefficients and critical speeds are obtained for leading half of these inlet sections but because of high suction pressures near exist, slightly lower critical speeds are obtained for the entire inlet section than the basic airfoil.

  14. [Aerosol deposition in nasal passages of burrowing and ground rodents when breathing dust-laden air].

    PubMed

    Moshkin, M P; Petrovskiĭ, D V; Akulov, A E; Romashchenko, A V; Gerlinskaia, L A; Muchnaia, M I; Ganimedov, V L; Sadovskiĭ, A S; Savelov, A A; Koptiug, I V; Troitskiĭ, S Iu; Bukhtiiarov, V I; Kolchanov, N A; Sagdeev, R Z; Fomin, V M

    2014-01-01

    In subterranean rodents, which dig down the passages with frontal teeth, adaptation to the underground mode of life presumes forming of mechanisms that provide protection against inhaling dust particles of different size when digging. One of such mechanisms can be specific pattern of air flow organization in the nasal cavity. To test this assumption, comparative study of geometry and aerodynamics of nasal passages has been conducted with regard to typical representative of subterranean rodents, the mole vole, and a representative of ground rodents, the house mouse. Numerical modeling of air flows and deposition of micro- and nanoparticle aerosols indicates that sedimentation of model particles over the whole surface of nasal cavity is higher in mole vole than in house mouse. On the contrary, particles deposition on the surface of olfactory epithelium turns out to be substantially less in the burrowing rodent as compared to the ground one. Adaptive significance of the latter observation has been substantiated by experimental study on the uptake ofnanoparticles of hydrated manganese oxide MnO x (H2O)x and Mn ions from nasal cavity into brain. It has been shown with use of magnetic resonance tomography method that there is no difference between studied species with respect to intake of particles or ions by olfactory bulb when they are introduced intranasally. Meanwhile, when inhaling nanoparticle aerosol of MnCl2, deposition of Mn in mouse's olfactory bulbs surpasses markedly that in vole's bulbs. Thereby, the morphology of nasal passages as a factor determining the aerodynamics of upper respiratory tract ensures for burrowing rodents more efficient protection of both lungs and brain against inhaled aerosols than for ground ones. PMID:25771679

  15. Review and status of heat-transfer technology for internal passages of air-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Yeh, F. C.; Stepka, F. S.

    1984-01-01

    Selected literature on heat-transfer and pressure losses for airflow through passages for several cooling methods generally applicable to gas turbine blades is reviewed. Some useful correlating equations are highlighted. The status of turbine-blade internal air-cooling technology for both nonrotating and rotating blades is discussed and the areas where further research is needed are indicated. The cooling methods considered include convection cooling in passages, impingement cooling at the leading edge and at the midchord, and convection cooling in passages, augmented by pin fins and the use of roughened internal walls.

  16. Partially turbulated trailing edge cooling passages for gas turbine nozzles

    DOEpatents

    Thatcher, Jonathan Carl; Burdgick, Steven Sebastian

    2001-01-01

    A plurality of passages are spaced one from the other along the length of a trailing edge of a nozzle vane in a gas turbine. The passages lie in communication with a cavity in the vane for flowing cooling air from the cavity through the passages through the tip of the trailing edge into the hot gas path. Each passage is partially turbulated and includes ribs in an aft portion thereof to provide enhanced cooling effects adjacent the tip of the trailing edge. The major portions of the passages are smooth bore. By this arrangement, reduced temperature gradients across the trailing edge metal are provided. Additionally, the inlets to each of the passages have a restriction whereby a reduced magnitude of compressor bleed discharge air is utilized for trailing edge cooling purposes.

  17. Development and Characterization Testing of an Air Pulsation Valve for a Pulse Detonation Engine Supersonic Parametric Inlet Test Section

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert

    2005-01-01

    In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.

  18. Investigation of X24C-2 10-Stage Axial-Flow Compressor. 2; Effect of Inlet-Air Pressure and Temperature of Performance

    NASA Technical Reports Server (NTRS)

    Finger, Harold B.; Schum, Harold J.; Buckner, Howard Jr.

    1947-01-01

    Effect of inlet-air pressure and temperature on the performance of the X24-2 10-Stage Axial-Flow Compressor from the X24C-2 turbojet engine was evaluated. Speeds of 80, 89, and 100 percent of equivalent design speed with inlet-air pressures of 6 and 12 inches of mercury absolute and inlet-air temperaures of approximately 538 degrees, 459 degrees,and 419 degrees R ( 79 degrees, 0 degrees, and minus 40 degrees F). Results were compared with prior investigations.

  19. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  20. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  1. Coaxial fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  2. Air/fuel supply system for use in a gas turbine engine

    DOEpatents

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  3. Engine investigation of an air-cooled turbine rotor blade incorporating impingement-cooled leading edge, chordwise passages, and a slotted trailing edge

    NASA Technical Reports Server (NTRS)

    Dengler, R. P.; Yeh, F. C.; Gauntner, J. W.; Fallon, G. E.

    1972-01-01

    Experimental temperatures are presented for an air-cooled turbine rotor blade tested in an engine. The data were obtained for turbine stator inlet temperatures from 2000 to 2500 F and for turbine-inlet gas pressures from 32 to 46 psia. Average and local blade heat-transfer data are correlated. Potential allowable increases in gas temperature are also discussed.

  4. Heat transfer to two-phase air/water mixtures flowing in small tubes with inlet disequilibrium

    NASA Technical Reports Server (NTRS)

    Janssen, J. M.; Florschuetz, L. W.; Fiszdon, J. P.

    1986-01-01

    The cooling of gas turbine components was the subject of considerable research. The problem is difficult because the available coolant, compressor bleed air, is itself quite hot and has relatively poor thermophysical properties for a coolant. Injecting liquid water to evaporatively cool the air prior to its contact with the hot components was proposed and studied, particularly as a method of cooling for contingency power applications. Injection of a small quantity of cold liquid water into a relatively hot coolant air stream such that evaporation of the liquid is still in process when the coolant contacts the hot component was studied. No approach was found whereby heat transfer characteristics could be confidently predicted for such a case based solely on prior studies. It was not clear whether disequilibrium between phases at the inlet to the hot component section would improve cooling relative to that obtained where equilibrium was established prior to contact with the hot surface.

  5. A method for measuring cooling air flow in base coolant passages of rotating turbine blades

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1975-01-01

    Method accurately determines actual coolant mass flow rate in cooling passages of rotating turbine blades. Total and static pressures are measured in blade base coolant passages. Mass flow rates are calculated from these measurements of pressure, measured temperature and known area.

  6. Optimal Micro-Vane Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-vane secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-vane secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low unit strength" micro-effector arrays. "Low unit strength" micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. Therefore, this report examines optimal micro-vane secondary flow control array designs for compact inlets through a Response Surface Methodology.

  7. Management of Total Pressure Recovery, Distortion and High Cycle Fatigue in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan

    2002-01-01

    It is the purpose of this study to demonstrate the viability and economy of Response Surface Methods (RSM) and Robustness Design Concepts (RDC) to arrive at micro-secondary flow control installation designs that maintain optimal inlet performance over a range of the mission variables. These statistical design concepts were used to investigate the robustness properties of 'low unit strength' micro-effector installations. 'Low unit strength' micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion.

  8. Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1978-01-01

    A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.

  9. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  10. Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.

  11. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  12. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  13. Assessment of the capacity of vehicle cabin air inlet filters to reduce diesel exhaust-induced symptoms in human volunteers

    PubMed Central

    2014-01-01

    Background Exposure to particulate matter (PM) air pollution especially derived from traffic is associated with increases in cardiorespiratory morbidity and mortality. In this study, we evaluated the ability of novel vehicle cabin air inlet filters to reduce diesel exhaust (DE)-induced symptoms and markers of inflammation in human subjects. Methods Thirty healthy subjects participated in a randomized double-blind controlled crossover study where they were exposed to filtered air, unfiltered DE and DE filtered through two selected particle filters, one with and one without active charcoal. Exposures lasted for one hour. Symptoms were assessed before and during exposures and lung function was measured before and after each exposure, with inflammation assessed in peripheral blood five hours after exposures. In parallel, PM were collected from unfiltered and filtered DE and assessed for their capacity to drive damaging oxidation reactions in a cell-free model, or promote inflammation in A549 cells. Results The standard particle filter employed in this study reduced PM10 mass concentrations within the exposure chamber by 46%, further reduced to 74% by the inclusion of an active charcoal component. In addition use of the active charcoal filter was associated by a 75% and 50% reduction in NO2 and hydrocarbon concentrations, respectively. As expected, subjects reported more subjective symptoms after exposure to unfiltered DE compared to filtered air, which was significantly reduced by the filter with an active charcoal component. There were no significant changes in lung function after exposures. Similarly diesel exhaust did not elicit significant increases in any of the inflammatory markers examined in the peripheral blood samples 5 hour post-exposure. Whilst the filters reduced chamber particle concentrations, the oxidative activity of the particles themselves, did not change following filtration with either filter. In contrast, diesel exhaust PM passed through the

  14. Air turbo-ramjet engine

    SciTech Connect

    Kepler, C.E.

    1991-12-24

    This patent describes a jet engine capable of being used to power an aircraft throughout a range of speeds from subsonic to high supersonic. It comprises means for bounding an internal passage centered on an axis and including, in succession as considered in the direction of axial flow of incoming air into and through the passage, a fixed-area air inlet section, a diverging passage section, a mixing section, a combustion section, and an outlet section; fan means situated in the air inlet section and including a rotor mounted in the bounding means for rotation about the axis and including a plurality of circumferentially spaced rotor blade members; means for selectively rotating the rotor about the axis with attendant impelling action of the rotor blade members on the air flowing therebetween; and means for selectively discharging air from a region of the passage situated between the air inlet section and the diverging passage section to the exterior of the bounding means, both at subsonic and supersonic speeds of the aircraft, when the amount of incoming air passing through the fixed-area inlet section exceeds that required in the combustion section.

  15. Inlet technology

    NASA Technical Reports Server (NTRS)

    Kutschenreuter, Paul

    1992-01-01

    At hypersonic flight Mach numbers, particularly above Mo = 10, the inlet compression process is no longer adiabatic, real gas chemistry takes on extra importance, and the combined effects of entropy layer and viscous effects lead to highly nonuniform flow profile characteristics at the combustor entrance. Under such conditions, traditional inlet efficiency parameters can be unnecessarily cumbersome and/or lacking in the ability to appropriately characterize the inlet flow and to provide insight into propulsion system performance. Recent experience suggests that the use of inlet entropy increases inlet efficiency in hypersonic applications.

  16. Generalized Charts for Determination of Pressure Drop of a High-speed Compressible Fluid in Heat-exchanger Passages I : Air Heated in Smooth Passages of Constant Area with Constant Wall Temperature

    NASA Technical Reports Server (NTRS)

    Valerino, Michael F

    1948-01-01

    In the present paper an analysis is made of the compressible-flow variations occurring in heat-exchanger passages. The results of the analysis describe the flow and heating characteristics for which specific flow passages can be treated as segments of generalized flow systems. The graphical representation of the flow variations in the generalized flow systems can then be utilized as working charts to determine directly the pressure changes occurring in any specific flow passage. On the basis of these results, working charts are constructed to handle the case of air heated at constant wall temperature under turbulent-flow conditions. A method is given of incorporating the effect on the heat-exchanger flow process of high temperature differential between passage wall and fluid as based on recent NACA experimental data. Good agreement is obtained between the experimental and the chart pressure-drop values for passage-wall average temperatures as high as 1752 degrees R (experimental limit) and for flow Mach numbers ranging from 0.32 to 1.00 (choke) at the passage exit.

  17. Analytical modeling of operating characteristics of premixing-prevaporizing fuel-air mixing passages. Volume 1: Analysis and results

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Chiappetta, L. M.; Edwards, D. E.; Mcvey, J. B.

    1982-01-01

    A model for predicting the distribution of liquid fuel droplets and fuel vapor in premixing-prevaporizing fuel-air mixing passages of the direct injection type is reported. This model consists of three computer programs; a calculation of the two dimensional or axisymmetric air flow field neglecting the effects of fuel; a calculation of the three dimensional fuel droplet trajectories and evaporation rates in a known, moving air flow; a calculation of fuel vapor diffusing into a moving three dimensional air flow with source terms dependent on the droplet evaporation rates. The fuel droplets are treated as individual particle classes each satisfying Newton's law, a heat transfer, and a mass transfer equation. This fuel droplet model treats multicomponent fuels and incorporates the physics required for the treatment of elastic droplet collisions, droplet shattering, droplet coalescence and droplet wall interactions. The vapor diffusion calculation treats three dimensional, gas phase, turbulent diffusion processes. The analysis includes a model for the autoignition of the fuel air mixture based upon the rate of formation of an important intermediate chemical species during the preignition period.

  18. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  19. Heat transfer technology for internal passages of air-cooled blades for heavy-duty gas turbines.

    PubMed

    Weigand, B; Semmler, K; von Wolfersdorf, J

    2001-05-01

    The present review paper, although far from being complete, aims to give an overview about the present state of the art in the field of heat transfer technology for internal cooling of gas turbine blades. After showing some typical modern cooled blades, the different methods to enhance heat transfer in the internal passages of air-cooled blades are discussed. The complicated flows occurring in bends are described in detail, because of their increasing importance for modern cooling designs. A short review about testing of cooling design elements is given, showing the interaction of the different cooling features as well. The special focus of the present review has been put on the cooling of blades for heavy-duty gas turbines, which show several differences compared to aero-engine blades. PMID:11460627

  20. Investigation at supersonic and subsonic Mach numbers of auxiliary inlets supplying secondary air flow to ejector exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Hearth, Donald P; Cubbison, Robert W

    1956-01-01

    The results indicated increases in auxiliary-inlet pressure recovery with increases in scoop height relative to the boundary-layer thickness. The pressure recovery increased at about the same rate as theoretically predicted for an inlet in a boundary layer having a one-seventh power profile, but was only about 0.68 to 0.75 of the theoretically obtainable values. Under some operating conditions, flow from the primary jet was exhausted through the auxiliary inlet. This phenomenon could be predicted from the ejector pumping characteristics.

  1. Effect of wall edge suction on the performance of a short annular dump diffuser with exit passage flow resistance

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1975-01-01

    The effect of wall edge suction on the performance of a short annular dump diffuser having a perforated plate flow resistance device in the exit passage was evaluated. Testing was conducted with air at near ambient pressure and temperature at inlet Mach numbers of 0.18 and 0.27 with suction rates up to 13.5 percent. Results show that pressure recovery downstream of the perforated plate was improved significantly by suction. Optimum performance was obtained with the flow resistance plate located at one inlet passage height downstream of the dump plane.

  2. Observational evidence of increased tropical rainfall due to air passage over forests

    NASA Astrophysics Data System (ADS)

    Spracklen, D. V.; Arnold, S. R.; Taylor, C.

    2012-12-01

    Vegetation affects precipitation patterns through altering moisture, energy and trace-gas fluxes between the surface and atmosphere. Climate model studies typically predict that large-scale deforestation results in reduced regional precipitation. Observational studies that have attempted to confirm these modelling predictions have yielded conflicting results likely due to the large temporal and spatial variability in precipitation masking land-cover induced changes. Here we explore the effect of tropical vegetation on precipitation using satellite remote sensed observations of precipitation from the tropical Rainfall Measuring Mission (TRMM) and other satellites combined (TRMM3B42) and leaf area index (LAI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). We combine these observations with a Lagrangian atmospheric transport model which we use to describe daily variability in tropical atmospheric transport patterns. We calculate cumulative exposure of air masses to tropical vegetation and explore relationships between this exposure and observed precipitation. We find that for large regions of the tropics air that has experienced a large cumulative exposure to vegetation in the preceding few days produces at least twice as much rain as air that has little exposure. To understand potential mechanisms behind this relationship we explore the atmospheric water budget along analysed back trajectories. We constrain the water budget using specific humidity from analysed meteorological fields combined with global land-surface model output of evapotranspiration (ET). We find that ET in air masses with large exposure to vegetation maintains atmospheric moisture sufficiently to explain observed relationships with precipitation. We combine these empirical relationships with a business-as-usual scenario of Amazonian deforestation to estimate impacts on future precipitation.

  3. Icing Characteristics and Anti-Icing Heat Requirements for Hollow and Ternally Modified Gas-Heated Inlet Guide Vanes

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H.; Bowden, Dean T.

    1950-01-01

    A two-dimensional inlet-guide-vane cascade was investigated to determine the effects of ice formations on the pressure losses across the guide vanes and to evaluate the heated gas flow and temperature required to prevent Icing at various conditions. A gas flow of approximately 0.4 percent of the inlet-air flow was necessary for anti-icing a hollow guide-vane stage at an inlet-gas temperature of 500 F under the following icing conditions: air velocity, 280 miles per hour; water content, 0.9 gram per cubic meter; and Inlet-air static temperature, 00 F. Also presented are the anti-icing gas flows required with modifications of the hollow Internal gas passage, which show heatinput savings greater than 50 percent.

  4. Observations of increased tropical rainfall preceded by air passage over forests.

    PubMed

    Spracklen, D V; Arnold, S R; Taylor, C M

    2012-09-13

    Vegetation affects precipitation patterns by mediating moisture, energy and trace-gas fluxes between the surface and atmosphere. When forests are replaced by pasture or crops, evapotranspiration of moisture from soil and vegetation is often diminished, leading to reduced atmospheric humidity and potentially suppressing precipitation. Climate models predict that large-scale tropical deforestation causes reduced regional precipitation, although the magnitude of the effect is model and resolution dependent. In contrast, observational studies have linked deforestation to increased precipitation locally but have been unable to explore the impact of large-scale deforestation. Here we use satellite remote-sensing data of tropical precipitation and vegetation, combined with simulated atmospheric transport patterns, to assess the pan-tropical effect of forests on tropical rainfall. We find that for more than 60 per cent of the tropical land surface (latitudes 30 degrees south to 30 degrees north), air that has passed over extensive vegetation in the preceding few days produces at least twice as much rain as air that has passed over little vegetation. We demonstrate that this empirical correlation is consistent with evapotranspiration maintaining atmospheric moisture in air that passes over extensive vegetation. We combine these empirical relationships with current trends of Amazonian deforestation to estimate reductions of 12 and 21 per cent in wet-season and dry-season precipitation respectively across the Amazon basin by 2050, due to less-efficient moisture recycling. Our observation-based results complement similar estimates from climate models, in which the physical mechanisms and feedbacks at work could be explored in more detail.

  5. Experimental study of the operating characteristics of premixing-prevaporizing fuel/air mixing passages

    NASA Technical Reports Server (NTRS)

    Rohy, D. A.; Meier, J. G.

    1983-01-01

    Fuel spray and air flow characteristics were determined using nonintrusive (optical) measurement techniques in a fuel preparation duct. A very detailed data set was obtained at high pressures (to 10 atm) and temperatures (to 750 K). The data will be used to calibrate an analytical model which will facilitate the design of a lean premixed prevaporized combustor. This combustor has potential for achieving low pollutant emissions and low levels of flame radiation and pattern factors conductive to improved durability and performance for a variety of fuels.

  6. Attic inlet technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising fuel costs have driven development of alternative heat sources for poultry growers. Attic inlets are employed to pre-heat incoming ventilation air to reduce fuel usage. Attic temperatures are at least 10 °F warmer than the outside temperature at least 80% of the time and offers a source of...

  7. Air control system providing healthful enclosed environment

    SciTech Connect

    Rhodes, J.A.

    1991-08-27

    This patent describes an environmentally controlled building. It comprises an outer wall defining an outer building perimeter and having at least one fenestration therethrough for passage of personnel; a roof supported by and cooperating with the outer wall to define a building exterior and interior; and an environmental control system for controlling the environment within the building interior, the environmental control system including a heating and air conditioning unit, having an air inlet, for controlling the temperature of air drawing into the air control system; a humidity control unit, having an inlet connected to the heating and air conditioning unit, for controlling the humidity of air within the air control system; an air blower for forcing air from the environmental control system into the building interior; and an air filtering system having an inlet connected to the humidity control unit and an outlet connected to the blower.

  8. 33 CFR 334.1250 - Carr Inlet, naval restricted areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... northwest by a line running from Green Point (at latitude 47°16′54″ N, longitude 122°41′33″ W) to Penrose Point; plus that portion of Pitt Passage extending from Carr Inlet to Pitt Island, and that portion of Hale Passage extending from Carr Inlet southeasterly to a line drawn perpendicular to the channel...

  9. 33 CFR 334.1250 - Carr Inlet, naval restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... northwest by a line running from Green Point (at latitude 47°16′54″ N, longitude 122°41′33″ W) to Penrose Point; plus that portion of Pitt Passage extending from Carr Inlet to Pitt Island, and that portion of Hale Passage extending from Carr Inlet southeasterly to a line drawn perpendicular to the channel...

  10. 33 CFR 334.1250 - Carr Inlet, naval restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... northwest by a line running from Green Point (at latitude 47°16′54″ N, longitude 122°41′33″ W) to Penrose Point; plus that portion of Pitt Passage extending from Carr Inlet to Pitt Island, and that portion of Hale Passage extending from Carr Inlet southeasterly to a line drawn perpendicular to the channel...

  11. 33 CFR 334.1250 - Carr Inlet, naval restricted areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... northwest by a line running from Green Point (at latitude 47°16′54″ N, longitude 122°41′33″ W) to Penrose Point; plus that portion of Pitt Passage extending from Carr Inlet to Pitt Island, and that portion of Hale Passage extending from Carr Inlet southeasterly to a line drawn perpendicular to the channel...

  12. 33 CFR 334.1250 - Carr Inlet, naval restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... northwest by a line running from Green Point (at latitude 47°16′54″ N, longitude 122°41′33″ W) to Penrose Point; plus that portion of Pitt Passage extending from Carr Inlet to Pitt Island, and that portion of Hale Passage extending from Carr Inlet southeasterly to a line drawn perpendicular to the channel...

  13. Anatomical Details of the Rabbit Nasal Passages and Their Implications in Breathing, Air Conditioning, and Olfaction.

    PubMed

    Xi, Jinxiang; Si, Xiuhua A; Kim, Jongwon; Zhang, Yu; Jacob, Richard E; Kabilan, Senthil; Corley, Richard A

    2016-07-01

    The rabbit is commonly used as a laboratory animal for inhalation toxicology tests and detail knowledge of the rabbit airway morphometry is needed for outcome analysis or theoretical modeling. The objective of this study is to quantify the morphometric dimension of the nasal airway of a New Zealand white rabbit and to relate the morphology and functions through analytical and computational methods. Images of high-resolution MRI scans of the rabbit were processed to measure the axial distribution of the cross-sectional areas, perimeter, and complexity level. The lateral recess, which has functions other than respiration or olfaction, was isolated from the nasal airway and its dimension was quantified separately. A low Reynolds number turbulence model was implemented to simulate the airflow, heat transfer, vapor transport, and wall shear stress. Results of this study provide detailed morphological information of the rabbit that can be used in the studies of olfaction, inhalation toxicology, drug delivery, and physiology-based pharmacokinetics modeling. For the first time, we reported a spiral nasal vestibule that splits into three paths leading to the dorsal meatus, maxilloturbinate, and ventral meatus, respectively. Both non-dimensional functional analysis and CFD simulations suggested that the airflow in the rabbit nose is laminar and the unsteady effect is only significantly during sniffing. Due to the large surface-to-volume ratio, the maxilloturbinate is highly effective in warming and moistening the inhaled air to body conditions. The unique anatomical structure and respiratory airflow pattern may have important implications for designing new odorant detectors or electronic noses. Anat Rec, 299:853-868, 2016. © 2016 Wiley Periodicals, Inc.

  14. Anatomical Details of the Rabbit Nasal Passages and Their Implications in Breathing, Air Conditioning, and Olfaction.

    PubMed

    Xi, Jinxiang; Si, Xiuhua A; Kim, Jongwon; Zhang, Yu; Jacob, Richard E; Kabilan, Senthil; Corley, Richard A

    2016-07-01

    The rabbit is commonly used as a laboratory animal for inhalation toxicology tests and detail knowledge of the rabbit airway morphometry is needed for outcome analysis or theoretical modeling. The objective of this study is to quantify the morphometric dimension of the nasal airway of a New Zealand white rabbit and to relate the morphology and functions through analytical and computational methods. Images of high-resolution MRI scans of the rabbit were processed to measure the axial distribution of the cross-sectional areas, perimeter, and complexity level. The lateral recess, which has functions other than respiration or olfaction, was isolated from the nasal airway and its dimension was quantified separately. A low Reynolds number turbulence model was implemented to simulate the airflow, heat transfer, vapor transport, and wall shear stress. Results of this study provide detailed morphological information of the rabbit that can be used in the studies of olfaction, inhalation toxicology, drug delivery, and physiology-based pharmacokinetics modeling. For the first time, we reported a spiral nasal vestibule that splits into three paths leading to the dorsal meatus, maxilloturbinate, and ventral meatus, respectively. Both non-dimensional functional analysis and CFD simulations suggested that the airflow in the rabbit nose is laminar and the unsteady effect is only significantly during sniffing. Due to the large surface-to-volume ratio, the maxilloturbinate is highly effective in warming and moistening the inhaled air to body conditions. The unique anatomical structure and respiratory airflow pattern may have important implications for designing new odorant detectors or electronic noses. Anat Rec, 299:853-868, 2016. © 2016 Wiley Periodicals, Inc. PMID:27145450

  15. Investigation of the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot using simultaneous 2-Colour-TIRE-LII

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A.; Suntz, R.; Bockhorn, H.

    2015-05-01

    The response of non-premixed swirling flames to acoustic perturbations at various frequencies (0-350 Hz) and the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot are investigated. The results obtained from these flames are of special interest for "rich-quenched-lean" (RQL) combustion concepts applied in modern gas turbines. In RQL combustion, the fuel is initially oxidized by air under fuel-rich conditions in a first stage followed by a fuel-lean combustion step in a second stage. To mimic soot formation and oxidation in RQL combustion, soot particle measurements in highly turbulent, non-premixed swirling natural gas/ethylene-confined flames at imposed air inlet velocity oscillations are performed using simultaneous 2-Colour-Time-Resolved-Laser-Induced Incandescence (simultaneous 2-Colour-TIRE-LII). The latter technique is combined with line-of-sight averaged OH*-chemiluminescence imaging, measurements of the velocity field by high-speed particle imaging velocimetry under reactive combustion conditions and measurements of the mean temperature field obtained by a thermocouple. A natural gas/ethylene mixture (Φ = 1.56, 42 % C2H4, 58 % natural gas, P th = 17.6 kW at atmospheric pressure) is used as a fuel, which is oxidized by air under fuel-rich conditions in the first combustion chamber.

  16. Experimental Investigation of an Air-Cooled Turbine Operating in a Turbojet Engine at Turbine Inlet Temperatures up to 2500 F

    NASA Technical Reports Server (NTRS)

    Cochran, Reeves P.; Dengler, Robert P.

    1961-01-01

    An experimental investigation was made of an air-cooled turbine at average turbine inlet temperatures up to 2500 F. A modified production-model 12-stage axial-flow-compressor turbojet engine operating in a static sea-level stand was used as the test vehicle. The modifications to the engine consisted of the substitution of special combustor and turbine assemblies and double-walled exhaust ducting for the standard parts of the engine. All of these special parts were air-cooled to withstand the high operating temperatures of the investigation. The air-cooled turbine stator and rotor blades were of the corrugated-insert type. Leading-edge tip caps were installed on the rotor blades to improve leading-edge cooling by diverting the discharge of coolant to regions of lower gas pressure toward the trailing edge of the blade tip. Caps varying in length from 0.15- to 0.55-chord length were used in an attempt to determine the optimum cap length for this blade. The engine was operated over a range of average turbine inlet temperatures from about 1600 to about 2500 F, and a range of average coolant-flow ratios of 0.012 to 0.065. Temperatures of the air-cooled turbine rotor blades were measured at all test conditions by the use of thermocouples and temperature-indicating paints. The results of the investigation indicated that this type of blade is feasible for operation in turbojet engines at the average turbine inlet temperatures and stress levels tested(maximums of 2500 F and 24,000 psi, respectively). An average one-third-span blade temperature of 1300 F could be maintained on 0.35-chord tip cap blades with an average coolant-flow ratio of about 0.022 when the average turbine inlet temperature was 2500 F and cooling-air temperature was about 260 F. All of the leading-edge tip cap lengths improved the cooling of the leading-edge region of the blades, particularly at low average coolant-flow ratios. At high gas temperatures, such parts as the turbine stator and the combustor

  17. Low flight speed acoustic results for a supersonic inlet with auxiliary inlet doors

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Glaser, F. W.; Lucas, J. G.

    1982-01-01

    A model supersonic inlet with auxiliary inlet doors and bounday layer bleeds was acoustically tested in simulated low speed flight up to Mach 0.2 in the NASA Lewis 9x15 Anechoic Wind Tunnel and statically in the NASA Lewis Anechoic Chamber. A JT8D refan model was used as the noise source. Data were also taken for a CTOL inlet and for an annular inlet with simulated centerbody support struts. Inlet operation with open auxiliary doors increased the blade passage tone by about 10 dB relative to the closed door configuration although noise radiation was primarily through the main inlet rather than the doors. Numerous strong spikes in the noise spectra were associated with the bleed system, and were strongly affected by the centerbody location. The supersonic inlet appeared to suppress multiple pure tone (MPT) generation at the fan source. Inlet length and the presence of support struts were shown not to cause this MPT suppression.

  18. Discharge coefficients of cooling holes with radiused and chamfered inlets

    NASA Astrophysics Data System (ADS)

    Hay, N.; Spencer, A.

    1991-06-01

    The flow of cooling air within the internal passages of gas turbines is controlled and metered using holes in disks and casings. The effects of inlet radiusing and chamfering of these holes on the discharge coefficient are discussed. Experimental results for a range of radiusing and chamfering ratios for holes of different length to diameter ratios are presented, covering the range of pressure ratios of practical interest. The results indicate that radiusing and chamfering are both beneficial in increasing the discharge coefficient. Increases of 10-30 percent are possible. Chamfered holes give the more desirable performance characteristics in addition to being easier to produce than radiused holes.

  19. Correlation of Forced-convection Heat-transfer Data for Air Flowing in Smooth Platinum Tube with Long-approach Entrance at High Surface and Inlet-air Temperatures

    NASA Technical Reports Server (NTRS)

    Desmon, Leland G; Sams, Eldon W

    1950-01-01

    A heat-transfer investigation was conducted with air in an electrically heated platinum tube with long-approach entrance, inside diameter of 0.525 inch, and effective heat-transfer length of 24 inches over ranges of Reynolds number up to 320,000, average inside-tube-wall temperature up to 3053 degrees R, and inlet-air temperature up to 1165 degrees R. Correlation of data by the conventional Nusselt relation resulted in separation of data with tube-wall temperature. Good correlation was obtained, however, by use of a modified Reynolds number.

  20. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  1. CFD Analysis to Study Effect of Circular Vortex Generator Placed in Inlet Section to Investigate Heat Transfer Aspects of Solar Air Heater

    PubMed Central

    Gawande, Vipin B.; Dhoble, A. S.; Zodpe, D. B.

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251

  2. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater.

    PubMed

    Gawande, Vipin B; Dhoble, A S; Zodpe, D B

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251

  3. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater.

    PubMed

    Gawande, Vipin B; Dhoble, A S; Zodpe, D B

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.

  4. Effect of inlet disturbances on fan inlet noise during a static test

    NASA Technical Reports Server (NTRS)

    Bekofske, K. L.; Sheer, R. E., Jr.; Wang, J. C. F.

    1977-01-01

    Measurements of fan rotor inlet noise taken during static test situations are at variance with aircraft engine flight data. In particular, static tests generally yield a significantly higher tone at blade passage frequency than that measured during flight. To explain this discrepancy, the extent of the influence of inlet ground vortices and large-scale inlet turbulence on the forward-radiated fan noise measured at a static test facility was investigated. While such inlet disturbances were generated intentionally in an anechoic test chamber, far-field acoustic measurements and inlet flow-field hot-film mappings of a fan rotor were obtained. Experimental results indicate that the acoustic effect of such disturbances appears to be less severe for supersonic than for subsonic tip speeds. Further, a reverse flow that occurs on the exterior cowl in static test facilities appears to be an additional prime candidate for creating inlet disturbances and causing variance between flight and static acoustic data.

  5. Wind tunnel tests of a zero length, slotted-lip engine air inlet for a fixed nacelle V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.; Beck, W. E., Jr.; Glasgow, E. R.

    1982-01-01

    Zero length, slotted lip inlet performance and associated fan blade stresses were determined during model tests using a 20 inch diameter fan simulator in the NASA-LeRC 9 by 15 foot low speed wind tunnel. The model configuration variables consisted of inlet contraction ratio, slot width, circumferential extent of slot fillers, and length of a constant area section between the inlet throat and fan face. The inlet performance was dependent on slot gap width and relatively independent of inlet throat/fan face spacer length and slot flow blockage created by 90 degree slot fillers. Optimum performance was obtained at a slot gap width of 0.36 inch. The zero length, slotted lip inlet satisfied all critical low speed inlet operating requirements for fixed horizontal nacelles subsonic V/STOL aircraft.

  6. 40 CFR 89.328 - Inlet and exhaust restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engine with an air inlet system presenting an air inlet restriction within 5 percent of the upper limit at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system... Section 89.328 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  7. 40 CFR 89.328 - Inlet and exhaust restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engine with an air inlet system presenting an air inlet restriction within 5 percent of the upper limit at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system... Section 89.328 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  8. 40 CFR 89.328 - Inlet and exhaust restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engine with an air inlet system presenting an air inlet restriction within 5 percent of the upper limit at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system... Section 89.328 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  9. Vapor passage fuel blockage removal

    SciTech Connect

    Faeth, W.P.

    1993-08-31

    In a method of making a system for dispensing gasoline fuel into a vehicle fuel tank, said system is described comprising a dispenser pump, a nozzle, a fuel hose connecting said dispenser pump to said nozzle for dispensing said fuel from said pump to said tank, a vapor recovery hose surrounding said fuel hose for conducting fuel vapors from the fuel tank to a storage reservoir, said fuel hose and vapor recovery hose adapted to form at least one looped low portion during dispensing of fuel into a fuel tank whereat condensed fuel vapors tend to collect in said vapor recovery passage, and a venturi means having inlet means disposed in said vapor recovery passage so as to be at said one looped low portion during said dispensing of fuel, said venturi means being so arranged that said fuel being dispensed from said pump to said tank will flow through said venturi means and create a suction at said inlet means, the improvement comprising the step of forming said inlet means to comprise a plurality of separate inlets disposed in a spaced apart relation.

  10. Actuated Attic Inlets: A Progress Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attic inlets are being widely employed by poultry growers to alleviate high fuel costs during the brooding period. Pre-heated inlet air can reduce fuel usage and estimates for fuel savings were derived from field reports. Fuel usage was estimated for both large and small bird flocks for one year’...

  11. Sample inlet tube for ion source

    DOEpatents

    Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

    2002-09-24

    An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

  12. Growth and differentiation of primary and passaged equine bronchial epithelial cells under conventional and air-liquid-interface culture conditions

    PubMed Central

    2011-01-01

    Background Horses develop recurrent airway obstruction (RAO) that resembles human bronchial asthma. Differentiated primary equine bronchial epithelial cells (EBEC) in culture that closely mimic the airway cells in vivo would be useful to investigate the contribution of bronchial epithelium in inflammation of airway diseases. However, because isolation and characterization of EBEC cultures has been limited, we modified and optimized techniques of generating and culturing EBECs from healthy horses to mimic in vivo conditions. Results Large numbers of EBEC were obtained by trypsin digestion and successfully grown for up to 2 passages with or without serum. However, serum or ultroser G proved to be essential for EBEC differentiation on membrane inserts at ALI. A pseudo-stratified muco-ciliary epithelium with basal cells was observed at differentiation. Further, transepithelial resistance (TEER) was more consistent and higher in P1 cultures compared to P0 cultures while ciliation was delayed in P1 cultures. Conclusions This study provides an efficient method for obtaining a high-yield of EBECs and for generating highly differentiated cultures. These EBEC cultures can be used to study the formation of tight junction or to identify epithelial-derived inflammatory factors that contribute to lung diseases such as asthma. PMID:21649893

  13. Pilot Study of the Effects of Simulated Turbine Passage Pressure on Juvenile Chinook Salmon Acclimated with Access to Air at Absolute Pressures Greater than Atmospheric

    SciTech Connect

    Carlson, Thomas J.; Abernethy, Cary S.

    2005-04-28

    The impacts of pressure on juvenile salmon who pass through the turbines of hydroelectric dams while migrating downstream on the Columbia and Snake rivers has not been well understood, especially as these impacts relate to injury to the fish's swim bladder. The laboratory studies described here were conducted by Pacific Northwest National Laboratory for the US Army Corps of Engineers Portland District at PNNL's fisheries research laboratories in 2004 to investigate the impacts of simulated turbine passage pressure on fish permitted to achieve neutral buoyancy at pressures corresponding to depths at which they are typically observed during downstream migration. Two sizes of juvenile Chinook salmon were tested, 80-100mm and 125-145mm total length. Test fish were acclimated for 22 to 24 hours in hyperbaric chambers at pressures simulating depths of 15, 30, or 60 ft, with access to a large air bubble. High rates of deflated swim bladders and mortality were observed. Our results while in conclusive show that juvenile salmon are capable of drawing additional air into their swimbladder to compensate for the excess mass of implanted telemetry devices. However they may pay a price in terms of increased susceptibility to injury, predation, and death for this additional air.

  14. Supersonic inlet contour interpolation

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E.; Latham, E. A.

    1975-01-01

    A method for designing supersonic inlet contours is described which consists in the interpolation of the contours of two known inlets designed for different Mach numbers, thereby determining the contours for a third inlet at an intermediate design Mach number. Several similar axisymmetric inlet contours were interpolated from known inlets with design Mach numbers ranging from 2.16 to 4.0 and with design Mach numbers differing by as much as 1.0. The flowfields were calculated according to Sorensen's (1965) computer program. Shockwave structure and pressure distribution characteristics are shown for the interpolated inlets. The validity of the interpolation is demonstrated by comparing the plots of the flowfield properties across the throat station of the interpolated inlet with the known inlets which were designed iteratively. It seems possible to write a computer program so that a matrix of known inlet contours can be interpolated.

  15. Performance study for inlet installations

    NASA Technical Reports Server (NTRS)

    Bingaman, Donald C.

    1992-01-01

    A conceptual design trade study was conducted by McDonnell Aircraft Company (MCAIR) and NASA LARC PAB to determine the impact of inlet design features incorporated for reduced detectability on inlet performance, weight, and cost, for both fighter and attack-type aircraft. Quality Function Deployment (QFD) techniques were used to prioritize trade study issues, and select 'best' air induction system configurations for each of two notional aircraft, the Multi-Role Fighter (MRF) and the Advanced Medium Attack (AMA) bomber. Database deficiencies discovered in the trade study process were identified, and technology roadmaps were developed to address these deficiencies. Finally, two high speed inlet wind tunnel model concepts were developed for follow-on wind tunnel investigations.

  16. Tests of Hypersonic Inlet Oscillatory Flows in a Shock Tunnel

    NASA Astrophysics Data System (ADS)

    Li, Zhufei; Gao, Wenzhi; Jiang, Hongliang; Yang, Jiming

    For efficient operation, hypersonic air breathing engine requires the inlet to operate in a starting mode [1]. High backpressure induced by the combustion may cause the inlet to unstart in the engine actual operation [2].When unstarted, shock wave oscillations are typically observed in the inlet, a phenomenon known as buzz.

  17. 40 CFR 90.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must....407 Section 90.407 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  18. Performance of passively automatic ventilation inlets for agricultural buildings

    SciTech Connect

    Kaiser, K.J.; Hosni, M.H.; Heber, A.J.

    1995-08-01

    Good air distribution is needed in livestock buildings to remove moisture and pollutants without chilling animals during cold weather and to assist in evaporative and convective cooling during warm weather. Passively automatic inlets are intended to provide nearly constant air velocity into buildings as ventilation airflow rates are automatically adjusted. The airflow rate, average exit air velocity, and velocity profile of eight commercially available ceiling and wall ventilation inlets were tested under various configurations and static pressures. Only one inlet supplied the airflow rate claimed by the manufacturer, and only one wall inlet developed a nearly constant exit air velocity.

  19. Cloud-Droplet Ingestion in Engine Inlets with Inlet Velocity Ratios of 1.0 and 0.7

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J

    1957-01-01

    The paths of cloud droplets into two engine inlets have been calculated for a wide range of meteorological and flight conditions. The amount of water in droplet form ingested by the inlets and the amount and distribution of water impinging on the inlet walls are obtained from these droplet-trajectory calculations. In both types of inlet, a prolate ellipsoid of revolution represents either part or all of the forebody at the center of an annular inlet to an engine. The configurations can also represent a fuselage of an airplane with side ram-scoop inlets. The studies were made at an angle of attack of 0 degree. The principal difference between the two inlets studied is that the inlet-air velocity of one is 0.7 that of the other. The studies of the two velocity ratios lead to some important general concepts of water ingestion in inlets.

  20. Interactive calculation procedures for mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli

    1983-01-01

    The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.

  1. Tailoring Inlet Flow to Enable High Accuracy Compressor Performance Measurements

    NASA Astrophysics Data System (ADS)

    Brossman, John R.; Smith, Natalie R.; Talalayev, Anton; Key, Nicole L.

    2011-12-01

    To accomplish the research goals of capturing the effects of blade row interactions on compressor performance, small changes in performance must be measurable. This also requires axi-symmetric flow so that measuring one passage accurately captures the phenomena occurring in all passages. Thus, uniform inlet flow is a necessity. The original front-driven compressor had non-uniform temperature at the inlet. Additional challenges in controlling shaft speed to within tight tolerances were associated with the use of a viscous fluid coupling. Thus, a new electric motor, with variable frequency drive speed control was implemented. To address the issues with the inlet flow, the compressor is now driven from the rear resulting in improved inlet flow uniformity. This paper presents the design choices of the new layout in addition to the preliminary performance data of the compressor and an uncertainty analysis.

  2. Investigation of the air-flow regulation characteristics of a translating-spike inlet with two oblique shocks from Mach 1.6 to 2.0

    NASA Technical Reports Server (NTRS)

    Nettles, J C

    1956-01-01

    The pressure recovery of an axially symmetric translating-spike inlet was essentially the same as for a single cone with the same total angle. In order to match a turbojet engine over the Mach range of 1.6 to 2.0, the spike translation must be larger than it is for a single cone.

  3. A comparison of predicted and measured inlet distortion flows in a subsonic axial inlet flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1992-01-01

    Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. These Laser Anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A detailed comparison in the rotor relative reference frame between a Navier-Stokes solver and the measured experimental results showed good agreement between the predicted and measured flows. A primary flow is defined in the rotor and deviations and the computed predictions is made to assess the development of a passage vortex due to the distortion of the inlet flow. Computer predictions indicate that a distorted inlet profile has a minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.

  4. 40 CFR 91.407 - Engine inlet and exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (b) The air inlet filter system and exhaust muffler system combination used on the test engine must... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine inlet and exhaust systems. 91.407 Section 91.407 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  5. Attic Inlet Technology Update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attic inlets are a popular addition for new construction and energy saving retrofits. Proper management of attic inlets is necessary to get maximum benefits from the system and reduce the likelihood of moisture-related problems in the structure. Solar energy levels were determined for the continen...

  6. Supersonic Elliptical Ramp Inlet

    NASA Technical Reports Server (NTRS)

    Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)

    2016-01-01

    A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.

  7. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  8. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  9. Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor. Ph.D. Thesis - Toledo Univ., OH

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1991-01-01

    Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. Laser anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A primary flow is defined in the rotor and deviations from this primary flow for each inlet flow condition identified. A comparison between the two flow deviations is made to assess the development of a passage vortex due to the distortion of the inlet flow. A comparison of experimental results with computational predictions from a Navier-Stokes solver showed good agreement between predicted and measured flow. Measured results indicate that a distorted inlet profile has minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.

  10. 40 CFR 89.328 - Inlet and exhaust restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Inlet and exhaust restrictions. 89.328 Section 89.328 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.328 Inlet and...

  11. 40 CFR 89.328 - Inlet and exhaust restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Inlet and exhaust restrictions. 89.328 Section 89.328 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.328 Inlet and...

  12. Improving commercial broiler attic inlet ventilation thorugh CFD analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of solar heated attic air is an area of increasing interest in commercial poultry production. Attic inlets satisfy the demand for alternative heating while being simple to implement in an existing poultry house. A number of demonstration projects have suggested that attic inlets may decrease...

  13. Perforations in jet engine supersonic inlet increase shock stability

    NASA Technical Reports Server (NTRS)

    Keppler, C. R.

    1966-01-01

    Modification of a conventional jet engine internal compression supersonic inlet results in increased shock stability and thus, engine instantaneous response to changes in inlet air properties. This technique provides a large amount of bleed near the maximum pressure recovery at the expense of minor bleed flow during critical operation.

  14. Inlet Performance Characteristics from Wind-Tunnel Tests of a 0.10-Scale Air-Induction System Model of the YF-108A Airplane at Mach Numbers of 2.50, 2.76, and 3.00

    NASA Technical Reports Server (NTRS)

    Blackaby, James R.; Lyman, E. Gene; Altermann, John A., III

    1959-01-01

    Inlet-performance and external-drag-coefficient characteristics are presented without analysis. Effects are shown of variations of fuselage boundary-layer diverter profile, bleed-surface porosity, bleed-exit area, and inlet ramp, and lip angle.

  15. Heat transfer in serpentine passages with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.

    1984-01-01

    Local heat transfer rates and overall pressure losses were determined for serpentine passages of square cross section. The flow entered an inlet leg, turned 180 deg and then passed through an outlet leg. Results were obtained for a passage with smooth walls for three different bend geometries and the effect of turbulence promoters was investigated. Turbulence promoters between 0.6 and 15% of the passage height were tested. Local heat transfer rates are determined from thermocouple measurements on a thin electrically heated Inconel foil and pressure drop is measured along the flow path.

  16. CFD numerical simulation of Archimedes spiral inlet hydrocyclone

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wei, L.; Chang, B. H.; Xing, J. L.; Jia, K.

    2013-12-01

    For traditional linear type inlet, hydrocyclone has an unstable inner field, high turbulence intensity and low separation efficiency, this paper proposes an inlet mode that uses an Archimedes spiral hydrocyclone. A Mixture liquid-solid multiphase flow model combined with the kinetic theory of granular flow was used to simulate the high concentration water-sand-air three-phase flow in a hydrocyclone. We analyzed the pressure field, velocity field and turbulent kinetic energy and compared with traditional linear type inlet hydrocyclone inner field. The results show that Archimedes spiral inlet hydrocyclone's pressure field is evenly distributed. The Archimedes spiral inlet hydrocyclone can guide and accelerate the mixture flow and produce small forced vortex and less short circuit flow. The particles easily go to the outer vortex and are separated. The Archimedes spiral inlet hydrocyclone has effectively improved the stability of inner flow field and separation efficiency.

  17. Hypersonic Inlet for a Laser Powered Propulsion System

    NASA Astrophysics Data System (ADS)

    Harrland, Alan; Doolan, Con; Wheatley, Vincent; Froning, Dave

    2011-11-01

    Propulsion within the lightcraft concept is produced via laser induced detonation of an incoming hypersonic air stream. This process requires suitable engine configurations that offer good performance over all flight speeds and angles of attack to ensure the required thrust is maintained. Stream traced hypersonic inlets have demonstrated the required performance in conventional hydrocarbon fuelled scramjet engines, and has been applied to the laser powered lightcraft vehicle. This paper will outline the current methodology employed in the inlet design, with a particular focus on the performance of the lightcraft inlet at angles of attack. Fully three-dimensional turbulent computational fluid dynamics simulations have been performed on a variety of inlet configurations. The performance of the lightcraft inlets have been evaluated at differing angles of attack. An idealized laser detonation simulation has also been performed to validate that the lightcraft inlet does not unstart during the laser powered propulsion cycle.

  18. Inlet nozzle assembly

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  19. Inlet nozzle assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  20. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    SciTech Connect

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the

  1. Utilization of a multimembrane inlet and a cyclic sudden sampling introduction mode in membrane inlet mass spectrometry.

    PubMed

    Viktorova, O S; Kogan, V T; Manninen, S A; Kotiaho, T; Ketola, R A; Dubenskii, B M; Parinov, S P; Smirnov, O V

    2004-06-01

    Sudden sampling introduction into a membrane inlet mass spectrometer (MIMS) considerably improves the selectivity of the membrane inlet and is therefore applicable even for compounds with low permeabilities through a silicone membrane. In this study the basics of cyclic non-steady-state sudden increase sample injection were studied using a three-membrane inlet and a portable sector double-focusing mass spectrometer. The operational parameters of the inlet system providing the most efficient enrichment of volatile organic compounds (VOCs) in air were defined. Simulation of the diffusion process following sudden sample introduction into the three-membrane inlet was also carried out. Experimental testing of the three-membrane inlet system with the cyclic sudden sample injection mode for benzene, toluene, styrene, and xylene in air was performed. The simulation and the experimental results demonstrated that, when this mode is used, the VOCs/nitrogen relative enrichment factor of samples introduced into the mass spectrometer equipped with a three-membrane inlet is increased by a factor of approximately 10(5) compared with a direct introduction method. This effect may be used to decrease detection limits of compounds obtained with mass spectrometry to decrease matrix flow through the inlet at the same detection limits.

  2. Inlet design studies for a Mach 2.2 advanced supersonic cruise vehicle

    NASA Technical Reports Server (NTRS)

    Shimabukuro, K. M.; Welge, H. R.; Lee, A. C.

    1979-01-01

    Various inlet-engine combinations have been studied to find a preferred inlet concept for integration with an advanced technology Mach 2.2 cruise vehicle having a cruise lift-to-drag ratio of 9.6. For the purposes of this study, the range capability for a fixed takeoff gross weight was used to assess the various inlet-engine combinations. Inlet concept selection studies are described which indicated that an axisymmetric, mixed compression inlet was preferred. This study considered four inlet and three engine cycle combinations where the engine airflow was tailored to the inlet airflow delivery capability. Detailed design studies of two mixed compression inlet types are discussed. These were a translating centerbody inlet and a collapsing centerbody bicone inlet. The aerodynamic and mechanical design of each inlet is described. These inlets were also matched to different engine cycles tailored to the inlet airflow capability. The range increments favored the bicone inlet concept primarily because of lighter weight, reduced bleed air, and greater transonic airflow/thrust capability.

  3. High-resolution liquid-crystal heat-transfer measurements on the endwall of a turbine passage with variations in Reynolds number

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.

    1988-01-01

    Local heat-transfer coefficients were experimentally mapped on the end-wall surface of a three-times turbine vane passage in a static, single-row cascade operated with room-temperature inlet air over a range of Reynolds numbers. The test surface was a composite of commercially available materials: a Mylar sheet with a layer of cholesteric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat-transfer coefficients were mapped over the end-wall surface. The local heat-transfer coefficients (expressed as nondimensional Stanton number) are presented for inlet Reynolds numbers (based on vane axial chord) from 0.83 x 10(5) to 3.97 x 10(5).

  4. High-resolution liquid-crystal heat-transfer measurements on the end wall of a turbine passage with variations in Reynolds number

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.; Russell, Louis M.

    1988-01-01

    Local heat-transfer coefficients were experimentally mapped on the end-wall surface of a three-times turbine vane passage in a static, single-row cascade operated with room-temperature inlet air over a range of Reynolds numbers. The test surface was a composite of commercially available materials: a Mylar sheet with a layer of cholesteric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat-transfer coefficients were mapped over the end-wall surface. The local heat-transfer coefficients (expressed as nondimensional Stanton number) are presented for inlet Reynolds numbers (based on vane axial chord) from 0.83 x 10(5) to 3.97 x 10(5).

  5. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  6. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  7. Improved particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, G.

    1987-03-23

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented apertures of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind, the relatively larger particles and passes through two elongate apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. By appropriate selection of dimensions and the number of inlet apertures air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the inlet apertures, to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks. 6 figs.

  8. Particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, Gerhard

    1988-08-16

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.

  9. A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  10. Experimental Investigation of Actuators for Flow Control in Inlet Ducts

    NASA Astrophysics Data System (ADS)

    Vaccaro, John; Elimelech, Yossef; Amitay, Michael

    2010-11-01

    Attractive to aircraft designers are compact inlets, which implement curved flow paths to the compressor face. These curved flow paths could be employed for multiple reasons. One of which is to connect the air intake to the engine embedded in the aircraft body. A compromise must be made between the compactness of the inlet and its aerodynamic performance. The aerodynamic purpose of inlets is to decelerate the oncoming flow before reaching the engine while minimizing total pressure loss, unsteadiness and distortion. Low length-to-diameter ratio inlets have a high degree of curvature, which inevitably causes flow separation and secondary flows. Currently, the length of the propulsion system is constraining the overall size of Unmanned Air Vehicles (UAVs), thus, smaller more efficient aircrafts could be realized if the propulsion system could be shortened. Therefore, active flow control is studied in a compact (L/D=1.5) inlet to improve performance metrics. Actuation from a spanwise varying coanda type ejector actuator and a hybrid coanda type ejector / vortex generator jet actuator is investigated. Special attention will be given to the pressure recovery at the AIP along with unsteady pressure signatures along the inlet surface and at the AIP.

  11. The design of an air-cooled metallic high temperature radial turbine

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.; Roelke, Richard J.

    1988-01-01

    Recent trends in small advanced gas turbine engines call for higher turbine inlet temperatures. Advances in radial turbine technology have opened the way for a cooled metallic radial turbine capable of withstanding turbine inlet temperatures of 2500 F while meeting the challenge of high efficiency in this small flow size range. In response to this need, a small air-cooled radial turbine has been designed utilizing internal blade coolant passages. The coolant flow passage design is uniquely tailored to simultaneously meet rotor cooling needs and rotor fabrication constraints. The rotor flow-path design seeks to realize improved aerodynamic blade loading characteristics and high efficiency while satisfying rotor life requirements. An up-scaled version of the final engine rotor is currently under fabrication and, after instrumentation, will be tested in the warm turbine test facility at the NASA Lewis Research Center.

  12. The Effect of the Inlet Mach Number and Inlet-boundary-layer Thickness on the Performance of a 23 Degree Conical-diffuser-tail-pipe Combination

    NASA Technical Reports Server (NTRS)

    Persh, Jerome

    1950-01-01

    An investigation was conducted to determine the effect of the inlet Mach number and entrance-boundary-layer thickness on the performance of a 23 degree 21-inch conical-diffuser - tail-pipe combination with a 2:1 area ratio. The air flows used in this investigation covered an inlet Mach number range from 0.17 to 0.89 and corresponding Reynolds numbers of 1,700,000 to 7,070,000. Results are reported for two inlet-boundary-layer thicknesses. Over the entire range of flows, the mean value of the inlet displacement thickness is about 0.034 inch for the thinner inlet boundary layer and about 0.170 inch for the case of the thicker inlet boundary layer. The performance of the diffuser - tail-pipe combination is presented together with examples of longitudinal static-pressure distribution and the results of boundary-layer pressure surveys made at six points along the diffuser wall. The results indicated a progressive diminution of the static-pressure recovery and a steady increase in the total-pressure losses as the inlet Mach number was increased for both inlet-boundary-layer thicknesses. The ratio of actual static-pressure rise to that theoretically possible was much less and the total-pressure losses were greater for the case of the thicker inlet boundary layer throughout the speed range investigated. With the thinner inlet boundary layer, flow separation occurred at the diffuser exit at all inlet Mach numbers.Unseparated flow alternating with separated flow was observed near the inlet at the higher velocities. For the case of the thicker inlet boundary layer, the origin of the separated region occurred in the vicinity of the inlet-duct-diffuser junction section at all Mach numbers.

  13. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  14. Passage Retrieval: A Probabilistic Technique.

    ERIC Educational Resources Information Center

    Melucci, Massimo

    1998-01-01

    Presents a probabilistic technique to retrieve passages from texts having a large size or heterogeneous semantic content. Results of experiments comparing the probabilistic technique to one based on a text segmentation algorithm revealed that the passage size affects passage retrieval performance; text organization and query generality may have an…

  15. Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage - Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes

    NASA Astrophysics Data System (ADS)

    Wright, C. J.; Hindley, N. P.; Moss, A. C.; Mitchell, N. J.

    2015-07-01

    Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely-used gravity wave resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (MLS-Aura, HIRDLS and SABER), the COSMIC GPS-RO constellation, a ground-based meteor radar, the AIRS infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity wave packets from the lower troposphere to the edge of the lower thermosphere. Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically > 0.80 between any instrument pair. Meteor-radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other datasets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Except in spring, we see little dissipation of GWPE throughout the stratosphere and lower mesosphere. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal cycle. GWPE and λz exhibit strong correlations with the stratospheric winds, but not with local surface winds. Our results provide guidance for interpretation and intercomparison of such datasets in their full

  16. Shock position sensor for supersonic inlets. [measuring pressure in the throat of a supersonic inlet

    NASA Technical Reports Server (NTRS)

    Dustin, M. O. (Inventor)

    1975-01-01

    Static pressure taps or ports are provided in the throat of a supersonic inlet, and signals indicative of the pressure at each of the ports is fed to respective comparators. Means are also provided for directing a signal indicative of the total throat pressure to the comparators. A periodic signal is superimposed on the total throat pressure so that the signal from the static pressure tabs is compared to a varying scan signal rather than to total throat pressure only. This type of comparison causes each comparator to provide a pulse width modulated output which may vary from 0% 'time on' to 100% 'time on'. The pulse width modulated outputs of the comparators are summed, filtered, and directed to a controller which operates a bypass valve such as a door whereby air is dumped from the inlet to prevent the shock wave from being expelled out the front.

  17. A multiobjective shape optimization study for a subsonic submerged inlet

    NASA Astrophysics Data System (ADS)

    Taskinoglu, Ezgi S.

    The purpose of the present work is to summarize the findings of a multiobjective shape optimization study conducted for a subsonic submerged air vehicle inlet. The objective functions of the optimization problem are distortion and swirl indices defined by the distribution of flow parameters over the exit cross-section of the inlet. The geometry alteration is performed by placing a protrusion in the shape of a fin on the baseline inlet surface. Thus, the design variables of the optimization problem are chosen to be the geometrical parameters defining the fin protrusion; namely fin height, length and incidence angle. The Trade Off (also known as epsilon-constraint) method is employed for finding the Pareto optimal set formed by the nondominated solutions of the feasible design space. Since the flow domain solution is required for every step along the line search, an automated optimization loop is constructed by integrating the optimizer with a surface modeler, a mesh generator and a flow solver through which the flow parameters over the compressor face are computed. In addition, the trade study for fin protrusion, the analyses and the comparison of the baseline and Pareto optimal solutions are presented and observations concerning grid resolution and convergence behaviour are discussed. The results display an irregular and discontinuous Pareto optimal set. Optimum inlet designs are scattered in two regions from which one representative inlet design is chosen and analyzed. As a result, it is concluded that an inlet designer has two options within the framework of this optimization study: an inlet design with high swirl but low distortion or an inlet design with low swirl but higher distortion.

  18. DESIGN AND PERFORMANCE OF A LOW FLOW RATE INLET

    EPA Science Inventory

    Several ambient air samplers that have been designated by the U. S. EPA as Federal Reference Methods (FRMs) for measuring particulate matter nominally less than 10 um (PM10) include the use of a particular inlet design that aspirates particulate matter from the atmosphere at 1...

  19. Experimental investigation of cavitation in pump inlet

    NASA Astrophysics Data System (ADS)

    Sikora, Roman; Bureček, Adam; Hružík, Lumír; Vašina, Martin

    2015-05-01

    The article deals with experimental research of cavitation development in inlet tube of hydraulic pump. The pressures in inlet and outlet tube of the pump and flow rate were measured. Mineral oil was used as working fluid. The cavitation was visually evaluated in transparent inlet tube. The inlet tube underpressure was achieved by throttle valve. The relationship between the generation of bubbles and the inlet pressure is evaluated.

  20. Design and Analysis Tools for Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Folk, Thomas C.

    2009-01-01

    Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.

  1. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  2. Study of mean- and turbulent-velocity fields in a large-scale turbine-vane passage

    NASA Technical Reports Server (NTRS)

    Bailey, D. A.

    1979-01-01

    Laser-Doppler velocimetry, and to a lesser extent hot-wire anemometry, were employed to measure three components of the mean velocity and the six turbulent stresses at four planes within the turbine inlet-guide-vane passage. One variation in the turbulent inlet boundary layer thickness and one variation in the blade aspect ratio (span/axial chord) were studied. A longitudinal vortex (passage vortex) was clearly identified in the exit plane of the passage for the three test cases. The maximum turbulence intensities within the longitudinal vortex were found to be on the order of 2 to 4 percent, with large regions appearing nonturbulent. Because a turbulent wall boundary layer was the source of vorticity that produced the passage vortex, these low turbulence levels were not anticipated. For the three test cases studied, the lateral velocity field extended significantly beyond the region of the longitudinal velocity defect. Changing the inlet boundary layer thickness produced a difference in the location, the strength, and the extent of the passage vortex. Changing the aspect ratio of the blade passage had a measurable but less significant effect. The experiment was performed in a 210 mm pitch, 272 mm axial chord model in low speed wind tunnel at an inlet Mach number of 0.07.

  3. Improved wax mold technique forms complex passages in solid structures

    NASA Technical Reports Server (NTRS)

    Hellbaum, R. F.; Page, A. D.; Phillips, A. R.

    1971-01-01

    Low-cost fabricating technique produces minute, complex air passages in fluidic devices. Air jet interactions in these function as electronic and electromechanical control systems. Wax cores are fabricated without distortion by two-wax process using nonsoluble pattern-wax and water-soluble wax. Significant steps in fabrication process are discussed.

  4. Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage - Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes

    NASA Astrophysics Data System (ADS)

    Wright, Corwin J.; Hindley, Neil P.; Moss, Andrew C.; Mitchell, Nicholas J.

    2016-03-01

    Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely used gravity-wave-resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (Microwave Limb Sounder, MLS-Aura; HIgh Resolution Dynamics Limb Sounder, HIRDLS; Sounding of the Atmosphere using Broadband Emission Radiometry, SABER), the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS-RO constellation, a ground-based meteor radar, the Advanced Infrared Sounder (AIRS) infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity-wave packets from the lower troposphere to the edge of the lower thermosphere ( ˜ 100 km). Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically > 0.80 between any instrument pair. Meteor radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other data sets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Evidence of wave dissipation is seen, and varies strongly with season. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal

  5. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  6. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  7. Operational test report for 241-AN primary tank inlet control stations

    SciTech Connect

    Tuck, J.A., Fluor Daniel Hanford

    1997-02-11

    This is the operational test report for 241-AN Tank Farm primary ventilation system inlet air filter and control stations, following their installation in the field and prior to their acceptance for beneficial use.

  8. Reduction of fan noise in an anechoic chamber by reducing chamber wall induced inlet flow disturbances

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Mackinnon, M. J.; Woodward, R. P.

    1978-01-01

    The difference between the flight and ground static noise of turbofan engines presents a significant problem in engine noise testing. The additional noise for static testing has been attributed to inlet flow disturbances or turbulence interacting with the fan rotor. In an attempt to determine a possible source of inflow disturbances entering fans tested in the Lewis Research Center anechoic chamber, the inflow field was studied using potential flow analysis. These potential flow calculations indicated that there was substantial flow over the wall directly behind the fan inlet that could produce significant inflow disturbances. Fan noise tests were run with various extensions added to the fan inlet to move the inlet away from this backwall and thereby reduce the inlet flow disturbances. Significant noise reductions were observed with increased inlet length. Over 5 db reduction of the blade passage tone sound power level was observed between the shortest and longest inlets at 90% fan speed and the first overtone was reduced 9 db. High frequency broadband noise was also reduced.

  9. IPAC-Inlet Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1997-01-01

    A series of analyses have been developed which permit the calculation of the performance of common inlet designs. The methods presented are useful for determining the inlet weight flows, total pressure recovery, and aerodynamic drag coefficients for given inlet geometric designs. Limited geometric input data is required to use this inlet performance prediction methodology. The analyses presented here may also be used to perform inlet preliminary design studies. The calculated inlet performance parameters may be used in subsequent engine cycle analyses or installed engine performance calculations for existing uninstalled engine data.

  10. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  11. Centrifugal pump inlet pressure site affects measurement.

    PubMed

    Augustin, Simon; Horton, Alison; Butt, Warwick; Bennett, Martin; Horton, Stephen

    2010-09-01

    During extracorporeal life support (ECLS), blood is exposed to a myriad of unphysiological factors that can affect outcome. One aspect of this is the sub-atmospheric pressure generated by the ECLS pump and imparted to blood elements along the pump inlet line. This pressure can be measured on the inlet line close to the pump head by adding a connector, or at the venous cannula connection site. We compared the two measurement sites located at both points; between the venous cannula-inlet tubing and inlet tubing-pump, with a range of cannulae and flows. We also investigated the effects on inlet pressure from pump afterload and increasing inlet tubing length.

  12. Analysis of an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1992-01-01

    A time marching Navier-Stokes code called PARC (PARC2D for 2-D/axisymmetric and PARC3D for 3-D flow simulations) was validated for an advanced ducted propeller (ADP) subsonic inlet. The code validation for an advanced ducted propeller (ADP) subsonic inlet. The code validation was implemented for a non-separated flow condition associated with the inlet operating at angles-of-attack of 0 and 25 degrees. The inlet test data were obtained in the 9 x 15 ft Low Speed Wind Tunnel at NASA Lewis Research Center as part of a cooperative study with Pratt and Whitney. The experimental study focused on the ADP inlet performance for take-off and approach conditions. The inlet was tested at a free stream Mach number of 0.2, at angles-of-attack between O and 35 degrees, and at a maximum propeller speed of 12,000 RPM which induced a corrected air flow rate of about 46 lb/sec based on standard day conditions. The computational grid and flow boundary conditions (BC) were based on the actual inlet geometry and the funnel flow conditions. At the propeller face, two types of BC's were applied: a mass flow BC and a fixed flow properties BC. The fixed flow properties BC was based on a combination of data obtained from the experiment and calculations using a potential flow code. Comparison of the computational results with the test data indicates that the PARC code with the propeller face fixed flow properties BC provided a better prediction of the inlet surface static pressures than the predictions when the mass flow BC was used. For an angle-of-attack of 0 degrees, the PARC2D code with the propeller face mass flow BC provided a good prediction of inlet static pressures except in the region of high pressure gradient. With the propeller face fixed flow properties BC, the PARC2D code provided a good prediction of the inlet static pressures. For an angle-of-attack of 25 degrees with the mass flow BC, the PARC3D code predicted statis pressures which deviated significantly from the test data

  13. Experimental Investigation of Flow Control in a Compact Inlet Duct

    NASA Astrophysics Data System (ADS)

    Debronsky, Brian; Amitay, Michael

    2012-11-01

    Attractive to aircraft designers are compact inlets, which implement curved flow paths from the air intake of the engine to the compressor face. A compromise must be made between the compactness of the inlet and its aerodynamic performance. The aerodynamic purpose of inlets is to decelerate the oncoming flow before reaching the engine while minimizing total pressure loss, unsteadiness and distortion. Low length-to-diameter ratio inlets have a high degree of curvature, which inevitably causes flow separation and secondary flows. To address this issue, active flow control was implemented on a compact (L/D = 1.6) inlet to improve its performance metrics. The experiments were conducted at a Mach number of 0.44, where the actuation from an array of skewed and pitched jets produced streamwise vortices opposite to the secondary flow structures. The actuation resulted in an improved pressure recovery at the aerodynamic interface plane (AIP), where both the strength of the secondary structures and the flow unsteadiness were significantly reduced. Northrop Grumman Corporation.

  14. Effect of piano-key shape inlet on critical submergence at a vertical pipe intake

    NASA Astrophysics Data System (ADS)

    Shemshi, R.; Kabiri-Samani, A.

    2012-11-01

    Intake vortices are the result of angular momentum conservation at the flow constriction, where angular velocity increases with a decrease in the cross sectional area. The common solution for avoiding air-entrainment and swirl is to provide sufficient submergence to the intake. If the required approach flow conditions can not be met to avoid swirl and air entrainment, other approaches for preventing vortices at water intakes are considered. There are several means of avoiding air-entrainment, where the most cost-effective option is often determined by a physical model study. Among the most economical and common measures of reducing the effect of air-entrainment and swirl strength, is the optimized shape of inlet for instance by installing a Piano-Key inlet over the pipe intake. If Piano-Key inlet is used, then, its' optimum geometry should be studied experimentally. Since there is not any realized guidance for the use of Piano-Key inlets in pipe intakes, hence, a comprehensive set of model experiments have been carried out using Piano-Key inlets with different dimensions, with respect to the vertical pipe intakes, and four different pipe diameters of (D=) 75, 100, 125 and 150 mm. Results showed that by employing a Piano-Key inlet over the vertical pipe intake, the critical submergence reduces significantly. Fianally, according to the results, the effect of Piano-Key inlet geometry on critical submergence were evaluated in the form of realized relationships which would be of practical interest for design engineers.

  15. Effect of Air Cooling of Turbine Disk on Power and Efficiency of Turbine from Turbo Engineering Corporation TT13-18 Turbosupercharger.

    NASA Technical Reports Server (NTRS)

    Berkey, William E.

    1949-01-01

    An investigation was conducted to determine the effect of turbine-disk cooling with air on the efficiency and the power output of the radial-flow turbine from the Turbo Engineering Corporation TT13-18 turbosupercharger. The turbine was operated at a constant range of ratios of turbine-inlet total pressure to turbine-outlet static pressure of 1,5 and 2.0, turbine-inlet total pressure of 30 inches mercury absolute, turbine-inlet total temperature of 12000 to 20000 R, and rotor speeds of 6000 to 22,000 rpm, Over the normal operating range of the turbine, varying the corrected cooling-air weight flow from approximately 0,30 to 0.75 pound per second produced no measurable effect on the corrected turbine shaft horsepower or the turbine shaft adiabatic efficiency. Varying the turbine-inlet total temperature from 12000 to 20000 R caused no measurable change in the corrected cooling-air weight flow. Calculations indicated that the cooling-air pumping power in the disk passages was small and was within the limits of the accuracy of the power measurements. For high turbine power output, the power loss to the compressor for compressing the cooling air was approximately 3 percent of the total turbine shaft horsepower.

  16. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  17. Generic Hypersonic Inlet Module Analysis

    NASA Technical Reports Server (NTRS)

    Cockrell, Chares E., Jr.; Huebner, Lawrence D.

    2004-01-01

    A computational study associated with an internal inlet drag analysis was performed for a generic hypersonic inlet module. The purpose of this study was to determine the feasibility of computing the internal drag force for a generic scramjet engine module using computational methods. The computational study consisted of obtaining two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) solutions using the Euler and parabolized Navier-Stokes (PNS) equations. The solution accuracy was assessed by comparisons with experimental pitot pressure data. The CFD analysis indicates that the 3D PNS solutions show the best agreement with experimental pitot pressure data. The internal inlet drag analysis consisted of obtaining drag force predictions based on experimental data and 3D CFD solutions. A comparative assessment of each of the drag prediction methods is made and the sensitivity of CFD drag values to computational procedures is documented. The analysis indicates that the CFD drag predictions are highly sensitive to the computational procedure used.

  18. Membrane with supported internal passages

    NASA Technical Reports Server (NTRS)

    Gonzalez-Martin, Anuncia (Inventor); Salinas, Carlos E. (Inventor); Cisar, Alan J. (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    2000-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface comprising permanent tubes preferably placed at the ends of the fluid passages. The invention also provides an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane.

  19. Optimal control of a supersonic inlet to minimize frequency of inlet unstart

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Zeller, J. R.; Geyser, L. C.

    1978-01-01

    A preliminary investigation into the use of modern control theory for the design of controls for a supersonic inlet is described. In particular, the task of controlling a mixed-compression supersonic inlet is formulated as a linear optimal stochastic control and estimation problem. An inlet can exhibit an undesirable instability due to excessive inlet normal shock motion. For the optimal control formulation of the inlet problem, a non quadratic performance index, which is equal to the expected frequency of inlet unstarts, is used. This physically meaningful performance index is minimized for a range of inlet disturbance and measurement noise covariances.

  20. Electrical-Discharge Machining Of Perpendicular Passages

    NASA Technical Reports Server (NTRS)

    Malinzak, R. Michael; Booth, Gary N.

    1996-01-01

    Perpendicular telescoping electrode used to perform electrical-discharge machining (EDM) of internal passage through previously inaccessible depth of metal workpiece. More specifically, used to make internal passage perpendicular to passage entering from outer surface.

  1. Toxicology of the nasal passages

    SciTech Connect

    Barrow, C.S.

    1986-01-01

    Contents of this work include: Comparative Anatomy and Function of the Nasal Passages; Light Microscopic Examination of the Rat Nasal Passages: Preparation and Morphologic Features; Histopathology of Acute and Subacute Nasal Toxicity; Pathology of Chronic Nasal Toxic Responses Including Cancer; Responses of the Nasal Mucociliary Apparatus to Airborne Irritants; Effects of Chemical Exposure on Olfaction in Humans, Possible Consequences of Cytochrome P-450-Dependent Monooxygenases in Nasal Tissues.

  2. Contaminant Mass Balance for Sinclair and Dyes Inlets, Puget Sound, WA

    SciTech Connect

    Crecelius, Eric A.; Johnston, Robert K.; Leather, Jim; Guerrero, Joel; Miller, Martin C.; Brandenberger, Jill M.

    2003-04-03

    Sinclair Inlet and Dyes Inlets have historically received contaminates from military installations, industrial activities, municipal outfalls, and other nonpoint sources. For the purpose of determining a ?total maximum daily load? (TMDL) of contaminants for the Inlets, a contaminant mass balance for the sediments is being developed. Sediment cores and traps were collected from depositional areas of the Inlets and surface sediment grabs were collected from fluvial deposits associated with major drainage areas into the Inlets. All sediment samples were screened using X-Ray fluorescence (XRF) for metals, UV fluorescence for organics (PAHs), and immunoassay for PCBs. A subset of split-samples was analyzed using ICP/MS for metals and GC/MS for phthalates, PAHs, and PCBs. Sediment cores were age-dated using radionuclides to determine the sedimentation rate and the history of sediment contamination. Streams and storm water outfalls were sampled in both the wet and dry seasons to assess loading from the watershed. Seawater samples collected from the marine waters of the Inlets and boundary passages to central Puget Sound were used to estimate the exchange of contaminates with central Puget Sound. The historical trends from the cores indicate that contamination was at a maximum in the middle of the 1900s and decreased significantly by the late 1900s. The thickness of the contaminated sediment is in the range of 30 to 50 cm.

  3. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    NASA Technical Reports Server (NTRS)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  4. Fuel-air control device

    SciTech Connect

    Norman, J.

    1981-12-15

    The invention concerns a device for controlling the vehicles fuel-air mixture by regulating the air in the ventilation passage leading to the engine air intake from the crankcase. In a vehicle provided with a PCV valve, the device is located in the ventilation passage leading from the crankcase to the engine air intake and the device is downstream of the PCV valve. The device admits outside air to the ventilation passage to lean the gas mixture when the engine creates a vacuum less than 8 psi in the ventilation passage.

  5. 6. STEEL DOORS AND PASSAGES IN SOUTH ROOM OF FAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. STEEL DOORS AND PASSAGES IN SOUTH ROOM OF FAN HOUSE THAT REGULATE FLOW OF AIR - Sublet Mine No. 6, Fan House, North structure, west side of Willow Creek Valley, east of County Road No. 306, 3 miles north of U.S. Highway 189, Kemmerer, Lincoln County, WY

  6. Effect of combustor-inlet conditions on performance of an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Childs, J Howard; Mccafferty, Richard J; Surine, Oakley W

    1947-01-01

    The combustion performance, and particularly the phenomenon of altitude operational limits, was studied by operating the annular combustor of a turbojet engine over a range of conditions of air flow, inlet pressure, inlet temperature, and fuel flow. Information was obtained on the combustion efficiencies, the effect on combustion of inlet variables, the altitude operational limits with two different fuels, the pressure losses in the combustor, the temperature and velocity profiles at the combustor outlet, the extent of afterburning, the fuel-injection characteristics, and the condition of the combustor basket.

  7. Radial inlet guide vanes for a combustor

    DOEpatents

    Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

    2013-02-12

    A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

  8. Axisymmetric inlet minimum weight design method

    NASA Technical Reports Server (NTRS)

    Nadell, Shari-Beth

    1995-01-01

    An analytical method for determining the minimum weight design of an axisymmetric supersonic inlet has been developed. The goal of this method development project was to improve the ability to predict the weight of high-speed inlets in conceptual and preliminary design. The initial model was developed using information that was available from inlet conceptual design tools (e.g., the inlet internal and external geometries and pressure distributions). Stiffened shell construction was assumed. Mass properties were computed by analyzing a parametric cubic curve representation of the inlet geometry. Design loads and stresses were developed at analysis stations along the length of the inlet. The equivalent minimum structural thicknesses for both shell and frame structures required to support the maximum loads produced by various load conditions were then determined. Preliminary results indicated that inlet hammershock pressures produced the critical design load condition for a significant portion of the inlet. By improving the accuracy of inlet weight predictions, the method will improve the fidelity of propulsion and vehicle design studies and increase the accuracy of weight versus cost studies.

  9. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  10. FLOW FIELDS IN SUPERSONIC INLETS

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1994-01-01

    This computer program is designed to calculate the flow fields in two-dimensional and three-dimensional axisymmetric supersonic inlets. The method of characteristics is used to compute arrays of points in the flow field. At each point the total pressure, local Mach number, local flow angle, and static pressure are calculated. This program can be used to design and analyze supersonic inlets by determining the surface compression rates and throat flow properties. The program employs the method of characteristics for a perfect gas. The basic equation used in the program is the compatibility equation which relates the change in stream angle to the change in entropy and the change in velocity. In order to facilitate the computation, the flow field behind the bow shock wave is broken into regions bounded by shock waves. In each region successive rays are computed from a surface to a shock wave until the shock wave intersects a surface or falls outside the cowl lip. As soon as the intersection occurs a new region is started and the previous region continued only in the area in which it is needed, thus eliminating unnecessary calculations. The maximum number of regions possible in the program is ten, which allows for the simultaneous calculations of up to nine shock waves. Input to this program consists of surface contours, free-stream Mach number, and various calculation control parameters. Output consists of printed and/or plotted results. For plotted results an SC-4020 or similar plotting device is required. This program is written in FORTRAN IV to be executed in the batch mode and has been implemented on a CDC 7600 with a central memory requirement of approximately 27k (octal) of 60 bit words.

  11. Visualization techniques to experimentally model flow and heat transfer in turbine and aircraft flow passages

    NASA Technical Reports Server (NTRS)

    Russell, Louis M.; Hippensteele, Steven A.

    1991-01-01

    Increased attention to fuel economy and increased thrust requirements have increased the demand for higher aircraft gas turbine engine efficiency through the use of higher turbine inlet temperatures. These higher temperatures increase the importance of understanding the heat transfer patterns which occur throughout the turbine passages. It is often necessary to use a special coating or some form of cooling to maintain metal temperatures at a level which the metal can withstand for long periods of time. Effective cooling schemes can result in significant fuel savings through higher allowable turbine inlet temperatures and can increase engine life. Before proceeding with the development of any new turbine it is economically desirable to create both mathematical and experimental models to study and predict flow characteristics and temperature distributions. Some of the methods are described used to physically model heat transfer patterns, cooling schemes, and other complex flow patterns associated with turbine and aircraft passages.

  12. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    NASA Astrophysics Data System (ADS)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  13. Wave and Wind Effects on Inlet Circulation

    NASA Astrophysics Data System (ADS)

    Raubenheimer, B.; Wargula, A.; Orescanin, M. M.; Hopkins, J.; Elgar, S.

    2014-12-01

    Observations and numerical simulations of the water circulation and morphological change in two separate, well-mixed inlets will be compared with each other. Tides, winds, waves, and currents were measured from May 1 to 28, 2012 in and near New River Inlet, NC. Offshore significant wave heights were 0 to 3 m, and wind speeds ranged from 0 to 16 m/s. The long, narrow inlet is about 1000 m wide where it opens onto the ebb shoal, narrows to 100 m wide about 1000 m inland, and connects to the Intracoastal Waterway (which connects to additional ocean inlets about 12 and 36 km north and south, respectively) about 3000 m inland. Tides in the inlet are progressive and inlet flows are in phase with water depths. Measurements also were collected during the summers of 2011-2014, including during Hurricanes Irene and Sandy (offshore significant wave heights > 5 m and winds > 15 m/s), in Katama Bay, MA, which connects to Vineyard Sound via Edgartown Channel and to the Atlantic Ocean via Katama Inlet. During this period, Katama Inlet migrated east about 1000 m, narrowed from 400 to 100 m wide, changed depth from 7 to 2 m, and lengthened from 200 to 1000 m. Tidal flows in Katama Inlet are forced by sea level gradients resulting from the 3-hr phase lag between tides in Vineyard Sound and the Atlantic Ocean. Analyses of the momentum balances suggest that waves drive flows into the mouths of the inlets during storms. The timing of the storms relative to ebb and flood, and wind effects, may affect the discharge and sediment transport through the inlet. Winds and waves also drive alongshore flows on the ebb shoals. Lateral flows at bends in New River Inlet, which may be important to the along-inlet transfer of momentum and to mixing, are affected by winds. The importance of connections to additional inlets in multi-inlet systems will be discussed. Funded by ONR, ASD(R&E), NSF, Sea Grant, and NDSEG.

  14. PNNL Tests Fish Passage System

    SciTech Connect

    Colotelo, Alison

    2015-03-13

    Scientists from PNNL are testing a fish transportation system developed by Whooshh Innovations. The Whooshh system uses a flexible tube that works a bit like a vacuum, guiding fish over hydroelectric dams or other structures. Compared to methods used today, this system could save money while granting fish quicker, safer passage through dams and hatcheries.

  15. External-Compression Supersonic Inlet Design Code

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  16. Overview of the SAMPSON smart inlet

    NASA Astrophysics Data System (ADS)

    Dunne, James P.; Hopkins, Mark A.; Baumann, Erwin W.; Pitt, Dale M.; White, Edward V.

    1999-07-01

    The SAMPSON program will demonstrate the application of Smart Materials and Structures to large-scale aircraft and marine propulsion systems and show that smart materials can be used to significantly enhance vehicle performance, thereby enabling new missions and/or expanding current missions. Two demonstrations will be executed in relevant environments and at scales representations of actual vehicle components. The demonstrations will serve to directly address questions of scalability and technology readiness, thereby improving the opportunities and reducing the risk for transitioning the technology into applications. The aircraft application to be examined is the in-flight structural variation of a fighter engine inlet. Smart technologies will be utilized to actively deform the inlet into predetermined configurations to improve the performance of the inlet at all flight conditions. The inlet configurations to be investigated consists of capture area control, compression ramp generation, leading edge blunting, and porosity control. The operation and demonstration of this Smart Inlet is described in detail.

  17. System for feedback control of air-fuel ratio in internal combustion engine

    SciTech Connect

    Yoneda, K.; Kunome, Y.

    1984-05-08

    A system for feedback control of the air-fuel ratio in a carburetor for an automotive internal combustion engine. The control system includes an auxiliary air bleed passage in the main air bleed of a fuel passage, an electromagnetic valve to periodically open and close the auxiliary air bleed passage, an exhaust sensor to detect a specific component of the exhaust gas as an indication of actual air-fuel ratio, and a control circuit to control the electromagnetic valve based on the output of the exhaust sensor. A vacuum passage connects the auxiliary air bleed passage at a section upstream of the electromagnetic valve to a venturi of the intake passage. A vacuum-responsive valve in the vacuum passage dilutes air admitted through the auxiliary air bleed passage with the venturi vacuum during higher speed operation of the engine to compensate for a tendency of the air through the auxiliary air bleed passage to be augmented.

  18. Effect of Air-Flow Distribution and Total-Pressure Loss on Performance of One-Sixth Segment of Turbojet Combuster

    NASA Technical Reports Server (NTRS)

    Hill, Francis U.; Mark, Herman

    1947-01-01

    An investigation has been conducted on a one-sixth segment of an annular turbojet combustor to determine the effects of modification in air-flow distribution and total-pressure loss on the performance of the segment. The performance features investigated during this series of determinations were the altitude operational limits and the temperature-rise efficiency. Altitude operational limits of the combustor segment, for the 19XB engine using the original combustor-basket design were approximately 38,000 feet at 17,000 rpm and 26,000 feet at 10,000 rpm. The altitude operational limits were approximately 50,000 feet at 17,000 rpm and 38,000 feet at 10,000 rpm for a combustor-basket design in which the air-passage area in the basket was redistributed so as to admit gradually no more than 20 percent of the air along the first half of the basket. In this case the total pressure loss through the combustor segment was not appreciably changed from the total-pressure loss for the original combustor basket design. Altitude operational limits of the combustor segment for the 19XB engine were above 52,000 feet at 17,000 rpm and were approximately 23,000 feet at 10,000 rpm for a combustor-basket design in which the distribution of the air-passage area in the basket was that of the original design but where the total-pressure loss was increased to 19 times the inlet reference kinetic pressure at an inlet-to-outlet density ratio of 2.4. The total-pressure loss for the original design was 14 times the inlet kinetic reference pressure at an inlet-to-outlet density ratio of 2.4.

  19. Aerodynamic analysis of VTOL inlets and definition of a short, blowing-lip inlet

    NASA Technical Reports Server (NTRS)

    Syberg, J.; Jones, A. L.

    1982-01-01

    The results indicated that, without boundary layer control, either a very long inlet or an inlet with a very high contraction ratio lip will be required to meet the stringent design requirements. It is shown that active boundary layer control is an effective means of preventing separation and that a significant reduction in inlet size can be achieved by removing only a small amount of bleed in the throat region of the inlet. A short, blowing-lip model was designed and fabricated. This model features an adjustable, blowing slot located near the hilite on the windward side of the inlet.

  20. Electrically heated particulate matter filter with recessed inlet end plugs

    DOEpatents

    Gonze, Eugene V.; Ament, Frank

    2012-02-21

    A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

  1. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 2 -- Straight-channel diffuser

    SciTech Connect

    Deniz, S.; Greitzer, E.M.; Cumpsty, N.A.

    2000-01-01

    This is Part 2 of an examination of the influence of inlet flow conditions on the performance and operating range of centrifugal compressor vaned diffusers. The paper describes tests of a straight-channel type diffuser, sometimes called a wedge-vane diffuser, and compares the results with those from the discrete-passage diffusers described in Part 1. Effects of diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity on diffuser pressure recovery and operating range are addressed. The straight-channel diffuser investigated has 30 vanes and was designed for the same aerodynamic duty as the discrete-passage diffuser described in Part 1. The ranges of the overall pressure recovery coefficients were 0.50--0.78 for the straight-channel diffuser and 0.50--0.70 for the discrete-passage diffuser, except when the diffuser was choked. In other words, the maximum pressure recovery of the straight-channel diffuser was found to be roughly 10% higher than that of the discrete-passage diffuser investigated. The two types of diffuser showed similar behavior regarding the dependence of pressure recovery on diffuser inlet flow angle and the insensitivity of the performance to inlet flow field axial distortion and Mach number. The operating range of the straight-channel diffuser, as for the discrete-passage diffusers, was limited by the onset of rotating stall at a fixed momentum-averaged flow angle into the diffuser, which was for the straight-channel diffuser, {alpha}{sub crit} = 70 {+-} 0.5 deg. The background, nomenclature, and description of the facility and method are all given in Part 1.

  2. Coolant passage heat transfer with rotation

    NASA Astrophysics Data System (ADS)

    Hajek, T. J.; Wagner, J.; Johnson, B. V.

    1986-10-01

    In current and advanced gas turbine engines, increased speeds, pressures and temperatures are used to reduce specific fuel consumption and increase thrust/weight ratios. Hence, the turbine airfoils are subjected to increased heat loads escalating the cooling requirements to satisfy life goals. The efficient use of cooling air requires that the details of local geometry and flow conditions be adequately modeled to predict local heat loads and the corresponding heat transfer coefficients. The objective of this program is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.

  3. Performance of 19XB-2A Gas Turbine. 1; Effect of Pressure Ratio and Inlet Pressure on Turbine Performance for an Inlet Temperature of 800 degree R

    NASA Technical Reports Server (NTRS)

    Kohl, Robert C.; Larkin, Robert G.

    1946-01-01

    An investigation of the 19XB-2A gas turbine is being conducted at the Cleveland laboratory to determine the effect on turbine performance of various inlet pressures, inlet temperatures, pressure ratios, and wheel speeds. The engine of which this turbine is a component is designed to operate at an air flow of 30 pounds per second at a compressor rotor speed of 17,000 rpm at sea-level conditions. At these conditions the total-pressure ratio is 2.08 across the turbine and the turbine inlet total temperature is 2000 degrees R. Runs have been made with turbine inlet total pressures of 20, 30, 40, and 45 inches of mercury absolute for a constant total pressure ratio across the turbine of 2.40, the maximum value that could be obtained. Additional runs have been made with total pressure ratios of 1.50 and 2.00 at an inlet total pressure of 45 inches of mercury absolute. All runs were made with an inlet total temperature of 800 degrees R over a range of corrected turbine wheel speeds from 40 to 150 percent of the corrected speed at the design point. The turbine efficiencies at these conditions are presented.

  4. Research on Supersonic Inlet Bleed

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Vyas, Manan A.; Slater, John W.

    2012-01-01

    Phase I data results of the Fundamental Inlet Bleed Experiments project at NASA Glenn Research Center (GRC) are presented which include flow coefficient results for two single-hole boundary-layer bleed configurations. The bleed configurations tested are round holes at inclination angles of 90deg and 20deg both having length-to-diameter ratios of 2.0. Results were obtained at freestream Mach numbers of 1.33, 1.62, 1.98, 2.46, and 2.92 and unit Reynolds numbers of 0.984, 1.89, and 2.46 10(exp 7)/m. Approach boundary-layer data are presented for each flow condition and the flow coefficient results are compared to existing multi-hole data obtained under similar conditions. For the 90deg hole, the single and multi-hole distributions agree fairly well with the exception that under supercritical operation, the multi-hole data chokes at higher flow coefficient levels. This behavior is also observed for the 20deg hole but to a lesser extent. The 20deg hole also shows a markedly different characteristic at subcritical operation. Also presented are preliminary results of a Computational Fluid Dynamics (CFD) analysis of both configurations at the Mach 1.33 and a unit Reynolds number of 2.46 10(exp 7)/m. Comparison of the results shows the agreement to be very good.

  5. Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator

    SciTech Connect

    Haque, Shah M.E.; Deev, A.V.; Subaschandar, N.; Rasul, M.G.; Khan, M.M.K.

    2009-01-15

    The influence of the velocity profile at the inlet boundary on the simulation of air velocity distribution inside an electrostatic precipitator is presented in this study. Measurements and simulations were performed in a duct and an electrostatic precipitator (ESP). A four-hole cobra probe was used for the measurement of velocity distribution. The flow simulation was performed by using the computational fluid dynamics (CFD) code FLUENT. Numerical calculations for the air flow were carried out by solving the Reynolds-averaged Navier-Stokes equations coupled with the realizable k-{epsilon} turbulence model equations. Simulations were performed with two different velocity profiles at the inlet boundary - one with a uniform (ideal) velocity profile and the other with a non-uniform (real) velocity profile to demonstrate the effect of velocity inlet boundary condition on the flow simulation results inside an ESP. The real velocity profile was obtained from the velocity measured at different points of the inlet boundary whereas the ideal velocity profile was obtained by calculating the mean value of the measured data. Simulation with the real velocity profile at the inlet boundary was found to predict better the velocity distribution inside the ESP suggesting that an experimentally measured velocity profile could be used as velocity inlet boundary condition for an accurate numerical simulation of the ESP. (author)

  6. 24 CFR 3280.108 - Interior passage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... passage. (a) Interior doors having passage hardware without a privacy lock, or with a privacy lock not engaged, shall open from either side by a single movement of the hardware mechanism in any direction....

  7. 24 CFR 3280.108 - Interior passage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... passage. (a) Interior doors having passage hardware without a privacy lock, or with a privacy lock not engaged, shall open from either side by a single movement of the hardware mechanism in any direction....

  8. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  9. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  10. The hub wall boundary layer development and losses in an axial flow compressor rotor passage

    NASA Astrophysics Data System (ADS)

    Murthy, K. N. S.; Lakshminarayana, B.

    1987-02-01

    The hub wall boundary layer development in a compressor stage including the rotor passage is experimentally investigated. A miniature five-hole probe was employed to measure the hub wall boundary layer inside the inlet guide vane passage, upstream and far downstream of the rotor. The hub wall boundary layer inside the rotor passage was acquired using a rotating miniature five-hole probe. The boundary layer is well behaved upstream and far downstream of the rotor. The migration of the hub wall boundary layer towards the suction surface corner is observed. The limiting streamline angles and static pressure distribution across the stage were also measured. The mean velocity profiles and the integral properties upstream, inside and downstream of the rotor, and the losses are presented and interpreted.

  11. Hot Wax Sweeps Debris From Narrow Passages

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steven K.

    1990-01-01

    Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.

  12. Gas Turbine Engine Inlet Wall Design

    NASA Technical Reports Server (NTRS)

    Florea, Razvan Virgil (Inventor); Matalanis, Claude G. (Inventor); Stucky, Mark B. (Inventor)

    2016-01-01

    A gas turbine engine has an inlet duct formed to have a shape with a first ellipse in one half and a second ellipse in a second half. The second half has an upstream most end which is smaller than the first ellipse. The inlet duct has a surface defining the second ellipse which curves away from the first ellipse, such that the second ellipse is larger at an intermediate location. The second ellipse is even larger at a downstream end of the inlet duct leading into a fan.

  13. Nonmarine upper cretaceous rocks, Cook Inlet, Alaska

    SciTech Connect

    Magoon, L.B.; Griesbach, F.B.; Egbert, R.M.

    1980-08-01

    A section of Upper Cretaceous (Maestrichtian) nonmarine sandstone, conglomerate, and siltstone with associated coal is exposed near Saddle mountain on the northwest flank of Cook Inlet basin, the only known surface exposure of nonmarine Upper Cretaceous rocks in the Cook Inlet area. The section, at least 83.3 m thick, unconformably overlies the Upper Jurassic Naknek Formation and is unconformably overlain by the lower Tertiary West Foreland Formation. These upper Cretaceous rocks correlate lithologically with the second or deeper interval of nonmarine Upper Cretaceous rocks penetrated in the lower Cook Inlet COST 1 well.

  14. Wind- and Tide-Driven Cross-Inlet Circulation at New River Inlet, NC

    NASA Astrophysics Data System (ADS)

    Wargula, A.; Raubenheimer, B.; Elgar, S.

    2014-12-01

    The importance of cross-channel wind forcing to inlet circulation is examined using observations of winds, waves, water levels, and currents collected in and near New River Inlet, NC during May 2012. Although the direct effect of local wind forcing may be neglected in the subtidal along-inlet momentum balance, which is dominated by the pressure gradient, wave radiation stress gradient, and bottom friction, cross-inlet winds may have a significant effect on along-inlet dynamics by driving cross-inlet flows (approximately 0.1 to 0.3 m/s), which can mix lateral and vertical gradients in momentum and water properties. New River Inlet is 1000 m wide at the mouth and tapers to 100 m wide about 1000 m away from the mouth after two sharp 90° bends. Five colocated pressure gages and current profilers were deployed from the shallow (2-3 m water depth) ebb shoal outside the mouth through the deep (5-10 m depth) inlet channel to 200 m beyond the first 90° bend. The inlet is well mixed, and along-inlet tidal currents ranged from +/- 1.5 m/s, offshore significant wave heights from 0.5 to 2.5 m, and wind speeds from 0 to 16 m/s. Time series of currents and winds were lowpass-filtered to examine subtidal wind effects. At the first 90° bend, both surface and bottom cross-inlet flows were correlated (r2 = 0.6) with cross-inlet wind velocity. On the shallow ebb shoal, the cross-inlet flows also were correlated with cross-inlet wind velocity (r2 = 0.6). Cross-inlet flows exhibited a two-layer response to the wind inside the inlet and a depth-uniform response outside the mouth. The observations will be used to examine the momentum balance governing temporal and spatial variations in cross-inlet wind effects on inlet circulation. Funding provided by the Office of Naval Research, the Assistant Secretary of Defense for Research and Engineering, and a National Defense Science and Engineering Graduate Fellowship.

  15. Shock Positioning Controls Designs for a Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.

    2010-01-01

    Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The supersonic inlet design that is utilized to efficiently compress the incoming air and deliver it to the engine has many design challenges. Among those challenges is the shock positioning of internal compression inlets, which requires active control in order to maintain performance and to prevent inlet unstarts due to upstream (freestream) and downstream (engine) disturbances. In this paper a novel feedback control technique is presented, which emphasizes disturbance attenuation among other control performance criteria, while it ties the speed of the actuation system(s) to the design of the controller. In this design, the desired performance specifications for the overall control system are used to design the closed loop gain of the feedback controller and then, knowing the transfer function of the plant, the controller is calculated to achieve this performance. The innovation is that this design procedure is methodical and allows maximization of the performance of the designed control system with respect to actuator rates, while the stability of the calculated controller is guaranteed.

  16. The Origin of Inlet Buzz in a Mach 1.7 Low Boom Inlet Design

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Weir, Lois

    2014-01-01

    Supersonic inlets with external compression, having a good level performance at the critical operating point, exhibit a marked instability of the flow in some subcritical operation below a critical value of the capture mass flow ratio. This takes the form of severe oscillations of the shock system, commonly known as "buzz". The underlying purpose of this study is to indicate how Detached Eddy Simulation (DES) analysis of supersonic inlets will alter how we envision unsteady inlet aerodynamics, particularly inlet buzz. Presented in this paper is a discussion regarding the physical explanation underlying inlet buzz as indicated by DES analysis. It is the normal shock wave boundary layer separation along the spike surface which reduces the capture mass flow that is the controlling mechanism which determines the onset of inlet buzz, and it is the aerodynamic characteristics of a choked nozzle that provide the feedback mechanism that sustains the buzz cycle by imposing a fixed mean corrected inlet weight flow. Comparisons between the DES analysis of the Lockheed Martin Corporation (LMCO) N+2 inlet and schlieren photographs taken during the test of the Gulfstream Large Scale Low Boom (LSLB) inlet in the NASA 8x6 ft. Supersonic Wind Tunnel (SWT) show a strong similarity both in turbulent flow field structure and shock wave formation during the buzz cycle. This demonstrates the value of DES analysis for the design and understanding of supersonic inlets.

  17. Plasma control of shock wave configuration in off-design mode of M = 2 inlet

    NASA Astrophysics Data System (ADS)

    Falempin, Francois; Firsov, Alexander A.; Yarantsev, Dmitry A.; Goldfeld, Marat A.; Timofeev, Konstantin; Leonov, Sergey B.

    2015-03-01

    The objective of this work was to study the steering effect of a weakly ionized plasma on a supersonic flow structure in a two-dimensional aerodynamic configuration with a three-shock compression ramp in an off-design operational mode. Experiments were performed in wind tunnel T-313 of ITAM SB RAS, with the model air inlet designed for operation at a flow of Mach number M = 2. The inlet was tested at M = 2, 2.5, and 3 and with Re = (25-36) × 106/m and an angle of attack AoA = 0°, 5°, and 8°. For the regulation of the inlet characteristics, a plasma generator with electrical power W pl = 2-10 kW was flush-mounted upstream of the compression ramp. A significant plasma effect on the shock configuration at the inlet and on the flow parameters after air compression is considered. It is shown that the main shock wave angle is controllable by means of the plasma power magnitude and, therefore, can be accurately adjusted to the cowl lip of an inlet with a fixed geometry. An additional plasma effect has been demonstrated through a notable increase in the pressure recovery coefficient in a flowpass extension behind the inlet because of an nearly isentropic pattern of flow compression with the plasma turned on. Numerical simulation brings out the details of 3D distribution of the flow structure and parameters throughout the model at thermal energy deposition in inlet near the compression surfaces. We conclude that the plasma-based technique may be a feasible method for expanding supersonic inlet operational limits.

  18. 76 FR 34692 - Inside Passage Electric Cooperative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... Energy Regulatory Commission Inside Passage Electric Cooperative Notice of Preliminary Permit Application..., 2011, and supplemented on May 18, 2011, the Inside Passage Electric Cooperative filed an application.... Applicant Contact: Mr. Peter A. Bibb, Operations Manager, Inside Passage Electric Cooperative, P.O....

  19. Computational analysis of ramjet engine inlet interaction

    NASA Technical Reports Server (NTRS)

    Duncan, Beverly; Thomas, Scott

    1992-01-01

    A computational analysis of a ramjet engine at Mach 3.5 has been conducted and compared to results obtained experimentally. This study focuses on the behavior of the inlet both with and without combustor backpressure. Increased backpressure results in separation of the body side boundary layer and a resultant static pressure rise in the inlet throat region. The computational results compare well with the experimental data for static pressure distribution through the engine, inlet throat flow profiles, and mass capture. The computational analysis slightly underpredicts the thickness of the engine body surface boundary layer and the extent of the interaction caused by backpressure; however, the interaction is observed at approximately the same level of backpressure both experimentally and computationally. This study demonstrates the ability of two different Navier-Stokes codes, namely RPLUS and PARC, to calculate the flow features of this ramjet engine and to provide more detailed information on the process of inlet interaction and unstart.

  20. The Peel Inlet-Harvey Estuary Study.

    ERIC Educational Resources Information Center

    Walker, Warren; Black, Ronald

    1979-01-01

    Describes how the department of physics of the Western Australian Institute of Technology (WAIT) has been involved in the Peel Inlet-Harvey Estuary study. An appendix which presents the departmental approach to curriculum matters is also included. (HM)

  1. Small inlet optical panel and a method of making a small inlet optical panel

    DOEpatents

    Veligdan, James T.; Slobodin, David

    2001-01-01

    An optical panel having a small inlet, and a method of making a small inlet optical panel, are disclosed, which optical panel includes a individually coating, stacking, and cutting a first plurality of stacked optical waveguides to form an outlet face body with an outlet face, individually coating, stacking, and cutting a second plurality of stacked optical waveguides to form an inlet face body with an inlet face, and connecting an optical coupling element to the first plurality and to the second plurality, wherein the optical coupling element redirects light along a parallel axis of the inlet face to a parallel axis of the outlet face. In the preferred embodiment of the present invention, the inlet face is disposed obliquely with and askew from the outlet face.

  2. Circulation exchange patterns in Sinclair Inlet, Washington

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt J.; Paulson, Anthony J.; Gartner, Anne L.

    2013-01-01

    In 1994, the U.S. Geological Survey (USGS), in cooperation with the U.S. Navy, deployed three sets of moorings in Sinclair Inlet, which is a relatively small embayment on the western side of Puget Sound (fig. 1). This inlet is home to the Puget Sound Naval Shipyard. One purpose of the measurement program was to determine the transport pathways and fate of contaminants known to be present in Sinclair Inlet. Extensive descriptions of the program and the resultant information about contaminant pathways have been reported in Gartner and others (1998). This report primarily focused on the bottom boundary layer and the potential for resuspension and transport of sediments on the seabed in Sinclair Inlet as a result of tides and waves. Recently (2013), interest in transport pathways for suspended and dissolved materials in Sinclair Inlet has been rekindled. In particular, the USGS scientists in Washington and California have been asked to reexamine the datasets collected in the earlier study to refine not only our understanding of transport pathways through the inlet, but to determine how those transport pathways are affected by subtidal currents, local wind stress, and fresh water inputs. Because the prior study focused on the bottom boundary layer and not the water column, a reanalysis of the datasets could increase our understanding of the dynamic forces that drive transport within and through the inlet. However, the early datasets are limited in scope and a comprehensive understanding of these transport processes may require more extensive datasets or the development of a detailed numerical model of transport processes for the inlet, or both.

  3. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2008-01-01

    An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.

  4. Samoan Passage Abyssal Mixing Experiment

    NASA Astrophysics Data System (ADS)

    Mickett, J. B.; Voet, G.; Alford, M. H.; Girton, J. B.; Carter, G. S.

    2012-12-01

    The majority of the bottom water entering the North Pacific, about 6 Sv of mostly Antarctic origin, flows northward through the Samoan Passage (SP), where previous hydrographic studies have inferred extremely strong watermass modification as it transits the complicated, narrow passage. Global-scale numerical models at best poorly resolve this critical aspect of the global ocean circulation and the processes that affect it. We are in the midst of conducting a major next-generation experiment, coupling hydrographic/lowered ADCP and microstructure profiler measurements with simultaneous high-resolution profiling moorings and detailed numerical simulations. Our goals are to: (1) quantify the flow and its pathways through the SP, and compare them to measurements made 20 years ago as part of the World Ocean Circulation Experiment (WOCE), 2) quantify, with direct measurements, the turbulence and mixing the flow undergoes and the processes that lead to it, and 3) use the resulting knowledge to determine the best strategy for future monitoring of the SP. Here we present initial results from the first two of the experiment's three cruises, which have provided a detailed view of the flow magnitude, pathways and turbulence as it transits the passage's sills. Bathymetry, stratification, rotation, and inertia all play important roles in selecting the pathways taken by the flow, with the lighter layers siphoning off through the shallower sills to the west and the densest water following the deeper main eastern channel. Flows in this main channel are initially O(0.1 m/s), accelerating to > 0.4 m/s at the northernmost of the two major sills, leading to strong shears and warming of the bottom water from 0.66 to 0.72 C through mixing within the stratified overflow and entrainment of overlying water. Direct microstructure measurements show large vertical diffusivities of 10^{-4}-10^{-3} m^2/s throughout the passage and up to 10^{-2} m^2/s past the northern sill, where the flow

  5. Forced air heater

    SciTech Connect

    Livezey, D.J.

    1980-09-23

    An air heating chamber is supported to project into a stove through an opening provided in the rear wall of the stove by a mounting plate mounted to the exterior of the stove rear wall. The mounting plate which forms the exterior end wall of the heating chamber, includes laterally spaced heating chamber inlet and outlet openings. A blower is detachably mounted to the exterior of the mounting plate in registration with the heating chamber inlet opening to deliver cool forced air into the heating chamber. After circulating therethrough, the air exits the heating chamber through the outlet opening and flows into a hot air manifold, which is also detachably mounted to the exterior of the mounting plate. The manifold includes an upwardly extending inlet chamber with a hot air inlet at its lower end aligned with the heating chamber outlet opening. A horizontal outlet chamber is attached to the top end of the inlet chamber to extend laterally along the back of the stove. Hot air outlets are provided at each end of the manifold outlet chamber to discharge the heated air horizontally over the top and towards the front of the stove.

  6. Effects of Non-Uniform Inlet Temperature Distribution on High-Pressure Turbine Blade Loading

    NASA Astrophysics Data System (ADS)

    Smith, Craig I.; Chang, Dongil; Tavoularis, Stavros

    2012-09-01

    The effects of a non-uniform inlet field on the performance of a commercial, transonic, single-stage, high-pressure, axial turbine with a curved inlet duct have been investigated numerically by solving the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model. By adjusting the alignment of the experimentally-based inlet temperature field with respect to the stator vanes, two clocking configurations were generated: a Vane-Impinging (VI) case, in which each hot streak impinged on a vane and a Mid-Pitch (MP) case, in which each hot streak passed between two vanes. An additional case with a purely radial (PR) variation of inlet temperature was also investigated. In the VI case, it was observed that, as the hot streaks impinged on the stator vanes, they spread spanwise due to the actions of the casing passage vortices and the radial pressure gradient; this resulted in a stream entering the rotor with relatively low temperature variations. In the MP case, the hot streaks were convected undisturbed past the relatively cool vane section. Relatively high time-averaged enthalpy values were found to occur on the pressure side of the blades in the MP configuration.

  7. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the present study, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the study is to advance the current understanding of the flow interaction between two different ultra-compact inlets and a transonic fan for future design applications. Both URANS and LES approaches are used to calculate the unsteady flow field and are compared with the available measured data. The present study indicates that stall inception is mildly affected by the distortion pattern generated by the inlet with the current test set-up. The numerical study indicates that the inlet distortion pattern decays significantly before it reaches the fan face for the current configuration. Numerical results with a shorter distance between the inlet and fan show that counter-rotating vortices near the rotor tip due to the serpentine diffuser affects fan characteristics significantly.

  8. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  9. Liquefied Bleed for Stability and Efficiency of High Speed Inlets

    NASA Technical Reports Server (NTRS)

    Saunders, J. David; Davis, David; Barsi, Stephen J.; Deans, Matthew C.; Weir, Lois J.; Sanders, Bobby W.

    2014-01-01

    A mission analysis code was developed to perform a trade study on the effectiveness of liquefying bleed for the inlet of the first stage of a TSTO vehicle. By liquefying bleed, the vehicle weight (TOGW) could be reduced by 7 to 23%. Numerous simplifying assumptions were made and lessons were learned. Increased accuracy in future analyses can be achieved by: Including a higher fidelity model to capture the effect of rescaling (variable vehicle TOGW). Refining specific thrust and impulse models ( T m a and Isp) to preserve fuel-to-air ratio. Implementing LH2 for T m a and Isp. Correlating baseline design to other mission analyses and correcting vehicle design elements. Implementing angle-of-attack effects on inlet characteristics. Refining aerodynamic performance (to improve L/D ratio at higher Mach numbers). Examining the benefit with partial cooling or densification of the bleed air stream. Incorporating higher fidelity weight estimates for the liquefied bleed system (heat exchange and liquid storage versus bleed duct weights) could be added when more fully developed. Adding trim drag or 6-degree-of-freedom trajectory analysis for higher fidelity. Investigating vehicle optimization for each of the bleed configurations.

  10. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  11. Volume Transport and Variability at Windward Passage

    NASA Astrophysics Data System (ADS)

    Smith, R. H.; Johns, W. E.; Johns, E. M.

    2007-05-01

    The Gulf Stream system is fed via Atlantic inflow through the passages of the Bahamas and the Caribbean. In contrast to the large amount of research focusing on the downstream components of this system (Florida Current, Gulf Stream, Gulf Stream extension), far fewer measurements of Atlantic inflow into the Caribbean Sea through the Caribbean passages have been made. Of all of the major Caribbean passages, the volume transport and variability through Windward Passage is probably the least well understood, even though it is recognized as an important inflow channel. Between October 2003 and February 2005, a moored current meter array was deployed across the shallowest part of Windward Passage, and four hydrographic and lowered-ADCP surveys were conducted in the region. Stations were located along sections at Windward Passage and passages upstream, including passages between Cuba and Great Inagua, and Haiti and Great Inagua, and selected passages through the southern Bahamas and Turks and Caicos. Sections were also occupied downstream of Windward Passage across the axis of the Cayman Basin. The transport entering Windward Passage is highly variable, including reversals to net outflow. Transports measured during the cruises ranged from -0.3 Sv (outflow) to 9.4 Sv (inflow), with an average inflow of 3.8 Sv. Corresponding transports derived from the current meter array range from approximately -5 to 15 Sv, with an average inflow of 3.6 Sv. On average there is net inflow in the surface and thermocline layers (above ~600 m), net outflow in the intermediate layer (~700-1200 m), and a deep inflow just above the bottom. Data gathered from lowered and hull-mounted instrumentation during these surveys have helped to resolve the vertical and horizontal structure of the flow through the passage and will be used in conjunction with the hydrographic data to quantify the volumes of the different water masses flowing through the passage and their regional pathways.

  12. Turbine Inlet Analysis of Injected Water Droplet Behavior

    NASA Astrophysics Data System (ADS)

    Hargrave, Kevin

    Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the hotter months various cooling methods are used such as refrigeration inlet cooling systems, evaporative methods, and thermal energy storage systems. One of the more widely used is the evaporative systems because it is one of the safest and easiest to utilize method. However, the behavior of water droplets within the inlet to the turbine has not been extensively studied or documented. It is important to understand how the droplets behave within the inlet so that water droplets above a critical diameter will not enter the compressor and cause damage to the compressor blades. In order to do this a FLUENT simulation was constructed in order to determine the behavior of the water droplets and if any droplets remain at the exit of the inlet, along with their size. In order to do this several engineering drawings were obtained from SRP and studies in order to obtain the correct dimensions. Then the simulation was set up using data obtained from SRP and Parker-Hannifin, the maker of the spray nozzles. Then several sets of simulations were run in order to see how the water droplets behaved under various conditions. These results were then analyzed and quantified so that they could be easily understood. The results showed that the possible damage to the compressor increased with increasing temperature at a constant relative humidity. This is due in part to the fact that in order to keep a constant relative humidity at varying temperatures the mass fraction of water vapor in the air must be changed. As temperature increases the water vapor mass fraction must increase in order to maintain a constant relative humidity. This in turn makes it slightly increases the evaporation time of the water

  13. MTR, TRA603. SUBBASEMENT FLOOR PLAN. INLET/OUTLET TUNNELS FOR COOLANT WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. SUB-BASEMENT FLOOR PLAN. INLET/OUTLET TUNNELS FOR COOLANT WATER (NORTH SIDE) AND AIR (SOUTH SIDE). RABBIT CANAL AND BULKHEADS. SUMPS AND DRAINS. BLAW-KNOX 3150-3-7, 3/1950. INL INDEX NO. 531-0603-00-098-100006, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Analysis of Buzz in a Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2012-01-01

    A dual-stream, low-boom supersonic inlet designed for use on a small, Mach 1.6 aircraft was tested experimentally in the 8- by 6-Foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center (GRC). The tests showed that the inlet had good recovery and stable operation over large mass flow range. The inlet went into buzz at mass flows well below that needed for engine operation, and the experiments generated a wealth of data during buzz. High frequency response pressure measurements and high-speed schlieren videos were recorded for many buzz events. The objective of the present work was to use computational fluid dynamics (CFD) to predict some of the experimental data taken during buzz, compare those predictions to the experimental data, and to use both datasets to explain the physics of the buzz cycle. The calculations were done with the Wind-US CFD code using a second-order time-accurate differencing scheme and the SST turbulence model. Computed Mach number contours were compared with schlieren images, and ensemble-averaged unsteady pressures were compared to data. The results showed that the buzz cycle consisted partly of spike buzz, an unsteady oscillation of the main shock at the spike tip while the inlet pressure dropped, and partly of choked flow while the inlet repressurized. Most of the results could be explained by theory proposed by Dailey in 1954, but did not support commonly used acoustic resonance explanations.

  15. Inlet contour and flow effects on radiation

    NASA Technical Reports Server (NTRS)

    Ville, J. M.; Silcox, R. J.

    1980-01-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  16. Inlet contour and flow effects on radiation

    NASA Astrophysics Data System (ADS)

    Ville, J. M.; Silcox, R. J.

    1980-06-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  17. Investigation of Flow Instabilities in the Inlet Ducts of DP-1C VTOL Aircraft

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2008-01-01

    An investigation of flow instabilities in the inlet ducts of a two-engine vertical takeoff and landing aircraft DP-1C is described in this report. Recent tests revealed that the engines stall during run ups while the aircraft is operating on the ground. These pop stalls occurred at relatively low power levels, sometimes as low as 60 percent of the engine full speed. Inability to run the engines up to the full speed level is attributed to in-ground effects associated with hot gas ingestion. Such pop stalls were never experienced when the aircraft was tested on a elevated grid platform, which ensured that the aircraft was operating in out-of-the-ground-effect conditions. Based on available information on problems experienced with other vertical takeoff and landing aircraft designs, it was assumed that the engine stalls were caused by partial ingestion of hot gases streaming forward from the main exit nozzle under the aircraft inlets, which are very close to the ground. It was also suggested that the nose wheel undercarriage, located between the inlets, may generate vortices or an unstable wake causing intense mixing of hot exit gases with incoming inlet flow, which would enhance the hot gas ingestion. After running a short three-day series of tests with fully instrumented engine inlets, it is now believed the most probable reason for engine pop stalls are random ingestions of a vortex generated between the two streams moving in opposite directions: outbound hot gas stream from the main nozzle close to the ground and inbound inlet flow above. Originally, the vortex is in a horizontal plane. However, at a certain velocity ratio of these two streams, the vortex attaches either to the ground or the aircraft surface at one end and the other end is swallowed by one of the aircraft inlets. Once the vortex enters the inlet duct, a puff of hot air can be sucked through the vortex core into the engine, which causes a serious inlet flow field distortion followed by an engine

  18. Turbofan blade stresses induced by the flow distortion of a VTOL inlet at high angles of attack

    NASA Technical Reports Server (NTRS)

    Williams, R. C.; Diedrich, J. H.; Shaw, R. J.

    1983-01-01

    A 51-cm-diameter turbofan with a tilt-nacelle VTOL inlet was tested in the Lewis Research Center's 9- by 15-Ft Low Speed Wind Tunnel at velocities up to 72 m/s and angles of attack up to 120 deg. Fan-blade vibratory stress levels were investigated over a full aircraft operating range. These stresses were due to inlet air flow distortion resulting from (1) internal flow separation in the inlet, and (2) ingestion of the exterior nacelle wake. Stress levels are presented, along with an estimated safe operating envelope, based on infinite blade fatigue life.

  19. Comparison of Inlet Geometry in Microfluidic Cell Affinity Chromatography

    PubMed Central

    Li, Peng; Tian, Yu; Pappas, Dimitri

    2011-01-01

    Cell separation based on microfluidic affinity chromatography is a widely used methodology in cell analysis research when rapid separations with high purity are needed. Several successful examples have been reported with high separation efficiency and purity; however, cell capture at the inlet area and inlet design has not been extensively described or studied. The most common inlets—used to connect the microfluidic chip to pumps, tubing, etc—are vertical (top-loading) inlets and parallel (in-line) inlets. In this work, we investigated the cell capture behavior near the affinity chip inlet area and compared the different performance of vertical inlet devices and parallel inlet devices. Vertical inlet devices showed significant cell capture capability near the inlet area, which led to the formation of cell blockages as the separation progressed. Cell density near the inlet area was much higher than the remaining channel, while for parallel inlet chips cell density at the inlet area was similar to the rest of the channel. In this paper, we discuss the effects of inlet type on chip fabrication, nonspecific binding, cell capture efficiency, and separation purity. We also discuss the possibility of using vertical inlets in negative selection separations. Our findings show that inlet design is critical and must be considered when fabricating cell affinity microfluidic devices. PMID:21207967

  20. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, R.F.; Dietrich, D.D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.

  1. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  2. Solid sorbent air sampler

    NASA Technical Reports Server (NTRS)

    Galen, T. J. (Inventor)

    1986-01-01

    A fluid sampler for collecting a plurality of discrete samples over separate time intervals is described. The sampler comprises a sample assembly having an inlet and a plurality of discreet sample tubes each of which has inlet and outlet sides. A multiport dual acting valve is provided in the sampler in order to sequentially pass air from the sample inlet into the selected sample tubes. The sample tubes extend longitudinally of the housing and are located about the outer periphery thereof so that upon removal of an enclosure cover, they are readily accessible for operation of the sampler in an analysis mode.

  3. Throat-bypass bleed systems for increasing the stable airflow range of a Mach 2.50 axisymmetric inlet with 40-percent internal contraction

    NASA Technical Reports Server (NTRS)

    Sanders, B. W.; Mitchell, G. A.

    1973-01-01

    The results of an experimental investigation to increase the stable airflow range of a super sonic mixed-compression inlet are presented. Various throat-bypass bleeds were located on the inlet cowl. The bleed types were distributed porous normal holes, a forward slanted slot, or distributed educated slots. Large inlet stability margins were obtained with the inlet throat bleed systems if a constant pressure was maintained in the throat-bypass bleed plenum. Stability limits were determined for steady-state and limited transient internal air flow changes. Limited unstart angle-of-attack data are presented.

  4. Distribution and sources of polychlorinated biphenyls in Woods Inlet, Lake Worth, Fort Worth, Texas, 2003

    USGS Publications Warehouse

    Besse, Richard E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2005-01-01

    Woods Inlet is a flooded stream channel on the southern shore of Lake Worth along the western boundary of Air Force Plant 4 in Fort Worth, Texas, where elevated polychlorinated biphenyl (PCB) concentrations in sediment were detected in a previous study. In response, the U.S. Geological Survey, in cooperation with the U.S. Air Force, conducted a study in 2003 to map the extent of elevated PCB concentrations in Woods Inlet and to identify possible sources (or more specifically, source areas) of PCBs in the watershed of Woods Inlet. Three gravity cores (penetration to pre-reservoir sediment at three sites) and 17 box cores (surficial bottom sediment samples) were collected in Woods Inlet. Suspended sediment in stormwater runoff and streambed sediment were sampled in tributaries to Woods Inlet following storms. Assemblages of PCB congeners in surficial inlet sediments and suspended and streambed sediments were analyzed to indicate sources of PCBs in the inlet sediments on the basis of chemical signatures of PCBs. Woods Inlet receives runoff primarily from three tributaries: (1) Gruggs Park Creek, (2) the small unnamed creek that drains a Texas National Guard maintenance facility, called TNG Creek for this report, and (3) Meandering Road Creek. Twenty-seven of 209 possible PCB congeners were analyzed. The sum of the congeners was used as a measure of total PCB. The spatial distribution of total PCB concentrations in the inlet indicates that most PCBs are originating in the Meandering Road Creek watershed. Peak total PCB concentrations in the three gravity cores occurred at depths corresponding to sediment deposition dates of about 1960 for two of the cores and about 1980 for the third core. The magnitudes of peak total PCB concentrations in the gravity cores followed a spatial distribution generally similar to that of surficial bottom sediment concentrations. Total PCB concentrations in suspended and streambed sediment varied greatly between sites and indicated a likely

  5. Fuel tank air pocket removal device

    SciTech Connect

    Wilson, C.N. II.

    1991-10-08

    This paper describes a device for the removal of air pockets from filled underground fuel storage tanks. It comprises: a hollow rigid guide column of sufficient length to extend through a fuel inlet opening of the storage tank to the bottom thereof; a rotatable assembly affixed to the lower end of the column and containing guide means for facilitating the passage of a hose from the guide column to the most distant point of the walls of the storage tank; a hose slidably mounted within and extendable from and retractable into the guide column and having means for maintaining the air hose in a plane essentially parallel to the bottom of the storage tank; a first end of a tubular means connected to a first end of the hose, the tubular means comprising flotation means, the flotation means causing a second end of the tubular means to contact the air pocket; and means on a second end of the hose for extending and retracting the hose through the guide column so as to reach any point within the storage tank.

  6. Effect of a part span variable inlet guide vane on TF34 fan performance

    NASA Technical Reports Server (NTRS)

    Alvarez, J.; Schneider, P. W.

    1981-01-01

    Experimental aerodynamic and performance data were obtained from a TF34 engine. Part span variable inlet guide vanes mounted in front of the fan on the TF34 engine were tested to demonstrate the feasibility of modulating air flow and thrust for vertical takeoff aircraft systems. The fan was mapped to stall for a range of speeds and variable inlet guide were settings. Modulated fan tip performance and unmodulated hub performance were evaluated with a without an extended fan bypass splitter. The effect of a crosswind distortion screen on performance was also evaluated.

  7. Experimental Investigation of a Hypersonic Inlet with Variable Sidewall for Flow Control

    NASA Astrophysics Data System (ADS)

    Rolim, T. C.; Lu, F. K.

    The main function of a scramjet inlet is to decelerate and compress the air for subsequent reaction with the fuel inside the combustor and, of course, contribute toward meeting the thrust requirement for the entire mission by providing adequate mass flow. It is desirable that the inlet be lightweight and that its geometry be capable of producing a uniform flow in an appropriate state to permit efficient mixing and subsequent combustion. Engine cycle analysis indicates that high contraction ratios CR are desirable for achieving high overall engine efficiency.

  8. Design and operation considerations for attic inlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving energy efficiency and environmental control in poultry facilities is essential for profitability. Increases in energy costs have prompted evaluation of solar energy systems and passive solar systems such as attic inlets have been adopted as a means to reduce fuel usage. Successful implem...

  9. Risk Taking and Rites of Passage

    ERIC Educational Resources Information Center

    Larson, Scott; Martin, Lloyd

    2012-01-01

    Throughout history, young people earned adult roles through observing, imitating, and interacting with adults around them. Rituals of initiation such as the Jewish bar mitzvah and bat mitzvah are very important rite of passage ceremonies. Many churches confer baptism, confirmation, or catechism as rites of passage to adulthood. Without such…

  10. Passage of American shad: paradigms and realities

    USGS Publications Warehouse

    Haro, Alex; Castro-Santos, Theodore

    2012-01-01

    Despite more than 250 years of development, the passage of American shad Alosa sapidissima at dams and other barriers frequently remains problematic. Few improvements in design based on knowledge of the swimming, schooling, and migratory behaviors of American shad have been incorporated into passage structures. Large-scale technical fishways designed for the passage of adult salmonids on the Columbia River have been presumed to have good performance for American shad but have never been rigorously evaluated for this species. Similar but smaller fishway designs on the East Coast frequently have poor performance. Provision of effective downstream passage for both juvenile and postspawning adult American shad has been given little consideration in most passage projects. Ways to attract and guide American shad to both fishway entrances and downstream bypasses remain marginally understood. The historical development of passage structures for American shad has resulted in assumptions and paradigms about American shad behavior and passage that are frequently unsubstantiated by supporting data or appropriate experimentation. We propose that many of these assumptions and paradigms are either unfounded or invalid and that significant improvements to American shad upstream and downstream passage can be made via a sequential program of behavioral experimentation, application of experimental results to the physical and hydraulic design of new structures, and controlled tests of large-scale prototype structures in the laboratory and field.

  11. Analysis of thrust augmentation of turbojet engines by water injection at compressor inlet including charts for calculating compression processes with water injection

    NASA Technical Reports Server (NTRS)

    Wilcox, E Clinton; Trout, Arthur M

    1951-01-01

    A psychrometric chart having total pressure (sum of partial pressures of air and water vapor) as a variable, a Mollier diagram for air saturated with water vapor, and charts showing the thermodynamic properties of various air-water vapor and exhaust gas-water vapor mixtures are presented as aids in calculating the thrust augmentation of a turbojet engine resulting from the injection of water at the compressor inlet. Curves are presented that show the theoretical performance of the augmentation method for various amounts of water injected and the effects of varying flight Mach number, altitude, ambient-air temperature, ambient relative humidity, compressor pressure ratio, and inlet-diffuser efficiency. Numerical examples, illustrating the use of the psychrometric chart and the Mollier diagram in calculating both compressor-inlet and compressor-outlet conditions when water is injected at the compressor inlet, are presented.

  12. Investigation of High-Subsonic Performance Characteristics of a 12 Degree 21-Inch Conical Diffuser, Including the Effects of Change in Inlet-Boundary-Layer Thickness

    NASA Technical Reports Server (NTRS)

    Copp, Martin R.; Klevatt, Paul L.

    1950-01-01

    Investigations were conducted of a 12 degree 21-inch conical diffuser of 2:l area ratio to determine the interrelation of boundary layer growth and performance characteristics. surveys were made of inlet and exit from, longitudinal static pressures were recorded, and velocity profiles were obtained through an inlet Reynolds number range, determined From mass flows and based on inlet diameter of 1.45 x 10(exp 6) to 7.45 x 10(exp 6) and a Mach number range of 0.11 to approximately choking. These investigations were made to two thicknesses of inlet boundary layer. The mean value, over the entire range of inlet velocities, of the displacement thickness of the thinner inlet boundary layer was approximately 0.035 inch and that of the thicker inlet boundary layer was approximately six times this value. The loss coefficient in the case of the thinner inlet boundary layer had a value between 2 to 3 percent of the inlet impact pressure over most of the air-flow range. The loss coefficient with the thicker inlet boundary layer was of the order of twice that of the thinner inlet boundary layer at low speeds and approximately three times at high speeds. In both cases the values were substantially less than those given in the literature for fully developed pipe flow. The static-pressure rise for the thinner inlet boundary layer was of the order of 95 percent of that theoretically possible over the entire speed range. For the thicker inlet boundary layer the static pressure rise, as a percentage of that theoretically possible, ranged from 82 percent at low speeds to 68 percent at high speeds.

  13. Comparison of textbook passages, nonfiction trade book passages and fiction trade book passages as instructional tools for learning science

    NASA Astrophysics Data System (ADS)

    Kelly, Cynthia

    This study examined the impact of different types of text on student achievement in elementary school science. Gender was also examined to see if the type of text passage read had any differential effect on boys' and girls' achievement. This study was a pretest/posttest/retention test design. Eighty-four fourth grade students from a public charter elementary school in South Florida were randomly assigned a passage from a physical science textbook, a physical science nonfiction trade book, a physical science fiction trade book, a biological science textbook or a biological science nonfiction trade book. Results in the physical science content area revealed that students in the textbook passage group had higher posttest and retention test results than students in the nonfiction and fiction trade book passage groups. There was no difference on the posttest results of students in the biological science textbook and nonfiction trade book passage groups. Students in the biological science textbook passage group had higher retention results than students in the biological science nonfiction passage group. Gender results in the physical science content area revealed that boys had a higher retention score than girls in the fiction trade book passage group. There were no gender achievement differences as a result of the text passage read in the biological science content area. It was concluded that no definitive answer as to the efficacy of textbooks versus trade books was possible based upon results of the study. Recommendations for future research include examining the effects of different types of texts in conjunction with other authentic teaching methods.

  14. Effects of inlet conditions on dynamics of a thermal pulse combustor

    NASA Astrophysics Data System (ADS)

    Mondal, Sirshendu; Mukhopadhyay, Achintya; Sen, Swarnendu

    2012-02-01

    To increase the pulse combustor load, a higher amount of fuel-air mixture has to be supplied. This increases the flow rate or equivalently, the flow time is reduced. However, an increase in flow rate leads to an early extinction. This implies that obtaining pulsating combustion is difficult at higher loads. The objective of the present work is to explore the possibility of extending the regime of pulsating combustion at higher flow rates by preheating and diluting the reactants. In this work, the effects of preheating and dilution are examined by varying the inlet temperature and inlet fuel mass fraction. Varying these parameters, a map, presenting regime of pulsating combustion from steady combustion to extinction for each value of flow time considered, has been made. Lastly, Hopf bifurcation points of the system have been investigated by determining the eigenvalues of Jacobian matrix of the coupled non-linear system at the fixed point using a specialised package for bifurcation analysis, MATCONT. It has been found that at higher load, pulsating combustion can be achieved at higher inlet temperature and lower inlet fuel mass fraction. Comparing the Hopf points with mapping, it is found that existence of Hopf bifurcation agrees with the birth and death of pulsating combustion. The results indicate that altering the mixture condition at the inlet can be used for controlling chaos and stabilising periodic solutions in thermal pulse combustors and thus increase the range of pulsating combustion to higher power regimes.

  15. Influence of combustion-preheating vitiation on operability of a hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Liu, K.; Zhu, Y.; Gao, W.; Yang, J.; Jin, Y.; Wu, Y.

    2015-12-01

    Vitiation of the test flow with combustion products is inherent in combustion wind tunnels, and its effect on experimental results needs to be clarified. In this study, the influence of air vitiation on the startability and performance of a hypersonic inlet is investigated through two-dimensional (2D) numerical simulation. The study examines the vitiation effects introduced by carbon dioxide and water vapor, on the basis of maintaining the static pressure, static temperature and Mach number of the incoming flow. The starting Mach number limits of the inlet are estimated, and it is found that both of these vitiation components lower the starting limit of the inlet. This suggests that the experimental results acquired by tests in combustion wind tunnels overestimate the startability of an inlet and, therefore, combustion-preheated facilities may not be completely trusted in this respect. Deviations in the inlet performance caused by the vitiation are also detected. These are nevertheless minor as long as the flow is at the same started or unstarted condition. A further analysis reveals that it is mainly the increase in the heat capacity, and the resulting weaker shock/compression waves and shock-wave/boundary-layer interactions that account for the aforementioned effects.

  16. Supersonic Inlet with Pylons Set and Star-Shaped Forebody for Mixing, Combustion and Thrust Enhancement

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Gonor, A. L.; Khaikine, V. A.; Blankson, I. M.

    2003-01-01

    Two new approaches are discussed in this paper for application in the Scramjet inlet of an air-breathing propulsion system: 1) In the first approach, the pylon set is installed in the rectangular inlet near the cowl front edge. For a quasi-axisymmetric inlet, a similar set is installed along the Star-shaped forebody axis. This set contains 3 - 4 airfoil-shaped strips or cross-sectional rings depending on the type of inlet. The inlets: rectangular, axisymmetric or star-shaped, are located at different distances from the forebody. Fuel injection takes place through these pylons, which provides for uniform mixing downstream. The locations, sizes and angles of these pylons are very important for efficient application. Optimal values of geometrical parameters were determined from multi-parametric NSE-based numerical simulations of the laminar and turbulent external/internal flows. These simulations have shown significant benefits for mixing, combustion and thrust of the proposed approach by comparison with traditional well-known designs. Experimental tests will be conducted soon at the NASA LaRC and Institute of Mechanics at Moscow State University. Preliminary estimates are very promising.

  17. Numerical analysis of flow features and operation characteristics of a rocket-based combined-cycle inlet in ejector mode

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Liu, Xiaowei; He, Guoqiang; Qin, Fei; Wei, Xianggeng; Yang, Bin; Liu, Jie

    2016-10-01

    A ready-made central strut-based rocket-based combined-cycle (RBCC) engine was numerically investigated in the ejector mode. The flow features in the RBCC inlet and the matching characteristics between the inlet and the embedded rocket during different flight regimes were examined in detail. It was necessary to perform integrated numerical simulations in the ejector mode within considerable pressure far fields around the inlet/exhaust system. The observed flow features and operation characteristics in the RBCC inlet were strongly correlated with the flight conditions, inlet configuration, and operation of the embedded rocket. It was further found that the integrated function status of multiple factors significantly influenced the performance of the RBCC engine in the ejector mode. The two parameters that macroscopically affected the performance most were the air entrainment mass and the drag of the RBCC inlet. To improve these parameters, it is vital to employ an appropriate design of the RBCC inlet and establish the optimal flight trajectory of the flight vehicle.

  18. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  19. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  20. Flow Control in a Compact Inlet

    NASA Astrophysics Data System (ADS)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  1. 1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING SOUTHWEST - Presidio Water Treatment Plant, Lobos Creek Inlet Structure, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  2. East rear, north part. Original power inlet is visible to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East rear, north part. Original power inlet is visible to the right of the current power inlet - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  3. MOUTH OF OPEN SEGMENT, INLET CHANNEL FROM KACHESS LAKE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MOUTH OF OPEN SEGMENT, INLET CHANNEL FROM KACHESS LAKE, LOOKING SOUTHWEST (Dam out of sight, approximately 1/4 mile south) - Kachess Dam, Inlet Channel, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  4. Experimentally determined aeroacoustic performance and control of several sonic inlets

    NASA Technical Reports Server (NTRS)

    Miller, B. A.

    1975-01-01

    Low speed wind tunnel tests were conducted to determine the aeroacoustic performance of several model sonic inlets. The results were analyzed to indicate how inlet aeroacoustic characteristics were affected by inlet design and operating conditions. A system for regulating sonic inlet noise reduction was developed and tested. Results indicate that pressure losses at forward velocity may be substantially less than those at static conditions. This is particularly true for translating centerbody inlets with the centerbody extended in the approach and landing position. Operation to simulated takeoff incidence angles of 50 degrees was demonstrated with good inlet performance. Inlet sound pressure level reduction was regulation was regulated to within approximately + or - 1 dB by controlling inlet surface static pressure measured at the diffuser exit.

  5. Air turbo-ramjet engine

    NASA Technical Reports Server (NTRS)

    Kepler, Charles E. (Inventor)

    1991-01-01

    A jet engine designed to power a supersonic airplane throughout a range of speeds from subsonic to high supersonic includes a housing which bounds an internal passage having in succession a fixed-area inlet section, a diverging passage section, a mixing section, a combustion section, and an outlet section. A fan rotor rotates in the inlet section and includes a plurality of rotor blade members. The housing includes a main body and at least one flap which is movable between one end position in which it externally bounds a portion of the diverging passage section and another end position in which it externally delimits a diverging discharge passage connecting the diverging passage section with the exterior of the housing. The cross-sectional area of the outlet section is adjustable. The rotor is driven in rotation by a fuel/oxygen powered turbine the outlet of which communicates with the mixing section, but the driving action of the turbine is discontinued at actual supersonic velocities exceeding a predetermined supersonic velocity. The pitch of at least one element of each of the rotor blade members is adjustable.

  6. Average-passage flow model development

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Kirtley, Kevin; Barnett, Mark

    1989-01-01

    A 3-D model was developed for simulating multistage turbomachinery flows using supercomputers. This average passage flow model described the time averaged flow field within a typical passage of a bladed wheel within a multistage configuration. To date, a number of inviscid simulations were executed to assess the resolution capabilities of the model. Recently, the viscous terms associated with the average passage model were incorporated into the inviscid computer code along with an algebraic turbulence model. A simulation of a stage-and-one-half, low speed turbine was executed. The results of this simulation, including a comparison with experimental data, is discussed.

  7. Testing of high-volume sampler inlets for the sampling of atmospheric radionuclides.

    PubMed

    Irshad, Hammad; Su, Wei-Chung; Cheng, Yung S; Medici, Fausto

    2006-09-01

    Sampling of air for radioactive particles is one of the most important techniques used to determine the nuclear debris from a nuclear weapon test in the Earth's atmosphere or those particles vented from underground or underwater tests. Massive-flow air samplers are used to sample air for any indication of radionuclides that are a signature of nuclear tests. The International Monitoring System of the Comprehensive Nuclear Test Ban Treaty Organization includes seismic, hydroacoustic, infrasound, and gaseous xenon isotopes sampling technologies, in addition to radionuclide sampling, to monitor for any violation of the treaty. Lovelace Respiratory Research Institute has developed a large wind tunnel to test the outdoor radionuclide samplers for the International Monitoring System. The inlets for these samplers are tested for their collection efficiencies for different particle sizes at various wind speeds. This paper describes the results from the testing of two radionuclide sampling units used in the International Monitoring System. The possible areas of depositional wall losses are identified and the losses in these areas are determined. Sampling inlet type 1 was tested at 2.2 m s wind speed for 5, 10, and 20-microm aerodynamic diameter particles. The global collection efficiency was about 87.6% for 10-microm particles for sampling inlet type 1. Sampling inlet type 2 was tested for three wind speeds at 0.56, 2.2, and 6.6 m s for 5, 10, and 20-microm aerodynamic diameter particles in two different configurations (sampling head lowered and raised). The global collection efficiencies for these configurations for 10-microm particles at 2.2 m s wind speed were 77.4% and 82.5%, respectively. The sampling flow rate was 600 m h for both sampling inlets.

  8. A Numerical Study of Hypersonic Forebody/Inlet Integration Problem

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay

    1991-01-01

    A numerical study of hypersonic forebody/inlet integration problem is presented in the form of the view-graphs. The following topics are covered: physical/chemical modeling; solution procedure; flow conditions; mass flow rate at inlet face; heating and skin friction loads; 3-D forebogy/inlet integration model; and sensitivity studies.

  9. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets on a cargo tank used to transport chlorine must meet the requirements of § 178.337-1(c)(2) and...

  10. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets on a cargo tank used to transport chlorine must meet the requirements of § 178.337-1(c)(2) and...

  11. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets on a cargo tank used to transport chlorine must meet the requirements of § 178.337-1(c)(2) and...

  12. Investigation of "6X" Scramjet Inlet Configurations

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2012-01-01

    This work represents an initial attempt to determine what, if any, issues arise from scaling demonstration supersonic combustion scramjets to a flight scale making the engine a viable candidate for both military weapon and civilian access to space applications. The original vehicle sizes tested and flown to date, were designed to prove a concept. With the proven designs, use of the technology for applications as weapon systems or space flight are only possible at six to ten times the original scale. To determine effects of scaling, computations were performed with hypersonic inlets designed to operate a nominal Mach 4 and Mach 5 conditions that are possible within the eight foot high temperature tunnel at NASA Langley Research Center. The total pressure recovery for these inlets is about 70%, while maintaining self start conditions, and providing operable inflow to combustors. Based on this study, the primary scaling effect detected is the strength of a vortex created along the cowl edge causing adverse boundary layer growth in the inlet.

  13. Skeptical notes on a physics of passage.

    PubMed

    Huggett, Nick

    2014-10-01

    This paper investigates the mathematical representation of time in physics. In existing theories, time is represented by the real numbers, hence their formal properties represent properties of time: these are surveyed. The central question of the paper is whether the existing representation of time is adequate, or whether it can or should be supplemented: especially, do we need a physics incorporating some kind of "dynamical passage" of time? The paper argues that the existing mathematical framework is resistant to such changes, and might have to be rejected by anyone seeking a physics of passage. Then it rebuts two common arguments for incorporating passage into physics, especially the claim that it is an element of experience. Finally, the paper investigates whether, as has been claimed, causal set theory provides a physics of passage.

  14. Pyroclastic passage zones in glaciovolcanic sequences.

    PubMed

    Russell, James K; Edwards, Benjamin R; Porritt, Lucy A

    2013-01-01

    Volcanoes are increasingly recognized as agents and recorders of global climate variability, although deciphering the linkages between planetary climate and volcanism is still in its infancy. The growth and emergence of subaqueous volcanoes produce passage zones, which are stratigraphic surfaces marking major transitions in depositional environments. In glaciovolcanic settings, they record the elevations of syn-eruptive englacial lakes. Thus, they allow for forensic recovery of minimum ice thicknesses. Here we present the first description of a passage zone preserved entirely within pyroclastic deposits, marking the growth of a tephra cone above the englacial lake level. Our discovery requires extension of the passage-zone concept to accommodate explosive volcanism and guides future studies of hundreds of glaciovolcanic edifices on Earth and Mars. Our recognition of pyroclastic passage zones increases the potential for recovering transient paleolake levels, improving estimates of paleo-ice thicknesses and providing new constraints on paleoclimate models that consider the extents and timing of planetary glaciations.

  15. High tip speed fan inlet noise reduction using treated inlet splitters and accelerating inlets (quiet engine program fan C scale model)

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.

    1973-01-01

    A series of inlet suppression tests were run on a supersonic tip speed fan which employed an acoustically treated cowl wall, treated splitters and elevated average throat Mach numbers in various combinations. Results show appreciable fan noise reductions at high fan speeds; 15-18 PNdB. On the basis of inlet total pressure recovery loss per PNdb of noise reduction, an inlet with no splitters produced the most efficient design. However, greater reduction in noise was achieved with one splitter in the inlet. It was also noted that moderate increases in inlet Mach number increased noise in the acoustically treated inlets and that Mach numbers in excess of 0.65 were required before net noise reduction was realized.

  16. Active attenuation of propeller blade passage noise

    NASA Technical Reports Server (NTRS)

    Zalas, J. M.; Tichy, J.

    1984-01-01

    Acoustic measurements are presented to show that active cancellation can be used to achieve significant reduction of blade passage noise in a turboprop cabin. Simultaneous suppression of all blade passage frequencies was attained. The spatial volume over which cancellation occurred, however, is limited. Acoustic intensity maps are presented to show that the acoustic input to the fuselage was sufficiently non-localized so as to require more judicious selection of cancellation speaker location.

  17. Topics in Air Pollution Control (SI: 428).

    ERIC Educational Resources Information Center

    Rampacek, Anne; Chaput, Linda

    This course provides information about air pollution control efforts since the passage of the Clean Air Act and places in perspective various issues that have arisen since passage of the act--significant deterioration, maintenance of standards, indirect source review, and transportation controls. Court decisions affecting these issues are cited…

  18. Linear kinematic air bearing

    NASA Technical Reports Server (NTRS)

    Mayall, S. D.

    1974-01-01

    Bearing provides continuous, smooth movement of the cat's-eye mirror, eliminating wear and deterioration of bearing surface and resulting oscillation effects in servo system. Design features self-aligning configuration; single-point, pivotal pad mounting, having air passage through it; and design of pads that allows for precise control of discharge path of air from pads.

  19. Brook trout passage performance through culverts

    USGS Publications Warehouse

    Goerig, Elsa; Castro-Santos, Theodore R.; Bergeron, Normand

    2016-01-01

    Culverts can restrict access to habitat for stream-dwelling fishes. We used passive integrated transponder telemetry to quantify passage performance of >1000 wild brook trout (Salvelinus fontinalis) attempting to pass 13 culverts in Quebec under a range of hydraulic and environmental conditions. Several variables influenced passage success, including complex interactions between physiology and behavior, hydraulics, and structural characteristics. The probability of successful passage was greater through corrugated metal culverts than through smooth ones, particularly among smaller fish. Trout were also more likely to pass at warmer temperatures, but this effect diminished above 15 °C. Passage was impeded at higher flows, through culverts with steep slopes, and those with deep downstream pools. This study provides insight on factors influencing brook trout capacity to pass culverts as well as a model to estimate passage success under various conditions, with an improved resolution and accuracy over existing approaches. It also presents methods that could be used to investigate passage success of other species, with implications for connectivity of the riverscape.

  20. Design and Experimental Verification of a Scram-Jet Inlet in Frame of ESA's LAPCAT Program

    NASA Astrophysics Data System (ADS)

    Henckels, A.; Gruhn, P.; Gülhan, A.

    2009-01-01

    In 2005 ESA started the coordination of a research program LAPCAT (Long-Term Advanced Propulsion Concepts And Technologies) to identify and assess innovative propulsion technologies to reduce the duration of long distance flights. One of the studied configurations features an RBCC (Rocket Based Combined Cycle) engine, propelling the vehicle from Mach 4 up to the cruise Mach number of 8 by an air-breathing SCRAM- jet. In frame of LAPCAT, the suitable air inlet has been designed by DLR Cologne. Subject of this paper is the description of the experimental verification of its design requirements. Thereby, a test campaign at the H2K blow down facility proved the complete functionality of this inlet. Further tests provided valuable information about off design operation and internal flow topologies for future design optimizations.

  1. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    PubMed

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  2. Advanced Technology Inlet Design, NRA 8-21 Cycle II: DRACO Flowpath Hypersonic Inlet Design

    NASA Technical Reports Server (NTRS)

    Sanders, Bobby W.; Weir, Lois J.

    1999-01-01

    The report outlines work performed in support of the flowpath development for the DRACO engine program. The design process initiated to develop a hypersonic axisymmetric inlet for a Mach 6 rocket-based combined cycle (RBCC) engine is discussed. Various design parametrics were investigated, including design shock-on-lip Mach number, cone angle, throat Mach number, throat angle. length of distributed compression, and subsonic diffuser contours. Conceptual mechanical designs consistent with installation into the D-21 vehicle were developed. Additionally, program planning for an intensive inlet development program to support a Critical Design Review in three years was performed. This development program included both analytical and experimental elements and support for a flight-capable inlet mechanical design.

  3. Numerical simulation of turbulent mixing and combustion near the inlet of a burner

    SciTech Connect

    Cloutman, L.D.

    1993-02-01

    The COYOTE computer program was used to simulate the flow field and turbulent mixing near the fuel and air inlets in a simplified burner that was proposed for experimental study at the Combustion Laboratory at the University of California at Irvine. Four cases are presented, with and without chemical reactions, with two different outflow boundary conditions, and with two different swirl numbers. These preliminary results demonstrate the ability of COYOTE to simulate burners, and they illustrate some limitations and requirements of such modeling.

  4. Improving an Inlet for Underwater Volatile Analyses

    NASA Astrophysics Data System (ADS)

    Chua, E.; Michel, A.; Wankel, S. D.; Kapit, J.

    2014-12-01

    Although the deep ocean remains a challenging place to study, recent progress in technologies such as advanced in situ chemical sensors is beginning to broaden the scope of ocean exploration by enabling more comprehensive measurements at higher spatial and temporal resolutions. Such sensors are designed to be compatible with remotely and human operated vehicles and thus shed light on the geochemical composition of, and processes occurring in, seafloor environments. Among these sensors is a recently-developed in situ laser-based analyzer which utilizes Off-Axis Integrated Cavity Output Spectroscopy (ICOS). This instrument is capable of measuring stable carbon isotope ratios of methane (δ13CCH4), making it a powerful tool for assessing biogeochemical activity in the deep sea. With the aim of improving the sensitivity of this membrane inlet-based chemical sensor, a Membrane Inlet Dissolved Gas Extractor (MIDGE) was developed. Recent work on the MIDGE focused on improving design elements with the aim of enhancing gas transport through the membrane and reducing water vapour in the gas stream. This was accomplished by implementing a newly-designed membrane flow-through inlet geometry, testing a variety of membrane materials, and incorporating an acidification module to evolve dissolved inorganic carbon (DIC) to gaseous CO2. We will report on results from a September 2014 research cruise, in which the MIDGE ICOS is to be deployed as part of an interdisciplinary mission conducting the first-ever in situ chemical and stable isotopic exploration of two seafloor sites in the Caribbean: the Barbados Mud Volcanoes and Kick 'em Jenny (KEJ). The goals of this project are to 1) use in situ measurements of methane and DIC carbon isotopes to enable biogeochemical exploration and mapping of methane seeps, and 2) measure the composition of bubble streams emanating from the crater of KEJ.

  5. Redistribution of an inlet temperature distortion in an axial flow turbine stage

    NASA Astrophysics Data System (ADS)

    Butler, T. L.; Sharma, O. P.; Joslyn, H. D.; Dring, R. P.

    1986-06-01

    The results of an experimental program aimed at determining the extent of the redistribution of an inlet temperature distortion in an axial flow turbine stage are presented. The program was conducted in a large-scale, low speed, single stage turbine where air, seeded with CO2 was introduced at one circumferential location upstream of the inlet guide vane. The migration of the seeded air through the turbine was determined by sensing CO2 concentration inside the stage. A temperature distortion was introduced by heating the seeded air. The CO2 concentration contours measured downstream of the vane showed little change with heating, indicating that the vane flowfield was relatively unaffected by the introduction of the temperature distortion. However, the CO2 contours observed on the rotor airfoil surfaces for the case with inlet heating indicated segregation of hot and cold gas, with the higher temperature gas migrating to the pressure side and the lower temperature gas migrating to the suction side. Significant increases in rotor secondary flow were also observed.

  6. Ambient Monitoring for Sinclair and Dyes Inlets, Puget Sound, Washington: Chemical Analyses for 2010 Regional Mussel Watch (AMB02)

    SciTech Connect

    Brandenberger, Jill M.; Kuo, Li-Jung; Suslick, Carolynn R.; Johnston, Robert K.

    2010-10-20

    The Puget Sound Naval Shipyard & Intermediate Maintenance Facility (PSNS&IMF) and Naval Base Kitsap-Bremerton (Shipyard) located in Bremerton, WA are committed to a culture of continuous process improvement for all aspects of Shipyard operations, including reducing the releases of hazardous materials and waste in discharges from the Shipyard. Under the Project ENVVEST Final Project Agreement, a cooperative project among PSNS&IMF, the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology), and local stakeholders (US Navy, EPA and Ecology 2002) has been helping to improve the environmental quality of the Sinclair and Dyes Inlet Watershed (ENVVEST 2006). An ambient monitoring program for sediment, water, and indigenous mussels began in 2009 to assess the status and trend of ecological resources, assess the effectiveness of cleanup and pollution control measures, and determine if discharges from all sources are protective of beneficial uses including aquatic life. This document presents the 2010 chemical residue data and stable isotopes of carbon (δ13C) and nitrogen (δ15N) for the regional mussel watch stations located in Sinclair Inlet, Dyes Inlet, Port Orchard Passage, Rich Passage, Agate Passage, Liberty Bay, and Keyport Lagoon. Indigenous bivalves were collected from a small boat and/or from along the shoreline, measured, composited, and analyzed for a suite of trace metals and organic contaminants. The trace metals included silver, arsenic, cadmium, chromium, copper, mercury, nickel, lead, and zinc. The organic contaminants included the list of NOAA Status and Trends 20 polychlorinated biphenyls (PCB) congeners and suite of parent and methylated polycyclic aromatic hydrocarbons (PAHs). These chemical residue data provide the first year of the biota ambient monitoring.

  7. Total-Pressure Distortion and Recovery of Supersonic Nose Inlet with Conical Centerbody in Subsonic Icing Conditions

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F

    1957-01-01

    Ice was formed on a full-scale unheated supersonic nose inlet in the NACA Lewis icing tunnel to determine its effect on compressor-face total-pressure distortion and recovery.Inlet angle of attack was varied from 0degrees to 12 degrees, free-stream Mach number from 0.17 to 0.28, and compressor-face Mach number from 0.10 to 0.47. Icing-cloud liquid-water content was varied from 0.65 to 1.8 grams per cubic meter at free-stream static air temperatures of 15 degrees and 0 degrees F. The addition of ice to the inlet components increased total-pressure-distortion levels and decreased recovery values compared withclear0air results, the losses increasing with time in ice. The combination of glaze ice, high corrected weight flow, and high angle of attack yielded the highest levels of distortion and lowest values of recovery. The general character of compressor-face distortion with an iced inlet was the same as that for the clean inlet, the total-pressure gradients being predominantly radial, with circumferential gradients occurring at angle of attack. At zero angle of attack, free-stream Mach number of 0.27, and a constant corrected weight flow of 150 pounds per second (compressor-face Mach number of 0.43), compressor-face total-pressure-distortion level increased from about 6 percent in clear air to 12 percent after 21 minutes of heavy glaze icing; concurrently, total-pressure recovery decreased from about 0.98 to 0.945. For the same operating conditions but with the inlet at 12 deg angle of attack, a change in distortion level occurred from about 9 percent in clear air to 14 percent after 2-1/4 minutes of icing, with a decrease in recovery from about 0.97 to 0.94.

  8. Investigation of REST-Class Hypersonic Inlet Designs

    NASA Technical Reports Server (NTRS)

    Gollan, Rowan; Ferlemann, Paul G.

    2011-01-01

    Rectangular-to-elliptical shape-transition (REST) inlets are of interest for use on scramjet engines because they are efficient and integrate well with the forebody of a planar vehicle. The classic design technique by Smart for these inlets produces an efficient inlet but the complex three-dimensional viscous effects are only approximately included. Certain undesirable viscous features often occur in these inlets. In the present work, a design toolset has been developed which allows for rapid design of REST-class inlet geometries and the subsequent Navier-Stokes analysis of the inlet performance. This gives the designer feedback on the complex viscous effects at each design iteration. This new tool is applied to design an inlet for on-design operation at Mach 8. The tool allows for rapid investigation of design features that was previously not possible. The outcome is that the inlet shape can be modified to affect aspects of the flow field in a positive way. In one particular example, the boundary layer build-up on the bodyside of the inlet was reduced by 20% of the thickness associated with the classically designed inlet shape.

  9. Ambient Monitoring for Sinclair and Dyes Inlets, Puget Sound, Washington: Chemical Analyses for 2012 Regional Mussel Watch

    SciTech Connect

    Brandenberger, Jill M.; Kuo, Li-Jung; Suslick, Carolynn R.; Johnston, Robert K.

    2012-09-01

    Under the Project ENVVEST Final Project Agreement, the Puget Sound Naval Shipyard & Intermediate Maintenance Facility (PSNS&IMF), Environmental Protection Agency (EPA), Washington State Department of Ecology (Ecology), and local stakeholders have worked collaboratively to improve the environmental quality of Sinclair and Dyes Inlets. A regional mussel monitoring program began in 2010 to assess the status and trend of ecological resources, assess the effectiveness of cleanup and pollution control measures, and determine if discharges from all sources are protective of beneficial uses including aquatic life. The program collected indigenous mussels to represent a time-integrated measure of bioavailable metals and organic chemicals present in the water column. This document supplements the 2010 indigenous mussel data with 2012 data to provide two years of data on the chemical residue of mussels present in the inter-tidal regions of Sinclair Inlet, Dyes Inlet, Port Orchard Passage, Rich Passage, Agate Passage, Liberty Bay, and Keyport Lagoon. The 2012 data set added one station at PSNS&IMF and one market samples from Penn Cove. Indigenous mussels were collected from a small boat and/or from along the shoreline, measured, composited, and analyzed for percent lipids, percent moisture, stable isotopes of carbon and nitrogen, and a suite of trace metals and organic contaminants. The trace metals included silver (Ag), arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn). The organic contaminants included the list of NOAA Status and Trends 20 polychlorinated biphenyls (PCB) congeners and suite of parent and methylated polycyclic aromatic hydrocarbons (PAHs). The average lengths between the 2010 and 2012 data were generally less than 30% relative percent difference (RPD). Generally, the metals concentrations were lower in 2012 than 2010 with some notable exceptions in Sinclair Inlet and Rich Passage where increases in Ag, Hg, Pb, Cu, and Zn exceeded

  10. Characterization and airborne deployment of a new counterflow virtual impactor inlet

    NASA Astrophysics Data System (ADS)

    Shingler, T.; Dey, S.; Sorooshian, A.; Brechtel, F. J.; Wang, Z.; Metcalf, A.; Coggon, M.; Mülmenstädt, J.; Russell, L. M.; Jonsson, H. H.; Seinfeld, J. H.

    2012-02-01

    A new counterflow virtual impactor (CVI) inlet is introduced with details of its design, laboratory characterization tests, and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i) negligible organic contamination; (ii) a significant sample flow rate to downstream instruments (~15 l min-1) that reduces the need for dilution; and (iii) a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterized the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7-13.1 μm. The percentage error between cut size measurements and predictions from aerodynamic drag theory are less than 13%. The CVI was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California between July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter.

  11. Characterisation and airborne deployment of a new counterflow virtual impactor inlet

    NASA Astrophysics Data System (ADS)

    Shingler, T.; Dey, S.; Sorooshian, A.; Brechtel, F. J.; Wang, Z.; Metcalf, A.; Coggon, M.; Mülmenstädt, J.; Russell, L. M.; Jonsson, H. H.; Seinfeld, J. H.

    2012-06-01

    A new counterflow virtual impactor (CVI) inlet is introduced with details of its design, laboratory characterisation tests and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i) negligible organic contamination; (ii) a significant sample flow rate to downstream instruments (∼15 l min-1) that reduces the need for dilution; and (iii) a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterised the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7-13.1 μm. The mean percentage error between cut size measurements and predictions from aerodynamic drag theory is 1.7%. The CVI was deployed on the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California in July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream of the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter.

  12. NASCRIN - NUMERICAL ANALYSIS OF SCRAMJET INLET

    NASA Technical Reports Server (NTRS)

    Kumar, A.

    1994-01-01

    The NASCRIN program was developed for analyzing two-dimensional flow fields in supersonic combustion ramjet (scramjet) inlets. NASCRIN solves the two-dimensional Euler or Navier-Stokes equations in conservative form by an unsplit, explicit, two-step finite-difference method. A more recent explicit-implicit, two-step scheme has also been incorporated in the code for viscous flow analysis. An algebraic, two-layer eddy-viscosity model is used for the turbulent flow calculations. NASCRIN can analyze both inviscid and viscous flows with no struts, one strut, or multiple struts embedded in the flow field. NASCRIN can be used in a quasi-three-dimensional sense for some scramjet inlets under certain simplifying assumptions. Although developed for supersonic internal flow, NASCRIN may be adapted to a variety of other flow problems. In particular, it should be readily adaptable to subsonic inflow with supersonic outflow, supersonic inflow with subsonic outflow, or fully subsonic flow. The NASCRIN program is available for batch execution on the CDC CYBER 203. The vectorized FORTRAN version was developed in 1983. NASCRIN has a central memory requirement of approximately 300K words for a grid size of about 3,000 points.

  13. Bipolar membranes with fluid distribution passages

    NASA Technical Reports Server (NTRS)

    Hitchens, G. Duncan (Inventor); Archer, Shivaun (Inventor); Tennakoon, Charles L. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Cisar, Alan J. (Inventor)

    1999-01-01

    The present invention provides a bipolar membrane and methods for making and using the membrane. The bipolar membrane comprises a cation-selective region, an anion-selective region, an interfacial region between the anion-selective region and the cation-selective region, and means for delivering fluid directly into the interfacial region. The means for delivering fluid includes passages that may comprise a fluid-permeable material, a wicking material, an open passage disposed within the membrane or some combination thereof. The passages may be provided in many shapes, sizes and configurations, but preferably deliver fluid directly to the interfacial region so that the rate of electrodialysis is no longer limited by the diffusion of fluid through the cation- or anion-selective regions to the interfacial region.

  14. Insertable fluid flow passage bridgepiece and method

    DOEpatents

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  15. The Northwest Passage opens for bowhead whales.

    PubMed

    Heide-Jørgensen, Mads Peter; Laidre, Kristin L; Quakenbush, Lori T; Citta, John J

    2012-04-23

    The loss of Arctic sea ice is predicted to open up the Northwest Passage, shortening shipping routes and facilitating the exchange of marine organisms between the Atlantic and the Pacific oceans. Here, we present the first observations of distribution overlap of bowhead whales (Balaena mysticetus) from the two oceans in the Northwest Passage, demonstrating this route is already connecting whales from two populations that have been assumed to be separated by sea ice. Previous satellite tracking has demonstrated that bowhead whales from West Greenland and Alaska enter the ice-infested channels of the Canadian High Arctic during summer. In August 2010, two bowhead whales from West Greenland and Alaska entered the Northwest Passage from opposite directions and spent approximately 10 days in the same area, documenting overlap between the two populations. PMID:21937490

  16. The Northwest Passage opens for bowhead whales.

    PubMed

    Heide-Jørgensen, Mads Peter; Laidre, Kristin L; Quakenbush, Lori T; Citta, John J

    2012-04-23

    The loss of Arctic sea ice is predicted to open up the Northwest Passage, shortening shipping routes and facilitating the exchange of marine organisms between the Atlantic and the Pacific oceans. Here, we present the first observations of distribution overlap of bowhead whales (Balaena mysticetus) from the two oceans in the Northwest Passage, demonstrating this route is already connecting whales from two populations that have been assumed to be separated by sea ice. Previous satellite tracking has demonstrated that bowhead whales from West Greenland and Alaska enter the ice-infested channels of the Canadian High Arctic during summer. In August 2010, two bowhead whales from West Greenland and Alaska entered the Northwest Passage from opposite directions and spent approximately 10 days in the same area, documenting overlap between the two populations.

  17. White Sturgeon Passage at The Dalles Dam

    USGS Publications Warehouse

    ,

    2008-01-01

    Researchers at the USGS Western Fisheries Research Center's Columbia River Research Laboratory, working with the U.S. Army Corps of Engineers, sought to better understand upstream and downstream passage of white sturgeon at dams. A study at The Dalles Dam provided the opportunity to compare two fish ladders; one that passes sturgeon upstream to one that does not, to determine if subtle differences in construction result in better passage of white sturgeon. Researchers conducted a study using a combination of acoustic and radio telemetry technologies to obtain information on juvenile and adult white sturgeon near The Dalles Dam, with the objectives of characterizing the distribution and movements of white sturgeon in the immediate vicinity of the dam and to determine timing and routes of upstream and downstream passage.

  18. Experimental demonstration of composite adiabatic passage

    NASA Astrophysics Data System (ADS)

    Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.

    2013-12-01

    We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.

  19. The Northwest Passage opens for bowhead whales

    PubMed Central

    Heide-Jørgensen, Mads Peter; Laidre, Kristin L.; Quakenbush, Lori T.; Citta, John J.

    2012-01-01

    The loss of Arctic sea ice is predicted to open up the Northwest Passage, shortening shipping routes and facilitating the exchange of marine organisms between the Atlantic and the Pacific oceans. Here, we present the first observations of distribution overlap of bowhead whales (Balaena mysticetus) from the two oceans in the Northwest Passage, demonstrating this route is already connecting whales from two populations that have been assumed to be separated by sea ice. Previous satellite tracking has demonstrated that bowhead whales from West Greenland and Alaska enter the ice-infested channels of the Canadian High Arctic during summer. In August 2010, two bowhead whales from West Greenland and Alaska entered the Northwest Passage from opposite directions and spent approximately 10 days in the same area, documenting overlap between the two populations. PMID:21937490

  20. Wood stove with safety forced air system

    SciTech Connect

    Erickson, A.J.; Thulman, R.D.

    1982-08-03

    A high efficiency, air-tight wood stove has a firebox with front, side, rear, top and bottom walls, primary air introducing means for admitting combustion air into the firebox, air flow means adjacent the bottom of the firebox for directing a flow of air upwardly across at least one firebox wall, at least one supplemental air inlet for diverting a portion of the air from the air flow means into the firebox, fan means for forcing air through the air flow means and through the supplemental air inlet, the size of the primary air introducing means being chosen to automatically restrict the combustion in the firebox if the fan means stops to maintain the temperature of the stove and surroundings at safe levels.

  1. Extension in Mona Passage, Northeast Caribbean

    NASA Astrophysics Data System (ADS)

    Chaytor, Jason D.; ten Brink, Uri S.

    2010-10-01

    As shown by the recent M w 7.0 Haiti earthquake, intra-arc deformation, which accompanies the subduction process, can present seismic and tsunami hazards to nearby islands. Spatially-limited diffuse tectonic deformation within the Northeast Caribbean Plate Boundary Zone likely led to the development of the submerged Mona Passage between Puerto Rico and the Dominican Republic. GPS geodetic data and a moderate to high level of seismicity indicate that extension within the region is ongoing. Newly-collected high-resolution multibeam bathymetry and multi-channel seismic reflection profiles and previously-collected samples are used here to determine the tectonic evolution of the Mona Passage intra-arc region. The passage is floored almost completely by Oligocene-Pliocene carbonate platform strata, which have undergone submarine and subaerial erosion. Structurally, the passage is characterized by W- to NNW-trending normal faults that offset the entire thickness of the Oligo-Pliocene carbonate platform rocks. The orientation of these faults is compatible with the NE-oriented extension vector observed in GPS data. Fault geometry best fits an oblique extension model rather than previously proposed single-phase, poly-phase, bending-moment, or rotation extension models. The intersection of these generally NW-trending faults in Mona Passage with the N-S oriented faults of Mona Canyon may reflect differing responses of the brittle upper-crust, along an arc-forearc rheological boundary, to oblique subduction along the Puerto Rico trench. Several faults within the passage, if ruptured completely, are long enough to generate earthquakes with magnitudes on the order of M w 6.5-7.

  2. Extension in Mona Passage, Northeast Caribbean

    USGS Publications Warehouse

    Chaytor, J.D.; ten Brink, U.S.

    2010-01-01

    As shown by the recent Mw 7.0 Haiti earthquake, intra-arc deformation, which accompanies the subduction process, can present seismic and tsunami hazards to nearby islands. Spatially-limited diffuse tectonic deformation within the Northeast Caribbean Plate Boundary Zone likely led to the development of the submerged Mona Passage between Puerto Rico and the Dominican Republic. GPS geodetic data and a moderate to high level of seismicity indicate that extension within the region is ongoing. Newly-collected high-resolution multibeam bathymetry and multi-channel seismic reflection profiles and previously-collected samples are used here to determine the tectonic evolution of the Mona Passage intra-arc region. The passage is floored almost completely by Oligocene-Pliocene carbonate platform strata, which have undergone submarine and subaerial erosion. Structurally, the passage is characterized by W- to NNW-trending normal faults that offset the entire thickness of the Oligo-Pliocene carbonate platform rocks. The orientation of these faults is compatible with the NE-oriented extension vector observed in GPS data. Fault geometry best fits an oblique extension model rather than previously proposed single-phase, poly-phase, bending-moment, or rotation extension models. The intersection of these generally NW-trending faults in Mona Passage with the N-S oriented faults of Mona Canyon may reflect differing responses of the brittle upper-crust, along an arc-forearc rheological boundary, to oblique subduction along the Puerto Rico trench. Several faults within the passage, if ruptured completely, are long enough to generate earthquakes with magnitudes on the order of Mw 6.5-7. ?? 2010.

  3. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses.

    PubMed

    Feyereisen, Gary W; Francesconi, Wendy; Smith, Douglas R; Papiernik, Sharon K; Krueger, Erik S; Wente, Christopher D

    2015-03-01

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentrations and loads when open surface inlets were replaced with blind (in gravel capped with 30 cm of soil) or gravel (in very coarse sand/fine gravel) inlets. In Indiana, a pair of closed depressions in adjacent fields was fitted with open inlet tile risers and blind inlets in 2005 and monitored for flow and water chemistry. Paired comparisons on a storm event basis during the growing season for years 2006 to 2013 showed that TSS loads were 40.4 and 14.4 kg ha event for tile risers and blind inlets, respectively. Total P (TP) and soluble reactive P (SRP) loads were 66 and 50% less for the blind inlets, respectively. In Minnesota, TSS and SRP concentrations were monitored for 3 yr before and after modification of 24 open inlets to gravel inlets in an unreplicated large-field on-farm study. Median TSS concentrations were 97 and 8.3 mg L and median SRP concentrations were 0.099 and 0.064 mg L for the open inlet and gravel inlet periods, respectively. Median TSS and SRP concentrations were elevated for snowmelt vs. non-snowmelt seasons for open and gravel inlets. Both replacement designs reduced suspended sediment and P concentrations and loads. The Indiana study suggests blind inlets will be effective beyond a 10-yr service life. PMID:26023978

  4. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses.

    PubMed

    Feyereisen, Gary W; Francesconi, Wendy; Smith, Douglas R; Papiernik, Sharon K; Krueger, Erik S; Wente, Christopher D

    2015-03-01

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentrations and loads when open surface inlets were replaced with blind (in gravel capped with 30 cm of soil) or gravel (in very coarse sand/fine gravel) inlets. In Indiana, a pair of closed depressions in adjacent fields was fitted with open inlet tile risers and blind inlets in 2005 and monitored for flow and water chemistry. Paired comparisons on a storm event basis during the growing season for years 2006 to 2013 showed that TSS loads were 40.4 and 14.4 kg ha event for tile risers and blind inlets, respectively. Total P (TP) and soluble reactive P (SRP) loads were 66 and 50% less for the blind inlets, respectively. In Minnesota, TSS and SRP concentrations were monitored for 3 yr before and after modification of 24 open inlets to gravel inlets in an unreplicated large-field on-farm study. Median TSS concentrations were 97 and 8.3 mg L and median SRP concentrations were 0.099 and 0.064 mg L for the open inlet and gravel inlet periods, respectively. Median TSS and SRP concentrations were elevated for snowmelt vs. non-snowmelt seasons for open and gravel inlets. Both replacement designs reduced suspended sediment and P concentrations and loads. The Indiana study suggests blind inlets will be effective beyond a 10-yr service life.

  5. Boundary-layer-ingesting inlet flow control system

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)

    2010-01-01

    A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.

  6. Effect of Blowing on Boundary Layer of Scarf Inlet

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.

    2004-01-01

    When aircraft operate in stationary or low speed conditions, airflow into the engine accelerates around the inlet lip and pockets of turbulence that cause noise and vibration can be ingested. This problem has been encountered with engines equipped with the scarf inlet, both in full scale and in model tests, where the noise produced during the static test makes it difficult to assess the noise reduction performance of the scarf inlet. NASA Langley researchers have implemented boundary layer control in an attempt to reduce the influence of the flow nonuniformity in a 12-in. diameter model of a high bypass fan engine mounted in an anechoic chamber. Static pressures and boundary layer profiles were measured in the inlet and far field acoustic measurements were made to assess the effectiveness of the blowing treatment. The blowing system was found to lack the authority to overcome the inlet distortions. Methods to improve the implementation of boundary layer control to reduce inlet distortion are discussed.

  7. Computational effects of inlet representation on powered hypersonic, airbreathing models

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    Computational results are presented to illustrate the powered aftbody effects of representing the scramjet inlet on a generic hypersonic vehicle with a fairing, to divert the external flow, as compared to an operating flow-through scramjet inlet. This study is pertinent to the ground testing of hypersonic, airbreathing models employing scramjet exhaust flow simulation in typical small-scale hypersonic wind tunnels. The comparison of aftbody effects due to inlet representation is well-suited for computational study, since small model size typically precludes the ability to ingest flow into the inlet and perform exhaust simulation at the same time. Two-dimensional analysis indicates that, although flowfield differences exist for the two types of inlet representations, little, if any, difference in surface aftbody characteristics is caused by fairing over the inlet.

  8. The Contribution of Passage and Non-Passage Factors to Item Performance on the SAT Reading Task.

    ERIC Educational Resources Information Center

    Katz, Stuart; Lautenschlager, Gary J.

    2001-01-01

    Conducted a regression analysis to assess the contributions of passage and no-passage factors to item variance on the Scholastic Aptitude Test reading comprehension task. Results show that no-passage factors play a larger role than do passage factors, accounting for as much as three-fourths of systematic variance in item difficulty and more than…

  9. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  10. Improved Air-Treatment Canister

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1982-01-01

    Proposed air-treatment canister integrates a heater-in-tube water evaporator into canister header. Improved design prevents water from condensing and contaminating chemicals that regenerate the air. Heater is evenly spiraled about the inlet header on the canister. Evaporator is brazed to the header.

  11. Hysteresis phenomenon of hypersonic inlet at high Mach number

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaoliang; Chang, Juntao; Wang, Zhongqi; Yu, Daren

    2016-11-01

    When the hypersonic inlet works at a Mach number higher than the design value, the hypersonic inlet is started with a regular reflection of the external compression shock at the cowl, whereas a Mach reflection will result in the shock propagating forwards to cause a shock detachment at the cowl lip, which is called "local unstart of inlet". As there are two operation modes of hypersonic inlet at high Mach number, the mode transition may occur with the operation condition of hypersonic inlet changing. A cowl-angle-variation-induced hysteresis and a downstream-pressure-variation-induced hysteresis in the hypersonic inlet start↔local unstart transition are obtained by viscous numerical simulations in this paper. The interaction of the external compression shock and boundary layer on the cowl plays a key role in the hysteresis phenomenon. Affected by the transition of external compression shock reflection at the cowl and the transition between separated and attached flow on the cowl, a hysteresis exists in the hypersonic inlet start↔local unstart transition. The hysteresis makes the operation of a hypersonic inlet very difficult to control. In order to avoid hysteresis phenomenon and keep the hypersonic inlet operating in a started mode, the control route should never pass through the local unstarted boundary.

  12. SUPIN: A Computational Tool for Supersonic Inlet Design

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2016-01-01

    A computational tool named SUPIN is being developed to design and analyze the aerodynamic performance of supersonic inlets. The inlet types available include the axisymmetric pitot, three-dimensional pitot, axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flow-field is divided into parts to provide a framework for the geometry and aerodynamic modeling. Each part of the inlet is defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick design and analysis. SUPIN provides inlet geometry in the form of coordinates, surface angles, and cross-sectional areas. SUPIN can generate inlet surface grids and three-dimensional, structured volume grids for use with higher-fidelity computational fluid dynamics (CFD) analysis. Capabilities highlighted in this paper include the design and analysis of streamline-traced external-compression inlets, modeling of porous bleed, and the design and analysis of mixed-compression inlets. CFD analyses are used to verify the SUPIN results.

  13. Some design considerations for supersonic cruise mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Bowditch, D. N.

    1973-01-01

    A mixed compression inlet designed for supersonic cruise has very demanding requirements for high total pressure recovery and low bleed and cowl drag. However, since the optimum inlet for supersonic cruise performance may have other undesirable characteristics, it is necessary to establish trade-offs between inlet performance and other inlet characteristics. Some of these trade-offs between the amount of internal compression, aerodynamic performance and angle-of-attack tolerance are reviewed. Techniques for analysis of boundary layer control and subsonic diffuser flow are discussed.

  14. Computational study of inlet injection for a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine

    NASA Technical Reports Server (NTRS)

    Gonzalez, D. E.

    1995-01-01

    A computational simulation of reacting 2-D and 3-D flowfields in a model inlet section of a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine concept was performed. LARCK, a multi-dimensional Navier-Stokes code with finite-rate kinetics chemistry developed at NASA LaRC by J.A. White, was adapted for this simulation. The flow conditions in the simulation match those envisioned for the PM/SIC engine experiments currently planned at LaRC. The reacting flowfields were Mach 6.3 freestream air and Mach 2 hydrogen at various pressure and temperature conditions injected through a slot injector at the base of the inlet section. In the PM/SIC engine, fuel is injected at the inlet section upstream of the combustor, and reaction is initiated by the shock wave at the inlet which increases the gas temperature and pressure beyond the kinetic limits for reaction. Many challenges exist prior to establishing shock-controlled combustion as a practical engine concept. These challenges include fuel injection schemes that can provide proper fuel-air mixing without creating large losses in the inlet section, and control of the combustion process so that early ignition or combustion propagation through the inlet boundary layer does not occur. For this project, a parametrics study was carried out to model the fuel injection of hydrogen at different flow conditions. It was found that, as the fuel temperature and pressure were increased, the potential for pre-ignition was high at a short distance downstream of the slot injector. The next stage of this work will investigate injection techniques for enhancing mixing of fuel and air in a manner that prevents or reduces the potential for premature ignition observed numerically.

  15. 24 CFR 3280.108 - Interior passage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Interior passage. 3280.108 Section 3280.108 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND...

  16. 24 CFR 3280.108 - Interior passage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Interior passage. 3280.108 Section 3280.108 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND...

  17. CYANOBACTERIA PASSAGE DURING FILTER PERTURBATION EPISODES

    EPA Science Inventory

    Eight pilot-scale in-line filtration trials were performed to evaluate the passage of cyanobacterial cells through drinking water filters after sudden increases in hydraulic loading rates. Trials were performed at 30 C using two coagulant combinations (aluminum sulfate and cati...

  18. Yakima Basin Fish Passage Project, Phase 2

    SciTech Connect

    Not Available

    1991-08-01

    Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs.

  19. Charles Johnson's "Middle Passage" as Historiographic Metafiction.

    ERIC Educational Resources Information Center

    Thaden, Barbara Z.

    1997-01-01

    Suggests that what makes Charles Johnson's "Middle Passage" significant and eminently teachable is that it is an accessible example of "historiographic metafiction"--bestselling postmodern novels set in the past. Notes that students find the novel "easy" and enjoyable and that teaching the novel with some of its intertexts, such as H. Melville's…

  20. Effect of pressure ratio and inlet pressure on performance of experimental gas turbine at inlet temperature of 800 R

    NASA Technical Reports Server (NTRS)

    Kohl, Robert C; Larkin, Robert G

    1948-01-01

    An experimental gas turbine was operated over a range of blade-jet speed ratios, total pressure ratios, and inlet total pressures at a constant inlet temperature of 800 R. Peak over-all efficiencies were obtained at blade-jet speed ratios from 0.525 to 0.575 for all runs. The variation in peak efficiency with inlet pressure and pressure ratio was of small magnitude for the conditions investigated.

  1. Geologic framework of lower Cook Inlet, Alaska

    USGS Publications Warehouse

    Fisher, M.A.; Magoon, L.B.

    1978-01-01

    Three seismic reflectors are present throughout the lower Cook Inlet basin and can be correlated with onshore geologic features. The reflections come from unconformities at the base of the Tertiary sequence, at the base of Upper Cretaceous rocks, and near the base of Upper Jurassic strata. A contour map of the deepest horizon shows that Mesozoic rocks are formed into a northeast-trending syncline. Along the southeast flank of the basin, the northwest-dipping Mesozoic rocks are truncated at the base of Tertiary rocks. The Augustine-Seldovia arch trends across the basin axis between Augustine Island and Seldovia. Tertiary rocks thin onto the arch from the north and south. Numerous anticlines, smaller in structural relief and breadth than the Augustine-Seldovia arch, trend northeast parallel with the basin, and intersect the arch at oblique angles. The stratigraphic record shows four cycles of sedimentation and tectonism that are bounded by three regional unconformities in lower Cook Inlet and by four thrust faults and the modern Benioff zone in flysch rocks of the Kenai Peninsula and the Gulf of Alaska. The four cycles of sedimentation are, from oldest to youngest, the early Mesozoic, late Mesozoic, early Cenozoic, and late Cenozoic. Data on organic geochemistry of the rocks from one well suggest that Middle Jurassic strata may be a source of hydrocarbons. Seismic data show that structural traps are formed by northeast-trending anticlines and by structures formed at the intersections of these anticlines with the transbasin arch. Stratigraphic traps may be formed beneath the unconformity at the base of Tertiary strata and beneath unconformities within Mesozoic strata.

  2. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug

    2003-01-01

    A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.

  3. Basic research in fan source noise: Inlet distortion and turbulence noise

    NASA Technical Reports Server (NTRS)

    Kantola, R. A.; Warren, R. E.

    1978-01-01

    A widely recognized problem in jet engine fan noise is the discrepancy between inflight and static tests. This discrepancy consists of blade passing frequency tones, caused by ingested turbulence that appear in the static tests but not in flight. To reduce the ingested distortions and turbulence in an anechoic chamber, a reverse cone inlet is used to guide the air into the fan. This inlet also has provisions for boundary layer suction and is used in conjunction with a turbulence control structure (TCS) to condition the air impinging on the fan. The program was very successful in reducing the ingested turbulence, to the point where reductions in the acoustic power at blade passing frequency are as high as 18 db for subsonic tip speeds. Even with this large subsonic tone suppression, the supersonic tip speed tonal content remains largely unchanged, indicating that the TCS did not appreciably attenuate the noise but effects the generation via turbulence reduction. Turbulence mapping of the inlet confirmed that the tone reductions are due to a reduction in turbulence, as the low frequency power spectra of the streamwise and transverse turbulence were reduced by up to ten times and 100 times, respectively.

  4. Inlet Development for a Rocket Based Combined Cycle, Single Stage to Orbit Vehicle Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.

    1999-01-01

    Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.

  5. Procedure for Determining One-Dimensional Flow Distributions in Arbitrarily Connected Passages Without the Influence of Pumping

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.

    2004-01-01

    A calculation procedure is presented which allows the one-dimensional determination of flow distributions in arbitrarily connected (branching) flow passages having multiple inlets and exits. The procedure uses an adaptation of the finite element technique, iteratively coupled with an accurate one-dimensional flow solver. The procedure eliminates the usual restrictions inherent with finite element flow calculations. Unlike existing one-dimensional methods, which require simplifications to the flow equations (uncoupling the momentum and energy equations), to allow for arbitrary branching and multiple inlets and exits, the only limitation of the described methodology is that, at present, it can only accommodate non-rotating configurations (no pumping effects). The calculation procedure is robust, and will always converge for physically possible flow. The procedure is described, and its use is illustrated by an example.

  6. Continuous scanning of the mobility and size distribution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    2006-12-01

    Measuring of charged nanometer particles in atmospheric air is a routine task in research on atmospheric electricity, where these particles are called the atmospheric ions. An aspiration condenser is the most popular instrument for measuring atmospheric ions. Continuous scanning of a mobility distribution is possible when the aspiration condenser is connected as an arm of a balanced bridge. Transfer function of an aspiration condenser is calculated according to the measurements of geometric dimensions, air flow rate, driving voltage, and electric current. The most complicated phase of the calibration is the estimation of the inlet loss of ions due to the Brownian deposition. The available models of ion deposition on the protective inlet screen and the inlet control electrofilter have the uncertainty of about 20%. To keep the uncertainty of measurements low the adsorption should not exceed a few tens of percent. The online conversion of the mobility distribution to the size distribution and a correct reduction of inlet losses are possible when air temperature and pressure are measured simultaneously with the mobility distribution. Two instruments called the Balanced Scanning Mobility Analyzers (BSMA) were manufactured and tested in routine atmospheric measurements. The concentration of atmospheric ions of the size of about a few nanometers is very low and a high air flow rate is required to collect enough of ion current. The air flow of 52 l/s exceeds the air flow in usual aerosol instruments by 2-3 orders of magnitude. The high flow rate reduces the time of ion passage to 60 ms and the heating of air in an analyzer to 0.2 K, which suppresses a possible transformation of ions inside the instrument. The mobility range of the BSMA of 0.032-3.2 cm 2 V - 1 s - 1 is logarithmically uniformly divided into 16 fractions. The size distribution is presented by 12 fractions in the diameter range of 0.4-7.5 nm. The measurement noise of a fraction concentration is typically

  7. Low-speed aerodynamic test of an axisymmetric supersonic inlet with variable cowl slot

    NASA Technical Reports Server (NTRS)

    Powell, A. G.; Welge, H. R.; Trefny, C. J.

    1985-01-01

    The experimental low-speed aerodynamic characteristics of an axisymmetric mixed-compression supersonic inlet with variable cowl slot are described. The model consisted of the NASA P-inlet centerbody and redesigned cowl with variable cowl slot powered by the JT8D single-stage fan simulator and driven by an air turbine. The model was tested in the NASA Lewis Research Center 9- by 15-foot low-speed tunnel at Mach numbers of 0, 0.1, and 0.2 over a range of flows, cowl slot openings, centerbody positions, and angles of attack. The variable cowl slot was effective in minimizing lip separation at high velocity ratios, showed good steady-state and dynamic distortion characteristics, and had good angle-of-attack tolerance.

  8. Tangential blowing for control of strong normal shock - Boundary layer interactions on inlet ramps

    NASA Technical Reports Server (NTRS)

    Schwendemann, M. F.; Sanders, B. W.

    1982-01-01

    The use of tangential blowing from a row of holes in an aft facing step is found to provide good control of the ramp boundary layer, normal shock interaction on a fixed geometry inlet over a wide range of inlet mass flow ratios. Ramp Mach numbers of 1.36 and 1.96 are investigated. The blowing geometry is found to have a significant effect on system performance at the highest Mach number. The use of high-temperature air in the blowing system, however, has only a slight effect on performance. The required blowing rates are significantly high for the most severe test conditions. In addition, the required blowing coefficient is found to be proportional to the normal shock pressure rise.

  9. Critical Propulsion Components. Volume 4; Inlet and Fan/Inlet Accoustics Team

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.

  10. Smart actuation of inlet guide vanes for small turbine engine

    NASA Astrophysics Data System (ADS)

    Rusovici, Razvan; Kwok Choon, Stephen T.; Sepri, Paavo; Feys, Joshuo

    2011-04-01

    Unmanned Aerial Vehicles (UAVs) have gained popularity over the past few years to become an indispensable part of aerial missions that include reconnaissance, surveillance, and communication [1]. As a result, advancements in small jet-engine performance are needed to increase the performance (range, payload and efficiency) of the UAV. These jet engines designed especially for UAV's are characterized by thrust force on the order of 100N and due to their size and weight limitations, may lack advanced flow control devices such as IGV [2]. The goal of the current study was to present a conceptual design of an IGV smart-material based actuation mechanism that would be simple, compact and lightweight. The compressor section of an engine increases the pressure and conditions the flow before the air enters the combustion chamber [3]. The airflow entering the compressor is often turbulent due to the high angle of incidence between engine inlet and free-stream velocity, or existing atmospheric turbulence. Actuated IGV are used to help control the relative angle of incidence of the flow that enters the engine compressor, thereby preventing flow separation, compressor stall and thus extending the compressor's operating envelope [4]. Turbine jet- engines which employ variable IGV were developed by Rolls Royce (Trent DR-900) and General Electric (J79).

  11. Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls

    NASA Technical Reports Server (NTRS)

    Hajek, T. J.; Wagner, J. H.; Johnson, B. V.; Higgins, A. W.; Steuber, G. D.

    1991-01-01

    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model.

  12. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Inlets and discharge piping: Valves. 45.155 Section 45... LINES Conditions of Assignment § 45.155 Inlets and discharge piping: Valves. (a) Except as provided in... have— (1) An automatic nonreturn valve with a positive means for closing; or (2) Two...

  13. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Inlets and discharge piping: Valves. 45.155 Section 45... LINES Conditions of Assignment § 45.155 Inlets and discharge piping: Valves. (a) Except as provided in... have— (1) An automatic nonreturn valve with a positive means for closing; or (2) Two...

  14. Validation of WIND for a Series of Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Abbott, John M.; Cavicchi, Richard H.

    2002-01-01

    Validation assessments compare WIND CFD simulations to experimental data for a series of inlet flows ranging in Mach number from low subsonic to hypersonic. The validation procedures follow the guidelines of the AIAA. The WIND code performs well in matching the available experimental data. The assessments demonstrate the use of WIND and provide confidence in its use for the analysis of aircraft inlets.

  15. 33 CFR 334.1240 - Sinclair Inlet; naval restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Sinclair Inlet; naval restricted...; naval restricted areas. (a) Sinclair Inlet: naval restricted areas—(1) Area No. 1. All the waters of... Navy. No person, vessel, craft, article or thing, except those under supervision of military or...

  16. 33 CFR 334.1240 - Sinclair Inlet; naval restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sinclair Inlet; naval restricted...; naval restricted areas. (a) Sinclair Inlet: naval restricted areas—(1) Area No. 1. All the waters of... Navy. No person, vessel, craft, article or thing, except those under supervision of military or...

  17. Aerodynamic and directional acoustic performance of a scoop inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Dietrich, D. A.

    1977-01-01

    Aerodynamic and directional acoustic performances of a scoop inlet were studied. The scoop inlet is designed with a portion of the lower cowling extended forward to direct upward any noise that is propagating out the front of the engine toward the ground. The tests were conducted in an anechoic wind tunnel facility at free stream velocities of 0, 18, 41, and 61 m/sec and angles of attack from -10 deg to 120 deg. Inlet throat Mach number was varied from 0.30 to 0.75. Aerodynamically, at a free stream velocity of 41 m/sec, the design throat Mach number (0.63), and an angle of attack of 50 deg, the scoop inlet total pressure recovery was 0.989 and the total pressure distortion was 0.15. The angles of attack where flow separation occurred with the scoop inlet were higher than those for a conventional symmetric inlet. Acoustically, the scoop inlet provided a maximum noise reduction of 12 to 15 db below the inlet over the entire range of throat Mach number and angle of attack at a free-stream velocity of 41 m/sec.

  18. Isolated testing of highly maneuverable inlet con cepts

    NASA Technical Reports Server (NTRS)

    Norby, W. P.; Haeffele, B. A.; Burley, R. R.

    1986-01-01

    Ten percent scale models of a Mach 2.2 two dimensional inlet and a Mach 2.0 axisymmetric inlet were tested in the NASA Lewis Research Center 8'x6' Supersonic Wind Tunnel as part of a cooperative effort with the McDonnell Aircraft Company. The objective of this effort was to test methods designed to increase the maneuvering performance of fighter aircraft inlets. Maneuvering improvement concepts were tested up to 40-deg angle of attack for Mach numbers of 0.6 and 0.9, and up to 25 deg for Mach numbers 1.2 and 1.4. Maneuvering improvement concepts included a rotating cowl lip, auxiliary inlets aft of the inlet throat, and a retracting centerbody for the axisymmetric inlet. Test results show that the rotating cowl design was effective in improving subsonic maneuvering performance for both inlets. Auxiliary inlets did not produce significant performance increases for either model. The retracted centerbody resulted in some performance benefits at high angles of attack. None of the maneuvering improvement concepts were effective at Mach 1.2 and 1.4.

  19. 33 CFR 334.1310 - Lutak Inlet, Alaska; restricted areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... areas. 334.1310 Section 334.1310 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1310 Lutak Inlet, Alaska; restricted areas. (a) The areas—(1) Army POL dock restricted area. (i) The waters of Lutak Inlet bounded...

  20. 33 CFR 334.1310 - Lutak Inlet, Alaska; restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... areas. 334.1310 Section 334.1310 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1310 Lutak Inlet, Alaska; restricted areas. (a) The areas—(1) Army POL dock restricted area. (i) The waters of Lutak Inlet bounded...

  1. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Inlet, engine, and exhaust compatibility. 25.941 Section 25.941 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or...

  2. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Inlet, engine, and exhaust compatibility. 25.941 Section 25.941 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or...

  3. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Inlet, engine, and exhaust compatibility. 25.941 Section 25.941 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or...

  4. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Inlet, engine, and exhaust compatibility. 25.941 Section 25.941 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or...

  5. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Inlet, engine, and exhaust compatibility. 25.941 Section 25.941 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or...

  6. The relationship between particle deposition in the anterior nasal passage and nasal passage characteristics.

    PubMed

    Kesavan, J; Bascom, R; Laube, B; Swift, D L

    2000-01-01

    The objective of this study was to examine the effects of nasal passage characteristics on anterior particle deposition during cyclical breathing. Forty healthy, nonsmoking, adult subjects participated in this study. Nasal passage characteristics such as nostril length, width, angle, ellipticity, and minimum nasal cross-sectional area were measured. The subjects inhaled a polydisperse radioactively tagged aerosol (mass median aerodynamic diameter = 5.4 microns, geometric standard deviation [GSD] = 1.3) into the nose and exhaled through the mouth. The amount of radioactivity in the nose was measured immediately after inhalation and thereafter for 54 minutes. At 52.5 minutes, subjects wiped the accessible portion of the anterior nose to remove any remaining activity. The difference in activity at 52 and 54 minutes was used as a measure of activity removed during the nose wipe. Percentage of activity in the nasal passage at 52 minutes and percentage of activity removed with the nose wipe were considered surrogates for particles deposited in the anterior nasal passage. A multiple regression analysis showed that the degree of ellipticity of the nostrils was significantly related to particle deposition in the anterior nasal passage. These results suggest that ellipticity of the nostrils may be a determinant of the amount of particle deposition in the anterior nasal passage.

  7. Analytical and experimental studies of a short compact subsonic diffuser for a two-dimensional supersonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Burley, Richard R.; Johns, Albert L.

    1993-01-01

    An experimental study of a two-dimensional supersonic inlet with a short compact subsonic diffuser, length to exit diameter (dl/d) ratio of 1.25, was conducted to investigate the impact of the short diffuser on inlet performance at low speeds and to assess the diffuser subsonic performance for a simulated diffuser flow corresponding to high-speed inlet conditions near the design flight Mach number of 2.2. For the low-speed testing, a drooped lip was employed to improve the inlet performance at a high angle of attack. For the simulated high-speed testing, air was blown through slots or discrete nozzles as an active boundary-layer control. The results from the low-speed performance test were compared with the results from a previous test program on the same inlet with a long subsonic diffuser (dl/d = 4.5). The comparison indicates that inlet recovery was not affected by the use of the short diffuser for either the baseline (no droop) or the drooped cowl lip configuration. However, the inlet baseline distortion for the short diffuser configuration was substantially higher than for the long diffuser. A comparison of the two configurations with a 70 deg drooped lip showed no significant difference in distortion. For the portion of the experimental program in which diffuser conditions for high-speed flight were simulated, diffuser-induced flow separation occurred. This separation was predicted from an analytical study that used the Hess potential flow panel method and the Herring two-dimensional boundary-layer analysis computer codes. The flow separated mainly on the diffuser ramp. Subsequent tests in which boundary-control systems were utilized showed that blowing with either slots or discrete nozzles could suppress the flow separation in the short subsonic diffuser, thereby substantially improving the diffuser performance.

  8. Conceptual study of a turbojet/ramjet inlet

    NASA Technical Reports Server (NTRS)

    Weidner, J. P.

    1979-01-01

    An inlet concept for separate turbojet and ramjet engines was defined and compared with an equivalent inlet for a wraparound turboramjet engine. The comparison was made for a typical high altitude hypersonic cruise vehicle where the turbojet inlet capture area was required to be half as large as the ramjet inlet capture area at cruise. The use of a shorter nacelle having substantially lower cooling requirements at cruise for the inlet concept for separate turbojet and ramjet engines is suggested. The separate engine concept better isolates the turbojet from the ramjet, requires no special close off mechanisms within the turbojet, and avoids the circumferential heat load imposed by a wraparound ramjet. A more variable geometry is required.

  9. Computational Analysis of a Low-Boom Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2011-01-01

    A low-boom supersonic inlet was designed for use on a conceptual small supersonic aircraft that would cruise with an over-wing Mach number of 1.7. The inlet was designed to minimize external overpressures, and used a novel bypass duct to divert the highest shock losses around the engine. The Wind-US CFD code was used to predict the effects of capture ratio, struts, bypass design, and angles of attack on inlet performance. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center. Test results showed that the inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a stable operating range much larger than that of an engine. Predictions generally compared very well with the experimental data, and were used to help interpret some of the experimental results.

  10. Acoustic characteristics of two hybrid inlets at forward speed

    NASA Astrophysics Data System (ADS)

    Falarski, M. D.; Moore, M. T.

    1980-02-01

    A wind tunnel investigation of the acoustic and aerodynamic characteristics of two hybrid inlets installed on a JT15D-1 turbofan engine was performed. The hybrid inlets combined moderate throat Mach number and wall acoustic treatment to suppress the fan inlet noise. Acoustic and aerodynamic data were recorded over a range of flight and engine operating conditions. In a simulated flight environment, the hybrid inlets provided significant levels of suppression at both design and off-design throat Mach numbers with good aerodynamic performance. A comparison of inlet noise at quasi-static and forward-speed conditions in the wind tunnel showed a reduction in the fan tones, demonstrating the flight cleanup effect. High angles of attack produced slight increases in fan noise at the high acoustic directivity angles.

  11. Minimum weight design of a generic axisymmetric inlet

    NASA Technical Reports Server (NTRS)

    Nadell, Shari-Beth

    1996-01-01

    A new minimum weight design method for high-speed axisymmetric inlets was demonstrated on a generic inlet. The method uses Classical Beam Theory and shell buckling to determine the minimum required equivalent isotropic thickness for a stiffened shell based on prescribed structural design requirements and load conditions. The optimum spacing and equivalent isotropic thickness of ring frame supports are computed to prevent buckling. The method thus develops a preliminary structural design for the inlet and computes the structural weight. Finite element analyses were performed on the resulting inlet design to evaluate the analytical results. Comparisons between the analytical and finite element stresses and deflections identified areas needing improvement in the analytical method. The addition of the deflection due to shear and a torsional buckling failure mode to the new method brought its results in line with those from the finite element analyses. Final validation of the new method will be made using data from actual inlets.

  12. Trapped Ion Quantum Computation by Adiabatic Passage

    SciTech Connect

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-11-07

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  13. 37. INTERIOR VIEW, CENTRAL PASSAGE AND STAIRCASE LEADING TO THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. INTERIOR VIEW, CENTRAL PASSAGE AND STAIRCASE LEADING TO THE SECOND FLOOR; THE STAIR RISES AT THE EAST WALL OF THE PASSAGE - Arlington Place, 331 Cotton Avenue, Southwest, Birmingham, Jefferson County, AL

  14. Curved centerline air intake for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Ruehr, W. C.; Younghans, J. L.; Smith, E. B. (Inventor)

    1980-01-01

    An inlet for a gas turbine engine was disposed about a curved centerline for the purpose of accepting intake air that is flowing at an angle to engine centerline and progressively turning that intake airflow along a curved path into alignment with the engine. This curved inlet is intended for use in under the wing locations and similar regions where airflow direction is altered by aerodynamic characteristics of the airplane. By curving the inlet, aerodynamic loss and acoustic generation and emission are decreased.

  15. Silicon Microleaks for Inlets of Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Harpold, Dan; Hasso, Niemann; Jamieson, Brian G.; Lynch, Bernard A.

    2009-01-01

    Microleaks for inlets of mass spectrometers used to analyze atmospheric gases can be fabricated in silicon wafers by means of photolithography, etching, and other techniques that are commonly used in the manufacture of integrated circuits and microelectromechanical systems. The microleaks serve to limit the flows of the gases into the mass-spectrometer vacuums to specified very small flow rates consistent with the capacities of the spectrometer vacuum pumps. There is a need to be able to precisely tailor the dimensions of each microleak so as to tailor its conductance to a precise low value. (As used here, "conductance" signifies the ratio between the rate of flow in the leak and the pressure drop from the upstream to the downstream end of the leak.) To date, microleaks have been made, variously, of crimped metal tubes, pulled glass tubes, or frits. Crimped-metal and pulled-glass-tube microleaks cannot readily be fabricated repeatably to precise dimensions and are susceptible to clogging with droplets or particles. Frits tend to be differentially chemically reactive with various gas constituents and, hence, to distort the gas mixtures to be analyzed. The present approach involving microfabrication in silicon largely overcomes the disadvantages of the prior approaches.

  16. Inlet Guide Vane Wakes Including Rotor Effects

    NASA Astrophysics Data System (ADS)

    Johnston, R. T.; Fleeter, S.

    2001-02-01

    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  17. Minimum fan turbine inlet temperature mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in turbine temperature which resulted from the application of the F-15 performance seeking control (PSC) minimum fan turbine inlet temperature (FTIT) mode during the dual-engine test phase is presented as a function of net propulsive force and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and partial afterburning power settings. The FTIT reductions for the supersonic tests are less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Subsonically at military power, FTIT reductions were above 70 R for either the left or right engines, and repeatable for the right engine. At partial afterburner and supersonic conditions, the level of FTIT reductions were at least 25 R and as much as 55 R. Considering that the turbine operates at or very near its temperature limit at these high power settings, these seemingly small temperature reductions may significantly lengthen the life of the turbine. In general, the minimum FTIT mode has performed well, demonstrating significant temperature reductions at military and partial afterburner power. Decreases of over 100 R at cruise flight conditions were identified. Temperature reductions of this magnitude could significantly extend turbine life and reduce replacement costs.

  18. Effect of Fin Passage Length on Optimization of Cylinder Head Cooling Fins

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Graham, R. W.

    1977-01-01

    The heat transfer performance of baffled cooling fins on cylinder heads of small, air-cooled, general-aviation aircraft engines was analyzed to determine the potential for improving cooling fin design. Flow baffles were assumed to be installed tightly against the fin end edges, an ideal baffle configuration for guiding all flow between the fins. A rectangular flow passage is thereby formed between each set of two adjacent fins, the fin base surface, and the baffle. These passages extend around each side of the cylinder head, and the cooling air absorbs heat as it flows within them. For each flow passage length, the analysis was concerned with optimizing fin spacing and thickness to achieve the best heat transfer for each fin width. Previous literature has been concerned mainly with maximizing the local fin conductance and has not considered the heating of the gas in the flow direction, which leads to higher wall temperatures at the fin passage exits. If the fins are close together, there is a large surface area, but the airflow is restricted.

  19. SERI Desiccant Cooling Test Facility. Status report. Preliminary data on the performance of a rotary parallel-passage silica-gel dehumidifier

    SciTech Connect

    Schultz, K.J.

    1986-04-01

    This report describes the SERI Desiccant Cooling Test Facility. The facility can test bench-scale rotary dehumidifiers over a wide range of controlled conditions. We constructed and installed in the test loop a prototype parallel-passage rotary dehumidifier that has spirally wound polyester tape coated with silica gel. The initial tests gave satisfactory results indicating that approximately 90% of the silica gel was active and the overall Lewis number of the wheel was near unity. The facility has several minor difficulties including an inability to control humidity satisfactorily and nonuniform and highly turbulent inlet velocities. To completely validate the facility requires a range of dehumidifier designs. Several choices are available including constructing a second parallel-passage dehumidifier with the passage spacing more uniform.

  20. LDA measurement of the passage flow field in a 3-D airfoil cascade

    NASA Technical Reports Server (NTRS)

    Stauter, R. C.; Fleeter, S.

    1986-01-01

    Three-dimensional internal flow computational models are currently being developed to predict the flow through turbomachinery blade rows. For these codes to be of quantitative value, they must be verified with data obtained in experiments which model the fundamental flow phenomena. In this paper, the complete three-dimensional flow field through a subsonic annular cascade of cambered airfoils is experimentally quantified. In particular, detailed three-dimensional data are obtained to quantify the inlet velocity profile, the cascade passage velocity field, and the exit region flow field. The primary instrumentation for acquiring these data is a single-channel Laser Doppler Anemometer operating in the backscatter mode, with chordwise distributions of airfoil surface static pressure taps also utilized. Appropriate data are correlated with predictions from the MERIDL/TSONIC codes.

  1. Released air during vapor and air cavitation

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Kozubková, Milada

    2016-06-01

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ɛ model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  2. Measuring Gains in Reading Ability with Passage Reading Fluency

    ERIC Educational Resources Information Center

    Jenkins, Joseph R.; Zumeta, Rebecca; Dupree, Opio; Kent Johnson

    2005-01-01

    This study examined several aspects of Passage Reading Fluency (PRF) including performance variability across passages alternative designs for measuring PRF gain, and effects on PRF level from retesting with the same passages. Participants were 33 students from grades 2 to 10 attending a school for students with learning disabilities. PRF was…

  3. Safe Passage: Making It through Adolescence in a Risky Society.

    ERIC Educational Resources Information Center

    Dryfoos, Joy G.

    The primary job of parents is to ensure safe passage for their children from infancy through adolescence to adulthood. Research has indicated many things schools can do to turn the privilege of safe passage into a right. Three research-based programs that work to achieve safe passage are described. The first is Caring Connection, a "one-stop-shop"…

  4. 75 FR 61479 - Western Passage OCGenTM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Energy Regulatory Commission Western Passage OCGen\\TM\\ Power Project; Notice of Preliminary Permit... permit, pursuant to section 4(f) of the Federal Power Act, proposing to study the feasibility of the Western Passage OCGen\\TM\\ Power Project, located in Western Passage, in the vicinity of the City...

  5. Response of Juvenile Pacific Lamprey to Turbine Passage

    SciTech Connect

    Dauble, D.

    2009-09-14

    To help determine the Pacific lamprey’s ability to survive turbine passage, Pacific Northwest National Laboratory scientists conducted laboratory tests designed to simulate a fish’s passage through the turbine environment. Juvenile Pacific lamprey were subjected to two of three aspects of passage: pressure drop and shear stress. The third aspect, blade strike, was not tested.

  6. Interior view, ground floor passage crossing the main corridor at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, ground floor passage crossing the main corridor at its center, looking east through the doorway linking the two perpendicular axes. The door at the end of the passage opens onto a passage running under the entrance portico bearing ground floor exterior doors at each end. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA

  7. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    PubMed

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted. PMID:24348146

  8. Southern Salish Sea Habitat Map Series: Admiralty Inlet

    USGS Publications Warehouse

    Cochrane, Guy R.; Dethier, Megan N.; Hodson, Timothy O.; Kull, Kristine K.; Golden, Nadine E.; Ritchie, Andrew C.; Moegling, Crescent; Pacunski, Robert E.; Cochrane, Guy R.

    2015-01-01

    Puget Sound is separated into four interconnected basins; Whidbey, Central (Main), Hood Canal, and South (Thomson, 1994). The Whidbey, Central, and Hood Canal basins are the three main branches of the Puget Sound estuary and are separated from the Strait of Juan de Fuca by a double sill at Admiralty Inlet. The Admiralty Inlet map area includes the Inlet and a portion of the Whidbey Basin (fig. 1). The shallower South Basin is separated by a sill at Tacoma Narrows and is highly branched with numerous finger inlets. Flow within Puget Sound is dominated by tidal currents of as much as 1 m/s at Admiralty Inlet, reducing to approximately 0.5 m/s in the Central Basin (Lavelle and others, 1988). The lack of silt and clay-sized sediments in the Admiralty Inlet map area is likely a result of the strong currents (see Ground-Truth Studies for the Admiralty Inlet Map Area, sheet 3). The subtidal component of flow reaches approximately 0.1 m/s and is driven by density gradients arising from the contrast in salty ocean water at the entrance and freshwater inputs from stream flow (Lavelle and others, 1988). The total freshwater input

  9. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    NASA Technical Reports Server (NTRS)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  10. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    PubMed Central

    Wang, Lei; Cao, Shibin

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted. PMID:24348146

  11. Observations of Currents in Two Tidally Modulated Inlets

    NASA Astrophysics Data System (ADS)

    Lippmann, T. C.; Irish, J. D.; Hunt, J.

    2012-12-01

    Observations of currents obtained in two tidally modulated inlets are used to examine the spatial evolution of the vertical structure in hourly averaged mean flow and at tidal frequencies. Field experiments of 30 day duration were conducted at Hampton/Seabrook Harbor, NH, in the Fall of 2011 and again at New River Inlet, NC, in the spring of 2012. The temporal variation and vertical structure of the currents were observed with 600 khz and 1200 khz RDI Acoustic Doppler Current Profilers (ADCP) deployed on low-profile bottom tripods just outside and within the inlet mouth, and with a Nortek Aquadopp Profiler mounted on a jetted pipe on the flank of the inlet channel. Across-inlet current profiles were obtained at each site at various tidal stages with a 1200 khz RDI vessel-mounted ADCP onboard the personal watercraft (the Coastal Bathymetry Survey System, or CBASS) that transited the inlet multiple times at various spatial locations. Flows within the inlet were dominated by semi-diurnal tides, ranging from 2.5 to 4 m in elevation at Hampton/Seabrook Harbor with velocities exceeding 3 m/s, and tides ranging from 1 to 1.5 m in elevation at New River Inlet with velocities exceeding 2 m/s. Flows sampled with the CBASS will be used to examine the horizontal and vertical variation in mean currents (averaged over about 20 - 40 min) at various tidal stages. Currents sampled with the fixed instruments will be used to examine the temporal variation in amplitude and direction of mean currents (averaged over 30 - 60 min) as a function of depth, as well as the amplitude, phase, and rotational structure at tidal frequencies. Observations from the two field sites will be compared and discussed in terms of the spatial and temporal evolution from outside the river mouth to the inner inlet channels over the fortnightly sampling period.

  12. Investigation of Power Requirements for Ice Prevention and Cyclical De-Icing of Inlet Guide Vanes with Internal Electric Heaters

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Blatz, Robert E.

    1950-01-01

    An investigation was conducted to determine the electric power requirements necessary for ice protection of inlet guide vanes by continuous heating and by cyclical de-icing. Data are presented to show the effect of ambient-air temperature, liquid-water content, air velocity, heat-on period, and cycle times on the power requirements for these two methods of ice protection. The results showed that for a hypothetical engine using 28 inlet guide vanes under similar icing conditions, cyclical de-icing can provide a total power saving as high as 79 percent over that required for continuous heating. Heat-on periods in the order of 10 seconds with a cycle ratio of about 1:7 resulted in the best over-all performance with respect to total power requirements and aerodynamic losses during the heat-off period. Power requirements reported herein may be reduced by as much as 25 percent by achieving a more uniform surface-temperature distribution. A parameter in terms of engine mass flow, vane size, vane surface temperature, and the icing conditions ahead of the inlet guide vanes.was developed by which an extension of the experimental data to icing conditions and inlet guide vanes, other than those investigated was possible.

  13. Effects of radial and circumferential inlet velocity profile distortions on performance of a short-length double-annular ram induction combustor

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Perkins, P. J.

    1972-01-01

    Inlet air velocity profile tests were conducted on a full-scale short-length 102-centimeter-diameter annual combustor designed for advanced gas turbine engine applications. The inlet profiles studied include radial distortions that were center peaked, and tip peaked, as well as a circumferential distortion which was center peaked for one-third of the circumference and flat for the other two-thirds. An increase in combustor pressure loss was the most significant effect of the radial air velocity distortions. With the circumferential distortion, exit temperature pattern factor doubled when compared to a flat velocity profile.

  14. Cooling Characteristics of a Pratt and Whitney R-2800 Engine Installed in an NACA Short-nose High-inlet-velocity Cowling

    NASA Technical Reports Server (NTRS)

    Corson, Blake W.; McLellan, Charles H.

    1944-01-01

    An investigation was made of the cooling characteristics of a P and W R-2800 engine with NACA short-nose high inlet-velocity cowling. The internal aerodynamics of the cowling were studied for ranges of propeller-advance ratio and inlet-velocity ratio obtained by deflection of cowling flaps. Tests included variations of engine power, fuel/air ratio and cooling-air pressure drop. Engine cooling data are presented in the form of cooling correlation curves, and an example for calculation of cooling requirements in flight is included.

  15. Heavy minerals in surficial sediments from lower Cook Inlet, Alaska

    USGS Publications Warehouse

    Wong, F.L.

    1984-01-01

    Amphiboles, orthopyroxenes, and clinopyroxenes dominate the heavy mineral suite of surficial sediments in lower Cook Inlet, Alaska. Sources for these sediments include the igneous arc terrane of the northeast Alaska Range, reworked intrabasinal sediments, and local drainages in lower Cook Inlet. The distribution of these deposits is a reflection of both the tidal currents and the prevailing southerly net movement from the head of Cook Inlet. The heavy mineral studies concur with similar findings from gravel analyses, clay mineral investigations, and quartz microtexture observations. ?? 1984 Springer-Verlag New York Inc.

  16. High-speed inlet research program and supporting analysis

    NASA Technical Reports Server (NTRS)

    Coltrin, Robert E.

    1990-01-01

    The technology challenges faced by the high speed inlet designer are discussed by describing the considerations that went into the design of the Mach 5 research inlet. It is shown that the emerging three dimensional viscous computational fluid dynamics (CFD) flow codes, together with small scale experiments, can be used to guide larger scale full inlet systems research. Then, in turn, the results of the large scale research, if properly instrumented, can be used to validate or at least to calibrate the CFD codes.

  17. Prediction of sound radiation from different practical jet engine inlets

    NASA Technical Reports Server (NTRS)

    Zinn, B. T.; Meyer, W. L.

    1981-01-01

    Computer codes, capable of producing accurate results for nondimensional wave numbers (based on duct radius) of up to 20, were developed and used to generate results for various other inlet configurations. Both reflection coefficients and radiation patterns were calculated by the integral solution procedure for the following five inlet configurations: the NASA Langley Bellmouth, the NASA Lewis JT-15D-1 ground test nacelle, and three hyperbolic inlets of 50, 70, and 90 degrees. Results obtained are compared with results from other experimental and theoretical studies.

  18. Esophageal Rings and Stricture Related to a Circumferential Inlet Patch

    PubMed Central

    Scott, Larry

    2016-01-01

    Inlet patches are sometimes seen during upper endoscopy, usually in the proximal esophagus. Complications of inlet patches can cause a wide array of symptoms and complications. A man presented with dysphagia and was found to have 2 rings in the upper esophagus, just above and below a circumferential inlet patch. The more distal ring caused a stenosis, which produced the symptoms. Savary dilation and treatment with a proton pump inhibitor led to symptom resolution. Pathology was missed on the patient's first endoscopy, highlighting the importance of looking for pathology throughout the entire esophagus, not just in the distal esophagus.

  19. Feasibility study of inlet shock stability system of YF-12

    NASA Technical Reports Server (NTRS)

    Blausey, G. C.; Coleman, D. M.; Harp, D. S.

    1972-01-01

    The feasibility of self actuating bleed valves as a shock stabilization system in the inlet of the YF-12 is considered for vortex valves, slide valves, and poppet valves. Analytical estimation of valve performance indicates that only the slide and poppet valves located in the inlet cowl can meet the desired steady state stabilizing flows, and of the two the poppet valve is substantially faster in response to dynamic disturbances. The poppet valve is, therefore, selected as the best shock stability system for the YF-12 inlet.

  20. Prediction of sound radiation from different practical jet engine inlets

    NASA Astrophysics Data System (ADS)

    Zinn, B. T.; Meyer, W. L.

    Computer codes, capable of producing accurate results for nondimensional wave numbers (based on duct radius) of up to 20, were developed and used to generate results for various other inlet configurations. Both reflection coefficients and radiation patterns were calculated by the integral solution procedure for the following five inlet configurations: the NASA Langley Bellmouth, the NASA Lewis JT-15D-1 ground test nacelle, and three hyperbolic inlets of 50, 70, and 90 degrees. Results obtained are compared with results from other experimental and theoretical studies.

  1. Performance and boundary-layer evaluation of a sonic inlet

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Ruggeri, R. S.

    1976-01-01

    Tests were conducted to determine the boundary layer characteristics and aerodynamic performance of a radial vane sonic inlet with a length/diameter ratio of 1 for several vane configurations. The sonic inlet was designed with a slight wavy wall type of diffuser geometry, which permits operation at high inlet Mach numbers (sufficiently high for good noise suppression) without boundary layer flow separation and with good total pressure recovery. A new method for evaluating the turbulent boundary layer was developed to separate the boundary layer from the inviscid core flow, which is characterized by a total pressure variation from hub to tip, and to determine the experimental boundary layer parameters.

  2. Analysis of an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1992-01-01

    It is shown that a time marching Navier-Stokes code called PARC can be utilized to provide a reasonable prediction of the flow field within an inlet for an advanced ducted propeller. The code validation was implemented for a nonseparated flow condition associated with the inlet functioning at angles-of-attack of zero and 25 deg. Comparison of the computational results with the test data shows that the PARC code with the propeller face fixed flow properties boundary conditions (BC) provided a better prediction of the inlet surface static pressures than the prediction when the mass flow BC was employed.

  3. Distortion-rotor interaction noise produced by a drooped inlet

    NASA Technical Reports Server (NTRS)

    Smith, E. B.; Moore, M. T.; Gliebe, P. R.

    1980-01-01

    The 'drooped' inlet used on most wing mounted engines produces a wall static pressure distortion at the fan face of about plus or minus 2%. The interaction of the fan rotor with this fixed distortion pattern produces blade passing frequency and harmonic tone levels in flight which contribute to forward radiated engine noise spectra. Data from a wind tunnel test, using both a drooped inlet and an inlet with no droop, show large changes in forward radiated noise levels over a limited fan speed range. An analytical model of this fan noise mechanism is developed and is used to account for the major features of the measured results.

  4. Variable geometry inlet design for scram jet engine

    NASA Technical Reports Server (NTRS)

    Guinan, Daniel P. (Inventor); Drake, Alan (Inventor); Andreadis, Dean (Inventor); Beckel, Stephen A. (Inventor)

    2005-01-01

    The present invention relates to an improved variable geometry inlet for a scram jet engine having at least one combustor module. The variable geometry inlet comprises each combustor module having two sidewalls. Each of the sidewalls has a central portion with a thickness and a tapered profile forward of the central portion. The tapered profile terminates in a sharp leading edge. The variable geometry inlet further comprises each module having a lower wall and a movable cowl flap positioned forward of the lower wall. The movable cowl flap has a leading edge and the leading edges of the sidewalls intersect the leading edge of the cowl flap.

  5. Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.; DeBonis, J. R.

    1999-01-01

    A study of the Trailblazer vehicle inlet was conducted using the Global Air Sampling Program (GASP) code for flight Mach numbers ranging from 4-12. Both perfect gas and finite rate chemical analysis were performed with the intention of making detailed comparisons between the two results. Inlet performance was assessed using total pressure recovery and kinetic energy efficiency. These assessments were based upon a one-dimensional stream-thrust-average of the axisymmetric flowfield. Flow visualization utilized to examine the detailed shock structures internal to this mixed-compression inlet. Kinetic energy efficiency appeared to be the least sensitive to differences between the perfect gas and finite rate chemistry results. Total pressure recovery appeared to be the most sensitive discriminator between the perfect gas and finite rate chemistry results for flight Mach numbers above Mach 6. Adiabatic wall temperature was consistently overpredicted by the perfect gas model for flight Mach numbers above Mach 4. The predicted shock structures were noticeably different for Mach numbers from 6-12. At Mach 4, the perfect gas and finite rate chemistry models collapse to the same result.

  6. Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones

    NASA Astrophysics Data System (ADS)

    Erikli, Ş.; Olcay, A. B.

    2015-08-01

    This study investigates hydrocyclone performance of an oil injected screw compressor. Especially, the oil separation efficiency of a screw compressor plays a significant role for air quality and non-stop working hour of compressors has become an important issue when the efficiency in energy is considered. In this study, two separation efficiency parameters were selected to be hydrocyclone inlet diameter and flow volume height between oil reservoir surface and top of the hydrocyclone. Nine different cases were studied in which cyclone inlet diameter and flow volume height between oil reservoir surface and top were investigated in regards to separation and energy performance aspects and the effect of the parameters on the general performance appears to be causing powerful influence. Flow inside the hydrocyclone geometry was modelled by Reynolds Stress Model (RSM) and hydro particles were tracked by Discrete Phase Model (DPM). Besides, particle break up was modelled by the Taylor Analogy Breakup (TAB) model. The reversed vortex generation was observed at different planes. The upper limit of the inlet diameter of the cyclone yields the centrifugal force on particles to decrease while the flow becomes slower; and the larger diameter implies slower flow. On the contrary, the lower limit is increment in speed causes breakup problems that the particle diameters become smaller; consequently, it is harder to separate them from gas.

  7. The Effect of Inlet Aspiration of Aerosol Odd-nitrogen Species on NOy Budget Determination.

    NASA Astrophysics Data System (ADS)

    Knapp, D. J.; Rogers, D. C.; Weinheimer, A. J.; Montzka, D.; Flocke, F. M.; Zheng, W.; Wennberg, P.; Crounse, J.; McCabe, D.; Decarlo, P.; Dunlea, E.; Aiken, A.; Jimenez, J.; Blake, D.

    2007-12-01

    During the MILAGRO/MIRAGE-MEX campaign in March 2006, the NCAR chemiluminescence NOx, NOy, O3 instrument was flown aboard the NSF C-130 in and around the Mexico City Metropolitan Area (MCMA) to sample the urban pollution plume. The NOy instrument sampled ambient air from an aft-facing inlet extended on a pylon from the bottom of the aircraft, in a continuously aspirated flow of about 1 SLM. The sample flow entrained small aerosols which is understood from a practical perspective, but until this time had not been quantified for this inlet configuration. During flights close to MCMA, relatively high values of ammonium nitrate aerosol (5.2 ppbv equivalent mixing ratio) were measured by the University of Colorado AMS instrument coincidently with high NOy readings (5.5 ppbv) from the NCAR NOy instrument. Subsequent analysis of the NOy partitioning resulted in a component NOy deficiency of 15 - 40 percent, based on independent but concomitantly measured major NOy species: NOx, PANs, HNO3, alkyl nitrates and aerosol NH4NO3. The aspiration efficiency of small aerosols from the NOy inlet was modeled using the Fluent aerodynamic model. The amount of aerosol NH4NO3 and HNO3 on fine dust were calculated based on the determined aspiration efficiencies for a range of aerosol masses, and the potential contribution of these species to the NOy budget was determined. Systematic aspiration of an unknown amount of these aerosols may at least partially explain historic examples of missing NOy.

  8. Admiralty Inlet Advanced Turbulence Measurements: May 2015

    DOE Data Explorer

    Kilcher, Levi

    2015-05-18

    This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). These platforms position ADV heads above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring and buoy motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. The TTM was deployed with one ADV, it's position was: 48 09.145', -122 41.209' The StableMoor was deployed twice, the first time it was deployed in 'wing-mode' with two ADVs ('Port' and 'Star') at: 48 09.166', -122 41.173' The second StableMoor deployment was in 'Nose' mode with one ADV at: 48 09.166', -122 41.174' Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.

  9. Admiralty Inlet Advanced Turbulence Measurements: June 2014

    DOE Data Explorer

    Kilcher, Levi

    2014-06-30

    This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. Each ttm was deployed with two ADVs. The 'top' ADV head was positioned 0.5m above the 'bottom' ADV head. The TTMs were placed in 58m of water. The position of the TTMs were: ttm01 : (48.1525, -122.6867) ttm01b : (48.15256666, -122.68678333) ttm02b : (48.152783333, -122.686316666) Deployments TTM01b and TTM02b occurred simultaneously and were spaced approximately 50m apart in the cross-stream direction. Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.

  10. Evaluation of intrusion sensors and video assessment in areas of restricted passage

    SciTech Connect

    Hoover, C.E.; Ringler, C.E.

    1996-04-01

    This report discusses an evaluation of intrusion sensors and video assessment in areas of restricted passage. The discussion focuses on applications of sensors and video assessment in suspended ceilings and air ducts. It also includes current and proposed requirements for intrusion detection and assessment. Detection and nuisance alarm characteristics of selected sensors as well as assessment capabilities of low-cost board cameras were included in the evaluation.

  11. Improving hydroturbine pressures to enhance salmon passage survival and recovery

    SciTech Connect

    Trumbo, Bradly A.; Ahmann, Martin L.; Renholods, Jon F.; Brown, Richard S.; Colotelo, Alison H. A.; Deng, Zhiqun

    2013-12-12

    This paper provides an overview of turbine pressure data collection and barotrauma studies relative to fish passage through large Kaplan turbines and how this information may be applied to safer fish passage through turbines. The specific objectives are to 1) discuss turbine pressures defined by Sensor Fish releases; 2) discuss what has been learned about pressure effects on fish and the factors influencing barotrauma associated with simulated turbine passage; 3) elucidate data gaps associated with fish behavior and passage that influence barotrauma during turbine passage; 4) discuss how the results of these studies have led to turbine design criteria for safer fish passage; and 5) relate this information to salmon recovery efforts and safer fish passage for Atlantic and Pacific salmonids.

  12. Inverse design of a turbine cascade passage and DNS of a stationary and rotating serpentine passage

    NASA Astrophysics Data System (ADS)

    Laskowski, Gregory Michael

    2005-12-01

    Experimental investigations of the flow physics past a single stationary transonic turbine blade in a cascade are complicated by the periodic nature of the problem. Typically up to seven blades in a cascade are required to guarantee periodicity about the center blade that, in turn, requires large compressors at transonic speeds. One possibility to circumvent the constraint of so many blades, and allow the necessary optical access, is to place a single blade in a passage consisting of two plexiglass walls that are designed to obtain certain representative periodic flowfield characteristics. Using an optimization procedure based on the method of steepest descent and the RANS equations, the walls were designed to ensure that the Surface Isentropic Mach Number (SIMN) distribution on the blade matched the SIMN of the same blade in an infinite cascade. The experimental setup imposed an additional constraint requiring the flow remained attached along both passage walls. A robust and autonomous design method using a weighted composite cost function was developed and successfully applied. Excellent agreement was achieved between CFD of the infinite cascade SIMN, CFD of the designed double passage SIMN, and the experimentally measured SIMN. Serpentine passages are found in a number of engineering applications including turbine blade cooling passages. The serpentine passage is an ideal candidate for conducting a thorough DNS study due to its geometric simplicity but complex flow physics. The serpentine passage geometry investigated has dimensions 12pidelta x 2delta x 3pidelta and radius of curvature delta/r c = 0.5 in the curved section. Simulations of a test matrix consisting of two different Reynolds numbers, Retau = 180 and Retau = 250, subjected to two different orthogonal rotation numbers, Ro tau = 0 and Rotau = 5 was conducted. Whereas the stationary case results in a symmetric flowfield for the two U-bends constituting the passage, the effect of rotation coupled with

  13. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  14. Turbine engine component with cooling passages

    DOEpatents

    Arrell, Douglas J.; James, Allister W.

    2012-01-17

    A component for use in a turbine engine including a first member and a second member associated with the first member. The second member includes a plurality of connecting elements extending therefrom. The connecting elements include securing portions at ends thereof that are received in corresponding cavities formed in the first member to attach the second member to the first member. The connecting elements are constructed to space apart a first surface of the second member from a first surface of the first member such that at least one cooling passage is formed between adjacent connecting elements and the first surface of the second member and the first surface of the first member.

  15. Three dimensional viscous analysis of a hypersonic inlet

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.; Smith, G. E.; Liou, M.-F.; Benson, Thomas J.

    1989-01-01

    The flow fields in supersonic/hypersonic inlets are currently being studied at NASA Lewis Research Center using 2- and 3-D full Navier-Stokes and Parabolized Navier-Stokes solvers. These tools have been used to analyze the flow through the McDonnell Douglas Option 2 inlet which has been tested at Calspan in support of the National Aerospace Plane Program. Comparisons between the computational and experimental results are presented. These comparisons lead to better overall understanding of the complex flows present in this class of inlets. The aspects of the flow field emphasized in this work are the 3-D effects, the transition from laminar to turbulent flow, and the strong nonuniformities generated within the inlet.

  16. CFD Results for an Axisymmetric Isentropic Relaxed Compression Inlet

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Tacina, Kathleen M.; Conners, Timothy R.; Merret, Jason M.; Howe, Donald C.

    2008-01-01

    The OVERFLOW code was used to calculate the flow field for a family of five relaxed compression inlets, which were part of a screening study to determine a configuration most suited to the application of microscale flow control technology as a replacement for bleed. Comparisons are made to experimental data collected for each of the inlets in the 1- by 1-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center (GRC) to help determine the suitability of computational fluid dynamics (CFD) as a tool for future studies of these inlets with flow control devices. Effects on the wind tunnel results of the struts present in a high subsonic flow region accounted for most of the inconsistency between the results. Based on the level of agreement in the present study, it is expected that CFD can be used as a tool to aid in the design of a study of this class of inlets with flow control.

  17. 28. Main water inlet and outlet pipes under central corridor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Main water inlet and outlet pipes under central corridor of filtration bed building. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  18. LOOKOUT TOWER DETAILS, SHEET 5 OF 6. Oregon Inlet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOOKOUT TOWER DETAILS, SHEET 5 OF 6. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  19. INTERIOR TOWER ROOM LOOKING NORTHEAST. Oregon Inlet Coast Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER ROOM LOOKING NORTHEAST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  20. STRUCTURAL FLOOR PLAN, SHEET 2 OF 6. Oregon Inlet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STRUCTURAL FLOOR PLAN, SHEET 2 OF 6. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  1. Inlet total pressure loss due to acoustic wall treatment

    NASA Technical Reports Server (NTRS)

    Miller, B. A.

    1977-01-01

    The effect of diffuser wall acoustic treatment on inlet total pressure loss was experimentally determined. Data were obtained by testing an inlet model with 10 different acoustically treated diffusers differing only in the design of the Helmholtz resonator acoustic treatment. Tests were conducted in a wind tunnel at forward velocities to 41 meters per second for inlet throat Mach numbers of .5 to .8 and angles of attack as high as 50 degrees. Results indicate a pressure loss penalty due to acoustic treatment that increases linearly with the porosity of the acoustic facing sheet. For a surface porosity of 14 percent the total pressure loss was 21 percent greater than that for an untreated inlet.

  2. Straight type culvert headwall, Culvert No. 105 Inlet, oblique view, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Straight type culvert headwall, Culvert No. 105 Inlet, oblique view, view to northeast - Route No. 1-Overton-Lake Mead Road, Culverts and Headwalls, 6 miles south of Overton, Overton, Clark County, NV

  3. Hydrodynamics and sediment transport in a southeast Florida tidal inlet

    PubMed Central

    Fiechter, Jerome; Steffen, Kelley L.; Mooers, Christopher N.K.; Haus, Brian K.

    2009-01-01

    A three-dimensional ocean circulation model is used to investigate the hydrodynamics of a tidal inlet and deltas system in Southeast Florida, and to understand the consequences for suspended and bedload sediment transport patterns. The model reproduces observed tidal currents and provides insight about residual currents caused by spatial asymmetries in the inlet throat and tidal deltas during ebb and flood flows. A particle-tracking approach for suspended and bedload sediment transport is used to simulate deposition patterns for different particle sizes. The simulation results qualitatively correlate with the distribution of sediment characteristics within the tidal inlet and deltas system and demonstrate sensitivity to the choice of advection velocities (e.g., near-bottom versus depth-averaged) and regions of sediment origin. Furthermore, the distinction between suspended and bedload transport as a function of particle size indicates significant differences in deposition patterns and their potential connection to geomorphologic features of the tidal inlet and deltas system. PMID:19838314

  4. Wave-driven fluxes through New River Inlet, NC

    NASA Astrophysics Data System (ADS)

    Wargula, A.; Raubenheimer, B.; Elgar, S.

    2012-12-01

    The importance of wave forcing to inlet circulation is examined using observations of waves, water levels, and currents collected in and near New River Inlet, NC during April and May, 2012. A boat-mounted system was used to measure current profiles along transects across the inlet mouth during three 14-hr periods, providing information on cross-inlet current structure, as well as discharge. Additionally, an array of 13 colocated pressure gages and profilers were deployed along 2 km of the inlet channel (5 to 10 m water depths) and ebb shoal channel (2 to 3 m water depths) and 19 colocated pressure gages and acoustic Doppler velocimeters were deployed across and offshore of the ebb shoal (1 to 5 m water depths) (Figure 1). The inlet is well mixed and tidal currents ranged from +/- 1.5 m/s, maximum discharge rates at peak ebb and flood were about 700 to 900 m3/s, offshore significant wave heights Hsig were 0.5 to 2.5 m, and wind speeds ranged from 0 to 14 m/s. Time-integrated residual discharge over semi-diurnal tidal cycles with similar ranges was ebb dominant during calm conditions (May 11, net out-of-inlet discharge ~ 55 m3, Hsig ~ 0.5 m, NW winds ~ 3 m/s) and flood dominant during stormier conditions (May 14, net into-inlet discharge ~ 15 m3, Hsig ~ 1.2 m, S winds ~ 6.5 m/s). Low-pass filtered in situ profiler data suggest wave-forcing affects the fluxes into and out of the inlet. The observations will be used to examine the momentum balance governing the temporal and cross-inlet (channel vs. shoal) variation of these fluxes, as well as the effect of waves on ebb and flood flow dominance. Funding provided by the Office of Naval Research and a National Security Science and Engineering Faculty Fellowship.; Figure 1: Google Earth image of New River Inlet, NC. Colors are depth contours (scale on the right, units are m relative to mean sea level) and symbols are locations of colocated current meters and pressure gages.

  5. Velocity Field Characteristics at the Inlet to a Pipe Culvert

    NASA Astrophysics Data System (ADS)

    Kolerski, Tomasz; Wielgat, Paweł

    2014-12-01

    A poorly designed culvert inlet structure causes scouring, which can lead to the collapse of the culvert and significant damage to the neighboring land. A set of laboratory tests was evaluated to examine velocity distribution at the culvert inlet. A three-dimensional acoustic Doppler velocimeter was used to measure instantaneous flow velocity upstream of the culvert. The analysis of mean velocities, turbulence strength, and Reynolds stresses was performed to understand the flow structure near the culvert entrance.

  6. Utilizing numerical techniques in turbofan inlet acoustic suppressor design

    NASA Astrophysics Data System (ADS)

    Baumeister, K. J.

    Numerical theories in conjunction with previously published analytical results are used to augment current analytical theories in the acoustic design of a turbofan inlet nacelle. In particular, a finite element-integral theory is used to study the effect of the inlet lip radius on the far field radiation pattern and to determine the optimum impedance in an actual engine environment. For some single mode JT15D data, the numerical theory and experiment are found to be in a good agreement.

  7. 33 CFR 334.1240 - Sinclair Inlet; naval restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...°36′58″ West, on the south shore of Sinclair Inlet. (2) Area No. 2. That area of Sinclair Inlet to the...″ West (Point A); thence south to latitude 47°33′36″ North, longitude 122°37′30″ West (Point B); thence... (Point H). (3) The regulations. (i) Area No. 1. No vessel of more than, or equal to, 100 gross tons...

  8. Three-dimensional numerical simulation of gradual opening in a wave rotor passage

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.

    1993-01-01

    The evolution of the contact interface and the propagation of compression waves inside a single wave rotor passage gradually opening to and traversing an inlet port is studied numerically using an inviscid formulation of the governing equations. Insights into the response of the interface and kinematics of the flow field to various opening times are given. Since the opening time is inversely proportional to the rotational speed of the rotor, the effects of passage rotation such as centripetal and Coriolis accelerations are intrinsically coupled to the gradual opening process. Certain three-dimensional features associated with the gradual opening process as a result of centripetal and Coriolis accelerations are illustrated. For the range of opening times or rotational speeds considered, a portion of the interface behaves like a vortex sheet that can degenerate into a complex interfacial structure. The vortices produced along the interface can serve as a stirring mechanism to promote local mixing. Coriolis and centripetal accelerations can introduce three dimensional effects such as interfacial distortions in meridional planes and spanwise migration of fluid elements.

  9. Engine inlet distortion in a 9.2 percent scale vectored thrust STOVL model in ground effect

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George; Flood, J. D.; Amuedo, K. C.; Strock, T. W.

    1989-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft which can operate from remote locations, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-foot low speed wind tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results are presented which show the engine inlet distortions (both temperature and pressure) in a 9.2 percent scale vectored thrust STOVL model in ground effects. Results are shown for the forward nozzle splay angles of 0 degrees, -6 degrees, and 18 degrees. The model support system had 4 degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity was varied from 8 to 23 knots.

  10. Engine inlet distortion in a 9.2 percent scaled vectored thrust STOVL model in ground effect

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George; Flood, J. D.; Amuedo, K. C.; Strock, T. W.

    1989-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft which can operate from remote locations, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, a cooperative program has been defined for testing in the NASA Lewis 9- by 15-foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. This paper presents results showing the engine inlet distortions (both temperature and pressure) in a 9.2 percent scale Vectored Thrust STOVL model in ground effects. Results are shown for the forward nozzle splay angles of 0, -6, and 18 deg. The model support system had 4 deg of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity was varied from 8 to 23 kn.

  11. High-speed inlet research program and supporting analyses

    NASA Technical Reports Server (NTRS)

    Coltrin, Robert E.

    1987-01-01

    A Mach 5 cruise aircraft was studied in a joint program effort. The propulsion system chosen for this aircraft was an over-under turbojet/ramjet system. The ramjet portion of the inlet is to be tested in NASA Lewis' 10 x 10 SWT. Goals of the test program are to obtain performance data and bleed requirements, and also to obtain analysis code validation data. Supporting analysis of the inlet using a three-dimensional Navier-Stokes code (PEPSIS) indicates that sidewall shock/boundary layer interactions cause large separated regions in the corners underneath the cowl. Such separations generally lead to inlet unstart, and are thus a major concern. As a result of the analysis, additional bleed regions were added to the inlet model sidewalls and cowl to control separations in the corners. A two-dimensional analysis incorporating bleed on the ramp is also presented. Supporting experiments for the Mach 5 programs were conducted in the Lewis' 1 x 1 SWT. A small-scale model representing the inlet geometry up to the ramp shoulder and cowl lip was tested to verify the accelerator plate test technique and to obtain data on flow migration in the ramp and sidewall boundary layers. Another study explored several ramp bleed configurations to control boundary layer separations in that region. Design of a two-dimensional Mach 5 cruise inlet represents several major challenges including multimode operation and dual flow, high temperatures, and three-dimensional airflow effects.

  12. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  13. Large-Scale Low-Boom Inlet Test Overview

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie

    2011-01-01

    This presentation provides a high level overview of the Large-Scale Low-Boom Inlet Test and was presented at the Fundamental Aeronautics 2011 Technical Conference. In October 2010 a low-boom supersonic inlet concept with flow control was tested in the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). The primary objectives of the test were to evaluate the inlet stability and operability of a large-scale low-boom supersonic inlet concept by acquiring performance and flowfield validation data, as well as evaluate simple, passive, bleedless inlet boundary layer control options. During this effort two models were tested: a dual stream inlet intended to model potential flight hardware and a single stream design to study a zero-degree external cowl angle and to permit surface flow visualization of the vortex generator flow control on the internal centerbody surface. The tests were conducted by a team of researchers from NASA GRC, Gulfstream Aerospace Corporation, University of Illinois at Urbana-Champaign, and the University of Virginia

  14. Changes in bay circulation in an evolving multiple inlet system

    NASA Astrophysics Data System (ADS)

    Orescanin, Mara M.; Elgar, Steve; Raubenheimer, Britt

    2016-08-01

    Observations and numerical model (ADCIRC) simulations are used to quantify the changes in circulation within the evolving, shallow, two-inlet tidal Katama system, Martha's Vineyard, MA. From 2011 to 2013, Katama Inlet, connecting Katama Bay to the Atlantic, became 5 times longer, 1/3 as wide, and 1/3 as deep as the inlet migrated and rotated. This morphological evolution caused a significant loss of energy throughout Katama Bay and Edgartown Channel, which connects the bay to Vineyard Sound. The decrease in energy as the inlet evolved between 2011 and 2013 was not monotonic. Model simulations suggest bathymetric changes caused by Hurricane Irene (August 2011) resulted in a temporary increase in circulation energy throughout the inlets and bay. Changes in the M4 and M6 tidal constituents, harmonics of the primary M2 tidal forcing, suggest the changes in the observed circulation patterns primarily were owing to changes in friction, and not to changes in advection resulting from the evolving inlet location, orientation, or geometry, consistent with previous results.

  15. Sediment distribution and coastal processes in Cook Inlet, Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Gatto, L. W.; Mckim, H. L.; Petrone, A.

    1973-01-01

    Regional hydrologic and oceanographic relationships in Cook Inlet, Alaska have been recognized from sequential ERTS-1 MSS imagery. Current patterns are visible in the inlet because of differential concentrations of suspended sediment. The circulation patterns within Cook Inlet are controlled primarily by the interaction between the semi-diurnal tides and the counter clockwise Alaska current. In general, heavily sediment laden water is seen to be confined to portions of the inlet north of the Forelands and west of Kalgin Island. Tongues of clear oceanic water are observed to enter the inlet through Kennedy Channel along the east shoreline in the vicinity of Cape Elizabeth. A recurring counterclockwise circulation pattern observed around Kalgin Island seems to result from the interplay of the northerly moving water along the east shore and the southerly moving, sediment laden, water along the west side of the inlet. Prominent, fresh water plumes, heavily laden with sediment are visible at the mouths of all major rivers. Relect plumes from as many as three tidal stages have been recognized.

  16. Transplacental passage of insulin complexed to antibody.

    PubMed Central

    Bauman, W A; Yalow, R S

    1981-01-01

    The passage of plasma proteins across the placental barrier in humans is known to be highly selective. Thus, free maternal insulin has been reported not to cross the normal maternofetal barrier, although insulin-binding antibodies have been detected in newborn infants whose diabetic mothers received insulin therapy. In this report we demonstrate, with the use of a human antiserum that permits distinction between human and animal insulins, that insulin in the cord blood of each of two neonates of insulin-treated diabetic mothers was, in part, animal insulin. The higher the antibody titer of the mother the greater was the total insulin in the cord plasma and the greater was the fraction that was animal insulin. In case 1 cord plasma insulin was 0.7 unit/liter, of which 10% was animal insulin; in case 2 cord plasma insulin was 3.5 units/liter, of which 25% was animal insulin. The demonstration that antigen restricted from transplacental passage can be transferred while complexed to antibody raises the question whether such fetal exposure would induce partial or total immunologic unresponsiveness subsequently if the fetus were rechallenged with the same antigen. PMID:7027265

  17. Ice Thickness in the Northwest Passage

    NASA Astrophysics Data System (ADS)

    Haas, C.; Howell, S.

    2015-12-01

    Recently the feasibility of commercial shipping in the ice-prone Northwest Passage has attracted a lot of attention. However, very little ice thickness information actually exists. We present results of the first-ever airborne electromagnetic ice thickness surveys over the NWP carried out in April and May 2011 and 2015 over first-year and multiyear ice. Results show modal thicknesses between 1.8 and 2.0 m in all regions. Mean thicknesses over 3 m and thick, deformed ice were observed over some multiyear ice regimes shown to originate from the Arctic Ocean. Thick ice features more than 100 m wide and thicker than 4 m occurred frequently. There are few other data to compare with to evaluate if the ice of the Northwest Passage has transitioned as other parts of the Arctic have. Although likely thinner than some 20 or more years ago, ice conditions must still be considered severe, and the Canadian Arctic Archipelao may well be considered the last ice refuge of the Arctic. These results have important implications for the prediction of ice break-up and summer ice conditions, and the assessment of sea ice hazards during the summer shipping season.

  18. Understanding cell passage through constricted microfluidic channels

    NASA Astrophysics Data System (ADS)

    Cartas-Ayala, Marco A.; Karnik, Rohit

    2012-11-01

    Recently, several microfluidic platforms have been proposed to characterize cells based on their behaviour during cell passage through constricted channels. Variables like transit time have been analyzed in disease states like sickle cell anemia, malaria and sepsis. Nevertheless, it is hard to make direct comparisons between different platforms and cell types. We present experimental results of the relationship between solid deformable particle properties, i.e. stiffness and relative particle size, and flow properties, i.e. particle's velocity. We measured the hydrodynamic variables during the flow of HL-60 cells, a white myeloid cell type, in narrow microfluidic square channels using a microfluidic differential manometer. We measured the flow force required to move cells of different sizes through microchannels and quantified friction forces opposing cell passage. We determined the non-dimensional parameters that influence the flow of cells and we used them to obtain a non dimensional expression that can be used to predict the forces needed to drive cells through microchannels. We found that the friction force needed to flow HL-60 through a microfluidic channel is the sum of two parts. The first part is a static friction force that is proportional to the force needed to keep the force compressed. The second part is a factor that is proportional to the cell velocity, hence a dynamic term, and slightly sensitive to the compressive force. We thank CONACYT (Mexican Science and Technology Council) for supporting this project, grant 205899.

  19. Mach 4 Test Results of a Dual-Flowpath, Turbine Based Combined Cycle Inlet

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy w.; Emami, Saied; Trexler, Carl A.

    2006-01-01

    An experimental study was conducted to evaluate the performance of a turbine based combined cycle (TBCC) inlet concept, consisting of a low speed turbojet inlet and high speed dual-mode scramjet inlet. The main objectives of the study were (1) to identify any interactions between the low and the high speed inlets during the mode transition phase in which both inlets are operating simultaneously and (2) to determine the effect of the low speed inlet operation on the performance of the high speed inlet. Tests were conducted at a nominal freestream Mach number of 4 using an 8 percent scale model representing a single module of a TBCC inlet. A flat plate was installed upstream of the model to produce a turbulent boundary layer which simulated the full-scale vehicle forebody boundary layer. A flowmeter/back pressure device, with remote actuation, was attached aft of the high speed inlet isolator to simulate the back pressure resulting from dual-mode scramjet combustion. Results indicate that the inlets did not interact with each other sufficiently to affect inlet operability. Flow spillage resulting from a high speed inlet unstart did not propagate far enough upstream to affect the low speed inlet. Also, a low speed inlet unstart did not cause the high speed inlet to unstart. The low speed inlet improved the performance of the high speed inlet at certain conditions by diverting a portion of the boundary layer generated on the forebody plate.

  20. Comparing Rasch Calibration of Passage Reading Difficulty with Spache or Dale-Chall Passage Readability Estimates.

    ERIC Educational Resources Information Center

    Kidder, Steven J.

    The utility and precision of scaling 200 relatively short reading passages were analyzed using a Rasch-based measurement technique as compared to readability estimates using the Spache or Dale-Chall formulas. In addition, a regression model was specified for predicting the grade level of a text a student could literally comprehend based on…

  1. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2010

    SciTech Connect

    Carlson, Thomas J.; Skalski, John R.

    2010-10-01

    The purpose of this compliance study was to estimate dam passage survival of yearling Chinook salmon and steelhead smolts at The Dalles Dam during spring 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay boat-restricted zone (BRZ) to the tailrace BRZ at The Dalles Dam, as well as the forebay residence time, tailrace egress, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A virtual/paired-release design was used to estimate dam passage survival at The Dalles Dam. The approach included releases of acoustic-tagged smolts above John Day Dam that contributed to the formation of a virtual release at the face of The Dalles Dam. A survival estimate from this release was adjusted by a paired release below The Dalles Dam. A total of 4,298 yearling Chinook salmon and 4,309 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation. The dam passage survival results are summarized as follows: Yearling Chinook Salmon 0.9641 (SE = 0.0096) and Steelhead 0.9535 (SE = 0.0097).

  2. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  3. Control of Inflow Distortion in a Scarf Inlet

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Biedron, Robert T.

    2002-01-01

    The scarf inlet has the potential to reduce aircraft inlet noise radiation to the ground by reflecting it into the space above the engine. Without forward motion of the engine, the non-symmetry of the inlet causes inflow distortion which generates noise that is greater than the noise reduction of the scarf. However, acoustic evaluations of aircraft engines are often done on static test stands. A method to reduce inflow distortion by boundary layer suction is proposed and evaluated using a model of a high bypass ratio engine located in an anechoic chamber. The design goal of the flow control system is to make the inflow to the inlet circumferentially uniform and to eliminate reversed flow. This minimizes the inflow distortion and allows for acoustic evaluation of the scarf inlet on a static test stand. The inlet boundary layer suction effectiveness is evaluated both by aerodynamic and by acoustic measurements. Although the design goal is not met, the control system is found to have a beneficial effect on the engine operation, reducing blade stall and speed variation. This is quantified by two acoustic benefits, reduction both of the variability of tone noise and of the low frequency wideband noise due to the inflow distortion. It is felt that a compromise in the manufacture of the control hardware contributes to the inability of the control system to perform as expected from the analysis. The control system with sufficient authority is felt to have the potential to permit reliable acoustic testing in a static configuration of engines with non-symmetric inlets. Because the control system can improve operation of the engine, it may also have the potential to reduce noise and vibration and enhance engine longevity during low speed ground operations in the terminal area.

  4. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  5. Heat transfer in serpentine flow passages with rotation

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Takamura, J.; Yamawaki, S.; Yang, Wen-Jei

    1992-06-01

    Results are reported of an experimental study tracing heat transfer performance in a rotating serpentine flow passage of a square cross section. The test section is preceded by a hydrodynamic calming region. The test model is a blow-up (by seven times) of actual winding flow passages in rotor blades. It is concluded that the flow in the 180-deg bends exhibits strong 3D structure. The heat transfer coefficient in the bend is substantially higher than in the straight flow passages. The average heat transfer characteristics over the entire flow passage is greatly affected by flow at the 180-deg bends. Due to secondary flow induced by the Coriolis force, the heat transfer coefficient in the radially outward flow passages diminish on the leading surface, but increase on the trailing surface, with an increase in rotational speed. The trend is reversed in the radially inward flow passages.

  6. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  7. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for the Cook Inlet... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described...

  8. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the Cook Inlet... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described...

  9. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for the Cook Inlet... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described...

  10. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for the Cook Inlet beluga... CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described...

  11. Distribution and Abundance of Larval Fishes at Two North Carolina Inlets

    NASA Astrophysics Data System (ADS)

    Hettler, W. F.; Barker, D. L.

    1993-08-01

    Two major barrier island inlets that connect Pamlico Sound with the Atlantic Ocean were quantitatively sampled for larvae at new moon monthly intervals during 1988-89. Simultaneous tows of bottom and surface 1 m, 500 micron mesh nets were made day and night at single stations inside of Oregon Inlet and Ocracoke Inlet. Oregon Inlet, located in a more temperate marine province, was expected to have a different taxonomic community than Ocracoke Inlet, but, of 77 taxa collected from both inlets, 54 occurred at both inlets. Clupeoids and sciaenids were the dominant taxa in both inlets. At Oregon Inlet the lowest abundance of larvae occurred in February and the highest occurred in late August, whereas at Ocracoke Inlet, November and June were the lowest and highest months of larval abundance. At Oregon Inlet, 63% of the total number of larvae were caught near the bottom, but at Ocracoke Inlet, only 38% were caught near the bottom. Atlantic menhaden, Brevoortia tyrannus, were 40 times more abundant at the surface than at the bottom at Ocracoke Inlet. Most larvae were caught at night at both inlets. The times of occurrence and peak abundance for most species did not appear linked between inlets. Twenty-one species were significantly different in mean length between the two inlets.

  12. First-passage phenomena in hierarchical networks.

    PubMed

    Tavani, Flavia; Agliari, Elena

    2016-02-01

    In this paper we study Markov processes and related first-passage problems on a class of weighted, modular graphs which generalize the Dyson hierarchical model. In these networks, the coupling strength between two nodes depends on their distance and is modulated by a parameter σ. We find that, in the thermodynamic limit, ergodicity is lost and the "distant" nodes cannot be reached. Moreover, for finite-sized systems, there exists a threshold value for σ such that, when σ is relatively large, the inhomogeneity of the coupling pattern prevails and "distant" nodes are hardly reached. The same analysis is carried on also for generic hierarchical graphs, where interactions are meant to involve p-plets (p>2) of nodes, finding that ergodicity is still broken in the thermodynamic limit, but no threshold value for σ is evidenced, ultimately due to a slow growth of the network diameter with the size. PMID:26986314

  13. First-passage phenomena in hierarchical networks

    NASA Astrophysics Data System (ADS)

    Tavani, Flavia; Agliari, Elena

    2016-02-01

    In this paper we study Markov processes and related first-passage problems on a class of weighted, modular graphs which generalize the Dyson hierarchical model. In these networks, the coupling strength between two nodes depends on their distance and is modulated by a parameter σ . We find that, in the thermodynamic limit, ergodicity is lost and the "distant" nodes cannot be reached. Moreover, for finite-sized systems, there exists a threshold value for σ such that, when σ is relatively large, the inhomogeneity of the coupling pattern prevails and "distant" nodes are hardly reached. The same analysis is carried on also for generic hierarchical graphs, where interactions are meant to involve p -plets (p >2 ) of nodes, finding that ergodicity is still broken in the thermodynamic limit, but no threshold value for σ is evidenced, ultimately due to a slow growth of the network diameter with the size.

  14. Ice thickness in the Northwest Passage

    NASA Astrophysics Data System (ADS)

    Haas, Christian; Howell, Stephen E. L.

    2015-09-01

    Recently, the feasibility of commercial shipping in the ice-prone Northwest Passage (NWP) has attracted a lot of attention. However, very little ice thickness information actually exists. We present results of the first ever airborne electromagnetic ice thickness surveys over the NWP carried out in April and May 2011 and 2015 over first-year and multiyear ice. These show modal thicknesses between 1.8 and 2.0 m in all regions. Mean thicknesses over 3 m and thick, deformed ice were observed over some multiyear ice regimes shown to originate from the Arctic Ocean. Thick ice features more than 100 m wide and thicker than 4 m occurred frequently. Results indicate that even in today's climate, ice conditions must still be considered severe. These results have important implications for the prediction of ice breakup and summer ice conditions, and the assessment of sea ice hazards during the summer shipping season.

  15. The Eskimos of the Northwest Passage

    PubMed Central

    Davies, L. E. C.; Hanson, S.

    1965-01-01

    In 1959 and 1960, during the annual survey conducted by the Federal Northern Health Services in the area of the Northwest Passage, the diet and living conditions of some 1500 Eskimos who live in this area were studied and blood and urine samples were obtained from 40-50% of this population. Hemoglobin, blood cell morphology, serum protein-bound iodine, serum proteins, serum lipids and serum total cholesterol estimations, urinalyses, and agglutination studies for brucellosis were carried out. Hemoglobin levels were in the normal range; however, increased contact with civilization appeared to be associated with lower hemoglobin levels. Eleven per cent of the Eskimos showed eosinophilia. Serum proteins were normal. Serum lipids and serum cholesterol levels were higher in Eskimo children living in a government residential school than in a comparable group living on the Barren Lands. Serum protein-bound iodine levels were in the upper euthyroid range. Diabetes mellitus occurs among Eskimos. Sporadic cases of brucellosis also occur. PMID:14246293

  16. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet

  17. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Realtime metabolic rate measurements were

  18. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements were

  19. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    breathe freely. Oronasal ppCO2 will be monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate will be calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements will be used to adjust the treadmill workload to meet target metabolic rates. This paper provides detailed descriptions of the test hardware, methodology and results, as well as implications for future inlet vent design and ground testing in the Mark-III.

  20. Tectonic reconstructions for paleobathymetry in Drake Passage

    NASA Astrophysics Data System (ADS)

    Eagles, Graeme; Jokat, Wilfried

    2014-01-01

    A minimum-complexity tectonic reconstruction, based on published and new basin opening models, depicts how the Scotia Sea grew by Cenozoic plate divergence, dismembering a Jurassic sheared margin of Gondwana. Part of the Jurassic-early Cretaceous ocean that accreted to this margin forms the core of the Central Scotia Plate, the arc plate above a trench at the eastern end of the Scotia Sea, which migrated east away from the Antarctic and South American plates. A sequence of extensional basins opened on the western edge of the Central Scotia Plate at 50-30 Ma, decoupled from the South American Plate to the northwest by slow motion on a long transform fault. Succeeding the basins, seafloor spreading started around 30 Ma on the West Scotia Ridge, which propagated northwards in the 23-17 Ma period and ceased to operate at 6 Ma. The circuits of plate motions inside and outside the Scotia Arc are joined via rotations that describe Antarctic-Central Scotia plate motion in Powell Basin until 20 Ma, and along the South Scotia Ridge thereafter. The modelled relative motion at the northern edge of the Scotia Sea is thus constrained only by the plate circuit, but nonetheless resembles that known coarsely from the geological record of Tierra del Fuego. A paleobathymetric interpretation of nine time slices in the model shows Drake Passage developing as an intermediate-depth oceanographic gateway at 50-30 Ma, with deep flow possible afterwards. Initially, this deep flow would have been made tortuous by numerous intermediate and shallow barriers. A frontal pattern resembling that in the modern Scotia Sea would have awaited the clearance of significant barriers by continuing seafloor spreading in the Scotia Sea at ~ 18.5 Ma, at Shag Rocks Passage, and after 10 Ma southeast of South Georgia.

  1. Water temperature of streams in the Cook Inlet basin, Alaska, and implications of climate change

    USGS Publications Warehouse

    Kyle, Rebecca E.; Brabets, Timothy P.

    2001-10-02

    Water-temperature data from 32 sites in the Cook Inlet Basin, south-central Alaska, indicate various trends that depend on watershed characteristics. Basins with 25 percent or more of their area consisting of glaciers have the coldest water temperatures during the open-water season, mid-May to mid-October. Streams and rivers that drain lowlands have the warmest water temperatures. A model that uses air temperature as input to predict water temperature as output was utilized to simulate future trends in water temperature based on increased air temperatures due to climate warming. Based on the Nash-Sutcliffe coefficient, the model produced acceptable results for 27 sites. For basins with more than 25 percent glacial coverage, the model was not as accurate. Results indicate that 15 sites had a predicted water-temperature change of 3 degrees Celsius or more, a magnitude of change that is considered significant for the incidence of disease in fish populations.

  2. Binary fish passage models for uniform and nonuniform flows

    SciTech Connect

    Neary, Vincent S

    2011-01-01

    Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow

  3. The Sensor Fish: Measuring Fish Passage in Severe Hydraulic Conditions

    SciTech Connect

    Carlson, Thomas J. ); Duncan, Joanne P. ); Gilbride, Theresa L. )

    2003-05-28

    This article describes PNNL's efforts to develop the Sensor Fish, a waterproof sensor package that travels thru the turbines of spillways of hydroelectric dam to collect pressure and acceleration data on the conditions experienced by live salmon smolts during dam passage. Sensor Fish development is sponsored by the DOE Advanced Hydropower Turbine Survival Program. The article also gave two recent examples of Sensor Fish use: turbine passage at a McNary Kaplan turbine and spill passage in topspill at Rock Island Dam.

  4. Velocity structure and transport in the Windward Islands Passages

    NASA Astrophysics Data System (ADS)

    Wilson, W. Douglas; Johns, William E.

    1997-03-01

    During 1991-1994, repeated measurements of current structure and water mass properties were made in the major southern passages to the Caribbean Sea between Trinidad and Dominica. A total of 10 cruises were performed in different seasons, consisting primarily of serial station occupations in the Grenada, St Vincent, St Lucia, and Dominica Passages. This data set is by far the most comprehensive available in these passages and better determines the mean flow and range of variability than do previous studies. The flow structure in these passages is characterized by a strong and relatively stable inflow above the thermocline (approximately the upper 100 m), and a more highly variable flow regime within and below the thermocline. Typical near-surface inflow velocities in Grenada and St Vincent passages were 40-60 cm s -1, with maximum observed currents of 90 cm s -1. Frequently, counterflows were observed below this surface layer flowing out of the Caribbean, trapped to the southern side of the passages. This subsurface counterflow appeared to be strongest and most prevalent in Grenada Passage, where outflow speeds as large as 30 cm s -1 were observed. As a result, the ensemble mean sections for the three southern passages exhibit a deep inflow concentrated in the northern and central parts of the passages, and weak outflow on the southern sides. The ensemble of measurements from this program indicate a mean transport of 9.5±3 × 10 6 m 3 s -1 through the southern passages, with a range of variability from 3 to 17 × 10 6 m 3 s -1. No clear annual cycle is apparent in the passage transports. Mean transports calculated for the individual passages were 4.7, 3.4, 0.9, and 0.5 × 10 6 m 3 s -1, respectively, for Grenada, St Vincent, St Lucia, and Dominica Passages, decreasing monotonically northward and indicating that Grenada and St Vincent Passages largely dominate the inflow to the southern Caribbean. Consideration of this data set, historical data, Sverdrup theory and

  5. Passive acoustic monitoring of Cook Inlet beluga whales (Delphinapterus leucas).

    PubMed

    Lammers, Marc O; Castellote, Manuel; Small, Robert J; Atkinson, Shannon; Jenniges, Justin; Rosinski, Anne; Oswald, Julie N; Garner, Chris

    2013-09-01

    The endangered beluga whale (Delphinapterus leucas) population in Cook Inlet, AK faces threats from a variety of anthropogenic factors, including coastal development, oil and gas exploration, vessel traffic, and military activities. To address existing gaps in understanding about the occurrence of belugas in Cook Inlet, a project was developed to use passive acoustic monitoring to document the year-round distribution of belugas, as well as killer whales (Orcinus orca), which prey on belugas. Beginning in June 2009, ten moorings were deployed throughout the Inlet and refurbished every two to eight months. Despite challenging conditions consisting of strong tidal currents carrying debris and seasonal ice cover, 83% of mooring deployments were successfully recovered. Noise from water flow, vessel traffic, and/or industrial activities was present at several sites, potentially masking some signals. However, belugas were successfully detected at multiple locations. Detections were relatively common in the upper inlet and less common or absent at middle and lower inlet locations. Killer whale signals were also recorded. Some seasonal variability in the occurrence of both belugas and killer whales was evident.

  6. Development of the Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Gruber, Christopher R.

    2004-01-01

    The aerodynamic development of an engine inlet requires a comprehensive program of both wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. To save time and resources, much "testing" is done using CFD before any design ever enters a wind tunnel. The focus of my project this summer is on CFD analysis tool development. In particular, I am working to further develop the capabilities of the Planar Inlet Design and Analysis Process (PINDAP). "PINDAP" is a collection of computational tools that allow for efficient and accurate design and analysis of the aerodynamics about and through inlets that can make use of a planar (two-dimensional or axisymmetric) geometric and flow assumption. PINDAP utilizes the WIND CFD flow solver, which is capable of simulating the turbulent, compressible flow field. My project this summer is a continuation of work that I performed for two previous summers. Two years ago, I used basic features of the PINDAP to design a Mach 5 hypersonic scramjet engine inlet and to demonstrate the feasibility of the PINDAP. The following summer, I worked to develop its geometry and grid generation capabilities to include subsonic and supersonic inlets, complete bodies and cowls, conic leading and trailing edges, as well as airfoils. These additions allowed for much more design flexibility when using the program.

  7. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    PubMed

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  8. Rapid Calculations of Three-Dimensional Inlet/Fan Interaction

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2007-01-01

    Two computational fluid dynamics codes have been merged to permit rapid calculations of inlet/fan interaction. Inlets are modeled using the WIND-US Navier-Stokes code. Fans are modeled using a new three-dimensional Euler code called CSTALL that solves the flow through the entire compression system but models blade rows using body forces for turning and loss. The body force model is described and it is shown how unknown terms in the model can be estimated from other Navier-Stokes solutions of the blade rows run separately. The inlet and fan calculations are run simultaneously and are coupled at an interface plane using a third code called SYNCEX that is described briefly. Results are shown for an axisymmetric nacelle at high angle of attack modeled both as an isolated inlet and coupled to a single stage fan. The isolated inlet calculations are unrealistic after the flow separates but the coupled codes can model large regions of separated flow extending from the lower lip of the nacelle into the fan rotor.

  9. Passive acoustic monitoring of Cook Inlet beluga whales (Delphinapterus leucas).

    PubMed

    Lammers, Marc O; Castellote, Manuel; Small, Robert J; Atkinson, Shannon; Jenniges, Justin; Rosinski, Anne; Oswald, Julie N; Garner, Chris

    2013-09-01

    The endangered beluga whale (Delphinapterus leucas) population in Cook Inlet, AK faces threats from a variety of anthropogenic factors, including coastal development, oil and gas exploration, vessel traffic, and military activities. To address existing gaps in understanding about the occurrence of belugas in Cook Inlet, a project was developed to use passive acoustic monitoring to document the year-round distribution of belugas, as well as killer whales (Orcinus orca), which prey on belugas. Beginning in June 2009, ten moorings were deployed throughout the Inlet and refurbished every two to eight months. Despite challenging conditions consisting of strong tidal currents carrying debris and seasonal ice cover, 83% of mooring deployments were successfully recovered. Noise from water flow, vessel traffic, and/or industrial activities was present at several sites, potentially masking some signals. However, belugas were successfully detected at multiple locations. Detections were relatively common in the upper inlet and less common or absent at middle and lower inlet locations. Killer whale signals were also recorded. Some seasonal variability in the occurrence of both belugas and killer whales was evident. PMID:23968047

  10. Design and Analysis Tool for External-Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2012-01-01

    A computational tool named SUPIN has been developed to design and analyze external-compression supersonic inlets for aircraft at cruise speeds from Mach 1.6 to 2.0. The inlet types available include the axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced Busemann inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flowfield is divided into parts to provide a framework for the geometry and aerodynamic modeling and the parts are defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick analysis. SUPIN provides inlet geometry in the form of coordinates and surface grids useable by grid generation methods for higher-fidelity computational fluid dynamics (CFD) analysis. SUPIN is demonstrated through a series of design studies and CFD analyses were performed to verify some of the analysis results.

  11. Inlet distortion effects in aircraft propulsion system integration

    NASA Technical Reports Server (NTRS)

    Longley, J. P.; Greitzer, E. M.

    1992-01-01

    A tutorial survey of inlet flow distortion effects on engine performance and stability is presented. Inlet distortions in aero engines arise through a variety of causes. They can be essentially steady, due to non-axisymmetric intake duct geometry, or time varying, for example from flow separation off the lip of the inlet during maneuvers or shock-induced separation during supersonic flight. Whatever the cause, the result is generally a decrease in performance and, more importantly, a lessening of the stable flow range of the compressor. The distortions are generally three-dimensional. It is an extremely useful simplification to break them, at least conceptually, into radial and circumferential non-uniformities and approach each separately. Purely radial distortions can be treated by the methods that were developed for designing compressors in nominally axisymmetric inlet flow, and this type of distortion will be only briefly discussed. Circumferential non-uniformities, however, introduce additional fluid dynamic features into the analysis of compressor behavior and often have the larger impact on performance and stability. Thus we concentrate mainly on the effects of steady circumferential inlet flow distortion.

  12. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade. Part 2:; Simulation Results

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Bunker, Ronald S.

    2002-01-01

    A combined experimental and numerical study to investigate the heat transfer distribution in a complex blade trailing edge passage was conducted. The geometry consists of a two pass serpentine passage with taper toward the trailing edge, as well as from hub to tip. The upflow channel has an average aspect ratio of roughly 14:1, while the exit passage aspect ratio is about 5:1. The upflow channel is split in an interrupted way and is smooth on the trailing edge side of the split and turbulated on the other side. A turning vane is placed near the tip of the upflow channel. Reynolds numbers in the range of 31,000 to 61,000, based on inlet conditions, were simulated numerically. The simulation was performed using the Glenn-HT code, a full three-dimensional Navier-Stokes solver using the Wilcox k-omega turbulence model. A structured multi-block grid is used with approximately 4.5 million cells and average y+ values on the order of unity. Pressure and heat transfer distributions are presented with comparison to the experimental data. While there are some regions with discrepancies, in general the agreement is very good for both pressure and heat transfer.

  13. Secondary air injection system and method

    SciTech Connect

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  14. Performance of 4600-pound-thrust centrifugal-flow-type turbojet engine with water-alcohol injection at inlet

    NASA Technical Reports Server (NTRS)

    Glasser, Philip W

    1950-01-01

    An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.

  15. Temperature Stratification of Underfloor and Ceiling Based Air Heating Distribution System in an Experimental Room

    NASA Astrophysics Data System (ADS)

    Katunský, Dušan; Lopušniak, Martin; Vašková, Anna

    2013-06-01

    Most of air heating and ventilating systems for passive houses inlet air in floors. It is assumed that a natural motion of air is led upwards, and so the right stratification of temperature in the space is ensured. However, in the case of excellently insulated buildings it is possible to assume that an upper inlet of air is also able to ensure the required layering of temperature. Within the experiment an influence of upper and down air inlet for temperature stratification in the space was followed. Night sensors of indoor air temperature are placed for measurement purposes. Measurements are done in the long term. The results from measurements show that both, vertical and horizontal stratification of temperature in rooms of passive houses are equal regardless of the fact, which system of air inlet is used.

  16. Prediction of sound radiation from different practical jet engine inlets

    NASA Astrophysics Data System (ADS)

    Zinn, B. T.; Meyer, W. L.

    1982-07-01

    The computer codes necessary for this study were developed and checked against exact solutions generated by the point source method using the NASA Lewis QCSEE inlet geometry. These computer codes were used to predict the acoustic properties of the following five inlet configurations: the NASA Langley Bellmouth, the NASA Lewis JT15D-1 Ground Test Nacelle, and three finite hyperbolic inlets of 50, 70 and 90 degrees. Thirty-five computer runs were done for the NASA Langley Bellmouth. For each of these computer runs, the reflection coefficient at the duct exit plane was calculated as was the far field radiation pattern. These results are presented in both graphical and tabular form with many of the results cross plotted so that trends in the results verses cut-off ratio (wave number) and tangential mode number may be easily identified.

  17. Prediction of sound radiation from different practical jet engine inlets

    NASA Technical Reports Server (NTRS)

    Zinn, B. T.; Meyer, W. L.

    1982-01-01

    The computer codes necessary for this study were developed and checked against exact solutions generated by the point source method using the NASA Lewis QCSEE inlet geometry. These computer codes were used to predict the acoustic properties of the following five inlet configurations: the NASA Langley Bellmouth, the NASA Lewis JT15D-1 Ground Test Nacelle, and three finite hyperbolic inlets of 50, 70 and 90 degrees. Thirty-five computer runs were done for the NASA Langley Bellmouth. For each of these computer runs, the reflection coefficient at the duct exit plane was calculated as was the far field radiation pattern. These results are presented in both graphical and tabular form with many of the results cross plotted so that trends in the results verses cut-off ratio (wave number) and tangential mode number may be easily identified.

  18. Numerical and Test Investigation on an Aircraft Inlet Distortion

    NASA Astrophysics Data System (ADS)

    Zhang, Zhang; Hou, Anping; Chen, Yinxiu; Tuo, Wei; Xia, Aiguo

    2013-09-01

    Subscale wind tunnel test of an aircraft vehicle is performed at different Mach number, mass-flow and angle of attack. CFD model, corrected by test results, is also presented to predict inlet performance and total pressure distortion. The result shows total pressure recovery decreases and distortion level rises when Mach number increases from subsonic to supersonic speed, AOA is negative and mass-flow value is too large or too small. Compared linear interpolation based on test result of discrete probes, numerical simulation has advantages in showing inlet flow field predicting actual surface distortion level in AIP plane. Swirl distortion is induced by vortex near the fuselage and adjustable ramp and can strengthen total pressure distortion in AIP at negative AOA. And appropriate suction mass-flow coefficient (1.7% to 3%) is beneficial for inlet performance and total pressure distortion control.

  19. In-mask aerosol sampling for powered air purifying respirators

    SciTech Connect

    Liu, B.Y.U.; Sega, K.; Rubow, K.L.; Lenhart, S.W.; Myers, W.R.

    1984-04-01

    A system for sampling aerosols in the facepiece of a powered air purifying respirator has been described. The system consists of a sampling inlet mounted on the respiratory facepiece, a filter cassette and a personal sampling pump. The theoretical and practical considerations leading to the design of the sampling inlet have been discussed and experimental data presented showing the efficiency of the inlet as a function of particle size and sampling flow rate. The in-mask sampling system has been designed for powered air purifying respirators.

  20. Soot particles at an elevated site in eastern China during the passage of a strong cyclone.

    PubMed

    Niu, Hongya; Shao, Longyi; Zhang, Daizhou

    2012-07-15

    Atmospheric particles larger than 0.2 μm were collected at the top of Mt. Tai (36.25°N, 117.10°E, 1534 m a.s.l.) in eastern China in May 2008 during the passage of a strong cyclone. The particles were analyzed with electron microscopes and characterized by morphology, equivalent diameter and elemental composition. Soot particles with coating (coated soot particles) and those without apparent coating (naked soot particles) were predominant in the diameter range smaller than 0.6 μm in all samples. The number-size distribution of the relative abundance of naked soot particles in the prefrontal air was similar to that in the postfrontal air and their size modes were around 0.2-0.3 μm. However, the distribution of inclusions of coated soot particles showed a mode in the range of 0.1-0.3 μm. The coating degree of coated soot particles, which was defined by the ratio of the diameter of inclusion to the diameter of particle body, showed a mode around 0.5 with the range of 0.3-0.6. These results indicate that the status of soot particles in the prefrontal and postfrontal air was similar although air pollution levels were dramatically different. In addition, the relative abundance of accumulation mode particles increased with the decrease of soot particles after the front passage.

  1. Observed and Modeled Sediment Transport Around Katama Inlet, Martha's Vineyard

    NASA Astrophysics Data System (ADS)

    Hopkins, J.; Elgar, S.; Raubenheimer, B.

    2014-12-01

    Katama Inlet, connecting Katama Bay to the Atlantic Ocean on the southern shoreline of Martha's Vineyard, MA, has migrated eastward more than 2.5 km since it was breached during the Patriot's Day storm in 2007. This morphological evolution, typical of the inlet's decadal cycle of breach-migration-closure, is owing to sediment transport driven by wave-orbital velocities, breaking-wave-generated mean currents, and tidal flows. Here, the rapidly evolving shoreline near Katama Inlet and on the southern edge of Martha's Vineyard is investigated using field observations and numerical model simulations. The bathymetry was surveyed in summer 2013 and 2014, and tides, waves, and currents were measured for a month in August 2013 and 2014 in the surf zone (~2 m water depth), on the outer edge of the ebb shoal offshore of the inlet mouth (~6 m depth), and on the inner continental shelf (~7 m depth). The model [Delft3D with coupled waves (SWAN) and currents] skillfully simulates observed wave heights, wave directions, and tidal currents, and is used here to estimate sediment transport rates. Model results suggest that during the relatively calm August conditions there is little transport on the inner shelf, but there is significant transport that changes directions with the tide on the outer ebb shoal. Transport rates in the surf zone decrease and become more unidirectional (wave-driven) with distance away (west) from the mouth of the inlet. In August, transport of suspended sediments is relatively more important on the outer ebb shoal than near the surf zone, where bedload transport dominates. The relative impact of these types of simulated transport on the migration of Katama Inlet will be discussed. Funded by ONR, ASD(R&E), NSF, and NDSEG.

  2. Development of a three-dimensional supersonic inlet flow analysis

    NASA Technical Reports Server (NTRS)

    Buggeln, R. C.; Mcdonald, H.; Levy, R.; Kreskovsky, J. P.

    1980-01-01

    A method for computing three dimensional flow in supersonic inlets is described. An approximate set of governing equations is given for viscous flows which have a primary flow direction. The governing equations are written in general orthogonal coordinates. These equations are modified in the subsonic region of the flow to prevent the phenomenon of branching. Results are presented for the two sample cases: a Mach number equals 2.5 flow in a square duct, and a Mach number equals 3.0 flow in a research jet engine inlet. In the latter case the computed results are compared with the experimental data. A users' manual is included.

  3. Three-dimensional simulation of a translating strut inlet

    NASA Technical Reports Server (NTRS)

    Singh, D. J.; Trexler, Carl A.; Hudgens, Julie A.

    1992-01-01

    A three-dimensional Navier-Stokes code is used to numerically simulate the flow through a translating strut scramjet inlet. The inlet has variable geometry for efficient operation over a wide speed range. Overall flow-field features such as the corner flow, topwall separation, shockwave coalescence, cowl pressure increase, and flow distortion at the throat are investigated. Comparisons are made with experimental results to provide for the assessment of the present analysis. Effects of boundary-layer ingestion on the overall flow features are also investigated.

  4. Prediction of 3-D boundary layer in the curved inlets

    NASA Astrophysics Data System (ADS)

    Xing, Zongwen; Wang, Jianmin

    1992-06-01

    A prediction method for 3D compressible turbulent boundary layers in curved inlets is investigated. 3D boundary layer integral equations in nonorthogonal curvilinear coordinate system are used and solved by lag-entrainment method with an introduced 3D entrainment coefficient equation. During numerical calculation, the prediction corrector method is employed. With the cubic spline function, the interpolation and differentiation accuracy and smoothness of discrete data is ensured. The developed program may be operated on a personal computer. The influence of cross flow on boundary layer development is clearly shown by the calculated results. The calculated pressure recovery of the inlet is in good agreement with experiment data.

  5. Rapidly design safety relief valve inlet piping systems

    SciTech Connect

    Westman, M.A.

    1997-03-01

    Safety relief valves (SRVs) used to protect against overpressure require well-designed inlet piping for proper operation. The engineer`s job is to produce these designs from a thorough understanding of the inlet piping as a key component in the safety relief system and the correct application of the governing fluid dynamics principles. This article will present a technique for analysis and design using classical ideal-gas adiabatic fluid flow principles. Also, it will discuss the advantages of using the personal computer (PC) to quickly arrive at accurate designs. This work applies to SRVs in which relief flows are limited by sonic conditions at their nozzles.

  6. Relevance of Infragravity Waves in a Wave Dominated Shallow Inlet

    NASA Astrophysics Data System (ADS)

    Olabarrieta, M.; Bertin, X.

    2014-12-01

    Infragravity (IG) waves have received a growing attention over the last decade and they have been shown to partly control dune erosion, barrier breaching, development of seiches in harbors or the circulation on fringing reefs. Although the relevance IG waves in surf and swash zone dynamics is well recognized, their dynamics and effects on tidal inlets and estuaries have not been analyzed. This study investigates the importance of IG waves at Albufeira Lagoon Inlet, a shallow wave-dominated inlet located on the western Coast of Portugal. Water levels and currents were measured synchronously during a two-day field experiment carried out at Albufeira Lagoon Inlet in September 2010. Apart from the tidally induced gravity wave modulations and wave induced setup inside the lagoon, an important IG wave contribution was identified. Low frequency oscillations were noticeable in the free surface elevation records and produced fluctuations of up to 100% in current intensities. While IG waves in the ebb shoal were present during the whole tidal cycle, the absence of IG waves characterized the ebbing tide inside the lagoon. The energy in the IG frequency band gradually increased from low tide to high tide, and disappeared during the ebbing tide. The modeling system Xbeach was applied to hindcast the hydrodynamics during the field experiment period. The model captures the main physics related with the IG wave generation and propagation inside the inlet, and reproduced the IG blocking during the ebb as identified in the measurements. This behavior was explained by the combination of advection and wave blocking induced by opposing tidal currents. Both measurements and numerical results suggested the bound wave release as the dominant mechanism responsible for IG wave generation. The fact that IG waves only propagate at flood tide has strong implications on the sediment balance of the inlet and contribute to inlet infilling under energetic wave conditions. It is expected that IG

  7. Turbidity-current channels in Queen Inlet, Glacier Bay, Alaska

    USGS Publications Warehouse

    Carlson, P.R.; Powell, R.D.; Rearic, D.M.

    1989-01-01

    Queen Inlet is unique among Glacier Bay fjords because it alone has a branching channel system incised in the Holocene sediment fill of the fjord floor. Queen Inlet and other known channel-containing fjords are marine-outwash fjords; the tidewater glacial fjords do not have steep delta fronts on which slides are generated and may not have a sufficient reservoir of potentially unstable coarse sediment to generate channel-cutting turbidity currents. Presence or absence of channels, as revealed in the ancient rock record, may be one criterion for interpreting types of fjords. -Authors

  8. Computer programs for calculating potential flow in propulsion system inlets

    NASA Technical Reports Server (NTRS)

    Stockman, N. O.; Button, S. L.

    1973-01-01

    In the course of designing inlets, particularly for VTOL and STOL propulsion systems, a calculational procedure utilizing three computer programs evolved. The chief program is the Douglas axisymmetric potential flow program called EOD which calculates the incompressible potential flow about arbitrary axisymmetric bodies. The other two programs, original with Lewis, are called SCIRCL AND COMBYN. Program SCIRCL generates input for EOD from various specified analytic shapes for the inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest, and applies a compressibility correction.

  9. Surface Layer Turbulence During a Frontal Passage

    SciTech Connect

    Piper, M; Lundquist, J K

    2004-06-15

    calculations using these techniques are employed using data from both the sonic and hotwire anemometers, when possible. Unfortunately, direct calculations of {var_epsilon} were not possible during a part of the frontal passage because the high wind speeds concurrent with the frontal passage demand very high frequency resolution, beyond that possible with the hotwire anemometer, for direct {var_epsilon} calculations. The calculations resulting from these three techniques are presented for the cold front as a time series. Quantitative comparisons of the direct and indirect calculation techniques are also given. More detail, as well as a discussion of energy spectra, can be found in Piper & Lundquist(2004).

  10. Database of Inlet and Exhaust Noise Shielding for Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.

    2001-01-01

    An experiment to measure the noise shielding of the blended wing body design concept was developed using a simplified wedge-shaped airframe. The experimental study was conducted in the Langley Anechoic Noise Research Facility. A wideband, omnidirective sound source in a simulated engine nacelle was held at locations representative of a range of engine locations above the wing. The sound field around the model was measured with the airframe and source in place and with source alone, using an-array of microphones on a rotating hoop that is also translated along an axis parallel to the airframe axis. The insertion loss was determined from the difference between the two resulting contours. Although no attempt was made to simulate the noise characteristics of a particular engine, the broadband noise source radiated sound over a range of scaled frequencies encompassing 1 and 2 times the blade passage frequency representative of a large, high-bypass-ratio turbofan engine. The measured data show that significant shielding of the inlet-radiated noise is obtained in the area beneath and upstream of the model. The data show the sensitivity of insertion loss to engine location.

  11. Generation of atomic NOON states via shortcuts to adiabatic passage

    NASA Astrophysics Data System (ADS)

    Song, Chong; Su, Shi-Lei; Bai, Cheng-Hua; Ji, Xin; Zhang, Shou

    2016-10-01

    Based on Lewis-Riesenfeld invariants and quantum Zeno dynamics, we propose an effective scheme for generating atomic NOON states via shortcuts to adiabatic passage. The photon losses are efficiently suppressed by engineering shortcuts to adiabatic passage in the scheme. The numerical simulation shows that the atomic NOON states can be generated with high fidelity.

  12. Tick passage results in enhanced attenuation of babesia bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serial blood passage of virulent Babesia bovis in splenectomized cattle results in attenuated derivatives that do not cause neurologic disease. Tick transmissibility can be lost with attenuation, and has been reported to result in a reversion to virulence following tick passage. This study provides ...

  13. Bilingual Listeners' Perception of Temporally Manipulated English Passages

    ERIC Educational Resources Information Center

    Shi, Lu-Feng; Farooq, Nadia

    2012-01-01

    Purpose: The current study measured, objectively and subjectively, how changes in speech rate affect recognition of English passages in bilingual listeners. Method: Ten native monolingual, 20 English-dominant bilingual, and 20 non-English-dominant bilingual listeners repeated target words in English passages at five speech rates (unprocessed, two…

  14. Gender Differences in Implicit and Explicit Memory for Affective Passages

    ERIC Educational Resources Information Center

    Burton, Leslie A.; Rabin, Laura; Vardy, Susan Bernstein.; Frohlich, Jonathan; Wyatt, Gwinne; Dimitri, Diana; Constante, Shimon; Guterman, Elan

    2004-01-01

    Thirty-two participants were administered 4 verbal tasks, an Implicit Affective Task, an Implicit Neutral Task, an Explicit Affective Task, and an Explicit Neutral Task. For the Implicit Tasks, participants were timed while reading passages aloud as quickly as possible, but not so quickly that they did not understand. A target verbal passage was…

  15. Optimal Number of Gaps in C-Test Passages

    ERIC Educational Resources Information Center

    Baghaei, Purya

    2011-01-01

    This study addresses the issue of the optimal number of gaps in C-Test passages. An English C-Test battery containing four passages each having 40 blanks was given to 104 undergraduate students of English. The data were entered into SPSS spreadsheet. Out of the complete data with 160 blanks seven additional datasets were constructed. In the first…

  16. Middle Passage in the Triangular Slave Trade: The West Indies

    ERIC Educational Resources Information Center

    Sawh, Ruth; Scales, Alice M.

    2006-01-01

    Our narrative focuses on the middle passage of the slave trade in the West Indies. Herein we describe why more men, women, and children were imported in the West Indies than other islands. Specifically, our aim was to address how slaves in the middle passage of the triangular slave trade were treated, how they sustained themselves, and how they…

  17. Changing Sea Ice Conditions in the Northwest Passage

    NASA Astrophysics Data System (ADS)

    Tivy, A. C.; Howell, S.; Agnew, T.; Derksen, C.

    2010-12-01

    The Northwest Passage lies in the middle of Canadian Arctic Archipelago providing a potential deepwater route that links the Atlantic and Pacific Oceans. Discovered by Sir Robert M’Clure in the 1850s, ever-present multi-year ice (MYI) has always prevented its practical navigation. 2007 marked extreme low MYI conditions in the Arctic and temporarily cleared the Northwest Passage. However, is one single clearing event within the Northwest Passage over the past 40 years indicative of future clearings? This analysis addressed two inter-related questions: i) why has the Northwest Passage contained historically heavy amounts of MYI? and ii) will decreases in MYI within the Northwest Passage continue into the future? Results indicate that for nearly 4 decades, the southern regions of the Canadian Arctic Archipelago have continuously operated as a drain-trap for MYI and this mechanism is responsible for maintaining the heavy MYI conditions within the Northwest Passage. The oldest and thickest MYI in the world resides along the northern flank of the Canadian Arctic Archipelago therefore, as the transition to a sea ice-free Arctic continues, MYI from this region will continue to migrate southward to the channels of the Northwest Passage. Results also find that 2007 was indeed an anomalously light sea ice year in the Northwest Passage but record low ice conditions have since been observed as of mid-August 2010.

  18. Preliminary Data on the Effects of Inlet Pressure Distortions on the J57-P-1 Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Wallner, Lewis E.; Lubick, Robert J.; Einstein, Thomas H.

    1954-01-01

    An investigation to determine the steady-state and surge characteristics of the J57-P-1 two-spool turbojet engine with various inlet air-flow distortions was conducted in the altitude wind tunnel at the NACA Lewis laboratory. Along with a uniform inlet total-pressure distribution, one circumferential and three radial pressure distortions were investigated. Data were obtained over a complete range of compressor speeds both with and without intercompressor air bleed at a flight Mach number of 0.8 and at altitudes of 35,000 and 50,000 feet. Total-pressure distortions of the magnitudes investigated had very little effect on the steady-state operating line for either the outer or inner compressor. The small radial distortions investigated also had engine over that obtained with the uniform inlet pressure distribution. The circumferential distortion, however, raised the minimum speed at which the engine could operate without encountering surge when the intercompressor bleeds were closed. This increase in minimum speed resulted in a substantial reduction in the operable speed range accompanied by a reduction in the altitude operating limit.

  19. 14 CFR 29.1109 - Carburetor air cooling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air cooling. 29.1109 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... to maintain the air temperature, at the carburetor inlet, at or below the maximum established...

  20. 14 CFR 29.1109 - Carburetor air cooling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air cooling. 29.1109 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... to maintain the air temperature, at the carburetor inlet, at or below the maximum established...

  1. 14 CFR 29.1109 - Carburetor air cooling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air cooling. 29.1109 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... to maintain the air temperature, at the carburetor inlet, at or below the maximum established...

  2. Experimental investigation of water injection in subsonic diffuser of a conical inlet operation at free-stream Mach number of 2.5

    NASA Technical Reports Server (NTRS)

    Beke, Andrew

    1957-01-01

    A spike-type nose inlet with sharp-lip cowl was investigated at a free-stream Mach number of 2.5 with water injection in its 16-inch diameter, 11-foot-long subsonic diffuser section. Inlet total temperature of exit with liquid-air ratios of about 0.04 with no apparent change in the critical pressure recovery. The observed temperature drops were less than the theoretically predicted values, and the amount of water evaporated was 35 to 50 percent less than that theoretically possible.

  3. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    NASA Technical Reports Server (NTRS)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  4. Bigeodesics in First-Passage Percolation

    NASA Astrophysics Data System (ADS)

    Damron, Michael; Hanson, Jack

    2016-09-01

    In first-passage percolation, we place i.i.d. continuous weights at the edges of Z^2 and consider the weighted graph metric. A distance-minimizing path between points x and y is called a geodesic, and a bigeodesic is a doubly-infinite path whose segments are geodesics. It is a famous conjecture that almost surely, there are no bigeodesics. In the 1990s, Licea-Newman showed that, under a curvature assumption on the "asymptotic shape," all infinite geodesics have an asymptotic direction, and there is a full measure set {D subset [0,2π)} such that for any {θ in D} , there are no bigeodesics with one end directed in direction {θ} . In this paper, we show that there are no bigeodesics with one end directed in any deterministic direction, assuming the shape boundary is differentiable. This rules out existence of ground state pairs for the related disordered ferromagnet whose interface has a deterministic direction. Furthermore, it resolves the Benjamini-Kalai-Schramm "midpoint problem" (Benjamini et al. in Ann Probab 31, p. 1976, 2003). under the extra assumption that the limit shape boundary is differentiable.

  5. Primary cancers of extrahepatic biliary passages.

    PubMed

    Mittal, B; Deutsch, M; Iwatsuki, S

    1985-04-01

    We analyzed the records of 22 patients with cancers of extrahepatic biliary passages (EHBP) to understand their natural histories and patterns of failure and to evaluate the effectiveness of various treatments. None of the preoperative investigations consistently defined the entire extent of tumor. Percutaneous transhepatic cholangiography (PTHC) was the most helpful (100%) in accurately defining the site of ductal obstruction. Computed tomography was helpful in diagnosing liver metastases in 53% and primary tumor mass in 23% of patients. The most common sites of tumor failure or persistence were: liver (67%), tumor bed (56%), peritoneum (22%), porta hepatis and lymph nodes (17%). The median survival for the entire group was 6.8 months. Surgery plays an important role in managing these tumors and in defining tumor extent for subsequent adjuvant irradiation. Patients receiving radiation doses greater than or equal to 70 TDF had a longer median survival (11 months) than patients receiving less than 70 TDF (4.4 months). All three patients, who were alive and free of disease greater than 1 year, received radiation doses greater than or equal to 70 TDF. From our data, it is difficult to comment on the effectiveness of chemotherapy. We have made suggestions regarding radiation volume and doses to various structures. The need for entering these patients into multi-institutional clinical trials is stressed.

  6. Primary cancers of extrahepatic biliary passages

    SciTech Connect

    Mittal, B.; Deutsch, M.; Iwatsuki, S.

    1985-04-01

    The records of 22 patients with cancers of extrahepatic biliary passages (EHBP) were analyzed to understand their natural histories and patterns of failure and to evaluate the effectiveness of various treatments. None of the preoperative investigations consistently defined the entire extent of tumor. Percutaneous transhepatic cholangiography (PTHC) was the most helpful (100%) in accurately defining the site of ductal obstruction. Computed tomography was helpful in diagnosing liver metastases in 53% and primary tumor mass in 23% of patients. The most common sites of tumor failure or persistence were: liver (67%), tumor bed (56%), peritoneum (22%), porta hepatis and lymph nodes (17%). The median survival for the entire group was 6.8 months. Surgery plays an important role in managing these tumors and in defining tumor extent for subsequent adjuvant irradiation. Patients receiving radiation doses greater than or equal to 70 TDF had a longer median survival (11 months) than patients receiving less than 70 TDF (4.4 months). All three patients, who were alive and free of disease greater than 1 year, received radiation doses greater than or equal to 70 TDF. From the data, it is difficult to comment on the effectiveness of chemotherapy. The authors have made suggestions regarding radiation volume and doses to various structures. The need for entering these patients into multi-institutional clinical trials is stressed.

  7. Primary cancers of extrahepatic biliary passages.

    PubMed

    Mittal, B; Deutsch, M; Iwatsuki, S

    1985-04-01

    We analyzed the records of 22 patients with cancers of extrahepatic biliary passages (EHBP) to understand their natural histories and patterns of failure and to evaluate the effectiveness of various treatments. None of the preoperative investigations consistently defined the entire extent of tumor. Percutaneous transhepatic cholangiography (PTHC) was the most helpful (100%) in accurately defining the site of ductal obstruction. Computed tomography was helpful in diagnosing liver metastases in 53% and primary tumor mass in 23% of patients. The most common sites of tumor failure or persistence were: liver (67%), tumor bed (56%), peritoneum (22%), porta hepatis and lymph nodes (17%). The median survival for the entire group was 6.8 months. Surgery plays an important role in managing these tumors and in defining tumor extent for subsequent adjuvant irradiation. Patients receiving radiation doses greater than or equal to 70 TDF had a longer median survival (11 months) than patients receiving less than 70 TDF (4.4 months). All three patients, who were alive and free of disease greater than 1 year, received radiation doses greater than or equal to 70 TDF. From our data, it is difficult to comment on the effectiveness of chemotherapy. We have made suggestions regarding radiation volume and doses to various structures. The need for entering these patients into multi-institutional clinical trials is stressed. PMID:3980281

  8. Transplacental passage of antimicrobial paraben preservatives.

    PubMed

    Towers, Craig V; Terry, Paul D; Lewis, David; Howard, Bobby; Chambers, Wesley; Armistead, Casey; Weitz, Beth; Porter, Stephanie; Borman, Christopher J; Kennedy, Rebekah C M; Chen, Jiangang

    2015-01-01

    Parabens are widely used preservatives suspected of being endocrine disruptors, with implications for human growth and development. The most common paraben found in consumer products is methylparaben. To date, no study has examined whether these substances cross the human placenta. A total of 100 study subjects (50 mother-child pairs) were enrolled at two medical institutions, serving primarily African-American and Caucasian women, respectively. A maternal blood sample was drawn on admission and a paired cord blood sample was obtained at delivery. Of the 50 mothers, 47 (94%) showed methylparaben in their blood (mean level 20.41 ng/l), and 47 in cords bloods (mean level 36.54 ng/l). There were 45 mother-child pairs where methylparaben was found in both samples. Of these, the fetal level was higher than the maternal level in 23 (51%). For butylparaben, only 4 mothers (8%) showed detectable levels (mean 40.54 ng/l), whereas 8 cord blood samples (16%) were positive (mean 32.5 ng/l). African-American mothers and infants showed higher prevalence of detectable levels (P=0.017). Methylparaben and butylparaben demonstrate transplacental passage. Additional studies are needed to examine potential differences in exposure by geography and demographics, what products are used by pregnant women that contain these preservatives, as well as any potential long-term effects in the growth and development of exposed children.

  9. Modeling of First-Passage Processes in Financial Markets

    NASA Astrophysics Data System (ADS)

    Inoue, Jun-Ichi; Hino, Hikaru; Sazuka, Naoya; Scalas, Enrico

    2010-03-01

    In this talk, we attempt to make a microscopic modeling the first-passage process (or the first-exit process) of the BUND future by minority game with market history. We find that the first-passage process of the minority game with appropriate history length generates the same properties as the BTP future (the middle and long term Italian Government bonds with fixed interest rates), namely, both first-passage time distributions have a crossover at some specific time scale as is the case for the Mittag-Leffler function. We also provide a macroscopic (or a phenomenological) modeling of the first-passage process of the BTP future and show analytically that the first-passage time distribution of a simplest mixture of the normal compound Poisson processes does not have such a crossover.

  10. Enclosed rotary disc air pulser

    DOEpatents

    Olson, A. L.; Batcheller, Tom A.; Rindfleisch, J. A.; Morgan, John M.

    1989-01-01

    An enclosed rotary disc air pulser for use with a solvent extraction pulse olumn includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber therebetween, the chamber being in communication with the pulse leg port, the first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and the chamber.

  11. Dynamics of a supersonic inlet-engine combination subjected to disturbances in fuel flow and inlet overboard bypass airflow

    NASA Technical Reports Server (NTRS)

    Wallhagen, R. E.; Paulovich, F. J.; Geyser, L. C.

    1972-01-01

    An axisymmetric mixed-compression supersonic inlet and a single-spool turbojet engine were dynamically tested at Mach 2.5. The propulsion system was subjected to sweep-frequency sinusoidal disturbances of either inlet overboard bypass airflow. The disturbances were at a logarithmic sweep rate of 1 decade per minute. Dynamic responses were taken of signals throughout the propulsion system. Selected signals were reduced relative to the prime propulsion system parameters. The experimental data are presented in Bode plots. Most of the plots are for a frequency range of 1.0 to 50 hertz.

  12. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  13. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  14. Indicator providing continuous indication of the presence of a specific pollutant in air

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Bartera, R. E. (Inventor)

    1976-01-01

    A continuous HCl in-air indicator was developed which consists of a tube-like element with an inlet end through which a continuous stream of air containing HCl enters. The air flows downstream from the inlet end and exits the element's outlet end. Positioned between the element's inlet and outlet ends are first and second spaced apart photoelectric units, which are preferably positioned adjacent the inlet and outlet ends, respectively. Ammonia gas is injected into the air, flowing through the element, at a position between the two photoelectric units. The ammonia gas reacts with the HCl in the air to form ammonium chloride particles. The difference between the outputs of the two photoelectric units is an indication of the amount of HCl in the air stream.

  15. Application of computational fluid dynamics to complex inlet ducts

    NASA Astrophysics Data System (ADS)

    Towne, C. E.; Schum, E. F.

    A three-dimensional parabolic Navier-Stokes code, PEPSIG, was used to analyze the flow in the subsonic diffuser section of a typical modern inlet design. The effect of curvature of the diffuser centerline and transitioning cross sections was studied to determine the primary cause of flow distortion in the duct. Total pressure values at the engine compressor face are reported.

  16. Hypersonic Magneto-Fluid-Dynamic Compression in Cylindrical Inlet

    NASA Technical Reports Server (NTRS)

    Shang, Joseph S.; Chang, Chau-Lyan

    2007-01-01

    Hypersonic magneto-fluid-dynamic interaction has been successfully performed as a virtual leading-edge strake and a virtual cowl of a cylindrical inlet. In a side-by-side experimental and computational study, the magnitude of the induced compression was found to be depended on configuration and electrode placement. To better understand the interacting phenomenon the present investigation is focused on a direct current discharge at the leading edge of a cylindrical inlet for which validating experimental data is available. The present computational result is obtained by solving the magneto-fluid-dynamics equations at the low magnetic Reynolds number limit and using a nonequilibrium weakly ionized gas model based on the drift-diffusion theory. The numerical simulation provides a detailed description of the intriguing physics. After validation with experimental measurements, the computed results further quantify the effectiveness of a magnet-fluid-dynamic compression for a hypersonic cylindrical inlet. At a minuscule power input to a direct current surface discharge of 8.14 watts per square centimeter of electrode area produces an additional compression of 6.7 percent for a constant cross-section cylindrical inlet.

  17. 63. Historic detail drawing of inlet duct cone on exhaust ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Historic detail drawing of inlet duct cone on exhaust scrubber at building 202, June 18, 1955. NASA GRC drawing no. CD-101266. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  18. Physics of Acoustic Radiation from Jet Engine Inlets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  19. Max Data Report Jet Stability versus Inlet Geometry

    SciTech Connect

    Lomperski, S.; Bremer, N.

    2015-09-01

    This document describes experiments investigating the effect of inlet geometry on the flow field within a glass tank where two jets mix and impinge upon the lid. The setup mimics the outlet plenum of a fast reactor where core exit flows of different temperatures can mix in ways that induce thermal cycling in neighboring structures.

  20. Baseline data on the oceanography of Cook Inlet, Alaska

    NASA Technical Reports Server (NTRS)

    Gatto, L. W.

    1975-01-01

    Regional relationships between river hydrology, sediment transport, circulation and coastal processes were analyzed utilizing aircraft, ERTS-1 and N.O.A.A. -2 and -3 imagery and corroborative ground truth data. The use of satellite and aircraft imagery provides a means of acquiring synoptic information for analyzing the dynamic processes of Cook Inlet in a fashion not previously possible.