Air/fuel supply system for use in a gas turbine engine
Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico
2014-06-17
A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.
Manifold, bus support and coupling arrangement for solid oxide fuel cells
Parry, Gareth W.
1989-01-01
Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.
40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet...
40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet...
40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet...
40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet...
40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet...
NASA Technical Reports Server (NTRS)
Lewis, James P.
1953-01-01
An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.
Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H
1937-01-01
Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.
The Influence of Directed Air Flow on Combustion in Spark-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Spencer, R C
1939-01-01
The air movement within the cylinder of the NACA combustion apparatus was regulated by using shrouded inlet valves and by fairing the inlet passage. Rates of combustion were determined at different inlet-air velocities with the engine speed maintained constant and at different engine speeds with the inlet-air velocity maintained approximately constant. The rate of combustion increased when the engine speed was doubled without changing the inlet-air velocity; the observed increase was about the same as the increase in the rate of combustion obtained by doubling the inlet-air velocity without changing the engine speed. Certain types of directed air movement gave great improvement in the reproducibility of the explosions from cycle to cycle, provided that other variables were controlled. Directing the inlet air past the injection valve during injection increased the rate of burning.
Experimental Research on Optimizing Inlet Airflow of Wet Cooling Towers under Crosswind Conditions
NASA Astrophysics Data System (ADS)
Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong
2018-01-01
A new approach of installing air deflectors around tower inlet circumferentially was proposed to optimize the inlet airflow and reduce the adverse effect of crosswinds on the thermal performance of natural draft wet cooling towers (NDWCT). And inlet airflow uniformity coefficient was defined to analyze the uniformity of circumferential inlet airflow quantitatively. Then the effect of air deflectors on the NDWCT performance was investigated experimentally. By contrast between inlet air flow rate and cooling efficiency, it has been found that crosswinds not only decrease the inlet air flow rate, but also reduce the uniformity of inlet airflow, which reduce NDWCT performance jointly. After installing air deflectors, the inlet air flow rate and uniformity coefficient increase, the uniformity of heat and mass transfer increases correspondingly, which improve the cooling performance. In addition, analysis on Lewis factor demonstrates that the inlet airflow optimization has more enhancement of heat transfer than mass transfer, but leads to more water evaporation loss.
Manifold, bus support and coupling arrangement for solid oxide fuel cells
Parry, G.W.
1988-04-21
Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.
Tuned intake air inlet for a rotary engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbett, W.D.; Sheaffer, B.L.
This patent describes, in a rotary internal combustion engine, an improved assembly for providing a balanced flow of combustion air to the fuel supply inlet. It comprises: a plenum chamber attached to the engine block, the plenum chamber including an air inlet adapted to receive air from the cooling air exit passage and an air outlet for the discharge of air; and an outlet conduit connecting the air outlet and the fuel supply inlet. The conduit disposed to partially surround the plenum chamber to provide a conduit length substantially greater than the distance from the cooling air exit passage totmore » he fuel supply inlet.« less
Air cooled turbine component having an internal filtration system
Beeck, Alexander R [Orlando, FL
2012-05-15
A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.
NASA Technical Reports Server (NTRS)
Gary, Bruce L. (Inventor)
2001-01-01
The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.
2014-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (phi) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui Joe; Chang, Clarence T.; Follen, Caitlin E.
2015-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions.This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio(theta) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.
2015-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.
2014-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
Dual-Mode Scramjet Flameholding Operability Measurements
NASA Technical Reports Server (NTRS)
Donohue, James M.
2012-01-01
Flameholding measurements were made in two different direct connect combustor facilities that were designed to simulate a cavity flameholder in the flowfield of a hydrocarbon fueled dual-mode scramjet combustor. The presence of a shocktrain upstream of the flameholder has a significant impact on the inlet flow to the combustor and on the flameholding limits. A throttle was installed in the downstream end of the test rigs to provide the needed back-pressurization and decouple the operation of the flameholder from the backpressure formed by heat release and thermal choking, as in a flight engine. Measurements were made primarily with ethylene fuel but a limited number of tests were also performed with heated gaseous JP-7 fuel injection. The flameholding limits were measured by ramping inlet air temperature down until blowout was observed. The tests performed in the United Technologies Research Center (UTRC) facility used a hydrogen fueled vitiated air heater, Mach 2.2 and 3.3 inlet nozzles, a scramjet combustor rig with a 1.666 by 6 inch inlet and a 0.65 inch deep cavity. Mean blowout temperature measured at the baseline condition with ethylene fuel, the Mach 2.2 inlet and a cavity pressure of 21 psia was 1502 oR. Flameholding sensitivity to a variety of parameters was assessed. Blowout temperature was found to be most sensitive to fuel injection location and fuel flowrates and surprisingly insensitive to operating pressure (by varying both back-pressurization and inlet flowrate) and inlet Mach number. Video imaging through both the bottom and side wall windows was collected simultaneously and showed that the flame structure was quite unsteady with significant lateral movements as well as movement upstream of the flameholder. Experiments in the University of Virginia (UVa) test facility used a Mach 2 inlet nozzle with a 1 inch by 1.5 inch exit cross section, an aspect ratio of 1.5 versus 3.6 in the UTRC facility. The UVa facility tests were designed to measure the sensitivity of flameholding limits to inlet air vitiation by using electrically heated air and adding steam at levels to simulate vitiated air heaters. The measurements showed no significant difference in blowout temperature with inlet air mole fractions of steam from 0 to 6.7%.
Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion
Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi
2002-01-01
A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.
Core assembly storage structure
Jones, Jr., Charles E.; Brunings, Jay E.
1988-01-01
A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.
NASA Astrophysics Data System (ADS)
Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.
2016-08-01
The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.
Adaptive compliant structures for flow regulation
Brinkmeyer, Alex; Theunissen, Raf; M. Weaver, Paul; Pirrera, Alberto
2017-01-01
This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli—i.e. the aerodynamic loads imposed by different operating conditions—the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices. PMID:28878567
Adaptive compliant structures for flow regulation.
Arena, Gaetano; M J Groh, Rainer; Brinkmeyer, Alex; Theunissen, Raf; M Weaver, Paul; Pirrera, Alberto
2017-08-01
This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli-i.e. the aerodynamic loads imposed by different operating conditions-the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices.
Lee, Eungyoung; Feigley, Charles E; Khan, Jamil
2002-11-01
Computational fluid dynamics (CFD) is potentially a valuable tool for simulating the dispersion of air contaminants in workrooms. However, CFD-estimated airflow and contaminant concentration patterns have not always shown good agreement with experimental results. Thus, understanding the factors affecting the accuracy of such simulations is critical for their successful application in occupational hygiene. The purposes of this study were to validate CFD approaches for simulating the dispersion of gases and vapors in an enclosed space at two air flow rates and to demonstrate the impact of one important determinant of simulation accuracy. The concentration of a tracer gas, isobutylene, was measured at 117 points in a rectangular chamber [1 (L) x 0.3 (H) x 0.7 m (W)] using a photoionization analyzer. Chamber air flow rates were scaled using geometric and kinematic similarity criteria to represent a full-sized room at two Reynolds numbers (Re = 5 x 10(2) and 5 x 10(3)). Also, CFD simulations were conducted to estimate tracer gas concentrations throughout the chamber. The simulation results for two treatments of air inlet velocity (profiled inlet velocity measured in traverses across the air inlet and the assumption that air velocity is uniform across the inlet) were compared with experimental observations. The CFD-simulated 3-dimensional distribution of tracer gas concentration using the profiled inlet velocity showed better agreement qualitatively and quantitatively with measured chamber concentration, while the concentration estimated using the uniform inlet velocity showed poor agreement for both comparisons. For estimating room air contaminant concentrations when inlet velocities can be determined, this study suggests that using the inlet velocity distribution to define inlet boundary conditions for CFD simulations can provide more reliable estimates. When the inlet velocity distribution is not known, for instance for prospective design of dilution ventilation systems, the trials of several velocity profiles with different source, air inlet and air outlet locations may be useful for determining the most efficient workroom layout.
78 FR 16604 - Airworthiness Directives; Diamond Aircraft Industries GmbH Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... unsafe condition as the engine air inlet filter is subject to icing. We are issuing this AD to require... warmer air conditions. The subsequent investigation identified that the engine air inlet filter is... with a manually controlled alternate air valve which bypasses the inlet air filter and provides...
Effect of inlet-air humidity on the formation of oxides of nitrogen in a gas-turbine combustor
NASA Technical Reports Server (NTRS)
Marchionna, N. R.
1973-01-01
Tests were conducted to determine the effect of inlet-air humidity on the formation of oxides of nitrogen from a gas-turbine combustor. Combustor inlet-air temperature ranged from 450 F to 1050 F. The tests were run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NO sub x emission index was found to decrease with increasing inlet-air humidity at a constant exponential rate of 19 percent per mass percent water vapor in the air. This decrease of NO sub x emission index with increasing humidity was found to be independent of inlet-air temperature.
Starting of generic inlet with blunted wedges
NASA Astrophysics Data System (ADS)
Borovoy, V.; Mosharov, V.; Radchenko, V.; Skuratov, A.; Struminskaya, I.
2017-06-01
Bluntness e¨ect of gas-compressing wedges on starting and §ow structure in an air inlet was investigated experimentally. The inlet was of internal compression type with §at walls and rectangular cross section. The experiments were carried out in the wind tunnel UT-1M at Mach numbers M = 5 and 8 and Reynolds numbers Re∞L from 2.8 · 106 to 23 · 106. The §ow characteristics were measured by panoramic optical methods. Data demonstrating in§uence of wedge bluntness radius on the inlet starting were obtained at di¨erent Mach and Reynolds numbers as well as at di¨erent contraction ratios. Ambiguity of the §ow regime in the inlet under certain conditions was found.
Lee, Chang-Gon; Ahmed, Maruf; Jiang, Gui-Hun; Eun, Jong-Bang
2017-08-01
Encapsulated Asian pear juice powder was produced through spray drying using three maltodextrin levels (15, 20, and 25% w/v) and three inlet air temperatures (130, 150, and 170 °C). The impact of maltodextrin concentrations and inlet air temperatures on color, bioactive compounds, and morphological characteristics of encapsulated Asian pear juice powder were investigated. Maltodextrin concentrations and inlet air temperatures significantly influenced L * and b * values of encapsulated Asian pear juice powder. Increasing inlet air temperatures increased total phenolic content, whereas the vitamin C content decreased. Vitamin C content was strongly correlated with particle size, inlet air temperature, and maltodextrin concentration. ABTS + radical-scavenging activity was highly correlated with total phenol content while DPPH radical-scavenging activity was highly correlated with vitamin C content. Encapsulated powders made with higher inlet air temperature and higher maltodextrin concentration had lowest median particle diameter with a smoother, more regular and rounded outer surface than those of encapsulated powders produced with lower inlet air temperature and lower maltodextrin concentration. Therefore, the results demonstrate that high-quality encapsulated Asian pear juice powder could be manufactured by adding 15% (w/v) maltodextrin and spray-drying at 170 °C.
Performance of a multiple venturi fuel-air preparation system. [fuel injection for gas turbines
NASA Technical Reports Server (NTRS)
Tacina, R. R.
1979-01-01
Spatial fuel-air distributions, degree of vaporization, and pressure drop were measured 16.5 cm downstream of the fuel injection plane of a multiple Venturi tube fuel injector. Tests were performed in a 12 cm tubular duct. Test conditions were: a pressure of 0.3 MPa, inlet air temperature from 400 to 800K, air velocities of 10 and 20 m/s, and fuel-air ratios of 0.010 and 0.020. The fuel was Diesel #2. Spatial fuel-air distributions were within + or - 20 percent of the mean at inlet air temperatures above 450K. At an inlet air temperature of 400K, the fuel-air distribution was measured when a 50 percent blockage plate was placed 9.2 cm upstream of the fuel injection plane to distort the inlet air velocity fuel injection plane to distort the inlet air velocity profile. Vaporization of the fuel was 50 percent complete at an inlet air temperature of 400K and the percentage increased linearly with temperature to complete vaporization at 600K. The pressure drop was 3 percent at the design point which was three times greater than the designed value and the single tube experiment value. No autoignition or flashback was observed at the conditions tested.
NASA Technical Reports Server (NTRS)
Faulkner, F. E.
1971-01-01
A study was conducted to determine the effect of chord size on air cooled turbine blades. In the preliminary design phase, eight turbine blade cooling configurations in 0.75-in., 1.0-in., and 1.5-in. chord sizes were analyzed to determine the maximum turbine inlet temperature capabilities. A pin fin convection cooled configuration and a film-impingement cooled configuration were selected for a final design analysis in which the maximum turbine inlet temperature was determined as a function of the cooling air inlet temperature and the turbine inlet total pressure for each of the three chord sizes. The cooling air flow requirements were also determined for a varying cooling air inlet temperature with a constant turbine inlet temperature. It was determined that allowable turbine inlet temperature increases with increasing chord for the convection cooled and transpiration cooled designs, however, the film-convection cooled designs did not have a significant change in turbine inlet temperature with chord.
Directly connected heat exchanger tube section and coolant-cooled structure
Chainer, Timothy J.; Coico, Patrick A.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.
2015-09-15
A method is provided for fabricating a cooling apparatus for cooling an electronics rack, which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures, and a tube. The heat exchanger is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of coolant-carrying tube sections, each tube section having a coolant inlet and outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.
Directly connected heat exchanger tube section and coolant-cooled structure
Chainer, Timothy J; Coico, Patrick A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E
2014-04-01
A cooling apparatus for an electronics rack is provided which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures and a tube. The heat exchanger, which is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of distinct, coolant-carrying tube sections, each tube section having a coolant inlet and a coolant outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.
Pulse detonation engines and components thereof
NASA Technical Reports Server (NTRS)
Tangirala, Venkat Eswarlu (Inventor); Rasheed, Adam (Inventor); Vandervort, Christian Lee (Inventor); Dean, Anthony John (Inventor)
2009-01-01
A pulse detonation engine comprises a primary air inlet; a primary air plenum located in fluid communication with the primary air inlet; a secondary air inlet; a secondary air plenum located in fluid communication with the secondary air inlet, wherein the secondary air plenum is substantially isolated from the primary air plenum; a pulse detonation combustor comprising a pulse detonation chamber, wherein the pulse detonation chamber is located downstream of and in fluid communication with the primary air plenum; a coaxial liner surrounding the pulse detonation combustor defining a cooling plenum, wherein the cooling plenum is in fluid communication with the secondary air plenum; an axial turbine assembly located downstream of and in fluid communication with the pulse detonation combustor and the cooling plenum; and a housing encasing the primary air plenum, the secondary air plenum, the pulse detonation combustor, the coaxial liner, and the axial turbine assembly.
NASA Technical Reports Server (NTRS)
Finger, Harold B.; Schum, Harold J.; Buckner, Howard Jr.
1947-01-01
Effect of inlet-air pressure and temperature on the performance of the X24-2 10-Stage Axial-Flow Compressor from the X24C-2 turbojet engine was evaluated. Speeds of 80, 89, and 100 percent of equivalent design speed with inlet-air pressures of 6 and 12 inches of mercury absolute and inlet-air temperaures of approximately 538 degrees, 459 degrees,and 419 degrees R ( 79 degrees, 0 degrees, and minus 40 degrees F). Results were compared with prior investigations.
NASA Astrophysics Data System (ADS)
Barmina, I.; Valdmanis, R.; Zaķe, M.
2017-06-01
The development of the swirling flame flow field and gasification/ combustion dynamics at thermo-chemical conversion of biomass pellets has experimentally been studied using a pilot device, which combines a biomass gasifier and combustor by varying the inlet conditions of the fuel-air mixture into the combustor. Experimental modelling of the formation of the cold nonreacting swirling airflow field above the inlet nozzle of the combustor and the upstream flow formation below the inlet nozzle has been carried out to assess the influence of the inlet nozzle diameter, as well primary and secondary air supply rates on the upstream flow formation and air swirl intensity, which is highly responsible for the formation of fuel-air mixture entering the combustor and the development of combustion dynamics downstream of the combustor. The research results demonstrate that at equal primary axial and secondary swirling air supply into the device a decrease in the inlet nozzle diameter enhances the upstream air swirl formation by increasing swirl intensity below the inlet nozzle of the combustor. This leads to the enhanced mixing of the combustible volatiles with the air swirl below the inlet nozzle of the combustor providing a more complete combustion of volatiles and an increase in the heat output of the device.
Tuned intake air system for a rotary engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbett, W.D.
This patent describes a rotary internal combustion engine for an outboard board motor. It comprises a plenum chamber attached to the rear of the engine; and the plenum chamber including an inner wall attached to the exhaust manifold; an inlet conduit connecting the cooling air exit passage and the inlet air opening; an outlet conduit connecting the outlet air opening and the combustion air inlet; and the outlet conduit terminating in a combustion air outlet in the inner wall of the plenum chamber.
Turboprop engine and method of operating the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klees, G.W.; Johnson, P.E.
1986-02-11
This patent describes a turboprop engine consisting of: 1.) A compressor; 2.) A turbine; 3.) A combustion section; 4.) A variable pitch propeller; 5.) A speed reducing transmission; 6.) An air inlet; 7.) An air inlet bypass; 8.) An air outlet bypass duct; 9.) A flow control operatively positioned to receive air flow from the air inlet bypass and air flow from the low pressure compressor component. To direct the air flow to the air outlet bypass duct, and the air flow to the high pressure compressor component, the flow control has a first position where the air flow ismore » from. The high and low pressure compressor components and is directed to the air outlet bypass duct. The flow control has a second position for the air flow from the air inlet bypass duct to the air outlet bypass duct and air from the low pressure compressor component is directed to the high pressure compressor component. A method of operating a turboprop engine.« less
Radial lean direct injection burner
Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier
2012-09-04
A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.
Preliminary tests of an advanced high-temperature combustion system
NASA Technical Reports Server (NTRS)
Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.
1983-01-01
A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.
Sehmel, George A.
1979-01-01
An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
40 CFR 90.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exhaust emission compliance over the full range of air inlet filter systems and exhaust muffler systems. (b) The air inlet filter system and exhaust muffler system combination used on the test engine must...
Evaluation of capillary reinforced composites
NASA Technical Reports Server (NTRS)
Cahill, J. E.; Halase, J. F.; South, W. K.; Stoffer, L. J.
1985-01-01
Anti-icing of the inlet of jet engines is generally performed with high pressure heated air that is directed forward from the compressor through a series of pipes to various manifolds located near the structures to be anti-iced. From these manifolds, the air is directed to all flowpath surfaces that may be susceptible to ice formation. There the anti-icing function may be performed by either heat conduction or film heating. Unfortunately, the prospect of utilizing lighweight, high strength composites for inlet structures of jet engines has been frustrated by the low transverse thermal conductivity of such materials. It was the objective of this program to develop an advanced materials and design concept for anti-icing composite structures. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation.
Indicator providing continuous indication of the presence of a specific pollutant in air
NASA Technical Reports Server (NTRS)
Miller, C. G.; Bartera, R. E. (Inventor)
1976-01-01
A continuous HCl in-air indicator was developed which consists of a tube-like element with an inlet end through which a continuous stream of air containing HCl enters. The air flows downstream from the inlet end and exits the element's outlet end. Positioned between the element's inlet and outlet ends are first and second spaced apart photoelectric units, which are preferably positioned adjacent the inlet and outlet ends, respectively. Ammonia gas is injected into the air, flowing through the element, at a position between the two photoelectric units. The ammonia gas reacts with the HCl in the air to form ammonium chloride particles. The difference between the outputs of the two photoelectric units is an indication of the amount of HCl in the air stream.
Air ejector augmented compressed air energy storage system
Ahrens, F.W.; Kartsounes, G.T.
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
Air ejector augmented compressed air energy storage system
Ahrens, Frederick W.; Kartsounes, George T.
1980-01-01
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification
Kozubal, Eric Joseph
2016-12-13
An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.
Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification
Kozubal, Eric Joseph; Slayzak, Steven Joseph
2014-07-08
An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.
NASA Technical Reports Server (NTRS)
Racisz, Stanley F.
1946-01-01
Lift, drag, internal flow, and pressure distribution measurements were made on a low-drag airfoil incorporating various air inlet designs. Two leading-edge air inlets are developed which feature higher lift coefficients and critical Mach than the basic airfoil. Higher lift coefficients and critical speeds are obtained for leading half of these inlet sections but because of high suction pressures near exist, slightly lower critical speeds are obtained for the entire inlet section than the basic airfoil.
Flame Structure and Dynamics for an Array of Premixed Methane-Air Jets
NASA Astrophysics Data System (ADS)
Nigam, Siddharth P.; Lapointe, Caelan; Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Rieker, Gregory B.; Hamlington, Peter E.
2017-11-01
Premixed flames have been studied extensively, both experimentally and computationally, and their properties are reasonably well characterized for a range of conditions and configurations. However, the premixed combustion process is potentially much more difficult to predict when many such flames are arranged in a closely spaced array. These arrays must be better understood, in particular, for the design of industrial burners used in chemical and heat treatment processes. Here, the effects of geometric array parameters (e.g., angle and diameter of jet inlets, number of inlets and their respective orientation) and operating conditions (e.g., jet velocities, fuel-air ratio) on flame structure and dynamics are studied using large eddy simulations (LES). The simulations are performed in OpenFOAM using multi-step chemistry for a methane-air mixture, and temperature and chemical composition fields are characterized for a variety of configurations as functions of height above the array. Implications of these results for the design and operation of industrial burners are outlined.
NASA Technical Reports Server (NTRS)
Diehl, L. A.; Trout, A. M.
1976-01-01
Emissions and performance characteristics were determined for two full annular swirl-can combustors operated to near stoichiometric fuel-air ratio. Test condition variations were as follows: combustor inlet-air temperatures, 589, 756, 839, and 894 K; reference velocities, 24 to 37 meters per second; inlet pressure, 62 newtons per square centimeter; and fuel-air ratios, 0.015 to 0.065. The combustor average exit temperature and combustor efficiency were calculated from the combustor exhaust gas composition. For fuel-air ratios greater than 0.04, the combustion efficiency decreased with increasing fuel-air ratios in a near-linear manner. Increasing the combustor inlet air temperature tended to offset this decrease. Maximum oxides of nitrogen emission indices occurred at intermediate fuel-air ratios and were dependent on combustor design. Carbon monoxide levels were extremely high and were the primary cause of poor combustion efficiency at the higher fuel-air ratios. Unburned hydrocarbons were low for all test conditions. For high fuel-air ratios SAE smoke numbers greater than 25 were produced, except at the highest inlet-air temperatures.
NASA Technical Reports Server (NTRS)
Marchionna, N. R.; Diehl, L. A.; Trout, A. M.
1973-01-01
Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.
40 CFR 91.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (b) The air inlet filter system and exhaust muffler system combination used on the test engine must... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine inlet and exhaust systems. 91.407 Section 91.407 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...
Gas turbine engine with recirculating bleed
NASA Technical Reports Server (NTRS)
Adamson, A. P. (Inventor)
1978-01-01
Carbon monoxide and unburned hydrocarbon emissions in a gas turbine engine are reduced by bleeding hot air from the engine cycle and introducing it back into the engine upstream of the bleed location and upstream of the combustor inlet. As this hot inlet air is recycled, the combustor inlet temperature rises rapidly at a constant engine thrust level. In most combustors, this will reduce carbon monoxide and unburned hydrocarbon emissions significantly. The preferred locations for hot air extraction are at the compressor discharge or from within the turbine, whereas the preferred reentry location is at the compressor inlet.
Catalytic combustion of residual fuels
NASA Technical Reports Server (NTRS)
Bulzan, D. L.; Tacina, R. R.
1981-01-01
A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin K.; Zhang, Yuwen
2015-01-01
Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.
NASA Astrophysics Data System (ADS)
Susanto, Edy; Idrus Alhamid, M.; Nasruddin; Budihardjo
2018-03-01
Room Chamber is the most important in making a good Testing Laboratory. In this study, the 2-D modeling conducted to assess the effect placed the inlet on designing a test chamber room energy consumption of household refrigerators. Where the geometry room chamber is rectangular and approaching the enclosure conditions. Inlet varied over the side parallel to the outlet and compared to the inlet where the bottom is made. The purpose of this study was to determine and define the characteristics of the airflow in the room chamber using CFD simulation. CFD method is used to obtain flow characteristics in detail, in the form of vector flow velocity and temperature distribution inside the chamber room. The result found that the position of the inlet parallel to the outlet causes air flow cannot move freely to the side of the floor, even flow of air moves up toward the outlet. While by making the inlet is below, the air can move freely from the bottom up to the side of the chamber room wall as well as to help uniform flow.
Basic research in fan source noise: Inlet distortion and turbulence noise
NASA Technical Reports Server (NTRS)
Kantola, R. A.; Warren, R. E.
1978-01-01
A widely recognized problem in jet engine fan noise is the discrepancy between inflight and static tests. This discrepancy consists of blade passing frequency tones, caused by ingested turbulence that appear in the static tests but not in flight. To reduce the ingested distortions and turbulence in an anechoic chamber, a reverse cone inlet is used to guide the air into the fan. This inlet also has provisions for boundary layer suction and is used in conjunction with a turbulence control structure (TCS) to condition the air impinging on the fan. The program was very successful in reducing the ingested turbulence, to the point where reductions in the acoustic power at blade passing frequency are as high as 18 db for subsonic tip speeds. Even with this large subsonic tone suppression, the supersonic tip speed tonal content remains largely unchanged, indicating that the TCS did not appreciably attenuate the noise but effects the generation via turbulence reduction. Turbulence mapping of the inlet confirmed that the tone reductions are due to a reduction in turbulence, as the low frequency power spectra of the streamwise and transverse turbulence were reduced by up to ten times and 100 times, respectively.
An investigation of the internal and external aerodynamics of cattle trucks
NASA Technical Reports Server (NTRS)
Muirhead, V. U.
1983-01-01
Wind tunnel tests were conducted on a one-tenth scale model of a conventional tractor trailer livestock hauler to determine the air flow through the trailer and the drag of the vehicle. These tests were conducted with the trailer empty and with a full load of simulated cattle. Additionally, the drag was determined for six configurations, of which details for three are documented herein. These are: (1) conventional livestock trailer empty, (2) conventional trailer with smooth sides (i.e., without ventilation openings), and (3) a stream line tractor with modified livestock trailer (cab streamlining and gap fairing). The internal flow of the streamlined modification with simulated cattle was determined with two different ducting systems: a ram air inlet over the cab and NACA submerged inlets between the cab and trailer. The air flow within the conventional trailer was random and variable. The streamline vehicle with ram air inlet provided a nearly uniform air flow which could be controlled. The streamline vehicle with NACA submerged inlets provided better flow conditions than the conventional livestock trailer but not as uniform or controllable as the ram inlet configuration.
Experimental study on the inlet fogging system using two-fluid nozzles
NASA Astrophysics Data System (ADS)
Suryan, Abhilash; Kim, Dong Sun; Kim, Heuy Dong
2010-04-01
Large-capacity compressors in industrial plants and the compressors in gas turbine engines consume a considerable amount of power. The compression work is a strong function of the ambient air temperature. This increase in compression work presents a significant problem to utilities, generators and power producers when electric demands are high during the hot months. In many petrochemical process industries and gas turbine engines, the increase in compression work curtails plant output, demanding more electric power to drive the system. One way to counter this problem is to directly cool the inlet air. Inlet fogging is a popular means of cooling the inlet air to air compressors. In the present study, experiments have been performed to investigate the suitability of two-fluid nozzle for inlet fogging. Compressed air is used as the driving working gas for two-fluid nozzle and water at ambient conditions is dragged into the high-speed air jet, thus enabling the entrained water to be atomized in a very short distance from the exit of the two-fluid nozzle. The air supply pressure is varied between 2.0 and 5.0 bar and the water flow rate entrained is measured. The flow visualization and temperature and relative humidity measurements are carried out to specify the fogging characteristics of the two-fluid nozzle.
Evaluation of centrifugal compressor performance with water injection
NASA Technical Reports Server (NTRS)
Beede, William L; Hamrick, Joseph T; Withee, Joseph R , Jr
1951-01-01
The effects of water injection on a compressor are presented. To determine the effects of varying water-air ratio, the compressor was operated at a constant equivalent impeller speed over a range of water-air ratios and weight flows. Operation over a range of weight flows at one water-air ratio and two inlet air temperatures was carried out to obtain an indication of the effects of varying inlet air temperature. Beyond a water-air ratio of 0.03 there was no increase in maximum air-weight flow, a negligible rise in peak total-pressure ratio, and a decrease in peak adiabatic efficiency. An increase in inlet air temperature resulted in an increase in the magnitude of evaporation. An analysis of data indicated that the magnitude of evaporation within the compressor impeller was small.
Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; DeBonis, J. R.
1999-01-01
A study of the Trailblazer vehicle inlet was conducted using the Global Air Sampling Program (GASP) code for flight Mach numbers ranging from 4-12. Both perfect gas and finite rate chemical analysis were performed with the intention of making detailed comparisons between the two results. Inlet performance was assessed using total pressure recovery and kinetic energy efficiency. These assessments were based upon a one-dimensional stream-thrust-average of the axisymmetric flowfield. Flow visualization utilized to examine the detailed shock structures internal to this mixed-compression inlet. Kinetic energy efficiency appeared to be the least sensitive to differences between the perfect gas and finite rate chemistry results. Total pressure recovery appeared to be the most sensitive discriminator between the perfect gas and finite rate chemistry results for flight Mach numbers above Mach 6. Adiabatic wall temperature was consistently overpredicted by the perfect gas model for flight Mach numbers above Mach 4. The predicted shock structures were noticeably different for Mach numbers from 6-12. At Mach 4, the perfect gas and finite rate chemistry models collapse to the same result.
Cooling Air Inlet and Exit Geometries on Aircraft Engine Installations
NASA Technical Reports Server (NTRS)
Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.
1982-01-01
A semispan wing and nacelle of a typical general aviation twin-engine aircraft was tested to evaluate the cooling capability and drag or several nacelle shapes; the nacelle shapes included cooling air inlet and exit variations. The tests were conducted in the Ames Research Center 40 x 80-ft Wind Tunnel. It was found that the cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery, but only a minor effect on drag. Exit location showed large effect on drag, especially for those locations on the sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.
NASA Technical Reports Server (NTRS)
Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.
2014-01-01
The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.
Lin, Cherng-Yuan; Chen, Wei-Cheng
2004-01-01
A marine furnace made of stainless steel. combined with an automatic small-size oil-fired burner, was used to experimentally investigate the influences of calcium oxide content in fuel oil on the combustion and emission characteristics under varying temperatures and humidity of the inlet air. Marine fuel oil generally contains various extents of metallic oxides such as CaO, Fe2O3, V2O5, etc which might affect its burning properties. In this study, an air-conditioner was used to adjust the humidity and temperatures of the inlet air to preset values prior to entering the burner. The adjusted inlet air atomized the marine diesel oil A containing a calcium oxide compound, to form a heterogeneous reactant mixture. The reactant mixture was thereafter ignited by a high-voltage electrode in the burner and burned within the marine furnace. The probes of a gas analyzer, H2S analyzer and a K-type thermocouple were inserted into the radial positions of the furnace through the eight rectangular slots which were cut in the upper side of the furnace. The experimental results showed that an increase of either humidity or temperature of the inlet air caused the promotion of the reaction rate of the fuel. The existence of calcium oxide compound in the diesel fuel also facilitated the oxidation reaction in the combustion chamber. The addition of CaO in the diesel fuel under the conditions of higher temperature or higher relative humidity of the inlet air produced the following: higher concentrations of CO2, SO2, and H2S emissions, an increased burning efficiency, a lowered O2 level, production of excess air and NOx emissions as well as a lower thermal loss and a lower burning gas temperature, as compared with the conditions of a lower temperature or a lower humidity of the inlet air. In addition, the burning of diesel fuel with added CaO compound caused a large variation in the burning efficiency, thermal loss, plus CO2, O2, and excess air emissions between the conditions of higher temperature/higher humidity and lower temperature/lower humidity inlet air compared with no CaO addition in the fuel. Moreover, the burning efficiency and the concentrations of excess air and O2 emissions increased, while the thermal loss, burning gas temperature and H2S, SO2, NOx, and CO2 emissions decreased with the increase of the axial distance from the measured location to the burner nozzle.
Application of quadratic optimization to supersonic inlet control
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Zeller, J. R.
1971-01-01
The application of linear stochastic optimal control theory to the design of the control system for the air intake (inlet) of a supersonic air-breathing propulsion system is discussed. The controls must maintain a stable inlet shock position in the presence of random airflow disturbances and prevent inlet unstart. Two different linear time invariant control systems are developed. One is designed to minimize a nonquadratic index, the expected frequency of inlet unstart, and the other is designed to minimize the mean square value of inlet shock motion. The quadratic equivalence principle is used to obtain the best linear controller that minimizes the nonquadratic performance index. The two systems are compared on the basis of unstart prevention, control effort requirements, and sensitivity to parameter variations.
Improved particle impactor assembly for size selective high volume air sampler
Langer, G.
1987-03-23
Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented apertures of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind, the relatively larger particles and passes through two elongate apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. By appropriate selection of dimensions and the number of inlet apertures air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the inlet apertures, to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks. 6 figs.
Spray Drying of Mosambi Juice in Lab
NASA Astrophysics Data System (ADS)
Singh, S. V.; Verma, A.
2014-01-01
The studies on spray drying of mosambi juice were carried out with Laboratory spray dryer set-up (LSD-48 MINI SPRAY DRYER-JISL). Inlet and outlet air temperature and maltodextrin (drying agent) concentration was taken as variable parameters. Experiments were conducted by using 110 °C to 140 °C inlet air temperature, 60 °C to 70 °C outlet air temperature and 5-7 % maltodextrin concentration. The free flow powder of mosambi juice was obtained with 7 % maltodextrin at 140 °C inlet air temperature and 60 °C outlet air temperature. Fresh and reconstituted juices were evaluated for vitamin C, titrable acidity and sensory characteristics. The reconstituted juice was found slightly acceptable by taste panel.
Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines
NASA Technical Reports Server (NTRS)
Rothbrock, A M; Biermann, Arnold E
1938-01-01
Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.
Zhou, Qi Tony; Tong, Zhenbo; Tang, Patricia; Citterio, Mauro; Yang, Runyu; Chan, Hak-Kim
2013-04-01
The objective of this study is to investigate the effect of device design of the Aerolizer(®) on the aerosolization of a carrier-based dry powder inhaler formulation (Foradile(®)). The Aerolizer was modified by reducing the air inlet size and mouthpiece length to 1/3 of the original dimensions, or by increasing the grid voidage. Aerosolization of the powder formulation was assessed on a multi-stage liquid impinger at air flow rates of 30, 60, and 100 L/min. Coupled CFD-DEM simulations were performed to investigate the air flow pattern and particle impaction. There was no significant difference in the aerosolization behavior between the original and 1/3 mouthpiece length devices. Significant increases in FPF total and FPF emitted were demonstrated when the inlet size was reduced, and the results were explained by the increases in air velocity and turbulence from the CFD analysis. No significant differences were shown in FPF total and FPF emitted when the grid voidage was increased, but more drugs were found to deposit in induction port and to a lesser extent, the mouthpiece. This was supported by the CFD-DEM analysis which showed the particle-device collisions mainly occurred in the inhaler chamber, and the cross-grid design increased the particle-device collisions on both mouthpiece and induction port. The air inlet size and grid structure of the Aerolizer(®) were found to impact significantly on the aerosolization of the carrier-based powder.
NASA Technical Reports Server (NTRS)
Stakolich, E. G.
1978-01-01
An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.
Turbine Inlet Air Cooling for Industrial and Aero-derivative Gas Turbine in Malaysia Climate
NASA Astrophysics Data System (ADS)
Nordin, A.; Salim, D. A.; Othoman, M. A.; Kamal, S. N. Omar; Tam, Danny; Yusof, M. KY
2017-12-01
The performance of a gas turbine is dependent on the ambient temperature. A higher temperature results in a reduction of the gas turbine’s power output and an increase in heat rate. The warm and humid climate in Malaysia with its high ambient air temperature has an adverse effect on the performance of gas turbine generators. In this paper, the expected effect of turbine inlet air cooling technology on the annual performance of an aero-derivative gas turbine (GE LM6000PD) is compared against that of an industrial gas turbine (GEFr6B.03) using GT Pro software. This study investigated the annual net energy output and the annual net electrical efficiency of a plant with and without turbine inlet air cooling technology. The results show that the aero-derivative gas turbine responds more favorably to turbine inlet air cooling technology, thereby yielding higher annual net energy output and higher net electrical efficiency when compared to the industrial gas turbine.
Afterburner performance of film-vaporizing V-gutters for inlet temperatures up to 1255 K
NASA Technical Reports Server (NTRS)
Branstetter, J. R.; Reck, G. M.
1973-01-01
Combustion tests of five variations of an integral, spray-bar - flameholder combination were conducted in a 0.49-m-diameter duct. Emphasis was on low levels of augmentation. Fuel impinged on guide plates, mixed with a controlled amount of inlet air, vaporized, and was guided into the V-gutter wake. Combustor length was 0.92 m. Good performance was demonstrated at fuel-air ratios less than 0.025 for inlet temperatures of 920 to 1255 K. Maximum combustion efficiency occured in the vicinity of fuel-air ratios of 0.02 and was 92 to 100 percent, depending on the inlet temperature. Lean blowout fuel-air ratios were in the vicinity of 0.005. Improvements in rich-limit blowout resulted from enlarging the guide-flow passageway areas. Other means of extending the operating range are suggested. A simplified afterburner concept for application to advanced engines is described.
Besse, Richard E.; Van Metre, Peter C.; Wilson, Jennifer T.
2005-01-01
Woods Inlet is a flooded stream channel on the southern shore of Lake Worth along the western boundary of Air Force Plant 4 in Fort Worth, Texas, where elevated polychlorinated biphenyl (PCB) concentrations in sediment were detected in a previous study. In response, the U.S. Geological Survey, in cooperation with the U.S. Air Force, conducted a study in 2003 to map the extent of elevated PCB concentrations in Woods Inlet and to identify possible sources (or more specifically, source areas) of PCBs in the watershed of Woods Inlet. Three gravity cores (penetration to pre-reservoir sediment at three sites) and 17 box cores (surficial bottom sediment samples) were collected in Woods Inlet. Suspended sediment in stormwater runoff and streambed sediment were sampled in tributaries to Woods Inlet following storms. Assemblages of PCB congeners in surficial inlet sediments and suspended and streambed sediments were analyzed to indicate sources of PCBs in the inlet sediments on the basis of chemical signatures of PCBs. Woods Inlet receives runoff primarily from three tributaries: (1) Gruggs Park Creek, (2) the small unnamed creek that drains a Texas National Guard maintenance facility, called TNG Creek for this report, and (3) Meandering Road Creek. Twenty-seven of 209 possible PCB congeners were analyzed. The sum of the congeners was used as a measure of total PCB. The spatial distribution of total PCB concentrations in the inlet indicates that most PCBs are originating in the Meandering Road Creek watershed. Peak total PCB concentrations in the three gravity cores occurred at depths corresponding to sediment deposition dates of about 1960 for two of the cores and about 1980 for the third core. The magnitudes of peak total PCB concentrations in the gravity cores followed a spatial distribution generally similar to that of surficial bottom sediment concentrations. Total PCB concentrations in suspended and streambed sediment varied greatly between sites and indicated a likely source of PCBs associated with a sampling site that receives runoff from Air Force Plant 4. Three approaches to the analyses of congener assemblages indicate that PCBs in surficial bottom sediment of Woods Inlet primarily enter Lake Worth from Meandering Road Creek and that runoff from Air Force Plant 4 is a source of the PCBs in Meandering Road Creek. Although current (2003) transport of PCBs from Air Force Plant 4 to the creek is occurring, large decreases in PCB concentrations with decreasing age in two cores indicate that PCB loading to the inlet has decreased greatly since the 1960s. Because runoff entering Meandering Road Creek from some parts of Air Force Plant 4 was not measured or sampled in this study, it cannot be said with certainty that the Air Force Plant 4 site sampled is the only source of PCBs to Meandering Road Creek.
Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles
NASA Astrophysics Data System (ADS)
Maqsood, Omar Shahzada
Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.
Exhaust heated hydrogen and oxygen producing catalytic converter for combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, E.T.
1977-07-26
A steam generator is provided in operative association with a source of water and the exhaust system of a combustion engine including an air induction system provided with primary fuel inlet structure and supplemental fuel inlet structure. The steam generator derives its heat for converting water into steam from the exhaust system of the combustion engine and the steam generator includes a steam outlet communicated with and opening into one end of an elongated tubular housing disposed in good heat transfer relation with the exhaust system of the combustion engine and having a gas outlet at its other end communicatedmore » with the supplemental fuel inlet of the induction system. The tubular housing has iron filings disposed therein and is in such heat transfer relation with the exhaust system of the combustion engine so as to elevate the temperature of steam passing therethrough and to heat the iron filings to the extent that passage of the heated steam over the heated filings will result in hydrogen and oxygen gas being produced in the tubular housing for subsequent passage to the supplemental fuel inlet of the combustion engine induction system.« less
Investigation of corner shock boundary layer interactions to understand inlet unstart
NASA Astrophysics Data System (ADS)
Funderburk, Morgan
2015-11-01
Inlet unstart is a detrimental phenomenon in dual-mode ramjet/scramjet engines that causes severe loss of thrust, large transient structural load, and potentially a loss of the aircraft. In order to analyze the effects that the corner shock boundary layer interaction (SBLI) has on initiating and perpetuating inlet unstart, a qualitative and quantitative investigation into mean and dynamic features of corner SBLI at various Mach numbers is made. Surface streakline visualization showed that the corner SBLI is highly three-dimensional with a dominant presence of corner separation vortex. Further, the peak r.m.s. pressure was located at the periphery of corner separation vortex, suggesting that the unsteady loading is caused by the corner vortex. Power spectral densities of wall-pressure fluctuations in the peak r.m.s. location were analyzed in order to characterize the dominant frequencies of oscillation of the flow structures and to unravel the dynamic interactions between them in order to expand the operating margin of future hypersonic air breathing vehicles.
Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization
NASA Technical Reports Server (NTRS)
Ingebo, R. D.
1984-01-01
Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.
Jet spoiler arrangement for wind turbine
Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.
1983-09-15
An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.
Jet spoiler arrangement for wind turbine
Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.
1985-01-01
An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.
Jet spoiler arrangement for wind turbine
NASA Astrophysics Data System (ADS)
Cyrus, J. D.; Kablec, E. G.; Klimas, P. C.
1983-09-01
An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stal conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.
Performance of the University of Denver Low Turbulence, Airborne Aerosol Inlet in ACE-Asia
NASA Astrophysics Data System (ADS)
Lafleur, B.; Wilson, J. C.; Seebaugh, W. R.; Gesler, D.; Hilbert, H.; Mullen, J.; Reeves, J. M.
2002-12-01
The University of Denver Low Turbulence Inlet (DULTI) was flown on the NCAR C-130 in ACE-Asia. This inlet delivered large sample flows at velocities of a few meters per second at the exit of the inlet. This flow was slowed from the true air speed of the aircraft (100 to 150 m/s) to a few meters per second in a short diffuser with porous walls. The flow in the diffusing section was laminar. The automatic control system kept the inlet operating at near isokinetic intake velocities and in laminar flow for nearly all the flight time. The DULTI permits super micron particles to be sampled and delivered with high efficiency to the interior of the aircraft where they can be measured or collected. Because most of the air entering the inlet is removed through the porous medium, the sample flow experiences inertial enhancements. Because these enhancements occur in laminar flow, they are calculable using FLUENT. Enhancement factors are defined as the ratio of the number of particles of a given size per unit mass of air in the sample to the number of particles of that size per unit mass of air in the ambient. Experimenters divide measured mixing ratios of the aerosol by the enhancement factor to get the ambient mixing ratio of the particles. The diffuser used in ACE-Asia differed from that used in PELTI (2000), TexAQS2000 (2000) and ITCT (2002). In this poster, the flow parameters measured in the inlet in flight are compared with those calculated from FLUENT. And enhancement factors are presented for flight conditions. The enhancement factors are found to depend upon the Stokes number of particles in the entrance to the inlet and the ratio of the mass flow rate of air removed by suction to the mass flow rate delivered as sample.
2014-07-29
14.3. The momentum and scalar mixing is investigated through the solution of the Reynolds-Averaged Navier Stokes (RANS) equations. The mean scalar...demonstrated symmetry , only a one-half section of the geometry is considered. All numerical simulations capture salient flow structures such as the counter...distribution unlimited Symmetry Plane Walls Diluents’ Inlet Vy = 100 m/s Previous Numerical Work at AFRL: Air-to-Air Experimental Configuration
47. View of "dry air inlets" to waveguides entering scanner ...
47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
NASA Technical Reports Server (NTRS)
Smart, Michael K.; Trexler, Carl A.
2003-01-01
Wind-tunnel testing of a hypersonic inlet with rectangular-to-elliptical shape transition has been conducted at Mach 4.0. These tests were performed to investigate the starting and back-pressure limits of this fixed-geometry inlet at conditions well below the Mach 5.7 design point. Results showed that the inlet required side spillage holes in order to self-start at Mach 4.0. Once started, the inlet generated a compression ratio of 12.6, captured almost 80% of available air and withstood a back-pressure ratio of 30.3 relative to tunnel static pressure. The spillage penalty for self-starting was estimated to be 4% of available air. These experimental results, along with previous experimental results at Mach 6.2 indicate that fixed-geometry inlets with rectangular-to-elliptical shape transition are a viable configuration for airframe- integrated scramjets that operate over a significant Mach number range.
Boosting devices with integral features for recirculating exhaust gas
Wu, Ko -Jen
2015-09-15
According to one embodiment of the invention, a compressor housing includes a compressor inlet in fluid communication with a compressor volute configured to house a compressor wheel, the compressor inlet configured to provide a first air flow to the compressor wheel and a compressor outlet in fluid communication with the compressor volute, the compressor outlet configured to direct a compressed gas to an intake manifold. The compressor housing further includes an exhaust gas recirculation inlet port in fluid communication with the compressor volute, the exhaust gas recirculation inlet port being configured to combine an exhaust gas flow with the air flow to the compressor wheel.
NASA Technical Reports Server (NTRS)
Marchionna, N. R.
1973-01-01
An annular gas turbine combustor was tested with heated natural gas fuel to determine the effect of increasing fuel temperature on the formation of oxides of nitrogen. Fuel temperatures ranged from ambient to 800 K (980 F). Combustor pressure was 6 atmospheres and the inlet air temperature ranged from 589 to 894 K (600 to 1150 F). The NOx emission index increased with fuel temperature at a rate of 4 to 9 percent per 100 K (180 F), depending on the inlet air temperature. The rate of increase in NOx was lowest at the highest inlet air temperature tested.
Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization
NASA Technical Reports Server (NTRS)
Ingebo, R. D.
1984-01-01
Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910
Multi-tube arrangement for combustor and method of making the multi-tube arrangement
Ziminsky, Willy Steve [Simpsonville, SC
2012-07-31
A fuel injector tube includes a one piece, unitary, polygonal tube having an inlet end and an outlet end. The fuel injector tube further includes a fuel passage extending from the inlet end to the outlet end along a longitudinal axis of the polygonal tube, a plurality of air passages extending from the inlet end to the outlet end and surrounding the fuel passage, and a plurality of fuel holes. Each fuel hole connects an air passage with the fuel passage. The inlet end of the polygonal tube is formed into a fuel tube. A fuel injector includes a plurality of fuel injector tubes and a plate. The plurality of fuel tubes are connected to the plate adjacent the inlet ends of the plurality of fuel injector tubes.
NASA Astrophysics Data System (ADS)
Michishita, Kazutaka; Nomura, Hiroshi; Ujiie, Yasushige; Okai, Keiichi
A lab-scale combustion wind tunnel was developed for investigation of low-pressure ignition and flame holding in a sub-scale pre-cooled turbojet engine with hydrogen fuel in order to make engine start at high altitudes sure. The combustion wind tunnel is a blow-down type. A fuel injector of the sub-scale pre-cooled turbojet engine was installed into the combustion wind tunnel. Conditions in which a flame can be stabilized at the fuel injector were examined. The combustor pressure and equivalence ratio were varied from 10 to 40 kPa and from 0.4 to 0.8, respectively. The mean inlet air velocity was varied from 2 to 48 m/s. Flames stabilized at 20 kPa in pressure and 0.6 in equivalence ratio were observed. It was found that the decrease in the combustor pressure narrows the mean inlet air velocity range for successful flame holdings. Flame holding at lower combustor pressures is realized at the equivalence ratio of 0.4 in the low mean inlet air velocity range, and at the equivalence ratio of 0.6 in the high mean inlet air velocity range. Flame luminosity is the largest near the fuel injector. The flame luminosity distribution becomes flatter as the increase in the mean inlet air velocity.
Pandey, Preetanshu; Levins, Christopher; Pafiakis, Steve; Zacour, Brian; Bindra, Dilbir S; Trinh, Jade; Buckley, David; Gour, Shruti; Sharif, Shasad; Stamato, Howard
2018-07-01
The objective of this study was to improve the disintegration and dissolution characteristics of a highly water-soluble tablet matrix by altering the manufacturing process. A high disintegration time along with high dependence of the disintegration time on tablet hardness was observed for a high drug loading (70% w/w) API when formulated using a high-shear wet granulation (HSWG) process. Keeping the formulation composition mostly constant, a fluid-bed granulation (FBG) process was explored as an alternate granulation method using a 2 (4-1) fractional factorial design with two center points. FBG batches (10 batches) were manufactured using varying disingtegrant amount, spray rate, inlet temperature (T) and atomization air pressure. The resultant final blend particle size was affected significantly by spray rate (p = .0009), inlet T (p = .0062), atomization air pressure (p = .0134) and the interaction effect between inlet T*spray rate (p = .0241). The compactibility of the final blend was affected significantly by disintegrant amount (p < .0001), atomization air pressure (p = .0013) and spray rate (p = .05). It was observed that the fluid-bed batches gave significantly lower disintegration times than the HSWG batches, and mercury intrusion porosimetry data revealed that this was caused by the higher internal pore structure of tablets manufactured using the FBG batches.
Fuel quality combustion analysis
NASA Technical Reports Server (NTRS)
Naegeli, D. W.; Moses, C. A.
1979-01-01
A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.
Solar Cell Modules With Improved Backskin
Chevrefils, Andre; Grigore, Daniel Gheorghe
2001-01-23
The present invention relates to gas turbines and more particularly to a device for controlling the flow of cooling air through a flowpath in a turbine blade. The device can be inserted in the inlet opening of the blade flowpath and be retained therein. The device comprises a plug member for adjusting the flow of cooling air through the flowpath. The plug member comprises a retaining portion for retaining the plug member at the inlet opening of the flowpath and a blocking portion inserted within the flowpath for reducing the cross-sectional area of the inlet opening. Such a device is inexpensive and can be easily inserted in the inlet opening of a blade flowpath and retained therein.
Effects of an Air-Powder Abrasive Device When Used during Periodontal Flap Surgery in Dogs.
1983-01-01
instru- ments, ultrasonic devices, air driven reciprocating hand- pieces, and air driven rotary handpieces (Schaffer, 1967). None of these techniques...system, the Prophy-Jet Mark IV C-100 , may be an alternative to conventional mechanical and chemical methods of detoxifying roots. The handpiece is...electric current and uses inlet air pressure of 65 to 100 p.s.i. and inlet water pressure of 25 to 60 p.s.i. The handpiece propels particles of the
Flame Tube NOx Emissions Using a Lean-Direct-Wall-Injection Combustor Concept
NASA Technical Reports Server (NTRS)
Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.
2001-01-01
A low-NOx emissions combustor concept has been demonstrated in flame tube tests. A lean-direct injection concept was used where the fuel is injected directly into the flame zone and the overall fuel-air mixture is lean. In this concept the air is swirled upstream of a venturi section and the fuel is injected radially inward into the air stream from the throat section using a plain-orifice injector. Configurations have two-, four-, or six-wall fuel injectors and in some cases fuel is also injected from an axially located simplex pressure atomizer. Various orifice sizes of the plain-orifice injector were evaluated for the effect on NOx. Test conditions were inlet temperatures up to 8 1 OK, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 15 percent of the combustion air would be used for liner cooling and using an advanced engine cycle, for the best configuration, the NOx emissions using the correlation is estimated to be <75 percent of the 1996 ICAO standard.
Exchange inlet optimization by genetic algorithm for improved RBCC performance
NASA Astrophysics Data System (ADS)
Chorkawy, G.; Etele, J.
2017-09-01
A genetic algorithm based on real parameter representation using a variable selection pressure and variable probability of mutation is used to optimize an annular air breathing rocket inlet called the Exchange Inlet. A rapid and accurate design method which provides estimates for air breathing, mixing, and isentropic flow performance is used as the engine of the optimization routine. Comparison to detailed numerical simulations show that the design method yields desired exit Mach numbers to within approximately 1% over 75% of the annular exit area and predicts entrained air massflows to between 1% and 9% of numerically simulated values depending on the flight condition. Optimum designs are shown to be obtained within approximately 8000 fitness function evaluations in a search space on the order of 106. The method is also shown to be able to identify beneficial values for particular alleles when they exist while showing the ability to handle cases where physical and aphysical designs co-exist at particular values of a subset of alleles within a gene. For an air breathing engine based on a hydrogen fuelled rocket an exchange inlet is designed which yields a predicted air entrainment ratio within 95% of the theoretical maximum.
NASA Technical Reports Server (NTRS)
Tornabene, Robert
2005-01-01
In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.
NASA Technical Reports Server (NTRS)
Berkey, William E.
1949-01-01
An investigation was conducted to determine the effect of turbine-disk cooling with air on the efficiency and the power output of the radial-flow turbine from the Turbo Engineering Corporation TT13-18 turbosupercharger. The turbine was operated at a constant range of ratios of turbine-inlet total pressure to turbine-outlet static pressure of 1,5 and 2.0, turbine-inlet total pressure of 30 inches mercury absolute, turbine-inlet total temperature of 12000 to 20000 R, and rotor speeds of 6000 to 22,000 rpm, Over the normal operating range of the turbine, varying the corrected cooling-air weight flow from approximately 0,30 to 0.75 pound per second produced no measurable effect on the corrected turbine shaft horsepower or the turbine shaft adiabatic efficiency. Varying the turbine-inlet total temperature from 12000 to 20000 R caused no measurable change in the corrected cooling-air weight flow. Calculations indicated that the cooling-air pumping power in the disk passages was small and was within the limits of the accuracy of the power measurements. For high turbine power output, the power loss to the compressor for compressing the cooling air was approximately 3 percent of the total turbine shaft horsepower.
Mukherjee, Tusharmouli; Plakogiannis, Fotios M
2012-01-01
The purpose of this study was to select the critical process parameters of the fluid bed processes impacting the quality attribute of a solid self-microemulsifying (SME) system of albendazole (ABZ). A fractional factorial design (2(4-1)) with four parameters (spray rate, inlet air temperature, inlet air flow, and atomization air pressure) was created by MINITAB software. Batches were manufactured in a laboratory top-spray fluid bed at 625-g scale. Loss on drying (LOD) samples were taken throughout each batch to build the entire moisture profiles. All dried granulation were sieved using mesh 20 and analyzed for particle size distribution (PSD), morphology, density, and flow. It was found that as spray rate increased, sauter-mean diameter (D(s)) also increased. The effect of inlet air temperature on the peak moisture which is directly related to the mean particle size was found to be significant. There were two-way interactions between studied process parameters. The main effects of inlet air flow rate and atomization air pressure could not be found as the data were inconclusive. The partial least square (PLS) regression model was found significant (P < 0.01) and predictive for optimization. This study established a design space for the parameters for solid SME manufacturing process.
Methanol partial oxidation reformer
Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael
1999-01-01
A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.
Methanol partial oxidation reformer
Ahmed, S.; Kumar, R.; Krumpelt, M.
1999-08-17
A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.
Methanol partial oxidation reformer
Ahmed, S.; Kumar, R.; Krumpelt, M.
1999-08-24
A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.
Methanol partial oxidation reformer
Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael
2001-01-01
A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.
40 CFR 90.424 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Air temperature at CVS pump inlet PTI °C ±1.11 °C. Pressure depression at CVS pump inlet PPI kPa ±0... pump inlet depression that will yield a minimum of six data points for the total calibration. Allow the...: PB = barometric pressure, kPa PPI = Pump inlet depression, kPa. (iii) The correlation function at...
40 CFR 90.424 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Air temperature at CVS pump inlet PTI °C ±1.11 °C. Pressure depression at CVS pump inlet PPI kPa ±0... pump inlet depression that will yield a minimum of six data points for the total calibration. Allow the...: PB = barometric pressure, kPa PPI = Pump inlet depression, kPa. (iii) The correlation function at...
40 CFR 90.424 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Air temperature at CVS pump inlet PTI °C ±1.11 °C. Pressure depression at CVS pump inlet PPI kPa ±0... pump inlet depression that will yield a minimum of six data points for the total calibration. Allow the...: PB = barometric pressure, kPa PPI = Pump inlet depression, kPa. (iii) The correlation function at...
40 CFR 90.424 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Air temperature at CVS pump inlet PTI °C ±1.11 °C. Pressure depression at CVS pump inlet PPI kPa ±0... pump inlet depression that will yield a minimum of six data points for the total calibration. Allow the...: PB = barometric pressure, kPa PPI = Pump inlet depression, kPa. (iii) The correlation function at...
40 CFR 90.424 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Air temperature at CVS pump inlet PTI °C ±1.11 °C. Pressure depression at CVS pump inlet PPI kPa ±0... pump inlet depression that will yield a minimum of six data points for the total calibration. Allow the...: PB = barometric pressure, kPa PPI = Pump inlet depression, kPa. (iii) The correlation function at...
Combustion-gas recirculation system
Baldwin, Darryl Dean
2007-10-09
A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.
Injectors for Multipoint Injection
NASA Technical Reports Server (NTRS)
Prociw, Lev Alexander (Inventor); Ryon, Jason (Inventor)
2015-01-01
An injector for a multipoint combustor system includes an inner air swirler which defines an interior flow passage and a plurality of swirler inlet ports in an upstream portion thereof. The inlet ports are configured and adapted to impart swirl on flow in the interior flow passage. An outer air cap is mounted outboard of the inner swirler. A fuel passage is defined between the inner air swirler and the outer air cap, and includes a discharge outlet between downstream portions of the inner air swirler and the outer air cap for issuing fuel for combustion. The outer air cap defines an outer air circuit configured for substantially unswirled injection of compressor discharge air outboard of the interior flow passage.
NASA Astrophysics Data System (ADS)
Wang, Yulin; Yue, Like; Wang, Shixue
2017-03-01
The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.
TeGrotenhuis, Ward Evan
2013-11-05
A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.
STUDY PROGRAM FOR TURBO-COOLER FOR PRODUCING ENGINE COOLING AIR.
VANES , STAGNATION POINT, DECELERATION, ACCELERATION, SUPERSONIC DIFFUSERS, TURBINE BLADES , EVAPOTRANSPIRATION, LIQUID COOLED, HEAT TRANSFER, GAS BEARINGS, SEALS...HYPERSONIC AIRCRAFT , COOLING + VENTILATING EQUIPMENT), (*GAS TURBINES , COOLING + VENTILATING EQUIPMENT), HYPERSONIC FLOW, AIR COOLED, AIRCRAFT ... ENGINES , FEASIBILITY STUDIES, PRESSURE, SUPERSONIC CHARACTERISTICS, DESIGN, HEAT EXCHANGERS, COOLING (U) AXIAL FLOW TURBINES , DUCT INLETS, INLET GUIDE
Tilt Nacelle Vertical and Short Takeoff and Landing Engine
1979-03-21
Center Director John McCarthy, left, and researcher Al Johns pose with a one-third scale model of a Grumman Aerospace tilt engine nacelle for Vertical and Short Takeoff and Landing (V/STOL) in the 9- by 15-Foot Low Speed Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying tilt nacelle and inlet issues for several years. One area of concern was the inlet flow separation during the transition from horizontal to vertical flight. The separation of air flow from the inlet’s internal components could significantly stress the fan blades or cause a loss of thrust. In 1978 NASA researchers Robert Williams and Al Johns teamed with Grumman’s H.C. Potonides to develop a series of tests in the Lewis 9- by 15-foot tunnel to study a device designed to delay the flow separation by blowing additional air into the inlet. A jet of air, supplied through the hose on the right, was blown over the inlet surfaces. The researchers verified that the air jet slowed the flow separation. They found that the blowing on boundary layer control resulted in a doubling of the angle-of-attack and decreases in compressor blade stresses and fan distortion. The tests were the first time the concept of blowing air for boundary layer control was demonstrated. Boundary layer control devices like this could result in smaller and lighter V/STOL inlets.
Preliminary investigation of thermal behaviour of PCM based latent heat thermal energy storage
NASA Astrophysics Data System (ADS)
Pop, Octavian G.; Fechete Tutunaru, Lucian; Bode, Florin; Balan, Mugur C.
2018-02-01
Solid-liquid phase change is used to accumulate and release cold in latent heat thermal energy storage (LHTES) in order to reduce energy consumption of air cooling system in buildings. The storing capacity of the LHTES depends greatly on the exterior air temperatures during the summer nights. One approach in intensifying heat transfer is by increasing the air's velocity. A LHTES was designed to be integrated in the air cooling system of a building located in Bucharest, during the month of July. This study presents a numerical investigation concerning the impact of air inlet temperatures and air velocity on the formation of solid PCM, on the cold storing capacity and energy consumption of the LHTES. The peak amount of accumulated cold is reached at different air velocities depending on air inlet temperature. For inlet temperatures of 14°C and 15°C, an increase of air velocity above 50% will not lead to higher amounts of cold being stored. For Bucharest during the hottest night of the year, a 100 % increase in air velocity will result in 5.02% more cold being stored, at an increase in electrical energy consumption of 25.30%, when compared to the reference values.
Advanced Diesel Oil Fuel Processor Development
1986-06-01
water exit 29 sample quencher: gas sample line inlet 30 sample quencher: gas sample line exit 31 sample quencher: cooling water inlet 32 desulfuriser ...exit line 33, 34 desulfurimer 35 heat exchanger: process gas exit (to desulfuriser ) 38 shift reactor inlet (top) 37 shift reactor: cooling air exit
Application of microturbines to control emissions from associated gas
Schmidt, Darren D.
2013-04-16
A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.
High-throughput liquid-absorption air-sampling apparatus and methods
Zaromb, Solomon
2000-01-01
A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is <10 cm of water, usually <5 cm of water. The sampler's collection efficiency is usually >20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.
NASA Technical Reports Server (NTRS)
Howe, Robert H. (Inventor); Flynn, Kenneth P. (Inventor); Stapleton, Thomas J. (Inventor)
2014-01-01
A contaminate control device for filtering contaminates from a gas such as air is provided. The device includes a housing having a first inlet and a first outlet. An axial flow filter is fluidly coupled between the first inlet and the first outlet, the axial flow filter has a second inlet and a second outlet. A second filter disposed about the axial flow filter and is fluidly coupled between the first inlet and the first outlet, the second filter having a third inlet on an inner diameter and a third outlet disposed on an outer diameter. A flow restrictor is fluidly coupled between the second inlet and the first inlet.
Bassuoni, M M
2014-03-01
The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.
Improving commercial broiler attic inlet ventilation thorugh CFD analysis
USDA-ARS?s Scientific Manuscript database
The use of solar heated attic air is an area of increasing interest in commercial poultry production. Attic inlets satisfy the demand for alternative heating while being simple to implement in an existing poultry house. A number of demonstration projects have suggested that attic inlets may decrease...
Spontaneous ignition temperature limits of jet A fuel in research-combustor segment
NASA Technical Reports Server (NTRS)
Ingebo, R. D.
1974-01-01
The effects of inlet-air pressure and reference velocity on the spontaneous-ignition temperature limits of Jet A fuel were determined in a combustor segment with a primary-zone length of 0.076 m (3 in.). At a constant reference velocity of 21.4 m/sec (170 ft/sec), increasing the inlet-air pressure from 21 to 207 N/sq cm decreased the spontaneous-ignition temperature limit from approximately 700 to 555 K. At a constant inlet-air pressure of 41 N/sq cm, increasing the reference velocity from 12.2 to 30.5 m/sec increased the spontaneous-ignition temperature limit from approximately 575 to 800 K. Results are compared with other data in the literature.
Combustor with fuel preparation chambers
NASA Technical Reports Server (NTRS)
Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)
2001-01-01
An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.
Flame holding tolerant fuel and air premixer for a gas turbine combustor
York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve
2012-11-20
A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.
Development of an Air Brayton solar receiver
NASA Technical Reports Server (NTRS)
1980-01-01
Various receiver configurations and operating conditions were examined. The interface requirements between the receiver/concentrator/power module were addressed. Production cost estimates were obtained to determine the cost of the receiver during the 1980 timeframe. A conceptual design of an air Brayton solar receiver is presented based on the results. The following design goals were established: (1)peak thermal input power - 85 KWt; (2)receiver outlet air temperature - 1500 F; (3)receiver inlet air temperature - 1050 F; (4)design mass flow rate - 0.533 lb/sec; and (5)design receiver inlet pressure - 36.75 psia.
Room air monitor for radioactive aerosols
Balmer, D.K.; Tyree, W.H.
1987-03-23
A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.
NASA Technical Reports Server (NTRS)
Tacina, Robert; Wey, Changlie; Laing, Peter; Mansour, Adel
2002-01-01
A low NO(x) emissions combustor has been demonstrated in flame-tube tests. A multipoint, lean-direct injection concept was used. Configurations were tested that had 25- and 36- fuel injectors in the size of a conventional single fuel injector. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers and fuel manifold into a single element. Test conditions were inlet temperatures up to 810 K, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation was developed relating the NO(x) emissions with the inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 10 percent of the combustion air would be used for liner cooling and using a hypothetical engine cycle, the NO(x) emissions using the correlation from flame-tube tests were estimated to be less than 20 percent of the 1996 ICAO standard.
Experimental Investigation of Actuators for Flow Control in Inlet Ducts
NASA Astrophysics Data System (ADS)
Vaccaro, John; Elimelech, Yossef; Amitay, Michael
2010-11-01
Attractive to aircraft designers are compact inlets, which implement curved flow paths to the compressor face. These curved flow paths could be employed for multiple reasons. One of which is to connect the air intake to the engine embedded in the aircraft body. A compromise must be made between the compactness of the inlet and its aerodynamic performance. The aerodynamic purpose of inlets is to decelerate the oncoming flow before reaching the engine while minimizing total pressure loss, unsteadiness and distortion. Low length-to-diameter ratio inlets have a high degree of curvature, which inevitably causes flow separation and secondary flows. Currently, the length of the propulsion system is constraining the overall size of Unmanned Air Vehicles (UAVs), thus, smaller more efficient aircrafts could be realized if the propulsion system could be shortened. Therefore, active flow control is studied in a compact (L/D=1.5) inlet to improve performance metrics. Actuation from a spanwise varying coanda type ejector actuator and a hybrid coanda type ejector / vortex generator jet actuator is investigated. Special attention will be given to the pressure recovery at the AIP along with unsteady pressure signatures along the inlet surface and at the AIP.
NASA Technical Reports Server (NTRS)
Galen, T. J. (Inventor)
1986-01-01
A fluid sampler for collecting a plurality of discrete samples over separate time intervals is described. The sampler comprises a sample assembly having an inlet and a plurality of discreet sample tubes each of which has inlet and outlet sides. A multiport dual acting valve is provided in the sampler in order to sequentially pass air from the sample inlet into the selected sample tubes. The sample tubes extend longitudinally of the housing and are located about the outer periphery thereof so that upon removal of an enclosure cover, they are readily accessible for operation of the sampler in an analysis mode.
Development of Cowling for Long-nose Air-cooled Engine in the NACA Full-scale Wind Tunnel
NASA Technical Reports Server (NTRS)
Guryansky, Eugene R.; Silverstein, Abe
1941-01-01
An investigation of cowlings for long-nose radial engines was made on the Curtiss XP-42 fighter in the NACA full-scale wind tunnel. The unsatisfactory aerodynamic characteristics of all the cowlings with scoop inlets tested led to the development of the annular high-velocity inlet cowlings. Tests showed that ratio of cooling-air velocity at cowling inlet to stream velocity should not be less than 0.5 for this type of cowling and that critical compressibility speed can be extended to more than 500 mph at 20,000 ft altitude.
Low-speed performance of an axisymmetric, mixed-compression, supersonic inlet with auxiliary inlets
NASA Technical Reports Server (NTRS)
Trefny, C. J.; Wasserbauer, J. W.
1986-01-01
A test program was conducted to determine the aerodynamic performance and acoustic characteristics associated with the low-speed operation of a supersonic, axisymmetric, mixed-compression inlet with auxiliary inlets. Blow-in-auxiliary doors were installed on the NASA Ames P inlet. One door per quadrant was located on the cowl in the subsonic diffuser selection of the inlet. Auxiliary inlets with areas of 20 and 40 percent of the inlet capture area were tested statically and at free-stream Mach numbers of 0.1 and 0.2. The effects of boundary layer bleed inflow were investigated. A JT8D fan simulator driven by compressed air was used to pump inlet flow and to provide a characteristic noise signature. Baseline data were obtained at static free-stream conditions with the sharp P-inlet cowl lip replaced by a blunt lip. Auxiliary inlets increased overall total pressure recovery of the order of 10 percent.
Cloud-Droplet Ingestion in Engine Inlets with Inlet Velocity Ratios of 1.0 and 0.7
NASA Technical Reports Server (NTRS)
Brun, Rinaldo J
1957-01-01
The paths of cloud droplets into two engine inlets have been calculated for a wide range of meteorological and flight conditions. The amount of water in droplet form ingested by the inlets and the amount and distribution of water impinging on the inlet walls are obtained from these droplet-trajectory calculations. In both types of inlet, a prolate ellipsoid of revolution represents either part or all of the forebody at the center of an annular inlet to an engine. The configurations can also represent a fuselage of an airplane with side ram-scoop inlets. The studies were made at an angle of attack of 0 degree. The principal difference between the two inlets studied is that the inlet-air velocity of one is 0.7 that of the other. The studies of the two velocity ratios lead to some important general concepts of water ingestion in inlets.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... chemistry, scrubber pressure drop, and scrubber inlet gas temperature hourly. The final rule does not... pressure) and inlet gas temperature to be based on the minimum flow rate (or line pressure) or maximum inlet gas temperature established during the initial performance test. It also includes two additional...
1942-05-01
2000 rpm and 160° E Inlet==Air Temperature ?erformanoe Of.zeferenoe fuels,- When teeted at 2000 rpm aad 150° ~ Inlet-air temperatu ~e, the referenoe...naphtha 70 peroent phosphorlo acid iso-ootane in 15 percent light naphtha and 15 percent benzene 56 percent aviation alkyl- ate and 9 percent hydro
Application of quadratic optimization to supersonic inlet control.
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Zeller, J. R.
1972-01-01
This paper describes the application of linear stochastic optimal control theory to the design of the control system for the air intake, the inlet, of a supersonic air-breathing propulsion system. The controls must maintain a stable inlet shock position in the presence of random airflow disturbances and prevent inlet unstart. Two different linear time invariant controllers are developed. One is designed to minimize a nonquadratic index, the expected frequency of inlet unstart, and the other is designed to minimize the mean square value of inlet shock motion. The quadratic equivalence principle is used to obtain a linear controller that minimizes the nonquadratic index. The two controllers are compared on the basis of unstart prevention, control effort requirements, and frequency response. It is concluded that while controls designed to minimize unstarts are desirable in that the index minimized is physically meaningful, computation time required is longer than for the minimum mean square shock position approach. The simpler minimum mean square shock position solution produced expected unstart frequency values which were not significantly larger than those of the nonquadratic solution.
Pressure compensated flow control valve
Minteer, Daniel J.
1999-01-01
The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.
Solid metabolic waste transport and stowage investigation
NASA Technical Reports Server (NTRS)
Burt, R. A.; Koesterer, M. G.; Hunt, S. R., Jr.
1974-01-01
The basic Waste Collection System (WCS) design under consideration utilized air flow to separate the stool from the WCS user and to transport the fecal material to a slinger device for subsequent deposition on a storage bowel. The major parameters governing stool separation and transport were found to be the area of the air inlet orifices, the configuration of the air inlet orifice and the transport air flow. Separation force and transport velocity of the stool were studied. The developed inlet orifice configuration was found to be an effective design for providing fecal separation and transport. Simulated urine tests and female user tests in zero gravity established air flow rates between 0.08 and 0.25 cu sm/min (3 and 9 scfm) as satisfactory for entrapment, containment and transport of urine using an urinal. The investigation of air drying of fecal material as a substitute for vacuum drying in a WCS breadboard system showed that using baseline conditions anticipated for the shuttle cabin ambient atmosphere, flow rates of 0.14 cu sm/min (5 cfm) were adequate for drying and maintaining biological stability of the fecal material.
Radiant heat transfer from flames in a single tubular turbojet combustor / Leonard Topper
NASA Technical Reports Server (NTRS)
Topper, Leonard
1952-01-01
An experimental investigation of thermal radiation from the flame of a single tubular turbojet-engine combustor to the combustor liner is presented. The effects of combustor inlet-air pressure, air mass flow, and fuel-air ratio on the radiant intensity and the temperature and emissivity of the flame are reported. The total radiation of the "luminous" flames (containing incandescent soot particles) was much greater (4 to 21 times) than the "nonluminous" molecular radiation. The intensity of radiation from the flame increased rapidly with an increase in combustor inlet-air pressure; it was affected to a lesser degree by variations in fuel-air ratio and air mass flow.
Apparatus for real-time airborne particulate radionuclide collection and analysis
Smart, John E.; Perkins, Richard W.
2001-01-01
An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.
NASA Astrophysics Data System (ADS)
Fazilati, Mohammad Ali; Alemrajabi, Ali Akbar; Sedaghat, Ahmad
2018-03-01
Liquid desiccant air conditioning system with natural convection was presented previously as a new generation of AC systems. The system consists of two three-fluid energy exchangers namely absorber and regenerator in which the action of air dehumidifying and desiccant regeneration is done, respectively. The influence of working parameters on system performance including the heat source and heat sink temperature, concentration of desiccant solution fills the system initially and humidity content of inlet air to regenerator is investigated experimentally. The heat source temperatures of 50 °C and 60 °C, heat sink temperatures of 15 °C and 20 °C and desiccant concentrations of 30% and 34%, are examined here. The inlet air to regenerator has temperature of 38.5 °C and three relative humidity of 14%, 38% and 44%. In all experiments, the inlet air to absorber has temperature of 31 °C and relative humidity of 75%. By inspecting evaluation indexes of system, it is revealed that higher startup desiccant concentration solution is more beneficial for all study cases. It is also observed although the highest/lowest temperature heat source/heat sink is most suitable for best system operation, increasing the heat source temperature should be accompanied with decreasing heat sink temperature. Using drier air stream for regenerator inlet does not necessarily improve system performance; and the air stream with proper value of humidity content should be employed. Finally after running the system in its best working condition, the coefficient of performance (COP) reached 4.66 which verified to be higher than when the same air conditioning task done by a conventional vapor compression system, in which case the COP was 3.38.
Heat recovery system employing a temperature controlled variable speed fan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, W.T.
1986-05-20
A heat recovery system is described for use in recovering heat from an industrial process producing a heated fluid comprising: a source of inlet air; a housing coupled to the source and including a heat exchanger; means for passing the heated fluid through the heat exchanger; the housing including means for moving a variable volume of air adjustable over a continuous range from the source through the heat exchanger; air discharge means communicating with the housing for discharging air which has passed through the heat exchanger; a control system including first temperature sensing means for sensing the discharge temperature ofmore » the discharge air moving through the discharge means and a control circuit coupled to the first temperature sensing means and to the moving means for varying the volume of air moved in response to the sensed discharge temperature to control the temperature of discharge air passing through the discharge means at a first predetermined value; and the control system including second temperature sensing means for sensing the temperature of the source of inlet air and valve means coupled to and controlled by the control circuit to cause liquid to bypass the heat exchanger when the inlet air temperature rises above a second predetermined value.« less
Bassuoni, M.M.
2013-01-01
The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and −5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio. PMID:25685485
NASA Technical Reports Server (NTRS)
Blackaby, James R.; Lyman, E. Gene; Altermann, John A., III
1959-01-01
Inlet-performance and external-drag-coefficient characteristics are presented without analysis. Effects are shown of variations of fuselage boundary-layer diverter profile, bleed-surface porosity, bleed-exit area, and inlet ramp, and lip angle.
Animal biocalorimeter and waste management system
NASA Technical Reports Server (NTRS)
Poppendiek, Heinz F. (Inventor); Trimailo, William R. (Inventor)
1995-01-01
A biocalorimeter and waste management system is provided for making metabolic heat release measurements of animals or humans in a calorimeter (enclosure) using ambient air as a low velocity source of ventilating air through the enclosure. A shroud forces ventilating air to pass over the enclosure from an end open to ambient air at the end of the enclosure opposite its ventilating air inlet end and closed around the inlet end of the enclosure in order to obviate the need for regulating ambient air temperature. Psychrometers for measuring dry- and wet-bulb temperature of ventilating air make it possible to account for the sensible and latent heat additions to the ventilating air. A waste removal system momentarily recirculates high velocity air in a closed circuit through the calorimeter wherein a sudden rise in moisture is detected in the ventilating air from the outlet.
NASA Technical Reports Server (NTRS)
Hippensteele, Steven A.; Poinsatte, Philip E.
1993-01-01
In this transient technique the preheated isothermal model wall simulates the classic one-dimensional, semi-infinite wall heat transfer conduction problem. By knowing the temperature of the air flowing through the model, the initial temperature of the model wall, and the surface cooling rate measured at any location with time (using the fast-response liquid-crystal patterns recorded on video tape), the heat transfer coefficient can be calculated for the color isothermal pattern produced. Although the test was run transiently, the heat transfer coefficients are for the steady-state case. The upstream thermal boundary condition was considered to be isothermal. This transient liquid-crystal heat-transfer technique was used in a transient air tunnel in which a square-inlet, 3-to-1 exit transition duct was placed. The duct was preheated prior to allowing room temperature air to be suddenly drawn through it. The resulting isothermal contours on the duct surfaces were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the temperature and time data for all points on the duct surfaces during each test. The duct surfaces were uniformly heated using two heating systems: the first was an automatic temperature-controlled heater blanket completely surrounding the test duct like an oven, and the second was an internal hot-air loop through the inside of the test duct. The hot-air loop path was confined inside the test duct by insulated heat dams located at the inlet and exit ends of the test duct. A recirculating fan moved hot air into the duct inlet, through the duct, out of the duct exit, through the oven, and back to the duct inlet. The temperature nonuniformity of the test duct model wall was held very small. Test results are reported for two inlet Reynolds numbers of 200,000 and 1,150,000 (based on the square-inlet hydraulic diameter) and two free-stream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 20 percent (using a grid), which is typical of real engine conditions.
External combustor for gas turbine engine
Santanam, Chandran B.; Thomas, William H.; DeJulio, Emil R.
1991-01-01
An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.
NASA Astrophysics Data System (ADS)
Lou, Fangyuan
The objectives of this research were to investigate the flow development inside an APU-style inlet and its effect on centrifugal compressor performance. The motivation arises from the increased applications of gas turbine engines installed with APU-style inlets such as unmanned aerial vehicles, auxiliary power units, and helicopters. The inlet swirl distortion created from these complicated inlet systems has become a major performance and operability concern. To improve the integration between the APU-style inlet and gas turbine engines, better understanding of the flow field in the APU-style inlet and its effect on gas turbine is necessary. A research facility for the purpose of performing an experimental investigation of the flow field inside an APU-style inlet was developed. A subcritical air ejector is used to continuously flow the inlet at desired corrected mass flow rates. The facility is capable of flowing the APU inlet over a wide range of corrected mass flow rate that matches the same Mach numbers as engine operating conditions. Additionally, improvement in the system operational steadiness was achieved by tuning the pressure controller using a PID control method and utilizing multi-layer screens downstream of the APU inlet. Less than 1% relative unsteadiness was achieved for full range operation. The flow field inside the rectangular-sectioned 90? bend of the APU-style inlet was measured using a 3-Component LDV system. The structures for both primary flow and the secondary flow inside the bend were resolved. Additionally, the effect of upstream geometry on the flow development in the downstream bend was also investigated. Furthermore, a Single Stage Centrifugal Compressor research facility was developed at Purdue University in collaboration with Honeywell to operate the APU-style inlet at engine conditions with a compressor. To operate the facility, extensive infrastructure for facility health monitoring and performance control (including lubrication systems, secondary air systems, a throttle system, and different inlet configurations) were built. Additionally, three Labview programs were developed for acquiring the compressor health monitoring, steady and unsteady pressure and strain data. The baseline, steady aerodynamic performance map was established. Additionally, the unsteady pressure field in the compressor was investigated. Steady performance data have been acquired from choke to near surge at three different corrected speeds from 90% to 100% corrected speed in 5% increments. The performance of the compressor stage was characterized using total pressure ratio (TPR), total temperature ratio (TTR), and isentropic efficiency. The impeller alone and diffuser along performance were also investigated, and the high loss regions in the compressor were identified. At last, the compressor unsteady shroud pressure was investigated at 100% corrected speed in both the time domain and frequency domain. Results show strong pressure components in relation to the shaft frequency (SF). The impeller has 17 main blades and 17 splitter blades, and introduces pressure fluctuations at 17SF and its harmonics. Additionally, the diffuser has a vane count of 25 and results in pressure spectra of 59SF (17+17+25) due to the interactions between the impeller and diffuser.
Metal matrix composite fabrication processes for high performance aerospace structures
NASA Astrophysics Data System (ADS)
Ponzi, C.
A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.
Generator module architecture for a large solid oxide fuel cell power plant
Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.
2013-06-11
A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.
Feasibility of Reburning for Controlling NOx Emissions from Air Force Jet Engine Test Cells
1989-06-01
the engine exhaust by the augmenter air. For this reason, it is important to examine the effect of inlet NOX concentration on achieved reduction...Schedule at Tinker AFB .... ......... 8 3 Typical Nonafterburning Turbine Engine Emission Trends. . 9 4 Temperature of Diluted Exhaust J-79 Engine ... Exhaust Temperature on Reburner NOX Reduction .......... ......................... . 43 24 Effect of Exhaust Gas Inlet Flow Rate on Reburner NOx
Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2003-01-01
The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.
System for controlling the operating temperature of a fuel cell
Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.
2006-06-06
A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.
Influence of ventilation structure on air flow distribution of large turbo-generator
NASA Astrophysics Data System (ADS)
Zhang, Liying; Ding, Shuye; Zhao, Zhijun; Yang, Jingmo
2018-04-01
For the 350 MW air - cooled turbo—generator, the rotor body is ventilated by sub -slots and 94 radial ventilation ducts and the end adopts arc segment and the straight section to acquire the wind. The stator is ventilated with five inlets and eight outlet air branches. In order to analyze the cooling effect of different ventilation schemes, a global physical model including the stator, rotor, casing and fan is established, and the assumptions and boundary conditions of the solution domain are given. the finite volume method is used to solve the problem, and the air flow distribution characteristics of each part of the motor under different ventilation schemes are obtained. The results show that the baffle at the end of the rotor can eliminate the eddy current at the end of the rotor, and make the flow distribution of cooling air more uniform and reasonable. The conclusions can provide reference for the design of motor ventilation structure.
Membrane-lined foundations for liquid thermal storage
NASA Astrophysics Data System (ADS)
Bourne, R. C.
1981-06-01
The membrane lined storage (MLS) container which is a spinoff of vinyl-lined swimming pool and waterbed technologies was developed. The state of development of MLS was evaluated and concepts for MLS structural and heat transfer systems were improved. Preferred structural supports were identified and designed for 1500 gal MLS containers for basement, crawl space, and slab-on-grade foundation types. Techniques are developed to provide space heating via forced air through a finned storage jacket for the two preferred structural enclosure designs. Cost effectiveness of the direct air heating technique is evaluated. Alternate free convection domestic water preheaters and a preferred heat exchanger material is selected. Collector and space heat inlet/outlet designs, design concepts for auxiliary heat input to MLS from resistance electric, combustion, and heat pump sources are developed.
NASA Astrophysics Data System (ADS)
Bielek, Boris; Szabó, Daniel; Palko, Milan; Rychtáriková, Monika
2017-12-01
This paper reports on an optimization of design of air inlets in naturally ventilated double-skin transparent facades; the design aims at the proper functioning of these facades from the point of view of their aerodynamic and hydrodynamic behaviour. A comparison was made of five different variants of ventilation louvers used in air openings with different shapes, positions and overall geometry. The aerodynamic response of the louvers was determined by 2D simulations using ANSYS software. The hydrodynamic properties were investigated by conducting driven-rain measurements in a large rain chamber at the Slovak University of Technology in Bratislava.
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.; Hotz, G. M.; Futral, S. M., Jr.
1978-01-01
Performance data were obtained experimentally for a 0.4 linear scale version of the LF460 lift fan turbine for a range of scroll inlet total to diffuser exit static pressure ratios at design equivalent speed with simulated fan leakage air. Tests were conducted for full and partial admission operation with three separate combinations of rotor inlet and rotor exit leakage air. Data were compared to the results obtained from previous investigations in which no leakage air was present. Results are presented in terms of mass flow, torque, and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Sun Lee; Yu Ryang Pyun
A food drying process in a tunnel dryer was modeled from Keey's drying model and experimental drying curve, and optimized in operating conditions consisting of inlet air temperature, air recycle ratio and air flow rate. Radish was chosen as a typical food material to be dried, because it has the typical drying characteristics of food and quality indexes of ascorbic acid destruction and browning during drying. Optimization results of cocurrent and counter current tunnel drying showed higher inlet air temperature, lower recycle ratio and higher air flow rate with shorter total drying time. Compared with cocurrent operation counter current dryingmore » used lower air temperature, lower recycle ratio and lower air flow rate, and appeared to be more efficient in energy usage. Most of consumed energy was shown to be used for sir heating and then escaped from the dryer in the form of exhaust air.« less
Vertical/Short Takeoff and Landing Model in the 10- by 10-Foot Supersonic Wind Tunnel
1979-05-21
A technician checks a 0.25-scale engine model of a Vought Corporation V-530 engine in the test section of the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Vought created a low-drag tandem-fan Vertical/Short and Takeoff and Landing (V/STOL) engine in the mid-1970s, designated as the V-530. The first fan on the tandem-fan engine was supplied with air through a traditional subsonic inlet, seen on the lower front of the engine. The air was exhausted through the nacelle during normal flight and directed down during takeoffs. The rear fan was supplied by the oval-shaped top inlet during all phases of the flight. The second fan exhausted its air through a rear vectorable nozzle. NASA Lewis and Vought partnered in the late 1970s to collect an array of inlet and nozzle design information on the tandem fan engines for the Navy. Vought created this .25-scale model of the V-530 for extensive testing in Lewis' 10- by 10-foot tunnel. During an early series of tests, the front fan was covered, and a turbofan simulator was used to supply air to the rear fan. The researchers then analyzed the performance of only the front fan inlet. During the final series of tests, the flow from the front fan was used to supply airflow to the rear fan. The researchers studied the inlet's recovery, distortion, and angle-of-attack limits over various flight conditions.
Wick wetting for water condensation systems
Hering, Susanne Vera; Spielman, Steven Russel; Lewis, Gregory Stephen; Kreisberg, Nathan Michael
2017-04-04
A system and method for particle enlargement with continuously wetted wicks includes a container into which a flow of particle-laden air is introduced in a laminar manner through an inlet and to an outlet. The container has a first section, a second section and a third section though which the particle-laden air flows between the inlet and the outlet. The temperature of the second section is warmer than that of the first section at the inlet and the third section at the outlet. In one embodiment, a continuous wick spanning an interior wall of the first second, second section and third section, said wick being capable of internally transporting liquid water along its length is provided.
Coaxial fuel and air premixer for a gas turbine combustor
York, William D; Ziminsky, Willy S; Lacy, Benjamin P
2013-05-21
An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.
Particle impactor assembly for size selective high volume air sampler
Langer, Gerhard
1988-08-16
Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.
Interdisciplinary design study of a high-rise integrated roof wind energy system
NASA Astrophysics Data System (ADS)
Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.
2012-10-01
Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.
Investigation on Multiple-Pulse Propulsion Performance for a Parabolic Nozzle with Inlet Slit
NASA Astrophysics Data System (ADS)
Wen, Ming; Hong, Yanji; Song, Junling
2011-11-01
The multiple-pulse impulse coupling coefficient Cm is lower than the single pulse one with the same laser parameters. It is always explained that air recovery in nozzle does not work on time. Three kinds of parabolic nozzles are employed to improve air recovery in the experiments and simulation. There exist inlet slits on side wall of them with width of 1 mm, 2 mm, respectively. The curves of thrust and the process of flow fluid field are presented to study the slit effects on Cm under 20 Hz pulse frequency. The results show: an inlet slit can accelerate the air breathing process in the nozzle and Cm for each pulse exhibits a little variation; the lower Cm is obtained due to the increasing energy loss by a larger size slit; the flat-roofed nozzle gets higher Cm than others.
NASA Technical Reports Server (NTRS)
Chapman, Gilbert E.
1946-01-01
A laboratory investigation was made on a Holley 1685-HB carburetor mounted on an R-2600-13 supercharger assembly to determine the icing characteristics and the heated-air de-icing requirements of this portion of the B-25D airplane induction system. Icing has been found to be most prevalent at relatively small throttle openings and, consequently, all runs were made at simulated 60-percent normal rated power condition. Icing characteristics were determined during a series of 15-minute runs over a range of inlet-air conditions. For the de-icing investigation severe impact ice was allowed to form in the induction system and the time required for the recovery of 95 percent of the maximum possible air flow at the original throttle setting was then determined for a range of wet-bulb temperatures. Results of these runs showed that ice on the walls of the carburetor adapter and on the rim of the impeller-shroud portion of the supercharger diffuser plate did not affect engine operation at 60-percent normal rated power. Ice that adversely affected the air flow and the fuel-air ratio was formed only on the central web of the carburetor and then only when the inlet air was saturated or contained free moisture in excess of saturation. No serious ice formations were observed at inlet-air temperatures above 66 0 F or with an inlet-air enthalpy greater than 34 Btu per pound. The maximum temperature at. which any trace of icing could be detected was 1110 F with a relative humidity of approximately 28 percent, The air-flow recovery time for emergency de-icing was 0.3 minute for.an enthalpy of 35 Btu per pound or wet-bulb temperature of 68 0 F. Further increase in enthalpy and wet-bulb temperature above these values resulted in very slight improvement in recovery time. The fuel-air ratio restored by a 5-Minute application of heated air was approximately 7 percent less than the initial value for cold-air conditions.
NASA Technical Reports Server (NTRS)
Sanders, B. W.; Mitchell, G. A.
1973-01-01
The results of an experimental investigation to increase the stable airflow range of a super sonic mixed-compression inlet are presented. Various throat-bypass bleeds were located on the inlet cowl. The bleed types were distributed porous normal holes, a forward slanted slot, or distributed educated slots. Large inlet stability margins were obtained with the inlet throat bleed systems if a constant pressure was maintained in the throat-bypass bleed plenum. Stability limits were determined for steady-state and limited transient internal air flow changes. Limited unstart angle-of-attack data are presented.
Room air monitor for radioactive aerosols
Balmer, David K.; Tyree, William H.
1989-04-11
A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.
NASA Technical Reports Server (NTRS)
Hearth, Donald P; Cubbison, Robert W
1956-01-01
The results indicated increases in auxiliary-inlet pressure recovery with increases in scoop height relative to the boundary-layer thickness. The pressure recovery increased at about the same rate as theoretically predicted for an inlet in a boundary layer having a one-seventh power profile, but was only about 0.68 to 0.75 of the theoretically obtainable values. Under some operating conditions, flow from the primary jet was exhausted through the auxiliary inlet. This phenomenon could be predicted from the ejector pumping characteristics.
Gas turbine combustor transition
Coslow, Billy Joe; Whidden, Graydon Lane
1999-01-01
A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.
Gas turbine combustor transition
Coslow, B.J.; Whidden, G.L.
1999-05-25
A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.
Visualization of the air flow behind the automotive benchmark vent
NASA Astrophysics Data System (ADS)
Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav
2015-05-01
Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.
Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet
NASA Technical Reports Server (NTRS)
1997-01-01
Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.
Real-time monitoring of thermodynamic microenvironment in a pan coater.
Pandey, Preetanshu; Bindra, Dilbir S
2013-02-01
The current study demonstrates the use of tablet-size data logging devices (PyroButtons) to quantify the microenvironment experienced by tablets during pan coating process. PyroButtons were fixed at the inlet and exhaust plenums, and were also placed to freely move with the tablets. The effects of process parameters (spray rate and inlet-air humidity) on the thermodynamic conditions inside the pan coater were studied. It was shown that the same exhaust temperature (a parameter most commonly monitored and controlled during film coating) can be attained with very different tablet-bed conditions. The tablet-bed conditions were found to be more sensitive to the changes in spray rate as compared with the inlet-air humidity. Both spray rate and inlet-air humidity were shown to have an effect on the number of tablet defects (loss of logo definition), and a good correlation between number of tablet defects and tablet-bed humidity was observed. The ability to quantify the thermodynamic microenvironment experienced by the tablets during coating and be able to correlate that to macroscopic tablet defects can be an invaluable tool that can help to establish a process design space during product development. Copyright © 2012 Wiley Periodicals, Inc.
Numerical study of innovative scramjet inlets coupled to combustors using hydrocarbon-air mixture
NASA Astrophysics Data System (ADS)
Malo-Molina, Faure Joel
The research objective is to use high-fidelity multi-physics Computational Fluid Dynamics (CFD) analysis to characterize 3-D scramjet flowfields in two novel streamline traced circular configurations without axisymmetric profiles. This work builds on a body of research conducted over the past several years. In addition, this research provides the modeling and simulation support, prior to ground (wind tunnel) and flight experiment programs. Two innovative inlets, Jaws and Scoop, are analyzed and compared to a Baseline inlet, a current state of the art rectangular inlet used as a baseline for on/off-design conditions. The flight trajectory conditions selected were Mach 6 and a dynamic pressure of 1,500 psf (71.82 kPa), corresponding to a static pressure of 43.7 psf (2.09 kPa) and temperature of 400.8 R° (222.67 C°). All inlets are designed for equal flight conditions, equal contraction ratios and exit cross-sectional areas, thus facilitating their comparison and integration to a common combustor design. Analysis of these hypersonic inlets was performed to investigate distortion effects downstream in common generic combustors. These combustors include a single cavity acting as flame holder and strategically positioned fuel injection ports. This research not only seeks to identify the most successful integrated scramjet inlet/combustor design, but also investigates the flow physics and quantifies the integrated performance impact of the two novel scramjet inlet designs. It contributes to the hypersonic air-breathing community by providing analysis and predictions on directly-coupled combustor numerical experiments for developing pioneering inlets or nozzles for scramjets. Several validations and verifications of General Propulsion Analysis Chemical-kinetic and Two-phase (GPACT), the CFD tool, were conducted throughout the research. In addition, this study uses 13 gaseous species and 20 reactions for an Ethylene/air finite-rate chemical model. The key conclusions of this research are: (1) Flow distortion in the innovative inlets is similar to some of the distortion in the Baseline inlet, despite design differences. In both innovative inlets, the resulting flowfield distortions were due to shock boundary layer interactions similar to those found in the Baseline. The Baseline and Jaws performance attributes are stronger than Scoop, but Jaws accomplishes this while eradicating the cowl lip interaction, and lessening the total drag and spillage penalties. (2) The innovative inlets work best on-design, whereas for off-design, the traditional inlet yields a higher performance. Although the innovative inlets' designs mitigated some of the issues encountered in traditional configurations, they underperform at off-design conditions. The strategy used in Jaws was less prone to interaction with the near wall flow, and yields lesser pressure losses and higher efficiency at on-design conditions compared to the others. In general, the overall values for Scoop seem lowest of all due to lesser entrainment. Its drag coefficient and thrust to mass capture ratios are higher than the Baseline configuration. (3) Early pressure losses and flow distortions actually aid downstream combustion in all cases. Although interactions captured by the viscous simulations for the on-design conditions increase losses in the inlets, they enhance turbulence in the isolator, favoring the mixing of air and fuel, and improving the overall factor of the system. Jaws inlet demonstrates the most valuable design with higher performance, but its factor later in the combustor drops relative to its rectangular counterpart. (4) A parametric study of the location and direction of injection is conducted to select the configuration for fuel penetration, mixing factor (factor) and other combustion qualities. Although the trends observed with and without chemical reactions are the same, the former yields roughly 10% higher mixing factor. Unlike at frozen conditions, when chemical reactions are considered, a high compression area was observed upstream of the cavity, not present when modeling Jaws. The upstream reactions from the cavity have a significant impact on the development of the shear layers and downstream development of the entire combustion. (5) Steady and unsteady simulations are conducted to characterize the ignition process, flame anchoring and flashback effects. This unsteadiness enlarges the circulation region in and around the cavity, allowing the reactions to propagate forward through the shear layer, and increases the mixing factor. In Scoop, these effects are exacerbated due to the thicker low energy profile surrounding the walls and most of the lower section of the combustor. In the steady assumptions, the forward reactions and their effects are positioned farthest upstream, closest to the combustor entrance. (6) Unsteady Reynolds Average Navier-Stokes (URANS) and Large Eddy Simulation (LES) modeling are compared to explore overall flow structure and for comparison of individual numerical methods. In URANS, the flashback effects are midway between the entrance and the step, whereas in LES, this effect is near the edge of the step in addition to yielding a higher combustion factor. Thus, the turbulence model and inflow assumptions can critically affect the total outcome of such devices.
NASA Technical Reports Server (NTRS)
Tower, Leonard K; Gammon, Benson E
1953-01-01
The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.
Coupled thermal-fluid analysis with flowpath-cavity interaction in a gas turbine engine
NASA Astrophysics Data System (ADS)
Fitzpatrick, John Nathan
This study seeks to improve the understanding of inlet conditions of a large rotor-stator cavity in a turbofan engine, often referred to as the drive cone cavity (DCC). The inlet flow is better understood through a higher fidelity computational fluid dynamics (CFD) modeling of the inlet to the cavity, and a coupled finite element (FE) thermal to CFD fluid analysis of the cavity in order to accurately predict engine component temperatures. Accurately predicting temperature distribution in the cavity is important because temperatures directly affect the material properties including Young's modulus, yield strength, fatigue strength, creep properties. All of these properties directly affect the life of critical engine components. In addition, temperatures cause thermal expansion which changes clearances and in turn affects engine efficiency. The DCC is fed from the last stage of the high pressure compressor. One of its primary functions is to purge the air over the rotor wall to prevent it from overheating. Aero-thermal conditions within the DCC cavity are particularly challenging to predict due to the complex air flow and high heat transfer in the rotating component. Thus, in order to accurately predict metal temperatures a two-way coupled CFD-FE analysis is needed. Historically, when the cavity airflow is modeled for engine design purposes, the inlet condition has been over-simplified for the CFD analysis which impacts the results, particularly in the region around the compressor disc rim. The inlet is typically simplified by circumferentially averaging the velocity field at the inlet to the cavity which removes the effect of pressure wakes from the upstream rotor blades. The way in which these non-axisymmetric flow characteristics affect metal temperatures is not well understood. In addition, a constant air temperature scaled from a previous analysis is used as the simplified cavity inlet air temperature. Therefore, the objectives of this study are: (a) model the DCC cavity with a more physically representative inlet condition while coupling the solid thermal analysis and compressible air flow analysis that includes the fluid velocity, pressure, and temperature fields; (b) run a coupled analysis whose boundary conditions come from computational models, rather than thermocouple data; (c) validate the model using available experimental data; and (d) based on the validation, determine if the model can be used to predict air inlet and metal temperatures for new engine geometries. Verification with experimental results showed that the coupled analysis with the 3D no-bolt CFD model with predictive boundary conditions, over-predicted the HP6 offtake temperature by 16k. The maximum error was an over-prediction of 50k while the average error was 17k. The predictive model with 3D bolts also predicted cavity temperatures with an average error of 17k. For the two CFD models with predicted boundary conditions, the case without bolts performed better than the case with bolts. This is due to the flow errors caused by placing stationary bolts in a rotating reference frame. Therefore it is recommended that this type of analysis only be attempted for drive cone cavities with no bolts or shielded bolts.
Self-defrosting recuperative air-to-air heat exchanger
Drake, Richard L.
1993-01-01
A heat exchanger includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications.
Diode Laser Sensor for Scramjet Inlet
2010-05-11
This work presents the development of an oxygen -based diode laser absorption sensor designed to be used in a supersonic combustion ramjet engine inlet...ADFA Abstract This work presents development of an oxygen -based diode laser absorption sensor designed to be used in a supersonic combustion ramjet... sensor needs to use oxygen as the absorbing species, as this is the only option for absorption measurements in inlet air. Oxygen absorption lines
NASA Technical Reports Server (NTRS)
Nainiger, J. J.
1978-01-01
An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.
NASA Technical Reports Server (NTRS)
Kim, Hyun D.; Frate, Franco C.
2001-01-01
A subscale aerodynamic model of the GTX air-breathing launch vehicle was tested at NASA Glenn Research Center's 10- by 10-Foot Supersonic Wind Tunnel from Mach 2.0 to 3.5 at various angles-of-attack. The objective of the test was to investigate the effect of angle-of-attack on inlet mass capture, inlet diverter effectiveness, and the flowfield at the cowl lip plane. The flow-through inlets were tested with and without boundary-layer diverters. Quantitative measurements such as inlet mass flow rates and pitot-pressure distributions in the cowl lip plane are presented. At a 3deg angle-of-attack, the flow rates for the top and side inlets were within 8 percent of the zero angle-of-attack value, and little distortion was evident at the cowl lip plane. Surface oil flow patterns showing the shock/boundary-layer interaction caused by the inlet spikes are shown. In addition to inlet data, vehicle forebody static pressure distributions, boundary-layer profiles, and temperature-sensitive paint images to evaluate the boundary-layer transition are presented. Three-dimensional parabolized Navier-Stokes computational fluid dynamics calculations of the forebody flowfield are presented and show good agreement with the experimental static pressure distributions and boundary-layer profiles. With the boundary-layer diverters installed, no adverse aerodynamic phenomena were found that would prevent the inlets from operating at the required angles-of-attack. We recommend that phase 2 of the test program be initiated, where inlet contraction ratio and diverter geometry variations will be tested.
NASA Technical Reports Server (NTRS)
Schunk, Richard Gregory; Chung, T. J.
2001-01-01
A parallelized version of the Flowfield Dependent Variation (FDV) Method is developed to analyze a problem of current research interest, the flowfield resulting from a triple shock/boundary layer interaction. Such flowfields are often encountered in the inlets of high speed air-breathing vehicles including the NASA Hyper-X research vehicle. In order to resolve the complex shock structure and to provide adequate resolution for boundary layer computations of the convective heat transfer from surfaces inside the inlet, models containing over 500,000 nodes are needed. Efficient parallelization of the computation is essential to achieving results in a timely manner. Results from a parallelization scheme, based upon multi-threading, as implemented on multiple processor supercomputers and workstations is presented.
Low NOx nozzle tip for a pulverized solid fuel furnace
Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P
2014-04-22
A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.
NASA Technical Reports Server (NTRS)
Schwendemann, M. F.
1981-01-01
A 0.165-scale isolated inlet model was tested in the NASA Lewis Research Center 8-ft by 6-ft Supersonic Wind Tunnel. Ramp boundary layer control was provided by tangential blowing from a row of holes in an aft-facing step set into the ramp surface. Testing was performed at Mach numbers from 1.36 to 1.96 using both cold and heated air in the blowing system. Stable inlet flow was achieved at all Mach numbers. Blowing hole geometry was found to be significant at 1.96M. Blowing air temperature was found to have only a small effect on system performance. High blowing levels were required at the most severe test conditions.
Injector having multiple fuel pegs
Hadley, Mark Allan; Felling, David Kenton
2013-04-30
A fuel injector is provided, including a fuel injector body, a plurality of fuel vanes, and a plurality of fuel pegs. The injector body includes a manifold and an inlet. The manifold is configured for receiving fuel, and the inlet is configured for receiving air. The fuel vanes are located within the injector body and are positioned in a direction that is generally parallel with a longitudinal axis of the injector body to orient the air flowing from the inlet. The plurality of fuel pegs are fluidly connected to the manifold and are arranged within the plurality of fuel vanes. The plurality of fuel pegs are each spaced at a distance that is about equal between each of the plurality of fuel pegs.
Implementation of Slater Boundary Condition into OVERFLOW
NASA Astrophysics Data System (ADS)
Duncan, Sean
Bleed is one of the primary methods of controlling the flow within a mixed compression inlet. In this work the Slater boundary condition, first applied in WindUS, is implemented in OVERFLOW. Further, a simulation using discrete holes is run in order to show the differences between use of the boundary condition and use of the bleed hole geometry. Recent tests at Wright Patterson Air Force Base seek to provide a baseline for study of mixed compression inlets. The inlet used by the Air Force Research Laboratory is simulated in the modified OVERFLOW. The results from the experiment are compared to the CFD to qualitatively assess the accuracy of the simulations. The boundary condition is shown to be robust and viable in studying bleed.
NASA Technical Reports Server (NTRS)
Cao, S.; Bennett, B. A. V.; Ma, B.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.
2015-01-01
In this work, the influence of gravity, fuel dilution, and inlet velocity on the structure, stabilization, and sooting behavior of laminar coflow methane-air diffusion flames was investigated both computationally and experimentally. A series of flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) was assessed numerically under microgravity and normal gravity conditions with the fuel stream CH4 mole fraction ranging from 0.4 to 1.0. Computationally, the MC-Smooth vorticity-velocity formulation of the governing equations was employed to describe the reactive gaseous mixture; the soot evolution process was considered as a classical aerosol dynamics problem and was represented by the sectional aerosol equations. Since each flame is axisymmetric, a two-dimensional computational domain was employed, where the grid on the axisymmetric domain was a nonuniform tensor product mesh. The governing equations and boundary conditions were discretized on the mesh by a nine-point finite difference stencil, with the convective terms approximated by a monotonic upwind scheme and all other derivatives approximated by centered differences. The resulting set of fully coupled, strongly nonlinear equations was solved simultaneously using a damped, modified Newton's method and a nested Bi-CGSTAB linear algebra solver. Experimentally, the flame shape, size, lift-off height, and soot temperature were determined by flame emission images recorded by a digital camera, and the soot volume fraction was quantified through an absolute light calibration using a thermocouple. For a broad spectrum of flames in microgravity and normal gravity, the computed and measured flame quantities (e.g., temperature profile, flame shape, lift-off height, and soot volume fraction) were first compared to assess the accuracy of the numerical model. After its validity was established, the influence of gravity, fuel dilution, and inlet velocity on the structure, stabilization, and sooting tendency of laminar coflow methane-air diffusion flames was explored further by examining quantities derived from the computational results.
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1973-01-01
A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.
Fuel/air nonuniformity - Effect on nitric oxide emissions
NASA Technical Reports Server (NTRS)
Lyons, V. J.
1981-01-01
An analytical and experimental study was performed to determine the effect of inlet fuel/air profile nonuniformity on NO(x) emissions. The theoretical NO(x) levels were verified in a flame-tube rig at inlet air temperatures of 600, 700, and 800 K, 0.3 MPa rig pressure, 25 m/sec reference velocity, overall equivalence ratio of 0.6 and residence time near 0.002 sec. The theory predicts an increase in NO(x) emissions for increased fuel/air nonuniformity for average equivalence ratios less than 0.7, while for average equivalence ratios near stoichiometric, increasing the nonuniformity will decrease NO(x) emissions. The results can be used to predict the degree of uniformity of fuel/air profiles necessary to achieve NO(x) emissions goals for actual engines that use lean premixed, prevaporized combustion systems.
Ventilation for an enclosure of a gas turbine and related method
Schroeder, Troy Joseph; Leach, David; O'Toole, Michael Anthony
2002-01-01
A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.
Testing of high-volume sampler inlets for the sampling of atmospheric radionuclides.
Irshad, Hammad; Su, Wei-Chung; Cheng, Yung S; Medici, Fausto
2006-09-01
Sampling of air for radioactive particles is one of the most important techniques used to determine the nuclear debris from a nuclear weapon test in the Earth's atmosphere or those particles vented from underground or underwater tests. Massive-flow air samplers are used to sample air for any indication of radionuclides that are a signature of nuclear tests. The International Monitoring System of the Comprehensive Nuclear Test Ban Treaty Organization includes seismic, hydroacoustic, infrasound, and gaseous xenon isotopes sampling technologies, in addition to radionuclide sampling, to monitor for any violation of the treaty. Lovelace Respiratory Research Institute has developed a large wind tunnel to test the outdoor radionuclide samplers for the International Monitoring System. The inlets for these samplers are tested for their collection efficiencies for different particle sizes at various wind speeds. This paper describes the results from the testing of two radionuclide sampling units used in the International Monitoring System. The possible areas of depositional wall losses are identified and the losses in these areas are determined. Sampling inlet type 1 was tested at 2.2 m s wind speed for 5, 10, and 20-microm aerodynamic diameter particles. The global collection efficiency was about 87.6% for 10-microm particles for sampling inlet type 1. Sampling inlet type 2 was tested for three wind speeds at 0.56, 2.2, and 6.6 m s for 5, 10, and 20-microm aerodynamic diameter particles in two different configurations (sampling head lowered and raised). The global collection efficiencies for these configurations for 10-microm particles at 2.2 m s wind speed were 77.4% and 82.5%, respectively. The sampling flow rate was 600 m h for both sampling inlets.
Hypersonic Inlet for a Laser Powered Propulsion System
NASA Astrophysics Data System (ADS)
Harrland, Alan; Doolan, Con; Wheatley, Vincent; Froning, Dave
2011-11-01
Propulsion within the lightcraft concept is produced via laser induced detonation of an incoming hypersonic air stream. This process requires suitable engine configurations that offer good performance over all flight speeds and angles of attack to ensure the required thrust is maintained. Stream traced hypersonic inlets have demonstrated the required performance in conventional hydrocarbon fuelled scramjet engines, and has been applied to the laser powered lightcraft vehicle. This paper will outline the current methodology employed in the inlet design, with a particular focus on the performance of the lightcraft inlet at angles of attack. Fully three-dimensional turbulent computational fluid dynamics simulations have been performed on a variety of inlet configurations. The performance of the lightcraft inlets have been evaluated at differing angles of attack. An idealized laser detonation simulation has also been performed to validate that the lightcraft inlet does not unstart during the laser powered propulsion cycle.
Self-defrosting recuperative air-to-air heat exchanger
Drake, R.L.
1993-12-28
A heat exchanger is described which includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications. 3 figures.
DNS of turbulent premixed slot flames with mixture inhomogeneity: a study of NOx formation
NASA Astrophysics Data System (ADS)
Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio
2016-11-01
A set of Direct Numerical Simulations of three-dimensional methane/air lean flames in a spatially developing turbulent slot burner are performed. The flames are in the thin-reaction zone regimes and the jet Reynolds number is 5600. This configuration is of interest since it displays turbulent production by mean shear as in real devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit. Combustion is treated with finite-rate chemistry. The jet is characterized by a non-uniform equivalence ratio at the inlet and varying levels of incomplete premixing for the methane/air mixture are considered. The global equivalence ratio is 0.7 and temperature is 800 K. All simulations are performed at 4 atm. The instantaneous profiles of the mass fractions of methane and air at the inlet are sampled from a set of turbulent channel simulations that provide realistic, fully turbulent fields. The data are analyzed to study the influence of partial premixing on the flame structure. Particular focus is devoted to the assessment of heat release rate fluctuations and NOx formation. In particular, the effects of partial premixing on the production rates for the various pathways to NOx formation are investigated.
Rapid and selective brain cooling method using vortex tube: A feasibility study.
Bakhsheshi, Mohammad Fazel; Keenliside, Lynn; Lee, Ting-Yim
2016-05-01
Vortex tubes are simple mechanical devices to produce cold air from a stream of compressed air without any moving parts. The primary focus of the current study is to investigate the feasibility and efficiency of nasopharyngeal brain cooling method using a vortex tube. Experiments were conducted on 5 juvenile pigs. Nasopharygeal brain cooling was achieved by directing cooled air via a catheter in each nostril into the nasal cavities. A vortex tube was used to generate cold air using various sources of compressed air: (I) hospital medical air outlet (n = 1); (II) medical air cylinders (n = 3); and (III) scuba (diving) cylinders (n = 1). By using compressed air from a hospital medical air outlet at fixed inlet pressure of 50 PSI, maximum brain-rectal temperature gradient of -2°C was reached about 45-60 minutes by setting the flow rate of 25 L/min and temperature of -7°C at the cold air outlet. Similarly, by using medical air cylinders at fill-pressure of 2265 PSI and down regulate the inlet pressure to the vortex tube to 50 PSI, brain temperature could be reduced more rapidly by blowing -22°C ± 2°C air at a flow rate of 50 L/min; brain-body temperature gradient of -8°C was obtained about 30 minutes. Furthermore, we examined scuba cylinders as a portable source of compressed gas supply to the vortex tube. Likewise, by setting up the vortex tube to have an inlet pressure of 25 PSI and 50 L/min and -3°C at the cold air outlet, brain temperature decreased 4.5°C within 10-20 min. Copyright © 2016 Elsevier Inc. All rights reserved.
Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control
NASA Technical Reports Server (NTRS)
Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug
2003-01-01
A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.
Morotti, Karine; Ramirez, Antonio Avalos; Jones, J Peter; Heitz, Michèle
2011-12-01
This study analyses the performance of ethanol biofiltration with percolation (biotrickling filtration, BTF) comparing to a conventional biofilter (biofiltration, BF). Two biofilters packed with clay balls were operated in a range of inlet concentrations of ethanol in the air varying from 0.47 to 2.36 g m(-3). For both the BF and BTF, the specific growth rate (mu) and the elimination capacity (EC) decreased with the ethanol inlet concentration, presenting a kinetic of substrate inhibition. A Haldane-type model was adjusted for both biofilters in order to model both EC and mu as a function of the ethanol inlet concentration in the gas. The maximum EC was similar for both biofilters, at around 46 g m(-3) h(-1), whereas the maximum mu was 0.0057 h(-1) for the BF and 0.0103 h(-1) for the BTF. The maximum of ethanol removed, occurred at the lowest inlet concentration of (0.47 gm(-3)), and reached 86% for the BF and 74% for the BTF.
2009-04-03
Supersonic Aircraft Model The window in the sidewall of the 8- by 6-foot supersonic wind tunnel at NASA's Glenn Research Center shows a 1.79 percent scale model of a future concept supersonic aircraft built by The Boeing Company. In recent tests, researchers evaluated the performance of air inlets mounted on top of the model to see how changing the amount of airflow at supersonic speeds through the inlet affected performance. The inlet on the pilot's right side (top inlet in this side view) is larger because it contains a remote-controlled device through which the flow of air could be changed. The work is part of ongoing research in NASA's Aeronautics Research Mission Directorate to address the challenges of making future supersonic flight over land possible. Researchers are testing overall vehicle design and performance options to reduce emissions and noise, and identifying whether the volume of sonic booms can be reduced to a level that leads to a reversal of the current ruling that prohibits commercial supersonic flight over land. Image Credit: NASA/Quentin Schwinn
2009-04-03
Supersonic Aircraft Model The window in the sidewall of the 8- by 6-foot supersonic wind tunnel at NASA's Glenn Research Center shows a 1.79 percent scale model of a future concept supersonic aircraft built by The Boeing Company. In recent tests, researchers evaluated the performance of air inlets mounted on top of the model to see how changing the amount of airflow at supersonic speeds through the inlet affected performance. The inlet on the pilot's right side (top inlet in this side view) is larger because it contains a remote-controlled device through which the flow of air could be changed. The work is part of ongoing research in NASA's Aeronautics Research Mission Directorate to address the challenges of making future supersonic flight over land possible. Researchers are testing overall vehicle design and performance options to reduce emissions and noise, and identifying whether the volume of sonic booms can be reduced to a level that leads to a reversal of the current ruling that prohibits commercial supersonic flight over land. Image Credit: NASA/Quentin Schwinn
NASA Technical Reports Server (NTRS)
Cochran, Reeves P.; Dengler, Robert P.
1961-01-01
An experimental investigation was made of an air-cooled turbine at average turbine inlet temperatures up to 2500 F. A modified production-model 12-stage axial-flow-compressor turbojet engine operating in a static sea-level stand was used as the test vehicle. The modifications to the engine consisted of the substitution of special combustor and turbine assemblies and double-walled exhaust ducting for the standard parts of the engine. All of these special parts were air-cooled to withstand the high operating temperatures of the investigation. The air-cooled turbine stator and rotor blades were of the corrugated-insert type. Leading-edge tip caps were installed on the rotor blades to improve leading-edge cooling by diverting the discharge of coolant to regions of lower gas pressure toward the trailing edge of the blade tip. Caps varying in length from 0.15- to 0.55-chord length were used in an attempt to determine the optimum cap length for this blade. The engine was operated over a range of average turbine inlet temperatures from about 1600 to about 2500 F, and a range of average coolant-flow ratios of 0.012 to 0.065. Temperatures of the air-cooled turbine rotor blades were measured at all test conditions by the use of thermocouples and temperature-indicating paints. The results of the investigation indicated that this type of blade is feasible for operation in turbojet engines at the average turbine inlet temperatures and stress levels tested(maximums of 2500 F and 24,000 psi, respectively). An average one-third-span blade temperature of 1300 F could be maintained on 0.35-chord tip cap blades with an average coolant-flow ratio of about 0.022 when the average turbine inlet temperature was 2500 F and cooling-air temperature was about 260 F. All of the leading-edge tip cap lengths improved the cooling of the leading-edge region of the blades, particularly at low average coolant-flow ratios. At high gas temperatures, such parts as the turbine stator and the combustor liners are likely to be as critical as the turbine rotor blades.
Filter for on-line air monitor unaffected by radon progeny and method of using same
Phillips, Terrance D.; Edwards, Howard D.
1999-01-01
An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.
The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders
NASA Technical Reports Server (NTRS)
Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W
1943-01-01
Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.
Box-Behnken statistical design to optimize thermal performance of energy storage systems
NASA Astrophysics Data System (ADS)
Jalalian, Iman Joz; Mohammadiun, Mohammad; Moqadam, Hamid Hashemi; Mohammadiun, Hamid
2018-05-01
Latent heat thermal storage (LHTS) is a technology that can help to reduce energy consumption for cooling applications, where the cold is stored in phase change materials (PCMs). In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing RT25 as phase change material (PCM). Process optimization of the experimental conditions (inlet air temperature and velocity and number of slabs) was carried out by means of Box-Behnken design (BBD) of Response surface methodology (RSM). Two parameters (cooling time and COP value) were chosen to be the responses. Both of the responses were significantly influenced by combined effect of inlet air temperature with velocity and number of slabs. Simultaneous optimization was performed on the basis of the desirability function to determine the optimal conditions for the cooling time and COP value. Maximum cooling time (186 min) and COP value (6.04) were found at optimum process conditions i.e. inlet temperature of (32.5), air velocity of (1.98) and slab number of (7).
Valve for fuel pin loading system
Christiansen, David W.
1985-01-01
A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.
1951-12-06
Date: Dec 6, 1951 NACA Photographer North American YF-93 with submerged divergent-wall engine-air inlet. Maximum high-speed capability of Mach 1.03 was obtained with afterbrner on. Tests were conducted to compare high-speed performance of the YF-93 NACA-139 airplane with different inlet configurations. (Mar 1953)
DESIGN AND PERFORMANCE OF A LOW FLOW RATE INLET
Several ambient air samplers that have been designated by the U. S. EPA as Federal Reference Methods (FRMs) for measuring particulate matter nominally less than 10 um (PM10) include the use of a particular inlet design that aspirates particulate matter from the atmosphere at 1...
Air velocity distributions inside tree canopies from a variable-rate air-assisted sprayer
USDA-ARS?s Scientific Manuscript database
A variable-rate, air assisted, five-port sprayer had been in development to achieve variable discharge rates of both liquid and air. To verify the variable air rate capability by changing the fan inlet diameter of the sprayer, air jet velocities impeded by plant canopies were measured at various loc...
Performance and durability of improved air-atomizing splash-cone fuel nozzles
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1974-01-01
An improved design of air-atomizing fuel nozzles was determined from a study of four differently shaped splash-cone fuel nozzles after 56 hr of durability testing in a combustor segment. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures of 41 to 203 N/cm, inlet-air temperatures of 477 to 811 K, and a reference velocity of 21.3 m/sec. Flat-tip fuel nozzles showed the least erosion damage and at a combustor operating condition of 700 K and 101 N/sq cm an oxides-of-nitrogen emission index of 12 and a smoke number of approximately 18 with a fuel-air ratio of 0.018. Emission indices for carbon monoxide and unburned hydrocarbons were 44 and 16, respectively, at simulated idle conditions of 477 K and 41 N/sq cm.
NASA Technical Reports Server (NTRS)
Mclallin, K. L.; Kofskey, M. G.; Civinskas, K. C.
1983-01-01
The performance of a variable-area stator, axial flow power turbine was determined in a cold-air component research rig for two inlet duct configurations. The two ducts were an interstage diffuser duct and an accelerated-flow inlet duct which produced stator inlet boundary layer flow blockages of 11 percent and 3 percent, respectively. Turbine blade total efficiency at design point was measured to be 5.3 percent greater with the accelerated-flow inlet duct installed due to the reduction in inlet blockage. Blade component measurements show that of this performance improvement, 35 percent occurred in the stator and 65 percent occurred in the rotor. Analysis of inlet duct internal flow using an Axisymmetric Diffuser Duct Code (ADD Code) were in substantial agreement with the test data.
Enclosed rotary disc air pulser
Olson, A. L.; Batcheller, Tom A.; Rindfleisch, J. A.; Morgan, John M.
1989-01-01
An enclosed rotary disc air pulser for use with a solvent extraction pulse olumn includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber therebetween, the chamber being in communication with the pulse leg port, the first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and the chamber.
NASA Technical Reports Server (NTRS)
Pfyl, Frank A.
1955-01-01
An experimental investigation was conducted to determine the performance characteristics an underslung nose-scoop air-induction system for a supersonic airplane. Five different nose shapes, three lip shapes, and two internal diffusers were investigated. Tests were made at Mach numbers from 0 to 1.9, angles of attack from 0 deg to approximately l5 deg, and mass-flow ratios from 0 to maximum obtainable. It was found that the underslung nose-scoop inlet was able to operate at Mach numbers from 0.6 to 1.9 over a large positive angle-of-attack range without adverse effects on the pressure recovery. Although there was no one inlet configuration that was markedly superior over the entire range of operating variables, the arrangement having a nose designed to give increased supersonic compression at low angles of attack, and a sharp lip (configuration designated N3L3) showed the most favorable performance characteristics over the supersonic Mach number range. Inlets with sizable lip radii gave satisfactory performance up to a Mach number of 1.5; however, as a result of an increase in drag, the performance of such inlets was markedly inferior to the sharp-lip configuration above Mach numbers of 1.5. Throughout the range of test Mach numbers all inlet configurations evidenced stable air-flow characteristics over the mass-flow range for normal engine operation. Analysis of the inlet performance on the basis of a propulsive thrust parameter showed that a fixed inlet area could be used for Mach numbers up to 1.5 with only a small sacrifice in performance.
40 CFR 63.11567 - Who implements and enforces this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
...). 2. A high-efficiency air filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt...
Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Spanogle, J A; Hicks, C W; Foster, H H
1934-01-01
The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.
[Microbial air monitoring in operating theatre: active and passive samplings].
Pasquarella, C; Masia, M D; Nnanga, Nga; Sansebastiano, G E; Savino, A; Signorelli, C; Veronesi, L
2004-01-01
Microbial air contamination was evaluated in 11 operating theatres using active and passive samplings. SAS (Surface Air System) air sampling was used to evaluate cfu/m3 and settle plates were used to measure the index of microbial air contamination (IMA). Samplings were performed at the same time on three different days, at three different times (before, during and after the surgical activity). Two points were monitored (patient area and perimeter of the operating theatre). Moreover, the cfu/m3 were evaluated at the air inlet of the conditioner system. 74.7% of samplings performed at the air inlet and 66.7% of the samplings performed at the patient area before the beginning of the surgical activity (at rest) exceeded the 35 cfu/m3 used as threshold value. 100% of IMA values exceeded the threshold value of 5. Using both active and passive sampling, the microbial contamination was shown to increase significantly during activity. The cfu values were higher at the patient area than at the perimeter of the operating theatre. Mean values of the cfu/m3 during activity at the patient area ranged from a minimum of 61+/-41 cfu/m3 to a maximum of 242+/-136 cfu/m3; IMA values ranged from a minimum of 19+/-10 to a maximum of 129+/-60. 15.2% of samplings performed at the patient area using SAS and 75.8% of samplings performed using settle plates exceeded the threshold values of 180 cfu/m3 and 25 respectively, with a significant difference of the percentages. The highest values were found in the operating theatre with inadequate structural and managerial conditions. These findings confirm that the microbiological quality of air may be considered a mirror of the hygienic conditions of the operating theatre. Settle plates proved to be more sensitive in detecting the increase of microbial air contamination related to conditions that could compromise the quality of the air in operating theatres.
78 FR 42758 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-17
... aircraft, to include: Inlet/Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive...-PW-229 engines for the Hellenic Air Force F-16 aircraft, to include: Inlet/Fan Modules, Core Engine Modules, Rear Compressor Drive Turbines, Fan Drive Turbine Modules, Augmentor Duct and Nozzle Modules, and...
NASA Astrophysics Data System (ADS)
Tammet, H.
2006-12-01
Measuring of charged nanometer particles in atmospheric air is a routine task in research on atmospheric electricity, where these particles are called the atmospheric ions. An aspiration condenser is the most popular instrument for measuring atmospheric ions. Continuous scanning of a mobility distribution is possible when the aspiration condenser is connected as an arm of a balanced bridge. Transfer function of an aspiration condenser is calculated according to the measurements of geometric dimensions, air flow rate, driving voltage, and electric current. The most complicated phase of the calibration is the estimation of the inlet loss of ions due to the Brownian deposition. The available models of ion deposition on the protective inlet screen and the inlet control electrofilter have the uncertainty of about 20%. To keep the uncertainty of measurements low the adsorption should not exceed a few tens of percent. The online conversion of the mobility distribution to the size distribution and a correct reduction of inlet losses are possible when air temperature and pressure are measured simultaneously with the mobility distribution. Two instruments called the Balanced Scanning Mobility Analyzers (BSMA) were manufactured and tested in routine atmospheric measurements. The concentration of atmospheric ions of the size of about a few nanometers is very low and a high air flow rate is required to collect enough of ion current. The air flow of 52 l/s exceeds the air flow in usual aerosol instruments by 2-3 orders of magnitude. The high flow rate reduces the time of ion passage to 60 ms and the heating of air in an analyzer to 0.2 K, which suppresses a possible transformation of ions inside the instrument. The mobility range of the BSMA of 0.032-3.2 cm 2 V - 1 s - 1 is logarithmically uniformly divided into 16 fractions. The size distribution is presented by 12 fractions in the diameter range of 0.4-7.5 nm. The measurement noise of a fraction concentration is typically about 5 cm - 3 and the time resolution is about 10 min when measuring simultaneously both positive and negative ions in atmospheric air.
14 CFR 29.1109 - Carburetor air cooling.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air cooling. 29.1109 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... to maintain the air temperature, at the carburetor inlet, at or below the maximum established value...
14 CFR 29.1109 - Carburetor air cooling.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air cooling. 29.1109 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... to maintain the air temperature, at the carburetor inlet, at or below the maximum established value...
14 CFR 29.1109 - Carburetor air cooling.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air cooling. 29.1109 Section 29... to maintain the air temperature, at the carburetor inlet, at or below the maximum established value...
Axisymmetric inlet minimum weight design method
NASA Technical Reports Server (NTRS)
Nadell, Shari-Beth
1995-01-01
An analytical method for determining the minimum weight design of an axisymmetric supersonic inlet has been developed. The goal of this method development project was to improve the ability to predict the weight of high-speed inlets in conceptual and preliminary design. The initial model was developed using information that was available from inlet conceptual design tools (e.g., the inlet internal and external geometries and pressure distributions). Stiffened shell construction was assumed. Mass properties were computed by analyzing a parametric cubic curve representation of the inlet geometry. Design loads and stresses were developed at analysis stations along the length of the inlet. The equivalent minimum structural thicknesses for both shell and frame structures required to support the maximum loads produced by various load conditions were then determined. Preliminary results indicated that inlet hammershock pressures produced the critical design load condition for a significant portion of the inlet. By improving the accuracy of inlet weight predictions, the method will improve the fidelity of propulsion and vehicle design studies and increase the accuracy of weight versus cost studies.
Effect of Oxygen addition on altitude blowout and relight of an experimental combustor segment
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Ingebo, R. D.
1974-01-01
The effect of oxygen addition on the low pressure altitude blowout limits of an experimental combustor segment was investigated. Data were obtained for two inlet-air temperatures, two inlet-airflow rates, and a constant fuel-air ratio of 0.020 with Jet A fuel. It was shown that the pressure at blowout could be reduced to correspond to an increase in altitude of 4.6 kilometers with oxygen flow rates of 8 to 16 percent by weight of the total fuel flow.
Sorbent-Based Atmosphere Revitalization System
NASA Technical Reports Server (NTRS)
Knox, James C (Inventor); Miller, Lee A. (Inventor)
2017-01-01
The present invention is a sorbent-based atmosphere revitalization (SBAR) system using treatment beds each having a bed housing, primary and secondary moisture adsorbent layers, and a primary carbon dioxide adsorbent layer. Each bed includes a redirecting plenum between moisture adsorbent layers, inlet and outlet ports connected to inlet and outlet valves, respectively, and bypass ports connected to the redirecting plenums. The SBAR system also includes at least one bypass valve connected to the bypass ports. An inlet channel connects inlet valves to an atmosphere source. An outlet channel connects the bypass valve and outlet valves to the atmosphere source. A vacuum channel connects inlet valves, the bypass valve and outlet valves to a vacuum source. In use, one bed treats air from the atmosphere source while another bed undergoes regeneration. During regeneration, the inlet, bypass, and outlet valves sequentially open to the vacuum source, removing accumulated moisture and carbon dioxide.
Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders
NASA Technical Reports Server (NTRS)
Deur, J. M.; Cline, M. C.
2004-01-01
Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.
Improved Air-Treatment Canister
NASA Technical Reports Server (NTRS)
Boehm, A. M.
1982-01-01
Proposed air-treatment canister integrates a heater-in-tube water evaporator into canister header. Improved design prevents water from condensing and contaminating chemicals that regenerate the air. Heater is evenly spiraled about the inlet header on the canister. Evaporator is brazed to the header.
40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Pt. 85, App. VIII Appendix VIII.... Air Inlet System. 1. Temperature control system calibration. IV. Fuel System. 1. General. a. Engine idle speed. b. Engine idle mixture. 2. Carburetion. a. Air-fuel flow calibration. b. Transient...
40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Pt. 85, App. VIII Appendix VIII.... Air Inlet System. 1. Temperature control system calibration. IV. Fuel System. 1. General. a. Engine idle speed. b. Engine idle mixture. 2. Carburetion. a. Air-fuel flow calibration. b. Transient...
40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Pt. 85, App. VIII Appendix VIII.... Air Inlet System. 1. Temperature control system calibration. IV. Fuel System. 1. General. a. Engine idle speed. b. Engine idle mixture. 2. Carburetion. a. Air-fuel flow calibration. b. Transient...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govind, R.; Bishop, D.F.
1996-12-31
This paper provides an overview of air biofiltration with experimental data on the performance of peat/compost, pelletized packed bed and structured media biofilters. It is shown that use of high surface area per unit volume structured media results in higher contaminant treatment rates per unit biofilter volume. Peat/compost biofilters exhibit lower removal efficiencies at high (> 100 ppmv) inlet contaminant concentrations and require control of media moisture content. Increase of temperature results in increasing biodegradation rates. It is shown that use of structured ceramic media allows effective control of biomass buildup by continuous removal of biomass from the biofilter mediamore » and that the biomass removal rate depends on nutrient flowrate. An experimental system is presented which enables biofilm kinetics to be determined and a simple biofilter model is developed in this paper. A group contribution approach has been developed to estimate biokinetic parameter which allows biofiltration effectiveness to be determined for a variety of volatile organic compounds (VOCs). Finally, a procedure is presented, illustrated by an example, which is used to develop an integrated process for effective treatment of air contaminants. 22 refs., 12 figs., 4 tabs.« less
Airflow Measurement of the Car HVAC Unit Using Hot-wire Anemometry
NASA Astrophysics Data System (ADS)
Fojtlín, Miloš; Planka, Michal; Fišer, Jan; Pokorný, Jan; Jícha, Miroslav
2016-03-01
Thermal environment in a vehicular cabin significantly influence drivers' fatigue and passengers' thermal comfort. This environment is traditionally managed by HVAC cabin system that distributes air and modifies its properties. In order to simulate cabin thermal behaviour, amount of the air led through car vents must be determined. The aim of this study was to develop methodology to measure airflow from the vents, and consequently calculate corresponding air distribution coefficients. Three climatic cases were selected to match European winter, summer, and spring / fall conditions. Experiments were conducted on a test vehicle in a climatic chamber. The car HVAC system was set to automatic control mode, and the measurements were executed after the system stabilisation—each case was independently measured three times. To be able to evaluate precision of the method, the airflow was determined at the system inlet (HVAC suction) and outlet (each vent), and the total airflow values were compared. The airflow was calculated by determining a mean value of the air velocity multiplied by an area of inlet / outlet cross-section. Hot-wire anemometry was involved to measure the air velocity. Regarding the summer case, total airflow entering the cabin was around 57 l s-1 with 60 % of the air entering the cabin through dashboard vents; no air was supplied to the feet compartment. The remaining cases had the same total airflow of around 42 l s-1, and the air distribution was focused mainly on feet and windows. The inlet and outlet airflow values show a good match with a maximum mass differential of 8.3 %.
Tobin, John
1989-01-01
A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.
Evaluation of inlet sampling integrity on NSF/NCAR airborne platforms
NASA Astrophysics Data System (ADS)
Campos, T. L.; Stith, J. L.; Stephens, B. B.; Romashkin, P.
2017-12-01
An inlet test project was conducted during IDEAS-IV-GV (2013), to evaluate the sampling integrity of two inlet designs. Use of a single CO2 sensor provided a high precision detector and a large difference in the mean cabin and external concentrations (500-700 ppmv in the cabin). The original HIAPER Modular InLet (HIMIL) is comprised of a tapered flow straightening flow through `cigar' mounted to a strut. The cigar center sampling line sits 12" from the fuselage skin. An o-ring seals the feedthrough plate coupling sampling lines from the strut into the cigar. However, there is no seal to prevent air inside the strut from seeping out around the cigar body. A pressure-equalizing drain hole in the strut access panel; it was positioned at an approximate distance of 4" from the fuselage to ensure that air from any source that drained out of the strut was confined to a low release point. A second aft-facing inlet design was also evaluated. The sampling center line was moved farther from the fuselage at a height of 16". A similar approach was also applied to sampling locations on the C-130 in 2015. The results of these tests and recommendations for best practices will be presented.
40 CFR 63.11567 - Who implements and enforces this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11567 Who implements and...). 2. A high-efficiency air filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop... the inlet gas temperature and pressure drop, you can use a leak detection system that identifies when...
Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet
NASA Technical Reports Server (NTRS)
DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.
2002-01-01
The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.
Polyport atmospheric gas sampler
Guggenheim, S. Frederic
1995-01-01
An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Saari, Martin J.
1948-01-01
As part of an investigation of the performance and operational characteristics of the axial-flow gas turbine-propeller engine, conducted in the Cleveland altitude wind tunnel, the performance characteristics of the compressor and the turbine were obtained. The data presented were obtained at a compressor-inlet ram-pressure ratio of 1.00 for altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and turbine-inlet temperatures from 1400 to 2100 R. The highest compressor pressure ratio obtained was 6.15 at a corrected air flow of 23.7 pounds per second and a corrected turbine-inlet temperature of 2475 R. Peak adiabatic compressor efficiencies of about 77 percent were obtained near the value of corrected air flow corresponding to a corrected engine speed of 13,000 rpm. This maximum efficiency may be somewhat low, however, because of dirt accumulations on the compressor blades. A maximum adiabatic turbine efficiency of 81.5 percent was obtained at rated engine speed for all altitudes and turbine-inlet temperatures investigated.
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Saari, Martin J.
1947-01-01
As part of an investigation of the performance and operational characteristics of the TG-100A gas turbine-propeller engine, conducted in the Cleveland altitude wind tunnel, the performance characteristics of the compressor and the turbine were obtained. The data presented were obtained at a compressor-inlet ram-pressure ratio of 1.00 for altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and turbine-inlet temperatures from 1400 to 2100R. The highest compressor pressure ratio was 6.15 at a corrected air flow of 23.7 pounds per second and a corrected turbine-inlet temperature of 2475R. Peak adiabatic compressor efficiencies of about 77 percent were obtained near the value of corrected air flow corresponding to a corrected engine speed of 13,000 rpm. This maximum efficiency may be somewhat low, however, because of dirt accumulations on the compressor blades. A maximum adiabatic turbine efficiency of 81.5 percent was obtained at rated engine speed for all altitudes and turbine-inlet temperatures investigated.
Preliminary Data on the Effects of Inlet Pressure Distortions on the J57-P-1 Turbojet Engine
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Lubick, Robert J.; Einstein, Thomas H.
1954-01-01
An investigation to determine the steady-state and surge characteristics of the J57-P-1 two-spool turbojet engine with various inlet air-flow distortions was conducted in the altitude wind tunnel at the NACA Lewis laboratory. Along with a uniform inlet total-pressure distribution, one circumferential and three radial pressure distortions were investigated. Data were obtained over a complete range of compressor speeds both with and without intercompressor air bleed at a flight Mach number of 0.8 and at altitudes of 35,000 and 50,000 feet. Total-pressure distortions of the magnitudes investigated had very little effect on the steady-state operating line for either the outer or inner compressor. The small radial distortions investigated also had engine over that obtained with the uniform inlet pressure distribution. The circumferential distortion, however, raised the minimum speed at which the engine could operate without encountering surge when the intercompressor bleeds were closed. This increase in minimum speed resulted in a substantial reduction in the operable speed range accompanied by a reduction in the altitude operating limit.
Flow Structure Comparison for Two 7-Point LDI Configurations
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Tacina, Kathleen M.
2017-01-01
This paper presents a comparison primarily of the 2-D velocity profiles in the non-burning system; and for the luminescent flame structure for a 7-point Lean Direct Injector (LDI). This circular LDI array consists of a center element surrounded by six outer elements spaced 60 degrees apart; the spacing between all adjacent elements is the same. Each element consists of simplex atomizer that injects at the throat of a converging-diverging venturi, and an axial swirler upstream of the venturi throat to generate swirl. The two configurations were: 1) one which consists of all 60 co-swirling axial air swirlers, and; 2) one configuration which uses a 60 swirler in the center, surrounded by counter-swirling 45 swirlers. Testing was done at 5 atm and an inlet temperature of 800F. Two air reference velocities were considered in the cold flow measurements and one common air flow condition for the burning case.The 2D velocity profiles were determined using particle image velocimetry and the flame structure was determined using high speed photography.
Effect of exhaust gas recirculation on emissions from a flame-tube combustor using Liquid Jet A fuel
NASA Technical Reports Server (NTRS)
Marek, C. J.; Tacina, R. R.
1976-01-01
The effects of uncooled exhaust gas recirculation as an inert diluent on emissions of oxides of nitrogen (NO + NO2) and on combustion efficiency were investigated. Ratios of recirculated combustion products to inlet airflow were varied from 10 to 80 percent by using an inlet air ejector nozzle. Liquid Jet A fuel was used. The flame-tube combustor was 10.2 cm in diameter. It was operated with and without a flameholder present. The combustor pressure was maintained constant at 0.5 MPa. The equivalence ratio was varied from 0.3 to 1.0. The inlet air temperature was varied from 590 to 800 K, and the reference velocity from 10 to 30 m/sec. Increasing the percent recirculation from 10 to 25 had the following effects: (1) the peak NOx emission was decreased by 37 percent, from 8 to 5 g NO2/kg fuel, at an inlet air temperature of 590 K and a reference velocity of 15 m/sec; (2) the combustion efficiency was increased, particularly at the higher equivalence ratios; and (3) for a high combustion efficiency of greater than 99.5 percent, the range of operation of the combustor was nearly doubled in terms of equivalence ratio. Increasing the recirculation from 25 to 50 percent did not change the emissions significantly.
H2 fueled flightweight ramjet construction and test
NASA Technical Reports Server (NTRS)
Malek, Albert
1992-01-01
The ACES Program began the investigation of regeneratively cooled ramjet engines for propelling aircraft at Mach 6 to 8 flight regimes while collecting and processing air for later use as oxidizer in rocket propulsion into an orbit flight mode. The Marquardt Company had as its prime task the design and demonstration of a ramjet capable of steady state operating using hydrogen as the regenerative coolant and with fuel flow limited to a theta = 1. Marquardt progressed from shell type combustors to advanced tubular combustion chambers in direct connect test rigs. The first tests were made with water cooled center bodies and plug nozzles using a pebble bed air heater to simulate flight air temperature. Later tests were made on completely H2 cooled flight weight V/G assemblies direct connected to a SUE burner heater. Design studies were also conducted on integrated systems for take-off capability using offset turbojets connected to 2-D or axisymmetric inlets. An 18 inch hypersonic ramjet evaluation scale model was designed based on the hot test results using a fully V/G inlet and exit nozzle. This thruster would provide 25000 lbs. of thrust with an estimated weight of 250 lbs. A V/G inlet would also incorporate an inlet seal for possible take-off thrust by rocket operation. Hypersonic ramjet construction features and chamber thrust development are discussed.
Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei
2014-02-01
To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).
Optimization for blast furnace slag dry cooling granulation device
NASA Astrophysics Data System (ADS)
Dazhan, Sheng; Yali, Wang; Ruiyun, Wang; Suping, Cui; Xiaoyu, Ma
2017-03-01
Since the large accumulation amount of blast furnace slag (BFS) with recycling value, it has become a hot topic for recovery utilization. Compared with the existing various BFS granulation process, the dry granulation process can promote the use of blast furnace granulated slag as cement substitute and concrete admixtures. Our research group developed a novel dry cooling granulation experiment device to treat BFS. However, there are still some problems to be solved. The purpose of this research is to improve the cooling and granulation efficiency of the existing dry type cooling equipment. This topic uses the FLUENT simulation software to study the impact of the number of air inlet on the cooling effect of the device. The simulation result is that the device possessing eight air inlets can increase the number of hot and cold gas exchanged, resulting in a better cooling effect. According to the power consumption, LCA analysis was carried out on the cooling granulation process. The results show that the device equipped eight air inlets not only improved the original equipment cooling granulation effect, but also increased resource utilization ratio, realized energy-saving and emission reduction.
Farag, Yassin; Leopold, Claudia Sabine
2011-03-01
Since the introduction of aqueous ammoniacal solutions, shellac regained importance for pharmaceutical applications. However, as shellac is a material obtained from natural resources, its quality and thus its physicochemical properties may vary depending on its origin and the type of refining. In this study theophylline pellets were coated with aqueous solutions of three different commercially available shellac types. The inlet air temperature of the coating process was varied, and its influence on drug release from the coated pellet formulations was investigated. Film formation was correlated to the physicochemical and mechanical properties of the investigated shellac types. Pellets coated at lower temperatures showed distinct cracks in the coating film resulting in a loss of the barrier function during dissolution testing. These cracks were nonreversible by additional curing. The physicochemical and mechanical properties of the investigated shellac types varied significantly and could hardly be related to the drug release performance of the investigated formulations. Obviously, with shellac a minimum inlet air temperature must be exceeded to achieve a coherent coating film. This temperature was dependent on the investigated shellac type.
Gas turbine exhaust nozzle. [for noise reduction
NASA Technical Reports Server (NTRS)
Straight, D. M. (Inventor)
1973-01-01
An elongated hollow string is disposed in an exhaust nozzle combustion chamber and communicates with an air source through hollow struts at one end. The other end of the string is bell-mouth shaped and extends over the front portion of a nozzle plug. The bell-mouth may be formed by pivotally mounted flaps or leaves which are used to vary the exhaust throat area and the area between the plug and the leaves. Air from the engine inlet flows into the string and also between the combustion chamber and a housing disposed around the chamber. The air cools the plug and serves as a low velocity inner core of secondary gas to provide noise reduction for the primary exhaust gas while the other air, when it exits from the nozzle, forms an outer low velocity layer to further reduce noise. The structure produces increased thrust in a turbojet or turbofan engine.
Methods and systems for combustion dynamics reduction
Kraemer, Gilbert Otto [Greer, SC; Varatharajan, Balachandar [Cincinnati, OH; Srinivasan, Shiva [Greer, SC; Lynch, John Joseph [Wilmington, NC; Yilmaz, Ertan [Albany, NY; Kim, Kwanwoo [Greer, SC; Lacy, Benjamin [Greer, SC; Crothers, Sarah [Greenville, SC; Singh, Kapil Kumar [Rexford, NY
2009-08-25
Methods and systems for combustion dynamics reduction are provided. A combustion chamber may include a first premixer and a second premixer. Each premixer may include at least one fuel injector, at least one air inlet duct, and at least one vane pack for at least partially mixing the air from the air inlet duct or ducts and fuel from the fuel injector or injectors. Each vane pack may include a plurality of fuel orifices through which at least a portion of the fuel and at least a portion of the air may pass. The vane pack or packs of the first premixer may be positioned at a first axial position and the vane pack or packs of the second premixer may be positioned at a second axial position axially staggered with respect to the first axial position.
NASA Glenn 1-by 1-Foot Supersonic Wind Tunnel User Manual
NASA Technical Reports Server (NTRS)
Seablom, Kirk D.; Soeder, Ronald H.; Stark, David E.; Leone, John F. X.; Henry, Michael W.
1999-01-01
This manual describes the NASA Glenn Research Center's 1 - by 1 -Foot Supersonic Wind Tunnel and provides information for customers who wish to conduct experiments in this facility. Tunnel performance envelopes of total pressure, total temperature, and dynamic pressure as a function of test section Mach number are presented. For each Mach number, maps are presented of Reynolds number per foot as a function of the total air temperature at the test section inlet for constant total air pressure at the inlet. General support systems-such as the service air, combustion air, altitude exhaust system, auxiliary bleed system, model hydraulic system, schlieren system, model pressure-sensitive paint, and laser sheet system are discussed. In addition, instrumentation and data processing, acquisition systems are described, pretest meeting formats and schedules are outlined, and customer responsibilities and personnel safety are addressed.
Pressure control valve. [inflating flexible bladders
NASA Technical Reports Server (NTRS)
Lambson, K. H. (Inventor)
1980-01-01
A control valve is provided which is adapted to be connected between a pressure source, such as a vacuum pump, and a pressure vessel so as to control the pressure in the vessel. The valve comprises a housing having a longitudinal bore which is connected between the pump and vessel, and a transversely movable valve body which controls the air flow through an air inlet in the housing. The valve body includes cylindrical and conical shaped portions which cooperate with reciprocally shaped portions of the housing to provide flow control. A filter in the air inlet removes foreign matter from the air. The bottom end of the valve body is screwed into the valve housing control knob formed integrally with the valve body and controls translation of the valve body, and the opening and closing of the valve.
Report on Lincoln Electric System gas turbine inlet air cooling. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebeling, J.A.; Buecker, B.J.; Kitchen, B.J.
1993-12-01
As a result of increased electric power demand, the Lincoln Electric System (LES) of Lincoln, Nebraska (USA) decided to upgrade the generating capacity of their system. Based on capacity addition studies, the utility elected to improve performance of a GE MS7001B combustion turbine located at their Rokeby station. The turbine is used to meet summer-time peak loads, and as is common among combustion turbines, capacity declines as ambient air temperature rises. To improve the turbine capacity, LES decided to employ the proven technique of inlet air cooling, but with a novel approach: off-peak ice generation to be used for peak-loadmore » air cooling. EPRI contributed design concept definition and preliminary engineering. The American Public Power Association provided co-funding. Burns & McDonnell Engineering Company, under contract to Lincoln Electric System, provided detailed design and construction documents. LES managed the construction, start-up, and testing of the cooling system. This report describes the technical basis for the cooling system design, and it discusses combustion turbine performance, project economics, and potential system improvements. Control logic and P&ID drawings are also included. The inlet air cooling system has been available since the fall of 1991. When in use, the cooling system has increased turbine capacity by up to 17% at a cost of less than $200 per increased kilowatt of generation.« less
NASA Technical Reports Server (NTRS)
Dupree, David T.; Hawkins, W. Kent
1947-01-01
A study has been made of the performance of the induction and the exhaust systems on the XR60 power-plant installation as part of an investigation conducted in the Cleveland altitude wind tunnel. Altitude flight conditions from 5000 to 30,000 feet were simulated for a range of engine powers from 750 to 3000 brake horsepower. Slipstream rotation prevented normal pressure recoveries in the right side of the main duct in the region of the right intercooler cooling-air duct inlet. Total-pressure losses in the charge-air flow between the turbosupercharger and the intercoolers were as high as 2.1 inches of mercury. The total-pressure distribution of the charge air at the intercooler inlets was irregular and varied as much as 1.0 inch of mercury from the average value at extreme conditions, Total-pressure surveys at the carburetor top deck showed a variation from the average value of 0.3 inch of mercury at take-off power and 0.05 inch of mercury at maximum cruising power, The carburetor preheater system increased the temperature of the engine charge air a maximum of about 82 F at an average cowl-inlet air temperature of 9 F, a pressure altitude of 5000 feet, and a brake horsepower of 1240.
NASA Astrophysics Data System (ADS)
Aleksandrov, A.; Suntz, R.; Bockhorn, H.
2015-05-01
The response of non-premixed swirling flames to acoustic perturbations at various frequencies (0-350 Hz) and the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot are investigated. The results obtained from these flames are of special interest for "rich-quenched-lean" (RQL) combustion concepts applied in modern gas turbines. In RQL combustion, the fuel is initially oxidized by air under fuel-rich conditions in a first stage followed by a fuel-lean combustion step in a second stage. To mimic soot formation and oxidation in RQL combustion, soot particle measurements in highly turbulent, non-premixed swirling natural gas/ethylene-confined flames at imposed air inlet velocity oscillations are performed using simultaneous 2-Colour-Time-Resolved-Laser-Induced Incandescence (simultaneous 2-Colour-TIRE-LII). The latter technique is combined with line-of-sight averaged OH*-chemiluminescence imaging, measurements of the velocity field by high-speed particle imaging velocimetry under reactive combustion conditions and measurements of the mean temperature field obtained by a thermocouple. A natural gas/ethylene mixture (Φ = 1.56, 42 % C2H4, 58 % natural gas, P th = 17.6 kW at atmospheric pressure) is used as a fuel, which is oxidized by air under fuel-rich conditions in the first combustion chamber.
The Role of Design-of-Experiments in Managing Flow in Compact Air Vehicle Inlets
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Miller, Daniel N.; Gridley, Marvin C.; Agrell, Johan
2003-01-01
It is the purpose of this study to demonstrate the viability and economy of Design-of-Experiments methodologies to arrive at microscale secondary flow control array designs that maintain optimal inlet performance over a wide range of the mission variables and to explore how these statistical methods provide a better understanding of the management of flow in compact air vehicle inlets. These statistical design concepts were used to investigate the robustness properties of low unit strength micro-effector arrays. Low unit strength micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. The term robustness is used in this paper in the same sense as it is used in the industrial problem solving community. It refers to minimizing the effects of the hard-to-control factors that influence the development of a product or process. In Robustness Engineering, the effects of the hard-to-control factors are often called noise , and the hard-to-control factors themselves are referred to as the environmental variables or sometimes as the Taguchi noise variables. Hence Robust Optimization refers to minimizing the effects of the environmental or noise variables on the development (design) of a product or process. In the management of flow in compact inlets, the environmental or noise variables can be identified with the mission variables. Therefore this paper formulates a statistical design methodology that minimizes the impact of variations in the mission variables on inlet performance and demonstrates that these statistical design concepts can lead to simpler inlet flow management systems.
1988-11-01
is located in southern Alaska on Orca Inlet at the south- eastern approach of Prince William Sound , 145 air miles east-southeast from Anchorage. The...Anacortes Harbor, Washington 113. Anacortes is located on Fidalgo Island on the east side of Puget Sound . The project includes a 2,850-ft-long channel... Puget Sound in northern Washington. The project includes three waterways maintained by dredging, a small-boat basin protected by two rubble-mound
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1991-01-01
An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1990-01-01
An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.
NASA Technical Reports Server (NTRS)
Tacina, R.
1976-01-01
A premixing-prevaporizing fuel system for a gas turbine catalytic combustor has been developed and evaluated. Spatial fuel distribution and degree of vaporization were measured at inlet temperatures up to 800 K and fuel-air ratios of 0.01 and 0.025. The test pressure was 0.5 MPa; velocity was 20 m/sec. Both a multiple-jet cross-stream injector and a splash-groove injector with a 30 deg air swirler exhibited a uniform fuel distribution and a high degree of vaporization with little total pressure drop. Fuel oxidation reactions were observed at the 800 K inlet air temperature, indicating that a different design concept is necessary for application with an automotive gas turbine.
Swirling midframe flow for gas turbine engine having advanced transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Matthew D.; Charron, Richard C.; Rodriguez, Jose L.
A gas turbine engine can-annular combustion arrangement (10), including: an axial compressor (82) operable to rotate in a rotation direction (60); a diffuser (100, 110) configured to receive compressed air (16) from the axial compressor; a plenum (22) configured to receive the compressed air from the diffuser; a plurality of combustor cans (12) each having a combustor inlet (38) in fluid communication with the plenum, wherein each combustor can is tangentially oriented so that a respective combustor inlet is circumferentially offset from a respective combustor outlet in a direction opposite the rotation direction; and an airflow guiding arrangement (80) configuredmore » to impart circumferential motion to the compressed air in the plenum in the direction opposite the rotation direction.« less
Analysis of Porous Media as Inlet Concept for Rotating Detonation Engines
NASA Astrophysics Data System (ADS)
Grogan, Kevin; Ihme, Matthias; Department of Mechanical Engineering Team
2016-11-01
Rotating detonation engines combust reactive gas mixtures with a high-speed, annularly-propagating detonation wave, which provides many advantages including a stagnation pressure gain and a compact, lightweight design. However, the optimal design of the inlet to the combustion chamber inlet is a moot topic since improper design can significantly reduce detonability and increase pressure losses. The highly diffusive properties of porous media could make it an ideal material to prevent the flashback of the detonation wave and therefore, allow the inlet gas to be premixed. Motivated by this potential, this work employs simulation to evaluate the application of porous media to the inlet of a rotating detonation engine as a novel means to stabilize a detonation wave while reducing the pressure losses incurred by non-ideal mixing strategies. Department of the Air Force.
NASA Astrophysics Data System (ADS)
Timar, T.
1981-09-01
A new blowdown system was developed for cleaning debris from the inlet grill of waterjet propulsion system on Boeing hydrofoil boats. A system was required to work with existing waterjet ducts which are open ended. The new blowdown system consists of an abrupt discharge of high pressure compressed air amidst the water inlet duct. It utilizes the open end of the propulsor discharge nozzle as a safety valve. Feasibility was proven by semi-steady state equations and was confirmed by full scale testing. A system was developed and installed and is now fully operational.
Low-drag ground vehicle particularly suited for use in safely transporting livestock
NASA Technical Reports Server (NTRS)
Saltzman, E. J. (Inventor)
1982-01-01
A low-drag truck consisting of a tractor-trailer rig characterized by a rounded forebody and a protective fairing for the gap conventionally found to exist between the tractor and the trailer is described. The fairing particularly suited for establishing an attached flow of ambient air along its surfaces. The truck is also comprised of a forward facing, ram air inlet and duct and a plurality of submerged inlets and outflow ports communicating with the trailer for continuously flushing heated gases from the trailer as the rig is propelled at highway speeds.
A Description and Test Results of a Spark-Ignition and a Compression-Ignition 2-Stroke-Cycle Engine
NASA Technical Reports Server (NTRS)
Spanogle, J A; Whitney, E G
1935-01-01
This report presents performance results of air cooled and water-cooled engines. The results obtained were sufficiently promising to warrant further investigation with fuel injection and spark ignition, with the same arrangement of inlet ports and exhaust valves at the bottom of the cylinder and the exhaust gases discharged through two poppet valves in the cylinder head. The displacement of the engine was 118 cubic inches. Optimum performance was obtained with the inlet air directed into the cylinder at an angle of 20 degrees to the radial.
Ultra-lean combustion at high inlet temperatures
NASA Technical Reports Server (NTRS)
Anderson, D. N.
1981-01-01
Combustion at inlet air temperatures of 1100 to 1250 K was studied for application to advanced automotive gas turbine engines. Combustion was initiated by the hot environment, and therefore no external ignition source was used. Combustion was stabilized without a flameholder. The tests were performed in a 12 cm diameter test section at a pressure of 2.5 x 10 to the 5th power Pa, with reference velocities of 32 to 60 m/sec and at maximum combustion temperatures of 1350 to 1850 K. Number 2 diesel fuel was injected by means of a multiple source fuel injector. Unburned hydrocarbons emissions were negligible for all test conditions. Nitrogen oxides emissions were less than 1.9 g NO2/kg fuel for combustion temperatures below 1680 K. Carbon monoxide emissions were less than 16 g CO/kg fuel for combustion temperatures greater than 1600 K, inlet air temperatures higher than 1150 K, and residence times greater than 4.3 microseconds.
Engine inlet distortion in a 9.2 percent scaled vectored thrust STOVL model in ground effect
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George; Flood, J. D.; Amuedo, K. C.; Strock, T. W.
1989-01-01
Advanced Short Takeoff/Vertical Landing (STOVL) aircraft which can operate from remote locations, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, a cooperative program has been defined for testing in the NASA Lewis 9- by 15-foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. This paper presents results showing the engine inlet distortions (both temperature and pressure) in a 9.2 percent scale Vectored Thrust STOVL model in ground effects. Results are shown for the forward nozzle splay angles of 0, -6, and 18 deg. The model support system had 4 deg of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity was varied from 8 to 23 kn.
Degree of vaporization using an airblast type injector for a premixed-prevaporized combustor
NASA Technical Reports Server (NTRS)
Tacina, R. R.
1978-01-01
Vaporization data that could be useful in designing premixed-prevaporized fuel preparation systems for gas turbine combustors are presented. The effect of the experimental parameters on vaporization was found to be E = T sub in tau 0.18 (V sub ref + 38) (P sub in + 35)/203000 where E is the degree of vaporization in percent, T sub in the inlet air temperature in K over the range 450 to 700 K, the residence time in ms over the range 4.3 to 23.8 ms, V sub ref the reference velocity in m/s over the range 5 to 22 m/s, and P sub in the inlet pressure in MPa over the range 0.18 to 0.59 MPa. Jet A and Diesel no. 2 fuels were tested for the effect of inlet air temperature and were found to have nearly identical results.
Flight-determined characteristics of an air intake system on an F-111A airplane
NASA Technical Reports Server (NTRS)
Hughes, D. L.; Johnson, H. J.
1972-01-01
Flow phenomena of the F-111A air intake system were investigated over a large range of Mach number, altitude, and angle of attack. Boundary-layer variations are shown for the fuselage splitter plate and inlet entrance stations. Inlet performance is shown in terms of pressure recovery, airflow, mass-flow ratio, turbulence factor, distortion factor, and power spectral density. The fuselage boundary layer was found to be not completely removed from the upper portion of the splitter plate at all Mach numbers investigated. Inlet boundary-layer ingestion started at approximately Mach 1.6 near the translating spike and cone. Pressure-recovery distribution at the compressor face showed increasing distortion with increasing angle of attack and increasing Mach number. The time-averaged distortion-factor value approached 1300, which is near the distortion tolerance of the engine at Mach numbers above 2.1.
40 CFR 63.9020 - What performance tests and other procedures must I use?
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Hydrochloric Acid Production... where: Ci, Co = Concentration of HCl or Cl2 in the gas stream at the inlet and outlet of the control...-mole. Qi, Qo = Flow rate of gas stream at the inlet and outlet of the control device(s), respectively...
Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions
ERIC Educational Resources Information Center
Said, M. M.; Manyele, S. V.; Raphael, M. L.
2012-01-01
The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…
Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle
NASA Technical Reports Server (NTRS)
Takashima, N.; Kothari, A. P.
1998-01-01
The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-31
...; cover assemblies; strainer assemblies; oil filter assemblies; air filter assemblies; screen assemblies; filter assemblies; breather assemblies; filter box assemblies; sand trap assemblies; valve stems; brake... holders; staples; rivets; brazing alloys; diesel engines; frame assemblies; air inlets; filter box air...
40 CFR 60.613 - Monitoring of emissions and operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Air Oxidation Unit Processes § 60.613 Monitoring of emissions and operations. (a) The owner or... from each air oxidation reactor within an affected facility at a point closest to the inlet of each...
40 CFR 60.613 - Monitoring of emissions and operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Air Oxidation Unit Processes § 60.613 Monitoring of emissions and operations. (a) The owner or... from each air oxidation reactor within an affected facility at a point closest to the inlet of each...
40 CFR 60.613 - Monitoring of emissions and operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Air Oxidation Unit Processes § 60.613 Monitoring of emissions and operations. (a) The owner or... from each air oxidation reactor within an affected facility at a point closest to the inlet of each...
Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan
NASA Technical Reports Server (NTRS)
Hah, Chunill; Rabe, Douglas; Scribben, Angie
2015-01-01
In the present study, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the study is to advance the current understanding of the flow interaction between two different ultra-compact inlets and a transonic fan for future design applications. Both URANS and LES approaches are used to calculate the unsteady flow field and are compared with the available measured data. The present study indicates that stall inception is mildly affected by the distortion pattern generated by the inlet with the current test set-up. The numerical study indicates that the inlet distortion pattern decays significantly before it reaches the fan face for the current configuration. Numerical results with a shorter distance between the inlet and fan show that counter-rotating vortices near the rotor tip due to the serpentine diffuser affects fan characteristics significantly.
NASA Astrophysics Data System (ADS)
Gong, Lunkun; Chen, Xiong; Musa, Omer; Yang, Haitao; Zhou, Changsheng
2017-12-01
Numerical and experimental investigation on the solid-fuel ramjet was carried out to study the effect of geometry on combustion characteristics. The two-dimensional axisymmetric program developed in the present study adopted finite rate chemistry and second-order moment turbulence-chemistry models, together with k-ω shear stress transport (SST) turbulence model. Experimental data were obtained by burning cylindrical polyethylene using a connected pipe facility. The simulation results show that a fuel-rich zone near the solid fuel surface and an air-rich zone in the core exist in the chamber, and the chemical reactions occur mainly in the interface of this two regions; The physical reasons for the effect of geometry on regression rate is the variation of turbulent viscosity due to the geometry change. Port-to-inlet diameter ratio is the main parameter influencing the turbulent viscosity, and a linear relationship between port-to-inlet diameter and regression rate were obtained. The air mass flow rate and air-fuel ratio are the main influencing factors on ramjet performances. Based on the simulation results, the correlations between geometry and air-fuel ratio were obtained, and the effect of geometry on ramjet performances was analyzed according to the correlation. Three-dimensional regression rate contour obtained experimentally indicates that the regression rate which shows axisymmetric distribution due to the symmetry structure increases sharply, followed by slow decrease in axial direction. The radiation heat transfer in recirculation zone cannot be ignored. Compared with the experimental results, the deviations of calculated average regression rate and characteristic velocity are about 5%. Concerning the effect of geometry on air-fuel ratio, the deviations between experimental and theoretical results are less than 10%.
A study of air breathing rockets. 3: Supersonic mode combustors
NASA Astrophysics Data System (ADS)
Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.
An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.
Lean direct injection diffusion tip and related method
Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy S [Simpsonville, SC; Lipinski, John [Simpsonville, SC; Kraemer, Gilbert O [Greer, SC; Yilmaz, Ertan [Niskayuna, NY; Lacy, Benjamin [Greer, SC
2012-08-14
A nozzle for a gas turbine combustor includes a first radially outer tube defining a first passage having an inlet and an outlet, the inlet adapted to supply air to a reaction zone of the combustor. A center body is located within the first radially outer tube, the center body including a second radially intermediate tube for supplying fuel to the reaction zone and a third radially inner tube for supplying air to the reaction zone. The second intermediate tube has a first outlet end closed by a first end wall that is formed with a plurality of substantially parallel, axially-oriented air outlet passages for the additional air in the third radially inner tube, each air outlet passage having a respective plurality of associated fuel outlet passages in the first end wall for the fuel in the second radially intermediate tube. The respective plurality of associated fuel outlet passages have non-parallel center axes that intersect a center axis of the respective air outlet passage to locally mix fuel and air exiting said center body.
77 FR 67263 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
... flight cycles. US Airways stated that the engine inlet cowl inspection should follow Airbus Mandatory... months after the engine air intake cowl has accumulated 5,000 total flight cycles. (2) For any engine air... the same airplane has accumulated 5,000 flight cycles or less since the engine air intake cowl was...
Staged electrostatic precipitator
Miller, Stanley J.; Almlie, Jay C.; Zhuang, Ye
2016-03-01
A device includes a chamber having an air inlet and an air outlet. The device includes a plurality of stages including at least a first stage adjacent a second stage. The plurality of stages are disposed in the chamber and each stage has a plurality of discharge electrodes disposed in an interior region and is bounded by an upstream baffle on an end proximate the air inlet and bounded by a downstream baffle on an end proximate the air outlet. Each stage has at least one sidewall between the upstream baffle and the downstream baffle. The sidewall is configured as a collection electrode and has a plurality of apertures disposed along a length between the upstream baffle and the downstream baffle. The upstream baffle of the first stage is positioned in staggered alignment relative to the upstream baffle of the second stage and the downstream baffle of the first stage are positioned in staggered alignment relative to the downstream baffle of the second stage.
Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system
NASA Astrophysics Data System (ADS)
Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C. Z.; Wang, J. J.
2017-12-01
Due to the nature of fluctuation and intermittency, the utilization of wind and solar power will bring a huge impact to the power grid management. Therefore a novel hybrid wind-solar-liquid air energy storage (WS-LAES) system was proposed. In this system, wind and solar power are stored in the form of liquid air by cryogenic liquefaction technology and thermal energy by solar thermal collector, respectively. Owing to the high density of liquid air, the system has a large storage capacity and no geographic constraints. The WS-LAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Moreover, a thermodynamic analysis was carried out to investigate the best system performance. The result shows that the increases of compressor adiabatic efficiency, turbine inlet pressure and inlet temperature all have a beneficial effect.
NASA Astrophysics Data System (ADS)
Chen, Xiaotao; Song, Jie; Liang, Lixiao; Si, Yang; Wang, Le; Xue, Xiaodai
2017-10-01
Large-scale energy storage system (ESS) plays an important role in the planning and operation of smart grid and energy internet. Compressed air energy storage (CAES) is one of promising large-scale energy storage techniques. However, the high cost of the storage of compressed air and the low capacity remain to be solved. This paper proposes a novel non-supplementary fired compressed air energy storage system (NSF-CAES) based on salt cavern air storage to address the issues of air storage and the efficiency of CAES. Operating mechanisms of the proposed NSF-CAES are analysed based on thermodynamics principle. Key factors which has impact on the system storage efficiency are thoroughly explored. The energy storage efficiency of the proposed NSF-CAES system can be improved by reducing the maximum working pressure of the salt cavern and improving inlet air pressure of the turbine. Simulation results show that the electric-to-electric conversion efficiency of the proposed NSF-CAES can reach 63.29% with a maximum salt cavern working pressure of 9.5 MPa and 9 MPa inlet air pressure of the turbine, which is higher than the current commercial CAES plants.
NASA Technical Reports Server (NTRS)
Tacina, R. R.
1977-01-01
Experiments were performed to evolve and evaluate a premixing-prevaporizing fuel system to be used with a catalytic combustor for possible application in an automotive gas turbine. Spatial fuel distribution and degree of vaporization were measured using Jet A fuel. Three types of air blast injectors, an air assist nozzle and a simplex pressure atomizer were tested. Air swirlers with vane angles up to 30 deg were used to improve the spatial fuel distribution. The work was done in a 12-cm (4.75-in.) diameter tubular rig. Test conditions were: a pressure of 0.3 and 0.5 MPa (3 and 5 atm), inlet air temperatures up to 800 K (980 F), velocity of 20 m/sec (66 ft/sec) and fuel-air ratios of 0.01 and 0.025. Uniform spatial fuel distributions that were within plus or minus 10 percent of the mean were obtained. Complete vaporization of the fuel was achieved with air blast configurations at inlet air temperatures of 550 K (530 F) and higher. The total pressure loss was less than 0.5 percent for configurations without air swirlers and less than 1 percent for configurations with a 30 deg vane angle air swirler.
Review of Flight Tests of NACA C and D Cowlings on the XP-42 Airplane
NASA Technical Reports Server (NTRS)
Johnston, J Ford
1943-01-01
Results of flight tests of the performance and cooling characteristics of three NACA D cowlings and of a conventional NACA D cowling on the XP-42 airplane are summarized and compared. The D cowling is, in general, characterized by the use of an annular inlet and diffuser section for the engine-cooling air. The D cowlings tested were a long-nose high-inlet-velocity cowling, a short-nose high-inlet-velocity cowling, and a short-nose low inlet-velocity cowling. The use of wide-chord propeller cuffs or an axial-flow fan with the D cowlings increased the cooling pressure recoveries in the climb condition at the expense of some of the improvement in speed.
Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger
NASA Astrophysics Data System (ADS)
Bohn, Mark S.
1988-11-01
This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610 mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440 C and air inlet temperatures of approximately 230 C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/sq m/s air flow and 6 to 18 kg/sq m/s salt flow, the data agree with the model within 22 percent standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18 percent standard deviation over the range of column pressure drop from 40 to 1250 Pa/m.
NASA Astrophysics Data System (ADS)
Delucia, M.; Bronconi, R.; Carnevale, E.
1994-04-01
Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.
Engine with pulse-suppressed dedicated exhaust gas recirculation
Keating, Edward J.; Baker, Rodney E.
2016-06-07
An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.
NASA Technical Reports Server (NTRS)
Brun, Rinaldo J.; Feder, Melvin S.; Fisher, William F.
1947-01-01
A knock-limited performance investigation was conducted on blends of triptane and 28-P fuel with a 12-cylinder, V-type, liquid-cooled aircraft engine of 1710-cubic-inch displacement at three compression ratios: 6.65, 7.93, and 9.68. At each compression ratio, the effect of changes in temperature of the inlet air to the auxiliary-stage supercharger and in fuel-air ratio were investigated at engine speeds of 2280 and. 3000 rpm. The results show that knock-limited engine performance, as improved by the use of triptane, allowed operation at both take-off and cruising power at a compression ratio of 9.68. At an inlet-air temperature of 60 deg F, an engine speed of 3000 rpm ; and a fuel-air ratio of 0,095 (approximately take-off conditions), a knock-limited engine output of 1500 brake horsepower was possible with 100-percent 28-R fuel at a compression ratio of 6.65; 20-percent triptane was required for the same power output at a compression ratio of 7.93, and 75 percent at a compression ratio of 9.68 allowed an output of 1480 brake horsepower. Knock-limited power output was more sensitive to changes in fuel-air ratio as the engine speed was increased from 2280 to 3000 rpm, as the compression ratio is raised from 6.65 to 9.68, or as the inlet-air temperature is raised from 0 deg to 120 deg F.
NASA Astrophysics Data System (ADS)
Onn, Shing-Chung; Chiang, Hau-Jei; Hwang, Hang-Che; Wei, Jen-Ko; Cherng, Dao-Lien
1993-06-01
The dynamic behavior of a 2D turbulent mixing and combustion process has been studied numerically in the main combustion chamber of a solid-propellant ducted rocket (SDR). The mathematical model is based on the Favre-averaged conservation equations developed by Cherng (1990). Combustion efficiency, rather than specific impulse from earlier studies, is applied successfully to optimize the effects of two parameters by a multiple linear regression model. Specifically, the fuel-air equivalence ratio of the operating conditions and the air inlet location of configurations for the SDR combustor have been studied. For a equivalence ratio near the stoichiometric condition, the use of specific impulse or combustion efficiency will show similar trend in characterizing the reacting flow field in the combustor. For the overall fuel lean operating conditions, the change of combustion efficiency is much more sensitive to that of air inlet location than specific impulse does, suggesting combustion efficiency a better property than specific impulse in representing the condition toward flammability limits. In addition, the air inlet for maximum efficiency, in general, appears to be located at downstream of that for highest specific impulse. The optimal case for the effects of two parameters occurs at fuel lean condition, which shows a larger recirculation zone in front, deeper penetration of ram air into the combustor and much larger high temperature zone near the centerline of the combustor exit than those shown in the optimal case for overall equivalence ratio close to stoichiometric.
40 CFR Appendix A to Subpart E of... - Tables
Code of Federal Regulations, 2010 CFR
2010-07-01
... torque output N · m Power output kW Air inlet temperature °C Air humidity mg/kg Coolant temperature... rated speed Engine torque as a percentage of maximum torque at rated speed Mode weighting factor 1 100...
NASA Technical Reports Server (NTRS)
DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.
1999-01-01
Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.
NASA Technical Reports Server (NTRS)
Glasser, Philip W
1950-01-01
An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.
Emissions of nitrogen oxides from an experimental hydrogen-fueled gas turbine combustor
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Ingebo, R. D.
1974-01-01
The effect of operating variables of a hydrogen fueled combustor on exhaust concentrations of total oxides of nitrogen was determined at inlet-air temperature levels up to 810 K, pressure of 414,000N/sa m, and reference velocity of 21.3 m/sec. The combustor, which was originally designed for hydrocarbon fuel produced a NO(x) concentration of 380 ppm with hydrogen at 810 K inlet-air temperature. A reduction in NO(x) of about 30 % was obtained by modification to a lean or rich primary zone. The lowest NO(x) levels obtained with hydrogen were equivalent to those of the reference combustor burning hydrocarbon fuels.
Engineering Design Handbook. Helicopter Engineering. Part One. Preliminary Design
1974-08-30
1.3 ENGINE REPLACEMENT .............. ......................... 8-1 8-1.4 ENGINE AIR INDUCTION SYSTEM .............................. 8-2 8-1.5 ENGINE ...8-5 8-2.2 ENGINE AIR INDUCTION SYSTEM .............................. 8-5 8-2.2.1 G eneral Design...8-5 8-2.2.2 Air Induction System Inlet Location ............................... 8-6 8-2.2.3 Engine Air Induction System Pressure Losses
[Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].
Xing, Liming; Zhao, Zhengsheng
2012-07-01
To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.
Moncelle, Michael E.
2003-01-01
An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.
Control of pseudo-shock oscillation in scramjet inlet-isolator using periodical excitation
NASA Astrophysics Data System (ADS)
Su, Wei-Yi; Chen, Yun; Zhang, Feng-Rui; Tang, Piao-Ping
2018-02-01
To suppress the pressure oscillation, stabilize the shock train in the scramjet isolator and delay the hypersonic inlet unstart, flow control using periodic excitation was investigated with unsteady Reynolds averaged Navier-Stokes simulations. The results showed that by injecting air to manipulate the cowl reflected shock wave, the separation bubble induced by it was diminished and the pressure oscillations of the shock train were markedly suppressed. The power spectral density and standard deviation of wall pressure were significantly reduced. The simulations revealed that this active control method can raise the critical back pressure by 17.5% compared with the baseline, which would successfully delay the hypersonic inlet unstarts. The results demonstrated that this active control method is effective in suppressing pressure oscillation and delaying hypersonic inlet unstarts.
NASA Technical Reports Server (NTRS)
Wallner, L. E.; Lubick, R. J.; Chelko, L. J.
1955-01-01
During an investigation of the J57-P-1 turbojet engine in the Lewis altitude wind tunnel, effects of inlet-flow distortion on engine stall characteristics and operating limits were determined. In addition to a uniform inlet-flow profile, the inlet-pressure distortions imposed included two radial, two circumferential, and one combined radial-circumferential profile. Data were obtained over a range of compressor speeds at an altitude of 50,000 and a flight Mach number of 0.8; in addition, the high- and low-speed engine operating limits were investigated up to the maximum operable altitude. The effect of changing the compressor bleed position on the stall and operating limits was determined for one of the inlet distortions. The circumferential distortions lowered the compressor stall pressure ratios; this resulted in less fuel-flow margin between steady-state operation and compressor stall. Consequently, the altitude operating Limits with circumferential distortions were reduced compared with the uniform inlet profile. Radial inlet-pressure distortions increased the pressure ratio required for compressor stall over that obtained with uniform inlet flow; this resulted in higher altitude operating limits. Likewise, the stall-limit fuel flows required with the radial inlet-pressure distortions were considerably higher than those obtained with the uniform inlet-pressure profile. A combined radial-circumferential inlet distortion had effects on the engine similar to the circumferential distortion. Bleeding air between the two compressors eliminated the low-speed stall limit and thus permitted higher altitude operation than was possible without compressor bleed.
Control of insects and mites in grain using a high temperature/short time (HTST) technique.
Mourier; Poulsen
2000-07-01
Wheat infested with grain mites (Acari) and Sitophilus granarius, and maize infested with Prostephanus truncatus, were exposed to hot air in a CIMBRIA HTST Microline toaster((R)). Inlet temperatures of the hot air were in the range of 150-750 degrees C decreasing to outlet temperatures in the range of 100-300 degrees C during the exposure period. A rotating drum, connected to a natural-gas burner was fed with grain which was in constant movement along the drum and thereby mixed thoroughly during the process. The capacity of the toaster was 1000 kg per hour.Complete control of grain mites and adult S. granarius in wheat was obtained with an inlet temperature of 300-350 degrees C and an average residence time in the drum of 6 s. More than 99% mortality was obtained for all stages of S. granarius with an inlet temperature of 300-350 degrees C and an average exposure period of 40 s. For control of P. truncatus in maize, an inlet temperature of 700 degrees C resulted in a complete disinfestation when the exposure time was 19 s.The reduction in grain moisture content was 0.5-1% at treatments giving 100% control. Germination tests indicate that it is possible to choose a combination of inlet temperatures and exposure periods which effectively kills mites and insects in small grains, without harming the functional properties of the grain.Economy of the method was considered to be competitive with fumigation using phosphine.
Numerical investigation of slag formation in an entrained-flow gasifier
NASA Astrophysics Data System (ADS)
Zageris, G.; Geza, V.; Jakovics, A.
2018-05-01
A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification in account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and viable solutions such as radial inlet positioning for decreasing the amount of undesirable deposits are proposed. We also conclude that the particular chemical reactions that take place inside the gasifier play a significant role in determining how slagging occurs inside a gasifier.
Aircraft Engine Sump Fire Mitigation
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1973-01-01
An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.
NASA Astrophysics Data System (ADS)
McBride, R.; Wood, E. T.
2017-12-01
Cedar Island, VA is a low-profile, washover-dominated barrier island that has breached at least three times in the past sixty years. Cedar Island Inlet, a former wave-dominated tidal inlet, was open for the following time periods: 1) 1956-1962, 2) 1992-1997, and 3) 1998-2007. Air photos, satellite imagery, and geomorphic features (i.e., relict flood tidal deltas, recurved-spit ridges) record the spatial and temporal extent of the three ephemeral inlets. Based on three sediment vibracores, benthic foraminiferal and sedimentologic analyses offer high resolution insights of inlet dynamics and lifecycle evolution. Four foraminiferal biofacies are completely dominated by Elphidium excavatum (54-100%) and contain unique assemblages of accessory species based on cluster analyses: tidal inlet floor (low abundance estuarine and shelf species; 23% Haynesina germanica); flood tidal delta/inlet fill (high abundance estuarine and shelf species; 2% Buccella frigida, 2% Ammonia parkinsoniana, and 2% Haynesina germanica); high-energy inlet fill (low abundance, low diversity shelf species; 9% Elphidium gunteri); and washover/beach/aeolian (low abundance, predominantly shelf species; 3% Buccella frigida and 3% Ammonia parkinsoniana). The estuarine biofacies is barren of all foraminifera. Grain size trends indicate a first order coarsening-upward succession with second order coarsening- and fining-upwards packages in inlet throat deposits, while a first order fining-upward succession is observed in flood tidal delta deposits with two second order coarsening-upward packages in the proximal flood tidal delta. Contrary to typical wave-dominated tidal inlets that open, migrate laterally in the direction of net longshore transport, and close, the 1998-2007 tidal inlet, and possibly the 1956-1962 inlet, migrated laterally and rotated, whereas the 1992-1997 inlet remained stationary and did not rotate. In the vicinity of the vibracores, preserved deposits are attributed to the 1956-1962 and 1998-2007 tidal inlets and not to the 1992-1997 inlet. Additionally, a previously undocumented older inlet deposit was discovered. Thus, each ephemeral inlet has undergone a unique lifecycle where tidal prism, accommodation space, and flood tidal delta morphology influenced the degree of migration and rotation.
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Bianco, Jean; Deur, John M.; Ghorashi, Bahman
1992-01-01
An experimental and analytical study was performed on a lean, premixed-prevaporized Jet A/air flame tube. The NO(x) emissions were measured in a flame tube apparatus at inlet temperatures ranging from 755 to 866 K (900 to 1100 F), pressures from 10 to 15 atm, and equivalence ratios from 0.37 to 0.62. The data were then used in regressing an equation to predict the NO(x) production levels in combustors of similar design. Through an evaluation of parameters it was found that NO(x) is dependent on adiabatic flame temperature and combustion residence time, yet independent of pressure and inlet air temperature for the range of conditions studied. This equation was then applied to experimental data that were obtained from the literature, and a good correlation was achieved.
Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures
NASA Astrophysics Data System (ADS)
Ohtsuka, Masaya; Yoshida, Shohei; Hirata, Yoshitaka; Kobayashi, Nariyoshi
Acoustically-coupled combustion oscillation is studied for premixed flame with pilot fuel to be used in gas turbine combustors. Premixed gas is passed through swirl vanes and burnt with the centrally injected pilot fuel. The dependencies of pressure, fuel to air ratio, premixed fuel rate, inlet velocity and air temperature on the combustion oscillation are investigated. Two kinds of oscillation modes of ˜100Hz and ˜350Hz are activated according to inlet velocities. Fluctuating pressures are amplified when the premixed fuel rate is over ˜80% at elevated pressures. The fluctuating pressure peak moves to a higher premixed fuel ratio region with increased pressure or fuel to air ratio for the Helmholz type mode. Combustion oscillation occurs when the pilot fuel velocity is changed proportionally with the flame length.
Thermal reactor for afterburning automotive internal combustion engine exhaust gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masaki, K.; Nagaishi, H.
1974-08-08
A thermal reactor for burning unburned components in exhaust gases of an internal combustion engine before emission to the atmosphere is described. An outer casing has an exhaust gas inlet connected to the exhaust ports, and an inner casing divides the reactor into an outer chamber and an inner chamber. The inner casing has an inlet from the outer chamber, an outlet to the atmosphere, and perforations opening to the outer chamber. An oxidation catalyst in the inner chamber promotes oxidation of the unburned components in the exhaust gases to generate oxidation reaction heat. A first secondary air injection nozzlemore » in the inner chamber between the oxidation catalyst and the outlet and a second secondary air injection nozzle in a portion upstream of the oxidation catalyst inject secondary air into oxidation catalyst.« less
Research on the performance of low-lift diving tubular pumping system by CFD and Test
NASA Astrophysics Data System (ADS)
Xia, Chenzhi; Cheng, Li; Liu, Chao; Zhou, Jiren; Tang, Fangping; Jin, Yan
2016-11-01
Post-diving tubular pump is always used in large-discharge & low-head irrigation or storm drainage pumping station, its impeller and motor share the same shaft. Considering diving tubular pump system's excellent hydraulic performance, compact structure, good noise resistance and low operating cost, it is used in Chinese pump stations. To study the hydraulic performance and pressure fluctuation of inlet and outlet passage in diving tubular pump system, both of steady and unsteady full flow fields are numerically simulated at three flow rate conditions by using CFD commercial software. The asymmetry of the longitudinal structure of inlet passage affects the flow pattern on outlet. Especially at small flow rate condition, structural asymmetry will result in the uneven velocity distribution on the outlet of passage inlet. The axial velocity distribution uniformity increases as the flow rate increases on the inlet of passage inlet, and there is a positive correlation between hydraulic loss in the passage inlet and flow rate's quadratic. The axial velocity distribution uniformity on the outlet of passage inlet is 90% at design flow rate condition. The predicted result shows the same trend with test result, and the range of high efficiency area between predicted result and test result is almost identical. The dominant frequency of pressure pulsation is low frequency in inlet passage at design condition. The dominant frequency is high frequency in inlet passage at small and large flow rate condition. At large flow rate condition, the flow pattern is significantly affected by the rotation of impeller in inlet passage. At off-design condition, the pressure pulsation is strong at outlet passage. At design condition, the dominant frequency is 35.57Hz, which is double rotation frequency.
NASA Technical Reports Server (NTRS)
Tacina, R.
1976-01-01
A premixing-prevaporizing fuel system to be used with a catalytic combustor was evaluated for possible application in an automotive gas turbine. Spatial fuel distribution and degree of vaporization were measured using jet A fuel. Two types of air blast injectors were tested, a splash groove injector and a multiple jet cross stream injector. Air swirlers with vane angles of 15 deg and 30 deg were used to improve the spatial fuel distribution in a 12 cm diameter tubular rig. Distribution and vaporization measurements were made 35.5 cm downstream of the injector. The spatial fuel distribution was nearly uniform with the multiple jet contrastream injector and the splash-groove injector with a 30 deg air swirler. The vaporization was nearly 100 percent at an inlet air temperature of 600 K, and at 800 K inlet air temperature fuel oxidation reactions were observed. The total pressure loss was less than 0.5 percent of the total pressure for the multiple jet cross stream injector and the splash groove injector (without air swirler) and less than 1 percent for the splash groove with a 30 deg air swirler.
Microwave-Driven Air Plasma Studies for Drag Reduction and Power Extraction in Supersonic Air
2004-10-15
called spillage occurs, and the air mass capture decreases (Fig. 3). To avoid performance penalties at off-design Mach numbers, a variable geometry inlet...AND SUBTITLE 5. FUNDING NUMBERS Microwave-Driven Air Plasma Studies for Drag Reduction and Power Extraction in Supersonic Air 6. AUTHOR(S) Richard B...MONITORING AGENCY REPORT NUMBER Air Force Office of Scientific Research/NA (John Schmisseur, Program Manager) 801 N. Randolph St., Room 732 Arlington
Environmental continuous air monitor inlet with combined preseparator and virtual impactor
Rodgers, John C [Santa Fe, NM
2007-06-19
An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.
NASA Astrophysics Data System (ADS)
Chiranjeevi, C.; Srinivas, T.
2017-11-01
Humidifier is an important component in air humidification-dehumidification desalination plant for fresh water production. Liquid to air flow rate ratio is optimization is reported for an industrial cooling towers but for an air humidifier it is not addressed. The current work is focused on the design and analysis of an air humidifier for solar desalination plant to maximize the yield with better humidification, using finite difference method (FDM). The outlet conditions of air from the humidifier are theoretically predicted by FDM with the given inlet conditions, which will be further used in the design calculation of the humidifier. Hot water to air flow rate ratio and inlet hot water temperature are identified as key operating parameters to evaluate the humidifier performance. The maximum and optimal values of mass flow rate ratio of water to air are found to be 2.15 and 1.5 respectively using packing function and Merkel Integral. The height of humidifier is constrained to 1.5 m and the diameter of the humidifier is found as 0.28m. The performance of humidifier and outlet conditions of air are simulated using FDM and compared with experimental results. The obtained results are within an agreeable range of deviation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles Bullinger
2005-02-07
The Design Team continued to conference this quarter. Their primary task during this timeframe was to finalize the dryer design based on information learned from the NDIC Pilot work and detailed design discussions at Barr offices in August. Heyl-Patterson was tasked with incorporating all comments and drafting drawings. They submitted a preliminary proposal which spawned detailed discussions about tube bundle, air locks, and fire suppression systems. The type of fire protection specified dictated the final structural arrangement. Three meetings were spent discussing the pro's and con's of suppression vs. ventilation systems. In the end, the dryer and bucket elevator willmore » have suppression systems and the remaining equipment will be explosion vented. This is in agreement with GRE's current insurer, FM Global. Three inlet airlocks were reduced to two and four outlets were reduced to three. The inlet plenum was subdivided for greater flexibility and sparging air added in the outlet plenum. It was also decided to use bundles with varied material, diameter, and tube & fin spacing. This will be completed in an effort to identify for us which configuration has the best heat transfer characteristics using coal as the fluidizing medium. The dryer will also be delivered in four pieces. This will allow for installation through the current access door on the Air Heater deck. The Input/Output list and functional description was completed and forwarded to Honeywell to finalize controls. Major pieces of equipment received this quarter were the Bucket Elevator, Liewell Screen, conveyors, and Motor Control Center. ICI completed removal of the wall separating Silo 28 from the dryer area; handrail and grating between the two areas has also been removed. They relocated a blowdown line. They moved an Air Heater basket access hatch.« less
NASA Technical Reports Server (NTRS)
Spiro, Clifford Lawrence (Inventor); Fric, Thomas Frank (Inventor); Leon, Ross Michael (Inventor)
1997-01-01
Insect debris is removed from or prevented from adhering to insect impingement areas of an aircraft, particularly on an inlet cowl of an engine, by heating the area to 180.degree.-500.degree. C. An apparatus comprising a means to bring hot air from the aircraft engine to a plenum contiguous to the insect impingement area provides for the heating of the insect impingement areas to the required temperatures. The plenum can include at least one tube with a plurality of holes contained in a cavity within the inlet cowl. It can also include an envelope with a plurality of holes on its surface contained in a cavity within the inlet cowl.
NASA Technical Reports Server (NTRS)
Hunczak, Henry R
1952-01-01
An investigation was conducted to determine the effectiveness of a free-jet diffuser in reducing the over-all pressure ratios required to operate a free jet with a large air-breathing engine as a test vehicle. Efficient operation of the free jet was determined with and without the considerations required for producing suitable engine-inlet flow conditions. A minimum operating pressure ration of 5.5 was attained with a ratio of nozzle-exit to engine-inlet area of 1.85. Operation of the free jet with unstable engine-inlet flow (buzz) is also included.
NASA Technical Reports Server (NTRS)
Tacina, Robert; Mao, Chien-Pei; Wey, Changlie
2004-01-01
A low-NOx emissions combustor concept has been demonstrated in flame-tube tests. A lean-direct injection (LDI) concept was used where the fuel is injected directly into the flame zone and the overall equivalence ratio of the mixture is lean. The LDI concept described in this report is a multiplex fuel injector module containing multipoint fuel injection tips and multi-burning zones. The injector module comprises 25 equally spaced injection tips within a 76 by 76 mm area that fits into the flame-tube duct. The air swirlers were made from a concave plate on the axis of the fuel injector using drilled holes at an angle to the axis of the fuel injector. The NOx levels were quite low and are greater than 70 percent lower than the 1996 ICAO standard. At an inlet temperature of 810 K, inlet pressure of 2760 kPa, pressure drop of 4 percent and a flame temperature of 1900 K with JP8 fuel, the NOx emission index was 9. The 25-point injector module exhibited the most uniform radial distribution of fuel-air mixture and NOx emissions in the flame tube when compared to other multipoint injection devices. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, equivalence ratio and pressure drop.
Moghaddam, Arasb Dabbagh; Pero, Milad; Askari, Gholam Reza
2017-01-01
In this study, the effects of main spray drying conditions such as inlet air temperature (100-140 °C), maltodextrin concentration (MDC: 30-60%), and aspiration rate (AR) (30-50%) on the physicochemical properties of sour cherry powder such as moisture content (MC), hygroscopicity, water solubility index (WSI), and bulk density were investigated. This investigation was carried out by employing response surface methodology and the process conditions were optimized by using this technique. The MC of the powder was negatively related to the linear effect of the MDC and inlet air temperature (IT) and directly related to the AR. Hygroscopicity of the powder was significantly influenced by the MDC. By increasing MDC in the juice, the hygroscopicity of the powder was decreased. MDC and inlet temperature had a positive effect, but the AR had a negative effect on the WSI of powder. MDC and inlet temperature negatively affected the bulk density of powder. By increasing these two variables, the bulk density of powder was decreased. The optimization procedure revealed that the following conditions resulted in a powder with the maximum solubility and minimum hygroscopicity: MDC = 60%, IT = 134 °C, and AR = 30% with a desirability of 0.875.
Haeussler, Peter J.; Bruhn, Ronald L.; Pratt, Thomas L.
2000-01-01
The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate Mw 6–7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.
Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets
NASA Astrophysics Data System (ADS)
Miller, Michael F.; Kessler, William J.; Allen, Mark G.
1996-08-01
An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.
NASA Astrophysics Data System (ADS)
Peng, Y.; Zhang, S. J.; Shen, F.; Wang, X. B.; Yang, X. R.; Yang, L. J.
2017-11-01
The air-cooled heat exchanger plays an important role in the field of industry like for example in thermal power plants. On the other hand, it can be used to remove core decay heat out of containment passively in case of a severe accident circumstance. Thus, research on the performance of fins in air-cooled heat exchangers can benefit the optimal design and operation of cooling systems in nuclear power plants. In this study, a CFD (Computational Fluid Dynamic) method is implemented to investigate the effects of inlet velocity, fin spacing and tube pitch on the flow and the heat transfer characteristics of flat fins constructed of various materials (316L stainless steel, copper-nickel alloy and aluminium). A three dimensional geometric model of flat finned tube bundles with fixed longitudinal tube pitch and transverse tube pitch is established. Results for the variation of the average convective heat transfer coefficient with respect to cooling air inlet velocity, fin spacing, tube pitch and fin material are obtained, as well as for the pressure drop of the cooling air passing through finned tube. It is shown that the increase of cooling air inlet velocity results in enhanced average convective heat transfer coefficient and decreasing pressure drop. Both fin spacing and tube pitch engender positive effects on pressure drop and have negative effects on heat transfer characteristics. Concerning the fin material, the heat transfer performance of copper-nickel alloy is superior to 316L stainless steel and inferior to aluminium.
Experimental study of condensate subcooling with the use of a model of an air-cooled condenser
NASA Astrophysics Data System (ADS)
Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.
2016-01-01
Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.
Computational study of fuel injection in a shcramjet inlet
NASA Astrophysics Data System (ADS)
Parent, Bernard
The primary objective of this investigation is to present the mixing of fuel with air in the inlet of a shock-induced combustion ramjet (shcramjet). The study is limited to non-reacting hydrogen-air mixing in an external-compression inlet at a flight Mach number of 11 and at a dynamic pressure of 1400 psf (67032 Pa), using an array of cantilevered ramp injectors. A numerical method based on the Yee-Roe scheme and block-implicit approximate factorization is developed to solve the FANS equations closed by the Wilcox ko turbulence model. A new acceleration technique for streamwise-separated hypersonic flow, dubbed the "marching window", is presented. The dilatational dissipation correction is seen to affect the mixing efficiency considerably for a cantilevered ramp injector flowfield even at a vanishing convective Mach number, due to the high turbulent Mach number generated by the high cross-stream shear induced by the ramp-generated axial vortices. Due to the fuel being injected at a very high speed, fuel injection in the inlet is found to increase considerably the thrust potential, with a gain exceeding the loss by 40--120%. Losses due to skin friction are seen to play a significant role in the inlet, as they are estimated to make up as much as 50--70% of the thrust potential losses. The use of a turbulence model that can predict accurately the wall shear stress is hence crucial in assessing the losses accurately in a shcramjet inlet. Substituting the second inlet shock by a Prandtl-Meyer compression fan is encouraged as it decreases the thrust potential losses, reduces the risk of premature ignition by reducing the static temperature, while decreasing the mixing efficiency by a mere 6%. One approach that is observed herein to be successful at increasing the mixing efficiency in the inlet is by alternating the injection angle along the injector array. The use of two injection angles of 9 and 16 degrees is seen to result in a 32% increase in the mixing efficiency at the expense of a 14% increase in the losses when compared to a single injection angle of 10 degrees. Using alternating injection angles, the mixing efficiency reaches as much as 0.47 at the inlet exit.
Rocket Based Combined Cycle (RBCC) engine inlet
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.
Heat transfer to two-phase air/water mixtures flowing in small tubes with inlet disequilibrium
NASA Technical Reports Server (NTRS)
Janssen, J. M.; Florschuetz, L. W.; Fiszdon, J. P.
1986-01-01
The cooling of gas turbine components was the subject of considerable research. The problem is difficult because the available coolant, compressor bleed air, is itself quite hot and has relatively poor thermophysical properties for a coolant. Injecting liquid water to evaporatively cool the air prior to its contact with the hot components was proposed and studied, particularly as a method of cooling for contingency power applications. Injection of a small quantity of cold liquid water into a relatively hot coolant air stream such that evaporation of the liquid is still in process when the coolant contacts the hot component was studied. No approach was found whereby heat transfer characteristics could be confidently predicted for such a case based solely on prior studies. It was not clear whether disequilibrium between phases at the inlet to the hot component section would improve cooling relative to that obtained where equilibrium was established prior to contact with the hot surface.
Carbon nanotube heat-exchange systems
Hendricks, Terry Joseph; Heben, Michael J.
2008-11-11
A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).
Beshears, David L.; Sitter, Jr., David N.; Andrews, William H.; Simpson, Marc L.; Abston, Ruth A.; Cates, Michael R.; Allison, Steve W.
2000-01-01
An apparatus for measuring the temperature of a moving substrate includes an air gun with a powder inlet port in communication with the outlet port of a powder reservoir, an air inlet port in communication with a pressurized air source, and an outlet nozzle spaced from and directed toward the moving substrate. The air gun is activated by the air pulses to spray controlled amounts of the powdered phosphor onto the moving substrate, where the phosphor assumes the temperature of the moving substrate. A laser produces light pulses, and optics direct the light pulses onto the phosphor on the moving substrate, in response to which the phosphor emits a luminescence with a decay rate indicative of the temperature of the phosphor. A collection lens is disposed to focus the luminescence, and a photodetector detects the luminescence focused by the collection lens and produces an electrical signal that is characteristic of the brightness of the luminescence. A processor analyzes the electrical signal to determine the decay characteristic of the luminescence and to determine the temperature of the phosphor from the decay characteristic.
NASA Technical Reports Server (NTRS)
Rossow, V. J.; Schmidt, G. I.; Meyn, L. A.; Ortner, K. R.; Holmes, R. E.
1986-01-01
A 1/50-scale model of the 40- by 80-Foot Wind Tunnel at Ames Research Center was used to study various air-exchange configurations. System components were tested throughout a range of parameters, and approximate analytical relationships were derived to explain the observed characteristics. It is found that the efficiency of the air exchanger could be increased (1) by adding a shaped wall to smoothly turn the incoming air downstream, (2) by changing to a contoured door at the inlet to control the flow rate, and (3) by increasing the size of the exhaust opening. The static pressures inside the circuit then remain within the design limits at the higher tunnel speeds if the air-exchange rate is about 5% or more. Since the model is much smaller than the full-scale facility, it is not possible to completely duplicate the tunnel, and it will be necessary to measure such characteristics as flow rate and tunnel pressures during implementation of the remodeled facility. The aerodynamic loads estimated for the inlet door and for nearby walls are also presented.
Zafred, Paolo R [Murrysville, PA; Gillett, James E [Greensburg, PA
2012-04-24
A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.
Cyclone reactor with internal separation and axial recirculation
Becker, F.E.; Smolensky, L.A.
1988-07-19
A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.
Cyclone reactor with internal separation and axial recirculation
Becker, Frederick E.; Smolensky, Leo A.
1989-01-01
A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.
USDA-ARS?s Scientific Manuscript database
Attic inlets are a popular addition for new construction and energy saving retrofits. Proper management of attic inlets is necessary to get maximum benefits from the system and reduce the likelihood of moisture-related problems in the structure. Solar energy levels were determined for the continen...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1973-01-01
A combustor segment 0.457 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was operated at inlet-air temperatures of 590 and 700 K, inlet-air pressures of 4 and 10 atmospheres, and fuel-air ratios of 0.014 and 0.018 to determine the effect of primary-zone water injection on pollutants from burning either propane or ASTM A-1 fuel. At a simulated takeoff condition of 10 atmospheres and 700 K, multiple-orifice nozzles used to inject water at 1 percent of the airflow rate reduced nitrogen oxides 75 percent with propane and 65 percent with ASTM A-1 fuel. Although carbon monoxide and unburned hydrocarbons increased with water injection, they remained relatively low; and smoke numbers were well below the visibility limit.
The Effect of Piston-Head Temperature on Knock-Limited Power
NASA Technical Reports Server (NTRS)
Imming, Harry S.
1944-01-01
To determine the effect of piston-head temperature on knock-limited power. Tests were made in a supercharged CFR engine over a range of fuel-air ratios from 0.055 to 0.120, using S-3 reference fuel, AN-F-28, Amendment-2, aviation gasoline, and AN-F-28 plus 2 percent xylidines by weight. Tests were run at a compression ratio of 7.0 with inlet-air temperatures of 150 F and 250 F and at a compression ratio of 8.0 with an inlet-air temperature of 250 F. All other engine conditions were held constant. The piston-head temperature was varied by circulation of oil through passages in the crown of a liquid-cooled piston. This method of piston cooling decreased the piston-head temperature about 80 F. The data are not intended to constitute a recommendation as to the advisability of piston cooling in practice.
Berry, G.F.; Minkov, V.; Petrick, M.
1981-11-02
A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael
1988-01-05
A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael
1988-01-01
A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz
Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurementsmore » for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.« less
Process and apparatus, mainly for burning agricultural plant refuse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bela, B.; Geza, G.; Istvan, C.
1984-05-22
Freshly harvested agricultural materials having a moisture content no greater than 45% by weight are burned in a furnace in which the housing thereof is divided into preburning and afterburning spaces by a baffle wall. The preburning space contains a horizontally arranged first grating adjacent the baffle wall and a second grating adjacent the first and inclined upwardly therefrom and juxtaposed with an inlet in the housing for the introduction at a constant rate of the materials onto the inclined grating, the upper portion of which is fed by a first portion of primary air for the removal of moisturemore » from the materials, while a lower portion of the inclined grating is fed with a second portion of primary air for the air-deficient burning of the dried materials and the production of combustible gases. The horizontal grating is fed with a third portion of primary air for driving the combustible gases along the baffle wall, which acts to deflect the gases in a counterflow to the flow of the materials, the gases mixing with secondary air introduced through at least one air inlet formed in the baffle wall, the mixture being burned completely in the afterburning space.« less
Thermal Performance Testing of EMU and OSS Liquid Cooling Garments
NASA Technical Reports Server (NTRS)
Rhodes, Richard; Bue, Grant; Hakam, Mary
2012-01-01
A test was conducted to evaluate three factors influencing the thermal performance of liquid cooling garments (LCG): (1) the comparable thermal performance of an Oceaneering developed engineering evaluation unit (EEU) prototype LDG, (2) the effect of the thermal comfort undergarment (TCU), and (3) the performance of a torso or upper body only LCG configuration. To evaluate the thermal performance of each configuration a metabolic test was conducted, utilizing suited subjects to generate the metabolic heat. For this study three (3) test subjects of similar health and weight produced a metabolic load on the LDG configuration by either resting (300-600 BTU/hr), walking at a slow pace (1200 BRU/hr), and walking at a brisk pace (2200 BTU/hr), as outlined in Figure 1, the metabolic profile. During the test, oxygen consumption, heart rate, relative humidity, air flow, inlet and outlet air pressure, inlet and outlet air temperature, delta air temperature, water flow (100 lb/hr), inlet water temperature (64 F), delta water temperature, water pressure, core body temperature, skin temperature, and sweat loss data was recorded. Four different test configurations were tested, with one configuration tested twice, as outlined in Table 1. The test was conducted with the suit subjects wearing the Demonstrator Suit, pressurized to vent pressure (approximately 0.5 psig). The demonstrator suit has an integrated ventilation duct system and was used to create a relevant environment with a captured ventilation return, an integrated vent tree, and thermal insulation from the environment.
The 727/JT8D refan side nacelle airloads
NASA Technical Reports Server (NTRS)
Bailey, R. W.; Vadset, H. J.
1974-01-01
Airloads on the 727/JT8D refan side engine nacelle are presented. These consist of surface static pressure distributions from two low speed wind tunnel tests. External nacelle surface pressures are from testing of a flow-through, body mounted nacelle model, and internal inlet surface pressures are from performance testing of a forced air inlet model. The method for obtaining critical airloads on nacelle components and a representative example are discussed.
Implications of Natural Occlusion of Ventilated Racks on Ammonia and Sanitation Practices
Creamer, Michelle A; Petty, Joann; Martin, Tara; Bergdall, Valerie; Hickman-Davis, Judy M
2014-01-01
Examination of ventilated rat racks prior to semiannual sanitation revealed silicone nozzles and ventilation ports that were partially or completely occluded with granular debris. We subsequently sought to document performance standards for rack sanitation and investigate the effect of ventilation port occlusion on rack function and animal husbandry practices. We hypothesized that individually ventilated cages with occluded airflow would require more frequent cage changes, comparable to those for static cages (that is, every 3 to 4 d). Sprague–Dawley rats were housed under one of 4 conditions: no airflow occlusion, occluded air-supply inlet, occluded air-exhaust outlet, and occlusion of both inlet and outlet. Cages were changed when daily ammonia concentration exceeded 20 ppm or after 14 d had elapsed. Most cages with unoccluded or partial airflow occlusion remained below the 20 ppm limit until day 12 or 13. Cages with occlusion of both inlet and outlet exceeded 20 ppm ammonia by as early as day 5. Airflow was significantly lower in cages with occlusion of both inlet and outlet airflow. Weekly inspection revealed that occlusion of ventilation ports was detectable by 3 mo after semiannual sanitation. This study demonstrates that silicone nozzles should be removed prior to rack sanitation to improve the effectiveness of cleaning ventilation ports and nozzles. While the rack is in use, silicone nozzles and ventilation ports should be inspected regularly to identify occlusion that is likely to diminish environmental quality in the cage. Intracage ammonia levels are significantly higher when both inlet and outlet airflow are occluded. PMID:24602544
Implications of natural occlusion of ventilated racks on ammonia and sanitation practices.
Creamer, Michelle A; Petty, Joann; Martin, Tara; Bergdall, Valerie; Hickman-Davis, Judy M
2014-03-01
Examination of ventilated rat racks prior to semiannual sanitation revealed silicone nozzles and ventilation ports that were partially or completely occluded with granular debris. We subsequently sought to document performance standards for rack sanitation and investigate the effect of ventilation port occlusion on rack function and animal husbandry practices. We hypothesized that individually ventilated cages with occluded airflow would require more frequent cage changes, comparable to those for static cages (that is, every 3 to 4 d). Sprague-Dawley rats were housed under one of 4 conditions: no airflow occlusion, occluded air-supply inlet, occluded air-exhaust outlet, and occlusion of both inlet and outlet. Cages were changed when daily ammonia concentration exceeded 20 ppm or after 14 d had elapsed. Most cages with unoccluded or partial airflow occlusion remained below the 20 ppm limit until day 12 or 13. Cages with occlusion of both inlet and outlet exceeded 20 ppm ammonia by as early as day 5. Airflow was significantly lower in cages with occlusion of both inlet and outlet airflow. Weekly inspection revealed that occlusion of ventilation ports was detectable by 3 mo after semiannual sanitation. This study demonstrates that silicone nozzles should be removed prior to rack sanitation to improve the effectiveness of cleaning ventilation ports and nozzles. While the rack is in use, silicone nozzles and ventilation ports should be inspected regularly to identify occlusion that is likely to diminish environmental quality in the cage. Intracage ammonia levels are significantly higher when both inlet and outlet airflow are occluded.
Aerodynamic design of gas and aerosol samplers for aircraft
NASA Technical Reports Server (NTRS)
Soderman, Paul T.; Hazen, Nathan L.; Brune, William H.
1991-01-01
The aerodynamic design of airborne probes for the capture of air and aerosols is discussed. Emphasis is placed on the key parameters that affect proper sampling, such as inlet-lip design, internal duct components for low pressure drop, and exhaust geometry. Inlet designs that avoid sonic flow conditions on the lip and flow separation in the duct are shown. Cross-stream velocities of aerosols are expressed in terms of droplet density and diameter. Flow curvature, which can cause aerosols to cross streamlines and impact on probe walls, can be minimized by means of a proper inlet shape and proper probe orientation, and by avoiding bends upstream of the test section. A NASA panel code called PMARC was used successfully to compute streamlines around aircraft and probes, as well as to compute to local velocity and pressure distributions in inlets. A NACA 1-series inlet with modified lip radius was used for the airborne capture of stratospheric chlorine monoxide at high altitude and high flight speed. The device has a two-stage inlet that decelerates the inflow with little disturbance to the flow through the test section. Diffuser design, exhaust hood design, valve loss, and corner vane geometry are discussed.
The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow
NASA Astrophysics Data System (ADS)
Tatar, V.; Yildizay, H.; Aras, H.
2015-05-01
One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.
The report describes the development of a sampler for particulate-associated and low volatility organic pollutants in residential air. The performance of the sampler inlet, which is compatible with the proposed PM-10 regulations for particulate sampling, is documented under a var...
24 CFR 3280.709 - Installation of appliances.
Code of Federal Regulations, 2010 CFR
2010-04-01
... roof, a combustion air inlet, a hearth extension, and means to securely attach the fireplace or the... fireplace or fireplace stove, air intake assembly, hearth extension and the chimney shall be installed in... from the hearth dropping onto the area beneath the manufactured home. (iv) The fireplace or fireplace...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix...—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration (natural, Roots blown, supercharged.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryner, Elliott; Brun, Klaus; Coogan, Shane
The objective of this project is to increase Concentrated Solar Power (CSP) tower air receiver and gas turbine temperature capabilities to 1,000ºC by the development of a novel gas turbine combustor, which can be integrated on a megawatt-scale gas turbine, such as the Solar Turbines Mercury 50™. No combustor technology currently available is compatible with the CSP application target inlet air temperature of 1,000°C. Autoignition and flashback at this temperature prevent the use of conventional lean pre-mix injectors that are currently employed to manage NOx emissions. Additional challenges are introduced by the variability of the high-temperature heat source provided bymore » the field of solar collectors, the heliostat in CSP plants. For optimum energy generation from the power turbine, the turbine rotor inlet temperature (TRIT) should remain constant. As a result of changing heat load provided to the solar collector from the heliostat, the amount of energy input required from the combustion system must be adjusted to compensate. A novel multi-bank lean micro-mix injector has been designed and built to address the challenges of high-temperature combustion found in CSP applications. The multi-bank arrangement of the micro-mix injector selectively injects fuel to meet the heat addition requirements to maintain constant TRIT with changing solar load. To validate the design, operation, and performance of the multi-bank lean micro-mix injector, a novel combustion test facility has been designed and built at Southwest Research Institute® (SwRI®) in San Antonio, TX. This facility, located in the Turbomachinery Research Facility, provides in excess of two kilograms per second of compressed air at nearly eight bar pressure. A two-megawatt electric heater raises the inlet temperature to 800°C while a secondary gas-fired heater extends the operational temperature range of the facility to 1,000°C. A combustor test rig connected to the heater has been designed and built to test the multi-bank lean micro-mix injector over the range of CSP operating conditions. The fuel is controlled and selectively delivered to the banks of the injector based on combustor inlet conditions that correspond to turbine operating points. The combustor rig is equipped with a data acquisition system and a suite of instrumentation for measuring temperature, pressure, and species concentration. This unique test facility has been built and commissioned and a prototype of the multi-bank lean micro-mix injector design has been tested. Operation of the combustor and injector has been demonstrated over the full range of CSP inlet conditions and for the range of turbine load conditions specified. The multi-bank operation of the injector has been proven to be an effective design for managing the variable flow rates of air and fuel due to changing inlet conditions from the solar field and turbine loads.« less
Harwell, Glenn Richard; Van Metre, Peter C.; Wilson, Jennifer T.; Mahler, Barbara J.
2003-01-01
In spring 2000, the Texas Department of Health issued a fish consumption advisory for Lake Worth in Fort Worth, Texas, because of elevated concentrations of polychlorinated biphenyls (PCBs) in fish. In response to the advisory and in cooperation with the U.S. Air Force, the U.S. Geological Survey collected 21 surficial sediment samples and three gravity core sediment samples to assess the spatial distribution and historical trends of selected hydrophobic contaminants, including PCBs, and to determine, to the extent possible, sources of hydrophobic contaminants to Lake Worth. Compared to reference (background) concentrations in the upper lake, elevated PCB concentrations were detected in the surficial sediment samples collected in Woods Inlet, which receives surface runoff from Air Force facilities and urban areas. Gravity cores from Woods Inlet and from the main part of the lake near the dam indicate that the concentrations of PCBs were three to five times higher in the 1960s than in 2000. A regression method was used to normalize sediment concentrations of trace elements for natural variations and to distinguish natural and anthropogenic contributions to sediments. Concentrations of several trace elements—cadmium, chromium, copper, lead, and zinc—were elevated in sediments in Woods Inlet, along the shoreline of Air Force facilities, and in the main lake near the dam. Concentrations of these five trace elements have decreased since 1970. Polycyclic aromatic hydrocarbons also were elevated in the same areas of the lake. Concentrations of total polycyclic aromatic hydrocarbons, normalized with organic carbon, were mostly stable in the upper lake but steadily increased near the dam, except for small decreases since 1980. The Woods Inlet gravity core showed the largest increase of the three core sites beginning about 1940; total polycyclic aromatic hydrocarbon concentrations in post-1940 sediments from the core showed three apparent peaks about 1960, 1984, and 2000. The concentrations of organochlorine pesticides were low relative to consensus-based sediment-quality guidelines and either decreased or remained constant since 1970. The two likely sources of hydrophobic contaminants to the lake are urban areas around the lake and the drainage area of Meandering Road Creek that contributes runoff to Woods Inlet and includes Air Force facilities.
NASA Technical Reports Server (NTRS)
Brune, William H.; Stevens, Philip S.; Mather, James
1994-01-01
Just as in the method of Hard and O'Brien, ambient air is pulled through an approximately 1 mm diameter inlet into a detection chamber that is maintained at a pressure of 2.4 torr. The ambient air stream travels through the detection chamber with a velocity of greater than 100 m sec(exp -1) in a narrow stream, constrained by the addition of an inert gas flow (0.4 torr). The OH molecule is both excited and detected in the A(exp 2)Sigma (v' = 0) yields X(exp 2)II (v'' = 0) transition at 308 nm. Light from a copper vapor-pumped dye laser (rep. rate = 10kHz; pulse length = 20 ns; linewidth = .1 cm(exp -1), and average power = 15 mW), resonant with the Q(sub 1)(3) transition, is multipassed through a White cell and intercepts the air stream as 24 non-overlapping 2mm by 5mm beams. A fast microchannel plate detector is turned off during the laser pulse to prevent saturation of the detector due to Rayleigh and chamber scattering. It is turned on 30-100 nsec after the end of the laser pulse for 300 ns to collect resonance fluorescence from OH. HO2 is detected by chemical conversion to OH by reaction with reagent NO, followed by OH detection. Both the detection sensitivity and the inlet characteristics must be understood for any in situ instrument. For the calibration of the detection sensitivity, OH is produced quantitatively by the fast H + NO2 yields OH + NO reaction in a low pressure, flowing discharge tube connected to the detection chamber. The inlet transmission of OH inlet is calibrated separately.
Low coke fuel injector for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.R.
This patent describes a gas turbine carbureting device for disposal in a down-stream flowing compressor discharge air flow. It comprises: a spin chamber defined by a generally annular housing including a closed forward end having a continuous unobstructed inner surface and an open aft end wherein the forward end is upstream of the aft end with respect tot he compressor discharge airflow; at least one exhaust tube having an inlet disposed within the spin chamber wherein the exhaust tube is radially spaced apart from the annular housing and which together with the annular housing forms at least in part amore » first annular air passage leading to the forward end; the housing having a fuel entrance and a swirling air entrance to the first annular air passage and spaced axially apart from each other, and wherein the swirling air entrance and fuel entrance are downstream of the closer forward end with respect to the compressor discharge flow; and wherein the first air passage is formed for flowing swirling air from the swirling air passage to the aft end in an upstream direction with respect to the compressor discharge flow and the exhaust tube inlet is disposed within the swirl chamber so as to reverse the axial direction of the swirling air off the forward end from an upstream direction to a downstream direction through the exhaust tube.« less
NASA Technical Reports Server (NTRS)
Violett, Rebeca S.
1989-01-01
The analysis performed on the Main Injector LOX Inlet Assembly located on the Space Shuttle Main Engine is summarized. An ANSYS finite element model of the inlet assemably was built and executed. Static stress analysis was also performed.
Wind turbine generators having wind assisted cooling systems and cooling methods
Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA
2008-09-23
A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.
NASA Technical Reports Server (NTRS)
Roelke, R. J.; Haas, J. E.
1981-01-01
The aerodynamic performance of the inlet manifold and stator assembly of the compressor drive turbine was experimentally determined with cold air as the working fluid. The investigation included measurements of mass flow and stator-exit fluid torque as well as radial surveys of total pressure and flow angle at the stator inlet and annulus surveys of total pressure and flow angle at the stator exit. The stator-exit aftermixed flow conditions and overall stator efficiency were obtained and compared with their design values and the experimental results from three other stators. In addition, an analysis was made to determine the constituent aerodynamic losses that made up the stator kinetic energy loss.
Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation
NASA Technical Reports Server (NTRS)
Taylor, E S; Leary, W A; Diver, J R
1940-01-01
An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.
Preliminary Test Results of a Non-Contacting Finger Seal on a Herringbone-Grooved Rotor
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Degado, Irebert R.
2008-01-01
Low leakage, non-contacting finger seals have potential to reduce gas turbine engine specific fuel consumption by 2 to 3 percent and to reduce direct operating costs by increasing the time between engine overhauls. A non-contacting finger seal with concentric lift-pads operating adjacent to a test rotor with herringbone grooves was statically tested at 300, 533, and 700 K inlet air temperatures at pressure differentials up to 576 kPa. Leakage flow factors were approximately 70 percent less than state-of-the-art labyrinth seals. Leakage rates are compared to first order predictions. Initial spin tests at 5000 rpm, 300 K inlet air temperature and pressure differentials to 241 kPa produced no measurable wear.
A Combined Experimental/Computational Investigation of a Rocket Based Combined Cycle Inlet
NASA Technical Reports Server (NTRS)
Smart, Michael K.; Trexler, Carl A.; Goldman, Allen L.
2001-01-01
A rocket based combined cycle inlet geometry has undergone wind tunnel testing and computational analysis with Mach 4 flow at the inlet face. Performance parameters obtained from the wind tunnel tests were the mass capture, the maximum back-pressure, and the self-starting characteristics of the inlet. The CFD analysis supplied a confirmation of the mass capture, the inlet efficiency and the details of the flowfield structure. Physical parameters varied during the test program were cowl geometry, cowl position, body-side bleed magnitude and ingested boundary layer thickness. An optimum configuration was determined for the inlet as a result of this work.
Aircraft Engine Sump Fire Mitigation, Phase 2
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1978-01-01
The effect of changes in the input parameters (air leakage flow rate and temperature and lubricating oil inlet flow rate and temperature) over a specified range on the flammability conditions within an aircraft engine bearing sump was investigated. An analytical study was performed to determine the effect of various parameters on the generation rate of oil vapor from oil droplets in a hot air stream flowing in a cylindrical tube. The ignition of the vapor-air mixture by an ignition source was considered. The experimental investigation demonstrated that fires would be ignited by a spark ignitor over the full range of air and oil flow rates and air temperatures evaluated. However, no fires could be ignited when the oil inlet temperature was maintained below 41.7 K (290 F). The severity of the fires ignited were found to be directly proportional to the hot air flow rate. Reasonably good correlation was found between the mixture temperature in the sump at the ignitor location and the flammability limits as defined by flammability theory; thus a fairly reliable experimental method of determining flammable conditions within a sump was demonstrated. The computerized mathematical model shows that oil droplet size and air temperature have the greatest influence on the generation rate of oil vapor.
Vortex nozzle for segmenting and transporting metal chips from turning operations
Bieg, L.F.
1993-04-20
Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.
Shock position sensor for supersonic inlets. [measuring pressure in the throat of a supersonic inlet
NASA Technical Reports Server (NTRS)
Dustin, M. O. (Inventor)
1975-01-01
Static pressure taps or ports are provided in the throat of a supersonic inlet, and signals indicative of the pressure at each of the ports is fed to respective comparators. Means are also provided for directing a signal indicative of the total throat pressure to the comparators. A periodic signal is superimposed on the total throat pressure so that the signal from the static pressure tabs is compared to a varying scan signal rather than to total throat pressure only. This type of comparison causes each comparator to provide a pulse width modulated output which may vary from 0% 'time on' to 100% 'time on'. The pulse width modulated outputs of the comparators are summed, filtered, and directed to a controller which operates a bypass valve such as a door whereby air is dumped from the inlet to prevent the shock wave from being expelled out the front.
NASA Technical Reports Server (NTRS)
Papadakis, M.; Elangovan, E.; Freund, G. A., Jr.; Breer, M. D.
1987-01-01
An experimental method has been developed to determine the droplet impingement characteristics on two- and three-dimensional bodies. The experimental results provide the essential droplet impingement data required to validate particle trajectory codes, used in aircraft icing analyses and engine inlet particle separator analyses. A body whose water droplet impingement characteristics are required is covered at strategic locations by thin strips of moisture absorbing (blotter) paper, and then exposed to an air stream containing a dyed-water spray cloud. Water droplet impingement data are extracted from the dyed blotter strips, by measuring the optical reflectance of the dye deposit on the strips, using an automated reflectometer. Impingement efficiency data obtained for a NACA 65(2)015 airfoil section, a supercritical airfoil section, and Being 737-300 and axisymmetric inlet models are presented in this paper.
NASA Astrophysics Data System (ADS)
Hallse, R. L.; Weiman, S. M.
1986-11-01
A progress report is presented from a study of structural design concepts for a large, square-bore, multi-shot railgun. The railgun is to have multi-MA current, a barrel longer than 15 ft, a thermally-managed breech 3 ft long, and pre-stressed internal components. The design, as of early 1986, had a one-piece monolithic circular shell, S-glass/epoxy insulators, and bolt-loaded steel pre-stressed plates. Thermal management is achieved with longitudinal cooling slots with numerous water and air inlets. The device is instrumented for gun current, voltage, bore velocity, magnetic field, rail and armature current, bore dimensions and coolant temperature.
Evaluation of Requirements for Militarization of 3-kW Free-Piston Stirling Engine Generator Set
1982-01-01
MEASURED COMPONENT EFFICIENCIES ... .......... .... 3-29 3-8 TDE MEASURED SYSTEM EFFICIENCIES............. 3-29 3-9 PARAMETERS FOR THE COMBUSTOR AIR ...chamber liner I Tgniter * External heater head. 2-8 S .. w 04 w 1 -9 The fuel and air are supplied to the combustor from an external fuel/ air control sys...tern. The inlet air is preheated by the combustion exhaust in a folded foil preheater. The preheated air enters the combustion chamber through a
Catalytic combustion for the automotive gas turbine engine
NASA Technical Reports Server (NTRS)
Anderson, D. N.; Tacina, R. R.; Mroz, T. S.
1977-01-01
Fuel injectors to provide a premixed prevaporized fuel-air mixture are studied. An evaluation of commercial catalysts was performed as part of a program leading to the demonstration of a low emissions combustor for an automotive gas turbine engine. At an inlet temperature of 800 K, a pressure of 500,000 Pa and a velocity of 20 m/s a multiple-jet injector produced less than + or - 10 percent variation in Jet-A fuel-air ratio and 100 percent varporization with less than 0.5 percent pressure drop. Fifteen catalytic reactors were tested with propane fuel at an inlet temperature of 800 K, a pressure of 300,000 Pa and inlet velocities of 10 to 25 m/s. Seven of the reactors had less than 2 percent pressure drop while meeting emissions goals of 13.6 gCO/kg fuel and 1.64 gHC/kg fuel at the velocities and exit temperatures required for operation in an automotive gas turbine engine. NO sub x emissions at all conditions were less than 0.5 ppm. All tests were performed with steady state conditions.
Application of biofiltration to the degradation of hydrogen sulfide in gas effluents.
Elías, A; Barona, A; Ríos, F J; Arreguy, A; Munguira, M; Peñas, J; Sanz, J L
2000-01-01
A laboratory scale bioreactor has been designed and set up in order to degrade hydrogen sulfide from an air stream. The reactor is a vertical column of 7 litre capacity and 1 meter in height. It is divided into three modules and each module is filled with pellets of agricultural residues as packing bed material. The gas stream fed into the reactor through the upper inlet consists of a mixture of hydrogen sulfide and humidified air. The hydrogen sulfide content in the inlet gas stream was increased in stages until the degradation efficiency was below 90%. The parameters to be controlled in order to reach continuous and stable operation were temperature, moisture content and the percentage of the compound to be degraded at the inlet and outlet gas streams (removal or elimination efficiency). When the H2S mass loading rate was between 10 and 40 g m(-3) h(-1), the removal efficiency was greater than 90%. The support material had a good physical performance throughout operation time, which is evidence that this material is suitable for biofiltration purposes.
Rodriguez, Jose L.
2015-09-15
A can-annular gas turbine engine combustion arrangement (10), including: a combustor can (12) comprising a combustor inlet (38) and a combustor outlet circumferentially and axially offset from the combustor inlet; an outer casing (24) defining a plenum (22) in which the combustor can is disposed; and baffles (70) configured to divide the plenum into radial sectors (72) and configured to inhibit circumferential motion of compressed air (16) within the plenum.
40 CFR Appendix III to Part 86 - Constant Volume Sampler Flow Calibration
Code of Federal Regulations, 2014 CFR
2014-07-01
... ETI °F ±.1°F. Pressure depression upstream of LFE EPI “H20 ±.1“H20. Pressure drop across the LFE matrix EDP “H20 ±.005“H20. Air temperature at CVS pump inlet PTI °F ±.5°F. Pressure depression at CVS... condition in an increment of pump inlet depression (about 4″ H2O) that will yield a minimum of six data...
40 CFR Appendix III to Part 86 - Constant Volume Sampler Flow Calibration
Code of Federal Regulations, 2010 CFR
2010-07-01
... ETI °F ±.1 °F. Pressure depression upstream of LFE EPI “H20 ±.1“H20. Pressure drop across the LFE matrix EDP “H20 ±.005“H20. Air temperature at CVS pump inlet PTI °F ±.5 °F. Pressure depression at CVS... condition in an increment of pump inlet depression (about 4″ H2O) that will yield a minimum of six data...
40 CFR Appendix III to Part 86 - Constant Volume Sampler Flow Calibration
Code of Federal Regulations, 2013 CFR
2013-07-01
... ETI °F ±.1 °F. Pressure depression upstream of LFE EPI “H20 ±.1“H20. Pressure drop across the LFE matrix EDP “H20 ±.005“H20. Air temperature at CVS pump inlet PTI °F ±.5 °F. Pressure depression at CVS... condition in an increment of pump inlet depression (about 4″ H2O) that will yield a minimum of six data...
40 CFR Appendix III to Part 86 - Constant Volume Sampler Flow Calibration
Code of Federal Regulations, 2011 CFR
2011-07-01
... ETI °F ±.1 °F. Pressure depression upstream of LFE EPI “H20 ±.1“H20. Pressure drop across the LFE matrix EDP “H20 ±.005“H20. Air temperature at CVS pump inlet PTI °F ±.5 °F. Pressure depression at CVS... condition in an increment of pump inlet depression (about 4″ H2O) that will yield a minimum of six data...
40 CFR Appendix III to Part 86 - Constant Volume Sampler Flow Calibration
Code of Federal Regulations, 2012 CFR
2012-07-01
... ETI °F ±.1 °F. Pressure depression upstream of LFE EPI “H20 ±.1“H20. Pressure drop across the LFE matrix EDP “H20 ±.005“H20. Air temperature at CVS pump inlet PTI °F ±.5 °F. Pressure depression at CVS... condition in an increment of pump inlet depression (about 4″ H2O) that will yield a minimum of six data...
Thermal performances of vertical hybrid PV/T air collector
NASA Astrophysics Data System (ADS)
Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.
2016-11-01
In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.
Flow Energy Piezoelectric Bimorph Nozzle Harvester
NASA Technical Reports Server (NTRS)
Walkemeyer, Phillip E. (Inventor); Tosi, Phillipe (Inventor); Corbett, Thomas Gary (Inventor); Hall, Jeffrey L. (Inventor); Lee, Hyeong Jae (Inventor); Arrazola, Alvaro Jose (Inventor); Sherrit, Stewart (Inventor); Colonius, Tim (Inventor); Kim, Namhyo (Inventor); Sun, Kai (Inventor)
2016-01-01
A flow energy harvesting device having a harvester pipe includes a flow inlet that receives flow from a primary pipe, a flow outlet that returns the flow into the primary pipe, and a flow diverter within the harvester pipe having an inlet section coupled to the flow inlet, a flow constriction section coupled to the inlet section and positioned at a midpoint of the harvester pipe and having a spline shape with a substantially reduced flow opening size at a constriction point along the spline shape, and an outlet section coupled to the constriction section. The harvester pipe may further include a piezoelectric structure extending from the inlet section through the constriction section and point such that the fluid flow past the constriction point results in oscillatory pressure amplitude inducing vibrations in the piezoelectric structure sufficient to cause a direct piezoelectric effect and to generate electrical power for harvesting.
Background-Oriented Schlieren used in a hypersonic inlet test at NASA GRC
NASA Technical Reports Server (NTRS)
Clem, Michelle; Woike, Mark; Saunders, John
2016-01-01
Background Oriented Schlieren (BOS) is a derivative of the classical schlieren technology, which is used to visualize density gradients, such as shock wave structures in a wind tunnel. Changes in refractive index resulting from density gradients cause light rays to bend, resulting in apparent motion of a random background pattern. The apparent motion of the pattern is determined using cross-correlation algorithms (between no-flow and with-flow image pairs) producing a schlieren-like image. One advantage of BOS is its simplified setup which enables a larger field-of-view (FOV) than traditional schlieren systems. In the present study, BOS was implemented into the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) in the 10x10 Supersonic Wind Tunnel at NASA Glenn Research Center. The model hardware for the CCE LIMX accommodates a fully integrated turbine based combined cycle propulsion system. To date, inlet mode transition between turbine and ramjet operation has been successfully demonstrated. High-speed BOS was used to visualize the behavior of the flow structures shock waves during unsteady inlet unstarts, a phenomenon known as buzz. Transient video images of inlet buzz were recorded for both the ramjet flow path (high speed inlet) and turbine flow path (low speed inlet). To understand the stability limits of the inlet, operation was pushed to the point of unstart and buzz. BOS was implemented in order to view both inlets simultaneously, since the required FOV was beyond the capability of the current traditional schlieren system. An example of BOS data (Images 1-6) capturing inlet buzz are presented.
14 CFR 23.1305 - Powerplant instruments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... with a controllable propeller. (6) For each turbocharger installation: (i) If limitations are established for either carburetor (or manifold) air inlet temperature or exhaust gas or turbocharger turbine...
14 CFR 23.1305 - Powerplant instruments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... with a controllable propeller. (6) For each turbocharger installation: (i) If limitations are established for either carburetor (or manifold) air inlet temperature or exhaust gas or turbocharger turbine...
14 CFR 23.1305 - Powerplant instruments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... with a controllable propeller. (6) For each turbocharger installation: (i) If limitations are established for either carburetor (or manifold) air inlet temperature or exhaust gas or turbocharger turbine...
14 CFR 23.1305 - Powerplant instruments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... with a controllable propeller. (6) For each turbocharger installation: (i) If limitations are established for either carburetor (or manifold) air inlet temperature or exhaust gas or turbocharger turbine...
14 CFR 23.1305 - Powerplant instruments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... with a controllable propeller. (6) For each turbocharger installation: (i) If limitations are established for either carburetor (or manifold) air inlet temperature or exhaust gas or turbocharger turbine...
Unsteady pressure loads in a generic high speed engine model
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Jones, Michael G.; Thurlow, Ernie M.
1992-01-01
Unsteady pressure loads were measured along the top interior wall of a generic high-speed engine (GHSE) model undergoing performance tests in the combustion-Heated Scramjet Test Facility at the Langley Research Center. Flow to the model inlet was simulated at 72000 ft and a flight Mach number of 4. The inlet Mach number was 3.5 with a total temperature and pressure of 1640 R and 92 psia. The unsteady pressure loads were measured with 5 piezoresistive gages, recessed into the wall 4 to 12 gage diameters to reduce incident heat flux to the diaphragms, and distributed from the inlet to the combustor. Contributors to the unsteady pressure loads included boundary layer turbulence, combustion noise, and transients generated by unstart loads. Typical turbulent boundary layer rms pressures in the inlet ranged from 133 dB in the inlet to 181 dB in the combustor over the frequency range from 0 to 5 kHz. Downstream of the inlet exist, combustion noise was shown to dominate boundary layer turbulence noise at increased heat release rates. Noise levels in the isolator section increased by 15 dB when the fuel-air ratio was increased from 0.37 to 0.57 of the stoichiometric ratio. Transient pressure disturbances associated with engine unstarts were measured in the inlet and have an upstream propagation speed of about 7 ft/sec and pressure jumps of at least 3 psia.
Radiator debris removing apparatus and work machine using same
Martin, Kevin L [Washburn, IL; Elliott, Dwight E [Chillicothe, IL
2008-09-02
A radiator assembly includes a finned radiator core and a debris removing apparatus having a compressed air inlet and at least one compressed air outlet configured to direct compressed air through the radiator core. A work machine such as a wheel loader includes a radiator and a debris removing apparatus coupled with on-board compressed air and having at least one pressurized gas outlet configured to direct a gas toward the face of the radiator.
The Effect of Valve Cooling upon Maximum Permissible Engine Output as Limited by Knock
NASA Technical Reports Server (NTRS)
Munger, Maurice; Wilsted, H D; Mulcahy, B A
1942-01-01
A Wright GR-1820-G200 cylinder was tested over a wide range of fuel-air ratios at maximum permissible power output as limited by knock with three different degrees of valve cooling. The valves used were stock valves (solid inlet valve and hollow sodium-cooled exhaust valve), hollow valves with no coolant, and hollow valves with flowing water as a coolant. Curves showing the variation in maximum permissible values of inlet-air pressure, indicated mean effective pressure, cylinder charge, and indicated specific fuel consumption with change in fuel-air ratio and valve cooling are shown. The use of valves cooled by a stream of water passing through their hollow interiors permitted indicated mean effective pressures 10 percent higher than the mean effective pressures permissible with stock valves when the engine was operated with fuel-air ratios from 0.055 to 0.065. Operation of the engine with lean mixtures with uncooled hollow valves resulted in power output below the output obtained with the stock valves. The data show an increase in maximum permissible indicated mean effective pressure due to cooling the valves, which averages only 2.1 percent with fuel-air ratios from 0.075 to 0.105.
Microfluidic pressure sensing using trapped air compression.
Srivastava, Nimisha; Burns, Mark A
2007-05-01
We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.
NASA Technical Reports Server (NTRS)
Samuelsen, G. S.; Brouwer, J.; Vardakas, M. A.; Holderman, J. D.
2012-01-01
The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine systems. The success of this low-NOx combustor strategy is dependent upon the links between the formation of NOx, inlet air preheat temperature, and the mixing of the jet air and fuel-rich streams. Chemical equilibrium and kinetics modeling calculations and experiments were performed to further understand NOx emissions in an RQL combustor. The results indicate that as the temperature at the inlet to the mixing zone increases (due to preheating and/or operating conditions) the fuel-rich zone equivalence ratio must be increased to achieve minimum NOx formation in the primary zone of the combustor. The chemical kinetics model illustrates that there is sufficient residence time to produce NOx at concentrations that agree well with the NOx measurements. Air preheat was found to have very little effect on mixing, but preheating the air did increase NOx emissions significantly. By understanding the mechanisms governing NOx formation and the temperature dependence of key reactions in the RQL combustor, a strategy can be devised to further reduce NOx emissions using the RQL concept.
Optimal fault-tolerant control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2017-10-01
For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.
Microfluidic pressure sensing using trapped air compression
Srivastava, Nimisha; Burns, Mark A.
2010-01-01
We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid–air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d ~ 50 μm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700–100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions. PMID:17476384
A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Chang, Clarence T.
2017-01-01
Combustion dynamics data were collected at the NASA Glenn Research Center's CE-5 flame tube test facility under combustor outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) configurations were tested in a rectangular cuboid combustor geometry. Combustion dynamic data were measured at different engine operational conditions up to inlet air pressure and temperature of 24.13 bar and 828 K, respectively. In this study, the effects of acoustic cavity resonance, precessing vortex core (PVC), and non-uniform thermal expansion on the dynamic noise spectrum are identified by comparing the dynamic data that collected at various combustor inlet conditions along with combustor geometric calculations. The results show that the acoustic cavity resonance noises were seen in the counter-rotating pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 kHz was only detected at the P'41 location (9.8 cm after fuel injector face) but not at the P'42 location (29 cm after the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio (T4/T3). The noise band at around 1.8 kHz was found to depend on the inlet air pressure or the air density inside the combustor. The PVC frequency was not observed in these two configurations.
Air-Cooled Turbine Blades with Tip Cap For Improved Leading-Edge Cooling
NASA Technical Reports Server (NTRS)
Calvert, Howard F.; Meyer, Andre J., Jr.; Morgan, William C.
1959-01-01
An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.
Teżyk, Michał; Jakubowska, Emilia; Milanowski, Bartłomiej; Lulek, Janina
2017-10-01
The aim of this study was to optimize the process of tablets compression and identification of film-coating critical process parameters (CPPs) affecting critical quality attributes (CQAs) using quality by design (QbD) approach. Design of experiment (DOE) and regression methods were employed to investigate hardness, disintegration time, and thickness of uncoated tablets depending on slugging and tableting compression force (CPPs). Plackett-Burman experimental design was applied to identify critical coating process parameters among selected ones that is: drying and preheating time, atomization air pressure, spray rate, air volume, inlet air temperature, and drum pressure that may influence the hardness and disintegration time of coated tablets. As a result of the research, design space was established to facilitate an in-depth understanding of existing relationship between CPPs and CQAs of intermediate product (uncoated tablets). Screening revealed that spray rate and inlet air temperature are two most important factors that affect the hardness of coated tablets. Simultaneously, none of the tested coating factors have influence on disintegration time. The observation was confirmed by conducting film coating of pilot size batches.
Combustion characteristics of gas turbine alternative fuels
NASA Technical Reports Server (NTRS)
Rollbuhler, R. James
1987-01-01
An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.
Fuel effects on soot formation in turbojet engines. Final report, September 15, 1983-March 14, 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, R.J.; Olson, D.B.
1985-08-01
The results of tests on how fuel composition affects the performance of three Navy aircraft engine combustors, the TF30, T56, and T53, were analyzed. The objective of this analysis was to identify which fuel property best correlated with the smoke-related measurements: radiation flux, liner temperature rise, smoke number, and smoke emissions. The effects of fuel composition were investigated by using a series of ten Naval Air Propulsion Center jet fuels with various properties, such as hydrogen contents of 12.83 to 13.82% and total aromatic hydrocarbon contents of 15.9 to 28.5%. Several laboratory combustion characteristics of these fuels were measured andmore » these characteristics were used in analysis. Altogether, 15 fuel parameters were used to correlate the 45 combustor test results. The reported operating conditions of the tests, such as inlet air pressure, inlet air temperature, or fuel/air ratio, were also used as correlating parameters to determine whether variations in these variables, nearly constant for individual tests, also affected the smoke-related test results.« less
NASA Technical Reports Server (NTRS)
Tacina, R. R.
1983-01-01
Conditions were determined in a continuous-flow, premixing-prevaporizing duct at which autoignition occurred. Test conditions were representative of an advanced, regenerative-cycle, automotive gas turbine. The test conditions inlet air temperatures from 600 to 1250 K (a vitiated preheater was used), pressures from 170 to 600 kPa, air velocities of 10 to 30 m/sec, equivalence ratios from 0.3 to 1.0, mixing lengths from 10 to 60 cm, and residence times of 2 to 100 ms. The fuel was diesel number 2. The duct was insulated and had an inside diameter of 12 cm. Three different fuel injection systems were used: One was a single simplex pressure atomizer, and the other two were multiple-source injectors. The data obtained with the simplex and one of the multiple-source injectors agreed satisfactorily with the references and correlated with an Arrenhius expression. The data obtained with the other multiple source injector, which used multiple cones to improve the fuel-air distribution, did not correlate well with residence time.
Thomson, Wallace B.
2004-03-16
A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.
Biofiltration of air polluted with toluene under steady-state conditions: Experimental observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiared, K.; Fundenberger, B.; Brzezinski, R.
1997-11-01
In this study, the authors describe the removal of toluene vapors in a pilot scale biofilter. Biofiltration tests have been performed in a column fed upward with contaminated air at ambient conditions. The column was packed with a mixture of conditioned biomass and structuring agent on which a mixed microbial population of four selected strains was immobilized and then formed a biolayer. The biofilter was operated under various inlet-airstream toluene concentrations and flow rates of the contaminated airstream. Based on the present measurements, the biofilter proved effective in removing toluene at rates up to 165 g/h {center_dot} m{sup 3} ofmore » packing. The effect of some design and operation parameters (concentration of nutrients solution, presence of xylene, gas flow rate, pressure drop, temperature, etc.) are reported.« less
COMPRESSORS, *AIR FLOW, TURBOFAN ENGINES , TRANSIENTS, SURGES, STABILITY, COMPUTERIZED SIMULATION, EXPERIMENTAL DATA, VALIDATION, DIGITAL SIMULATION, INLET GUIDE VANES , ROTATION, STALLING, RECOVERY, HYSTERESIS
Heat pipes to reduce engine exhaust emissions
NASA Technical Reports Server (NTRS)
Schultz, D. F. (Inventor)
1984-01-01
A fuel combustor is presented that consists of an elongated casing with an air inlet conduit portion at one end, and having an opposite exit end. An elongated heat pipe is mounted longitudinally in the casing and is offset from and extends alongside the combustion space. The heat pipe is in heat transmitting relationship with the air intake conduit for heating incoming air. A guide conduit structure is provided for conveying the heated air from the intake conduit into the combustion space. A fuel discharge nozzle is provided to inject fuel into the combustion space. A fuel conduit from a fuel supply source has a portion engaged in heat transfer relationship of the heat pipe for preheating the fuel. The downstream end of the heat pipe is in heat transfer relationship with the casing and is located adjacent to the downstream end of the combustion space. The offset position of the heat pipe relative to the combustion space minimizes the quenching effect of the heat pipe on the gaseous products of combustion, as well as reducing coking of the fuel on the heat pipe, thereby improving the efficiency of the combustor.
Performance of a Splittered Transonic Rotor with Several Tip Clearances
2015-06-15
θ Ratio of inlet to reference pressure and γ [-] ρ Density [kg/m3] ω Humidity ratio [-] Subscripts 1 Inlet 3 Outlet a Air gas l Water liquid ...has a large influence on the performance and efficiency of compressors and fans during operation. In a gas turbine engine the ratio of tip-gap to...of compressors and fans during operation. In a gas turbine engine the ratio of tip-gap to blade height or span usually increases in the direction of
Submarine Construction (Unterseebootsbau)
1972-08-01
PIPE FOR THE SNORKEL EXHAUST MAST 11 AIR EXIT (GENERALLY TO MAIN AIR INDUCTION LINE) 12 EXHAUST GAS INLET FROM EXHAUST GAS LINE SIDE VIEW (MAST...Electric Engine 76 Diesel Engines 79 Air Intake and Gas Exhaust Systems for the Diesel Engines 79 Diesel Fuel and Pressurized Water System 82...Lines of a Submarine ■. 31 Figure 6 - Lines of a Submersible 31 Figure 7 - Twin- Screw Stern Configurations 34 Figure 8 - Single- Screw Stern
Experimental Investigations on Beamed Energy Aerospace Propulsion
2012-01-01
the aluminum ―igniter‖ material greatly lowers the incident laser intensity and fluence required to trigger the optical air breakdown 7 . The geometry...sequence following laser-induced air -breakdown was lost. The pressure distribution across the under-surface of the shroud is displayed in Fig. 24, along...photograph of bifurcated air -breakdown geometry across inlet gap, and secondary breakdown on shroud under-surface. 37 Fig. 29 Run#21 – Measured
Sampling efficiency of modified 37-mm sampling cassettes using computational fluid dynamics.
Anthony, T Renée; Sleeth, Darrah; Volckens, John
2016-01-01
In the U.S., most industrial hygiene practitioners continue to rely on the closed-face cassette (CFC) to assess worker exposures to hazardous dusts, primarily because ease of use, cost, and familiarity. However, mass concentrations measured with this classic sampler underestimate exposures to larger particles throughout the inhalable particulate mass (IPM) size range (up to aerodynamic diameters of 100 μm). To investigate whether the current 37-mm inlet cap can be redesigned to better meet the IPM sampling criterion, computational fluid dynamics (CFD) models were developed, and particle sampling efficiencies associated with various modifications to the CFC inlet cap were determined. Simulations of fluid flow (standard k-epsilon turbulent model) and particle transport (laminar trajectories, 1-116 μm) were conducted using sampling flow rates of 10 L min(-1) in slow moving air (0.2 m s(-1)) in the facing-the-wind orientation. Combinations of seven inlet shapes and three inlet diameters were evaluated as candidates to replace the current 37-mm inlet cap. For a given inlet geometry, differences in sampler efficiency between inlet diameters averaged less than 1% for particles through 100 μm, but the largest opening was found to increase the efficiency for the 116 μm particles by 14% for the flat inlet cap. A substantial reduction in sampler efficiency was identified for sampler inlets with side walls extending beyond the dimension of the external lip of the current 37-mm CFC. The inlet cap based on the 37-mm CFC dimensions with an expanded 15-mm entry provided the best agreement with facing-the-wind human aspiration efficiency. The sampler efficiency was increased with a flat entry or with a thin central lip adjacent to the new enlarged entry. This work provides a substantial body of sampling efficiency estimates as a function of particle size and inlet geometry for personal aerosol samplers.
Tangential blowing for control of strong normal shock - Boundary layer interactions on inlet ramps
NASA Technical Reports Server (NTRS)
Schwendemann, M. F.; Sanders, B. W.
1982-01-01
The use of tangential blowing from a row of holes in an aft facing step is found to provide good control of the ramp boundary layer, normal shock interaction on a fixed geometry inlet over a wide range of inlet mass flow ratios. Ramp Mach numbers of 1.36 and 1.96 are investigated. The blowing geometry is found to have a significant effect on system performance at the highest Mach number. The use of high-temperature air in the blowing system, however, has only a slight effect on performance. The required blowing rates are significantly high for the most severe test conditions. In addition, the required blowing coefficient is found to be proportional to the normal shock pressure rise.
Low-speed aerodynamic test of an axisymmetric supersonic inlet with variable cowl slot
NASA Technical Reports Server (NTRS)
Powell, A. G.; Welge, H. R.; Trefny, C. J.
1985-01-01
The experimental low-speed aerodynamic characteristics of an axisymmetric mixed-compression supersonic inlet with variable cowl slot are described. The model consisted of the NASA P-inlet centerbody and redesigned cowl with variable cowl slot powered by the JT8D single-stage fan simulator and driven by an air turbine. The model was tested in the NASA Lewis Research Center 9- by 15-foot low-speed tunnel at Mach numbers of 0, 0.1, and 0.2 over a range of flows, cowl slot openings, centerbody positions, and angles of attack. The variable cowl slot was effective in minimizing lip separation at high velocity ratios, showed good steady-state and dynamic distortion characteristics, and had good angle-of-attack tolerance.
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan
2002-01-01
It is the purpose of this study to demonstrate the viability and economy of Response Surface Methods (RSM) and Robustness Design Concepts (RDC) to arrive at micro-secondary flow control installation designs that maintain optimal inlet performance over a range of the mission variables. These statistical design concepts were used to investigate the robustness properties of 'low unit strength' micro-effector installations. 'Low unit strength' micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion.
NASA Technical Reports Server (NTRS)
Markatos, N. C.; Spalding, D. B.; Srivatsa, S. K.
1978-01-01
A formulation of the governing partial differential equations for fluid flow and reacting chemical species in a two-concentric-tube combustor is presented. A numerical procedure for the solution of the governing differential equations is described and models for chemical-equilibrium and chemical-kinetics calculations are presented. The chemical-equilibrium model is used to characterize the hydrocarbon reactions. The chemical-kinetics model is used to predict the concentrations of the oxides of nitrogen. The combustor considered consists of two coaxial ducts. Concentric streams of gaseous fuel and air enter the inlet duct at one end; the flow then reverses and flows out through the outer duct. Two sample cases with specified inlet and boundary conditions are considered and the results are discussed.
Baseline performance and emissions data for a single-cylinder, direct-injected diesel engine
NASA Technical Reports Server (NTRS)
Dezelick, R. A.; Mcfadden, J. J.; Ream, L. W.; Barrows, R. F.
1983-01-01
Comprehensive fuel consumption, mean effective cylinder pressure, and emission test results for a supercharged, single-cylinder, direct-injected, four-stroke-cycle, diesel test engine are documented. Inlet air-to-exhaust pressure ratios were varied from 1.25 to 3.35 in order to establish the potential effects of turbocharging techniques on engine performance. Inlet air temperatures and pressures were adjusted from 34 to 107 C and from 193 to 414 kPa to determine the effects on engine performance and emissions. Engine output ranged from 300 to 2100 kPa (brake mean effective pressure) in the speed range of 1000 to 3000 rpm. Gaseous and particulate emission rates were measured. Real-time values of engine friction and pumping loop losses were measured independently and compared with motored engine values.
Contingency power for small turboshaft engines using water injection into turbine cooling air
NASA Technical Reports Server (NTRS)
Biesiadny, Thomas J.; Klann, Gary A.; Clark, David A.; Berger, Brett
1987-01-01
Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.
NASA Technical Reports Server (NTRS)
Geng, Tao; Paxson, Daniel E.; Zheng, Fei; Kuznetsov, Andrey V.; Roberts, William L.
2008-01-01
Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamic (CFD) simulation work focused primarily on the pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data.
SUPIN: A Computational Tool for Supersonic Inlet Design
NASA Technical Reports Server (NTRS)
Slater, John W.
2016-01-01
A computational tool named SUPIN is being developed to design and analyze the aerodynamic performance of supersonic inlets. The inlet types available include the axisymmetric pitot, three-dimensional pitot, axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flow-field is divided into parts to provide a framework for the geometry and aerodynamic modeling. Each part of the inlet is defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick design and analysis. SUPIN provides inlet geometry in the form of coordinates, surface angles, and cross-sectional areas. SUPIN can generate inlet surface grids and three-dimensional, structured volume grids for use with higher-fidelity computational fluid dynamics (CFD) analysis. Capabilities highlighted in this paper include the design and analysis of streamline-traced external-compression inlets, modeling of porous bleed, and the design and analysis of mixed-compression inlets. CFD analyses are used to verify the SUPIN results.
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian
2000-01-01
Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. Then there is a transition to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scramjet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance. To adequately determine the performance of the engine/vehicle, the Hypersonic Flight Inlet Model (HYFIM) module was designed to interface with the RBCC engine model. HYFIM performs the aerodynamic analysis of forebodies and inlet characteristics of RBCC powered SSTO launch vehicles. HYFIM is applicable to the analysis of the ramjet/scramjet engine operations modes (Mach 3-12), and provides estimates of parameters such as air capture area, shock-on-lip Mach number, design Mach number, compression ratio, etc., based on a basic geometry routine for modeling axisymmetric cones, 2-D wedge geometries. HYFIM also estimates the variation of shock layer properties normal to the forebody surface. The thermal protection system (TPS) is directly linked to determination of the vehicle moldline and the shaping of the trajectory. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. The need to analyze vehicle forebody and engine inlet is critical to be able to design the RBCC vehicle. To adequately determine insulation masses for an RBCC vehicle, the hypersonic aerodynamic environment and aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce the TPS mass. E-PSURBCC is an "engine performance" model and requires the specification of inlet air static temperature and pressure as well as Mach number (which it pulls from the HYFIM and POST trajectory files), and calculates the corresponding stagnation properties. The engine air flow path geometry includes inlet, a constant area section where the rocket is positioned, a subsonic diffuser, a constant area afterburner, and either a converging nozzle or a converging-diverging nozzle. The current capabilities of E-PSURBCC ejector and ramjet mode treatment indicated that various complex flow phenomena including multiple choking and internal shocks can occur for combinations of geometry/flow conditions. For a given input deck defining geometry/flow conditions, the program first goes through a series of checks to establish whether the input parameters are sound in terms of a solution path. If the vehicle/engine performance fails mission goals, the engineer is able to collaboratively alter the vehicle moldline to change aerodynamics, or trajectory, or some other input to achieve orbit. The problem described is an example of the need for collaborative design and analysis. RECIPE is a cross-platform application capable of hosting a number of engineers and designers across the Internet for distributed and collaborative engineering environments. Such integrated system design environments allow for collaborative team design analysis for performing individual or reduced team studies. To facilitate the larger number of potential runs that may need to be made, RECIPE connects the computer codes that calculate the trajectory data, aerodynamic data based on vehicle geometry, heat rate data, TPS masses, and vehicle and engine performance, so that the output from each tool is easily transferred to the model input files that need it.
Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.
2008-01-01
Lake Worth is a reservoir on the West Fork Trinity River on the western edge of Fort Worth, Texas. Air Force Plant 4 (AFP4) is on the eastern shore of Woods Inlet, an arm of Lake Worth that extends south from the main body of the lake. Two previous reports documented ele-vated polychlorinated biphenyl (PCB) concentrations in surficial sediment in Woods Inlet relative to those in surficial sediment in other parts of Lake Worth. This report presents the results of another USGS study, done in cooperation with the U.S. Air Force, to indicate the degree of PCB contamination of Meandering Road Creek and Woods Inlet and to identify possible sources of PCBs in Meandering Road Creek and Woods Inlet on the basis of suspended, streambed, and lake-bottom sediment samples collected there in 2004 and 2006-07. About 40 to 80 percent of total PCB concentrations (depending on how total PCB concentration is computed) in suspended sediment exceed the threshold effect concentration, a concentration below which adverse effects to benthic biota rarely occur. About 20 percent of total PCB concentrations (computed as sum of three Aroclors) in suspended sediment exceed the probable effect concentration, a concentration above which adverse effects to benthic biota are expected to occur frequently. About 20 to 30 percent of total PCB concentrations in streambed sediment exceed the threshold effect concentration; and about 6 to 20 percent of total PCB concentrations in lake-bottom (Woods Inlet) sediment exceed the threshold effect concentration. No streambed or lake-bottom sediment concentrations exceed the probable effect concentration. The sources of PCBs to Meandering Road Creek and Woods Inlet were investigated by comparing the relative distributions of PCB congeners of suspended sediment to those of streambed and lake-bottom sediment. The sources of PCBs were identified using graphical analysis of normalized concentrations (congener ratios) of 11 congeners. For graphical analysis, the sampling sites were divided into three groups with each group associated with one of the three outfalls sampled: SSO, OF4, and OF5. The variations of normalized PCB congener concentrations from Woods Inlet, from outfalls along Meandering Road Creek, and from streambed sediment sampling sites along Meandering Road Creek generally form similar patterns within sample groups, which is indicative of a common source of PCBs to each group. Overall, the variations in congener ratios indicate that PCBs in surficial lake-bottom sediment of Woods Inlet probably entered Woods Inlet primarily from Meandering Road Creek, and that runoff from AFP4 is a prominent source of PCBs in Meandering Road Creek. Sixteen of the 20 box core sites in Woods Inlet had lower PCB concentrations in the 2006 cores compared to those in the 2003 cores.
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.
1992-01-01
The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.
Effect of fuel-air-ratio nonuniformity on emissions of nitrogen oxides
NASA Technical Reports Server (NTRS)
Lyons, V. J.
1981-01-01
The inlet fuel-air ratio nonuniformity is studied to deterine how nitrogen oxide (NOx) emissions are affected. An increase in NOx emissions with increased fuel-air ratio nonuniformity for average equivalence ratios less than 0.7 and a decrease in NOx emissions for average equivalence ratios near stoichiometric is predicted. The degree of uniformityy of fuel-air ratio profiles that is necessary to achieve NOx emissions goals for actual engines that use lean, premixed, prevaporized combustion systems is determined.
Christensen, K N; Waaben, J; Jørgensen, S
1980-04-01
The ejector flowmeter is constructed for continuous removal of excess gas from anaesthetic circuits. This instrument can be used as an air/oxygen mixing device for high-flow humidification systems in wards where compressed air is not available. Pure oxygen is used as driving gas through the ejector. A nomogram has been constructed to show the relationship between oxygen driving pressure, inlet of air to the flowmeter, FIO2 and total outflow.
Validation Data for Mechanical System Algorithms Used in Building Energy Analysis Programs.
1982-02-01
15 Zone Design 15 Built-Up Air Handler 15 Ventilation Requirements 16 The DES 16 Duct Design 17 Air -Delivery System 17 VAV Operation 17 Constant Volume...observed to operate well at reduced air flows, even at low flow in the so- called surge region. Recommendations 1. The HVAC system and component...With Inlet Guide Vanes Operating Within a Built-Up Air Handler 31 Test 2 -- Boiler Operation, Capacity, Efficiency, and Stand-By Losses 32 Test 3
Combustion Dynamics Behavior in a Single-Element Lean Direct Injection (LDI) Gas Turbine Combustor
2014-06-01
Constant mass inflow from a choked orifice Exit Boundary Condition Choked nozzle Diameter of combustor 50.8 mm Diameter of air plenum 25.4 mm A...schematic of the LDI combustor is shown in Fig. 1. It comprises an air inlet section, air plenum, swirler- venturi- injector assembly, combustion chamber...and exit nozzle . Air, heated with an 80 kW electrical heater, enters the combustor through a slotted choked orifice plate, designed to minimize
Effects of air injection on a turbocharged Teledyne Continential Motors TSIO-360-C engine
NASA Technical Reports Server (NTRS)
Cosgrove, D. V.; Kempke, E. E.
1979-01-01
A turbocharged fuel injected aircraft engine was operated over a range of test conditions that included that EPA five-mode emissions cycle and fuel air ratio variations for individual modes while injecting air into the exhaust gas. Air injection resulted in a decrease of hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. Leanout tests indicated that the EPA standards could be met through the combined use of fuel management and air injection.
Australian Air Breathing Propulsion Research for Hypersonic, Beamed Energy-Propelled Vehicles
NASA Astrophysics Data System (ADS)
Froning, David
2010-05-01
A three year laser-propelled vehicle analysis and design investigation has been begun in June, 2009 by Faculty and graduate students at the University of Adelaide under a Grant/Cooperative Agreement Award to the University of Adelaide by the Asian Office of Aerospace Research and Development (AOARD). The major objectives of thsis investigation are: (a) development of hypersonic, air breathing "lightcraft" with innovative air inlets that enable acceptable airflow capture and combustion, and acceptable cowl-lip heating rates during hot, high-speed, high angle-of-attack hypersonic flight; (b) yest of the most promising lightcraft and inlet design in the high power laser beam that is part of the shock tunnel facility at CTO Instituto in Brazil; and (c) plan a series of laser guided and propelled flights that achieve supersonic or higher speed at the Woomera Test Facility (WTF) in South Australia—using the existing WTF launching and tracking facilities and sponsor-provided laser pointing and tracking and illumination systems.
Micro system comprising 96 micro valves on a titer plate
NASA Astrophysics Data System (ADS)
Krabbe, S.; Flitsch, D.; Büchs, J.; Schomburg, W. K.
2016-10-01
A system of 96 micro valves has been developed and mounted on top of a 48-well micro titer plate providing two valves for each well controlling its air inlet and outlet. Testing of the valve system showed that all valves are working and are opened and closed reliably. A pneumatic system is switching inlet and outlet valves independently of each other. The geometry of the feed channels ensures an equal air flow through all wells, when the valves are open. Between the micro valves, one optical fibre was inserted through the lid of each well allowing measuring the oxygen partial pressure in the enclosed air volume by fluorescence sensor spots. Escherichia coli bacteria were grown inside the wells and their metabolism was observed by the oxygen partial pressure change due to respiration. In all 48 wells, the same oxygen transfer rate was observed within an averaged standard deviation of 1 mmol/L/h. The oxygen transfer rate differences compared to a macroscopic standard shake flask system were overall compatible within their uncertainties.
Fuel-Air Mixing Effect on Nox Emissions for a Lean Premixed-Prevaporized Combustion System
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Chun, Kue S.; Locke, Randy J.
1995-01-01
The lean premixed-prevaporized (LPP) concept effectively meets low nitrogen oxides (NOx) emission requirements for combustors with the high inlet temperature and pressure typical of the High-Speed Civil Transport (HSCT). For the LPP system fuel-air mixture uniformity is probably the most important factor for low NOx emissions. Previous studies have suggested that the fuel-air mixture uniformity can be severely affected by changing the number and configuration of fuel injection points. Therefore, an experimental study was performed to determine how the number of fuel injection points and their arrangement affect NOx emissions from an LPP system. The NOx emissions were measured by a gas-sampling probe in a flame-tube rig at the following conditions: inlet temperature of 810 K (1000 F), rig pressure of 10 atm, reference velocity of 150 ft/s, and residence time near 0.005 s. Additionally, a focused Schlieren diagnostic technique coupled with a high speed camera was used to provide a qualitative description of the spatial flow field.
Idle efficiency and pollution results for two-row swirl-can combustors having 72 modules
NASA Technical Reports Server (NTRS)
Biaglow, J. A.; Trout, A. M.
1975-01-01
Two 72-swirl-can-module combustors were investigated in a full annular combustor test facility at engine idle conditions typical of a 30:1 pressure-ratio engine. The effects of radial and circumferential fuel scheduling on combustion efficiency and gaseous pollutants levels were determined. Test conditions were inlet-air temperature, 452 K; inlet total pressure, 34.45 newtons per square centimeter; and reference velocity, 19.5 meters per second. A maximum combustion efficiency of 98.1 percent was achieved by radial scheduling of fuel to the inner row of swirl-can modules. Emission index values were 6.9 for unburned hydrocarbons and 50.6 for carbon monoxide at a fuel-air ratio of 0.0119. Circumferential fuel scheduling of two 90 degree sectors of the swirl-can arrays produced a maximum combustion efficiency of 97.3 percent. The emission index values were 12.0 for unburned hydrocarbons and 69.2 for carbon monoxide at a fuel-air ratio of 0.0130.
Effects of broadened property fuels on radiant heat flux to gas turbine combustor liners
NASA Technical Reports Server (NTRS)
Haggard, J. B., Jr.
1983-01-01
The effects of fuel type, inlet air pressure, inlet air temperature, and fuel/air ratio on the combustor radiation were investigated. Combustor liner radiant heat flux measurements were made in the spectral region between 0.14 and 6.5 microns at three locations in a modified commercial aviation can combustor. Two fuels, Jet A and a heavier distillate research fuel called ERBS were used. The use of ERBS fuel as opposed to Jet A under similar operating conditions resulted in increased radiation to the combustor liner and hence increased backside liner temperature. This increased radiation resulted in liner temperature increases always less than 73 C. The increased radiation is shown by way of calculations to be the result of increased soot concentrations in the combustor. The increased liner temperatures indicated can substantially affect engine maintenance costs by reducing combustor liner life up to 1/3 because of the rapid decay in liner material properties when operated beyond their design conditions.
NASA Astrophysics Data System (ADS)
Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya
2016-05-01
Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.
NASA Astrophysics Data System (ADS)
Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose
2016-05-01
This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon carbide monolithic honeycomb, conducted at realistic conditions of incident radiative power per unit mass flow rate in order to validate its operation.
Effects of Temperature on the Performance of a Small Internal Combustion Engine at Altitude
2013-03-21
flexible diaphragm was attached to damp out pulses in the air flow pulsations . Their method of temperature control was electric heating of the intake air...42 Figure 14. Heat exchanger ................................................................................................ 45 Figure...15. Both liquid nitrogen lines from Dewar ............................................................ 45 Figure 16. Engine inlet flow path heat
2016-08-01
Sanders, Chase A. Nessler, William W. Copenhaver, Michael G. List, and Timothy J. Janczewski Turbomachinery Branch Turbine Engine Division AUGUST...Branch Turbine Engine Division Turbine Engine Division Aerospace Systems Directorate //Signature// ROBERT D. HANCOCK Principal Scientist Turbine ...ORGANIZATION Turbomachinery Branch Turbine Engine Division Air Force Research Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force
STS-32 OV-102 air revitalization system (ARS) humidity separator problem
1990-01-20
During STS-32, onboard Columbia, Orbiter Vehicle (OV) 102, a leakage problem at environmental control and life support system (ECLSS) air revitalization system (ARS) humidity separator A below the middeck is solved with a plastic bag and a towel. The towel inserted inside a plastic bag absorbed the water that had collected at the separator inlet.
40 CFR 89.328 - Inlet and exhaust restrictions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system representative of the installed engine may be used. In other cases a test shop system may be used. (2) The... cases a test shop system may be used. [59 FR 31335, June 17, 1994. Redesignated and amended at 63 FR...
40 CFR 89.328 - Inlet and exhaust restrictions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system representative of the installed engine may be used. In other cases a test shop system may be used. (2) The... cases a test shop system may be used. [59 FR 31335, June 17, 1994. Redesignated and amended at 63 FR...
40 CFR 89.328 - Inlet and exhaust restrictions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system representative of the installed engine may be used. In other cases a test shop system may be used. (2) The... cases a test shop system may be used. [59 FR 31335, June 17, 1994. Redesignated and amended at 63 FR...
40 CFR 89.328 - Inlet and exhaust restrictions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system representative of the installed engine may be used. In other cases a test shop system may be used. (2) The... cases a test shop system may be used. [59 FR 31335, June 17, 1994. Redesignated and amended at 63 FR...
40 CFR 89.328 - Inlet and exhaust restrictions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... at maximum air flow, as specified by the engine manufacturer for a clean air cleaner. A system representative of the installed engine may be used. In other cases a test shop system may be used. (2) The... cases a test shop system may be used. [59 FR 31335, June 17, 1994. Redesignated and amended at 63 FR...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
STS-32 OV-102 air revitalization system (ARS) humidity separator problem
NASA Technical Reports Server (NTRS)
1990-01-01
During STS-32, onboard Columbia, Orbiter Vehicle (OV) 102, a leakage problem at environmental control and life support system (ECLSS) air revitalization system (ARS) humidity separator A below the middeck is solved with a plastic bag and a towel. The towel inserted inside a plastic bag absorbed the water that had collected at the separator inlet.
Supersonic Inlet Flow Control Using Localized Arc Filament Plasma Actuators
2011-05-10
Jon Schmisseur and by the Air Vehicle Directorate of the Air Force Research Laboratory is greatly appreciated. 4 Table of Contents Abstract...of interest to the U.S. Air Force and could pose significant problems depending on the specific application. This study has undertaken to investigate...experiments motivated the design of a new, larger, more flexible facility that utilize a Variable Angle Wedge to generate the impinging shock wave for
Unmixed fuel processors and methods for using the same
Kulkarni, Parag Prakash; Cui, Zhe
2010-08-24
Disclosed herein are unmixed fuel processors and methods for using the same. In one embodiment, an unmixed fuel processor comprises: an oxidation reactor comprising an oxidation portion and a gasifier, a CO.sub.2 acceptor reactor, and a regeneration reactor. The oxidation portion comprises an air inlet, effluent outlet, and an oxygen transfer material. The gasifier comprises a solid hydrocarbon fuel inlet, a solids outlet, and a syngas outlet. The CO.sub.2 acceptor reactor comprises a water inlet, a hydrogen outlet, and a CO.sub.2 sorbent, and is configured to receive syngas from the gasifier. The regeneration reactor comprises a water inlet and a CO.sub.2 stream outlet. The regeneration reactor is configured to receive spent CO.sub.2 adsorption material from the gasification reactor and to return regenerated CO.sub.2 adsorption material to the gasification reactor, and configured to receive oxidized oxygen transfer material from the oxidation reactor and to return reduced oxygen transfer material to the oxidation reactor.
Ejector device for direct injection fuel jet
Upatnieks, Ansis [Livermore, CA
2006-05-30
Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.
Liquefied Bleed for Stability and Efficiency of High Speed Inlets
NASA Technical Reports Server (NTRS)
Saunders, J. David; Davis, David; Barsi, Stephen J.; Deans, Matthew C.; Weir, Lois J.; Sanders, Bobby W.
2014-01-01
A mission analysis code was developed to perform a trade study on the effectiveness of liquefying bleed for the inlet of the first stage of a TSTO vehicle. By liquefying bleed, the vehicle weight (TOGW) could be reduced by 7 to 23%. Numerous simplifying assumptions were made and lessons were learned. Increased accuracy in future analyses can be achieved by: Including a higher fidelity model to capture the effect of rescaling (variable vehicle TOGW). Refining specific thrust and impulse models ( T m a and Isp) to preserve fuel-to-air ratio. Implementing LH2 for T m a and Isp. Correlating baseline design to other mission analyses and correcting vehicle design elements. Implementing angle-of-attack effects on inlet characteristics. Refining aerodynamic performance (to improve L/D ratio at higher Mach numbers). Examining the benefit with partial cooling or densification of the bleed air stream. Incorporating higher fidelity weight estimates for the liquefied bleed system (heat exchange and liquid storage versus bleed duct weights) could be added when more fully developed. Adding trim drag or 6-degree-of-freedom trajectory analysis for higher fidelity. Investigating vehicle optimization for each of the bleed configurations.
NASA Astrophysics Data System (ADS)
Charef, Adil; Feddaoui, M'barek; Najim, Monssif; Meftah, Hicham
2018-04-01
A computational study of the liquid film condensation from vapour-gas mixtures of HFC refrigerants inside a vertical tube is performed. The external wall of the tube is subjected to constant temperature. The model uses an implicit finite difference method to solve the governing equations for the liquid film and gas flow together including the boundary and interfacial matching conditions. Parametric computations were realised to examine the effects of inlet Reynolds number, tube length, and inlet temperature of the gas mixtures on the condensation mechanism. A comparative study between the results obtained for studied R152 a and R134 a with presence of non-condensable gas is made. The predicted results indicate that the condensation of R152 a-air corresponds to a higher accumulated condensation m c d and local heat transfer coefficient h T when compared to R134 a-air in the same conditions. Increasing the inlet Reynolds number or the tube length improve the condensation. Additionally, lower non-condensable gas in R152 a - a i r substantially enhances the heat and mass exchanges.
PAN AIR application to the F-106B
NASA Technical Reports Server (NTRS)
Ghaffari, F.
1986-01-01
The PAN AIR computer code was employed in the present study to investigate the aerodynamic effects of the various geometrical changes and flow conditions on a configuration similar to the F-106B half-airplane tested in the Langley 30x60-foot wind tunnel. The various geometries studied included two forebodies (original and shortened), two inlet flow conditions (open and closed) two vortex flap situations (off and on). The attached flow theoretical solutions were obtained for Mach number of 0.08 and angle of attack of 8 deg., 10 deg., 12 deg., and 14 deg. In general this investigation revealed that the shortening of the forebody or closing of the inlet produced only a small change in the overall aerodynamic coefficients of the basic F-106B configuration throughout the examined angles of attack. However, closing the inlet of the configuration resulted in a slightly higher drag level at low angles of attack. Furthermore, at and above 10 deg. angle of attack, it was shown that the presence of the vortex flap causes an increase in the total lift and drag. Also, these theoretical results showed the expected reduction in longitudinal stability level with addition of the vortex flap to the basic F-106B configuration.
NASA Technical Reports Server (NTRS)
Mennell, R. C.; Soard, T.
1974-01-01
Experimental aerodynamic investigations were conducted on a 0.0405 scale representation of the -89B space shuttle orbiter in the 7.75 x 11.00 foot low speed wind tunnel during the time period September 4 - 14, 1973. The primary test objective was to optimize the air breathing propulsion system nacelle cowl-inlet design and to determine the aerodynamic effects of this design on the orbiter stability and control characteristics. Nacelle cowl-inlet optimization was determined from total pressure - static pressure measurements obtained from pressure rakes located in the left hand nacelle pod at the engine face station. After the optimum cow-inlet design, consisting of a 7 deg cowl lip angle, short cowl, 7 deg short diverter, and a nacelle toe-in angle of 5 deg was selected, the aerodynamic effects of various locations of this design were investigated. The 3 pod - 6 Nacelle configuration was tested both underwing and overwing in three different longitudinal locations. Orbiter control effectiveness, both with and without Nacelles, was investigated at elevon deflections of 0 deg, -10 deg and +15 deg and at aileron deflections of 0 deg and +10 deg about 0 deg elevon.
Numerical Simulation of Boundary Layer Ingesting (BLI) Inlet-Fan Interaction
NASA Technical Reports Server (NTRS)
Giuliani, James; Chen, Jen-Ping; Beach, Timothy; Bakhle, Milind
2014-01-01
Future civil transport designs may incorporate engine inlets integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlet ingests the lower momentum boundary layer flow. Previous studies have shown, however, that efficiency benefits of Boundary Layer Ingesting (BLI) ingestion are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This paper presents an effort to extend the modeling capabilities of an existing rotating turbomachinery unsteady analysis code to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations, such as the development of rotating stall and inlet distortion through compressor stages. This paper describes the first phase of an effort to extend the TURBO model to calculate the external and inlet flowfield upstream of fan so that accurate pressure distortions that result from BLI configurations can be computed and used to analyze fan aerodynamics and structural response. To validate the TURBO program modifications for the BLI flowfield, experimental test data obtained by NASA for a flushmounted S-duct with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Quantitative data is presented that indicates good predictive capability of the model in the upstream flow. A representative fan is attached to the inlet and results are presented for the coupled inlet/fan model. The impact on the total pressure distortion at the AIP after the fan is attached is examined.
On the inlet vortex system. [preventing jet engine damage caused by debris pick-up
NASA Technical Reports Server (NTRS)
Bissinger, N. C.; Braun, G. W.
1974-01-01
The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.
Rubin, Leslie S.
1986-01-01
A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.
Srivastava, Smita; Srivastava, Ashok Kumar
2012-07-01
The vast untapped potential of hairy root cultures as a stable source of biologically active chemicals has focused the attention of scientific community toward its commercial exploitation. However, the major bottleneck remains its successful scale-up. Due to branching, the roots form an interlocked matrix that exhibits resistance to oxygen transfer. Thus, present work was undertaken to develop cultivation strategies like optimization of inlet gas composition (in terms of % (v/v) O(2) in air), air-flow rate and addition of oxygen vectors in the medium, to curb the oxygen transfer limitations during hairy root cultivation of Azadirachta indica for in vitro azadirachtin (a biopesticide) production. It was found that increasing the oxygen fraction in the inlet air (in the range, 20-100% (v/v) O(2) in air) increased the azadirachtin productivity by approximately threefold, to a maximum of 4.42 mg/L per day (at 100% (v/v) O(2) in air) with respect to 1.68 mg/L per day in control (air with no oxygen supplementation). Similarly, increasing the air-flow rate (in the range, 0.3-2 vvm) also increased the azadirachtin productivity to a maximum of 1.84 mg/L per day at 0.8 vvm of air-flow rate. On the contrary, addition of oxygen vectors (in the range, 1-4% (v/v); hydrogen peroxide, toluene, Tween 80, kerosene, silicone oil, and n-hexadecane), decreased the azadirachtin productivity with respect to control (1.76 mg/L per day).
Device for producing a fluid stream of varying composition
Moss, Owen R.; Clark, Mark L.; Rossignol, E. John
1982-01-01
A device for producing a fluid stream of varying composition comprises a chamber having an inlet at one end and outlet at the other. Between the inlet and outlet there are substantially planar pans or baffles positioned normal to the bulk flow of fluid between the inlet and the outlet. These pans are arranged in pairs. Each pan, except those of the pair most remote from the inlet, is spaced from the walls of the chamber to permit air to flow past it. The pans of each pair are also spaced from each other, in a direction parallel to their planes, leaving an empty space along the mid-plane of the chamber. This produces a circulation and mixing of fluid between the pairs of pans or baffles. A secondary stream of fluid is introduced between two pairs of baffles in the intermediate portion of the chamber, so that the composition of the fluid is different in the portion adjacent to the outlet and the portion adjacent to the inlet. In a specific embodiment, the device is an exposure chamber for experimental animals, and the pans or baffles are catch pans for excrement.
Joint US/Russia TU-144 Engine Ground Tests
NASA Technical Reports Server (NTRS)
Acosta, Waldo A.; Balser, Jeffrey S.; McCartney, Timothy P.; Richter, Charles A.; Woike, Mark R.
1997-01-01
Two engine research experiments were recently completed in Moscow, Russia using an engine from the Tu-144 supersonic transport airplane. This was a joint project between the United States and Russia. Personnel from the NASA Lewis Research Center, General Electric Aircraft Engines, Pratt & Whitney, the Tupolev Design Bureau, and EBP Aircraft LTD worked together as a team to overcome the many technical and cultural challenges. The objective was to obtain large scale inlet data that could be used in the development of a supersonic inlet system for a future High Speed Civil Transport (HSCT). The-first experiment studied the impact of typical inlet structures that have trailing edges in close proximity to the inlet/engine interface plane on the flow characteristics at that plane. The inlet structure simulated the subsonic diffuser of a supersonic inlet using a bifurcated splitter design. The centerbody maximum diameter was designed to permit choking and slightly supercritical operation. The second experiment measured the reflective characteristics of the engine face to incoming perturbations of pressure amplitude. The basic test rig from the first experiment was used with a longer spacer equipped with fast actuated doors. All the objectives set forth at the beginning of the project were met.
Experimental and numerical investigation of hydro power generator ventilation
NASA Astrophysics Data System (ADS)
Jamshidi, H.; Nilsson, H.; Chernoray, V.
2014-03-01
Improvements in ventilation and cooling offer means to run hydro power generators at higher power output and at varying operating conditions. The electromagnetic, frictional and windage losses generate heat. The heat is removed by an air flow that is driven by fans and/or the rotor itself. The air flow goes through ventilation channels in the stator, to limit the electrical insulation temperatures. The temperature should be kept limited and uniform in both time and space, avoiding thermal stresses and hot-spots. For that purpose it is important that the flow of cooling air is distributed uniformly, and that flow separation and recirculation are minimized. Improvements of the air flow properties also lead to an improvement of the overall efficiency of the machine. A significant part of the windage losses occurs at the entrance of the stator ventilation channels, where the air flow turns abruptly from tangential to radial. The present work focuses exclusively on the air flow inside a generator model, and in particular on the flow inside the stator channels. The generator model design of the present work is based on a real generator that was previously studied. The model is manufactured taking into consideration the needs of both the experimental and numerical methodologies. Computational Fluid Dynamics (CFD) results have been used in the process of designing the experimental setup. The rotor and stator are manufactured using rapid-prototyping and plexi-glass, yielding a high geometrical accuracy, and optical experimental access. A special inlet section is designed for accurate air flow rate and inlet velocity profile measurements. The experimental measurements include Particle Image Velocimetry (PIV) and total pressure measurements inside the generator. The CFD simulations are performed based on the OpenFOAM CFD toolbox, and the steady-state frozen rotor approach. Specific studies are performed, on the effect of adding "pick-up" to spacers, and the effects of the inlet fan blades on the flow rate through the model. The CFD results capture the experimental flow details to a reasonable level of accuracy.
NASA Technical Reports Server (NTRS)
Held, Louis F.; Pritchard, Ernest I.
1946-01-01
An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.
NASA Technical Reports Server (NTRS)
Marchionna, N. R.; Diehl, L. A.; Trout, A. M.
1973-01-01
The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.
The design of an air-cooled metallic high temperature radial turbine
NASA Technical Reports Server (NTRS)
Snyder, Philip H.; Roelke, Richard J.
1988-01-01
Recent trends in small advanced gas turbine engines call for higher turbine inlet temperatures. Advances in radial turbine technology have opened the way for a cooled metallic radial turbine capable of withstanding turbine inlet temperatures of 2500 F while meeting the challenge of high efficiency in this small flow size range. In response to this need, a small air-cooled radial turbine has been designed utilizing internal blade coolant passages. The coolant flow passage design is uniquely tailored to simultaneously meet rotor cooling needs and rotor fabrication constraints. The rotor flow-path design seeks to realize improved aerodynamic blade loading characteristics and high efficiency while satisfying rotor life requirements. An up-scaled version of the final engine rotor is currently under fabrication and, after instrumentation, will be tested in the warm turbine test facility at the NASA Lewis Research Center.
Contingency power for a small turboshaft engine by using water injection into turbine cooling air
NASA Technical Reports Server (NTRS)
Biesiadny, Thomas J.; Klann, Gary A.
1992-01-01
Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.
Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft
NASA Technical Reports Server (NTRS)
Condon, E. P.; Vedder, J. F.
1984-01-01
Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.
Ground-Based Aerosol Measurements | Science Inventory ...
Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomon et al. 2014) as well as in research studies. In this approach, air, at a specified flow rate and time period, is typically drawn through an inlet, usually a size selective inlet, and then drawn through filters, 1 INTRODUCTION Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomo
Quaternary geology of the Kenai Lowland and glacial history of the Cook Inlet region, Alaska
Karlstrom, Thor N.V.
1964-01-01
The Kenai Lowland is part of the Cook Inlet Lowland physiographic subprovince that borders Cook Inlet, a major marine reentrant along the Pacific Ocean coastline of south-central Alaska. The Cook Inlet Lowland occupies a structural trough underlain by rocks of Tertiary age and mantled by Quaternary deposits of varying thicknesses. The bordering high alpine mountains—the Aleutian and Alaska Ranges to the northwest and north and the Talkeetna, Chugach, and Kenai Mountains to the northeast and southeast—are underlain by rocks of Mesozoic and older ages.
Industrial application of low voltage bidirectional automatic release of reserve
NASA Astrophysics Data System (ADS)
Popa, G. N.; Diniş, C. M.; Iagăr, A.; Deaconu, S. I.; Popa, I.
2018-01-01
The paper presents an analysis on low voltage industrial electrical installation controlled by bidirectional automatic release of reserve. Industrial electrical installation is for removing smoke in case of fire from a textile company. The main parts of the installation of removing smoke in case of fire are: general electrical panel; reserve electrical panel; three-phase induction motors for driven fans; electrical actuators for inlet and outlet valves; clean air inlet pipe, respectively, the outlet pipe for smoke. The operation and checking of bidirectional automatic release of reserve are present in the paper.
The Origin of Inlet Buzz in a Mach 1.7 Low Boom Inlet Design
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Weir, Lois
2014-01-01
Supersonic inlets with external compression, having a good level performance at the critical operating point, exhibit a marked instability of the flow in some subcritical operation below a critical value of the capture mass flow ratio. This takes the form of severe oscillations of the shock system, commonly known as "buzz". The underlying purpose of this study is to indicate how Detached Eddy Simulation (DES) analysis of supersonic inlets will alter how we envision unsteady inlet aerodynamics, particularly inlet buzz. Presented in this paper is a discussion regarding the physical explanation underlying inlet buzz as indicated by DES analysis. It is the normal shock wave boundary layer separation along the spike surface which reduces the capture mass flow that is the controlling mechanism which determines the onset of inlet buzz, and it is the aerodynamic characteristics of a choked nozzle that provide the feedback mechanism that sustains the buzz cycle by imposing a fixed mean corrected inlet weight flow. Comparisons between the DES analysis of the Lockheed Martin Corporation (LMCO) N+2 inlet and schlieren photographs taken during the test of the Gulfstream Large Scale Low Boom (LSLB) inlet in the NASA 8x6 ft. Supersonic Wind Tunnel (SWT) show a strong similarity both in turbulent flow field structure and shock wave formation during the buzz cycle. This demonstrates the value of DES analysis for the design and understanding of supersonic inlets.
NASA Technical Reports Server (NTRS)
Pool, Kirby V.
1989-01-01
The analysis performed on the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) inlet housings is summarized. Three DIAL finite element models were build to aid in assessing the structural life of the welds and fillets at the vanes. Complete results are given.
Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components
NASA Technical Reports Server (NTRS)
Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.
1999-01-01
This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will provide a simpler, faster and user-friendly tool for conducting design studies of aircraft and spacecraft engines, applicable in high speed civil transport and space missions.
Liquid-Nitrogen Test for Blocked Tubes
NASA Technical Reports Server (NTRS)
Wagner, W. R.
1984-01-01
Nondestructive test identifies obstructed tube in array of parallel tubes. Trickle of liquid nitrogen allowed to flow through tube array until array accumulates substantial formation of frost from moisture in air. Flow stopped and warm air introduced into inlet manifold to heat tubes in array. Tubes still frosted after others defrosted identified as obstructed tubes. Applications include inspection of flow systems having parallel legs.
40 CFR 1065.341 - CVS and batch sampler verification (propane check).
Code of Federal Regulations, 2010 CFR
2010-07-01
... contamination. Otherwise, zero, span, and verify contamination of the HC sampling system, as follows: (1) Select... flow rates. (2) Zero the HC analyzer using zero air introduced at the analyzer port. (3) Span the HC analyzer using C3H8 span gas introduced at the analyzer port. (4) Overflow zero air at the HC probe inlet...
40 CFR 1065.341 - CVS and batch sampler verification (propane check).
Code of Federal Regulations, 2011 CFR
2011-07-01
... contamination. Otherwise, zero, span, and verify contamination of the HC sampling system, as follows: (1) Select... flow rates. (2) Zero the HC analyzer using zero air introduced at the analyzer port. (3) Span the HC analyzer using C3H8 span gas introduced at the analyzer port. (4) Overflow zero air at the HC probe inlet...
Aero-Thermo-Structural Analysis of Inlet for Rocket Based Combined Cycle Engines
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Challa, Preeti; Sree, Dave; Reddy, Dhanireddy R. (Technical Monitor)
2000-01-01
NASA has been developing advanced space transportation concepts and technologies to make access to space less costly. One such concept is the reusable vehicles with short turn-around times. The NASA Glenn Research Center's concept vehicle is the Trailblazer powered by a rocket-based combined cycle (RBCC) engine. Inlet is one of the most important components of the RBCC engine. This paper presents fluid flow, thermal, and structural analysis of the inlet for Mach 6 free stream velocity for fully supersonic and supercritical with backpressure conditions. The results concluded that the fully supersonic condition was the most severe case and the largest stresses occur in the ceramic matrix composite layer of the inlet cowl. The maximum tensile and the compressive stresses were at least 3.8 and 3.4, respectively, times less than the associated material strength.
Vortex-augmented cooling tower-windmill combination
McAllister, Jr., John E.
1985-01-01
A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.
Air Brayton Solar Receiver, phase 1
NASA Technical Reports Server (NTRS)
Zimmerman, D. K.
1979-01-01
A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.
Vortex-augmented cooling tower - windmill combination
McAllister, J.E. Jr.
1982-09-02
A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.
NASA Astrophysics Data System (ADS)
Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran
2014-05-01
In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.
Effects of mesh type on a non-premixed model in a flameless combustion simulation
NASA Astrophysics Data System (ADS)
Komonhirun, Seekharin; Yongyingsakthavorn, Pisit; Nontakeaw, Udomkiat
2018-01-01
Flameless combustion is a recently developed combustion system, which provides zero emission product. This phenomenon requires auto-ignition by supplying high-temperature air with low oxygen concentration. The flame is vanished and colorless. Temperature of the flameless combustion is less than that of a conventional case, where NOx reactions can be well suppressed. To design a flameless combustor, the computational fluid dynamics (CFD) is employed. The designed air-and-fuel injection method can be applied with the turbulent and non-premixed models. Due to the fact that nature of turbulent non-premixed combustion is based on molecular randomness, inappropriate mesh type can lead to significant numerical errors. Therefore, this research aims to numerically investigate the effects of mesh type on flameless combustion characteristics, which is a primary step of design process. Different meshes, i.e. tetrahedral, hexagonal are selected. Boundary conditions are 5% of oxygen and 900 K of air-inlet temperature for the flameless combustion, and 21% of oxygen and 300 K of air-inlet temperature for the conventional case. The results are finally presented and discussed in terms of velocity streamlines, and contours of turbulent kinetic energy and viscosity, temperature, and combustion products.
Feasibility Study for Low Drag Acoustic Liners Final Report
NASA Technical Reports Server (NTRS)
Riedel, Brian; Wu, Jackie
2017-01-01
This report documents the design and structural analysis as a final deliverable for the Phase 1 contract activity. Also included is a community noise test plan, which is a key deliverable for Phase 2. Finally, a high-level estimate (Phase 3 deliverable) is provided for the work statement of Phases 2-4, which covers the build of two inlet test articles, planning and execution of a flight test with the test inlets, as well as data analysis and final documentation. The two test inlets will be compared to the production baseline inlet configuration. There is also a plan to test one of the inlets "hardwalled" using speed tape or some other similar tape to block the acoustic perforations.
Characterization of a starch based desiccant wheel dehumidifier
NASA Astrophysics Data System (ADS)
Beery, Kyle Edward
Starch, cellulose, and hemicellulose have an affinity for water, and adsorb water vapor from air. Materials made from combinations of these biobased sugar polymers also have been found to possess adsorptive properties. An interesting possible application of these starch-based adsorbents is the desiccant wheel dehumidifier. The desiccant wheel dehumidifier is used in conjunction with a standard air conditioning system. In this process, ambient air is passed through a stationary section while a wheel packed with desiccant rotates through that section. The desiccant adsorbs humidity (latent load) from the air, and the air conditioning system then cools the air (sensible load). Several starch based adsorbents were developed and tested for adsorptive capacity in a new high throughput screening system. The best formulations from the high throughput screening system, also taking into account economic considerations and structural integrity, were considered for use in the desiccant wheel dehumidifier. A suitable adsorbent was chosen and formulated into a matrix structure for the desiccant wheel system. A prototype desiccant wheel system was constructed and the performance was investigated under varying regeneration temperatures and rotation speeds. The results from the experiments showed that the starch based desiccant wheel dehumidification system does transfer moisture from the inlet process stream to the outlet regeneration stream. The DESSIM model was modified for the starch based adsorbent and compared to the experimental results. Also, the results when the wheel parameters were varied were compared to the predicted results from the model. The results given by the starch based desiccant wheel system show the desired proof of concept.
NASA Astrophysics Data System (ADS)
Sasaki, Masashi; Tanimoto, Koshi; Kohno, Kazukiyo; Takahashi, Sadamu; Kometani, Hideo; Hashimoto, Hiromu
High-speed winding of paper web sometimes leads the winding system into unstable states, interlayer slippage of wound roll, paper breakage and so on, due to the excessive air-entrainment at the roll-inlet of nip contact region. These phenomena are more frequently observed on coated paper or plastic film comparing with newspaper, because the former allows little permeation of air and their surface roughness is small. Therefore, it is of vital importance to clarify the in-roll stress of wound roll considering the effect of air-entrainment. Generally, it is known that the amount of air-entrainment is affected by grooving shape of nip roll surface. In this paper, we focused on the grooving shape and investigated the relationship with the air-entrainment into two rolls being pressed each other and the grooving shape in order to achieve stable winding at high speed. We conducted experiments using small sized test machine. Entrained air-film thickness was evaluated applying the solution of the elasto-hydrodynamic lubrication for foil bearing with the consideration of nip profile at the grooved area. Air film thickness was measured to ensure the applicability of the above theory. Consequently, we found that the air film thickness can be estimated considering the effect of grooves on the nip roll surface, and that the validity of the above estimations was ensured from experimental investigations. Furthermore, it became to be able to propose the optimal shape of grooves on nip roll surface to maintain the stable winding at high speed and at large-diameter in reel.
Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.
Patts, Justin R; Barone, Teresa L
2017-05-01
Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may improve airborne coarse dust assessments over "off-the-shelf" sampling cassettes.
Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section
Patts, Justin R.; Barone, Teresa L.
2017-01-01
Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may improve airborne coarse dust assessments over “off-the-shelf” sampling cassettes. PMID:27792474
Bryan, C G; Davis-Belmar, C S; van Wyk, N; Fraser, M K; Dew, D; Rautenbach, G F; Harrison, S T L
2012-07-01
Understanding how bioleaching systems respond to the availability of CO(2) is essential to developing operating conditions that select for optimum microbial performance. Therefore, the effect of inlet gas and associated dissolved CO(2) concentration on the growth, iron oxidation and CO(2) -fixation rates of pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum was investigated in a batch stirred tank system. The minimum inlet CO(2) concentrations required to promote the growth of At. ferrooxidans and L. ferriphilum were 25 and 70 ppm, respectively, and corresponded to dissolved CO(2) concentrations of 0.71 and 1.57 µM (at 30°C and 37°C, respectively). An actively growing culture of L. ferriphilum was able to maintain growth at inlet CO(2) concentrations less than 30 ppm (0.31-0.45 µM in solution). The highest total new cell production and maximum specific growth rates from the stationary phase inocula were observed with CO(2) inlet concentrations less than that of air. In contrast, the amount of CO(2) fixed per new cell produced increased with increasing inlet CO(2) concentrations above 100 ppm. Where inlet gas CO(2) concentrations were increased above that of air the additional CO(2) was consumed by the organisms but did not lead to increased cell production or significantly increase performance in terms of iron oxidation. It is proposed that At. ferrooxidans has two CO(2) uptake mechanisms, a high affinity system operating at low available CO(2) concentrations, which is subject to substrate inhibition and a low affinity system operating at higher available CO(2) concentrations. L. ferriphilum has a single uptake system characterised by a moderate CO(2) affinity. At. ferrooxidans performed better than L. ferriphilum at lower CO(2) availabilities, and was less affected by CO(2) starvation. Finally, the results demonstrate the limitations of using CO(2) uptake or ferrous iron oxidation data as indirect measures of cell growth and performance across varying physiological conditions. Copyright © 2012 Wiley Periodicals, Inc.
Floating air riding seal for a turbine
Ebert, Todd A
2016-08-16
A floating air riding seal for a gas turbine engine with a rotor and a stator, an annular piston chamber with an axial moveable annular piston assembly within the annular piston chamber formed in the stator, an annular cavity formed on the annular piston assembly that faces a seal surface on the rotor, where the axial moveable annular piston includes an inlet scoop on a side opposite to the annular cavity that scoops up the swirling cooling air and directs the cooling air to the annular cavity to form an air cushion with the seal surface of the rotor.
2016-07-01
period 1941 to 1957 resulted in the construction of a north sand-trap groin structure approxi- mately 1,880 ft in length and a 3,695 ft long southern...jetty structure . The inlet channel and associated structures are maintained by SAJ. The project includes an outer channel authorized to -16 ft mean...erosion, several homes had to be temporarily vacated for major repairs, and several structures were granted permits to construct temporary sea walls
NASA Astrophysics Data System (ADS)
Zhang, Zh.
2018-02-01
An analytical method is presented, which enables the non-uniform velocity and pressure distributions at the impeller inlet of a pump to be accurately computed. The analyses are based on the potential flow theory and the geometrical similarity of the streamline distribution along the leading edge of the impeller blades. The method is thus called streamline similarity method (SSM). The obtained geometrical form of the flow distribution is then simply described by the geometrical variable G( s) and the first structural constant G I . As clearly demonstrated and also validated by experiments, both the flow velocity and the pressure distributions at the impeller inlet are usually highly non-uniform. This knowledge is indispensible for impeller blade designs to fulfill the shockless inlet flow condition. By introducing the second structural constant G II , the paper also presents the simple and accurate computation of the shock loss, which occurs at the impeller inlet. The introduction of two structural constants contributes immensely to the enhancement of the computational accuracies. As further indicated, all computations presented in this paper can also be well applied to the non-uniform exit flow out of an impeller of the Francis turbine for accurately computing the related mean values.
Geologic framework and petroleum systems of Cook Inlet basin, south-central Alaska
LePain, D.L.; Stanley, Richard G.; Helmold, K.P.; Shellenbaum, D.P.; Stone, D.M.; Hite, D.M.
2013-01-01
This report provides a comprehensive overview of the stratigraphy, structure, tectonics, and petroleum systems of the Cook Inlet basin, an important oil- and gas-producing region in south-central Alaska.
Ignition of lean fuel-air mixtures in a premixing-prevaporizing duct at temperatures up to 1000 K
NASA Technical Reports Server (NTRS)
Tacina, R. R.
1980-01-01
Conditions were determined in a premixing prevaporizing fuel preparation duct at which ignition occurred. An air blast type fuel injector with nineteen fuel injection points was used to provide a uniform spatial fuel air mixture. The range of inlet conditions where ignition occurred were: inlet air temperatures of 600 to 1000 K air pressures of 180 to 660 kPa, equivalence ratios (fuel air ratio divided by stoichiometric fuel air ratio) from 0.12 to 1.05, and velocities from 3.5 to 30 m/s. The duct was insulated and the diameter was 12 cm. Mixing lengths were varied from 16.5 to 47.6 and residence times ranged from 4.6 to 107 ms. The fuel was no. 2 diesel. Results show a strong effect of equivalence ratio, pressure and temperature on the conditions where ignition occurred. The data did not fit the most commonly used model of auto-ignition. A correlation of the conditions where ignition would occur which apply to this test apparatus over the conditions tested is (p/V) phi to the 1.3 power = 0.62 e to the 2804/T power where p is the pressure in kPa, V is the velocity in m/e, phi is the equivalence ratio, and T is the temperature in K. The data scatter was considerable, varying by a maximum value of 5 at a given temperature and equivalence ratio. There was wide spread in the autoignition data contained in the references.
Water augmented indirectly-fired gas turbine systems and method
Bechtel, Thomas F.; Parsons, Jr., Edward J.
1992-01-01
An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.
Firing of pulverized solvent refined coal
Lennon, Dennis R.; Snedden, Richard B.; Foster, Edward P.; Bellas, George T.
1990-05-15
A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.
An automated atmospheric sampling system operating on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Gustafsson, U. R. C.
1976-01-01
An air sampling system that automatically measures the temporal and spatial distribution of particulate and gaseous constituents of the atmosphere is collecting data on commercial air routes covering the world. Measurements are made in the upper troposphere and lower stratosphere (6 to 12 km) of constituents related to aircraft engine emissions and other pollutants. Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This unique system includes specialized instrumentation, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituent and related flight data are tape recorded in flight for later computer processing on the ground.
Aerosol Sampling with Low Wind Sensitivity.
NASA Astrophysics Data System (ADS)
Kalatoor, Suresh
Occupational exposure to airborne particles is generally evaluated by wearing a personal sampler that collects aerosol particles from the worker's breathing zone during the work cycle. The overall sampling efficiency of most currently available samplers is sensitive to wind velocity and direction. In addition, most samplers have internal losses due to gravitational settling, electrostatic interactions, and internal turbulence. A new sampling technique has been developed, theoretically and experimentally evaluated, and compared to existing techniques. The overall sampling efficiency of the protoype sampler was compared to that of a commonly used sampler, 25 mm closed-face cassette. Uranine was used as the challange aerosol with particle physical diameters 13.5, 20 and 30 mum. The wind velocity ranged from 100 to 300 cm s^ {-1}. It was found to have less internal losses and less dependence on wind velocity and direction. It also yielded better uniformity in the distribution of large particles on the filter surface, an advantage for several types of analysis. A new general equation for sharp-edged inlets was developed that predicts the sampling efficiency of sharp-edged (or thin-walled) inlets in most occupational environments that are weakly disturbed with air motions that cannot be strictly classified as calm-air or fast -moving air. Computational analysis was carried out using the new general equation and was applied to situations when the wind velocity vector is not steady, but fluctuates around predominant average values of its magnitude and orientation. Two sampling environments, horizontal aerosol flow (ambient atmosphere) and vertical aerosol flow (industrial stacks) have been considered. It was found, that even for small fluctuations in wind direction the sampling efficiency may be significantly less than that obtained for the mean wind direction. Time variations in wind magnitude at a fixed wind direction were found to affect the sampling efficiency to a lesser degree. This led to the development of a new sampling technique that significantly improved the sampling characteristics of the inlet. The newly-developed inlet has a curved surface with evenly spaced sampling orifices. Visualization of the streamlines over the sampler and limiting-streamline quantitative analysis showed negligible turbulence effects due to the sampler inlet's geometry. The overall sampling efficiency was found to be superior over the commonly used 25-mm closed-face cassette.
System and method for improving performance of a fluid sensor for an internal combustion engine
Kubinski, David [Canton, MI; Zawacki, Garry [Livonia, MI
2009-03-03
A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.
Bioreactor for acid mine drainage control
Zaluski, Marek H.; Manchester, Kenneth R.
2001-01-01
A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.
NASA Astrophysics Data System (ADS)
Zhao, Wei; Dou, Zhiguo; Li, Qian
2012-03-01
The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.
NASA Astrophysics Data System (ADS)
Zhao, Wei; Dou, Zhiguo; Li, Qian
2011-11-01
The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.
Staged venting of fuel cell system during rapid shutdown
Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.
2002-01-01
A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.
Staged venting of fuel cell system during rapid shutdown
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2004-09-14
A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.
Numerical modelling to assess maintenance strategy management options for a small tidal inlet
NASA Astrophysics Data System (ADS)
Shaeri, Saeed; Tomlinson, Rodger; Etemad-Shahidi, Amir; Strauss, Darrell
2017-03-01
Small tidal inlets are found to be more sensitive to anthropogenic alteration than their larger counterparts. Such alterations, although typically supported by technical design reports, sometimes require amendments or modification. One of the most suitable tools to conduct the necessary studies in this regard is numerical modelling, since the behaviour of the inlet system in response to proposed remedial actions, can easily be identified. In this paper, various alternative proposals are investigated to determine the most practical and viable option to mitigate the need for ongoing maintenance at a typical small, jettied tidal inlet. The main tool to investigate the alternatives is the hydro-sedimentological modelling of the inlet system, which was performed using the Delft3D software package. The proposed alternative entrance modifications were based upon structural alterations of the inlet system (such as a jetty extension or submerged weir) and non-structural scenarios (such as a change of the time of the dredging campaign or the deposition location of the dredged material). It was concluded that whilst a detailed study is inevitable in order to achieve a comprehensive design plan, based upon the results of this study the construction of a submerged weir at the entrance channel can satisfy the needs of most of the stakeholders, with justifiable costs over a longer period.
2013-08-08
Lay down plastic sheeting that is double the size of the mold covered in fabric in order to fully envelope the mold. o Line half of the sheet (in...the mold and connect to clay tape to create an air tight sealed bag with a hose leading to the outside pump. o Once the seal is created, turn on the...connected pump to remove all air from the bag that has been created. Ensure that as air is removed, the bag fits the form of the desired mold as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, David A.; McQuiggan, Gerard; Wasdell, David L.
A midframe portion (213) of a gas turbine engine (210) is presented, and includes a compressor section (212) configured to discharge an air flow (211) directed in a radial direction from an outlet of the compressor section (212). Additionally, the midframe portion (213) includes a manifold (214) to directly couple the air flow (211) from the compressor section (212) outlet to an inlet of a respective combustor head (218) of the midframe portion (213).
State of the Art for Design and Construction of Sand Compaction Piles
1987-11-01
Walz, Headquarters, US Army Corps of Engineers (HQUSACE), was REMR Technical Monitor. The REMR Overview Committee, consisted of Mr. John R. Nikel ... Wire Vibrator Hopper Casing Pipe Air Line Power Line Sand Skip Bucket Front End Loader Figure 2. Typical equipment used to construct a sand...8217~~~~-- Rubber Packing Wire Inlet for air to close valve and press sand down ..,...__ Air lnl~ot: Figure 5. Special valve used to seal the casing when
Regenerative Engine Analysis Program (REAP).
1981-01-01
Output Shaft Forged SAE 9310 Performance for the TSE Model 1071 is shown in Figures 41, 42, and 43 for static and flight conditions at three altitudes...Flange - Air Inlet 3 in. dia 2 0.72 Duct - Air Outlet, 3.25 in. OD 0.050 2 0.78 Flange - Air Outlet 3.25 in. dia 2 0.78 Weld and Miscellaneous -- 2.67... 4140 tubes, plus the outer case. (This assumes straight line trajectory with no tumbling.) This would result in leakage of nearly one percent of the