Science.gov

Sample records for air inlet port

  1. Investigation into air flow characteristics through inlet valve of directed ports

    SciTech Connect

    Liu, R.; Xiao, F.; Guan, L.; Liu, X.

    1994-09-01

    The velocity and turbulence intensity profiles at exit of intake valve from typical SI engine intake ports (horizontal and sloping directed ports) were measured by hot wire anemometry (HWA) in a steady flow rig. The characteristics of velocity and turbulence intensity distribution under different valve lifts and at distances along valve axis were analysed and compared between above two intake ports. Results showed that velocity and turbulence intensity profiles are strongly dependent on intake port form, valve lift and surrounding geometry. They vary not only around the valve head periphery but also along the valve axis. 9 refs., 14 figs.

  2. Ports Primer: 7.2 Air Emissions

    EPA Pesticide Factsheets

    Near-port communities are often disproportionately impacted by air emissions due to port operations, goods movement operations and other industries that may be co-located with ports. Air emissions at ports also impact regional air quality.

  3. Solar assist and filter construction for dryer inlet

    SciTech Connect

    Commander, B.C.

    1981-07-21

    An air inlet construction for a domestic clothes dryer is described including a pair of selectively usable air inlet ports. One of the air inlet ports opens outwardly to the area immediately adjacent and exterior of the dryer and the other inlet port opens into the interior of a non-domestically heated portion of the building in which the dryer is disposed, but which portion is subject to being heated by solar energy during the daylight hours.

  4. Cooling Air Inlet and Exit Geometries on Aircraft Engine Installations

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    A semispan wing and nacelle of a typical general aviation twin-engine aircraft was tested to evaluate the cooling capability and drag or several nacelle shapes; the nacelle shapes included cooling air inlet and exit variations. The tests were conducted in the Ames Research Center 40 x 80-ft Wind Tunnel. It was found that the cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery, but only a minor effect on drag. Exit location showed large effect on drag, especially for those locations on the sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.

  5. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  6. 47. View of "dry air inlets" to waveguides entering scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. Development and Characterization Testing of an Air Pulsation Valve for a Pulse Detonation Engine Supersonic Parametric Inlet Test Section

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert

    2005-01-01

    In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.

  8. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Cook Inlet Intrastate Air...

  9. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Cook Inlet Intrastate Air...

  10. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Cook Inlet Intrastate Air...

  11. The effect of inlet air vitiation on combustion efficiency

    SciTech Connect

    Zuomin, F.; Yijun, J.

    1985-01-01

    Experimental results of the effect of inlet air vitiation produced by a vitiating preheater on combustion efficiency of a turbojet combustor and a model ramjet combustor are presented in this paper. An empirical correlation and a calculation method based on stirred reactor theory are derived to correct the vitiation effect. Results obtained by means of these two methods are in good agreement with test data.

  12. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  13. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  14. Investigation of Aerodynamic and Icing Characteristics of a Flush Alternate Inlet Induction System Air Scoop

    NASA Technical Reports Server (NTRS)

    Lewis, James P.

    1953-01-01

    An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.

  15. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOEpatents

    Rodgers, John C.

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  16. Optimization of Simplex Atomizer Inlet Port Configuration through Computational Fluid Dynamics and Experimental Study for Aero-Gas Turbine Applications

    NASA Astrophysics Data System (ADS)

    Marudhappan, Raja; Chandrasekhar, Udayagiri; Hemachandra Reddy, Koni

    2016-06-01

    The design of plain orifice simplex atomizer for use in the annular combustion system of 1100 kW turbo shaft engine is optimized. The discrete flow field of jet fuel inside the swirl chamber of the atomizer and up to 1.0 mm downstream of the atomizer exit are simulated using commercial Computational Fluid Dynamics (CFD) software. The Euler-Euler multiphase model is used to solve two sets of momentum equations for liquid and gaseous phases and the volume fraction of each phase is tracked throughout the computational domain. The atomizer design is optimized after performing several 2D axis symmetric analyses with swirl and the optimized inlet port design parameters are used for 3D simulation. The Volume Of Fluid (VOF) multiphase model is used in the simulation. The orifice exit diameter is 0.6 mm. The atomizer is fabricated with the optimized geometric parameters. The performance of the atomizer is tested in the laboratory. The experimental observations are compared with the results obtained from 2D and 3D CFD simulations. The simulated velocity components, pressure field, streamlines and air core dynamics along the atomizer axis are compared to previous research works and found satisfactory. The work has led to a novel approach in the design of pressure swirl atomizer.

  17. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  18. 28. Main engine air pump located to port side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Main engine air pump located to port side of main engine cylinder beside engine bed. Dynamo lies aft of air pump (at right), pipe at extreme left of image carries lake water to condenser valves. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  19. 19 CFR 122.163 - Transit air cargo traveling to U.S. ports.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Transit air cargo traveling to U.S. ports. 122.163...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Penalties § 122.163 Transit air cargo traveling to U.S. ports. (a) Application. If transit air cargo is traveling from the port of arrival to another U.S....

  20. 19 CFR 122.163 - Transit air cargo traveling to U.S. ports.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Transit air cargo traveling to U.S. ports. 122.163...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Penalties § 122.163 Transit air cargo traveling to U.S. ports. (a) Application. If transit air cargo is traveling from the port of arrival to another U.S....

  1. 19 CFR 122.163 - Transit air cargo traveling to U.S. ports.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Transit air cargo traveling to U.S. ports. 122.163...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Penalties § 122.163 Transit air cargo traveling to U.S. ports. (a) Application. If transit air cargo is traveling from the port of arrival to another U.S....

  2. 19 CFR 122.163 - Transit air cargo traveling to U.S. ports.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Transit air cargo traveling to U.S. ports. 122.163...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Penalties § 122.163 Transit air cargo traveling to U.S. ports. (a) Application. If transit air cargo is traveling from the port of arrival to another U.S....

  3. 19 CFR 122.163 - Transit air cargo traveling to U.S. ports.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Transit air cargo traveling to U.S. ports. 122.163...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Penalties § 122.163 Transit air cargo traveling to U.S. ports. (a) Application. If transit air cargo is traveling from the port of arrival to another U.S....

  4. Inlet boundary conditions for shock wave propagation problems in air ducts

    NASA Astrophysics Data System (ADS)

    Fashbaugh, R. H.

    1992-03-01

    Shock waves propagating into air ducting systems are numerically studied using data from Kriebel (1972). Small-scale junctions mounted in shock tubes with an incident shock wave are considered. The stagnation pressure ratio through a duct inlet is evaluated for various junction types. The logarithm of this ratio varies linearly with the Mach number of the flow behind the incident shock wave. The static pressure inside the inlet is established using experimental data with given Mach numbers of the incident and inlet flows. A constant stagnation enthalpy through the inlet junction is assumed to establish inflow to the duct.

  5. Advantages of air conditioning and supercharging an LM6000 gas turbine inlet

    SciTech Connect

    Kolp, D.A.; Flye, W.M.; Guidotti, H.A.

    1995-07-01

    Of all the external factors affecting a gas turbine, inlet pressure and temperature have the greatest impact on performance. The effect of inlet temperature variations is especially pronounced in the new generation of high-efficiency gas turbines typified by the 40 MW GE LM6000. A reduction of 50 F (28 C) in inlet temperature can result in a 30 percent increase in power and a 4.5 percent improvement in heat rate. An elevation increase to 5,000 ft (1,524 m) above sea level decreases turbine output 17 percent; conversely supercharging can increase output more than 20 percent. This paper addresses various means of heating, cooling and supercharging LM6000 inlet air. An economic model is developed and sample cases are cited to illustrate the optimization of gas turbine inlet systems, taking into account site conditions, incremental equipment cost and subsequent performance enhancement.

  6. Aerodynamic characteristics of a series of twin-inlet air-breathing missile configurations. 2: Two-dimensional inlets at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either twin axisymmetric or two dimensional inlets. Three circumferential inlet locations were investigated: 90 deg, 115 deg, and 135 deg from the top center. Two vertical wing locations, as well as wingless configurations, were used. Three tail configurations were formed by locating the tail surfaces either on the inlet fairings or on fairings on the body. The surfaces were used to provide pitch control. Two dimensional inlets with extended compression surfaces, used to improve the angle-of-attack performance of the inlets for wingless configurations, were also investigated. The two dimensional inlet configurations are covered.

  7. Aerodynamic characteristics of a series of single-inlet air-breathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either a single axisymmetric or a two dimensional inlet located at the bottom of the body. Two tail configurations were investigated: a tri-tail and an X-tail. The tail surfaces could be deflected to provide pitch control. A wing could be located above the inlet on the center line of the model. Tests were made at supersonic Mach numbers with the inlet open and internal flow, and at subsonic-transonic Mach numbers with the internal duct closed and no internal flow.

  8. Effect of inlet-air humidity on the formation of oxides of nitrogen in a gas-turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    Tests were conducted to determine the effect of inlet-air humidity on the formation of oxides of nitrogen from a gas-turbine combustor. Combustor inlet-air temperature ranged from 450 F to 1050 F. The tests were run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NO sub x emission index was found to decrease with increasing inlet-air humidity at a constant exponential rate of 19 percent per mass percent water vapor in the air. This decrease of NO sub x emission index with increasing humidity was found to be independent of inlet-air temperature.

  9. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  10. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  11. A comparative assessment of alternative combustion turbine inlet air cooling system

    SciTech Connect

    Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

    1996-02-01

    Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

  12. Problems in creation of modern air inlet filters of power gas turbine plants in Russia and methods of their solving

    NASA Astrophysics Data System (ADS)

    Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.

    2016-08-01

    The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.

  13. Operational test report for 241-AW tank inlet air control stations

    SciTech Connect

    Minteer, D.J., Westinghouse Hanford

    1996-07-03

    This document reports the results of operational testing on tank inlet air control stations in 241-AW tank farm. An air control station was installed on each of the six AW tanks. Operational testing consisted of a simple functional test of each station`s air flow controller, aerosol testing of each station`s HEPA filter, and final ventilation system balancing (i.e., tank airflows and vacuum level) using the air control stations. The test was successful and the units were subsequently placed into operation.

  14. Report: EPA Needs to Improve Its Efforts to Reduce Air Emissions at U.S. Ports

    EPA Pesticide Factsheets

    Report #09-P-0125, March 23, 2009. While EPA has issued air emissions regulations for most port sources, EPA’s actions to address air emissions from large oceangoing vessels in U.S. ports have not yet achieved the goals for protecting human health.

  15. A Community-Scale Modeling System to Assess Port-Related Air Quality Impacts

    EPA Science Inventory

    Near-port air pollution has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at the ports may impact local air quality within several hun...

  16. Cracking of Composite Modified Alloy 825 Primary Air Port Tubes

    SciTech Connect

    Kish, Joseph R.; Keiser, James R; Singbeil, Douglas; Willoughby, Adam W; Longmire, Hu Foster

    2007-04-01

    Twenty primary air ports fabricated from modified Alloy 825-based composite tubes underwent a metallurgical examination to document the mode and extent of cracking on the external fireside surface of a kraft recovery boiler. Collectively, the crack features found are most consistent with thermal fatigue, but corrosion fatigue cannot be ruled out. Regardless of the true cracking mechanism, temperature cycling is implicated as a critical factor for crack propagation. on the basis of the relative crack lengths observed, membrane welds and tube weld repairs, and their adjacent heat-affected zones, appear to be more susceptible to cracking than the cladding itself. This work suggests that mills should avoid boiler operating conditions that promote large temperature fluctuations, which can cause Alloy 825-based composite tubes to crack.

  17. The Role of Design-of-Experiments in Managing Flow in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Gridley, Marvin C.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design-of-Experiments methodologies to arrive at microscale secondary flow control array designs that maintain optimal inlet performance over a wide range of the mission variables and to explore how these statistical methods provide a better understanding of the management of flow in compact air vehicle inlets. These statistical design concepts were used to investigate the robustness properties of low unit strength micro-effector arrays. Low unit strength micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. The term robustness is used in this paper in the same sense as it is used in the industrial problem solving community. It refers to minimizing the effects of the hard-to-control factors that influence the development of a product or process. In Robustness Engineering, the effects of the hard-to-control factors are often called noise , and the hard-to-control factors themselves are referred to as the environmental variables or sometimes as the Taguchi noise variables. Hence Robust Optimization refers to minimizing the effects of the environmental or noise variables on the development (design) of a product or process. In the management of flow in compact inlets, the environmental or noise variables can be identified with the mission variables. Therefore this paper formulates a statistical design methodology that minimizes the impact of variations in the mission variables on inlet performance and demonstrates that these statistical design concepts can lead to simpler inlet flow management systems.

  18. Benefits of compressor inlet air cooling for gas turbine cogeneration plants

    SciTech Connect

    De Lucia, M.; Lanfranchi, C.; Boggio, V.

    1996-07-01

    Compressor inlet air cooling is an effective method for enhancing the performance of gas turbine plants. This paper presents a comparative analysis of different solutions for cooling the compressor inlet air for the LM6000 gas turbine in a cogeneration plant operated in base load. Absorption and evaporative cooling systems are considered and their performance and economic benefits compared for the dry low-NO{sub x} LM6000 version. Reference is made to two sites in Northern and Southern Italy, whose climate data series for modeling the variations in ambient temperature during the single day were used to account for the effects of climate in the simulation. The results confirmed the advantages of inlet air cooling systems. In particular, evaporative cooling proved to be cost effective, though capable of supplying only moderate cooling, while absorption systems have a higher cost but are also more versatile and powerful in base-load operation. An integration of the two systems proved to be able to give both maximum performance enhancement and net economic benefit.

  19. Wind-Tunnel Investigation of Air Inlet and Outlet Openings on a Streamline Body

    NASA Technical Reports Server (NTRS)

    Becker, John V

    1951-01-01

    In connection with the general problem of providing air flow to an aircraft power plant located within a fuselage, an investigation was conducted in the Langley 8-foot high-speed tunnel to determine the effect on external drag and pressure distribution of air inlet openings located at the nose of a streamline body. Air outlet openings located at the tail and at the 21-percent and 63-percent stations of the body were also investigated. Boundary layer transition measurements were made and correlated with the force and the pressure data. Individual openings were investigated with the aid of a blower and then practicable combinations of inlet and outlet openings were tested. Various modifications to the internal duct shape near the inlet opening and the aerodynamic effects of a simulated gun in the duct were also studied. The results of the tests suggested that outlet openings should be designed so that the static pressure of the internal flow at the outlet would be the same as the static pressure of the external flow in the vicinity of the opening.

  20. EPA Administrator Promotes Clean-Diesel Grants and Improved Air Quality at Port of Houston

    EPA Pesticide Factsheets

    DALLAS - (April 24, 2015) U.S. Environmental Protection Agency (EPA) Administrator Gina McCarthy visited the Port of Houston today to highlight grants aimed at improving air quality. The port will receive about $900,000 in funding as part of EPA's D

  1. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches) in... fitted with frames of steel or equivalent material. Glazing beads or angles of steel or...

  2. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches) in... fitted with frames of steel or equivalent material. Glazing beads or angles of steel or...

  3. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches) in... fitted with frames of steel or equivalent material. Glazing beads or angles of steel or...

  4. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches) in... fitted with frames of steel or equivalent material. Glazing beads or angles of steel or...

  5. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches) in... fitted with frames of steel or equivalent material. Glazing beads or angles of steel or...

  6. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  7. Nonuniform air flow in inlets: the effect on filter deposits in the fiber sampling cassette.

    PubMed

    Baron, P A; Chen, C C; Hemenway, D R; O'Shaughnessy, P

    1994-08-01

    Smoke stream studies were combined with a new technique for visualizing a filter deposit from samples used to monitor asbestos or other fibers. Results clearly show the effect of secondary flow vortices within the sampler under anisoaxial sampling conditions. The vortices observed at low wind velocities occur when the inlet axis is situated at angles between 45 degrees and 180 degrees to the motion of the surrounding air. It is demonstrated that the vortices can create a complex nonuniform pattern in the filter deposit, especially when combined with particle settling or electrostatic interactions between the particles and the sampler. Inertial effects also may play a role in the deposit nonuniformity, as well as causing deposition on the cowl surfaces. Changes in the sampler, such as its placement, may reduce these biases. The effects noted are not likely to occur in all sampling situations, but may explain some reports of high variability on asbestos fiber filter samples. The flow patterns observed in this study are applicable to straight, thin-walled inlets. Although only compact particles were used, the air flow patterns and forces involved will have similar effects on fibers of the same aerodynamic diameter.

  8. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  9. C-PORT: A Community-Scale Near-Source Air Quality System to Assess Port-Related Air Quality Impacts

    EPA Science Inventory

    With increasing activity in global trade, there has been increased activity in transportation by rail, road and ships to move cargo. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission source at the ports may impact local air qu...

  10. [Superposition impact character of air pollution from decentralization docks in a freshwater port].

    PubMed

    Liu, Jian-chang; Li, Xing-hua; Xu, Hong-lei; Cheng, Jin-xiang; Wang, Zhong-dai; Xiao, Yang

    2013-05-01

    Air pollution from freshwater port is mainly caused by dust pollution, including material loading and unloading dust, road dust, and wind erosion dust from stockpile, bare soil. The dust pollution from a single dock characterized in obvious difference with air pollution from multiple scattered docks. Jining Port of Shandong Province was selected as a case study to get superposition impact contribution of air pollution for regional air environment from multiple scattered docks and to provide technical support for system evaluation of port air pollution. The results indicate that (1) the air pollution from freshwater port occupies a low proportion of pollution impact on regional environmental quality because the port is consisted of serveral small scattered docks; (2) however, the geometric center of the region distributed by docks is severely affected with the most superposition of the air pollution; and (3) the ADMS model is helpful to attain an effective and integrated assessment to predict a superposition impact of multiple non-point pollution sources when the differences of high-altitude weather conditions was not considered on a large scale.

  11. Measurement and Modeling of Near Road & Near-Port Air Quality

    EPA Science Inventory

    Air pollution from mobile sources has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at ports can significantly impact local air qualit...

  12. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    NASA Astrophysics Data System (ADS)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  13. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  14. Numerical Investigation of Engine Inlet Vane Hot-Air Anti-Icing System with Surface Air Film

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Chen, Weijian; Zhang, Dalin

    The inlet vane of aircraft engine needs to be equipped with anti-icing system to prevent ice accretion on the leading edge due to flight safety requirements, and the engine bleed hot-air is mostly used to heat the vane surface in anti-icing system. In order to save the energy consumption, a new anti-icing structure was developed and investigated with numerical simulation. Besides the use of small tunnels to enhance the heat transfer characteristics, a narrow gap was opened and assigned on the vane surface at the end of the anti-icing tunnels, and the exhaust hot-air was released from the gap to form an air film on the outside surface, which was supposed to prevent the droplets from impinging to the surface and sweep the droplets away. The droplets impingement on the vane surface was investigated by solving the 3D Eulerian air/droplets twophase model, and the impingement results were compared with the original system. Meanwhile, the thermodynamic analysis of the anti-icing system was presented in this paper. The results indicate that the air film is effective to decrease the droplets impingement area, and the new structure could provide more heat flux for anti-icing than the regular anti-icing structure.

  15. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    NASA Technical Reports Server (NTRS)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  16. The comparative performance of an aviation engine at normal and high inlet air temperatures

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Schey, Oscar W

    1928-01-01

    This report presents some results obtained during an investigation to determine the effect of high inlet air temperature on the performance of a Liberty 12 aviation engine. The purpose of this investigation was to ascertain, for normal service carburetor adjustments and a fixed ignition advance, the relation between power and temperature for the range of carburetor air temperatures that may be encountered when supercharging to sea level pressure at altitudes of over 20,000 feet and without intercooling when using plain aviation gasoline and mixtures of benzol and gasoline. The results show that for the conditions of test, both the brake and indicated power decrease with increase in air temperature at a faster rate than given by the theoretical assumption that power varies inversely as the square root of the absolute temperature. On a brake basis, the order of the difference in power for a temperature difference of 120 degrees F. Is 3 to 5 per cent. The observed relation between power and temperature when using the 30-70 blend was found to be linear. But, although these differences are noted, the above theoretical assumption may be considered as generally applicable except where greater precision over a wide range of temperatures is desired, in which case it appears necessary to test the particular engine under the given conditions. (author)

  17. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Gauging devices, top loading and unloading devices... and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air inlet...). In no case shall the wall thickness be less than that specified in § 179.201-1. (f) When top...

  18. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and...

  19. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF...

  20. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF...

  1. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF...

  2. Assessment of port-related air quality impacts: geographic analysis of population

    EPA Science Inventory

    Increased global trade has led to greater transportation by rail, road and ships to move cargo. Based upon multiple near-road and near-source monitoring studies, the busy roadways and large emission sources at ports may impact local air quality within several hundred metres of th...

  3. Second Line of Defense, Port of Buenos Aires and Exolgan Container Terminal Operational Testing and Evaluation Plan, Buenos Aires, Argentina

    SciTech Connect

    Roberts, Bryan W.

    2012-08-23

    The Office of the Second Line of Defense (SLD) Megaports project team for Argentina will conduct operational testing and evaluation (OT&E) at Exolgan Container Terminal at the Port of Dock Sud from July 16-20, 2012; and at the Port of Buenos Aires from September 3-7, 2012. SLD is installing radiation detection equipment to screen export, import, and transshipment containers at these locations. The purpose of OT&E is to validate and baseline an operable system that meets the SLD mission and to ensure the system continues to perform as expected in an operational environment with Argentina Customs effectively adjudicating alarms.

  4. Investigation of X24C-2 10-Stage Axial-Flow Compressor. 2; Effect of Inlet-Air Pressure and Temperature of Performance

    NASA Technical Reports Server (NTRS)

    Finger, Harold B.; Schum, Harold J.; Buckner, Howard Jr.

    1947-01-01

    Effect of inlet-air pressure and temperature on the performance of the X24-2 10-Stage Axial-Flow Compressor from the X24C-2 turbojet engine was evaluated. Speeds of 80, 89, and 100 percent of equivalent design speed with inlet-air pressures of 6 and 12 inches of mercury absolute and inlet-air temperaures of approximately 538 degrees, 459 degrees,and 419 degrees R ( 79 degrees, 0 degrees, and minus 40 degrees F). Results were compared with prior investigations.

  5. Ships, ports and particulate air pollution - an analysis of recent studies

    PubMed Central

    2011-01-01

    The duration of use is usually significantly longer for marine vessels than for roadside vehicles. Therefore, these vessels are often powered by relatively old engines which may propagate air pollution. Also, the quality of fuel used for marine vessels is usually not comparable to the quality of fuels used in the automotive sector and therefore, port areas may exhibit a high degree of air pollution. In contrast to the multitude of studies that addressed outdoor air pollution due to road traffic, only little is known about ship-related air pollution. Therefore the present article aims to summarize recent studies that address air pollution, i.e. particulate matter exposure, due to marine vessels. It can be stated that the data in this area of research is still largely limited. Especially, knowledge on the different air pollutions in different sea areas is needed. PMID:22141925

  6. Enclosed rotary disc air pulser

    DOEpatents

    Olson, A. L.; Batcheller, Tom A.; Rindfleisch, J. A.; Morgan, John M.

    1989-01-01

    An enclosed rotary disc air pulser for use with a solvent extraction pulse olumn includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber therebetween, the chamber being in communication with the pulse leg port, the first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and the chamber.

  7. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  8. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  9. Sea-Air Intermodal Port Pair Selection Criteria in South America

    DTIC Science & Technology

    2011-06-01

    force projection for HADR and military operations as outlined in Joint Vision 2020 (CJCS, 2000). Third , that the quantitative data available for port...withdrawals, and scheduled major unit force rotations. For units deploying to the fight for a third and fourth time, speed was desired and the air choice for...The factors identified by Weigmanns et al. show clear parallels with each of Coyle’s five service characteristics. Paul Murphy et al. (1988

  10. Shock position sensor for supersonic inlets. [measuring pressure in the throat of a supersonic inlet

    NASA Technical Reports Server (NTRS)

    Dustin, M. O. (Inventor)

    1975-01-01

    Static pressure taps or ports are provided in the throat of a supersonic inlet, and signals indicative of the pressure at each of the ports is fed to respective comparators. Means are also provided for directing a signal indicative of the total throat pressure to the comparators. A periodic signal is superimposed on the total throat pressure so that the signal from the static pressure tabs is compared to a varying scan signal rather than to total throat pressure only. This type of comparison causes each comparator to provide a pulse width modulated output which may vary from 0% 'time on' to 100% 'time on'. The pulse width modulated outputs of the comparators are summed, filtered, and directed to a controller which operates a bypass valve such as a door whereby air is dumped from the inlet to prevent the shock wave from being expelled out the front.

  11. Modification of Cabinet Fans with Inlet Air Guide Fairings to Improve Performance.

    DTIC Science & Technology

    1983-04-01

    CHAMPAIGN IL W H DOLAN ANLSIFE PR 83 CERL-TR-E-i~i F /G 13/1i N EIND IllIflI2.8 25 36 1111.8 1.4 L16 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF...fan inlet conditions. By observing airflow within the cabinet, a DO ,~~ F 10 EDIIONOF NOV6 ISOSOETEUNCLASS IFIED SACUSSTV CLASSIFICATION OF THIS PAGE...7 F ,.vousA.F i 7$ __. DISCHARGE PLATE CONNECTING FAN WHEEL TO FAN SHAFT. ROTATING FAN WHEEL Fig.,e 1. Double Width, Double Inlet (DWDI) centrifugal

  12. Ports Primer: 7.4 Agency Responsibilities

    EPA Pesticide Factsheets

    Near-port communities are often disproportionately impacted by air emissions due to port operations, goods movement operations and other industries that may be co-located with ports. Air emissions at ports also impact regional air quality.

  13. Heat transfer to two-phase air/water mixtures flowing in small tubes with inlet disequilibrium

    NASA Technical Reports Server (NTRS)

    Janssen, J. M.; Florschuetz, L. W.; Fiszdon, J. P.

    1986-01-01

    The cooling of gas turbine components was the subject of considerable research. The problem is difficult because the available coolant, compressor bleed air, is itself quite hot and has relatively poor thermophysical properties for a coolant. Injecting liquid water to evaporatively cool the air prior to its contact with the hot components was proposed and studied, particularly as a method of cooling for contingency power applications. Injection of a small quantity of cold liquid water into a relatively hot coolant air stream such that evaporation of the liquid is still in process when the coolant contacts the hot component was studied. No approach was found whereby heat transfer characteristics could be confidently predicted for such a case based solely on prior studies. It was not clear whether disequilibrium between phases at the inlet to the hot component section would improve cooling relative to that obtained where equilibrium was established prior to contact with the hot surface.

  14. 41. #1 ARRESTING GEAR ENGINE AFT LOOKING FORWARD PORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. #1 ARRESTING GEAR ENGINE - AFT LOOKING FORWARD PORT TO STARBOARD SHOWING ARRESTING GEAR ENGINE ACCUMULATOR, AIR FLASK, CONTROL VALVE, WITH CONTROL RAM, SHEAVES AND WIRES UNDERNEATH ENGINE STAND. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  15. Optimal Micro-Vane Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-vane secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-vane secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low unit strength" micro-effector arrays. "Low unit strength" micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. Therefore, this report examines optimal micro-vane secondary flow control array designs for compact inlets through a Response Surface Methodology.

  16. Wind-Tunnel Investigation of Air Inlet and Outlet Openings for Aircraft, Special Report

    NASA Technical Reports Server (NTRS)

    Rogallo, Francis M.; Gauvain, William E.

    1938-01-01

    An investigation was made in the NACA 5-foot vertical wind tunnel of a large variety of duct inlets and outlets to obtain information relative to their design for the cooling or the ventilation systems on aircraft. Most of the tests were of openings in a flat plate but, in order to determine the best locations and the effects of interference, a few tests were made of openings in an airfoil. The best inlet location for a system not including a blower was found to be at the forward stagnation point; for one including a blower, the best location was found to be in the region of lowest total head, probably in the boundary layer near the trailing edge. Design recommendations are given, and it is shown that correct design demands a knowledge of the external flow and of the internal requirements in addition to that obtained from the results of the wind tunnel tests.

  17. Management of Total Pressure Recovery, Distortion and High Cycle Fatigue in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan

    2002-01-01

    It is the purpose of this study to demonstrate the viability and economy of Response Surface Methods (RSM) and Robustness Design Concepts (RDC) to arrive at micro-secondary flow control installation designs that maintain optimal inlet performance over a range of the mission variables. These statistical design concepts were used to investigate the robustness properties of 'low unit strength' micro-effector installations. 'Low unit strength' micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion.

  18. Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1978-01-01

    A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.

  19. Air velocity distributions inside tree canopies from a variable-rate air-assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variable-rate, air assisted, five-port sprayer had been in development to achieve variable discharge rates of both liquid and air. To verify the variable air rate capability by changing the fan inlet diameter of the sprayer, air jet velocities impeded by plant canopies were measured at various loc...

  20. Ports Initiative

    EPA Pesticide Factsheets

    The purpose of the ports initiative is to assist EPA and other participants to formulate strategies for moving forward on actions addressing the transportation, air quality and climate issues raised in the National Conversations.

  1. Characteristics and ship traffic source identification of air pollutants in China's largest port

    NASA Astrophysics Data System (ADS)

    Zhao, Minjiang; Zhang, Yan; Ma, Weichun; Fu, Qingyan; Yang, Xin; Li, Chunlei; Zhou, Bin; Yu, Qi; Chen, Limin

    2013-01-01

    To characterize the air pollutants in Shanghai Port and identify the contribution from ship traffic emission, field measurements have been conducted in 2011. The trace gases SO2, NO2 and O3 were monitored and aerosol samples of TSP, PM2.5 and size-segregated particles were collected in a working area of Shanghai Port. Elements including V, Ni, Al, Fe, Si, Ca, Na, Mg, Mn, Zn, Co, Cr in aerosol samples and heavy fuel oil samples were analyzed. The results revealed that average hourly SO2 and NO2 concentrations in Shanghai Port were respectively 29.4 and 63.7 μg m-3, average daily concentrations of TSP and PM2.5 were 114.39 and 62.60 μg m-3, comparable with the ones in Shanghai land area. Ni and V were found enriched in fine particles with averaged concentrations of 80.0 and 14.8 ng m-3 in PM2.5 respectively. Also ratio of V/Ni in aerosol under summertime airflow was 3.4, very close to the ratio of averaged V and Ni content in international heavy fuel oils used in Shanghai Port. The backward trajectory analysis further revealed that SO2, NO2, and V under coastal airflows were mainly from ship traffic emission. The mean concentration of V was 15.84 ng m-3 under hybrid coastal airflows, much higher than that of 9.84 ng m-3 under continental airflows. Furthermore, V was found to be highly correlated with ship fluxes, and was selected as an indicator of ship traffic emission in Shanghai. The estimated primary PM2.5 contribution from ship traffic ranged from 0.63 to 3.58 μg m-3, with an average of 1.96 μg m-3. This PM2.5 fraction accounted for 4.23% of the total PM2.5 in an average level, and reached to a maximum of 12.8%. Furthermore, there could be 64% of primary PM2.5 contributed by ships in Shanghai Port transported to inland region. Our results suggest that ship traffic has a non-negligible contribution on ambient levels of fine particles and secondary contribution of SO2 and NO2 emitted by ships need to be estimated on local and regional scale in future.

  2. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  3. Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.

  4. Spatial variations of particulate matter and air toxics in communities adjacent to the Port of Oakland.

    PubMed

    Fujita, Eric M; Campbell, David E; Arnott, W Patrick; Lau, Virginia; Martien, Philip T

    2013-12-01

    The Bay Area Air Quality Management District (BAAQMD) sponsored the West Oakland Monitoring Study (WOMS) to provide supplemental air quality monitoring that will be used by the BAAQMD to evaluate local-scale dispersion modeling of diesel emissions and other toxic air contaminants for the area within and around the Port of Oakland. The WOMS was conducted during two seasonal periods of 4 weeks in summer 2009 and winter 2009/2010. Monitoring data showed spatial patterns of pollutant concentrations that were generally consistent with proximity to vehicle traffic. Concentrations of directly emitted pollutants were highest on heavily traveled roads with consistently lower concentrations away from the roadways. Pollutants that have higher emission rates from diesel trucks (nitric oxide, black carbon) tended to exhibit sharper gradients than pollutants that are largely associated with gasoline vehicles, such as carbon monoxide and volatile organic compounds, including benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX concentrations in West Oakland were similar to those measured at the three air toxics monitoring network sites in the Bay Area (San Francisco, Fremont, and San Jose). Aldehyde levels were higher in Fremont and San Jose than in West Oakland, reflecting greater contributions from photo-oxidation of hydrocarbons downwind of the Bay Area. A 2005 modeling-based health risk assessment of diesel particulate matter concentrations is consistent with aerosol carbon concentrations measured during the WOMS after adjusting for recent mitigation measures and improved estimates of heavy-duty truck traffic volumes.

  5. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  6. 33 CFR 165.151 - Safety Zones; Fireworks Displays, Air Shows and Swim Events in the Captain of the Port Long...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Air Shows and Swim Events in the Captain of the Port Long Island Sound Zone. 165.151 Section 165.151... Swim Events in the Captain of the Port Long Island Sound Zone. (a) Regulations. (1) The general..., air shows, and swim events listed in Tables 1 and 2 to § 165.151. (2) These regulations will...

  7. Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports

    SciTech Connect

    Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jetté, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

    2006-10-01

    Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

  8. Measuring the Impact of Port of Charleston Activities on Local Air Quality

    EPA Science Inventory

    Ports are a critical feature of the nation’s economy; port commerce supports 13 million jobs and contributes $3.15 trillion to the economy. The value of goods shipped through seaports represents 11% of the GDP. The US has 360 commercial ports, including 150 deep-draft seaports....

  9. Intake port

    DOEpatents

    Mendler, Edward Charles

    2005-02-01

    The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.

  10. Port Stakeholder Summit - April 2014

    EPA Pesticide Factsheets

    EPA's National Port Stakeholders Summit, Advancing More Sustainable Ports, focused on actions to protect air quality while reducing climate risk and supporting economic growth, making ports more environmentally sustainable.

  11. Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Singh, O.

    2012-10-01

    Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better blade cooling technology in topping cycle and enhanced heat recovery in bottoming cycle. The scope of improvement is possible through turbines having higher turbine inlet temperatures (TITs) of both gas turbine and steam turbine. Literature review shows that a combined cycle with transpiration cooled gas turbine has not been analyzed with varying gas/steam TITs. In view of above the present study has been undertaken for thermodynamic study of gas/steam combined cycle with respect to variation in TIT in both topping and bottoming cycles, for air transpiration cooled gas turbine. The performance of combined cycle with dual pressure heat recovery steam generator has been evaluated for different cycle pressure ratios (CPRs) varying from 11 to 23 and the selection diagrams presented for TIT varying from 1,600 to 1,900 K. Both the cycle efficiency and specific work increase with TIT for each pressure ratio. For each TIT there exists an optimum pressure ratio for cycle efficiency and specific work. For the CPR of 23 the best cycle performance is seen at a TIT of 1,900 K for maximum steam temperature of 570 °C, which gives the cycle efficiency of 60.9 % with net specific work of 909 kJ/kg.

  12. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  13. 48 CFR 47.305-6 - Shipments to ports and air terminals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... can be loaded in a car, truck, or other conveyance of the size normally used (specify type and size... evaluation purposes, note in the solicitation the CONUS port of loading or point of exit (aerial or water) and the water port of debarkation that serves the overseas destination. (c) The contracting...

  14. 48 CFR 47.305-6 - Shipments to ports and air terminals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... can be loaded in a car, truck, or other conveyance of the size normally used (specify type and size... evaluation purposes, note in the solicitation the CONUS port of loading or point of exit (aerial or water) and the water port of debarkation that serves the overseas destination. (c) The contracting...

  15. Measurement and Modeling of Near-Road & Near-Port Air Quality

    EPA Science Inventory

    This presentation provides a summary of mobile monitoring assessment studies conducted on major interstates in Detroit, Michigan and Phoenix, Arizona along with a near-port assessment focusing on the Port of Charleston in South Carolina, USA. We will also present our mobile measu...

  16. Investigation at supersonic and subsonic Mach numbers of auxiliary inlets supplying secondary air flow to ejector exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Hearth, Donald P; Cubbison, Robert W

    1956-01-01

    The results indicated increases in auxiliary-inlet pressure recovery with increases in scoop height relative to the boundary-layer thickness. The pressure recovery increased at about the same rate as theoretically predicted for an inlet in a boundary layer having a one-seventh power profile, but was only about 0.68 to 0.75 of the theoretically obtainable values. Under some operating conditions, flow from the primary jet was exhausted through the auxiliary inlet. This phenomenon could be predicted from the ejector pumping characteristics.

  17. The effect of different inlet conditions of air in a rectangular channel on convection heat transfer: Turbulence flow

    SciTech Connect

    Kurtbas, Irfan

    2008-10-15

    Theoretical and empirical correlations for duct flow are given for hydrodynamically and thermally developed flow in most of previous studies. However, this is commonly not a realistic inlet configuration for heat exchanger, in which coolant flow generally turns through a serpentine shaped passage before entering heat sinks. Accordingly, an experimental investigation was carried out to determine average heat transfer coefficients in uniformly heated rectangular channel with 45 and 90 turned flow, and with wall mounted a baffle. The channel was heated through bottom side with the baffle. In present work, a detailed study was conducted for three different height of entry channel (named as the ratio of the height of entry channel to the height of test section (anti H{sub c}=h{sub c}/H)) by varying Reynolds number (Re{sub Dh}). Another variable parameter was the ratio of the baffle height to the channel height (anti H{sub b}=h{sub b}/H). Only one baffle was attached on the bottom (heating) surface. The experimental procedure was validated by comparing the data for the straight channel with no baffle. Reynolds number (Re{sub Dh}) was varied from 2800 to 30,000, so the flow was considered as only turbulent regime. All experiments were conduced with air accordingly; Prandtl number (Pr) was approximately fixed at 0.71. The results showed that average Nusselt number for {theta}=45 and {theta}=90 were 9% and 30% higher, respectively, than that of the straight channel without baffle. Likewise, the pressure drop increased up to 4.4 to 5.3 times compare to the straight channel. (author)

  18. Attic inlet technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising fuel costs have driven development of alternative heat sources for poultry growers. Attic inlets are employed to pre-heat incoming ventilation air to reduce fuel usage. Attic temperatures are at least 10 °F warmer than the outside temperature at least 80% of the time and offers a source of...

  19. 48 CFR 47.305-6 - Shipments to ports and air terminals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... evaluation purposes, note in the solicitation the CONUS port of loading or point of exit (aerial or water... authority in accordance with DoD 4500.9-R, Defense Transportation Regulation, Part II, procedures for...

  20. 48 CFR 47.305-6 - Shipments to ports and air terminals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... marine insurance coverage; e.g., whether the coverage is With Average or Free of Particular Average and... foster the American Merchant Marine, the port of delivery of supplies originating outside the...

  1. 48 CFR 47.305-6 - Shipments to ports and air terminals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... marine insurance coverage; e.g., whether the coverage is With Average or Free of Particular Average and... foster the American Merchant Marine, the port of delivery of supplies originating outside the...

  2. Modelling the emissions from ships in ports and their impact on air quality in the metropolitan area of Hamburg

    NASA Astrophysics Data System (ADS)

    Ramacher, Martin; Karl, Matthias; Aulinger, Armin; Bieser, Johannes; Matthias, Volker; Quante, Markus

    2016-04-01

    Exhaust emissions from shipping contribute significantly to the anthropogenic burden of air pollutants such as nitrogen oxides (NOX) and particulate matter (PM). Ships emit not only when sailing on open sea, but also when approaching harbors, during port manoeuvers and at berth to produce electricity and heat for the ship's operations. This affects the population of harbor cities because long-term exposure to PM and NOX has significant effects on human health. The European Union has therefore has set air quality standards for air pollutants. Many port cities have problems meeting these standards. The port of Hamburg with around 10.000 ship calls per year is Germany's largest seaport and Europe's second largest container port. Air quality standard reporting in Hamburg has revealed problems in meeting limits for NO2 and PM10. The amount and contribution of port related ship emissions (38% for NOx and 17% for PM10) to the overall emissions in the metropolitan area in 2005 [BSU Hamburg (2012): Luftreinhalteplan für Hamburg. 1. Fortschreibung 2012] has been modelled with a bottom up approach by using statistical data of ship activities in the harbor, technical vessel information and specific emission algorithms [GAUSS (2008): Quantifizierung von gasförmigen Emissionen durch Maschinenanlagen der Seeschiffart an der deutschen Küste]. However, knowledge about the spatial distribution of the harbor ship emissions over the city area is crucial when it comes to air quality standards and policy decisions to protect human health. Hence, this model study examines the spatial distribution of harbor ship emissions (NOX, PM10) and their deposition in the Hamburg metropolitan area. The transport and chemical transformation of atmospheric pollutants is calculated with the well-established chemistry transport model TAPM (The Air Pollution Model). TAPM is a three-dimensional coupled prognostic meteorological and air pollution model with a condensed chemistry scheme including

  3. Experimental Investigation of an Air-Cooled Turbine Operating in a Turbojet Engine at Turbine Inlet Temperatures up to 2500 F

    NASA Technical Reports Server (NTRS)

    Cochran, Reeves P.; Dengler, Robert P.

    1961-01-01

    An experimental investigation was made of an air-cooled turbine at average turbine inlet temperatures up to 2500 F. A modified production-model 12-stage axial-flow-compressor turbojet engine operating in a static sea-level stand was used as the test vehicle. The modifications to the engine consisted of the substitution of special combustor and turbine assemblies and double-walled exhaust ducting for the standard parts of the engine. All of these special parts were air-cooled to withstand the high operating temperatures of the investigation. The air-cooled turbine stator and rotor blades were of the corrugated-insert type. Leading-edge tip caps were installed on the rotor blades to improve leading-edge cooling by diverting the discharge of coolant to regions of lower gas pressure toward the trailing edge of the blade tip. Caps varying in length from 0.15- to 0.55-chord length were used in an attempt to determine the optimum cap length for this blade. The engine was operated over a range of average turbine inlet temperatures from about 1600 to about 2500 F, and a range of average coolant-flow ratios of 0.012 to 0.065. Temperatures of the air-cooled turbine rotor blades were measured at all test conditions by the use of thermocouples and temperature-indicating paints. The results of the investigation indicated that this type of blade is feasible for operation in turbojet engines at the average turbine inlet temperatures and stress levels tested(maximums of 2500 F and 24,000 psi, respectively). An average one-third-span blade temperature of 1300 F could be maintained on 0.35-chord tip cap blades with an average coolant-flow ratio of about 0.022 when the average turbine inlet temperature was 2500 F and cooling-air temperature was about 260 F. All of the leading-edge tip cap lengths improved the cooling of the leading-edge region of the blades, particularly at low average coolant-flow ratios. At high gas temperatures, such parts as the turbine stator and the combustor

  4. Air quality impact assessment of at-berth ship emissions: Case-study for the project of a new freight port.

    PubMed

    Lonati, Giovanni; Cernuschi, Stefano; Sidi, Shelina

    2010-12-01

    This work is intended to assess the impact on local air quality due to atmospheric emissions from port area activities for a new port in project in the Mediterranean Sea. The sources of air pollutants in the harbour area are auxiliary engines used by ships at berth during loading/offloading operations. A fleet activity-based methodology is first applied to evaluate annual pollutant emissions (NO(X), SO(X), PM, CO and VOC) based on vessel traffic data, ships tonnage and in-port hotelling time for loading/offloading operations. The 3-dimensional Calpuff transport and dispersion model is then applied for the subsequent assessment of the ground level spatial distribution of atmospheric pollutants for both long-term and short-term averaging times. Compliance with current air quality standards in the port area is finally evaluated and indications for port operation are provided. Some methodological aspects of the impact assessment procedure, namely those concerning the steps of emission scenario definitions and model simulations set-up at the project stage, are specifically addressed, suggesting a pragmatic approach for similar evaluations for small new ports in project.

  5. Inlet/Body Integration Preliminary Design for Supersonic Air-Breathing Missiles Using Automated Multi-Discilinary Optimization

    DTIC Science & Technology

    2000-06-01

    configuration, 33 ometry necessitate sophisticated numerical codes rameters to be d fine theigura tio and refined spatial discretizations which are...get there. The development strategy the exit location of the inlet subsonic diffuser is followed by Aerospatiale Matra Missiles and Rut- fixed. Second...approxi- Parameter Name Value mate 2- D /3- D geometrical models and low accu- 1 Missile diameter (caliber) 1 D racy physical analysis models. 2 Base diameter

  6. Ports Primer: 7.3 Federal Environmental Regulations, Initiatives and Standards

    EPA Pesticide Factsheets

    Near-port communities are often disproportionately impacted by air emissions due to port operations, goods movement operations and other industries that may be co-located with ports. Air emissions at ports also impact regional air quality.

  7. Two-dimensional symmetrical inlets with external compression

    NASA Technical Reports Server (NTRS)

    Ruden, P

    1950-01-01

    The purpose of inlets like, for instance, those of air-cooled radiators and scoops is to take a certain air quantity out of the free stream and to partly convert the free-stream velocity into pressure. In the extreme case this pressure conversion may occur either entirely in the interior of the inlet (inlet with internal compression) or entirely in the free stream ahead of the inlet (inlet with external compression). In this report a theory for two-dimensional inlets with external compression is developed and illustrated by numerical examples. Intermediary forms between inlets with internal and external compression which can be derived from the latter are briefly discussed.

  8. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  9. 40 CFR 81.37 - Metropolitan Detroit-Port Huron Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES...) consists of the territorial area encompassed by the boundaries of the following jurisdictions or described area (including the territorial area of all municipalities (as defined in section 302(f) of the...

  10. 40 CFR 81.37 - Metropolitan Detroit-Port Huron Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES...) consists of the territorial area encompassed by the boundaries of the following jurisdictions or described area (including the territorial area of all municipalities (as defined in section 302(f) of the...

  11. 76 FR 77996 - Notice of Issuance of Final Air Permits for Eni US Operating Co., Inc. and Port Dolphin Energy, LLC.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... from the operation of a liquefied natural gas deepwater port located in federal waters of the Gulf of..., Pesticides and Toxics Management Division, Region 4, U.S. Environmental Protection Agency, 61 Forsyth Street... December 1, 2011. Dated: December 6, 2011. Jeaneanne M. Gettle, Acting Division Director, Air,...

  12. CFD Analysis to Study Effect of Circular Vortex Generator Placed in Inlet Section to Investigate Heat Transfer Aspects of Solar Air Heater

    PubMed Central

    Gawande, Vipin B.; Dhoble, A. S.; Zodpe, D. B.

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251

  13. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater.

    PubMed

    Gawande, Vipin B; Dhoble, A S; Zodpe, D B

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.

  14. National Port Strategy Assessment

    EPA Pesticide Factsheets

    The assessment finds that air pollution at the Nation's ports can be significantly reduced by implementing currently available strategies and technologies to reduce emissions of harmful pollutants from diesel vehicles and engines.

  15. Wind tunnel tests of a zero length, slotted-lip engine air inlet for a fixed nacelle V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.; Beck, W. E., Jr.; Glasgow, E. R.

    1982-01-01

    Zero length, slotted lip inlet performance and associated fan blade stresses were determined during model tests using a 20 inch diameter fan simulator in the NASA-LeRC 9 by 15 foot low speed wind tunnel. The model configuration variables consisted of inlet contraction ratio, slot width, circumferential extent of slot fillers, and length of a constant area section between the inlet throat and fan face. The inlet performance was dependent on slot gap width and relatively independent of inlet throat/fan face spacer length and slot flow blockage created by 90 degree slot fillers. Optimum performance was obtained at a slot gap width of 0.36 inch. The zero length, slotted lip inlet satisfied all critical low speed inlet operating requirements for fixed horizontal nacelles subsonic V/STOL aircraft.

  16. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Gauging devices, top loading and unloading devices... DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air...). In no case shall the wall thickness be less than that specified in § 179.201-1. (f) When top...

  17. Open hardware air quality station for monitoring ozone in port area

    NASA Astrophysics Data System (ADS)

    Massabo, Marco; Lima, Marco; Fedi, Adriano; Ferrari, Daniele; Pintus, Fabio; Bruzzone, Gabriele

    2015-04-01

    Improve the quality of the air is one of the most important challenges we are facing especially in urban area. The open hardware paradigm can promote the positive connection of institution and scientific community with citizen. The goal of this work is to describe how a well-known pollution sensing technology, such as the electrochemical one, may be adopted in an open hardware paradigm in order to realize a ground level ozone sensor station. Our approach is to use this type of sensors to complement and empower traditional measuring networks in order to provide a better support to the models and to the identification of the pollution sources. The calibration methodology is based on the online coupling of new sensor measurements and observations of official network. Several linear calibration and a linear error correction algorithm based on temperature are performed and evaluated. The new air quality station allows to increase the frequency of sampling up to minutes and, due to the low cost, can stimulate the utilization by no-professionals. We test the air quality station in portal area and compare the results with traditional observations.

  18. Inlet Housing for a Partial-Admission Turbine

    NASA Technical Reports Server (NTRS)

    Moye, Ralph; Myers, William; Baker, Kevin

    2004-01-01

    An inlet housing for a partial-admission turbine has been designed to cause the inlet airflow to make a smooth transition from an open circular inlet to an inlet slot. The smooth flow is required for purposes of measuring inlet flow characteristics and maximizing the efficiency of the turbine. A partial-admission turbine is a turbine in which the inlet slot occupies less than a complete circle around the rotor axis. In this case, the inlet slot occupies a 90 arc. The present special inlet-housing design is needed because the "bull nose" shape of a conventional turbine inlet housing fails to provide the required smooth transition in a partial-admission configuration and thereby gives rise to a loss of turbine efficiency and inaccuracies in inlet flow measurements. Upon entering the inlet housing through the circular opening, the flow encounters a "tongue"-shaped passageway, which serves as a ramp that diverts the flow to the first of two straight passages. This first passageway occupies a 90 arc and has a length equal to two passage heights. Instrumentation rakes for measuring the characteristics of the inlet flow are installed in this passageway. Just past the first straight passageway is the second one, which is narrower and leads to the 90 turbine inlet slot. This passageway is used to smooth the flow immediately prior to its passage through the turbine inlet slot. The length of this second passageway equals the length of the chord of a turbine vane. The inlet housing incorporates small ports for measuring static pressures at various locations of the flow, and incorporates bosses for the installation of the instrumentation rakes. The inlet housing also includes a flange at its inlet end for attachment to a circular inlet duct and a flange at its outlet end for attachment to the outer casing of the turbine.

  19. Inlet Geomorphology Evolution

    DTIC Science & Technology

    2015-04-01

    APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Inlet Geomorphology Evolution 5a. CONTRACT NUMBER 5b...Std Z39-18 Coastal Inlets Research Program Inlet Geomorphology Evolution The Inlet Geomorphology Evolution work unit of the CIRP evaluates

  20. Air Permit Application for BHP Billiton Deepwater Port Project Offshore Venture, California

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  1. Inlet Engineering Toolbox

    DTIC Science & Technology

    2014-10-31

    ADDRESS(ES) U.S. Army Engineer Research and Development Center,CIRP - The Coastal Inlets Research Program,3909 Halls Ferry Road,Vicksburg,MS,39180... Coastal Inlets Research Program Inlet Engineering Toolbox The Inlet Engineering Toolbox (IET) Work Unit develops desktop PC and web-based tools to...aid in studies of the consequences of engineering actions at coastal inlets and adjacent beaches. District scientists and engineers need rapid

  2. 76 FR 3057 - Special Local Regulation; Hydroplane Races Within the Captain of the Port Puget Sound Area of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... place on the waterways of Dyes Inlet, Lake Washington, and Lake Sammamish, WA. Historically, these... three permanent safety zones on the waters of Port Angeles, Dyes Inlet and Lake Washington. The Port... permanent hydroplane race areas on the waters of Dyes Inlet, Lake Washington, and Lake Sammamish, WA...

  3. PORT II

    NASA Technical Reports Server (NTRS)

    Muniz, Beau

    2009-01-01

    One unique project that the Prototype lab worked on was PORT I (Post-landing Orion Recovery Test). PORT is designed to test and develop the system and components needed to recover the Orion capsule once it splashes down in the ocean. PORT II is designated as a follow up to PORT I that will utilize a mock up pressure vessel that is spatially compar able to the final Orion capsule.

  4. Projects to Improve Air Quality at Ports – 2013 Diesel Emissions Reduction Act (DERA) Funding Opportunity - Closed Announcement FY 2014

    EPA Pesticide Factsheets

    OTAQ is soliciting proposals that achieve reductions in diesel emissions produced by diesel engines and diesel emissions exposure, from fleets operating at marine and inland water ports under the Diesel Emissions Reduction Act (DERA).

  5. Projects to Improve Air Quality at Ports – 2014 Diesel Emissions Reduction Act (DERA) Funding Opportunity - Closed Announcement FY 2014

    EPA Pesticide Factsheets

    OTAQ is soliciting proposals that achieve reductions in diesel emissions produced by diesel engines and diesel emissions exposure, from fleets operating at marine and inland water ports under the Diesel Emissions Reduction Act (DERA).

  6. National Conversation on Ports: Webinar Slides and Transcripts

    EPA Pesticide Factsheets

    To exchange views and develop a shared understanding of the challenges and opportunities of ports and port communities, EPA's Office of Transportation and Air Quality is hosting a series of webinars, bringing together port stakeholders.

  7. Study of the impact of cruise and passenger ships on a Mediterranean port city air quality - Study of future emission mitigation scenarios

    NASA Astrophysics Data System (ADS)

    Liora, Natalia; Poupkou, Anastasia; Kontos, Serafim; Giannaros, Christos; Melas, Dimitrios

    2015-04-01

    An increase of the passenger ships traffic is expected in the Mediterranean Sea as targeted by the EU Blue Growth initiative. This increase is expected to impact the Mediterranean port-cities air quality considering not only the conventional atmospheric pollutants but also the toxic ones that are emitted by the ships (e.g. Nickel). The aim of this study is the estimation of the present and future time pollutant emissions from cruise and passenger maritime transport in the port area of Thessaloniki (Greece) as well as the impact of those emissions on the city air quality. Cruise and passenger ship emissions have been estimated for the year 2013 over a 100m spatial resolution grid which covers the greater port area of Thessaloniki. Emissions have been estimated for the following macro-pollutants; NOx, SO2, NMVOC, CO, CO2 and particulate matter (PM). In addition, the most important micro-pollutants studied in this work are As, Cd, Pb, Ni and Benzo(a)pyrene for which air quality limits have been set by the EU. Emissions have been estimated for three operation modes; cruising, maneuvering and hotelling. For the calculation of the present time maritime emissions, the activity data used were provided by the Thessaloniki Port Authority S.A. Moreover, future pollutant emissions are estimated using the future activity data provided by the Port Authority and the IMO legislation for shipping in the future. In addition, two mitigation emission scenarios are examined; the use of Liquefied Natural Gas (LNG) as a fuel used by ships and the implementation of cold ironing which is the electrification of ships during hotelling mode leading to the elimination of the corresponding emissions. The impact of the present and future passenger ship emissions on the air quality of Thessaloniki is examined with the use of the model CALPUFF applied over the 100m spatial resolution grid using the meteorology of WRF. Simulations of the modeling system are performed for four different emission

  8. Coastal Inlets Research Program

    DTIC Science & Technology

    2015-02-09

    FEB 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Coastal Inlets Research Program 5a. CONTRACT NUMBER...S) AND ADDRESS(ES) U.S. Army Engineer Research and Development Center,CIRP - The Coastal Inlets Research Program,3909 Halls Ferry Road,Vicksburg,MS...CIRP.aspx Coastal Inlets Research Program The Coastal Inlets Research Program (CIRP) is a R&D Program funded through the Operations & Maintenance

  9. Ports Primer: 7.1 Environmental Impacts

    EPA Pesticide Factsheets

    Port operations can lead to environmental impacts on air, water and land. Many communities with environmental justice concerns also experience disparities in health outcomes that they attribute to exposure to emissions from port operations.

  10. Testing and Analysis of Sensor Ports

    NASA Technical Reports Server (NTRS)

    Zhang, M.; Frendi, A.; Thompson, W.; Casiano, M. J.

    2016-01-01

    This Technical Publication summarizes the work focused on the testing and analysis of sensor ports. The tasks under this contract were divided into three areas: (1) Development of an Analytical Model, (2) Conducting a Set of Experiments, and (3) Obtaining Computational Solutions. Results from the experiment using both short and long sensor ports were obtained using harmonic, random, and frequency sweep plane acoustic waves. An amplification factor of the pressure signal between the port inlet and the back of the port is obtained and compared to models. Comparisons of model and experimental results showed very good agreement.

  11. 129. FULL AERIAL VIEW SHOWING FORWARD PORT QUARTER, ENTERING PEARL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    129. FULL AERIAL VIEW SHOWING FORWARD PORT QUARTER, ENTERING PEARL HARBOR AFTER APOLLO 11 RECOVERY. 26 JULY 1969. (NATIONAL ARCHIVES NO. 428-KN-18090) - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  12. 93. STARBOARD CATAPULT HYDRAULIC PUMP PORT LOOKING TO STARBOARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. STARBOARD CATAPULT HYDRAULIC PUMP - PORT LOOKING TO STARBOARD SHOWING ONE OF THE SEVEN (7) HYDRAULIC USED TO OPERATE THE CATAPULT. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  13. 116. #2 FIREROOM LOOKING AFT PORT TO STARBOARD SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. #2 FIREROOM - LOOKING AFT PORT TO STARBOARD SHOWING #4 BOILER FRONT WITH SIX (6) BURNERS, FUEL OIL PIPING, VALVES AND OPEN ACCESS TO FIREBOX. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  14. 94. PRINT SHOP PORT LOOKING TO STARBOARD VISIBLE ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. PRINT SHOP - PORT LOOKING TO STARBOARD VISIBLE ARE ATF CHIEF 17 LITHOGRAPHIC PRINTING PRESS, 1250 MULTILITH PRINTING PRESS AND HOT TYPE PRINTING PRESS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  15. 30. STARBOARD REFUELING STATION STARBOARD LOOKING TO PORT SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. STARBOARD REFUELING STATION - STARBOARD LOOKING TO PORT SHOWING RIGGING, FUEL RISER, SHUT-OFF VALVE, TEST COCK AND PRESSURE GAUGE. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  16. 82. STARBOARD CATAPULT CENTERLINE LOOKING TO PORT SHOWING ENGINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. STARBOARD CATAPULT - CENTERLINE LOOKING TO PORT SHOWING ENGINE CYLINDER, CABLE EQUALIZER AND STARBOARD CAT MURAL. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  17. Tidal Inlet Morphology Classification and Empirical Determination of Seaward and Down-Drift Extents of Tidal Inlets

    DTIC Science & Technology

    2012-05-01

    original Hayes (1979) diagram were not typical barrier island inlets. Some of them were fjords, and Bristol Bay and the Copper River Delta in Alaska included...shore that allows exchange of water between the ocean and bays , lagoons, and marsh and tidal creek systems, and for which the tidal current maintains...wave- dominated (Plum Island Sound, Essex Bay Inlet, and Newbury Port Harbor, all in Massachusetts) but lying close to the original line demarking tide

  18. Catalytically-Promoted Analyte Derivatization Inside a Gas Chromatographic Inlet

    PubMed Central

    Fowler, William K.; Gamble, Kelly J.; Wright, Amber R.

    2010-01-01

    Reported here is a preliminary assessment of the feasibility of catalyzing on-line derivatization reactions inside the inlet (i.e., the injection port) of a gas chromatograph (GC) with solid heterogeneous catalysts. The experiments described here entail the installation of candidate catalysts inside the GC inlet liner and the subsequent injection of analyte/reagent mixtures onto the catalyst beds. Two catalysts are identified, each of which clearly catalyzes one of the chosen model derivatization reactions in the inlet of a GC. This result supports our hypothesis that on-line derivatizations can, in principle, be reproducibly catalyzed inside the GC inlet by solid heterogeneous catalysts and that the presence of such catalysts in the inlet do not necessarily cause a serious loss of instrument performance or chromatographic efficiency. PMID:20822662

  19. Attic Inlet Technology Update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attic inlets are a popular addition for new construction and energy saving retrofits. Proper management of attic inlets is necessary to get maximum benefits from the system and reduce the likelihood of moisture-related problems in the structure. Solar energy levels were determined for the continen...

  20. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  1. Supersonic Elliptical Ramp Inlet

    NASA Technical Reports Server (NTRS)

    Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)

    2016-01-01

    A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.

  2. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port...

  3. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port...

  4. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port...

  5. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port...

  6. 33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port...

  7. Future anthropogenic pollutant emissions in a Mediterranean port city with emphasis on the maritime sector emissions - Study of the impact on the city air quality

    NASA Astrophysics Data System (ADS)

    Liora, Natalia; Poupkou, Anastasia; Markakis, Konstantinos; Giannaros, Theodoros; Karagiannidis, Athanasios; Melas, Dimitrios

    2013-04-01

    traffic changes as foreseen for the year 2020 by the Port Authority Investment Plan and by the reduction of the sulfur content in fuels used by ships in cruising mode to 0.5% m/m according to a revision of the MARPOL Annex VI. Based on the above, an approximately 60% increase in the future maritime sector PM10 emissions is expected due to the high increase of the traffic of vessels. The impact of future emissions on the air quality of Thessaloniki is examined with the use of the modelling system WRF-CAMx applied with 2km spatial resolution over the study area. Simulations of the modelling system are performed for a summertime (July 2011) and a wintertime (15 November to 15 December 2011) period accounting for present time (scenario A) and future time (scenario B) pollutant emissions. The differences in pollutant levels (mainly PM) between the scenarios examined are presented and discussed.

  8. Means for positively seating a piezoceramic element in a piezoelectric valve during inlet gas injection

    DOEpatents

    Wright, Kenneth E.

    1994-01-01

    A piezoelectric valve in a gas delivery system includes a piezoceramic element bonded to a valve seal and disposed over a valve seat, and retained in position by an O-ring and a retainer; an insulating ball normally biased by a preload spring against the piezoceramic element; an inlet gas port positioned such that upon admission of inlet gas into the valve, the piezoceramic element is positively seated. The inlet gas port is located only on the side of the piezoceramic element opposite the seal.

  9. Means for positively seating a piezoceramic element in a piezoelectric valve during inlet gas injection

    DOEpatents

    Wright, K.E.

    1994-08-23

    A piezoelectric valve in a gas delivery system includes a piezoceramic element bonded to a valve seal and disposed over a valve seat, and retained in position by an O-ring and a retainer; an insulating ball normally biased by a preload spring against the piezoceramic element; an inlet gas port positioned such that upon admission of inlet gas into the valve, the piezoceramic element is positively seated. The inlet gas port is located only on the side of the piezoceramic element opposite the seal. 3 figs.

  10. Flight test results of an automatic support system on board a YF-12A airplane. [for jet engine inlet air control

    NASA Technical Reports Server (NTRS)

    Love, J. E.

    1974-01-01

    An automatic support system concept that isolated faults in an existing nonavionics subsystem was flight tested up to a Mach number of 3. The adaptation of the automated support concept to an existing system (the jet engine automatic inlet control system) caused most of the problems one would expect to encounter in other applications. These problems and their solutions are discussed. Criteria for integrating automatic support into the initial design of new subsystems are included in the paper. Cost effectiveness resulted from both the low maintenance of the automated system and the man-hour saving resulting from the real time diagnosis of the monitored subsystem.

  11. Improving commercial broiler attic inlet ventilation thorugh CFD analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of solar heated attic air is an area of increasing interest in commercial poultry production. Attic inlets satisfy the demand for alternative heating while being simple to implement in an existing poultry house. A number of demonstration projects have suggested that attic inlets may decrease...

  12. Inlet Geomorphology Evolution Work Unit

    DTIC Science & Technology

    2015-10-30

    Coastal Inlets Research Program Inlet Geomorphology Evolution Work Unit The Inlet Geomorphology Evolution work unit of the CIRP develops methods...morphologic response. Presently, the primary tool of the Inlet Geomorphology Evolution work unit is the Sediment Mobility Tool (SMT), which allows the user

  13. 77 FR 22218 - Safety Zone; Temporary Change for Air and Water Shows Within the Captain of the Port Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... paragraphs (pp), (qq), and (lll); and 0 b. Add paragraphs (sss), (ttt), and (uuu) to read as follows: Sec... zone. * * * * * (sss) Gary Air and Water Show; Gary, IN. (i) Location. All waters of Lake...

  14. Ports Primer: 3.2 Port Governance

    EPA Pesticide Factsheets

    State and local governments are important players in port governance and in oversight of transportation projects that may affect ports. Private corporations may also play a role if they lease or own a terminal at a port.

  15. Metals Verification Study for Sinclair and Dyes Inlets,Washington

    SciTech Connect

    Kohn, Nancy P.; Miller, Martin C.; Brandenberger, Jill M.; Johnston, Robert K.

    2004-09-29

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington's 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. This Metals Verification Study was conducted to address the 303(d) segments that are listed for metal contaminants in marine sediment, because significant cleanup and source control activities have been conducted in the Inlets since the data supporting the 1998 303(d) listings were collected. The study was designed to obtain present-day sediment metals concentrations throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, with stations spatially distributed to support 303(d) listing updates and also watershed-level water quality and contaminant transport modeling efforts. A total of 160 surface sediment samples from Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage were screened for copper, lead, and zinc using X-Ray Fluorescence (XRF). 40 samples (25%) were selected for confirmatory metals analysis by ICP-MS for cadmium, silver, and arsenic in addition to copper, lead, and zinc. Regression relationships between the ICP-MS and XRF datasets were developed to estimate copper, lead, and zinc concentrations in all samples. The XRF results for copper, lead, and zinc correlated well with ICP-MS results, and predicted concentrations were calculated for all samples. The results of the Metals Verification Study show that sediment quality in Sinclair Inlet has improved markedly since implementation of cleanup and source control actions, and that the distribution of residual contaminants is limited to nearshore areas already within the actively managed Puget Sound Naval Shipyard Superfund Site where further source control actions and monitoring are under way. Outside of Sinclair Inlet, the target metals met state sediment quality standards.

  16. Effects on inlet technology on cruise speed selection

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Santman, D. M.; Horie, G.; Miller, L. D.

    1980-01-01

    The impact of cruise speed on technology level for certain aircraft components is examined. External-compression inlets were compared with mixed compression, self starting inlets at cruise Mach numbers of 2.0 and 2.3. Inlet engine combinations that provided the greatest aircraft range were identified. Results show that increased transonic to cruise corrected air flow ratio gives decreased range for missions dominated by supersonic cruise. It is also found important that inlets be designed to minimize spillage drag at subsonic cruise, because of the need for efficient performance for overland operations. The external compression inlet emerged as the probable first choice at Mach 2.0, while the self starting inlet was the probable first choice at Mach 2.3. Airframe propulsion system interference effects were significant, and further study is needed to assess the existing design methods and to develop improvements.

  17. CFD numerical simulation of Archimedes spiral inlet hydrocyclone

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wei, L.; Chang, B. H.; Xing, J. L.; Jia, K.

    2013-12-01

    For traditional linear type inlet, hydrocyclone has an unstable inner field, high turbulence intensity and low separation efficiency, this paper proposes an inlet mode that uses an Archimedes spiral hydrocyclone. A Mixture liquid-solid multiphase flow model combined with the kinetic theory of granular flow was used to simulate the high concentration water-sand-air three-phase flow in a hydrocyclone. We analyzed the pressure field, velocity field and turbulent kinetic energy and compared with traditional linear type inlet hydrocyclone inner field. The results show that Archimedes spiral inlet hydrocyclone's pressure field is evenly distributed. The Archimedes spiral inlet hydrocyclone can guide and accelerate the mixture flow and produce small forced vortex and less short circuit flow. The particles easily go to the outer vortex and are separated. The Archimedes spiral inlet hydrocyclone has effectively improved the stability of inner flow field and separation efficiency.

  18. Air cooled turbine component having an internal filtration system

    DOEpatents

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  19. ROCKET PORT CLOSURE

    DOEpatents

    Mattingly, J.T.

    1963-02-12

    This invention provides a simple pressure-actuated closure whereby windowless observation ports are opened to the atmosphere at preselected altitudes. The closure comprises a disk which seals a windowless observation port in rocket hull. An evacuated instrument compartment is affixed to the rocket hull adjacent the inner surface of the disk, while the outer disk surface is exposed to the atmosphere through which the rocket is traveling. The pressure differential between the evacuated instrument compartment and the relatively high pressure external atmosphere forces the disk against the edge of the observation port, thereby effecting a tight seai. The instrument compartment is evacuated to a pressure equal to the atmospheric pressure existing at the altitude at which it is desiretl that the closure should open. When the rocket reaches this preselected altitude, the inwardly directed atmospheric force on the disk is just equaled by the residual air pressure force within the instrument compartment. Consequently, the closure disk falls away and uncovers the open observation port. The separation of the disk from the rocket hull actuates a switch which energizes the mechanism of a detecting instrument disposed within the instrument compartment. (AE C)

  20. Inlet starting predictions for sidewall-compression scramjet inlets

    NASA Technical Reports Server (NTRS)

    Trexler, Carl A.

    1988-01-01

    While inlet capture, total pressure recovery, and compression are important performance parameters in the design of scramjet inlets, the inlet must be capable of starting. An analytical, inviscid method has been developed that provides first order starting information for sidewall-compression scramjet inlets and trends have been established for some of the parameters that affect inlet starting. These parameters include sidewall contraction ratio, cowl position, Mach number, sweep angle, fuel injection struts, and sidewall and strut compression angles. Results from the parametric study are compared with data from both no-strut and two-strut inlet models.

  1. Inlet Performance Characteristics from Wind-Tunnel Tests of a 0.10-Scale Air-Induction System Model of the YF-108A Airplane at Mach Numbers of 2.50, 2.76, and 3.00

    NASA Technical Reports Server (NTRS)

    Blackaby, James R.; Lyman, E. Gene; Altermann, John A., III

    1959-01-01

    Inlet-performance and external-drag-coefficient characteristics are presented without analysis. Effects are shown of variations of fuselage boundary-layer diverter profile, bleed-surface porosity, bleed-exit area, and inlet ramp, and lip angle.

  2. Atmospherically-induced water oscillations detected in the port of Quequén, Buenos Aires, Argentina

    NASA Astrophysics Data System (ADS)

    Dragani, Walter C.; D'Onofrio, Enrique E.; Grismeyer, Walter; Fiore, Monica M. E.; Campos, María Inés

    Sea level data gathered at Quequén, corresponding to the four most energetic events detected in 1982, are analyzed and compared with simultaneous sea level data recorded at Mar del Plata, Pinamar and Mar de Ajó. Large-amplitude sea-level oscillations at these locations are generally superposed to low-amplitude oscillations (“background”) which are one or two order of magnitude lower than the first ones. Background at Quequén is characterized by a broadband energy spectrum with maximum energy around 17-35 min. During energetic events at Quequén, the spectral peaks are situated between 0.8 and 4.0 cph (15-75 min) and wavelet analysis shows intermittent activity of large-amplitude waves (they show up irregularly during short lapses of 100-200 min long, approximately). The computed ratios between sea level variances of the active event and the preceding background at Quequén, Mar de Ajó, Pinamar and Mar del Plata apparently do not have a relationship among locations nor events. Such noticeable variability in the spectral peak positions, variances and ratios could likely be related to the celerity, amplitude, direction and period of atmospheric gravity waves in the region. Large-amplitude sea-level oscillations are always firstly observed at Quequén and, subsequently further north, at Mar del Plata, Pinamar and Mar de Ajó, respectively. Maximum amplitudes detected for each event at these different locations are very similar. These results support that atmospherically-induced large-amplitude sea-level oscillations (generated on the continental shelf) would enter the port of Quequén through its narrow mouth while they propagate towards Mar del Plata, Pinamar and Mar de Ajó, where they show up in tidal records some hours later.

  3. Coastal Inlets Research Program

    DTIC Science & Technology

    2014-04-01

    Tech Report: Fate of fines through the dredging process Inlet Geomorphology FY14 Plans  CHETN: Nearshore Berm Working Meeting Summary of Future... Geomorphology FY13 Accomplishments Release 3D Sediment Resource Tool Nearshore Berm Publications Ft Myers Nearshore• Integrated to GMS • Designed to provide 3D

  4. Jet Inlet Efficiency

    DTIC Science & Technology

    2013-08-08

    AFRL-RW-EG-TR-2014-044 Jet Inlet Efficiency Nigel Plumb Taylor Sykes -Green Keith Williams John Wohleber Munitions Aerodynamics Sciences...CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Nigel Plumb Taylor Sykes -Green Keith Williams John

  5. Experimental Results of Performance Tests on a Four-Port Wave Rotor

    NASA Technical Reports Server (NTRS)

    Wilson, John; Welch, Gerard E.; Paxson, Daniel E.

    2007-01-01

    A series of tests has been performed on a four-port wave rotor suitable for use as a topping stage on a gas turbine engine, to measure the overall pressure ratio obtainable as a function of temperature ratio, inlet mass flow, loop flow ratio, and rotor speed. The wave rotor employed an open high pressure loop that is the high pressure inlet flow was not the air exhausted from the high pressure outlet, but was obtained from a separate heated source, although the mass flow rates of the two flows were balanced. This permitted the choice of a range of loop-flow ratios (i.e., ratio of high pressure flow to low pressure flow), as well as the possibility of examining the effect of mass flow imbalance. Imbalance could occur as a result of leakage or deliberate bleeding for cooling air. Measurements of the pressure drop in the high pressure loop were also obtained. A pressure ratio of 1.17 was obtained at a temperature ratio of 2.0, with an inlet mass flow of 0.6 lb/s. Earlier tests had given a pressure ratio of less than 1.12. The improvement was due to improved sealing between the high pressure and low pressure loops, and a modification to the movable end-wall which is provided to allow for rotor expansion.

  6. Quantitative comparison of a flared and a standard heated metal capillary inlet with a voltage-assisted air amplifier on an electrospray ionization linear ion trap mass spectrometer.

    PubMed

    Dixon, R Brent; Muddiman, David C

    2007-01-01

    The performance characteristics (i.e., ion abundance and electrospray ion current) of a flared and blunt-ended heated metal capillary were evaluated with a voltage-assisted air amplifier on a linear ion trap mass spectrometer (LTQ-MS). The results demonstrated that a standard capillary afforded higher ion abundance than a flared capillary, thus further work is necessary to investigate conditions for which significant benefits with the flared capillary will be observed. The compatibility of a voltage-assisted air amplifier is explored for both types of capillaries and in all cases resulted in improved ion abundance and spray current.

  7. Cook Inlet. Workshop Report

    DTIC Science & Technology

    2000-10-11

    Systems Center . In that model, risk is defined as the sum of the probability of a casualty and its consequences. Consequently, the model includes...was conceptually developed by a National Dialog Group on Port Risk and then translated into computer algorithms by the Volpe National Transportation

  8. 38. FLAG/ADMIRAL BRIDGE PORT LOOKING TO STARBOARD SHOWING RADAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. FLAG/ADMIRAL BRIDGE - PORT LOOKING TO STARBOARD SHOWING RADAR SCOPE, ADMIRAL'S CHAIR, GYRO REPEATER AND VARIOUS COMMUNICATION SYSTEMS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  9. 5. AERIAL VIEW EXUSS HORNET CVS12 FROM AFT PORT QUARTER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERIAL VIEW EX-USS HORNET CVS-12 FROM AFT PORT QUARTER. OTHER INACTIVE SHIPS MOORED ALONGSIDE AND IN BACKGROUND. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  10. Inlet nozzle assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  11. Near-Port Communities

    EPA Pesticide Factsheets

    Information to help near-port community leaders participate effectively in the decision-making process by increasing the understanding of the role of ports, how ports can impact local land use, economic trends, and environment.

  12. Permitting Considerations for Installation of Inlet Air Foggers on Simple Cycle Combustion Turbines at the Duke Power Lincoln Combustion Turbine Facility

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  13. Traffic-related air pollution in the community of San Ysidro, CA, in relation to northbound vehicle wait times at the US-Mexico border Port of Entry

    NASA Astrophysics Data System (ADS)

    Quintana, Penelope J. E.; Dumbauld, Jill J.; Garnica, Lynelle; Chowdhury, M. Zohir; Velascosoltero, José; Mota-Raigoza, Arturo; Flores, David; Rodríguez, Edgar; Panagon, Nicolas; Gamble, Jamison; Irby, Travis; Tran, Cuong; Elder, John; Galaviz, Vanessa E.; Hoffman, Lisa; Zavala, Miguel; Molina, Luisa T.

    2014-05-01

    The San Diego/Tijuana US-Mexico border crossing at the San Ysidro Port of Entry (POE) is the world's busiest international land border crossing (GSA, 2013). San Ysidro, California, is the US community immediately adjacent to the border crossing. More than 90% of San Ysidro residents are Hispanic, and the average household income is less than 60% of the San Diego regional average. This study investigated the San Ysidro POE as a source of traffic-related air pollutants in San Ysidro, especially in relation to wind direction and northbound vehicle wait times. The pollutants ultrafine particulate matter (UFP), black carbon (BC), and particulate matter <2.5 μm in diameter (PM2.5) were periodically sampled through the course of 2010 at four rooftop locations: one commercial establishment near the POE, two elementary schools in San Ysidro, and a coastal estuary reference site. Weather data from two nearby sites and northbound border wait times were also collected. Results indicate consistently higher daytime BC and UFP concentrations at the measurement sites near the POE. Pollution concentrations were higher during low wind speeds or when wind was blowing from the POE towards San Ysidro. In February, March and November measurements, black carbon pollution appeared to be significantly positively associated with the POE northbound wait times when the wind direction was blowing from the POE towards San Ysidro or during low wind speeds, but not when the wind direction was from the west/northwest towards the POE. This pilot study is the first to investigate the potential effect of the POE, especially the long northbound traffic delays, on the nearby community of San Ysidro. Disparities in traffic exposures are an environmental justice issue and this should be taken into account during planning and operation of POEs.

  14. Near-road air pollution impacts of goods movement in communities adjacent to the Ports of Los Angeles and Long Beach

    NASA Astrophysics Data System (ADS)

    Kozawa, Kathleen H.; Fruin, Scott A.; Winer, Arthur M.

    A mobile platform was outfitted with real-time instruments to spatially characterize pollution concentrations in communities adjacent to the Ports of Los Angeles and Long Beach, communities heavily impacted by emissions related to dieselized goods movement, with the highest localized air pollution impacts due to heavy-duty diesel trucks (HDDT). Measurements were conducted in the winter and summer of 2007 on fixed routes driven both morning and afternoon. Diesel-related pollutant concentrations such as black carbon, nitric oxide, ultrafine particles, and particle-bound polycyclic aromatic hydrocarbons were frequently elevated two to five times within 150 m downwind of freeways (compared to more than 150 m) and up to two times within 150 m downwind of arterial roads with significant amounts of diesel traffic. While wind direction was the dominant factor associated with downwind impacts, steady and consistent wind direction was not required to produce; high impacts were observed when a given area was downwind of a major roadway for any significant fraction of time. This suggests elevated pollution impacts downwind of freeways and of busy arterials are continuously occurring on one side of the road or the other, depending on wind direction. The diesel truck traffic in the area studied was high, with more than 2000 trucks per peak hour on the freeway and two- to six-hundred trucks per hour on the arterial roads studied. These results suggest that similarly-frequent impacts occur throughout urban areas in rough proportion to diesel truck traffic fractions. Thus, persons living or working near and downwind of busy roadways can have several-fold higher exposures to diesel vehicle-related pollution than would be predicted by ambient measurements in non-impacted locations.

  15. 9 CFR 93.902 - Ports designated for the importation of live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... importation of live fish, fertilized eggs, and gametes. (a) The following ports are designated as ports of...: (1) Air and ocean ports. Los Angeles and San Francisco, CA; Miami and Tampa, FL; Atlanta,...

  16. 9 CFR 93.902 - Ports designated for the importation of live fish, fertilized eggs, and gametes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... importation of live fish, fertilized eggs, and gametes. (a) The following ports are designated as ports of...: (1) Air and ocean ports. Los Angeles and San Francisco, CA; Miami and Tampa, FL; Atlanta,...

  17. EPA Agreement with Port Authority and Port Terminal Operators Will Cut Harmful Pollution from Idling Trucks in Newark and Beyond

    EPA Pesticide Factsheets

    (New York, N.Y.) The U.S. Environmental Protection Agency announced agreements with the Port Authority of New York & New Jersey and port terminal operators that will cut harmful air pollution from the Port of New York and New Jersey. Under the agreemen

  18. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet

  19. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test is to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III space suit across a range of workload and flow rates. As a secondary objective, results will be compared to the predicted CO2 concentrations and used to refine existing CFD models. These CFD models will then be used to help design an inlet vent configuration for the Z-2 space suit, which maximizes oronasal CO2 washout. This test has not been completed, but is planned for January 2014. The results of this test will be incorporated into this paper. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects will be tested in the Mark-III space suit with each subject performing two test sessions to allow for comparison between tests. Six different helmet inlet vent configurations will be evaluated during each test session. Suit pressure will be maintained at 4.3 psid. Subjects will wear the suit while walking on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) will be tested at each workload. Subjects will wear an oronasal mask with an open port in front of the mouth and will be allowed to

  20. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Realtime metabolic rate measurements were

  1. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements were

  2. 2. AERIAL VIEW EXUSS HORNET CVS12 LOOKING PORT TO STARBOARD, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW EX-USS HORNET CVS-12 LOOKING PORT TO STARBOARD, THREE MINECRAFT MORRED ALONGSIDE ON PORT AFT QUARTER. OTHER INACTIVE SHIPS IN BACKGROUND, PUGET SOUND NAVEL SHIPYARD TO LEFT SIDE OF PHOTO. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  3. Ice Protection of Turbojet Engines by Inertia Separation of Water III : Annular Submerged Inlets

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing studies were conducted on a one-half-scale model of an annular submerged inlet for use with axial-flow turbojet engines. Pressure recoveries, screen radial-velocity profiles, circumferential mass-flow variations, and icing characteristics were determined at the compressor inlet. In order to be effective in maintaining water-free induction air, the inlet gap must be extremely small and ram-pressure recoveries consequently are low, the highest achieved being 65 percent at inlet-velocity ratio of 0.86. All inlets exhibited considerable screen icing. Severe mass-flow shifts occurred at angles of attack.

  4. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    SciTech Connect

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the

  5. Entry/Exit Port testing, test report

    SciTech Connect

    Winkelman, R.H.

    1993-05-01

    The Waste Receiving and Processing Module I (WRAP-1) facility must have the ability to allow 55-gallon drums to enter and exit glovebox enclosures. An Entry/Exit Port (Appendix 1, Figure 1), designed by United Engineers and Constructors (UE&C), is one method chosen for drum transfer. The Entry/Exit Port is to be used for entry of 55-gallon drums into both process entry gloveboxes, exit of 55-gallon drum waste pucks from the low-level waste (LLW) glovebox, and loadout of waste from the restricted waste management glovebox. The Entry/Exit Port relies on capture velocity air flow and a neoprene seal to provide alpha confinement when the Port is in the open and closed positions, respectively. Since the glovebox is in a slight vacuum, air flow is directed into the glovebox through the space between the overpack drum and glovebox floor. The air flow is to direct any airborne contamination into the glovebox. A neoprene seal is used to seal the Port door to the glovebox floor, thus maintaining confinement in the closed position. Entry/Exit Port testing took place February 17, 1993, through April 14, 1993, in the 305 building of Westinghouse Hanford Company. Testing was performed in accordance with the Entry/Exit Port Testing Test Plan, document number WHC-SD-WO26-TP-005. A prototype Entry/Exit Port built at the Hanford Site was tested using fluorescent paint pigment and smoke candles as simulant contaminants. This test report is an interim test report. Further developmental testing is required to test modifications made to the Port as the original design of the Port did not provide complete confinement during all stages of operation.

  6. Compressor ported shroud for foil bearing cooling

    DOEpatents

    Elpern, David G.; McCabe, Niall; Gee, Mark

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  7. 19 CFR 122.164 - Transportation to another port for exportation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Transportation to another port for exportation... port for exportation. If transit air cargo is traveling from the port of arrival to another U.S. port for later exportation, any liquidated damages for shortages or irregular delivery shall be assessed...

  8. Multi-port valve

    DOEpatents

    Lewin, Keith F.

    1997-04-15

    A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.

  9. Multi-port valve

    DOEpatents

    Lewin, K.F.

    1997-04-15

    A multi-port valve is described for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO{sub 2}) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets there through disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending there through disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind. 7 figs.

  10. Effect of end-wall boundary layer and inlet turbulence on the flow field structures in the turbine stage

    NASA Astrophysics Data System (ADS)

    Jelinek, Tomas; Straka, Petr; Uruba, Vaclav

    2016-06-01

    The article deals with the effects of the inlet flow parameters on the flow field structures in axial turbine stage. The experiment was performed on the axial turbine stage rig with an air as a working medium. The variable inlet channel produced the different inlet turbulence intensity and different inlet end-wall boundary layer thickness, resp. different inlet velocity distribution was applied. The turbulence was measured by CTA probes. The measured parameters of the inlet velocity distribution and turbulence intensity across the inlet channel height are presented. Based on the experimental inlet parameters the CFD fully turbulent calculation of the flow field was made. The differences in outlet kinetic energy loss, outlet vane angle and the turbulence distribution in the vane mid-span section are depicted. Changes of secondary flow structures with the different inlet end-wall boundary layer thickness were observed on the vane outlet parameters.

  11. Detail, north end of console and pneumatic tube message port, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, north end of console and pneumatic tube message port, also showing mirror to reflect view of communications switchboard - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  12. 14 CFR 25.1091 - Air induction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operating surfaces from being directed into the engine or auxiliary power unit air inlet ducts in hazardous quantities, and the air inlet ducts must be located or protected so as to minimize the ingestion of...

  13. An Experimental Investigation of NACA Submerged Inlets at High Subsonic Speeds I: Inlets Forward of the Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Hall, Charles F; Barclay, F Dorn

    1948-01-01

    This report covers the first part of an experimental investigation of NACA submerged inlets at four locations on the fuselage of a fighter airplane model for Mach numbers from 0.30 to 0.875. Data are presented showing the characteristics of the model without inlets and with inlets 16.7 percent of the root chord forward of the wing-root leading edge and equipped with small boundary-layer deflectors. The data show that variations in the mass of air entering the inlet had a large effect on the ram-recovery ratio. Representative values of ram-recovery ratio were 0.50 with zero flow, 0.90 with 0.6 mass-flow coefficient, and 0.95 with 1.00 mass-flow coefficient. Variations in Mach number and angle of attack, in general, caused less than a 0.03 variation in the ram-recovery ratio.

  14. Port-Wine Stains

    MedlinePlus

    ... their own, they can be treated. In fact, laser therapies can make many port-wine stains much ... mark might be. The good news is that lasers (highly concentrated light energy) can make many port- ...

  15. Earth Port-Moon Port design

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A pair of compatible transfer stations or Space Ports and associated transfer vehicles was designed in order to support permanent manned lunar facilities. One of the Space Ports was placed in earth orbit (not necessarily Low Earth Orbit - LEO), and the other in lunar orbit. The primary purposes of the Space Ports was to support the lunar surface facility, the return of lunar manufactured items to the earth, and the transfer of lunar manufactured items to space vehicles and earth orbital space stations. The design was constrained by the following: (1) The orbital altitudes and inclinations of the Earth Port and Moon Port were chosen to minimize the overall cost of transporting materials to and from the moon. The ETO (Earth-to-Orbit) costs were considered separately to allow consideration of initiating planetary missions, etc., from the Earth Port. (2) A new earth launch point was chosen to facilitate the support of the lunar facility. This launch point was chosen to minimize overall costs, maximize overall safety, and to avoid political problems. To this end, it was mandatory the launch site be owned by the United States or one of its close allies. In addition, the launch would take place over water and expendable stages would drop into the ocean. Space shuttle type vehicles could be used if appropriate provisions were made for aborts, SRB and ET impact, etc. The ground track and impact point studies included space shuttle type vehicles, current ELV's (expendable launch vehicles, and HLLV's (heavy lift launch vehicles). (3) The Earth Port and Moon Port orbits were selected so that transfer trajectories between the two facilities could be initiated often without major plane change penalties. The amount of these penalties was calculated. Families of Earth Port to Moon Port and Moon Port to Earth Port trajectories were calculated to document the energy requirements and penalties. (4) Space Port module designs included module systems definitions, module masses, system

  16. TBCC Inlet Experiments and Analysis

    NASA Technical Reports Server (NTRS)

    Saunders, Dave; Slater, John; Dippold, Vance; Lee, Jinho; Sanders, Bobby; Weir, Lois

    2007-01-01

    A research plan is being implemented at NASA to investigate inlet mode transition for turbine-based combined-cycle (TBCC) propulsion for the hypersonic community. Unresolved issues have remained on how to design an inlet system to supply both a turbine engine and a ram/scramjet flowpath that operate with both high performance and stability. The current plan is aimed at characterizing the design, performance and operability of TBCC inlets through a series of experiments and analyses. A TBCC inlet has been designed that is capable of high performance (near MIL-E-5008B recovery) with smooth transitioning characteristics. Traditional design techniques were used in an innovative approach to balance the aerodynamic and mechanical constraints to create a new TBCC inlet concept. The inlet was designed for top-end Mach 7 scramjet speeds with an over/under turbine that becomes cocooned beyond its Mach 4 peak design point. Conceptually, this propulsion system was picked to meet the needs of the first stage of a two-stage to orbit vehicle. A series of increasing fidelity CFD-based tools are being used throughout this effort. A small-scale inlet experiment is on-going in the GRC 1'x1' Supersonic Wind Tunnel (SWT). Initial results from both the CFD analyses and test are discussed showing that high performance and smooth mode transitions are possible. The effort validates the design and is contributing to a large-scale inlet/propulsion test being planned for the GRC 10' x10' SWT. This large-scale effort provide the basis for a Combined Cycle Engine Testbed, (CCET), that will be able to address integrated propulsion system and controls objectives.

  17. Preliminary Investigation of a Conical Spike Inlet in Combination with a Vertical-wedge Auxiliary Inlet at Mach Number 1.9

    NASA Technical Reports Server (NTRS)

    Beke, Andrew; Allen, John L; Williams, Thomas

    1955-01-01

    Pressure-recovery characteristics of a nacelle-type-spike inlet in combination with a vertical-wedge auxiliary scoop are presented for a free-stream Mach number of 1.9 at zero angle of attack. The auxiliary scoop provided 17 percent additional air flow with a drop in critical pressure recovery from 0.86 to 0.81. However, in terms of inlet-engine matching, the pressure recovery of the undersized spike inlet operating at a specified corrected air flow increased with the scoop open, for example, from 0.69 to 0.81.

  18. Investigation of Aerodynamic and Icing Characteristics of Water-Inertia-Separation Inlets for Turbojet Engines

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Blatz, R. E.

    1950-01-01

    The results of an investigation of several internal water-inertia-separation inlets consisting of a main duct and an alternate duct designed to prevent automatically the entrance of large quantities of water into a turbojet engine in icing conditions are presented. Total-pressure losses and icing characteristics for a direct-ram inlet and the inertia-separation inlets are compared at similar aerodynamic and simulated icing conditions. Complete ice protection for inlet guide vanes could not be achieved with the inertia-separation inlets investigated. Approximately 8 percent of the volume of water entering the nacelles remained. In the air passing into the compressor inlet. Heavy alternate-duct-elbow ice formations caused by secondary inertia separation resulted in rapid total-pressure losses and decreases in mass flow. The duration in an icing condition for an inertia-separation- inlet, without local surface heating, was increased approximately four times above that for a direct-ram inlet with a compressor-inlet screen. For normal nonicing operation, the inertia-separation- inlet total-pressure losses were comparable to a direct-ram installation. The pressure losses and the circumferential uniformity of the mass flow in all the inlets were relatively independent of angle of attack. Use of an inertia-separation inlet would in most cases require a larger diameter nacelle than a direct-ram inlet in order to obtain an alternate duct sufficiently large to pass the required engine air flow at duct Mach numbers below 1.0 at the minimum area.

  19. Final Ports Initiative Workgroup Report: Recommendations for the U.S. EPA

    EPA Pesticide Factsheets

    The Port Initiative Workgroup was organized under the Clean Air Act Advisory Committee for the purpose of discussing and identifying recommendations related to Ports. The workgroup is part of the Mobile Sources Technical Review Subcommittee.

  20. DESIGN AND PERFORMANCE OF A LOW FLOW RATE INLET

    EPA Science Inventory

    Several ambient air samplers that have been designated by the U. S. EPA as Federal Reference Methods (FRMs) for measuring particulate matter nominally less than 10 um (PM10) include the use of a particular inlet design that aspirates particulate matter from the atmosphere at 1...

  1. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  2. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  3. Coastal Inlets of Texas, USA

    DTIC Science & Technology

    2007-01-01

    Caney Creek Freeport Ship Channel San Luis Pass Galveston Pass Rollover Fish Pass Sabine Pass Texas Victoria Houston Port Arthur Corpus Christi...1960) provide design guidance for constructing fish passes along the Texas coast, it appears that an update based on more recent experiences and...Hall Pier at Corpus Christi; and bay gauges (Rawlings at Mouth of Colorado River; Lavaca, and Port Isabel in the lower Laguna Madre ) for year 1999

  4. Design and Analysis Tools for Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Folk, Thomas C.

    2009-01-01

    Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.

  5. Low speed test of the aft inlet designed for a tandem fan V/STOL nacelle

    NASA Technical Reports Server (NTRS)

    Rhoades, W. W.; Ybarra, A. H.

    1980-01-01

    An approximately .25 scale model of a Tandem Fan nacelle designed for a Type A V/STOL aircraft configuration was tested in a 10-by-10 foot wind tunnel. A 12 inch, tip driven, turbofan simulator was used to provide the suction source for the aft fan inlet. The front fan inlet was faired over for this test entry. Model variables consisted of a long aft inlet cowl, a short aft inlet cowl, a shaft simulator, blow-in door passages and diffuser vortex generators. Inlet pressure recovery, distortion, inlet angle of attack separation limits were evaluated at tunnel velocities from 0 to 240 knots, angles of attack from -10 to 40 degrees and inlet flow rates representative of throat Mach numbers of 0.1 to 0.6. High inlet performance and stable operation was verified at all design forward speed and angle of attack conditions. The short aft inlet configuration provided exceptionally high pressure recovery except at the highest combination of angle of attack and forward speed. The flow quality at the fan face was somewhat degraded by the addition of blow-in door passages to the long aft inlet configuration due to the pressure disturbances generated by the flow entering the diffuser through the auxiliary air passages.

  6. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  7. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  8. Self-regulating fuel staging port for turbine combustor

    DOEpatents

    Van Nieuwenhuizen, William F.; Fox, Timothy A.; Williams, Steven

    2014-07-08

    A port (60) for axially staging fuel and air into a combustion gas flow path 28 of a turbine combustor (10A). A port enclosure (63) forms an air path through a combustor wall (30). Fuel injectors (64) in the enclosure provide convergent fuel streams (72) that oppose each other, thus converting velocity pressure to static pressure. This forms a flow stagnation zone (74) that acts as a valve on airflow (40, 41) through the port, in which the air outflow (41) is inversely proportion to the fuel flow (25). The fuel flow rate is controlled (65) in proportion to engine load. At high loads, more fuel and less air flow through the port, making more air available to the premixing assemblies (36).

  9. Tsunami currents in ports.

    PubMed

    Borrero, Jose C; Lynett, Patrick J; Kalligeris, Nikos

    2015-10-28

    Tsunami-induced currents present an obvious hazard to maritime activities and ports in particular. The historical record is replete with accounts from ship captains and harbour masters describing their fateful encounters with currents and surges caused by these destructive waves. Despite the well-known hazard, only since the trans-oceanic tsunamis of the early twenty-first century (2004, 2010 and 2011) have coastal and port engineering practitioners begun to develop port-specific warning and response products that accurately assess the effects of tsunami-induced currents in addition to overland flooding and inundation. The hazard from strong currents induced by far-field tsunami remains an underappreciated risk in the port and maritime community. In this paper, we will discuss the history of tsunami current observations in ports, look into the current state of the art in port tsunami hazard assessment and discuss future research trends.

  10. Analysis of an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1992-01-01

    A time marching Navier-Stokes code called PARC (PARC2D for 2-D/axisymmetric and PARC3D for 3-D flow simulations) was validated for an advanced ducted propeller (ADP) subsonic inlet. The code validation for an advanced ducted propeller (ADP) subsonic inlet. The code validation was implemented for a non-separated flow condition associated with the inlet operating at angles-of-attack of 0 and 25 degrees. The inlet test data were obtained in the 9 x 15 ft Low Speed Wind Tunnel at NASA Lewis Research Center as part of a cooperative study with Pratt and Whitney. The experimental study focused on the ADP inlet performance for take-off and approach conditions. The inlet was tested at a free stream Mach number of 0.2, at angles-of-attack between O and 35 degrees, and at a maximum propeller speed of 12,000 RPM which induced a corrected air flow rate of about 46 lb/sec based on standard day conditions. The computational grid and flow boundary conditions (BC) were based on the actual inlet geometry and the funnel flow conditions. At the propeller face, two types of BC's were applied: a mass flow BC and a fixed flow properties BC. The fixed flow properties BC was based on a combination of data obtained from the experiment and calculations using a potential flow code. Comparison of the computational results with the test data indicates that the PARC code with the propeller face fixed flow properties BC provided a better prediction of the inlet surface static pressures than the predictions when the mass flow BC was used. For an angle-of-attack of 0 degrees, the PARC2D code with the propeller face mass flow BC provided a good prediction of inlet static pressures except in the region of high pressure gradient. With the propeller face fixed flow properties BC, the PARC2D code provided a good prediction of the inlet static pressures. For an angle-of-attack of 25 degrees with the mass flow BC, the PARC3D code predicted statis pressures which deviated significantly from the test data

  11. 9 CFR 93.703 - Ports designated for importation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., except as provided in paragraph (b) of this section, only through the following ports: (1) Air and ocean.... Petersburg-Clearwater, and Tampa, FL; Atlanta, GA; Chicago, IL; New Orleans, LA; Portland, ME; Baltimore, MD... the designation, as inspection stations, of the ports specified in paragraph (a) of this section....

  12. 9 CFR 93.703 - Ports designated for importation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., except as provided in paragraph (b) of this section, only through the following ports: (1) Air and ocean.... Petersburg-Clearwater, and Tampa, FL; Atlanta, GA; Chicago, IL; New Orleans, LA; Portland, ME; Baltimore, MD... the designation, as inspection stations, of the ports specified in paragraph (a) of this section....

  13. IPAC-Inlet Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1997-01-01

    A series of analyses have been developed which permit the calculation of the performance of common inlet designs. The methods presented are useful for determining the inlet weight flows, total pressure recovery, and aerodynamic drag coefficients for given inlet geometric designs. Limited geometric input data is required to use this inlet performance prediction methodology. The analyses presented here may also be used to perform inlet preliminary design studies. The calculated inlet performance parameters may be used in subsequent engine cycle analyses or installed engine performance calculations for existing uninstalled engine data.

  14. Centrifugal pump inlet pressure site affects measurement.

    PubMed

    Augustin, Simon; Horton, Alison; Butt, Warwick; Bennett, Martin; Horton, Stephen

    2010-09-01

    During extracorporeal life support (ECLS), blood is exposed to a myriad of unphysiological factors that can affect outcome. One aspect of this is the sub-atmospheric pressure generated by the ECLS pump and imparted to blood elements along the pump inlet line. This pressure can be measured on the inlet line close to the pump head by adding a connector, or at the venous cannula connection site. We compared the two measurement sites located at both points; between the venous cannula-inlet tubing and inlet tubing-pump, with a range of cannulae and flows. We also investigated the effects on inlet pressure from pump afterload and increasing inlet tubing length.

  15. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  16. Ports Primer: 4.0 Port-Community Relations

    EPA Pesticide Factsheets

    Ports support and benefit local, regional and national economies through their role in creating jobs and transporting goods. The relationship between ports and near-port communities can be complex, as illustrated by case studies.

  17. 78 FR 36014 - Deepwater Port License Application: Liberty Natural Gas, LLC, Port Ambrose Deepwater Port

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... an application for the licensing of a liquefied natural gas deepwater port and that the application..., and operate a liquefied natural gas (LNG) deepwater port, known as Port Ambrose, located in the New... Maritime Administration Deepwater Port License Application: Liberty Natural Gas, LLC, Port...

  18. Ports Primer: 7.5 Potential Community Interests

    EPA Pesticide Factsheets

    Communities have interests in environmental impacts of ports including environmental justice; public health outcomes; climate adaptation/resilience; air quality; ecological impacts; nuisance; and access to natural areas and open space.

  19. VIEW OF PORT TSM, LOOKING TOWARDS THE CORNER WHERE SIDES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PORT TSM, LOOKING TOWARDS THE CORNER WHERE SIDES 1 AND 2 MEET - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. DETAIL VIEW OF THE INTERIOR OF THE PORT TSM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THE INTERIOR OF THE PORT TSM - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  1. DETAIL VIEW OF THE PORT TSM ACCESS DOOR Cape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THE PORT TSM ACCESS DOOR - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  2. Exhaust Fine Particle and Nitrogen Oxide Emissions from Individual Heavy-Duty Trucks at the Port of Oakland

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Harley, R. A.; Kirchstetter, T.

    2010-12-01

    Heavy-duty (HD) diesel trucks are a source of nitrogen oxide (NOx) emissions as well as primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. Heavy-duty trucks contribute significantly to elevated levels of diesel particulate matter found near highways and in communities surrounding major freight-handling facilities. To reduce the air quality impact of diesel engine emissions, the California Air Resources Board has adopted new rules requiring the retrofit or replacement of in-use HD trucks. These rules take effect during 2010 at ports and railyards, and apply to all trucks operating in California by 2014. This study involves on-road measurements of PM2.5, BC, and NOx emission factor distributions from individual HD trucks driving into the Port of Oakland in the San Francisco Bay area. Measurements of exhaust plumes from individual trucks were made using a mobile laboratory equipped with fast time response (1 Hz) PM2.5, BC, NOx, and carbon dioxide (CO2) sensors. The mobile laboratory was stationed on an overpass above an arterial roadway that connects the Port to a nearby highway (I-880). The air sampling inlet was thereby located above the vertical exhaust pipes of HD diesel trucks passing by on the arterial roadway below. Fuel-specific PM2.5, BC, and NOx emission factors for individual trucks were calculated using a carbon balance method in which concentrations of these species in an exhaust plume are normalized to CO2 concentrations. Initial field sampling was conducted in November, 2009 prior to the implementation of new emission rules. Additional emission measurements were made at the same location during June 2010 and emission factor distributions and averages will be compared.

  3. 19 CFR 122.120 - Transportation to another port for exportation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... for transportation to another port for export. (2) At exportation port. Customs shall be notified far... exporting airline. When the transit air cargo arrives at the exportation port, it may be delivered directly to the exporting carrier, together with the exportation and clearance copies. The name of...

  4. 9 CFR 93.403 - Ports designated for the importation of ruminants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of ruminants. 93.403 Section 93.403 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... PRODUCTS; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.403 Ports designated for the importation of ruminants. (a) Air and ocean ports. The following ports have APHIS...

  5. 9 CFR 93.403 - Ports designated for the importation of ruminants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of ruminants. 93.403 Section 93.403 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... PRODUCTS; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.403 Ports designated for the importation of ruminants. (a) Air and ocean ports. The following ports have APHIS...

  6. 9 CFR 93.403 - Ports designated for the importation of ruminants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of ruminants. 93.403 Section 93.403 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... PRODUCTS; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.403 Ports designated for the importation of ruminants. (a) Air and ocean ports. The following ports have APHIS...

  7. 9 CFR 93.403 - Ports designated for the importation of ruminants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of ruminants. 93.403 Section 93.403 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... PRODUCTS; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.403 Ports designated for the importation of ruminants. (a) Air and ocean ports. The following ports have APHIS...

  8. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  9. Optimal control of a supersonic inlet to minimize frequency of inlet unstart

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Zeller, J. R.; Geyser, L. C.

    1978-01-01

    A preliminary investigation into the use of modern control theory for the design of controls for a supersonic inlet is described. In particular, the task of controlling a mixed-compression supersonic inlet is formulated as a linear optimal stochastic control and estimation problem. An inlet can exhibit an undesirable instability due to excessive inlet normal shock motion. For the optimal control formulation of the inlet problem, a non quadratic performance index, which is equal to the expected frequency of inlet unstarts, is used. This physically meaningful performance index is minimized for a range of inlet disturbance and measurement noise covariances.

  10. Admiralty Inlet Advanced Turbulence Measurements: May 2015

    DOE Data Explorer

    Kilcher, Levi

    2015-05-18

    This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). These platforms position ADV heads above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring and buoy motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. The TTM was deployed with one ADV, it's position was: 48 09.145', -122 41.209' The StableMoor was deployed twice, the first time it was deployed in 'wing-mode' with two ADVs ('Port' and 'Star') at: 48 09.166', -122 41.173' The second StableMoor deployment was in 'Nose' mode with one ADV at: 48 09.166', -122 41.174' Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.

  11. Port Operational Marine Observing System

    NASA Astrophysics Data System (ADS)

    Palazov, A.; Stefanov, A.; Slabakova, V.; Marinova, V.

    2009-04-01

    The Port Operational Marine Observing System (POMOS) is a network of distributed sensors and centralized data collecting, processing and distributing unit. The system is designed to allow for the real-time assessment of weather and marine conditions throughout the major Bulgarian ports: Varna, Burgas and Balchik, supporting thereby Maritime administration to secure safety navigation in bays, canals and ports. Real-time information within harbors is obtained using various sensors placed at thirteen strategic locations to monitor the current state of the environment. The most important for navigation weather and sea-state parameters are measured: wind speed and direction, air temperature, relative humidity, atmospheric pressure, visibility, solar radiation, water temperature and salinity, sea level, currents speed and direction, mean wave's parameters. The system consist of: 11 weather stations (3 with extra solar radiation and 4 with extra visibility measurement), 9 water temperature and salinity sensors, 9 sea-level stations, two sea currents and waves stations and two canal currents stations. All sensors are connected to communication system which provides direct intranet access to the instruments. Every 15 minutes measured data is transmitted in real-time to the central collecting system, where data is collected, processed and stored in database. Database is triple secured to prevent data losses. Data collection system is double secured. Measuring system is secured against short power failure and instability. Special software is designed to collect, store, process and present environmental data and information on different user-friendly screens. Access to data and information is through internet/intranet with the help of browsers. Actual data from all measurements or from separate measuring place can be displayed on the computer screens as well as data for the last 24 hours. Historical data are available using report server for extracting data for selectable

  12. Port-Wine Stains

    MedlinePlus

    ... in healing and help prevent infection. Helping Kids Cope As with any birthmark, port-wine stains (especially ... these situations and take cues about how to cope with others' reactions. Practice responses so your child ...

  13. Port Security Strategy 2012

    DTIC Science & Technology

    2007-06-15

    Scanning every container is time consuming and delays container shipment. In addition, cargo containers en route to the United States from overseas...an appointment slip with barcode for all trucks that are scheduled to enter the port. Barcode scanning allows for a faster rate of processing...follows: • Status Quo. All containers are scanned for radioactive cargo before leaving the source port. Detection of radiation triggers further

  14. Analysis of fuel vaporization, fuel/air mixing, and combustion in lean premixed/prevaporized combustors

    SciTech Connect

    Deur, J.M.; Penko, P.F.; Cline, M.C.

    1995-07-01

    Requirements to reduce pollutant emissions from gas turbines used in aircraft propulsion and ground-based power generation have led to consideration of lean premixed/prevaporized (LPP) combustion concepts. This paper describes a series of the LPP combustor analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. Modifications to KIVA-II`s boundary condition and chemistry treatments have been made to meet the needs of the present study. The study examines the relationships between fuel vaporization, fuel/air mixing, and combustion in a generic LPP combustor. Parameters considered include: mixer tube diameter, mixer tube length, mixer tube configuration (straight versus converging/diverging tubes), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases have been run with and without combustion to examine the variations in fuel/air mixing and potential for flashback due to the above parameters. The degree of fuel/air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state.

  15. 6. AERIAL VIEW EXUSS HORNET CVS12 FROM FORWARD PORT QUARTER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. AERIAL VIEW EX-USS HORNET CVS-12 FROM FORWARD PORT QUARTER. REMOVABLE AIRCRAFT ELEVATOR (ELEVATOR REMOVAL ALLOWED PASSAGE THROUGH PANAMA CANAL) STOWED ON FORWARD FLIGHT DECK. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  16. Depth-discrete sampling port

    DOEpatents

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph; Riha, Brian D.; Nichols, Ralph L.

    1999-01-01

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  17. Depth-discrete sampling port

    DOEpatents

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph; Riha, Brian D.; Nichols, Ralph L.

    1998-07-07

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  18. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  19. Afterburner performance of film-vaporizing V-gutters for inlet temperatures up to 1255 K

    NASA Technical Reports Server (NTRS)

    Branstetter, J. R.; Reck, G. M.

    1973-01-01

    Combustion tests of five variations of an integral, spray-bar - flameholder combination were conducted in a 0.49-m-diameter duct. Emphasis was on low levels of augmentation. Fuel impinged on guide plates, mixed with a controlled amount of inlet air, vaporized, and was guided into the V-gutter wake. Combustor length was 0.92 m. Good performance was demonstrated at fuel-air ratios less than 0.025 for inlet temperatures of 920 to 1255 K. Maximum combustion efficiency occured in the vicinity of fuel-air ratios of 0.02 and was 92 to 100 percent, depending on the inlet temperature. Lean blowout fuel-air ratios were in the vicinity of 0.005. Improvements in rich-limit blowout resulted from enlarging the guide-flow passageway areas. Other means of extending the operating range are suggested. A simplified afterburner concept for application to advanced engines is described.

  20. Characterization of the near-source population around five candidate ports on the Eastern Seaboard and Gulf Coast using a multi-modal freight transport perspective

    EPA Science Inventory

    Many ports are currently preparing for increased freight traffic, which may result in elevated local air pollution in areas near the port and freight transportation corridors. In this study, a geographical information system (GIS) analysis of areas surrounding five portsPort o...

  1. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    NASA Astrophysics Data System (ADS)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  2. 19 CFR 122.119 - Transportation to another U.S. port.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Transportation to another U.S. port. (a) Application. Air cargo shipments may be transferred for transportation... director of the port of arrival may require Customs supervision of the transfer. (b) Time. Transit air... documents related to the value and description of the cargo involved that the receipting airline and...

  3. Aeroacoustic performance of a scoop inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.

    1977-01-01

    A low speed wind tunnel test demonstrated the aerodynamic and acoustic performance of a scoop inlet. Engine noise is directed upward by the extended lower lip of the scoop inlet. In addition, more of the scoop airflow comes in from above the inlet than below, leading to relatively higher surface velocities on the upper lip and lower surface velocities on the lower lip. These lower velocities on the lower lip result in a higher attainable angle of attack before internal flow separation occurs.

  4. Waves, Currents, & Bathymetric Evolution Near Inlets

    DTIC Science & Technology

    2013-09-30

    Jessup , A., R. Holman, C. Chickadel, S. Elgar; G. Farquharson, M . Haller, A. Kurapov, T. Özkan- Haller, B. Raubenheimer, J. Thomson, DARLA: Data...remotely sensed observations ( Jessup et al. 2012). Figure 1. Array of in situ wave and current sensors (white circles) deployed at New River...the inlet channel in depths from 1 to 10 m ]. (ii) Katama Inlet A numerical model for the water levels and flows in a two-inlet system was developed

  5. Axisymmetric inlet minimum weight design method

    NASA Technical Reports Server (NTRS)

    Nadell, Shari-Beth

    1995-01-01

    An analytical method for determining the minimum weight design of an axisymmetric supersonic inlet has been developed. The goal of this method development project was to improve the ability to predict the weight of high-speed inlets in conceptual and preliminary design. The initial model was developed using information that was available from inlet conceptual design tools (e.g., the inlet internal and external geometries and pressure distributions). Stiffened shell construction was assumed. Mass properties were computed by analyzing a parametric cubic curve representation of the inlet geometry. Design loads and stresses were developed at analysis stations along the length of the inlet. The equivalent minimum structural thicknesses for both shell and frame structures required to support the maximum loads produced by various load conditions were then determined. Preliminary results indicated that inlet hammershock pressures produced the critical design load condition for a significant portion of the inlet. By improving the accuracy of inlet weight predictions, the method will improve the fidelity of propulsion and vehicle design studies and increase the accuracy of weight versus cost studies.

  6. Radial inlet guide vanes for a combustor

    DOEpatents

    Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

    2013-02-12

    A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

  7. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  8. Low flight speed acoustic results for a supersonic inlet with auxiliary inlet doors

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Glaser, F. W.; Lucas, J. G.

    1982-01-01

    A model supersonic inlet with auxiliary inlet doors and bounday layer bleeds was acoustically tested in simulated low speed flight up to Mach 0.2 in the NASA Lewis 9x15 Anechoic Wind Tunnel and statically in the NASA Lewis Anechoic Chamber. A JT8D refan model was used as the noise source. Data were also taken for a CTOL inlet and for an annular inlet with simulated centerbody support struts. Inlet operation with open auxiliary doors increased the blade passage tone by about 10 dB relative to the closed door configuration although noise radiation was primarily through the main inlet rather than the doors. Numerous strong spikes in the noise spectra were associated with the bleed system, and were strongly affected by the centerbody location. The supersonic inlet appeared to suppress multiple pure tone (MPT) generation at the fan source. Inlet length and the presence of support struts were shown not to cause this MPT suppression.

  9. Usefulness of a Flexible Port for Natural Orifice Transluminal Endoscopic Surgery by the Transrectal and Transvaginal Routes

    PubMed Central

    Ohdaira, Takeshi; Ikeda, Keiichi; Tajiri, Hisao; Yasuda, Yoshikazu; Hashizume, Makoto

    2010-01-01

    We developed a flexible port for NOTES which allows the use of conventional forceps for laparoscope-assisted surgery without change. The port is not affected by the location of the through hole in the gastrointestinal tract or vagina which elicits a problem in conventional NOTES, and its length can be adjusted during surgery by cutting the port itself. The port is made of polymer resin with a low friction coefficient. Furthermore, the port walls have a square wave structure which contributes to (1) the prevention of devices, for example, endoscope, from getting stuck at the time of insertion and retrieval, (2) the prevention of port slippage in the surgical opening for port insertion, (3) the prevention of unexpected port removal, (4) the prevention of port bore deformation, and (5) the improvement of port flexibility in the longitudinal direction. We validated the insertion and retrieval capacities of commercially available forceps for laparoscope-assisted surgery and power devices. Furthermore, we used the flexible port to conduct cholecystectomy and partial gastrectomy. We could confirm that the selection of the flexible port diameter according to the device type allowed the smooth insertion and retrieval of the device and that the port produced no air leakage. We affirmed that it is possible to conduct surgery by the cross or parallel method similarly to single port surgery. We considered that the flexible port has a potential of becoming a revolutionary port in NOTES. PMID:20508827

  10. Intercomparison of volatile organic carbon measurement techniques and data at La Porte during the TexAQS2000 Air Quality Study.

    PubMed

    Kuster, W C; Jobson, B T; Karl, T; Riemer, D; Apel, E; Goldan, P D; Fehsenfeld, F C

    2004-01-01

    The Texas Air Quality Study 2000 (TexAQS2000) investigated the photochemical production of ozone and the chemistry of related precursors and reaction products in the vicinity of Houston, TX. The colocation of four instruments for the measurement of volatile organic carbon compounds (VOCs) allowed a unique opportunity for the intercomparison of the different in-situ measuring techniques. The instruments included three gas chromatographs, each with a different type of detector, and a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) with each system designed to measure a different suite of VOCs. Correlation plots and correlation statistics are presented for species measured by more than one of these instruments. The GC instruments were all in agreement to within 10-20% (slope) with coefficients of variation (r2) of > or = 0.85. The PTR-MS agreement with other instruments was more dependent on species with some very good agreements (r2 values of approximately 0.95 for some aromatics), but isoprene, acetaldehyde and propene were substantially less highly correlated (0.55 < r2 < 0.80). At least part of these differences were undoubtedly due to the timing of sample acquisition in an environment in which VOC levels changed very rapidly on both quantitative and temporal scales.

  11. 51. Port elevation, in port. Note reduced turtle deck due ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Port elevation, in port. Note reduced turtle deck due to quarters expansion. - U.S. Coast Guard Cutter WHITE SUMAC, U.S. Coast Guard 8th District Base, 4640 Urquhart Street, New Orleans, Orleans Parish, LA

  12. Use of a dual lumen port for automated red cell exchange in adults with sickle cell disease.

    PubMed

    Shrestha, Anuj; Jawa, Zeeshan; Koch, Kathryn L; Rankin, Amy B; Xiang, Qun; Padmanabhan, Anand; Karafin, Matthew S; Field, Joshua J

    2015-12-01

    Red cell exchange (RCE) is a common procedure in adults with sickle cell disease (SCD). Implantable dual lumen Vortex (DLV) ports can be used for RCE in patients with poor peripheral venous access. We performed a retrospective cohort study of RCE procedures performed in adults with SCD. The main objective of the study was to compare the inlet speed, duration of procedures and rate of complications performed through DLV ports to those performed through temporary central venous and peripheral catheters. Twenty-nine adults with SCD underwent a total of 318 RCE procedures. Twenty adults had DLV ports placed and 218 procedures were performed using DLV ports. Mean length of follow-up after DLV port placement was 397 ± 263 days. Six DLV ports were removed due to infection and 1 for malfunction after a mean of 171 ± 120 days. Compared to temporary central venous and peripheral catheters, DLV port procedures had a greater rate of procedural complications, a longer duration, and a lower inlet speed (all P < 0.01). When accounting for the maximum allowable inlet speed to avoid citrate toxicity, 40% of DLV port procedures were greater than 10% below maximum speed, compared to 7 and 14% of procedures performed through temporary central venous and peripheral catheters (P < 0.0001). In conclusion, DLV ports can be used for RCE in adults with SCD, albeit with more procedural complications and longer duration. The smaller internal diameter and longer catheter of DLV ports compared to temporary central venous catheters likely accounts for the differences noted.

  13. Experimental study on the inlet fogging system using two-fluid nozzles

    NASA Astrophysics Data System (ADS)

    Suryan, Abhilash; Kim, Dong Sun; Kim, Heuy Dong

    2010-04-01

    Large-capacity compressors in industrial plants and the compressors in gas turbine engines consume a considerable amount of power. The compression work is a strong function of the ambient air temperature. This increase in compression work presents a significant problem to utilities, generators and power producers when electric demands are high during the hot months. In many petrochemical process industries and gas turbine engines, the increase in compression work curtails plant output, demanding more electric power to drive the system. One way to counter this problem is to directly cool the inlet air. Inlet fogging is a popular means of cooling the inlet air to air compressors. In the present study, experiments have been performed to investigate the suitability of two-fluid nozzle for inlet fogging. Compressed air is used as the driving working gas for two-fluid nozzle and water at ambient conditions is dragged into the high-speed air jet, thus enabling the entrained water to be atomized in a very short distance from the exit of the two-fluid nozzle. The air supply pressure is varied between 2.0 and 5.0 bar and the water flow rate entrained is measured. The flow visualization and temperature and relative humidity measurements are carried out to specify the fogging characteristics of the two-fluid nozzle.

  14. Wave and Wind Effects on Inlet Circulation

    NASA Astrophysics Data System (ADS)

    Raubenheimer, B.; Wargula, A.; Orescanin, M. M.; Hopkins, J.; Elgar, S.

    2014-12-01

    Observations and numerical simulations of the water circulation and morphological change in two separate, well-mixed inlets will be compared with each other. Tides, winds, waves, and currents were measured from May 1 to 28, 2012 in and near New River Inlet, NC. Offshore significant wave heights were 0 to 3 m, and wind speeds ranged from 0 to 16 m/s. The long, narrow inlet is about 1000 m wide where it opens onto the ebb shoal, narrows to 100 m wide about 1000 m inland, and connects to the Intracoastal Waterway (which connects to additional ocean inlets about 12 and 36 km north and south, respectively) about 3000 m inland. Tides in the inlet are progressive and inlet flows are in phase with water depths. Measurements also were collected during the summers of 2011-2014, including during Hurricanes Irene and Sandy (offshore significant wave heights > 5 m and winds > 15 m/s), in Katama Bay, MA, which connects to Vineyard Sound via Edgartown Channel and to the Atlantic Ocean via Katama Inlet. During this period, Katama Inlet migrated east about 1000 m, narrowed from 400 to 100 m wide, changed depth from 7 to 2 m, and lengthened from 200 to 1000 m. Tidal flows in Katama Inlet are forced by sea level gradients resulting from the 3-hr phase lag between tides in Vineyard Sound and the Atlantic Ocean. Analyses of the momentum balances suggest that waves drive flows into the mouths of the inlets during storms. The timing of the storms relative to ebb and flood, and wind effects, may affect the discharge and sediment transport through the inlet. Winds and waves also drive alongshore flows on the ebb shoals. Lateral flows at bends in New River Inlet, which may be important to the along-inlet transfer of momentum and to mixing, are affected by winds. The importance of connections to additional inlets in multi-inlet systems will be discussed. Funded by ONR, ASD(R&E), NSF, Sea Grant, and NDSEG.

  15. Experimental, water droplet impingement data on two-dimensional airfoils, axisymmetric inlet and Boeing 737-300 engine inlet

    NASA Technical Reports Server (NTRS)

    Papadakis, M.; Elangovan, E.; Freund, G. A., Jr.; Breer, M. D.

    1987-01-01

    An experimental method has been developed to determine the droplet impingement characteristics on two- and three-dimensional bodies. The experimental results provide the essential droplet impingement data required to validate particle trajectory codes, used in aircraft icing analyses and engine inlet particle separator analyses. A body whose water droplet impingement characteristics are required is covered at strategic locations by thin strips of moisture absorbing (blotter) paper, and then exposed to an air stream containing a dyed-water spray cloud. Water droplet impingement data are extracted from the dyed blotter strips, by measuring the optical reflectance of the dye deposit on the strips, using an automated reflectometer. Impingement efficiency data obtained for a NACA 65(2)015 airfoil section, a supercritical airfoil section, and Being 737-300 and axisymmetric inlet models are presented in this paper.

  16. Internal Shock Interactions in Propulsion/Airframe Integrated Three-Dimensional Sidewall Compression Scramjet Inlets

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.; Perkins, John N.

    1992-01-01

    The advantages and design requirements of propulsion/airframe integration for high Mach number flight have led to extensive study of the three-dimensional sidewall compression scramjet inlet in recent years. Recent research publications have indicated testing over a broad range of Mach number (2 to 18) in a variety of test gases, such as air, helium, and tetrafluoromethane. Multiple experimental techniques have been employed to obtain detailed internal shock interaction data, performance data, and inlet starting limits. Computational fluid dynamics has been effectively used for preliminary parametric studies as well as in parallel with experiments to aid in the explanation of unusual or unexpected flow phenomena. Inlets of this genre afford a relatively simple, generic geometry while producing a highly complex, three-dimensional flow field dominated by shock/shock and shock/boundary layer interactions. While the importance of the viscous effects in high speed inlet interactions is recognized, the present work addresses in a parametric fashion the inviscid effects of leading edge sweep, sidewall compression, and inflow Mach number on the internal shock structure in terms of inlet compression and mass capture. In the process, the source of the of the Mach number invariance with leading edge sweep for a constant sidewall compression class of inlet is identified, and a previously undocumented spillage phenomenon in a constant effective wedge angle class of inlets is discussed.

  17. 33 CFR 117.757 - Townsend Inlet.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Townsend Inlet. 117.757 Section 117.757 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.757 Townsend Inlet. The draw...

  18. 33 CFR 117.757 - Townsend Inlet.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Townsend Inlet. 117.757 Section 117.757 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.757 Townsend Inlet. The draw...

  19. 33 CFR 117.757 - Townsend Inlet.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Townsend Inlet. 117.757 Section 117.757 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.757 Townsend Inlet. The draw...

  20. 33 CFR 117.714 - Corson Inlet.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Corson Inlet. 117.714 Section 117.714 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.714 Corson Inlet. The draw of the Corson...

  1. 33 CFR 117.757 - Townsend Inlet.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Townsend Inlet. 117.757 Section 117.757 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.757 Townsend Inlet. The draw...

  2. 33 CFR 117.714 - Corson Inlet.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Corson Inlet. 117.714 Section 117.714 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.714 Corson Inlet. The draw of the Corson...

  3. 33 CFR 117.714 - Corson Inlet.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Corson Inlet. 117.714 Section 117.714 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.714 Corson Inlet. The draw of the Corson...

  4. 33 CFR 117.714 - Corson Inlet.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Corson Inlet. 117.714 Section 117.714 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.714 Corson Inlet. The draw of the Corson...

  5. 33 CFR 117.714 - Corson Inlet.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Corson Inlet. 117.714 Section 117.714 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.714 Corson Inlet. The draw of the Corson...

  6. 33 CFR 117.757 - Townsend Inlet.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Townsend Inlet. 117.757 Section 117.757 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.757 Townsend Inlet. The draw...

  7. External-Compression Supersonic Inlet Design Code

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  8. Electrically heated particulate matter filter with recessed inlet end plugs

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2012-02-21

    A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

  9. Port-wine stain

    MedlinePlus

    Early-stage port-wine stains are usually flat and pink. As the child gets older, the color may deepen to a dark red or purplish color. They occur most often on the face, but can appear anywhere on the body. Over time, ...

  10. Analysis of Porous Media as Inlet Concept for Rotating Detonation Engines

    NASA Astrophysics Data System (ADS)

    Grogan, Kevin; Ihme, Matthias; Department of Mechanical Engineering Team

    2016-11-01

    Rotating detonation engines combust reactive gas mixtures with a high-speed, annularly-propagating detonation wave, which provides many advantages including a stagnation pressure gain and a compact, lightweight design. However, the optimal design of the inlet to the combustion chamber inlet is a moot topic since improper design can significantly reduce detonability and increase pressure losses. The highly diffusive properties of porous media could make it an ideal material to prevent the flashback of the detonation wave and therefore, allow the inlet gas to be premixed. Motivated by this potential, this work employs simulation to evaluate the application of porous media to the inlet of a rotating detonation engine as a novel means to stabilize a detonation wave while reducing the pressure losses incurred by non-ideal mixing strategies. Department of the Air Force.

  11. The Unsteady Response of an Axial Flow Turbo-Machinery Rotor to Inlet Flow Distortions.

    DTIC Science & Technology

    1978-10-12

    the rotor inflow velocity. Distorted inlet flow is a very realistic and prevalent problem in jet air - craft engines, and the consequences of...Turbomachinery In designing the blading of a compressor or turbine, the air flow is assumed to be steady. The existence of a uniform, steady flow is...surface of the air - k- foil. When this occurs in a compressor, surge can occur. Surge will result in very large fluctuating forces on the blades which

  12. 33 CFR 165.761 - Security Zones; Port of Palm Beach, Port Everglades, Port of Miami, and Port of Key West, Florida.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ports of Palm Beach, Port Everglades, Miami or Key West, Florida. These moving security zones are... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zones; Port of Palm Beach, Port Everglades, Port of Miami, and Port of Key West, Florida. 165.761 Section 165.761...

  13. Plasma control of shock wave configuration in off-design mode of M = 2 inlet

    NASA Astrophysics Data System (ADS)

    Falempin, Francois; Firsov, Alexander A.; Yarantsev, Dmitry A.; Goldfeld, Marat A.; Timofeev, Konstantin; Leonov, Sergey B.

    2015-03-01

    The objective of this work was to study the steering effect of a weakly ionized plasma on a supersonic flow structure in a two-dimensional aerodynamic configuration with a three-shock compression ramp in an off-design operational mode. Experiments were performed in wind tunnel T-313 of ITAM SB RAS, with the model air inlet designed for operation at a flow of Mach number M = 2. The inlet was tested at M = 2, 2.5, and 3 and with Re = (25-36) × 106/m and an angle of attack AoA = 0°, 5°, and 8°. For the regulation of the inlet characteristics, a plasma generator with electrical power W pl = 2-10 kW was flush-mounted upstream of the compression ramp. A significant plasma effect on the shock configuration at the inlet and on the flow parameters after air compression is considered. It is shown that the main shock wave angle is controllable by means of the plasma power magnitude and, therefore, can be accurately adjusted to the cowl lip of an inlet with a fixed geometry. An additional plasma effect has been demonstrated through a notable increase in the pressure recovery coefficient in a flowpass extension behind the inlet because of an nearly isentropic pattern of flow compression with the plasma turned on. Numerical simulation brings out the details of 3D distribution of the flow structure and parameters throughout the model at thermal energy deposition in inlet near the compression surfaces. We conclude that the plasma-based technique may be a feasible method for expanding supersonic inlet operational limits.

  14. Sound propagation in narrow tubes including effects of viscothermal and turbulent damping with application to charge air coolers

    NASA Astrophysics Data System (ADS)

    Knutsson, Magnus; Åbom, Mats

    2009-02-01

    Charge air coolers (CACs) are used on turbocharged internal combustion engines to enhance the overall gas-exchange performance. The cooling of the charged air results in higher density and thus volumetric efficiency. It is also important for petrol engines that the knock margin increases with reduced charge air temperature. A property that is still not very well investigated is the sound transmission through a CAC. The losses, due to viscous and thermal boundary layers as well as turbulence, in the narrow cooling tubes result in frequency dependent attenuation of the transmitted sound that is significant and dependent on the flow conditions. Normally, the cross-sections of the cooling tubes are neither circular nor rectangular, which is why no analytical solution accounting for a superimposed mean flow exists. The cross-dimensions of the connecting tanks, located on each side of the cooling tubes, are large compared to the diameters of the inlet and outlet ducts. Three-dimensional effects will therefore be important at frequencies significantly lower than the cut-on frequencies of the inlet/outlet ducts. In this study the two-dimensional finite element solution scheme for sound propagation in narrow tubes, including the effect of viscous and thermal boundary layers, originally derived by Astley and Cummings [Wave propagation in catalytic converters: Formulation of the problem and finite element scheme, Journal of Sound and Vibration 188 (5) (1995) 635-657] is used to extract two-ports to represent the cooling tubes. The approximate solutions for sound propagation, accounting for viscothermal and turbulent boundary layers derived by Dokumaci [Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters, Journal of Sound and Vibration 182 (5) (1995) 799-808] and Howe [The damping of sound by wall turbulent shear layers, Journal of the Acoustical Society of America 98 (3) (1995) 1723-1730], are

  15. Shock Positioning Controls Designs for a Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.

    2010-01-01

    Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The supersonic inlet design that is utilized to efficiently compress the incoming air and deliver it to the engine has many design challenges. Among those challenges is the shock positioning of internal compression inlets, which requires active control in order to maintain performance and to prevent inlet unstarts due to upstream (freestream) and downstream (engine) disturbances. In this paper a novel feedback control technique is presented, which emphasizes disturbance attenuation among other control performance criteria, while it ties the speed of the actuation system(s) to the design of the controller. In this design, the desired performance specifications for the overall control system are used to design the closed loop gain of the feedback controller and then, knowing the transfer function of the plant, the controller is calculated to achieve this performance. The innovation is that this design procedure is methodical and allows maximization of the performance of the designed control system with respect to actuator rates, while the stability of the calculated controller is guaranteed.

  16. Human impacts in an urban port: The carbonate budget, Otago Harbour, New Zealand

    NASA Astrophysics Data System (ADS)

    Smith, Abigail M.; Wood, Anna C. L.; Liddy, Michelle F. A.; Shears, Amy E.; Fraser, Ceridwen I.

    2010-12-01

    Otago Harbour is a long (23 km), narrow (mean width = 2 km), shallow (mean water depth = 4.5 m) tidal inlet covering 46 km 2 on the southeast coast of South Island, New Zealand (45°50'S, 170°35'E). Development of the City of Dunedin (pop. 125,000) and its associated port at Port Chalmers has been associated with extensive dredging, land reclamation, and shoreline construction. Here we develop a carbonate sediment budget for Otago Harbour, with limits defined at Mean High Water Spring and the harbour entrance; from the water-air interface to a few cm below the sediment-water interface. Carbonate is added to this system primarily by in-situ production (˜10,000 tonnes CaCO 3 y -1) and by transport though the harbour entrance from the longshore system (˜24,000 tonnes CaCO 3 y -1). Shellfishing (˜2 tonnes CaCO 3 y -1), dredging (˜18,000 tonnes CaCO 3 y -1), and early sea-floor processes such as abrasion and dissolution (˜2000 tonnes CaCO 3 y -1) remove carbonate from the system. The present-day carbonate budget results in ˜14,000 tonnes CaCO 3 y -1 sediment storage, equivalent to ˜0.14 mm y -1 accumulation. Two thousand years ago, the budget would have had nearly the same inputs but many fewer outputs, potentially resulting in storage twice what it is today; projected increases in human impacts suggest that carbonate storage may end within 100 years. Carbonate storage in sediments has a role in preserving environmental information and sequestering carbon, but the major value of a budget model is in clarifying the importance of human impacts. Urban harbours are not in a 'natural' state, and increasing human activity, both locally and globally, affects their overall health.

  17. Research on Supersonic Inlet Bleed

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Vyas, Manan A.; Slater, John W.

    2012-01-01

    Phase I data results of the Fundamental Inlet Bleed Experiments project at NASA Glenn Research Center (GRC) are presented which include flow coefficient results for two single-hole boundary-layer bleed configurations. The bleed configurations tested are round holes at inclination angles of 90deg and 20deg both having length-to-diameter ratios of 2.0. Results were obtained at freestream Mach numbers of 1.33, 1.62, 1.98, 2.46, and 2.92 and unit Reynolds numbers of 0.984, 1.89, and 2.46 10(exp 7)/m. Approach boundary-layer data are presented for each flow condition and the flow coefficient results are compared to existing multi-hole data obtained under similar conditions. For the 90deg hole, the single and multi-hole distributions agree fairly well with the exception that under supercritical operation, the multi-hole data chokes at higher flow coefficient levels. This behavior is also observed for the 20deg hole but to a lesser extent. The 20deg hole also shows a markedly different characteristic at subcritical operation. Also presented are preliminary results of a Computational Fluid Dynamics (CFD) analysis of both configurations at the Mach 1.33 and a unit Reynolds number of 2.46 10(exp 7)/m. Comparison of the results shows the agreement to be very good.

  18. Design of a two dimensional planer pressurized air labyrinth seal test rig

    NASA Astrophysics Data System (ADS)

    Konicki, Joseph S.

    1993-12-01

    A two-dimensional planer labyrinth seal test rig was designed to operate with air supplied at 45 psig and temperatures up to 150 F. The rig operates with a manually specified test section pressure up to 30 psig yielding Mach numbers to 0.9 and gap Reynolds numbers to 100,000. The air flow rate through the seal will be controlled by setting inlet pressure and adjusting an outlet control valve. The test section measurements are 18 inches wide by 1.5 inches depth by 6 inches in length and provides for 10:1 large scale geometry seals to be used to facilitate measurements. Design maximum seal gap size is 0.15 inches. The test section has a glass viewing port to allow flow field measurement by non-intrusive means such as Laser Doppler Velocimeter (LDV) with seals containing up to 5 sealing knives. Measurements of pressure, temperature and flow fields can also be simultaneously measured by probes inserted in the seal itself, or mounted on the removable/replaceable top plate. Inlet flow is conditioned through the use of a dump diffuser incorporating screens, honeycombs, expansion and contraction portions. The inlet flow to the test section can be modified from uniform to various non-uniform conditions by employing profile generators such as screens and winglets. A detailed mechanical design has been conducted including stress analysis and seal flow rate predictions.

  19. Design and development of an F/A-18 inlet distortion rake: A cost and time saving solution

    NASA Technical Reports Server (NTRS)

    Yuhas, Andrew J.; Ray, Ronald J.; Burley, Richard R.; Steenken, William G.; Lechtenberg, Leon; Thornton, Don

    1995-01-01

    An innovative inlet total pressure distortion measurement rake has been designed and developed for the F/A-18 A/B/C/D aircraft inlet. The design was conceived by NASA and General Electric Aircraft Engines personnel. This rake has been flight qualified and flown in the F/A-18 High Alpha Research Vehicle at NASA Dryden Flight Research Center, Edwards, California. The eight-legged, one-piece, wagon wheel design of the rake was developed at a reduced cost and offered reduced installation time compared to traditional designs. The rake features 40 dual-measurement ports for low- and high-frequency pressure measurements with the high-frequency transducer mounted at the port. This high-frequency transducer offers direct absolute pressure measurements from low to high frequencies of interest, thereby allowing the rake to be used during highly dynamic aircraft maneuvers. Outstanding structural characteristics are inherent to the design through its construction and use of lightweight materials.

  20. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  1. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  2. Wind- and Tide-Driven Cross-Inlet Circulation at New River Inlet, NC

    NASA Astrophysics Data System (ADS)

    Wargula, A.; Raubenheimer, B.; Elgar, S.

    2014-12-01

    The importance of cross-channel wind forcing to inlet circulation is examined using observations of winds, waves, water levels, and currents collected in and near New River Inlet, NC during May 2012. Although the direct effect of local wind forcing may be neglected in the subtidal along-inlet momentum balance, which is dominated by the pressure gradient, wave radiation stress gradient, and bottom friction, cross-inlet winds may have a significant effect on along-inlet dynamics by driving cross-inlet flows (approximately 0.1 to 0.3 m/s), which can mix lateral and vertical gradients in momentum and water properties. New River Inlet is 1000 m wide at the mouth and tapers to 100 m wide about 1000 m away from the mouth after two sharp 90° bends. Five colocated pressure gages and current profilers were deployed from the shallow (2-3 m water depth) ebb shoal outside the mouth through the deep (5-10 m depth) inlet channel to 200 m beyond the first 90° bend. The inlet is well mixed, and along-inlet tidal currents ranged from +/- 1.5 m/s, offshore significant wave heights from 0.5 to 2.5 m, and wind speeds from 0 to 16 m/s. Time series of currents and winds were lowpass-filtered to examine subtidal wind effects. At the first 90° bend, both surface and bottom cross-inlet flows were correlated (r2 = 0.6) with cross-inlet wind velocity. On the shallow ebb shoal, the cross-inlet flows also were correlated with cross-inlet wind velocity (r2 = 0.6). Cross-inlet flows exhibited a two-layer response to the wind inside the inlet and a depth-uniform response outside the mouth. The observations will be used to examine the momentum balance governing temporal and spatial variations in cross-inlet wind effects on inlet circulation. Funding provided by the Office of Naval Research, the Assistant Secretary of Defense for Research and Engineering, and a National Defense Science and Engineering Graduate Fellowship.

  3. The Origin of Inlet Buzz in a Mach 1.7 Low Boom Inlet Design

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Weir, Lois

    2014-01-01

    Supersonic inlets with external compression, having a good level performance at the critical operating point, exhibit a marked instability of the flow in some subcritical operation below a critical value of the capture mass flow ratio. This takes the form of severe oscillations of the shock system, commonly known as "buzz". The underlying purpose of this study is to indicate how Detached Eddy Simulation (DES) analysis of supersonic inlets will alter how we envision unsteady inlet aerodynamics, particularly inlet buzz. Presented in this paper is a discussion regarding the physical explanation underlying inlet buzz as indicated by DES analysis. It is the normal shock wave boundary layer separation along the spike surface which reduces the capture mass flow that is the controlling mechanism which determines the onset of inlet buzz, and it is the aerodynamic characteristics of a choked nozzle that provide the feedback mechanism that sustains the buzz cycle by imposing a fixed mean corrected inlet weight flow. Comparisons between the DES analysis of the Lockheed Martin Corporation (LMCO) N+2 inlet and schlieren photographs taken during the test of the Gulfstream Large Scale Low Boom (LSLB) inlet in the NASA 8x6 ft. Supersonic Wind Tunnel (SWT) show a strong similarity both in turbulent flow field structure and shock wave formation during the buzz cycle. This demonstrates the value of DES analysis for the design and understanding of supersonic inlets.

  4. Gas Turbine Engine Inlet Wall Design

    NASA Technical Reports Server (NTRS)

    Florea, Razvan Virgil (Inventor); Matalanis, Claude G. (Inventor); Stucky, Mark B. (Inventor)

    2016-01-01

    A gas turbine engine has an inlet duct formed to have a shape with a first ellipse in one half and a second ellipse in a second half. The second half has an upstream most end which is smaller than the first ellipse. The inlet duct has a surface defining the second ellipse which curves away from the first ellipse, such that the second ellipse is larger at an intermediate location. The second ellipse is even larger at a downstream end of the inlet duct leading into a fan.

  5. Aeroacoustic performance of a scoop inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.

    1977-01-01

    Results of a low speed wind tunnel test program are presented which demonstrate the aerodynamic and acoustic performance of a scoop inlet. Engine noise that would normally propagate toward the ground is directed upward by the extended lower lip of the scoop inlet. In addition, more of the scoop airflow comes in from above the inlet than below, leading to relatively higher surface velocities on the upper lip and lower surface velocities on the lower lip. These lower velocities on the lower lip result in a higher attainable angle of attack before internal flow separation occurs.

  6. Boundary conditions for unsteady supersonic inlet analyses

    NASA Astrophysics Data System (ADS)

    Mayer, David W.; Paynter, Gerald C.

    1994-06-01

    New bleed and compressor face boundary conditions have been developed to improve the accuracy of unsteady supersonic inlet calculations. The new bleed boundary conditions relate changes in the bleed hole discharge coefficient to changes in the local flow conditions; the local bleed flow rate can more than double as a shock moves forward over a bleed band in response to inlet flow disturbances. The effects of inlet flow disturbances on the flow at the compressor face are represented more realistically with this new boundary condition than with traditional fixed static pressure or mass flow conditions.

  7. Port and Harbor Security

    SciTech Connect

    Saito, T; Guthmuller, H; DeWeert, M

    2004-12-15

    Port and Harbor Security is a daunting task to which optics and photonics offers significant solutions. We are pleased to report that the 2005 Defense and Security Symposium (DSS, Orlando, FL) will include reports on active and passive photonic systems operating from both airborne and subsurface platforms. In addition to imaging techniques, there are various photonic applications, such as total internal reflection fluorescence (TIRF), which can be used to ''sniff'' for traces of explosives or contaminants in marine. These non-imaging technologies are beyond the scope of this article, but will also be represented at DSS 2005. We encourage colleagues to join our technical group to help us to make our ports and harbors safer and more secure.

  8. An Information Requirements Analysis of Military Airlift Command (MAC) Aerial Port Operations.

    DTIC Science & Technology

    1987-09-01

    16:19 (January 1985). Office of Public Affairs. Military Airlift Command Aerial Ports. United States Air Force Fact Sheet. Scott AFB IL: August 1986...the author and do not necessarily reflect the views of the School of Systems and Logistics, the Air University, the United States Air Force, or the...intertheater ports are in the continental United States and are located at Travis AFB and Norton AFB, California; McChord AFB, Washington; McGuire AFB, New

  9. Robotics for port security

    NASA Astrophysics Data System (ADS)

    Smuda, William; Freiburger, Lonnie A.; Gerhart, Grant R.; Mallon, Lawrence

    2004-09-01

    The capacity through the use of robots with on board visual, NBC and HAZMAT sensors to rapidly and continuously screen convoys and staged exposed assets would be a force multiplier and measurably improve base and force protection at both inbound and outbound DOD and commercial facilities. This paper chronicles our experiment with the ODIS robot at the Ports of Los Angeles (POLA) and Long Beach (POLB) in July of 2003. POLA & POLB are responsible for moving over 30% of the United States trade goods. Queues of 54" container trucks routinely exceed 100 trucks, extending for over a mile from the port entrances. Spotted equipment and convoys at staging areas are a high visibility and value assets to a terrorist incident. The POLA/POLB scenario is also representative of TRANSCOM operations at the port of Basra during current operation in Iraq. The California Highway Patrol is responsible for physically inspecting these vehicles for roadworthiness and contraband, a dangerous and dirty job. We will also discuss the use of ODIS robots for this task.

  10. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  11. Effects of Inlet Icing on Performance of Axial-flow Turbojet Engine in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Acker, Loren W; Kleinknecht, Kenneth S

    1950-01-01

    A flight investigation in natural icing conditions was conducted to determine the effect of inlet ice formations on the performance of axial-flow turbojet engines. The results are presented for icing conditions ranging from a liquid-water content of 0.1 to 0.9 gram per cubic meter and water-droplet size from 10 to 27 microns at ambient-air temperature from 13 to 26 degrees F. The data show time histories of jet thrust, air flow, tail-pipe temperature, compressor efficiency, and icing parameters for each icing encounter. The effect of inlet-guide-vane icing was isolated and shown to account for approximately one-half the total reduction in performance caused by inlet icing.

  12. ITER Port Interspace Pressure Calculations

    SciTech Connect

    Carbajo, Juan J; Van Hove, Walter A

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  13. The Peel Inlet-Harvey Estuary Study.

    ERIC Educational Resources Information Center

    Walker, Warren; Black, Ronald

    1979-01-01

    Describes how the department of physics of the Western Australian Institute of Technology (WAIT) has been involved in the Peel Inlet-Harvey Estuary study. An appendix which presents the departmental approach to curriculum matters is also included. (HM)

  14. Computational analysis of ramjet engine inlet interaction

    NASA Technical Reports Server (NTRS)

    Duncan, Beverly; Thomas, Scott

    1992-01-01

    A computational analysis of a ramjet engine at Mach 3.5 has been conducted and compared to results obtained experimentally. This study focuses on the behavior of the inlet both with and without combustor backpressure. Increased backpressure results in separation of the body side boundary layer and a resultant static pressure rise in the inlet throat region. The computational results compare well with the experimental data for static pressure distribution through the engine, inlet throat flow profiles, and mass capture. The computational analysis slightly underpredicts the thickness of the engine body surface boundary layer and the extent of the interaction caused by backpressure; however, the interaction is observed at approximately the same level of backpressure both experimentally and computationally. This study demonstrates the ability of two different Navier-Stokes codes, namely RPLUS and PARC, to calculate the flow features of this ramjet engine and to provide more detailed information on the process of inlet interaction and unstart.

  15. Noise suppression with high Mach number inlets

    NASA Technical Reports Server (NTRS)

    Lumsdaine, E.; Cherng, J. G.; Tag, I.

    1976-01-01

    Experimental results were obtained for two types of high Mach number inlets, one with a translating centerbody and a fixed geometry inlet (collapsing cowl) with no centerbody. The aerodynamic and acoustic performance of these inlets was examined. The effects of area ratio, length/diameter ratio, and lip geometry were among several parameters investigated. The translating centerbody type inlet was found to be superior to the collapsing cowl both acoustically and aerodynamically, particularly for area ratios greater than 1.5. Comparison of length/diameter ratio and area ratio effects on performance near choked flow showed the latter to be more significant. Also, greater high frequency noise attenuation was achieved by increasing Mach number from low to high subsonic values.

  16. Sample inlet tube for ion source

    DOEpatents

    Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

    2002-09-24

    An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

  17. Small inlet optical panel and a method of making a small inlet optical panel

    DOEpatents

    Veligdan, James T.; Slobodin, David

    2001-01-01

    An optical panel having a small inlet, and a method of making a small inlet optical panel, are disclosed, which optical panel includes a individually coating, stacking, and cutting a first plurality of stacked optical waveguides to form an outlet face body with an outlet face, individually coating, stacking, and cutting a second plurality of stacked optical waveguides to form an inlet face body with an inlet face, and connecting an optical coupling element to the first plurality and to the second plurality, wherein the optical coupling element redirects light along a parallel axis of the inlet face to a parallel axis of the outlet face. In the preferred embodiment of the present invention, the inlet face is disposed obliquely with and askew from the outlet face.

  18. Effect of inlet disturbances on fan inlet noise during a static test

    NASA Technical Reports Server (NTRS)

    Bekofske, K. L.; Sheer, R. E., Jr.; Wang, J. C. F.

    1977-01-01

    Measurements of fan rotor inlet noise taken during static test situations are at variance with aircraft engine flight data. In particular, static tests generally yield a significantly higher tone at blade passage frequency than that measured during flight. To explain this discrepancy, the extent of the influence of inlet ground vortices and large-scale inlet turbulence on the forward-radiated fan noise measured at a static test facility was investigated. While such inlet disturbances were generated intentionally in an anechoic test chamber, far-field acoustic measurements and inlet flow-field hot-film mappings of a fan rotor were obtained. Experimental results indicate that the acoustic effect of such disturbances appears to be less severe for supersonic than for subsonic tip speeds. Further, a reverse flow that occurs on the exterior cowl in static test facilities appears to be an additional prime candidate for creating inlet disturbances and causing variance between flight and static acoustic data.

  19. Inlet Processes at Eel Pond, Falmouth, Massachusetts.

    DTIC Science & Technology

    1984-10-01

    7 D -A147 548 INLET PROCESSES AT EEL POND FALMOUTH MRSS CHUSETi7 jV 1/2.COASTAL ENGINEERING RESEARCH CENTER YICKSBURG MS A E DEWRLL ET AL. OCT 84...42 c. Sediment Transport. ................... 42 d . Aerial Photograph: 21 November 1938. .......... 46 e. Aerial Photograph...Structural Changes to Inlet Hydraulics. ......... 59 c. Predicted Channel Stability .. .............. 69 d . Longshore Transport Estimates

  20. Circulation exchange patterns in Sinclair Inlet, Washington

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt J.; Paulson, Anthony J.; Gartner, Anne L.

    2013-01-01

    In 1994, the U.S. Geological Survey (USGS), in cooperation with the U.S. Navy, deployed three sets of moorings in Sinclair Inlet, which is a relatively small embayment on the western side of Puget Sound (fig. 1). This inlet is home to the Puget Sound Naval Shipyard. One purpose of the measurement program was to determine the transport pathways and fate of contaminants known to be present in Sinclair Inlet. Extensive descriptions of the program and the resultant information about contaminant pathways have been reported in Gartner and others (1998). This report primarily focused on the bottom boundary layer and the potential for resuspension and transport of sediments on the seabed in Sinclair Inlet as a result of tides and waves. Recently (2013), interest in transport pathways for suspended and dissolved materials in Sinclair Inlet has been rekindled. In particular, the USGS scientists in Washington and California have been asked to reexamine the datasets collected in the earlier study to refine not only our understanding of transport pathways through the inlet, but to determine how those transport pathways are affected by subtidal currents, local wind stress, and fresh water inputs. Because the prior study focused on the bottom boundary layer and not the water column, a reanalysis of the datasets could increase our understanding of the dynamic forces that drive transport within and through the inlet. However, the early datasets are limited in scope and a comprehensive understanding of these transport processes may require more extensive datasets or the development of a detailed numerical model of transport processes for the inlet, or both.

  1. Multiducted Inlet Combustor Research and Development.

    DTIC Science & Technology

    1982-10-01

    qualitative data from the multi-ducted inlet combustor configuration for flow analysis and matematical modeling purposes. The major portion of the support...data on multi-ducted inlet combustor configurations. These efforts will provide the information necessary to perform flow field analysis and aid in the...instrumentation, test program, data reduction, data presentation, flow field analysis and math modelling efforts, and conclusions and recommendations. SECTION 2

  2. Boundary conditions for unsteady supersonic inlet analyses

    NASA Astrophysics Data System (ADS)

    Mayer, David W.; Paynter, Gerald C.

    1994-06-01

    New bleed and compresor face boundary conditions have been developed to improve the accuracy of unsteady supersonic inlet calculations. The new bleed boundary condition relates changes in the bleed hole discharge coefficient to change the local flow conditions; the local bleed flow rate can more than double as a shock moves forward over a bleed band in response to inlet flow disturbances. The stability margin of the inlet is strongly dependent on the throat bleed configuration since the locally rapid increase in bleed flow has a stong effect on the motion of the normal shock. The new compressor face boundary condition accounts for changes in the unsteady flow conditions at the compressor face by specifying the compressor face corrected mass flow or Mach number either as a constant or as a linear function of the stagnation conditions. The effects of inlet flow disturbances on the flow at the compressor face are represented more realistically with this new boundary condition than with traditional fixed static pressure or mass flow conditions. Euler calculations of the dynamic response of an inlet flow to a flow disturbance at the compressor face with 20- and 90-deg throat bleed hole angles are reported. These results indicate that an extra margin of stability for the inlet is obtained with 90-deg bleed holes because the increase in bleed flow rate as the shock moves forward over a bleed is much larger for 90-deg holes than for 20-deg holes.

  3. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2008-01-01

    An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.

  4. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the present study, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the study is to advance the current understanding of the flow interaction between two different ultra-compact inlets and a transonic fan for future design applications. Both URANS and LES approaches are used to calculate the unsteady flow field and are compared with the available measured data. The present study indicates that stall inception is mildly affected by the distortion pattern generated by the inlet with the current test set-up. The numerical study indicates that the inlet distortion pattern decays significantly before it reaches the fan face for the current configuration. Numerical results with a shorter distance between the inlet and fan show that counter-rotating vortices near the rotor tip due to the serpentine diffuser affects fan characteristics significantly.

  5. General Investigation of Tidal Inlets: Stability of Selected United States Tidal Inlets

    DTIC Science & Technology

    1991-09-01

    years, the US Army Corps of Engineers, through its Civil Works program, has sponsored research into the behavior and character- istics of tidal inlets...73 5 50 Siletz, OR 7-39 to 2-76 4 51 Netarts, OR 7-53 to 7-73 4 Report Organizacion 8. Previous research on tidal inlet stability is summarized in Part...I. 1928. "Inlets on Sandy Coasts," Proceedings of the American Society of Civil Engineers, Vol LIV, pp 505-553. Bruun, P. 1967. Tidal Inlets and

  6. Comparison of single port versus multiport thoracoscopic segmentectomy

    PubMed Central

    Han, Kook Nam; Choi, Young Ho

    2016-01-01

    Backgrounds Single-port thoracoscopic segmentectomy is a challenging option in the early stages of lung cancer. The purpose of this study was to determine the feasibility of single-port video-assisted thoracoscopic surgery (VATS) segmentectomy compared to conventional multi-port VATS. Methods A total of 45 patients underwent pulmonary segmentectomy by video-assisted thoracoscopic surgery between March 2006 and October 2015. We analyzed the operative outcomes of segmentectomy by surgical approach (34 single-port versus 11 multi-port). Results Twenty-three primary lung cancers (51.1%), 16 benign lung diseases (35.6%), and 6 secondary lung cancers (13.3%) were diagnosed and included in our study. In 29 malignancy cases (64.4%), the mean tumor size was 1.8±0.7 (range, 1–3.5) cm. Twenty patients (44.4%) underwent preoperative localization with hook-wire and radiocontrast. The most frequent operated segment was the left upper divisional segment (n=9, 30%). There was no significant difference in operation time (P=0.073), the number of dissected lymph nodes (P=0.310), intraoperative events (P=0.412), and the development of prolonged air leak (>5 days) (P=0.610) between the single-port and multi-port VATS segmentectomy groups. There was a reduction in postoperative morbidity (P<0.001) and hospital stay (P=0.029) in the single-port VATS group. Conclusions Single-port VATS segmentectomy for early lung cancer and benign lung disease, is a safe and feasible option for patients undergoing pulmonary segmentectomy. PMID:27014475

  7. MTR, TRA603. SUBBASEMENT FLOOR PLAN. INLET/OUTLET TUNNELS FOR COOLANT WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. SUB-BASEMENT FLOOR PLAN. INLET/OUTLET TUNNELS FOR COOLANT WATER (NORTH SIDE) AND AIR (SOUTH SIDE). RABBIT CANAL AND BULKHEADS. SUMPS AND DRAINS. BLAW-KNOX 3150-3-7, 3/1950. INL INDEX NO. 531-0603-00-098-100006, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Liquefied Bleed for Stability and Efficiency of High Speed Inlets

    NASA Technical Reports Server (NTRS)

    Saunders, J. David; Davis, David; Barsi, Stephen J.; Deans, Matthew C.; Weir, Lois J.; Sanders, Bobby W.

    2014-01-01

    A mission analysis code was developed to perform a trade study on the effectiveness of liquefying bleed for the inlet of the first stage of a TSTO vehicle. By liquefying bleed, the vehicle weight (TOGW) could be reduced by 7 to 23%. Numerous simplifying assumptions were made and lessons were learned. Increased accuracy in future analyses can be achieved by: Including a higher fidelity model to capture the effect of rescaling (variable vehicle TOGW). Refining specific thrust and impulse models ( T m a and Isp) to preserve fuel-to-air ratio. Implementing LH2 for T m a and Isp. Correlating baseline design to other mission analyses and correcting vehicle design elements. Implementing angle-of-attack effects on inlet characteristics. Refining aerodynamic performance (to improve L/D ratio at higher Mach numbers). Examining the benefit with partial cooling or densification of the bleed air stream. Incorporating higher fidelity weight estimates for the liquefied bleed system (heat exchange and liquid storage versus bleed duct weights) could be added when more fully developed. Adding trim drag or 6-degree-of-freedom trajectory analysis for higher fidelity. Investigating vehicle optimization for each of the bleed configurations.

  9. Porting GENESIS to SIMULINK.

    PubMed

    Rodriguez Campos, Francisco; Enderle, John D

    2004-01-01

    This paper describes the porting of the general simulation system (GENESIS) to Matrix Language Laboratory language (MatLab) SIMULINK, based in the cable theory to simulate the behavior of neurons. A graphic programming approach serves as ideal platform for teaching physiological modeling and neuroengineering courses. The ultimate goal of this project is to integrate all of the chemical, electrical, material, mechanical and neural interactions into a single model that can be viewed seamlessly from a molecular model to the large scale model. Integration of all interactions is not possible with GENESIS, but can be accomplished with SIMULINK.

  10. Mercury in Sediment, Water, and Biota of Sinclair Inlet, Puget Sound, Washington, 1989-2007

    USGS Publications Warehouse

    Paulson, Anthony J.; Keys, Morgan E.; Scholting, Kelly L.

    2010-01-01

    specimens, and caged mussels. Total mercury concentrations in muscle and liver of English sole from Sinclair Inlet ranked in the upper quarter and third, respectively, of Puget Sound locations. For other species, concentrations from Sinclair Inlet were within the mid-range of locations (for example, Chinook salmon). Total mercury concentrations of the long-lived and higher trophic rockfish in composites and individual specimens from Sinclair Inlet tended to be the highest in Puget Sound. For a given size, sand sole, graceful crab, staghorn sculpin, surf perch, and sea cucumber individuals collected from Sinclair Inlet had higher total mercury concentrations than individuals collected from non-urban estuaries. Total mercury concentrations in individual English sole and ratfish were not significantly different than in individuals of various sizes collected from either urban or non-urban estuaries in Puget Sound. Total mercury concentrations in English sole collected from Sinclair Inlet after the 2000-2001 dredging appear to have lower total mercury concentrations than those collected before (1996) the dredging project. The highest total mercury concentrations of mussels caged in 2002 were not within the Bremerton naval complex, but within the Port Orchard Marina and inner Sinclair Inlet.

  11. Turbofan blade stresses induced by the flow distortion of a VTOL inlet at high angles of attack

    NASA Technical Reports Server (NTRS)

    Williams, R. C.; Diedrich, J. H.; Shaw, R. J.

    1983-01-01

    A 51-cm-diameter turbofan with a tilt-nacelle VTOL inlet was tested in the Lewis Research Center's 9- by 15-Ft Low Speed Wind Tunnel at velocities up to 72 m/s and angles of attack up to 120 deg. Fan-blade vibratory stress levels were investigated over a full aircraft operating range. These stresses were due to inlet air flow distortion resulting from (1) internal flow separation in the inlet, and (2) ingestion of the exterior nacelle wake. Stress levels are presented, along with an estimated safe operating envelope, based on infinite blade fatigue life.

  12. Turbine Inlet Analysis of Injected Water Droplet Behavior

    NASA Astrophysics Data System (ADS)

    Hargrave, Kevin

    Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the hotter months various cooling methods are used such as refrigeration inlet cooling systems, evaporative methods, and thermal energy storage systems. One of the more widely used is the evaporative systems because it is one of the safest and easiest to utilize method. However, the behavior of water droplets within the inlet to the turbine has not been extensively studied or documented. It is important to understand how the droplets behave within the inlet so that water droplets above a critical diameter will not enter the compressor and cause damage to the compressor blades. In order to do this a FLUENT simulation was constructed in order to determine the behavior of the water droplets and if any droplets remain at the exit of the inlet, along with their size. In order to do this several engineering drawings were obtained from SRP and studies in order to obtain the correct dimensions. Then the simulation was set up using data obtained from SRP and Parker-Hannifin, the maker of the spray nozzles. Then several sets of simulations were run in order to see how the water droplets behaved under various conditions. These results were then analyzed and quantified so that they could be easily understood. The results showed that the possible damage to the compressor increased with increasing temperature at a constant relative humidity. This is due in part to the fact that in order to keep a constant relative humidity at varying temperatures the mass fraction of water vapor in the air must be changed. As temperature increases the water vapor mass fraction must increase in order to maintain a constant relative humidity. This in turn makes it slightly increases the evaporation time of the water

  13. Investigation of Flow Instabilities in the Inlet Ducts of DP-1C VTOL Aircraft

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2008-01-01

    An investigation of flow instabilities in the inlet ducts of a two-engine vertical takeoff and landing aircraft DP-1C is described in this report. Recent tests revealed that the engines stall during run ups while the aircraft is operating on the ground. These pop stalls occurred at relatively low power levels, sometimes as low as 60 percent of the engine full speed. Inability to run the engines up to the full speed level is attributed to in-ground effects associated with hot gas ingestion. Such pop stalls were never experienced when the aircraft was tested on a elevated grid platform, which ensured that the aircraft was operating in out-of-the-ground-effect conditions. Based on available information on problems experienced with other vertical takeoff and landing aircraft designs, it was assumed that the engine stalls were caused by partial ingestion of hot gases streaming forward from the main exit nozzle under the aircraft inlets, which are very close to the ground. It was also suggested that the nose wheel undercarriage, located between the inlets, may generate vortices or an unstable wake causing intense mixing of hot exit gases with incoming inlet flow, which would enhance the hot gas ingestion. After running a short three-day series of tests with fully instrumented engine inlets, it is now believed the most probable reason for engine pop stalls are random ingestions of a vortex generated between the two streams moving in opposite directions: outbound hot gas stream from the main nozzle close to the ground and inbound inlet flow above. Originally, the vortex is in a horizontal plane. However, at a certain velocity ratio of these two streams, the vortex attaches either to the ground or the aircraft surface at one end and the other end is swallowed by one of the aircraft inlets. Once the vortex enters the inlet duct, a puff of hot air can be sucked through the vortex core into the engine, which causes a serious inlet flow field distortion followed by an engine

  14. 33 CFR 80.703 - Little River Inlet, SC to Cape Romain, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Inlet, a line drawn parallel with the general trend of the highwater shoreline across Hog Inlet; thence... the general trend of the highwater shoreline across Midway Inlet, Pawleys Inlet, and North Inlet....

  15. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    DOEpatents

    Abbasi, Hamid A.; Kurek, Harry; Chudnovsky, Yaroslav; Lisienko, Vladimir G.; Malikov, German K.

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  16. A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Lutz, A.; Hallquist, M.; Worsnop, D.; Thornton, J. A.

    2014-04-01

    We describe a novel inlet that allows measurement of both gas and particle molecular composition when coupled to mass spectrometric, chromatographic, or optical sensors: the Filter Inlet for Gases and AEROsols (FIGAERO). The design goals for the FIGAERO are to allow unperturbed observation of ambient air while simultaneously analyzing gases and collecting particulate matter on a Teflon® (hereafter Teflon) filter via an entirely separate sampling port. The filter is analyzed periodically by the same sensor on hourly or faster timescales using temperature-programmed thermal desorption. We assess the performance of the FIGAERO by coupling it to a high-resolution time-of-flight chemical-ionization mass spectrometer (HRToF-CIMS) in laboratory chamber studies of α-pinene oxidation and field measurements at a boreal forest location. Low instrument backgrounds give detection limits of ppt or lower for compounds in the gas-phase and in the picogram m-3 range for particle phase compounds. The FIGAERO-HRToF-CIMS provides molecular information about both gases and particle composition on the 1 Hz and hourly timescales, respectively for hundreds of compounds. The FIGAERO thermal desorptions are highly reproducible (better than 10%), allowing a calibrated assessment of the effective volatility of desorbing compounds and the role of thermal decomposition during the desorption process. We show that the often multi-modal desorption thermograms arising from secondary organic aerosol (SOA) provide additional insights into molecular composition and/or particle morphology, and exhibit changes with changes in SOA formation or aging pathways.

  17. Determination of volatile organic compounds in ambient air with gas chromatograph-flame ionization and ion trap detection

    SciTech Connect

    Liu, S.; Carley, R.J.; Kang, J.; Chen, J.; Stuart, J.D.

    1994-12-31

    Two new techniques are utilized to integrate the following three equipments: an Entech 2000 automated air concentrator, a Hewlett Packard gas chromatograph (GC) with flame ionization detector (FID) and an ion trap mass spectrometer detector (ITD). This combined analytical system is used to determine low ppb level volatile organic compounds (VOC) in ambient air. The first technique is to configure the inlet system of the GC, so that the pressure regulated flow control system of the GC injection port is used to control the flow of both the desorb gas of the automated air concentrator and the carrier gas of the GC column. The injection port still can be used to inject gas and liquid samples directly. The second technique is to split the effluent of GC column at a 1:1 ratio to the ITD and the FID. In this way, both FID and ITD data can be obtained for each analysis. For ambient air non-methane hydrocarbons monitoring, the FID detector is widely used. Oxygen containing and halogenated organic compounds cannot be differentiated by FID detector and would be quantified as coeluting hydrocarbons. However, volatile organic compounds other than target hydrocarbons can be identified by ITD. This analytical system is very valuable research tool for non-methane hydrocarbons and urban air toxic monitoring. The performances of this developed system have been presented.

  18. Inlet contour and flow effects on radiation

    NASA Technical Reports Server (NTRS)

    Ville, J. M.; Silcox, R. J.

    1980-01-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  19. Analysis of Buzz in a Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2012-01-01

    A dual-stream, low-boom supersonic inlet designed for use on a small, Mach 1.6 aircraft was tested experimentally in the 8- by 6-Foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center (GRC). The tests showed that the inlet had good recovery and stable operation over large mass flow range. The inlet went into buzz at mass flows well below that needed for engine operation, and the experiments generated a wealth of data during buzz. High frequency response pressure measurements and high-speed schlieren videos were recorded for many buzz events. The objective of the present work was to use computational fluid dynamics (CFD) to predict some of the experimental data taken during buzz, compare those predictions to the experimental data, and to use both datasets to explain the physics of the buzz cycle. The calculations were done with the Wind-US CFD code using a second-order time-accurate differencing scheme and the SST turbulence model. Computed Mach number contours were compared with schlieren images, and ensemble-averaged unsteady pressures were compared to data. The results showed that the buzz cycle consisted partly of spike buzz, an unsteady oscillation of the main shock at the spike tip while the inlet pressure dropped, and partly of choked flow while the inlet repressurized. Most of the results could be explained by theory proposed by Dailey in 1954, but did not support commonly used acoustic resonance explanations.

  20. Solid sorbent air sampler

    NASA Astrophysics Data System (ADS)

    Galen, T. J.

    1986-04-01

    A fluid sampler for collecting a plurality of discrete samples over separate time intervals is described. The sampler comprises a sample assembly having an inlet and a plurality of discreet sample tubes each of which has inlet and outlet sides. A multiport dual acting valve is provided in the sampler in order to sequentially pass air from the sample inlet into the selected sample tubes. The sample tubes extend longitudinally of the housing and are located about the outer periphery thereof so that upon removal of an enclosure cover, they are readily accessible for operation of the sampler in an analysis mode.

  1. Solid sorbent air sampler

    NASA Technical Reports Server (NTRS)

    Galen, T. J. (Inventor)

    1986-01-01

    A fluid sampler for collecting a plurality of discrete samples over separate time intervals is described. The sampler comprises a sample assembly having an inlet and a plurality of discreet sample tubes each of which has inlet and outlet sides. A multiport dual acting valve is provided in the sampler in order to sequentially pass air from the sample inlet into the selected sample tubes. The sample tubes extend longitudinally of the housing and are located about the outer periphery thereof so that upon removal of an enclosure cover, they are readily accessible for operation of the sampler in an analysis mode.

  2. Distribution and sources of polychlorinated biphenyls in Woods Inlet, Lake Worth, Fort Worth, Texas, 2003

    USGS Publications Warehouse

    Besse, Richard E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2005-01-01

    Woods Inlet is a flooded stream channel on the southern shore of Lake Worth along the western boundary of Air Force Plant 4 in Fort Worth, Texas, where elevated polychlorinated biphenyl (PCB) concentrations in sediment were detected in a previous study. In response, the U.S. Geological Survey, in cooperation with the U.S. Air Force, conducted a study in 2003 to map the extent of elevated PCB concentrations in Woods Inlet and to identify possible sources (or more specifically, source areas) of PCBs in the watershed of Woods Inlet. Three gravity cores (penetration to pre-reservoir sediment at three sites) and 17 box cores (surficial bottom sediment samples) were collected in Woods Inlet. Suspended sediment in stormwater runoff and streambed sediment were sampled in tributaries to Woods Inlet following storms. Assemblages of PCB congeners in surficial inlet sediments and suspended and streambed sediments were analyzed to indicate sources of PCBs in the inlet sediments on the basis of chemical signatures of PCBs. Woods Inlet receives runoff primarily from three tributaries: (1) Gruggs Park Creek, (2) the small unnamed creek that drains a Texas National Guard maintenance facility, called TNG Creek for this report, and (3) Meandering Road Creek. Twenty-seven of 209 possible PCB congeners were analyzed. The sum of the congeners was used as a measure of total PCB. The spatial distribution of total PCB concentrations in the inlet indicates that most PCBs are originating in the Meandering Road Creek watershed. Peak total PCB concentrations in the three gravity cores occurred at depths corresponding to sediment deposition dates of about 1960 for two of the cores and about 1980 for the third core. The magnitudes of peak total PCB concentrations in the gravity cores followed a spatial distribution generally similar to that of surficial bottom sediment concentrations. Total PCB concentrations in suspended and streambed sediment varied greatly between sites and indicated a likely

  3. VIEW OF TAIL SERVICE MASTS, PORT TSM IN THE FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TAIL SERVICE MASTS, PORT TSM IN THE FOREGROUND, FROM THE CORNER WHERE SIDES 1 AND 2 MEET - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  4. Experimental Investigation of a Hypersonic Inlet with Variable Sidewall for Flow Control

    NASA Astrophysics Data System (ADS)

    Rolim, T. C.; Lu, F. K.

    The main function of a scramjet inlet is to decelerate and compress the air for subsequent reaction with the fuel inside the combustor and, of course, contribute toward meeting the thrust requirement for the entire mission by providing adequate mass flow. It is desirable that the inlet be lightweight and that its geometry be capable of producing a uniform flow in an appropriate state to permit efficient mixing and subsequent combustion. Engine cycle analysis indicates that high contraction ratios CR are desirable for achieving high overall engine efficiency.

  5. SeaPort-e Workshop

    DTIC Science & Technology

    2014-08-01

    aquilent.com 22 QUESTIONS?? 23 Back-up 24 Program Evolution Category SeaPort Original (2001 – 2004) SeaPort-Enhanced (2004...Function = Industry User Function External System Interfaces: Create Purchase Request (Navy ERP ) Receive CAR Data (FPDS-NG) Receive Award Documents (EDA) Receive Award Data (SPS)

  6. EPA Awards $1.3 Million Clean Diesel Grant to the Port of Los Angeles

    EPA Pesticide Factsheets

    Forty percent of the nation's total imports come through the San Pedro Bay ports, said Jared Blumenfeld, EPA's Regional Administrator for the Pacific Southwest. Replacing cargo equipment with zero emissions alternatives will not only help overall air qu

  7. Quiet Clean Short-Haul Experimental Engine (QCSEE) aerodynamic characteristics of 30.5 centimeter diameter inlets

    NASA Technical Reports Server (NTRS)

    Paul, D. L.

    1975-01-01

    A low speed test program was conducted in a 9- by 15-foot V/STOL wind tunnel to investigate internal performance characteristics and determine key design features required for an inlet to meet the demanding operational conditions of the QCSEE application. Four models each having a design average throat Mach number of 0.79 were tested over a range of incidence angle, throat Mach number, and freestream velocity. Principal design variable was internal lip diameter ratio. Stable, efficient inlet performance was found to be feasible at and beyond the 50 deg incidence angle required by the QCSEE application at its 41.2 m/sec (80 knot) nominal takeoff velocity, through suitably designed inlet lip and diffuser components. Forebody design was found to significantly impact flow stability via nose curvature. Measured inlet wall pressures were used to select a location for the inlet throat Mach number control's static pressure port that properly balanced the conflicting demands of relative insensitivity to flow incidence and sufficiently high response to changes in engine flow demand.

  8. Numerical simulation of scramjet inlet flow fields

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay

    1986-01-01

    A computer program was developed to analyze supersonic combustion ramjet (scramjet) inlet flow fields. The program solves the three-dimensional Euler or Reynolds averaged Navier-Stokes equations in full conservation form by either the fully explicit or explicit-implicit, predictor-corrector method of MacCormack. Turbulence is modeled by an algebraic eddy-viscosity model. The analysis allows inclusion of end effects which can significantly affect the inlet flow field. Detailed laminar and turbulent flow results are presented for a symmetric-wedge corner, and comparisons are made with the available experimental results to allow assessment of the program. Results are then presented for two inlet configurations for which experimental results exist at the NASA Langley Research Center.

  9. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, R.F.; Dietrich, D.D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.

  10. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  11. Analysis of thrust augmentation of turbojet engines by water injection at compressor inlet including charts for calculating compression processes with water injection

    NASA Technical Reports Server (NTRS)

    Wilcox, E Clinton; Trout, Arthur M

    1951-01-01

    A psychrometric chart having total pressure (sum of partial pressures of air and water vapor) as a variable, a Mollier diagram for air saturated with water vapor, and charts showing the thermodynamic properties of various air-water vapor and exhaust gas-water vapor mixtures are presented as aids in calculating the thrust augmentation of a turbojet engine resulting from the injection of water at the compressor inlet. Curves are presented that show the theoretical performance of the augmentation method for various amounts of water injected and the effects of varying flight Mach number, altitude, ambient-air temperature, ambient relative humidity, compressor pressure ratio, and inlet-diffuser efficiency. Numerical examples, illustrating the use of the psychrometric chart and the Mollier diagram in calculating both compressor-inlet and compressor-outlet conditions when water is injected at the compressor inlet, are presented.

  12. Analysis of long-term, high time-resolution measurement of gaseous and particulate pollution near the Port of New York and New Jersey

    EPA Science Inventory

    The Port of New York and New Jersey is one of the largest and busiest ports in the United States and is located in close proximity to densely populated communities. To understand the local air quality impact of pollutant emission reduction activities at the port – including swit...

  13. Nearshore Wave Transformation Study of Sites Near Port Canaveral Inlet, Florida.

    DTIC Science & Technology

    1987-09-01

    Bi 2 0 LIST OF TABLES No. Page 1 Summary of Wave Statistics from WIS Hindcast ..... ........... 10 2 Summary of Wave Statistics... tables giving wave statistics for deep water and breaking waves, respectively. 4.4 X-WX * 4 H iomeP N 2 (3 R (3) 60 se 13 1" M CAP CA A - _--_ le gg...they are transformed to a 33- ft depth rather than 60 ft. These tables give the joint probability of wave height and wave period. Figure 3

  14. Investigation of High-Subsonic Performance Characteristics of a 12 Degree 21-Inch Conical Diffuser, Including the Effects of Change in Inlet-Boundary-Layer Thickness

    NASA Technical Reports Server (NTRS)

    Copp, Martin R.; Klevatt, Paul L.

    1950-01-01

    Investigations were conducted of a 12 degree 21-inch conical diffuser of 2:l area ratio to determine the interrelation of boundary layer growth and performance characteristics. surveys were made of inlet and exit from, longitudinal static pressures were recorded, and velocity profiles were obtained through an inlet Reynolds number range, determined From mass flows and based on inlet diameter of 1.45 x 10(exp 6) to 7.45 x 10(exp 6) and a Mach number range of 0.11 to approximately choking. These investigations were made to two thicknesses of inlet boundary layer. The mean value, over the entire range of inlet velocities, of the displacement thickness of the thinner inlet boundary layer was approximately 0.035 inch and that of the thicker inlet boundary layer was approximately six times this value. The loss coefficient in the case of the thinner inlet boundary layer had a value between 2 to 3 percent of the inlet impact pressure over most of the air-flow range. The loss coefficient with the thicker inlet boundary layer was of the order of twice that of the thinner inlet boundary layer at low speeds and approximately three times at high speeds. In both cases the values were substantially less than those given in the literature for fully developed pipe flow. The static-pressure rise for the thinner inlet boundary layer was of the order of 95 percent of that theoretically possible over the entire speed range. For the thicker inlet boundary layer the static pressure rise, as a percentage of that theoretically possible, ranged from 82 percent at low speeds to 68 percent at high speeds.

  15. Experimental investigation on flame pattern formations of DME-air mixtures in a radial microchannel

    SciTech Connect

    Fan, Aiwu; Maruta, Kaoru; Nakamura, Hisashi; Kumar, Sudarshan; Liu, Wei

    2010-09-15

    Flame pattern formations of premixed DME-air mixture in a heated radial channel with a gap distance of 2.5 mm were experimentally investigated. The DME-air mixture was introduced into the radial channel through a delivery tube which connected with the center of the top disk. With an image-intensified high-speed video camera, rich flame pattern formations were identified in this configuration. Regime diagram of all these flame patterns was drawn based on the experimental findings in the equivalence ratio range of 0.6-2.0 and inlet velocity range of 1.0-5.0 m/s. Compared with our previous study on premixed methane-air flames, there are several distinct characteristics for the present study. First, Pelton-wheel-like rotary flames and traveling flames with kink-like structures were observed for the first time. Second, in most cases, flames can be stabilized near the inlet port of the channel, exhibiting a conical or cup-like shape, while the conventional circular flame was only observed under limited conditions. Thirdly, an oscillating flame phenomenon occurred under certain conditions. During the oscillation process, a target appearance was seen at some instance. These pattern formation characteristics are considered to be associated with the low-temperature oxidation of DME. (author)

  16. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the study presented, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft engines require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the current study is to advance the understanding of the flow interaction between a modern ultra-compact inlet and a transonic fan for future design applications. Many experimental/ analytical studies have been reported on the aerodynamics of compact inlets in aircraft engines. On the other hand, very few studies have been reported on the effects of flow distortion from these inlets on the performance of the following fan/compressor stages. The primary goal of the study presented is to investigate how flow interaction between an ultra-compact inlet and a transonic compressor influence the operating margin of the compressor. Both Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) approaches are used to calculate the unsteady flow field, and the numerical results are used to study the flow interaction. The present study indicates that stall inception of the following compressor stage is affected directly based on how the distortion pattern evolves before it interacts with the fan/compressor face. For the present compressor, the stall initiates at the tip section with clean inlet flow and distortion pattern away from the casing itself seems to have limited impacts on the stall inception of the compressor. A counter-rotating swirl, which is generated due to flow separation inside the s-shaped compact duct, generates an increased flow angle near the blade tip. This increased flow angle near the rotor tip due to the secondary flow from the counter-rotating vortices is the primary reason for the reduced compressor stall margin.

  17. Investigation on Multiple-Pulse Propulsion Performance for a Parabolic Nozzle with Inlet Slit

    NASA Astrophysics Data System (ADS)

    Wen, Ming; Hong, Yanji; Song, Junling

    2011-11-01

    The multiple-pulse impulse coupling coefficient Cm is lower than the single pulse one with the same laser parameters. It is always explained that air recovery in nozzle does not work on time. Three kinds of parabolic nozzles are employed to improve air recovery in the experiments and simulation. There exist inlet slits on side wall of them with width of 1 mm, 2 mm, respectively. The curves of thrust and the process of flow fluid field are presented to study the slit effects on Cm under 20 Hz pulse frequency. The results show: an inlet slit can accelerate the air breathing process in the nozzle and Cm for each pulse exhibits a little variation; the lower Cm is obtained due to the increasing energy loss by a larger size slit; the flat-roofed nozzle gets higher Cm than others.

  18. Influence of combustion-preheating vitiation on operability of a hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Liu, K.; Zhu, Y.; Gao, W.; Yang, J.; Jin, Y.; Wu, Y.

    2016-11-01

    Vitiation of the test flow with combustion products is inherent in combustion wind tunnels, and its effect on experimental results needs to be clarified. In this study, the influence of air vitiation on the startability and performance of a hypersonic inlet is investigated through two-dimensional (2D) numerical simulation. The study examines the vitiation effects introduced by carbon dioxide and water vapor, on the basis of maintaining the static pressure, static temperature and Mach number of the incoming flow. The starting Mach number limits of the inlet are estimated, and it is found that both of these vitiation components lower the starting limit of the inlet. This suggests that the experimental results acquired by tests in combustion wind tunnels overestimate the startability of an inlet and, therefore, combustion-preheated facilities may not be completely trusted in this respect. Deviations in the inlet performance caused by the vitiation are also detected. These are nevertheless minor as long as the flow is at the same started or unstarted condition. A further analysis reveals that it is mainly the increase in the heat capacity, and the resulting weaker shock/compression waves and shock-wave/boundary-layer interactions that account for the aforementioned effects.

  19. Supersonic Inlet with Pylons Set and Star-Shaped Forebody for Mixing, Combustion and Thrust Enhancement

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Gonor, A. L.; Khaikine, V. A.; Blankson, I. M.

    2003-01-01

    Two new approaches are discussed in this paper for application in the Scramjet inlet of an air-breathing propulsion system: 1) In the first approach, the pylon set is installed in the rectangular inlet near the cowl front edge. For a quasi-axisymmetric inlet, a similar set is installed along the Star-shaped forebody axis. This set contains 3 - 4 airfoil-shaped strips or cross-sectional rings depending on the type of inlet. The inlets: rectangular, axisymmetric or star-shaped, are located at different distances from the forebody. Fuel injection takes place through these pylons, which provides for uniform mixing downstream. The locations, sizes and angles of these pylons are very important for efficient application. Optimal values of geometrical parameters were determined from multi-parametric NSE-based numerical simulations of the laminar and turbulent external/internal flows. These simulations have shown significant benefits for mixing, combustion and thrust of the proposed approach by comparison with traditional well-known designs. Experimental tests will be conducted soon at the NASA LaRC and Institute of Mechanics at Moscow State University. Preliminary estimates are very promising.

  20. Numerical analysis of flow features and operation characteristics of a rocket-based combined-cycle inlet in ejector mode

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Liu, Xiaowei; He, Guoqiang; Qin, Fei; Wei, Xianggeng; Yang, Bin; Liu, Jie

    2016-10-01

    A ready-made central strut-based rocket-based combined-cycle (RBCC) engine was numerically investigated in the ejector mode. The flow features in the RBCC inlet and the matching characteristics between the inlet and the embedded rocket during different flight regimes were examined in detail. It was necessary to perform integrated numerical simulations in the ejector mode within considerable pressure far fields around the inlet/exhaust system. The observed flow features and operation characteristics in the RBCC inlet were strongly correlated with the flight conditions, inlet configuration, and operation of the embedded rocket. It was further found that the integrated function status of multiple factors significantly influenced the performance of the RBCC engine in the ejector mode. The two parameters that macroscopically affected the performance most were the air entrainment mass and the drag of the RBCC inlet. To improve these parameters, it is vital to employ an appropriate design of the RBCC inlet and establish the optimal flight trajectory of the flight vehicle.

  1. Design and operation considerations for attic inlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving energy efficiency and environmental control in poultry facilities is essential for profitability. Increases in energy costs have prompted evaluation of solar energy systems and passive solar systems such as attic inlets have been adopted as a means to reduce fuel usage. Successful implem...

  2. An Analysis of Microbial Pollution in the Sinclair-Dyes Inlet Watershed

    SciTech Connect

    May, Christopher W.; Cullinan, Valerie I.

    2005-09-21

    This assessment of fecal coliform sources and pathways in Sinclair and Dyes Inlets is part of the Project ENVironmental InVESTment (ENVVEST) being conducted by the Navy's Puget Sound Naval Shipyard and Intermediate Maintenance Facility in cooperation with the US Environmental Protection Agency, Washington State Department of Ecology, the Suquamish Tribe, Kitsap County, the City of Bremerton, the City of Port Orchard, and other local stakeholders. The goal of this study was to identify microbial pollution problems within the Sinclair-Dyes Inlet watershed and to provide a comprehensive assessment of fecal coliform (FC) contamination from all identifiable sources in the watershed. This study quantifies levels of contamination and estimated loadings from known sources within the watersheds and describes pollutant transport mechanisms found in the study area. In addition, the effectiveness of pollution prevention and mitigation measures currently in place within the Sinclair-Dyes Inlet watershed are discussed. This comprehensive study relies on historical data collected by several cooperating agencies, in addition to data collected during the study period from spring 2001 through summer 2005. This report is intended to provide the technical information needed to continue current water quality cleanup efforts and to help implement future efforts.

  3. Terrorist Watchlist Checks and Air Passenger Prescreening

    DTIC Science & Technology

    2009-12-30

    U.S. port of entry or at airport security checkpoints prior U.S. air carrier flights. For these purposes, CBP administers the Automated Targeting...Passenger Screening at Airport Security Checkpoints ................................. 14 9/11 Commission Recommendations and CAPPS II...individuals at either international ports of entries upon arrival at a U.S. port of entry or at airport security checkpoints prior U.S. air carrier

  4. 47 CFR 52.35 - Porting Intervals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Portability § 52.35 Porting Intervals. (a) All telecommunications carriers required by the Commission to port telephone numbers must complete a simple wireline-to-wireline or simple intermodal port request within one... p.m. local time for a simple port request to be eligible for activation at midnight on the same...

  5. 47 CFR 52.35 - Porting Intervals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Portability § 52.35 Porting Intervals. (a) All telecommunications carriers required by the Commission to port telephone numbers must complete a simple wireline-to-wireline or simple intermodal port request within one... p.m. local time for a simple port request to be eligible for activation at midnight on the same...

  6. 47 CFR 52.35 - Porting Intervals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Portability § 52.35 Porting Intervals. (a) All telecommunications carriers required by the Commission to port telephone numbers must complete a simple wireline-to-wireline or simple intermodal port request within one... p.m. local time for a simple port request to be eligible for activation at midnight on the same...

  7. 47 CFR 52.35 - Porting Intervals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Portability § 52.35 Porting Intervals. (a) All telecommunications carriers required by the Commission to port telephone numbers must complete a simple wireline-to-wireline or simple intermodal port request within one... p.m. local time for a simple port request to be eligible for activation at midnight on the same...

  8. 47 CFR 52.35 - Porting Intervals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Portability § 52.35 Porting Intervals. (a) All telecommunications carriers required by the Commission to port telephone numbers must complete a simple wireline-to-wireline or simple intermodal port request within one... p.m. local time for a simple port request to be eligible for activation at midnight on the same...

  9. 9 CFR 97.1 - Overtime work at laboratories, border ports, ocean ports, and airports. 1

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Overtime work at laboratories, border ports, ocean ports, and airports. 1 97.1 Section 97.1 Animals and Animal Products ANIMAL AND PLANT... laboratories, border ports, ocean ports, and airports. 1 1 For designated ports of entry for certain...

  10. 9 CFR 97.1 - Overtime work at laboratories, border ports, ocean ports, and airports. 1

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Overtime work at laboratories, border ports, ocean ports, and airports. 1 97.1 Section 97.1 Animals and Animal Products ANIMAL AND PLANT... laboratories, border ports, ocean ports, and airports. 1 1 For designated ports of entry for certain...

  11. 9 CFR 97.1 - Overtime work at laboratories, border ports, ocean ports, and airports. 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Overtime work at laboratories, border ports, ocean ports, and airports. 1 97.1 Section 97.1 Animals and Animal Products ANIMAL AND PLANT... laboratories, border ports, ocean ports, and airports. 1 1 For designated ports of entry for certain...

  12. 9 CFR 97.1 - Overtime work at laboratories, border ports, ocean ports, and airports. 1

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Overtime work at laboratories, border ports, ocean ports, and airports. 1 97.1 Section 97.1 Animals and Animal Products ANIMAL AND PLANT... laboratories, border ports, ocean ports, and airports. 1 1 For designated ports of entry for certain...

  13. 33 CFR 334.1240 - Sinclair Inlet; naval restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1240 Sinclair Inlet..., longitude 122°37′23″ West on the north shore of Sinclair Inlet; and latitude 47°32′52″ North, longitude 122°36′58″ West, on the south shore of Sinclair Inlet. (2) Area No. 2. That area of Sinclair Inlet to...

  14. Port Granby Project Overview - 13208

    SciTech Connect

    Smith, David W.; Vandergaast, Gary; Sungaila, Mark

    2013-07-01

    The Port Granby Project is an integral part of the Port Hope Area Initiative (PHAI), and is located approximately 14 kilometres west of the Municipality of Port Hope in the adjacent Municipality of Clarington, Ontario. The principal objective of the project is the excavation and relocation of low-level radioactive waste (LLRW) and marginally contaminated soils, which were deposited at the Port Granby Waste Management Facility (PGWMF) by Eldorado Nuclear Limited during the period 1955 to 1988, to a new, highly engineered above-ground Long-term Waste Management Facility (LTWMF) to be constructed on a nearby site. The Environmental Assessment for the Project was approved in 2009 August and the required Waste Nuclear Substance License was received in 2011 November. Once the detailed engineering design was completed, in 2011 March, the Port Granby Project was divided into three major contracts for construction implementation purposes. The first of these contracts was completed in late 2012 and the second is planned to start in early 2013. The contracting process for the third major contract is also expected to be completed during 2013. This paper provides an overview of the Port Granby Project as well as discussion on the status of the Project, including the regulatory approvals process, the approach to contracting the construction works and an update of work recently completed and soon to get underway. (authors)

  15. Online molecular characterization of fine particulate matter in Port Angeles, WA: Evidence for a major impact from residential wood smoke

    NASA Astrophysics Data System (ADS)

    Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Whybrew, Lauren E.; Hadley, Odelle; McNair, Fran; Gao, Honglian; Jaffe, Daniel A.; Thornton, Joel A.

    2016-08-01

    We present on-line molecular composition measurements of wintertime particulate matter (PM) during 2014 using an iodide-adduct high-resolution, time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO). These measurements were part of an intensive effort to characterize PM in the region with a focus on ultrafine particle sources. The technique was used to detect and quantify different classes of wood burning tracers, including levoglucosan, methoxyphenols, and nitrocatechols, among other compounds in near real-time. During the campaign, particulate mass concentrations of compounds with the same molecular composition as levoglucosan ranged from 0.002 to 19 μg/m3 with a median mass concentration of 0.9 μg/m3. Wood burning markers, in general, showed a strong diurnal pattern peaking at night and in the early morning. This diurnal profile combined with cold, stagnant conditions, wind directions from predominantly residential areas, and observations of lower combustion efficiency at night support residential wood burning as a dominant source of wintertime PM in Port Angeles. This finding has implications for improving wintertime air quality in the region by encouraging the use of high efficiency wood-burning stoves or other cleaner home heating options throughout the relevant domain.

  16. PIV Application to Fluid Dynamics of Bass Reflex Ports

    NASA Astrophysics Data System (ADS)

    Rossi, Massimiliano; Esposito, Enrico; Tomasini, Enrico Primo

    A bass reflex (or vented or ported) loudspeaker system (BRS) is a particular type of loudspeaker enclosure that makes use of the combination of two second-order mechanic/acoustic devices, i.e., the driver and a Helmotz resonator, in order to create a new system with reinforced emission in the low frequency region. The resonator is composed by the box itself in which one or more ports are present with suitable shapes and dimensions. This category of loudspeaker presents several advantages compared to closed-box systems such as higher efficiency and power, smaller dimensions and reduced distortion at lower frequencies. Notwithstanding these advantages, they present some drawbacks like more complexity and unloading of the cone below the tuning frequency. Moreover, at high power levels the airflow in the port(s) may generate unwanted noises due to turbulence as well as distortion and acoustic compression. In this work we will present and compare a series of experiments conducted on two different bass reflex ports designs to assess their performance in terms of flow turbulence and sound-level compression at high input power levels. These issues are quite important in professional sound systems, where increasing power levels and sound clarity require exponentially growing cost and weight. For these reasons it is vital to optimize port design. To the knowledge of the authors there does not exist an accurate, nonintrusive experimental full-field study of air flows emitting from reflex ports in operating conditions. In this work, the experimental fluid dynamic investigation has been conducted by means of PIV and LDA techniques.

  17. Flow Control in a Compact Inlet

    NASA Astrophysics Data System (ADS)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  18. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets on a cargo tank used to transport chlorine must meet the requirements of § 178.337-1(c)(2) and...

  19. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets on a cargo tank used to transport chlorine must meet the requirements of § 178.337-1(c)(2) and...

  20. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets on a cargo tank used to transport chlorine must meet the requirements of § 178.337-1(c)(2) and...

  1. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets on a cargo tank used to transport chlorine must meet the requirements of § 178.337-1(c)(2) and...

  2. 49 CFR 178.337-8 - Openings, inlets, and outlets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... used to transport chlorine. The requirements for inlets and outlets on chlorine cargo tanks are in... equalization of pressure. (b) Inlets and discharge outlets on chlorine tanks. The inlet and discharge outlets on a cargo tank used to transport chlorine must meet the requirements of § 178.337-1(c)(2) and...

  3. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Requirements for transit air cargo transport. 122...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.117 Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may...

  4. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Requirements for transit air cargo transport. 122...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.117 Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may...

  5. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Requirements for transit air cargo transport. 122...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.117 Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may...

  6. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Requirements for transit air cargo transport. 122...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.117 Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may...

  7. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Requirements for transit air cargo transport. 122...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.117 Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may...

  8. Contaminant Concentrations in Storm Water Entering the Sinclair/Dyes Inlet Subasin of the Puget Sound, USA, During Storm Event and Baseflow Conditions

    SciTech Connect

    Brandenberger, Jill M.; May, Christopher W.; Cullinan, Valerie I.; Johnston, Robert K.; Leisle, D. E.; Beckwith, B.; Sherrell, Gerald; Mettallo, David; Pingree, Ryan

    2007-03-29

    The Sinclair and Dyes Inlet watershed is located on the west side of Puget Sound in Kitsap County, Washington, U.S.A. (Figure 1). Puget Sound Naval Shipyard (PSNS), U.S Environmental Protection Agency (USEPA), the Washington State Department of Ecology (WA-DOE), Kitsap County, City of Bremerton, City of Bainbridge Island, City of Port Orchard, and the Suquamish Tribe have joined in a cooperative effort to evaluate water-quality conditions the Sinclair-Dyes Inlet watershed and correct identified problems. A major focus of this project, known as Project ENVVEST, is to develop Water Clean-up (TMDL) Plans for constituents listed on the 303(d) list within the Sinclair and Dyes Inlet watershed. Segments within the Sinclair and Dyes Inlet watershed were listed on the State of Washington’s 1998 303(d) due to fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue (WA-DOE 2003). Stormwater loading was identified by ENVVEST as one potential source of sediment contamination, which lacked sufficient data for the contaminant mass balance calculations conducted for the watershed. This paper summarizes the contaminant concentrations in representative streams and outfalls discharging into Sinclair and Dyes Inlets during 18 storm events and wet/dry season baseflow conditions between November 2002 and May 2005. This paper serves as a portion of the report titled, “Surface and Stormwater Quality Assessment for Sinclair and Dyes Inlet, Washington” (Brandenberger et al. 2007).

  9. Influence of inlet conditions on vortex characteristics

    NASA Astrophysics Data System (ADS)

    Essiptchouk, A.

    2011-09-01

    Vortex chambers are normally used for arc stabilization in linear plasma torches. In the present work, the effect of uniformity of the gas inlet channel distribution on the stabilizing characteristics of a swirled flow is studied numerically. The formation of a complex flow pattern with a toroidal recirculating flow area inside the vortex chamber is observed. For some regimes, two local maxima of the tangential velocity are observed in the middle section of the chamber. It is shown that an increment of the number of gas inlet channels leads to a more uniform gas input with disappearance of the second maximum, which increases the velocity amplification coefficient and, correspondingly, results in a better stabilizing effect. The obtained profiles of the radial distribution of the tangential velocity are compared with the results of Oseen's equation for an unconfined vortex.

  10. Reduction in trace particulate matter emissions due to adoption of clean diesel technology at a major port

    NASA Astrophysics Data System (ADS)

    Kuwayama, Toshihiro

    Air pollution emissions from major ports around the world contribute to airborne particulate matter (PM) exposure in surrounding communities. The Port of Oakland is one of three major shipping ports in California that collectively account for 39% of all the goods movement in the United States. The current study is the first to perform relatively complete chemical speciation on the real-world reduction in primary PM emissions from heavy duty trucks at a major shipping Port during the implementation of a retrofit and replacement program. Measurements of fine PM composition at the Port were analyzed using Positive Matrix Factorization (PMF) to identify five dominant PM sources: shipping, port truck traffic, distant on-road traffic, background sea spray, and road dust. Changes to port truck traffic related PM concentration on days with similar meteorological conditions during and after implementation of the controls programs were used as a direct indication of emissions reductions. Primary PM mass emissions from port trucks decreased by 75% due to the control program which meets the target inherent in the Emissions Reduction Plan for Ports and Goods Movement in California. Contributions of PM components attributed to Port truck activities decreased by amounts ranging from 66-86% (elemental carbon (EC) = 66%, organic carbon (OC) = 78%, Na = 82%, Ba = 84%, Fe = 87%). These reductions include contributions from both tailpipe emissions and brake/tire wear. Prior to implementation of the control program, port trucks accounted for approximately 56% of the ambient EC concentrations in the vicinity of the Port while ships accounted for approximately 12% of the EC concentrations. After implementation of the control program, port trucks and ships accounted for approximately 23% and 29% of the ambient EC concentrations at the Port, respectively. This estimate does not account for rail emissions that were downwind of the sampling site. The current study provides an example of how

  11. Large Eddy Simulation of Supersonic Inlet Flows

    DTIC Science & Technology

    1998-04-01

    SIMULATION OF SUPERSONIC INLET FLOWS 6. AUTHOR(S) PROF. PARVIZ MOIN PROF. SANJIVA K. LELE 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) STANFORD... Parviz Moin and Sanjiva K. Lele Stanford University Mechanical Engineering, Flow Physics & Computation Division Stanford, CA 94305-3030 Prepared...monitor. I am thankful to Professor Sanjiva Lele and Profes- sor Parviz Moin, and Keith Lucas for useful discussions! I am grateful to Professor Peter

  12. Gasdynamic Inlet Isolation in Rotating Detonation Engine

    DTIC Science & Technology

    2010-12-01

    ISOLATION IN ROTATING DETONATION ENGINE by Wei Han Eugene Lim December 2010 Thesis Co-Advisors: Jose O. Sinibaldi Christopher M. Brophy...COVERED Master’s Thesis 4. TITLE AND SUBTITLE Gasdynamic Inlet Isolation in Rotating Detonation Engine 6. AUTHOR(S) Wei Han Eugene Lim 5. FUNDING...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The Rotating Detonation Engine (RDE) concept represents the next-generation of detonation -based

  13. Investigation of "6X" Scramjet Inlet Configurations

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2012-01-01

    This work represents an initial attempt to determine what, if any, issues arise from scaling demonstration supersonic combustion scramjets to a flight scale making the engine a viable candidate for both military weapon and civilian access to space applications. The original vehicle sizes tested and flown to date, were designed to prove a concept. With the proven designs, use of the technology for applications as weapon systems or space flight are only possible at six to ten times the original scale. To determine effects of scaling, computations were performed with hypersonic inlets designed to operate a nominal Mach 4 and Mach 5 conditions that are possible within the eight foot high temperature tunnel at NASA Langley Research Center. The total pressure recovery for these inlets is about 70%, while maintaining self start conditions, and providing operable inflow to combustors. Based on this study, the primary scaling effect detected is the strength of a vortex created along the cowl edge causing adverse boundary layer growth in the inlet.

  14. 7. View north at back (canal side) of culvert inlet, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View north at back (canal side) of culvert inlet, with canal bank completely removed. Background to foreground: back of inlet headwall with tops of high inlet barrels exposed; vertical transition wall between high inlet barrels and low, interior, inlet barrels; tops of low interior barrels; vertical heartening planks and low cutoff wall at site of former canal edge of canal bank; dewatered canal bed and plank sheathing on top of culvert barrels beneath canal bed. - Delaware & Raritan Canal, Ten Mile Run Culvert, 1.5 miles South of Blackwells Road, East Millstone, Somerset County, NJ

  15. Port Risk Assessment Port of Ponce, Guayanilla, Yabucoa, and Las Mareas, Puerto Rico, After Action Report

    DTIC Science & Technology

    2000-02-10

    Port Assessment Ponce, Guayanilla, Yabucoa, and Las Mareas Port of Ponce, Guayanilla, Yabucoa, and Las Mareas , Puerto Rico, After Action Report...Introduction. A Port Risk Assessment was conducted for the port of Ponce, Guayanilla, Yabucoa, and Las Mareas , Puerto Rico (South Central...3. DATES COVERED 00-00-2000 to 00-00-2000 4. TITLE AND SUBTITLE Port Risk Assessment Port of Ponce, Guayanilla, Yabucoa, and Las Mareas

  16. Corrective Action Investigation Plan for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Air port Strainer Box, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    1999-06-10

    This Corrective Action Investigation Plan contains the US Department of Energy, Nevada Operation Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 230/320 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 230 consists of Corrective Action Site (CAS) 22-03-01, Sewage Lagoon; while CAU 320 consists of CAS 22-99-01, Strainer Box. These CAUs are referred to as CAU 230/320 or the Sewage Lagoons Site. The Sewage Lagoons Site also includes an Imhoff tank, sludge bed, and associated buried sewer piping. Located in Area 22, the site was used between 1951 to 1958 for disposal of sanitary sewage effluent from the historic Camp Desert Rock Facility at the Nevada Test Site in Nevada. Based on site history, the contaminants of potential concern include volatile organic compounds (VOCs), semivolatile organic compounds, total petroleum hydrocarbons (TPH), and radionuclides. Vertical migration is estimated to be less than 12 feet below ground surface, and lateral migration is limited to the soil immediately adjacent to or within areas of concern. The proposed investigation will involve a combination of field screening for VOCs and TPH using the direct-push method and excavation using a backhoe to gather soil samples for analysis. Gamma spectroscopy will also be conducted for waste management purposes. Sampling locations will be biased to suspected worst-case areas including the nearby sludge bed, sewage lagoon inlet(s) and outlet(s), disturbed soil surrounding the lagoons, surface drainage channel south of the lagoons, and the area near the Imhoff tank. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  17. Entrainment by turbulent jets issuing from sharp-edged inlet round nozzles

    NASA Astrophysics Data System (ADS)

    Trabold, T. A.; Essen, E. B.; Obot, N. T.

    Experiments were carried out to determine entrainment rates by turbulent air jets generated with square-edged inlet round nozzles. A parametric study was made which included the effects of Reynolds number, nozzle length, partial confinement and geometry of the jet plenum chamber. Measurements were made for the region extending from the nozzle exit to 24 jet hole diameters downstream. There is a large difference in entrainment rate between jets generated with relatively short nozzles and those discharged through long tubes.

  18. Variable geometry for supersonic mixed-compression inlets

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E.; Latham, E. A.; Smeltzer, D. B.

    1974-01-01

    Study of two-dimensional and axisymmetric supersonic mixed-compression inlet systems has shown that the geometry of both systems can be varied to provide adequate transonic airflow to satisfy the airflow demand of most jet engines. Collapsing geometry systems for both types of inlet systems provide a generous amount of transonic airflow for any design Mach number inlet system. However, the mechanical practicality of collapsing centerbodies for axisymmetric inlet systems is doubtful. Therefore, translating centerbody axisymmetric inlets with auxiliary airflow systems to augment the transonic airflow capability are an attractive alternative. Estimates show that the capture mass-flow ratio at Mach number 1.0 can be increased approximately 0.20 for a very short axisymmetric inlet system designed for Mach number 2.37. With this increase in mass-flow ratio, even variable-cycle engine transonic airflow demand can be matched without oversizing the inlet at the design Mach number.

  19. Reducing Vulnerability of Ports and Harbors to Earthquake and Tsunami Hazards

    USGS Publications Warehouse

    Wood, Nathan J.; Good, James W.; Goodwin, Robert F.

    2002-01-01

    Recent scientific research suggests the Pacific Northwest could experience catastrophic earthquakes in the near future, both from distant and local sources, posing a significant threat to coastal communities. Damage could result from numerous earthquake-related hazards, such as severe ground shaking, soil liquefaction, landslides, land subsidence/uplift, and tsunami inundation. Because of their geographic location, ports and harbors are especially vulnerable to these hazards. Ports and harbors, however, are important components of many coastal communities, supporting numerous activities critical to the local and regional economy and possibly serving as vital post-event, response-recovery transportation links. A collaborative, multi-year initiative is underway to increase the resiliency of Pacific Northwest ports and harbors to earthquake and tsunami hazards, involving Oregon Sea Grant (OSG), Washington Sea Grant (WSG), the National Oceanic and Atmospheric Administration Coastal Services Center (CSC), and the U.S. Geological Survey Center for Science Policy (CSP). Specific products of this research, planning, and outreach initiative include a regional stakeholder issues and needs assessment, a community-based mitigation planning process, a Geographic Information System (GIS) — based vulnerability assessment methodology, an educational web-site and a regional data archive. This paper summarizes these efforts, including results of two pilot port-harbor community projects, one in Yaquina Bay, Oregon and the other in Sinclair Inlet, Washington. Finally, plans are outlined for outreach to other port and harbor communities in the Pacific Northwest and beyond, using "getting started" workshops and a web-based tutorial.

  20. Noise radiation directivity from a wind-tunnel inlet with inlet vanes and duct wall linings

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Phillips, J. D.

    1986-01-01

    The acoustic radiation patterns from a 1/15th scale model of the Ames 80- by 120-Ft Wind Tunnel test section and inlet have been measured with a noise source installed in the test section. Data were acquired without airflow in the duct. Sound-absorbent inlet vanes oriented parallel to each other, or splayed with a variable incidence relative to the duct long axis, were evaluated along with duct wall linings. Results show that splayed vans tend to spread the sound to greater angles than those measured with the open inlet. Parallel vanes narrowed the high-frequency radiation pattern. Duct wall linings had a strong effect on acoustic directivity by attenuating wall reflections. Vane insertion loss was measured. Directivity results are compared with existing data from square ducts. Two prediction methods for duct radiation directivity are described: one is an empirical method based on the test data, and the other is a analytical method based on ray acoustics.

  1. Interface Circuit For Printer Port

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Yadlowsky, Ann B.

    1991-01-01

    Electronic circuit, called printer-port interface circuit (PPI) developed to overcome certain disadvantages of previous methods for connecting IBM PC or PC-compatible computer to other equipment. Has both reading and writing modes of operation. Very simple, requiring only six integrated circuits. Provides for moderately fast rates of transfer of data and uses existing unmodified circuit card in IBM PC. When used with appropriate software, circuit converts printer port on IBM PC, XT, AT, or compatible personal computer to general purpose, 8-bit-data, 16-bit address bus that connects to multitude of devices.

  2. Agile Port and High Speed Ship Technologies, Vol 1: FY05 Projects 3-6 and 8-10

    DTIC Science & Technology

    2008-07-02

    elevated, but also the application of numerous optical-pattern-recognition cameras along the length of the system. Mitigation Plans Are...Technologies Page 15 Newspaper articles: ”LA-area Ports to Study Magnetic Levitation Cargo Train” Compton Bulletin, The (CA) - December 6, 2006...with the flow around the hull and would be expected to have a relatively low drag impact, the flush type waterjet inlet would be the logical waterjet

  3. Characterisation and airborne deployment of a new counterflow virtual impactor inlet

    NASA Astrophysics Data System (ADS)

    Shingler, T.; Dey, S.; Sorooshian, A.; Brechtel, F. J.; Wang, Z.; Metcalf, A.; Coggon, M.; Mülmenstädt, J.; Russell, L. M.; Jonsson, H. H.; Seinfeld, J. H.

    2012-06-01

    A new counterflow virtual impactor (CVI) inlet is introduced with details of its design, laboratory characterisation tests and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i) negligible organic contamination; (ii) a significant sample flow rate to downstream instruments (∼15 l min-1) that reduces the need for dilution; and (iii) a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterised the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7-13.1 μm. The mean percentage error between cut size measurements and predictions from aerodynamic drag theory is 1.7%. The CVI was deployed on the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California in July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream of the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter.

  4. Characterization and airborne deployment of a new counterflow virtual impactor inlet

    NASA Astrophysics Data System (ADS)

    Shingler, T.; Dey, S.; Sorooshian, A.; Brechtel, F. J.; Wang, Z.; Metcalf, A.; Coggon, M.; Mülmenstädt, J.; Russell, L. M.; Jonsson, H. H.; Seinfeld, J. H.

    2012-02-01

    A new counterflow virtual impactor (CVI) inlet is introduced with details of its design, laboratory characterization tests, and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i) negligible organic contamination; (ii) a significant sample flow rate to downstream instruments (~15 l min-1) that reduces the need for dilution; and (iii) a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterized the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7-13.1 μm. The percentage error between cut size measurements and predictions from aerodynamic drag theory are less than 13%. The CVI was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California between July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter.

  5. The VisPort Project: Visualization of Port Logistics

    ERIC Educational Resources Information Center

    Katsioloudis, Petros J.; Watson, Ginger

    2011-01-01

    There is concern about the diminishing availability of skilled personnel that can operate in the wide variety of disciplines associated with port operations. Increasing cargo volume, combined with a shrinking workforce, could potentially create alarming situations in the future, hence the motivation to publicize to current students the breadth and…

  6. Mach 4 Performance of a Fixed-Geometry Hypersonic Inlet with Rectangular-to-Elliptical Shape Transition

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Trexler, Carl A.

    2003-01-01

    Wind-tunnel testing of a hypersonic inlet with rectangular-to-elliptical shape transition has been conducted at Mach 4.0. These tests were performed to investigate the starting and back-pressure limits of this fixed-geometry inlet at conditions well below the Mach 5.7 design point. Results showed that the inlet required side spillage holes in order to self-start at Mach 4.0. Once started, the inlet generated a compression ratio of 12.6, captured almost 80% of available air and withstood a back-pressure ratio of 30.3 relative to tunnel static pressure. The spillage penalty for self-starting was estimated to be 4% of available air. These experimental results, along with previous experimental results at Mach 6.2 indicate that fixed-geometry inlets with rectangular-to-elliptical shape transition are a viable configuration for airframe-integrated scramjets that operate over a significant Mach number range. Nomenclature

  7. Coastal response to the Port Sheldon jetties at Pigeon Lake, Michigan. Final report

    SciTech Connect

    Hansen, M.; Underwood, S.G.

    1991-07-01

    The Consumers Powers Corp. constructed two jetties at Port Shelton, Michigan to maintain an open waterway into Pigeon Lake. These jetties are located at the entrance of Pigeon Lake in Port Shelton township, on the eastern shore of Lake Michigan. Originally, water was drawn from Lake Michigan via Pigeon Lake Inlet to cool a fossil fuel power plant. The inlet into Pigeon Lake was deepened and widened throughout the early history of the power plant. Adjacent shorelines have been modified directly by Consumers Power Corp. and indirectly by the natural littoral response to the jetties. This study sought to determine the impact, if any, of these jetties at the entrance to Pigeon Lake on adjacent shorelines and nearshore zones. Analysis of historical shoreline position and bathymetry data in the vicinity of Port Sheldon indicates approximately 810,600 cu yd of material has been trapped by the jetties since construction in 1964. At present, it appears that the fillet areas adjacent to the jetties have volumetrically stabilized and that natural and bypassing may be occurring around the lakeward tips of the jetties. Results of this study identified a zone of slightly higher erosion 3,000 to 9,000 ft south of the jetties that may be related to jetty construction.

  8. Investigation of REST-Class Hypersonic Inlet Designs

    NASA Technical Reports Server (NTRS)

    Gollan, Rowan; Ferlemann, Paul G.

    2011-01-01

    Rectangular-to-elliptical shape-transition (REST) inlets are of interest for use on scramjet engines because they are efficient and integrate well with the forebody of a planar vehicle. The classic design technique by Smart for these inlets produces an efficient inlet but the complex three-dimensional viscous effects are only approximately included. Certain undesirable viscous features often occur in these inlets. In the present work, a design toolset has been developed which allows for rapid design of REST-class inlet geometries and the subsequent Navier-Stokes analysis of the inlet performance. This gives the designer feedback on the complex viscous effects at each design iteration. This new tool is applied to design an inlet for on-design operation at Mach 8. The tool allows for rapid investigation of design features that was previously not possible. The outcome is that the inlet shape can be modified to affect aspects of the flow field in a positive way. In one particular example, the boundary layer build-up on the bodyside of the inlet was reduced by 20% of the thickness associated with the classically designed inlet shape.

  9. Flat Versus Hemispherical Dome Ports in Underwater Photogrammetry

    NASA Astrophysics Data System (ADS)

    Menna, F.; Nocerino, E.; Remondino, F.

    2017-02-01

    Underwater photogrammetry, like its counterpart in 'air', has gained an increasing diffusion thanks to the availability of easy-to-use, fast and often quite inexpensive software applications. Moreover, underwater equipment that allows the use of digital cameras normally designed to work in air also in water are largely available. However, for assuring accurate and reliable 3D modelling results a profound knowledge of the employed devices as well as physical and geometric principle is even more crucial than in air. This study aims to take a step forward in understanding the effect of underwater ports in front of the photographic lens. In particular, the effect of dome or flat ports on image quality in 3D modelling applications is investigated. Experiments conducted in a semi submerged indust rial structure show that the tested flat port performs worse than the dome, providing higher image residuals and lower precision and accuracy in object space. A significant different quality per colour channel is also observed and its influence on achievable processing results is discussed.

  10. Draft Environmental Justice Primer for Ports

    EPA Pesticide Factsheets

    This document is intended to help port decision-makers better understand the needs of near-port communities and how they can help address these needs and build productive community relationships during planning activities and operations.

  11. 46 CFR 171.116 - Port lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Port lights. 171.116 Section 171.116 Shipping COAST... Port lights. (a) A vessel may have port lights below the bulkhead deck if— (1) It is greater than 150 gross tons; and (2) It is in ocean service. (b) All port lights in a space must be non-opening if...

  12. 46 CFR 171.116 - Port lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Port lights. 171.116 Section 171.116 Shipping COAST... Port lights. (a) A vessel may have port lights below the bulkhead deck if— (1) It is greater than 150 gross tons; and (2) It is in ocean service. (b) All port lights in a space must be non-opening if...

  13. Offshore Deepwater Liquified Natural Gas (LNG) Ports ...

    EPA Pesticide Factsheets

    2017-04-10

    EPA received three National Pollution Discharge Elimination System (NPDES) permit applications for wastewater discharges related to the construction and operation of deepwater LNG ports in state and federal waters of Massachusetts Bay. One was for construction-related discharges associated with the Northeast Gateway LNG deepwater port, one was for operations-related discharges associated with the Northeast Gateway LNG deepwater port, and the other was for both construction-related and operations-related discharges for the Neptune LNG deepwater port.

  14. Gulf Coast. Ports for Naval Defense

    DTIC Science & Technology

    1993-09-01

    information on these facilities. FUTURE DEVELOPMENT The Port Authority of the Port of Port Arthur recently purchased 33 acres of cleared waterfront land...Commander S1I79th Army Deployment Control Unit Fort Hamilton USARC Brooklyn , NY 11252-7445 (1) Commander 1182d Transportation Terminal Unit USAR...2011A 200 Stovall Street Alexandria, VA 22332-2300 (1) Commanding Officer Navy Cargo Handling and Port Group Williamsburg , VA 23185 (1) Commanding

  15. Cruise Ship Port Planning Factors

    DTIC Science & Technology

    2001-01-01

    The cruise ship industry started off like a healthy plant in a small pot. When it was small, it struggled, survived and flourished in the small pot... cruise ship port planning issues, and demonstrates that the market demand will continue to increase in the future. This increase in demand will be driven

  16. Multi-port dump combustor

    SciTech Connect

    Dale, L. A.; Grenleski Jr., S. E.; Keirsey, J. L.; Stevens, C. E.

    1985-09-10

    A four-ported dump combustor is designed for use with a ramjet engine and provides high combustion efficiency and pressure recovery for length-to-diameter (L/D) ratios of between 1.3 and 4.4, over a range of operating conditions.

  17. Computational study of inlet injection for a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine

    NASA Technical Reports Server (NTRS)

    Gonzalez, D. E.

    1995-01-01

    A computational simulation of reacting 2-D and 3-D flowfields in a model inlet section of a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine concept was performed. LARCK, a multi-dimensional Navier-Stokes code with finite-rate kinetics chemistry developed at NASA LaRC by J.A. White, was adapted for this simulation. The flow conditions in the simulation match those envisioned for the PM/SIC engine experiments currently planned at LaRC. The reacting flowfields were Mach 6.3 freestream air and Mach 2 hydrogen at various pressure and temperature conditions injected through a slot injector at the base of the inlet section. In the PM/SIC engine, fuel is injected at the inlet section upstream of the combustor, and reaction is initiated by the shock wave at the inlet which increases the gas temperature and pressure beyond the kinetic limits for reaction. Many challenges exist prior to establishing shock-controlled combustion as a practical engine concept. These challenges include fuel injection schemes that can provide proper fuel-air mixing without creating large losses in the inlet section, and control of the combustion process so that early ignition or combustion propagation through the inlet boundary layer does not occur. For this project, a parametrics study was carried out to model the fuel injection of hydrogen at different flow conditions. It was found that, as the fuel temperature and pressure were increased, the potential for pre-ignition was high at a short distance downstream of the slot injector. The next stage of this work will investigate injection techniques for enhancing mixing of fuel and air in a manner that prevents or reduces the potential for premature ignition observed numerically.

  18. Geomorphic Analysis of Mattituck Inlet and Goldsmith Inlet, Long Island, New York

    DTIC Science & Technology

    2005-07-01

    Militello et al. (2000). c. Site-specific inlet studies: Gofseyeff (1952), Czerniak (1977), Schmeltz et al. (1982), Militello and Kraus (2001), Kraus et al...New York, 11952-9500. Czerniak , M. T. (1977). "Ilet interaction and stability theory verification," Proceedings Coastal Sediments 󈨑, ASCE, 754-773

  19. Localization and imaging of gangliosides in mouse brain tissue sections by laserspray ionization inlet[S

    PubMed Central

    Richards, Alicia L.; Lietz, Christopher B.; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2012-01-01

    A new ionization method for the analysis of fragile gangliosides without undesired fragmentation or salt adduction is presented. In laserspray ionization inlet (LSII), the matrix/analyte sample is ablated at atmospheric pressure, and ionization takes place in the ion transfer capillary of the mass spectrometer inlet by a process that is independent of a laser wavelength or voltage. The softness of LSII allows the identification of gangliosides up to GQ1 with negligible sialic acid loss. This is of importance to the field of MS imaging, as undesired fragmentation has made it difficult to accurately map the spatial distribution of fragile ganglioside lipids in tissue. Proof-of-principle structural characterization of endogenous gangliosides using MSn fragmentation of multiply charged negative ions on a LTQ Velos and subsequent imaging of the GD1 ganglioside is demonstrated. This is the first report of multiply charged negative ions using inlet ionization. We find that GD1 is detected at higher levels in the mouse cortex and hippocampus compared with the thalamus. In LSII with the laser aligned in transmission geometry relative to the inlet, images were obtained in approximately 60 min using an inexpensive nitrogen laser. PMID:22262808

  20. Influence of Inlet / Shoal Complex on Adjacent Shorelines via Inlet Sink Method

    DTIC Science & Technology

    2012-07-01

    placing dredged material onto adjacent beaches in moderate quantities (~200-500K cu yd) since the 1970 ’s (Dredging Information System (DIS...southward to Matanzas Inlet. Analysis of the ebb shoal volume change between surveys was made within a GIS framework using an area mask (Fig. 6

  1. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses.

    PubMed

    Feyereisen, Gary W; Francesconi, Wendy; Smith, Douglas R; Papiernik, Sharon K; Krueger, Erik S; Wente, Christopher D

    2015-03-01

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentrations and loads when open surface inlets were replaced with blind (in gravel capped with 30 cm of soil) or gravel (in very coarse sand/fine gravel) inlets. In Indiana, a pair of closed depressions in adjacent fields was fitted with open inlet tile risers and blind inlets in 2005 and monitored for flow and water chemistry. Paired comparisons on a storm event basis during the growing season for years 2006 to 2013 showed that TSS loads were 40.4 and 14.4 kg ha event for tile risers and blind inlets, respectively. Total P (TP) and soluble reactive P (SRP) loads were 66 and 50% less for the blind inlets, respectively. In Minnesota, TSS and SRP concentrations were monitored for 3 yr before and after modification of 24 open inlets to gravel inlets in an unreplicated large-field on-farm study. Median TSS concentrations were 97 and 8.3 mg L and median SRP concentrations were 0.099 and 0.064 mg L for the open inlet and gravel inlet periods, respectively. Median TSS and SRP concentrations were elevated for snowmelt vs. non-snowmelt seasons for open and gravel inlets. Both replacement designs reduced suspended sediment and P concentrations and loads. The Indiana study suggests blind inlets will be effective beyond a 10-yr service life.

  2. Surface Water Quality Survey of Northern Indian River Lagoon from Sebastian Inlet to Mosquito Lagoon

    NASA Astrophysics Data System (ADS)

    Weaver, R. J.; Webb, B. M.

    2012-12-01

    Following news of an emerging brown tide algal bloom in the northern Indian River Lagoon (IRL), researchers sought to gain insight into the surface water quality in the IRL, as well as the extent of the algae coverage. A Portable SeaKeeper from YSI, mounted to a personal watercraft-based coastal profiling system, autonomously collected and analyzed the surface water. The system operates by recording sample data every 12 seconds while continuously underway at speeds up to and greater than 50 km/hr. The researchers covered a transect that started at Sebastian Inlet and followed a zig-zag path extending up through the Haulover Canal and into the Mosquito Lagoon. The survey path covered 166.7 km, and collected 2248 samples. Along the way stops were made at water quality stations used by the Saint John's River Water Management District, so that the data collected can be incorporated into ongoing monitoring efforts. The system analyzed the surface water for dissolved oxygen, pH, chlorophyll-a, salinity, temperature, turbidity, refined fuels, and CDOM. In the two days following the lagoon survey, the inlets at Port Canaveral and Sebastian were also surveyed for tidal currents and hydrography. The IRL transect survey data recorded evidence of the southern extent of the algae bloom in both chlorophyll-a and pH levels. Visual evidence of the bloom was striking as the water in the northern IRL turned a milk chocolaty brown color. Chlorophyll-a levels in the two inlets suggested bloom activity at these locations; however this bloom was different. This oceanic bloom was a result of a persistent upwelling event along the East Florida shelf, and the color was a paler green-yellow. The near-synoptic nature of the comprehensive lagoon survey, conducted in just over 7 hours, allows researchers to obtain a better understanding of water quality in coastal lagoons. Elevated levels of salinity, temperature, and refined fuels in the northern IRL indicate a low exchange rate and absence

  3. Method of making a small inlet optical panel

    DOEpatents

    Veligdan, James T.; Slobodin, David E.

    2004-02-03

    An optical panel having a small inlet, and a method of making a small inlet optical panel, are disclosed, which optical panel includes a individually coating, stacking, and cutting a first plurality of stacked optical waveguides to form an outlet face body with an outlet face, individually coating, stacking, and cutting a second plurality of stacked optical waveguides to form an inlet face body with an inlet face, and connecting an optical coupling element to the first plurality and second plurality of stacked optical waveguides, wherein the optical coupling element redirects light along a parallel axis of the inlet face to a parallel axis of the outlet face. In the preferred embodiment of the present invention, the inlet face is disposed obliquely with and askew from the outlet face.

  4. Zonal analysis of two high-speed inlets

    NASA Technical Reports Server (NTRS)

    Dilley, A. D.; Switzer, G. F.; Eppard, W. M.

    1991-01-01

    Using a zonal technique, thin layer Navier-Stokes solutions for two high speed inlet geometries are presented and compared with experimental data. The first configuration consists of a 3-D inlet preceded by a sharp flat plate. Results with two different grids demonstrate the importance of adequate grid refinement in high speed internal flow computations. The fine grid solution has reasonably good agreement with experimental heat transfer and pressure values inside the inlet. The other configuration consists of a 3-D inlet mounted on a research hypersonic forebody. Numerical results for this configuration have good agreement with experimental pressure data along the forebody, but not inside the inlet. A more refined grid calculation is currently being done to better predict the flowfield in the inlet.

  5. Boundary-layer-ingesting inlet flow control system

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)

    2010-01-01

    A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.

  6. 50 CFR 24.12 - Designated ports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) The U.S. Department of Agriculture ports at Hilo, Hawaii, and Chicago, Illinois, are designated ports... CFR part 17 or 23. (c) The U.S. Department of Agriculture ports at Atlanta, Georgia; Chicago, Illinois... Chicago, Illinois Baton Rouge, Louisiana New Orleans, Louisiana Bangor, Maine Portland, Maine...

  7. 22 CFR 120.24 - Port Directors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Port Directors. 120.24 Section 120.24 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.24 Port Directors. Port Directors of U.S. Customs and Border Protection means the U.S. Customs and...

  8. 22 CFR 120.24 - Port Directors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Port Directors. 120.24 Section 120.24 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.24 Port Directors. Port Directors of U.S. Customs and Border Protection means the U.S. Customs and...

  9. 22 CFR 120.24 - Port Directors.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Port Directors. 120.24 Section 120.24 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.24 Port Directors. Port Directors of U.S. Customs and Border Protection means the U.S. Customs and...

  10. 22 CFR 120.24 - Port Directors.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Port Directors. 120.24 Section 120.24 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.24 Port Directors. Port Directors of U.S. Customs and Border Protection means the U.S. Customs and...

  11. 22 CFR 120.24 - Port Directors.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Port Directors. 120.24 Section 120.24 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.24 Port Directors. Port Directors of U.S. Customs and Border Protection means the U.S. Customs and...

  12. NASCRIN - NUMERICAL ANALYSIS OF SCRAMJET INLET

    NASA Technical Reports Server (NTRS)

    Kumar, A.

    1994-01-01

    The NASCRIN program was developed for analyzing two-dimensional flow fields in supersonic combustion ramjet (scramjet) inlets. NASCRIN solves the two-dimensional Euler or Navier-Stokes equations in conservative form by an unsplit, explicit, two-step finite-difference method. A more recent explicit-implicit, two-step scheme has also been incorporated in the code for viscous flow analysis. An algebraic, two-layer eddy-viscosity model is used for the turbulent flow calculations. NASCRIN can analyze both inviscid and viscous flows with no struts, one strut, or multiple struts embedded in the flow field. NASCRIN can be used in a quasi-three-dimensional sense for some scramjet inlets under certain simplifying assumptions. Although developed for supersonic internal flow, NASCRIN may be adapted to a variety of other flow problems. In particular, it should be readily adaptable to subsonic inflow with supersonic outflow, supersonic inflow with subsonic outflow, or fully subsonic flow. The NASCRIN program is available for batch execution on the CDC CYBER 203. The vectorized FORTRAN version was developed in 1983. NASCRIN has a central memory requirement of approximately 300K words for a grid size of about 3,000 points.

  13. Single port laparoscopic mesh rectopexy

    PubMed Central

    2016-01-01

    Introduction Traditionally, laparoscopic mesh rectopexy is performed with four ports, in an attempt to improve cosmetic results. Following laparoscopic mesh rectopexy there is a new operative technique called single-port laparoscopic mesh rectopexy. Aim To evaluate the single-port laparoscopic mesh rectopexy technique in control of rectal prolapse and the cosmesis and body image issues of this technique. Material and methods The study was conducted in El Fayoum University Hospital between July 2013 and November 2014 in elective surgery for symptomatic rectal prolapse with single-port laparoscopic mesh rectopexy on 10 patients. Results The study included 10 patients: 3 (30%) males and 7 (70%) females. Their ages ranged between 19 years and 60 years (mean: 40.3 ±6 years), and they all underwent laparoscopic mesh rectopexy. There were no conversions to open technique, nor injuries to the rectum or bowel, and there were no mortalities. Mean operative time was 120 min (range: 90–150 min), and mean hospital stay was 2 days (range: 1–3 days). Preoperatively, incontinence was seen in 5 (50%) patients and constipation in 4 (40%). Postoperatively, improvement in these symptoms was seen in 3 (60%) patients for incontinence and in 3 (75%) for constipation. Follow-up was done for 6 months and no recurrence was found with better cosmetic appearance for all patients. Conclusions Single-port laparoscopic mesh rectopexy is a safe procedure with good results as regards operative time, improvement in bowel function, morbidity, cost, and recurrence, and with better cosmetic appearance. PMID:27350840

  14. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  15. Breathing zone air sampler

    SciTech Connect

    Tobin, J.

    1989-08-22

    A sampling apparatus is presented which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  16. Investigation on inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Wang, Yingjun; Lao, Dazhong; Tong, Ding; Wei, Longyu; Liu, Yixiong

    2016-08-01

    The inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet structures were studied in numerical method, mainly focused on three issues including the amounts and differences of the inlet recirculation in different working conditions, the circumferential non-uniform distributions of the inlet recirculation, the recirculation velocity distributions of the upstream slot of the rear impeller. The results show that there are some differences between the recirculation of the front impeller and that of the rear impeller in whole working conditions. In design speed, the recirculation flow rate of the rear impeller is larger than that of the front impeller in the large flow range, but in the small flow range, the recirculation flow rate of the rear impeller is smaller than that of the front impeller. In different working conditions, the recirculation velocity distributions of the front and rear impeller are non-uniform along the circumferential direction and their non-uniform extents are quite different. The circumferential non-uniform extent of the recirculation velocity varies with the working conditions change. The circumferential non-uniform extent of the recirculation velocity of front impeller and its distribution are determined by the static pressure distribution of the front impeller, but that of the rear impeller is decided by the coupling effects of the inlet flow distortion of the rear impeller, the circumferential unsymmetrical distribution of the upstream slot and the asymmetric structure of the volute. In the design flow and small flow conditions, the recirculation velocities at different circumferential positions of the mean line of the upstream slot cross-section of the rear impeller are quite different, and the recirculation velocities distribution forms at both sides of the mean line are different. The recirculation velocity distributions in the cross-section of the upstream slot depend on the static pressure

  17. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida.

    PubMed

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-06-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled - the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program.

  18. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida

    PubMed Central

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-01-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled – the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program. PMID:25740409

  19. Inlet Development for a Rocket Based Combined Cycle, Single Stage to Orbit Vehicle Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.

    1999-01-01

    Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.

  20. Experimental and numerical analyses of finned cross flow heat exchangers efficiency under non-uniform gas inlet flow conditions

    NASA Astrophysics Data System (ADS)

    Bury, Tomasz; Składzień, Jan; Widziewicz, Katarzyna

    2010-10-01

    The work deals with experimental and numerical thermodynamic analyses of cross-flow finned tube heat exchangers of the gas-liquid type. The aim of the work is to determine an impact of the gas non-uniform inlet on the heat exchangers performance. The measurements have been carried out on a special testing rig and own numerical code has been used for numerical simulations. Analysis of the experimental and numerical results has shown that the range of the non-uniform air inlet to the considered heat exchangers may be significant and it can significantly affect the heat exchanger efficiency.

  1. Survey of inlet noise reduction concepts for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Lansing, D. L.; Chestnutt, D.

    1976-01-01

    An overview is given of advanced concepts for the suppression of noise in the inlets of gas turbine engines. Inlet geometric and operating parameters are presented and design criteria for suppression methods are discussed. Noise suppression concepts are described, the directions of current research are reviewed. Problem areas requiring further work are indicated. Well established approaches to inlet noise reduction - namely, acoustic liners and high subsonic Mach number inlets which are the focus of considerable current research activity are considered along with the acoustic absorption and watet vapor injection.

  2. SUPIN: A Computational Tool for Supersonic Inlet Design

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2016-01-01

    A computational tool named SUPIN is being developed to design and analyze the aerodynamic performance of supersonic inlets. The inlet types available include the axisymmetric pitot, three-dimensional pitot, axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flow-field is divided into parts to provide a framework for the geometry and aerodynamic modeling. Each part of the inlet is defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick design and analysis. SUPIN provides inlet geometry in the form of coordinates, surface angles, and cross-sectional areas. SUPIN can generate inlet surface grids and three-dimensional, structured volume grids for use with higher-fidelity computational fluid dynamics (CFD) analysis. Capabilities highlighted in this paper include the design and analysis of streamline-traced external-compression inlets, modeling of porous bleed, and the design and analysis of mixed-compression inlets. CFD analyses are used to verify the SUPIN results.

  3. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  4. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug

    2003-01-01

    A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.

  5. Basic research in fan source noise: Inlet distortion and turbulence noise

    NASA Technical Reports Server (NTRS)

    Kantola, R. A.; Warren, R. E.

    1978-01-01

    A widely recognized problem in jet engine fan noise is the discrepancy between inflight and static tests. This discrepancy consists of blade passing frequency tones, caused by ingested turbulence that appear in the static tests but not in flight. To reduce the ingested distortions and turbulence in an anechoic chamber, a reverse cone inlet is used to guide the air into the fan. This inlet also has provisions for boundary layer suction and is used in conjunction with a turbulence control structure (TCS) to condition the air impinging on the fan. The program was very successful in reducing the ingested turbulence, to the point where reductions in the acoustic power at blade passing frequency are as high as 18 db for subsonic tip speeds. Even with this large subsonic tone suppression, the supersonic tip speed tonal content remains largely unchanged, indicating that the TCS did not appreciably attenuate the noise but effects the generation via turbulence reduction. Turbulence mapping of the inlet confirmed that the tone reductions are due to a reduction in turbulence, as the low frequency power spectra of the streamwise and transverse turbulence were reduced by up to ten times and 100 times, respectively.

  6. Inlet and airframe compatibility for a V/STOL fighter/attack aircraft with top-mounted inlets

    NASA Technical Reports Server (NTRS)

    Durston, D. A.; Smeltzer, D. B.

    1982-01-01

    Aerodynamic force and inlet-pressure data were obtained for 9.5% force and pressure models of a V/STOL fighter/attack aircraft configuration with top-mounted twin inlets. Data are presented from wind tunnel tests conducted at Mach numbers of 0.6, 0.9, and 1.2 at angles of attack up to 27-deg and angles of sideslip up to 12-deg. Trimmed aerodynamic characteristics and inlet performance were compared for three different leading-edge extension (LEX) configurations. The effects of wing leading- and trailing-edge flaps on the inlet were also determined. Maneuver performance was calculated from combined force and inlet-pressure data. The largest of the three LEX sizes tested gave the best airplane maneuver performance. Wing flap deflections improved inlet recovery at all Mach numbers.

  7. Inlet and airframe compatibility for a V/STOL fighter/attack aircraft with top-mounted inlets

    NASA Technical Reports Server (NTRS)

    Durston, D. A.; Smeltzer, D. B.

    1982-01-01

    Aerodynamic force and inlet pressure data are obtained for 9.5% force and pressure models of a V/STOL fighter/attack aircraft configuration with top mounted twin inlets. Data are presented from tests conducted in the Ames Unitary Wind Tunnels at Mach numbers of 0.6, 0.9, and 1.2 at angles of attack up to 27 deg. and angles of sideslip up to 12 deg. Trimmed aerodynamic characteristics and inlet performance are compared for three different leading edge extension (LEX) configurations. The effects of wing leading and trailing-edge flaps on the inlet are also determined. Maneuver perfromance is calculated form combined force and inlet pressure data. The largest of the three LEX sizes tested gives the best airplane maneuver performance. Wing flap deflections improved inlet recovery at all Mach numbers.

  8. Preliminary Results of the Determination of Inlet-Pressure Distortion Effects on Compressor Stall and Altitude Operating Limits of the J57-P-1 Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Wallner, L. E.; Lubick, R. J.; Chelko, L. J.

    1955-01-01

    During an investigation of the J57-P-1 turbojet engine in the Lewis altitude wind tunnel, effects of inlet-flow distortion on engine stall characteristics and operating limits were determined. In addition to a uniform inlet-flow profile, the inlet-pressure distortions imposed included two radial, two circumferential, and one combined radial-circumferential profile. Data were obtained over a range of compressor speeds at an altitude of 50,000 and a flight Mach number of 0.8; in addition, the high- and low-speed engine operating limits were investigated up to the maximum operable altitude. The effect of changing the compressor bleed position on the stall and operating limits was determined for one of the inlet distortions. The circumferential distortions lowered the compressor stall pressure ratios; this resulted in less fuel-flow margin between steady-state operation and compressor stall. Consequently, the altitude operating Limits with circumferential distortions were reduced compared with the uniform inlet profile. Radial inlet-pressure distortions increased the pressure ratio required for compressor stall over that obtained with uniform inlet flow; this resulted in higher altitude operating limits. Likewise, the stall-limit fuel flows required with the radial inlet-pressure distortions were considerably higher than those obtained with the uniform inlet-pressure profile. A combined radial-circumferential inlet distortion had effects on the engine similar to the circumferential distortion. Bleeding air between the two compressors eliminated the low-speed stall limit and thus permitted higher altitude operation than was possible without compressor bleed.

  9. Low-speed aerodynamic test of an axisymmetric supersonic inlet with variable cowl slot

    NASA Technical Reports Server (NTRS)

    Powell, A. G.; Welge, H. R.; Trefny, C. J.

    1985-01-01

    The experimental low-speed aerodynamic characteristics of an axisymmetric mixed-compression supersonic inlet with variable cowl slot are described. The model consisted of the NASA P-inlet centerbody and redesigned cowl with variable cowl slot powered by the JT8D single-stage fan simulator and driven by an air turbine. The model was tested in the NASA Lewis Research Center 9- by 15-foot low-speed tunnel at Mach numbers of 0, 0.1, and 0.2 over a range of flows, cowl slot openings, centerbody positions, and angles of attack. The variable cowl slot was effective in minimizing lip separation at high velocity ratios, showed good steady-state and dynamic distortion characteristics, and had good angle-of-attack tolerance.

  10. Tangential blowing for control of strong normal shock - Boundary layer interactions on inlet ramps

    NASA Technical Reports Server (NTRS)

    Schwendemann, M. F.; Sanders, B. W.

    1982-01-01

    The use of tangential blowing from a row of holes in an aft facing step is found to provide good control of the ramp boundary layer, normal shock interaction on a fixed geometry inlet over a wide range of inlet mass flow ratios. Ramp Mach numbers of 1.36 and 1.96 are investigated. The blowing geometry is found to have a significant effect on system performance at the highest Mach number. The use of high-temperature air in the blowing system, however, has only a slight effect on performance. The required blowing rates are significantly high for the most severe test conditions. In addition, the required blowing coefficient is found to be proportional to the normal shock pressure rise.

  11. Air turbo-ramjet engine

    SciTech Connect

    Kepler, C.E.

    1991-12-24

    This patent describes a jet engine capable of being used to power an aircraft throughout a range of speeds from subsonic to high supersonic. It comprises means for bounding an internal passage centered on an axis and including, in succession as considered in the direction of axial flow of incoming air into and through the passage, a fixed-area air inlet section, a diverging passage section, a mixing section, a combustion section, and an outlet section; fan means situated in the air inlet section and including a rotor mounted in the bounding means for rotation about the axis and including a plurality of circumferentially spaced rotor blade members; means for selectively rotating the rotor about the axis with attendant impelling action of the rotor blade members on the air flowing therebetween; and means for selectively discharging air from a region of the passage situated between the air inlet section and the diverging passage section to the exterior of the bounding means, both at subsonic and supersonic speeds of the aircraft, when the amount of incoming air passing through the fixed-area inlet section exceeds that required in the combustion section.

  12. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet. [Supersonic Cruise Aircraft Research

    NASA Technical Reports Server (NTRS)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined where the second cone of a two cone centerbody collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  13. Effectiveness of a serpentine inlet duct flow control scheme at design and off-design simulated flight conditions

    NASA Astrophysics Data System (ADS)

    Rabe, Angela C.

    An experimental investigation was conducted in a static ground test facility to determine the flow quality of a serpentine inlet duct incorporating active flow control for several simulated flight conditions. The total pressure distortion at the aerodynamic interface plane (AIP) was then used to predict the resulting stability for a compression system. This study was conducted using a model of a compact, low observable, engine inlet duct developed by Lockheed Martin. A flow control technique using air injection through microjets at 1% of the inlet mass flow rate was developed by Lockheed Martin to improve the quality of the flow exiting the inlet duct. Both the inlet duct and the flow control technique were examined at cruise condition and off-design simulated flight conditions (angle of attack and asymmetric distortion). All of the experimental tests were run at an inlet throat Mach number of 0.55 and a resulting Reynolds number of 1.76*105 based on the hydraulic diameter at the inlet throat. For each of the flight conditions tested, the flow control scheme was found to improve the flow uniformity and reduce the inlet distortion at the AIP. For simulated cruise condition, the total pressure recovery was improved by ˜2% with the addition of flow control. For the off-design conditions of angle of attack and asymmetric distortion, the total pressure recovery was improved by 1.5% and 2% respectively. All flight conditions tested showed a reduction in circumferential distortion intensity with flow control. The cruise condition case showed reduced maximum circumferential distortion of 70% with the addition of flow control. A reduction in maximum circumferential distortion of 40% occurred for the angle of attack case with flow control, and 30% for the asymmetric distortion case with flow control. The inlet total pressure distortion was used to predict the changes in stability margin of a compression system due to design and off-design flight conditions and the

  14. Curved centerline air intake for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Ruehr, W. C.; Younghans, J. L.; Smith, E. B. (Inventor)

    1980-01-01

    An inlet for a gas turbine engine was disposed about a curved centerline for the purpose of accepting intake air that is flowing at an angle to engine centerline and progressively turning that intake airflow along a curved path into alignment with the engine. This curved inlet is intended for use in under the wing locations and similar regions where airflow direction is altered by aerodynamic characteristics of the airplane. By curving the inlet, aerodynamic loss and acoustic generation and emission are decreased.

  15. Smart actuation of inlet guide vanes for small turbine engine

    NASA Astrophysics Data System (ADS)

    Rusovici, Razvan; Kwok Choon, Stephen T.; Sepri, Paavo; Feys, Joshuo

    2011-04-01

    Unmanned Aerial Vehicles (UAVs) have gained popularity over the past few years to become an indispensable part of aerial missions that include reconnaissance, surveillance, and communication [1]. As a result, advancements in small jet-engine performance are needed to increase the performance (range, payload and efficiency) of the UAV. These jet engines designed especially for UAV's are characterized by thrust force on the order of 100N and due to their size and weight limitations, may lack advanced flow control devices such as IGV [2]. The goal of the current study was to present a conceptual design of an IGV smart-material based actuation mechanism that would be simple, compact and lightweight. The compressor section of an engine increases the pressure and conditions the flow before the air enters the combustion chamber [3]. The airflow entering the compressor is often turbulent due to the high angle of incidence between engine inlet and free-stream velocity, or existing atmospheric turbulence. Actuated IGV are used to help control the relative angle of incidence of the flow that enters the engine compressor, thereby preventing flow separation, compressor stall and thus extending the compressor's operating envelope [4]. Turbine jet- engines which employ variable IGV were developed by Rolls Royce (Trent DR-900) and General Electric (J79).

  16. Critical Propulsion Components. Volume 4; Inlet and Fan/Inlet Accoustics Team

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.

  17. 33 CFR 334.1310 - Lutak Inlet, Alaska; restricted areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... areas. 334.1310 Section 334.1310 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1310 Lutak Inlet, Alaska; restricted areas. (a) The areas—(1) Army POL dock restricted area. (i) The waters of Lutak Inlet bounded...

  18. 33 CFR 334.1310 - Lutak Inlet, Alaska; restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... areas. 334.1310 Section 334.1310 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1310 Lutak Inlet, Alaska; restricted areas. (a) The areas—(1) Army POL dock restricted area. (i) The waters of Lutak Inlet bounded...

  19. Aerodynamic and directional acoustic performance of a scoop inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Dietrich, D. A.

    1977-01-01

    Aerodynamic and directional acoustic performances of a scoop inlet were studied. The scoop inlet is designed with a portion of the lower cowling extended forward to direct upward any noise that is propagating out the front of the engine toward the ground. The tests were conducted in an anechoic wind tunnel facility at free stream velocities of 0, 18, 41, and 61 m/sec and angles of attack from -10 deg to 120 deg. Inlet throat Mach number was varied from 0.30 to 0.75. Aerodynamically, at a free stream velocity of 41 m/sec, the design throat Mach number (0.63), and an angle of attack of 50 deg, the scoop inlet total pressure recovery was 0.989 and the total pressure distortion was 0.15. The angles of attack where flow separation occurred with the scoop inlet were higher than those for a conventional symmetric inlet. Acoustically, the scoop inlet provided a maximum noise reduction of 12 to 15 db below the inlet over the entire range of throat Mach number and angle of attack at a free-stream velocity of 41 m/sec.

  20. Validation of WIND for a Series of Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Abbott, John M.; Cavicchi, Richard H.

    2002-01-01

    Validation assessments compare WIND CFD simulations to experimental data for a series of inlet flows ranging in Mach number from low subsonic to hypersonic. The validation procedures follow the guidelines of the AIAA. The WIND code performs well in matching the available experimental data. The assessments demonstrate the use of WIND and provide confidence in its use for the analysis of aircraft inlets.

  1. Isolated testing of highly maneuverable inlet con cepts

    NASA Technical Reports Server (NTRS)

    Norby, W. P.; Haeffele, B. A.; Burley, R. R.

    1986-01-01

    Ten percent scale models of a Mach 2.2 two dimensional inlet and a Mach 2.0 axisymmetric inlet were tested in the NASA Lewis Research Center 8'x6' Supersonic Wind Tunnel as part of a cooperative effort with the McDonnell Aircraft Company. The objective of this effort was to test methods designed to increase the maneuvering performance of fighter aircraft inlets. Maneuvering improvement concepts were tested up to 40-deg angle of attack for Mach numbers of 0.6 and 0.9, and up to 25 deg for Mach numbers 1.2 and 1.4. Maneuvering improvement concepts included a rotating cowl lip, auxiliary inlets aft of the inlet throat, and a retracting centerbody for the axisymmetric inlet. Test results show that the rotating cowl design was effective in improving subsonic maneuvering performance for both inlets. Auxiliary inlets did not produce significant performance increases for either model. The retracted centerbody resulted in some performance benefits at high angles of attack. None of the maneuvering improvement concepts were effective at Mach 1.2 and 1.4.

  2. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  3. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  4. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  5. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  6. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  7. Minimum Weight Design of a Generic Axisymmetric Inlet

    NASA Technical Reports Server (NTRS)

    Nadell, Shari-Beth

    1996-01-01

    A new minimum weight design method for high-speed axisymmetric inlets was demonstrated on a generic inlet. The method uses Classical Beam Theory and shell buckling to determine the minimum required equivalent isotropic thickness for a stiffened shell based on prescribed structural design requirements and load conditions. The optimum spacing and equivalent isotropic thickness of ring frame supports are computed to prevent buckling. The method thus develops a preliminary structural design for the inlet and computes the structural weight. Finite element analyses were performed on the resulting inlet design to evaluate the analytical results. Comparisons between the analytical and finite element stresses and deflections identified areas needing improvement in the analytical method. The addition of the deflection due to shear and a torsional buckling failure mode to the new method brought its results in line with those from the finite element analyses. Final validation of the new method will be made using data from actual inlets.

  8. Inlet flow field investigation. Part 1: Transonic flow field survey

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Salemann, V.; Sussman, M. B.

    1984-01-01

    A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.

  9. Computational Analysis of a Low-Boom Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2011-01-01

    A low-boom supersonic inlet was designed for use on a conceptual small supersonic aircraft that would cruise with an over-wing Mach number of 1.7. The inlet was designed to minimize external overpressures, and used a novel bypass duct to divert the highest shock losses around the engine. The Wind-US CFD code was used to predict the effects of capture ratio, struts, bypass design, and angles of attack on inlet performance. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center. Test results showed that the inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a stable operating range much larger than that of an engine. Predictions generally compared very well with the experimental data, and were used to help interpret some of the experimental results.

  10. Conceptual study of a turbojet/ramjet inlet

    NASA Technical Reports Server (NTRS)

    Weidner, J. P.

    1979-01-01

    An inlet concept for separate turbojet and ramjet engines was defined and compared with an equivalent inlet for a wraparound turboramjet engine. The comparison was made for a typical high altitude hypersonic cruise vehicle where the turbojet inlet capture area was required to be half as large as the ramjet inlet capture area at cruise. The use of a shorter nacelle having substantially lower cooling requirements at cruise for the inlet concept for separate turbojet and ramjet engines is suggested. The separate engine concept better isolates the turbojet from the ramjet, requires no special close off mechanisms within the turbojet, and avoids the circumferential heat load imposed by a wraparound ramjet. A more variable geometry is required.

  11. Results from computational analysis of a mixed compression supersonic inlet

    NASA Technical Reports Server (NTRS)

    Saunders, J. D.; Keith, T. G.

    1991-01-01

    A numerical study was performed to simulate the critical flow through a supersonic inlet. This flow field has many phenomena such as shock waves, strong viscous effects, turbulent boundary layer development, boundary layer separations, and mass flow suction through the walls, (bleed). The computational tools used were two full Navier-Stokes (FNS) codes. The supersonic inlet that was analyzed is the Variable Diameter Centerbody, (VDC), inlet. This inlet is a candidate concept for the next generation supersonic involved effort in generating an efficient grid geometry and specifying boundary conditions, particularly in the bleed region and at the outflow boundary. Results for a critical inlet operation compare favorably to Method of Characteristics predictions and experimental data.

  12. A study on flow development in an APU-style inlet and its effect on centrifugal compressor performance

    NASA Astrophysics Data System (ADS)

    Lou, Fangyuan

    The objectives of this research were to investigate the flow development inside an APU-style inlet and its effect on centrifugal compressor performance. The motivation arises from the increased applications of gas turbine engines installed with APU-style inlets such as unmanned aerial vehicles, auxiliary power units, and helicopters. The inlet swirl distortion created from these complicated inlet systems has become a major performance and operability concern. To improve the integration between the APU-style inlet and gas turbine engines, better understanding of the flow field in the APU-style inlet and its effect on gas turbine is necessary. A research facility for the purpose of performing an experimental investigation of the flow field inside an APU-style inlet was developed. A subcritical air ejector is used to continuously flow the inlet at desired corrected mass flow rates. The facility is capable of flowing the APU inlet over a wide range of corrected mass flow rate that matches the same Mach numbers as engine operating conditions. Additionally, improvement in the system operational steadiness was achieved by tuning the pressure controller using a PID control method and utilizing multi-layer screens downstream of the APU inlet. Less than 1% relative unsteadiness was achieved for full range operation. The flow field inside the rectangular-sectioned 90? bend of the APU-style inlet was measured using a 3-Component LDV system. The structures for both primary flow and the secondary flow inside the bend were resolved. Additionally, the effect of upstream geometry on the flow development in the downstream bend was also investigated. Furthermore, a Single Stage Centrifugal Compressor research facility was developed at Purdue University in collaboration with Honeywell to operate the APU-style inlet at engine conditions with a compressor. To operate the facility, extensive infrastructure for facility health monitoring and performance control (including lubrication

  13. Altitude-Wind-Tunnel Investigation of a 3000-Pound-Thrust Axial-Flow Turbojet Engine. 6; Analysis of Effects of Inlet Pressure Losses

    NASA Technical Reports Server (NTRS)

    Sanders, Newell D.; Palasics, John

    1948-01-01

    The losses in the inlet air ducts, the diffusers, and the de-icing equipment associated with turbojet engine installations cause a reduction in the total pressure at the inlet of the engine and result in reduced thrust and increased specific fuel consumption. An analytical evaluation of the effects of inlet losses on the net thrust and the fuel economy of a 3000-pound-thrust axial flow turbojet engine with a two-stage turbine is presented. The analysis is based on engine performance characteristics that were determined from experiments in the NACA Cleveland altitude wind tunnel. The experimental investigation did not include tests in which inlet losses were systematically varied, but the effects of these losses can be accurately estimated from the experimentally determined performance characteristics of the engine.

  14. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...

  15. Final Determinations Regarding the Applicability of the Clean Air Act's NSPS and PSD Requirements to the Proposed Life Extension Project at the Port Washington Steam Electric Generating Station Owned by WEPCO

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  16. Effects of radial and circumferential inlet velocity profile distortions on performance of a short-length double-annular ram induction combustor

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Perkins, P. J.

    1972-01-01

    Inlet air velocity profile tests were conducted on a full-scale short-length 102-centimeter-diameter annual combustor designed for advanced gas turbine engine applications. The inlet profiles studied include radial distortions that were center peaked, and tip peaked, as well as a circumferential distortion which was center peaked for one-third of the circumference and flat for the other two-thirds. An increase in combustor pressure loss was the most significant effect of the radial air velocity distortions. With the circumferential distortion, exit temperature pattern factor doubled when compared to a flat velocity profile.

  17. Cooling Characteristics of a Pratt and Whitney R-2800 Engine Installed in an NACA Short-nose High-inlet-velocity Cowling

    NASA Technical Reports Server (NTRS)

    Corson, Blake W.; McLellan, Charles H.

    1944-01-01

    An investigation was made of the cooling characteristics of a P and W R-2800 engine with NACA short-nose high inlet-velocity cowling. The internal aerodynamics of the cowling were studied for ranges of propeller-advance ratio and inlet-velocity ratio obtained by deflection of cowling flaps. Tests included variations of engine power, fuel/air ratio and cooling-air pressure drop. Engine cooling data are presented in the form of cooling correlation curves, and an example for calculation of cooling requirements in flight is included.

  18. Investigation of Power Requirements for Ice Prevention and Cyclical De-Icing of Inlet Guide Vanes with Internal Electric Heaters

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Blatz, Robert E.

    1950-01-01

    An investigation was conducted to determine the electric power requirements necessary for ice protection of inlet guide vanes by continuous heating and by cyclical de-icing. Data are presented to show the effect of ambient-air temperature, liquid-water content, air velocity, heat-on period, and cycle times on the power requirements for these two methods of ice protection. The results showed that for a hypothetical engine using 28 inlet guide vanes under similar icing conditions, cyclical de-icing can provide a total power saving as high as 79 percent over that required for continuous heating. Heat-on periods in the order of 10 seconds with a cycle ratio of about 1:7 resulted in the best over-all performance with respect to total power requirements and aerodynamic losses during the heat-off period. Power requirements reported herein may be reduced by as much as 25 percent by achieving a more uniform surface-temperature distribution. A parameter in terms of engine mass flow, vane size, vane surface temperature, and the icing conditions ahead of the inlet guide vanes.was developed by which an extension of the experimental data to icing conditions and inlet guide vanes, other than those investigated was possible.

  19. Vapor Condensation Control of JP-4 Emissions from Underground Storage Tanks at March Air Force Base, California

    DTIC Science & Technology

    1982-05-01

    recovery units. Scott Total Hydrocarbon Analyzers ( THCAs ) Models 215 and 116 were used at the inlet and outlet sites, respectively. Figures 3 and 4...illustrate the various features of the sampling system. To bring the inlet hydrocarbon concentration measurement into the span range of the Model 215 THCA it...was necessary to dilute the inlet gas with hydrocarbon-free air. The mixed gas was then delivered in excess to the THCA on both inlet and outlet

  20. Ship emissions and their externalities for the port of Piraeus - Greece

    NASA Astrophysics Data System (ADS)

    Tzannatos, Ernestos

    2010-01-01

    Air pollution from shipping is currently dominating the international and European agenda on environmental protection. Although port emissions are not significantly contributing to the overall picture of ship-generated emissions, it is important to note that the impact of ship exhaust pollutants has a direct effect on the human population and built environment of many urbanized ports. The passenger (main) port of Piraeus qualifies for a ship emission and externality study by virtue of its dominant presence in the Mediterranean expressed in terms of the most frequent port calls by coastal passenger ships and cruise ships operating in the region, as well as in terms of being a most crowded port city through hosting a sizeable resident and visiting (employers and otherwise) population over a relatively small area. An in-port ship activity-based methodology was applied for manoeuvring and berthing of coastal passenger ships and cruise ships calling at the passenger port of Piraeus, in order to estimate the emission of the main ship exhaust pollutants (NO X, SO 2 and PM 2.5) over a twelve-month period in 2008-2009. The estimated emissions were analyzed in terms of gas species, seasonality, activity and shipping sector. The application of external cost factors led to the estimation of the emission externalities, in an attempt to evaluate the economic impact of the damage emissions produce mainly upon the human population and the built environment. The results indicate that ship emissions in the passenger port of Piraeus reach 2600 tons annually and their estimated externalities over this period are around 51 million euro. Summer emissions and associated impacts are more profound and coastal passenger shipping, as opposed to cruise shipping, is the dominant contributor of emissions and associated externalities. Overall, in a port city such as Piraeus, the need to introduce stringent control on the emissions produced by passenger ships, beyond that dictated by the current

  1. Evaluation of Fleeting Operations in Ports.

    DTIC Science & Technology

    1980-10-31

    industrial sites and their cargo handling I locations in the port area. 3) Based on (1) and (2) above, develop a fleeting evaluation technique which may be...within it. Phase 1, com- posed of four tasks, was designed to provide familiarity with respect to St. Louis port, harbor and fleeting operations. Task...1.1 reviewed the conventional professional literature of AAPA, ASCE, TRB and MARAD and the World Bank with respect to port and harbor design and

  2. Modeling Flow through a Lock Manifold Port

    DTIC Science & Technology

    2013-01-01

    computational model is to provide reliable loss coefficients. Energy losses for flow issuing from a port occur primarily in the submerged jet . The...computational flow model to determine the velocity and pressure distribution in a single-port manifold for a range of port-to-culvert discharge ...Engineers 2006). Navigation lock manifolds can be evaluated using analytical methods when the hydraulic characteristics associated with the manifold’s

  3. Laparoscopic Assisted Two Port Open Appendicectomy

    PubMed Central

    Golash, Vishwanath

    2008-01-01

    Objectives The laparoscopic appendicectomy can be performed using one to several ports. We present our experience of two port laparoscopic assisted open appendicectomy. The objective was to assess the results retrospectively in terms of complications and its limitations. Methods Between years 1998-2007, a two port laparoscopic assisted appendectomy was attempted in 2380 adult patients with suspected appendicitis. The patients with localized or generalized peritonitis were included. The appendicectomy was performed via an assisted two port method using 10 mm umbilical optical port and another 10 mm port in right iliac fossa. The children aged 12 and below and pregnant patients were excluded. All patients had their laparoscopic appendicectomy within 48 hours of admission. Results Two port laparoscopic assisted appendicectomy was successful in 86.9% of cases. Acute appendicitis was the cause of acute abdomen in 88.9% of the patients. The accessory port was required in 8.5% of patients to complete the appendicectomy and the conversion rate to open was 4.6%. The mean operation time was 25 minutes and the mean hospital stay was 1.5 days. The port site infection was seen in 14, bleeding in 20, parietal wall abscess in three cases and intra-abdominal abscesses in 4 patients. Conclusion This approach is simple, can be converted to total intracorporeal by inserting accessory port or to open appendicectomy when required and has advantage of full laparoscopy of abdomen. It has its limitations in cases of extreme obesity, thick mesentery, gangrenous appendix, very large and thick appendix, and difficulty in finding the appendix, control of bleeding, division of adhesions and to deal with other associated pathology. Cost was minimized by using non-disposable port. The overall morbidity was low. There were no specific complications related to this technique and incidence of port site infection was similar to other approaches of laparoscopic appendicectomy. PMID:22359707

  4. Severe Weather Guide - Mediterranean Ports. 7. Marseille

    DTIC Science & Technology

    1988-03-01

    Naval vessels normally utilize Avant Port Nord, the northern part of the Port, which is comprised of the following basins: Bassin Mirabeau , where the... Mirabeau -Mole de Leon Gourret GULF OF MARSEILLE ■43°16’N- NAUTICAL MILE SCALE 0 1 2 I I I 5°16’E...comprised of Avant Port Nord at the northern entrance, and the following basins: Bassin Mirabeau , Bassin Leon Bourret (Darse Sud), Bassin du President

  5. Port Security in the Persian Gulf

    DTIC Science & Technology

    2008-06-01

    national oil company , Saudi Aramco , claim to have invested massive resources in order to ensure the security of vital infrastructure. It is unclear...port security, ISPS, CSI, Saudi Arabia , United Arab Emirates, Iraq, maritime infrastructure, IMO, port facility, terrorism, smuggling, oil , fuel...petrochemicals and LPG.40 Petroleum exports shipped through Saudi Aramco -controlled ports are also significant. After Saudi oil is pumped from fields

  6. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    PubMed Central

    Wang, Lei; Cao, Shibin

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted. PMID:24348146

  7. Inlet Trade Study for a Low-Boom Aircraft Demonstrator

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.

    2016-01-01

    Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.

  8. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    NASA Technical Reports Server (NTRS)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  9. Minimum fan turbine inlet temperature mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in turbine temperature which resulted from the application of the F-15 performance seeking control (PSC) minimum fan turbine inlet temperature (FTIT) mode during the dual-engine test phase is presented as a function of net propulsive force and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and partial afterburning power settings. The FTIT reductions for the supersonic tests are less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Subsonically at military power, FTIT reductions were above 70 R for either the left or right engines, and repeatable for the right engine. At partial afterburner and supersonic conditions, the level of FTIT reductions were at least 25 R and as much as 55 R. Considering that the turbine operates at or very near its temperature limit at these high power settings, these seemingly small temperature reductions may significantly lengthen the life of the turbine. In general, the minimum FTIT mode has performed well, demonstrating significant temperature reductions at military and partial afterburner power. Decreases of over 100 R at cruise flight conditions were identified. Temperature reductions of this magnitude could significantly extend turbine life and reduce replacement costs.

  10. Generalized two-port elements

    NASA Astrophysics Data System (ADS)

    Tenreiro Machado, J.; Galhano, Alexandra M.

    2017-01-01

    The development of models constitutes a fundamental step in the study of natural and artificial systems. Present day science aims to address broader and more complex areas of application requiring, therefore, new concepts and models. This paper explores the concept of generalized two-port network by embedding the ideas of fractional calculus, memristor, transformer and gyrator. Each element represents separately one possible direction for generalizing the classical elements, but the cross-fertilization of the distinct topics has been overlooked. In this line of thought, the proposal of a novel element is a logical conjecture for obeying the symmetries that have been discovered in nature.

  11. Observations of Currents in Two Tidally Modulated Inlets

    NASA Astrophysics Data System (ADS)

    Lippmann, T. C.; Irish, J. D.; Hunt, J.

    2012-12-01

    Observations of currents obtained in two tidally modulated inlets are used to examine the spatial evolution of the vertical structure in hourly averaged mean flow and at tidal frequencies. Field experiments of 30 day duration were conducted at Hampton/Seabrook Harbor, NH, in the Fall of 2011 and again at New River Inlet, NC, in the spring of 2012. The temporal variation and vertical structure of the currents were observed with 600 khz and 1200 khz RDI Acoustic Doppler Current Profilers (ADCP) deployed on low-profile bottom tripods just outside and within the inlet mouth, and with a Nortek Aquadopp Profiler mounted on a jetted pipe on the flank of the inlet channel. Across-inlet current profiles were obtained at each site at various tidal stages with a 1200 khz RDI vessel-mounted ADCP onboard the personal watercraft (the Coastal Bathymetry Survey System, or CBASS) that transited the inlet multiple times at various spatial locations. Flows within the inlet were dominated by semi-diurnal tides, ranging from 2.5 to 4 m in elevation at Hampton/Seabrook Harbor with velocities exceeding 3 m/s, and tides ranging from 1 to 1.5 m in elevation at New River Inlet with velocities exceeding 2 m/s. Flows sampled with the CBASS will be used to examine the horizontal and vertical variation in mean currents (averaged over about 20 - 40 min) at various tidal stages. Currents sampled with the fixed instruments will be used to examine the temporal variation in amplitude and direction of mean currents (averaged over 30 - 60 min) as a function of depth, as well as the amplitude, phase, and rotational structure at tidal frequencies. Observations from the two field sites will be compared and discussed in terms of the spatial and temporal evolution from outside the river mouth to the inner inlet channels over the fortnightly sampling period.

  12. Feasibility study of inlet shock stability system of YF-12

    NASA Technical Reports Server (NTRS)

    Blausey, G. C.; Coleman, D. M.; Harp, D. S.

    1972-01-01

    The feasibility of self actuating bleed valves as a shock stabilization system in the inlet of the YF-12 is considered for vortex valves, slide valves, and poppet valves. Analytical estimation of valve performance indicates that only the slide and poppet valves located in the inlet cowl can meet the desired steady state stabilizing flows, and of the two the poppet valve is substantially faster in response to dynamic disturbances. The poppet valve is, therefore, selected as the best shock stability system for the YF-12 inlet.

  13. Distortion-rotor interaction noise produced by a drooped inlet

    NASA Technical Reports Server (NTRS)

    Smith, E. B.; Moore, M. T.; Gliebe, P. R.

    1980-01-01

    The 'drooped' inlet used on most wing mounted engines produces a wall static pressure distortion at the fan face of about plus or minus 2%. The interaction of the fan rotor with this fixed distortion pattern produces blade passing frequency and harmonic tone levels in flight which contribute to forward radiated engine noise spectra. Data from a wind tunnel test, using both a drooped inlet and an inlet with no droop, show large changes in forward radiated noise levels over a limited fan speed range. An analytical model of this fan noise mechanism is developed and is used to account for the major features of the measured results.

  14. High-speed inlet research program and supporting analysis

    NASA Technical Reports Server (NTRS)

    Coltrin, Robert E.

    1990-01-01

    The technology challenges faced by the high speed inlet designer are discussed by describing the considerations that went into the design of the Mach 5 research inlet. It is shown that the emerging three dimensional viscous computational fluid dynamics (CFD) flow codes, together with small scale experiments, can be used to guide larger scale full inlet systems research. Then, in turn, the results of the large scale research, if properly instrumented, can be used to validate or at least to calibrate the CFD codes.

  15. Variable geometry inlet design for scram jet engine

    NASA Technical Reports Server (NTRS)

    Guinan, Daniel P. (Inventor); Drake, Alan (Inventor); Andreadis, Dean (Inventor); Beckel, Stephen A. (Inventor)

    2005-01-01

    The present invention relates to an improved variable geometry inlet for a scram jet engine having at least one combustor module. The variable geometry inlet comprises each combustor module having two sidewalls. Each of the sidewalls has a central portion with a thickness and a tapered profile forward of the central portion. The tapered profile terminates in a sharp leading edge. The variable geometry inlet further comprises each module having a lower wall and a movable cowl flap positioned forward of the lower wall. The movable cowl flap has a leading edge and the leading edges of the sidewalls intersect the leading edge of the cowl flap.

  16. Should we attempt global (inlet engine airframe) control design?

    NASA Technical Reports Server (NTRS)

    Carlin, C. M.

    1980-01-01

    The feasibility of multivariable design of the entire airplane control system is briefly addressed. An intermediate step in that direction is to design a control for an inlet engine augmentor system by using multivariable techniques. The supersonic cruise large scale inlet research program is described which will provide an opportunity to develop, integrate, and wind tunnel test a control for a mixed compression inlet and variable cycle engine. The integrated propulsion airframe control program is also discussed which will introduce the problem of implementing MVC within a distributed processing avionics architecture, requiring real time decomposition of the global design into independent modules in response to hardware communication failures.

  17. Estimation of additive forces and moments for supersonic inlets

    NASA Technical Reports Server (NTRS)

    Perkins, Stanley C., Jr.; Dillenius, Marnix F. E.

    1991-01-01

    A technique for estimating the additive forces and moments associated with supersonic, external compression inlets as a function of mass flow ratio has been developed. The technique makes use of a low order supersonic paneling method for calculating minimum additive forces at maximum mass flow conditions. A linear relationship between the minimum additive forces and the maximum values for fully blocked flow is employed to obtain the additive forces at a specified mass flow ratio. The method is applicable to two-dimensional inlets at zero or nonzero angle of attack, and to axisymmetric inlets at zero angle of attack. Comparisons with limited available additive drag data indicate fair to good agreement.

  18. Esophageal Rings and Stricture Related to a Circumferential Inlet Patch

    PubMed Central

    Scott, Larry

    2016-01-01

    Inlet patches are sometimes seen during upper endoscopy, usually in the proximal esophagus. Complications of inlet patches can cause a wide array of symptoms and complications. A man presented with dysphagia and was found to have 2 rings in the upper esophagus, just above and below a circumferential inlet patch. The more distal ring caused a stenosis, which produced the symptoms. Savary dilation and treatment with a proton pump inhibitor led to symptom resolution. Pathology was missed on the patient's first endoscopy, highlighting the importance of looking for pathology throughout the entire esophagus, not just in the distal esophagus. PMID:27807576

  19. 19 CFR 101.3 - Customs service ports and ports of entry.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... require. (b) List of Ports of Entry and Service Ports. The following is a list of Customs Ports of Entry.... 7632, June 15, 1937 (2 FR 1245). Roseau E.O. 7632, June 15, 1937 (2 FR 1245). Warroad Mississippi... 3403); including territory described in T.D. 67-56. Spirit of St. Louis Airport Including...

  20. 19 CFR 101.3 - Customs service ports and ports of entry.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... require. (b) List of Ports of Entry and Service Ports. The following is a list of Customs Ports of Entry.... 7632, June 15, 1937 (2 FR 1245). Roseau E.O. 7632, June 15, 1937 (2 FR 1245). Warroad Mississippi... 3403); including territory described in T.D. 67-56. Spirit of St. Louis Airport Including...

  1. 19 CFR 101.3 - Customs service ports and ports of entry.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... require. (b) List of Ports of Entry and Service Ports. The following is a list of Customs Ports of Entry.... 7632, June 15, 1937 (2 FR 1245). Roseau E.O. 7632, June 15, 1937 (2 FR 1245). Warroad Mississippi... 3403); including territory described in T.D. 67-56. Spirit of St. Louis Airport Including...

  2. 19 CFR 101.3 - Customs service ports and ports of entry.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... require. (b) List of Ports of Entry and Service Ports. The following is a list of Customs Ports of Entry.... 7632, June 15, 1937 (2 FR 1245). Roseau E.O. 7632, June 15, 1937 (2 FR 1245). Warroad Mississippi... 3403); including territory described in T.D. 67-56. Spirit of St. Louis Airport Including...

  3. 19 CFR 101.3 - Customs service ports and ports of entry.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... require. (b) List of Ports of Entry and Service Ports. The following is a list of Customs Ports of Entry.... 7632, June 15, 1937 (2 FR 1245). Roseau E.O. 7632, June 15, 1937 (2 FR 1245). Warroad Mississippi... 3403); including territory described in T.D. 67-56. Spirit of St. Louis Airport Including...

  4. Inlet Particle-Sorting Cyclone for the Enhancement of PM2.5 Separation.

    PubMed

    Fu, Peng-Bo; Wang, Fei; Yang, Xue-Jing; Ma, Liang; Cui, Xin; Wang, Hua-Lin

    2017-02-07

    Many cities are suffering from severe air pollution from fine particulate matter. Cyclone is an effective separator for particulate pollutant but has low efficiency for those with an aerodynamic diameter of 2.5 μm or less (PM2.5). In this research, four novel inlet particle-sorting cyclones were first developed to enhance the separation of PM2.5. The energy consumption, overall separation efficiency, particle grade efficiency,outlet particle concentration and size distribution were compared with common cyclone (CM-C). It was found that the vertical reverse rotation cyclone (VRR-C), which made the smaller particles enter cyclone from radially outer side and axially lower side at the rectangular inlet, had the best separation performance, especially for PM2.5 separation. The mean diameter of inlet particles was 15.7 μm and the particle concentration was 2000 mg/m(3), the overall separation efficiency of the VRR-C reached 98.3%, which was 6.4% higher than that of CM-C. PM2.5 grade efficiency of the VRR-C exceeded 80%, which was 15∼20% higher than that of CM-C. The PM2.5 content at the VRR-C outlet was 30.8 mg/m(3), while that of CM-C was still 118.4 mg/m(3). The novel inlet particle-sorting cyclone is an effective separation enhancement for PM2.5 source control in the process of industrial production and environment protection.

  5. Experimental investigation of tangential blowing for control of the strong shock boundary layer interaction on inlet ramps

    NASA Technical Reports Server (NTRS)

    Schwendemann, M. F.

    1981-01-01

    A 0.165-scale isolated inlet model was tested in the NASA Lewis Research Center 8-ft by 6-ft Supersonic Wind Tunnel. Ramp boundary layer control was provided by tangential blowing from a row of holes in an aft-facing step set into the ramp surface. Testing was performed at Mach numbers from 1.36 to 1.96 using both cold and heated air in the blowing system. Stable inlet flow was achieved at all Mach numbers. Blowing hole geometry was found to be significant at 1.96M. Blowing air temperature was found to have only a small effect on system performance. High blowing levels were required at the most severe test conditions.

  6. Admiralty Inlet Advanced Turbulence Measurements: June 2014

    DOE Data Explorer

    Kilcher, Levi

    2014-06-30

    This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. Each ttm was deployed with two ADVs. The 'top' ADV head was positioned 0.5m above the 'bottom' ADV head. The TTMs were placed in 58m of water. The position of the TTMs were: ttm01 : (48.1525, -122.6867) ttm01b : (48.15256666, -122.68678333) ttm02b : (48.152783333, -122.686316666) Deployments TTM01b and TTM02b occurred simultaneously and were spaced approximately 50m apart in the cross-stream direction. Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.

  7. INTERIOR GUEST BATH, LOOKING NORTHWEST. Oregon Inlet Coast Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR GUEST BATH, LOOKING NORTHWEST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  8. INTERIOR INNKEEPER FAMILY ROOM, LOOKING NORTH. Oregon Inlet Coast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR INNKEEPER FAMILY ROOM, LOOKING NORTH. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  9. INTERIOR BUNK ROOM C, LOOKING NORTHWEST. Oregon Inlet Coast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR BUNK ROOM C, LOOKING NORTHWEST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  10. INTERIOR BUNK ROOM A, LOOKING SOUTHEAST. Oregon Inlet Coast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR BUNK ROOM A, LOOKING SOUTHEAST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  11. INTERIOR GUEST BEDROOM, LOOKING NORTHWEST. Oregon Inlet Coast Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR GUEST BEDROOM, LOOKING NORTHWEST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  12. INTERIOR GUEST BEDROOM, LOOKING SOUTHEAST. Oregon Inlet Coast Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR GUEST BEDROOM, LOOKING SOUTHEAST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  13. INTERIOR TOWER ROOM, LOOKING SOUTHWEST. Oregon Inlet Coast Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER ROOM, LOOKING SOUTHWEST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  14. INTERIOR LIBRARY HALL, LOOKING WEST. Oregon Inlet Coast Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR LIBRARY HALL, LOOKING WEST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  15. INTERIOR TOWER STAIRS FIRST LEVEL, LOOKING EAST. Oregon Inlet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER STAIRS FIRST LEVEL, LOOKING EAST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  16. INTERIOR BUNK ROOM C, LOOKING SOUTHEAST. Oregon Inlet Coast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR BUNK ROOM C, LOOKING SOUTHEAST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  17. INTERIOR TOWER ENTRANCE, LOOKING NORTH. Oregon Inlet Coast Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER ENTRANCE, LOOKING NORTH. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  18. INTERIOR HALL BY TOWER STAIRS, LOOKING SOUTH. Oregon Inlet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR HALL BY TOWER STAIRS, LOOKING SOUTH. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  19. INTERIOR LIBRARY, LOOKING NORTHWEST. Oregon Inlet Coast Guard Station, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR LIBRARY, LOOKING NORTHWEST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  20. INTERIOR INNKEEPER FAMILY ROOM, LOOKING WEST. Oregon Inlet Coast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR INNKEEPER FAMILY ROOM, LOOKING WEST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC