Science.gov

Sample records for air intake manifold

  1. LCD OF AIR INTAKE MANIFOLDS PHASE 2: FORD F250 AIR INTAKE MANIFOLD

    EPA Science Inventory

    The life cycle design methodology was applied to the design analysis of three alternatives for the lower plehum of the air intake manifold for us with a 5.4L F-250 truck engine: a sand cast aluminum, a lost core molded nylon composite, and a vibration welded nylon composite. The ...

  2. Engine Air Intake Manifold Having Built In Intercooler

    DOEpatents

    Freese, V, Charles E.

    2000-09-12

    A turbocharged V type engine can be equipped with an exhaust gas recirculation cooler integrated into the intake manifold, so as to achieve efficiency, cost reductions and space economization improvements. The cooler can take the form of a tube-shell heat exchanger that utilizes a cylindrical chamber in the air intake manifold as the heat exchanger housing. The intake manifold depends into the central space formed by the two banks of cylinders on the V type engine, such that the central space is effectively utilized for containing the manifold and cooler.

  3. LIFE CYCLE DESIGN OF AIR INTAKE MANIFOLDS; PHASE I: 2.0 L FORD CONTOUR AIR INTAKE MANIFOLD

    EPA Science Inventory

    The project team applied the life cycle design methodology to the design analysis of three alternative air intake manifolds: a sand cast aluminum, brazed aluminum tubular, and nylon composite. The design analysis included a life cycle inventory analysis, environmental regulatory...

  4. Manifold intake arrangement for internal combustion engines

    SciTech Connect

    Heath, K.E.

    1988-09-27

    This patent describes an internal combustion engine, comprising: a combustion chamber having a piston disposed therein; a pressure chamber; a first intake valve means for providing selective communication between the pressure chamber and the combustion chamber; a second valve means for providing selective communication between the pressure chamber and a fuel and air mixture supply; exhaust valve means for providing selective communication between the combustion chamber and the atmosphere, the exhaust valve means opening during the exhaust stroke of the piston and allowing spent gases to be expelled therethrough and closing at the end of the exhaust stroke; an intake control means connected to the first valve means for opening the first valve means during the intake stroke of the piston after the exhaust valve means is closed and maintaining the first valve open during an initial portion of the compression stroke for pressurizing the pressure chamber during the initial portion of the compression stroke and for closing the first valve means during the remaining portion of the compression stroke; wherein the second valve means opens during the intake stroke of the piston a period of time after the opening of the first valve means and closes during the compression stroke of the piston.

  5. Design and fabrication of intake manifold for formula SAE (Society of Automotive Engineers) race car

    NASA Astrophysics Data System (ADS)

    Dore, Sylvie; Lavallee, Patrice

    1997-01-01

    Every year, a group of students from Ecole de technologie superieure (ETS) in Montreal design and build a formula-type race car and compete in the Formula SAE competition. In this paper, we examine the design and fabrication of the ir intake system, A number of constraints challenge the designers. For example, to ensure the security of amateur drivers, motors are restrained to 600 cc and a circular restriction of 20 mm in diameter is placed at the entry of the system. Under these conditions, it is important to optimize the quality of the air/fuel mixture which depends mostly on the air intake system. A theoretical analysis reduced the field of possible runner length. However, the influence of runner configuration, plenum shape and size can only be determined experimentally. Polyacrylic functional prototypes were produced and tested on a dynamometric bench. A stereolithography model representing the inner passageways of the optimal intake manifold was built and used as a positive for a polyurethane mold. A composite lamination process was used to laminate the pre-production prototype over a molded wax plug. The major advantage of this approach over craftsmanship or even machining is the time saved to make the mold and the unlimited complexity of the shape permitted by the rapid prototyping systems.

  6. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with intake air other than the ambient air in the test cell (i.e., air which has been pumbed directly to the engine air intake system). For engines which use ambient test cell air for the engine intake... the humidity conditioning has taken place. (b) Unconditioned air supply. Humidity measurements...

  7. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engines which are supplied with intake air other than the ambient air in the test cell (i.e., air which has been pumped directly to the engine air intake system). For engines which use ambient test cell air for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  8. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with intake air other than the ambient air in the test cell (i.e., air which has been pumbed directly to the engine air intake system). For engines which use ambient test cell air for the engine intake... the humidity conditioning has taken place. (b) Unconditioned air supply. Humidity measurements...

  9. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines which are supplied with intake air other than the ambient air in the test cell (i.e., air which has been pumped directly to the engine air intake system). For engines which use ambient test cell air for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  10. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that...

  11. 30 CFR 57.13012 - Compressor air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressor air intakes. 57.13012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13012 Compressor air intakes. Compressor air intakes shall be installed to...

  12. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that...

  13. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that...

  14. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  15. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  17. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  18. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  19. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  20. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  1. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  2. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  3. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel...

  4. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel...

  5. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.510 Section 250... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended...

  6. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.510 Section 250... Well-Completion Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that...

  7. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel...

  8. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.510 Section 250... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended...

  9. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.510 Section 250... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended...

  10. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.610 Section 250... Well-Workover Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of...

  11. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  12. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  13. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  14. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  15. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  16. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  17. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical..., you may use an intake-air flow meter signal that does not give the actual value of raw exhaust, as... requirements. We recommend that you use an intake-air flow meter that meets the specifications in Table 1...

  18. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  19. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  20. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  1. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the...

  2. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.610 Section 250.610 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a...

  3. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  4. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  5. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  6. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recommended practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air...

  7. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air supply...

  8. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  9. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  10. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recommended practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air...

  11. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recommended practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air...

  12. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  13. 40 CFR 1065.125 - Engine intake air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Engine intake air. 1065.125 Section 1065.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the...

  14. 40 CFR 1065.125 - Engine intake air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Engine intake air. 1065.125 Section 1065.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the...

  15. 40 CFR 1065.125 - Engine intake air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Engine intake air. 1065.125 Section 1065.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the...

  16. 40 CFR 1065.125 - Engine intake air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Engine intake air. 1065.125 Section 1065.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the...

  17. 40 CFR 1065.125 - Engine intake air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Engine intake air. 1065.125 Section 1065.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the...

  18. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement specifications. 91.416 Section 91.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.416 Intake air flow...

  19. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement. 89.326 Section 89.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned...

  20. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement. 89.326 Section 89.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned...

  1. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement. 89.326 Section 89.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned...

  2. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement. 89.326 Section 89.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned...

  3. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement. 89.326 Section 89.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned...

  4. Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.

    1988-01-01

    This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.

  5. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  6. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  8. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  9. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  10. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... background correction as described in § 1065.667. (2) In the following cases, you may use an intake-air flow...-specific fuel consumption and fuel consumed. (b) Component requirements. We recommend that you use...

  11. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... as described in § 1065.667. (2) In the following cases, you may use an intake-air flow meter signal...-specific fuel consumption and fuel consumed. (b) Component requirements. We recommend that you use...

  12. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... background correction as described in § 1065.667. (2) In the following cases, you may use an intake-air flow...-specific fuel consumption and fuel consumed. (b) Component requirements. We recommend that you use...

  13. Correlates of sophisticated listener judgments of esophageal air intake noise.

    PubMed

    Knox, A W; Eccleston, V; Maurer, J F; Gordon, M C

    1987-02-01

    Twenty-four laryngectomies, ranging widely in speaking ability, read a standard passage for audio recording. Four experienced voice clinicians rated the acceptability of the speakers' air intake noise. Independently, overall speech proficiency ratings were obtained for 18 of the subjects. Five objective measures of the subjects' esophageal speech were obtained using a real-time intensity display on a storage oscilloscope. Judges' reliability was determined by Pearson Product Moment Correlations. Ratings were submitted to multiple regression analysis. The means of air intake noise acceptability were the criterion variables; the objective measures and speech proficiency scores were the predictor variables. Three predictors were positively correlated (less than .01) with air intake acceptability: the number of syllables per intake, the sound intensity of the intake, and the rate of speech. Syllables per intake provided the largest share of the variance.

  14. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement specifications. 90.416 Section 90.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures §...

  15. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  16. Working characteristics of variable intake valve in compressed air engine.

    PubMed

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  17. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    PubMed Central

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  18. Curved centerline air intake for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Ruehr, W. C.; Younghans, J. L.; Smith, E. B. (Inventor)

    1980-01-01

    An inlet for a gas turbine engine was disposed about a curved centerline for the purpose of accepting intake air that is flowing at an angle to engine centerline and progressively turning that intake airflow along a curved path into alignment with the engine. This curved inlet is intended for use in under the wing locations and similar regions where airflow direction is altered by aerodynamic characteristics of the airplane. By curving the inlet, aerodynamic loss and acoustic generation and emission are decreased.

  19. Measuring Outdoor Air Intake Rates into Existing Building

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  20. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  1. Air intakes for a probative missile of rocket ramjet

    NASA Technical Reports Server (NTRS)

    Laruelle, G.

    1984-01-01

    The methods employed to test air intakes for a supersonic guided ramjet powered missile being tested by ONERA are described. Both flight tests and wind tunnel tests were performed on instrumented rockets to verify the designs. Consideration as given to the number of intakes, with the goal of delivering the maximum pressure to the engine. The S2, S4, and S5 wind tunnels were operated at Mach nos. 1.5-3 for the tests, which were compartmentalized into fuselage-intake interaction, optimization of the intake shapes, and the intake performance. Tests were performed on the length and form of the ogive, the presence of grooves, the height of traps in the boundary layer, the types and number of intakes and the lengths and forms of diffusers. Attention was also given to the effects of sideslip, effects of the longitudinal and circumferential positions of the intakes were also examined. Near optimum performance was realized during Mach 2.2 test flights of the prototype rockets.

  2. Surveillance of a Ventilated Rack System for Corynebacterium bovis by Sampling Exhaust-Air Manifolds

    PubMed Central

    Manuel, Christopher A; Pugazhenthi, Umarani; Leszczynski, Jori K

    2016-01-01

    Corynebacterium bovis causes an opportunistic infection of nude (Foxn1, nu/nu) mice, leading to nude mouse hyperkeratotic dermatitis (scaly skin disease). Enzootic in many nude mouse colonies, C. bovis spreads rapidly to naive nude mice, despite modern husbandry practices, and is very difficult to eradicate. To facilitate rapid detection in support of eradication efforts, we investigated a surveillance method based on quantitative real-time PCR (qPCR) evaluation of swabs collected from the horizontal exhaust manifold (HEM) of an IVC rack system. We first evaluated the efficacy of rack sanitation methods for removing C. bovis DNA from the HEM of racks housing endemic colonies of infected nude mice. Pressurized water used to flush the racks’ air exhaust system followed by a standard rack-washer cycle was ineffective in eliminating C. bovis DNA. Only after autoclaving did all sanitized racks test negative for C. bovis DNA. We then measured the effects of stage of infection (early or established), cage density, and cage location on the rack on time-to-detection at the HEM. Stage of infection significantly affected time-to-detection, independent of cage location. Early infections required 7.3 ± 1.2 d whereas established infections required 1 ± 0 d for detection of C. bovis at the HEM. Cage density influenced the quantity of C. bovis DNA detected but not time-to-detection. The location of the cage on the rack affected the time-to-detection only during early C. bovis infections. We suggest that qPCR swabs of HEM are useful during the routine surveillance of nude mouse colonies for C. bovis infection. PMID:26817981

  3. 40 CFR 1065.655 - Chemical balances of fuel, intake air, and exhaust.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.655 Chemical balances of fuel, intake air, and exhaust. (a) General. Chemical balances of fuel, intake air, and... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Chemical balances of fuel, intake...

  4. 40 CFR 1065.655 - Chemical balances of fuel, intake air, and exhaust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.655 Chemical balances of fuel, intake air, and exhaust. (a) General. Chemical balances of fuel, intake air, and... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Chemical balances of fuel, intake...

  5. 40 CFR 1065.655 - Chemical balances of fuel, intake air, and exhaust.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.655 Chemical balances of fuel, intake air, and exhaust. (a) General. Chemical balances of fuel, intake air, and... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Chemical balances of fuel, intake...

  6. 40 CFR 1065.655 - Chemical balances of fuel, intake air, and exhaust.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.655 Chemical balances of fuel, intake air, and exhaust. (a) General. Chemical balances of fuel, intake air, and... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Chemical balances of fuel, intake...

  7. 40 CFR 1065.655 - Chemical balances of fuel, intake air, and exhaust.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.655 Chemical balances of fuel, intake air, and exhaust. (a) General. Chemical balances of fuel, intake air, and... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Chemical balances of fuel, intake...

  8. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Direct-fired intake air heaters. 75.341 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.341 Direct-fired intake air heaters. (a) If any system used to heat intake air malfunctions, the heaters affected shall...

  9. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Direct-fired intake air heaters. 75.341 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.341 Direct-fired intake air heaters. (a) If any system used to heat intake air malfunctions, the heaters affected shall...

  10. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Direct-fired intake air heaters. 75.341 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.341 Direct-fired intake air heaters. (a) If any system used to heat intake air malfunctions, the heaters affected shall...

  11. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Direct-fired intake air heaters. 75.341 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.341 Direct-fired intake air heaters. (a) If any system used to heat intake air malfunctions, the heaters affected shall...

  12. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Direct-fired intake air heaters. 75.341 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.341 Direct-fired intake air heaters. (a) If any system used to heat intake air malfunctions, the heaters affected shall...

  13. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2012-07-01 2012-07-01 false NOX intake-air humidity...

  14. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2013-07-01 2013-07-01 false NOX intake-air humidity...

  15. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2011-07-01 2011-07-01 false NOX intake-air humidity...

  16. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2014-07-01 2014-07-01 false NOX intake-air humidity...

  17. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity...

  18. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOEpatents

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  19. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  20. Feasibility of cooling emplacement drifts by ventilation air and effects of pre-cooling intake air by refrigeration

    SciTech Connect

    Yang, Hang; Bhattacharyya, K.K.

    1995-12-01

    This study evaluates effects of applying refrigerated air to cool emplacement drifts and provides a preliminary basis for future design analyses. Evaluations include impacts of airflow rates, intake air temperature, ventilation systems capability, and effectiveness of pre-cooling. Representative results provided from this study include the heat removal capability of ventilation air, effects of refrigerating intake air on continuous cooling, and effects of refrigerating intake air on rapid (blast cooling). It is possible to cool emplacement drifts within a reasonable time period, using airflow at ambient temperature is reasonable quantity. Refrigerating intake air can significantly reduce required cooling time or airflow rate, but it is inefficient as far as power consumption is concerned.

  1. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  2. Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air

    DOEpatents

    Poola, Ramesh B.; Sekar, Ramanujam R.; Stork, Kevin C.

    1997-01-01

    An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.

  3. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  4. 6. FAN HOUSE OF 8FOOT HIGH SPEED TUNNEL. AIR INTAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FAN HOUSE OF 8-FOOT HIGH SPEED TUNNEL. AIR INTAKES AND FILTERS ARE ENCLOSED IN THE UPPER LEVEL STRUCTURE. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  5. Cold-air performance of compressor-drive turbine of Department of Energy upgraded automobile gas turbine engine. 1: Volute-manifold and stator performance

    NASA Technical Reports Server (NTRS)

    Roelke, R. J.; Haas, J. E.

    1981-01-01

    The aerodynamic performance of the inlet manifold and stator assembly of the compressor drive turbine was experimentally determined with cold air as the working fluid. The investigation included measurements of mass flow and stator-exit fluid torque as well as radial surveys of total pressure and flow angle at the stator inlet and annulus surveys of total pressure and flow angle at the stator exit. The stator-exit aftermixed flow conditions and overall stator efficiency were obtained and compared with their design values and the experimental results from three other stators. In addition, an analysis was made to determine the constituent aerodynamic losses that made up the stator kinetic energy loss.

  6. Dimensionality estimate of the manifold in chemical composition space for a turbulent premixed H2+air flame

    SciTech Connect

    Tonse, Shaheen R.; Brown, Nancy J.

    2003-02-26

    The dimensionality (D) of manifolds of active chemical composition space has been measured using three different approaches: the Hausdorff geometrical binning method, Principal Component Analysis, and the Grassberger-Procaccia cumulative distribution method. A series of artificial manifolds is also generated using a Monte Carlo approach to discern the advantages and limitations of the three methods. Dimensionality is quantified for different levels of turbulent intensity in a simulation of the interactions of a 2D premixed hydrogen flame with a localized region of turbulence superimposed over the cold region upstream of the flame front. The simulations are conducted using an adaptive mesh refinement code for low Mach number reacting flows. By treating the N{sub s} species and temperature of the local thermo-chemical state as a point in multi-dimensional chemical composition space, a snapshot of a flame region is mapped into chemical composition space to generate the manifold associated with the 2-D flame system. An increase in D was observed with increasing turbulent intensity for all three methods. Although each method provides useful information, the Grassberger-Procaccia method is subject to fewer artifacts than the other two thereby providing the most reliable quantification of D.

  7. The effects of oxygen-enriched intake air on FFV exhaust emissions using M85

    SciTech Connect

    Poola, R.B.; Sekar, R.; Ng, H.K.; Baudino, J.H.; Colucci, C.P.

    1996-05-01

    This paper presents results of emission tests of a flexible fuel vehicle (FFV) powered by an SI engine, fueled by M85 (methanol), and supplied with oxygen-enriched intake air containing 21, 23, and 25 vol% O2. Engine-out total hydrocarbons (THCs) and unburned methanol were considerably reduced in the entire FTP cycle when the O2 content of the intake air was either 23 or 25%. However, CO emissions did not vary much, and NOx emissions were higher. HCHO emissions were reduced by 53% in bag 1, 84% in bag 2, and 59% in bag 3 of the FTP cycle with 25% oxygen-enriched intake air. During cold-phase FTP,reductions of 42% in THCs, 40% in unburned methanol, 60% in nonmethane hydrocarbons, and 45% in nonmethane organic gases (NMOGs) were observed with 25% enriched air; NO{sub x} emissions increased by 78%. Converter-out emissions were also reduced with enriched air but to a lesser degree. FFVs operating on M85 that use 25% enriched air during only the initial 127 s of cold-phase FTP or that use 23 or 25% enriched air during only cold-phase FTP can meet the reactivity-adjusted NMOG, CO, NO{sub x}, and HCHO emission standards of the transitional low-emission vehicle.

  8. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... device for all modes except idle. For idle, the measurement accuracy shall be ±5 percent or less of the...) Corrections to the measured air mass flowrate shall be made when an engine system incorporates devices that... from these devices shall be approved by the Administrator. (3) Measurements made in accordance with...

  9. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  10. Experimental studies of active and passive flow control techniques applied in a twin air-intake.

    PubMed

    Paul, Akshoy Ranjan; Joshi, Shrey; Jindal, Aman; Maurya, Shivam P; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG.

  11. Air/fuel ratio controller

    SciTech Connect

    Schechter, M.M.; Simko, A.O.

    1980-12-23

    An internal combustion engine has a fuel injection pump and an air/fuel ratio controller. The controller has a lever that is connected to the pump lever. An aneroid moves the controller lever as a function of changes in intake manifold vacuum to maintain a constant air/fuel ratio to the mixture charge. A fuel enrichment linkage is provided that modifies the movement of the fuel flow control lever by the aneroid in response to changes in manifold gas temperature levels and exhaust gas recirculation to maintain the constant air/fuel ratio. A manual override is provided to obtain a richer air/fuel ratio for maximum acceleration.

  12. Combustion air intake system for wood-burning stove

    SciTech Connect

    Eisiminger, L.D.

    1982-02-23

    Hinged doors are provided on the front of a stove for sealably closing across a large opening through which logs can be loaded into a firebox within the stove. A cylindrical draft chamber is formed on an exterior surface of one or each of the doors. A draft cap is rotatable on a threaded stud which is coaxially secured in the cylindrical draft chamber. The draft cap includes an annular flange forming a sliding close-tolerance fit with an interior cylindrical wall of the draft chamber so that the cap can be rotated to vary the size of the draft chamber to selectively restrict the flow of air from a source through the draft chamber to the firebox whenever the doors are closed.

  13. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  14. Duplex carburetor and intake system for internal combustion engines

    SciTech Connect

    Yokoyama, H.; Ishida, T.

    1984-06-05

    A duplex carburetor for an internal combustion engine has a primary barrel having a primary venturi for supplying an air-fuel mixture to an intake manifold under a full range of engine loads and a secondary barrel having a secondary venturi for supplying an air-fuel mixture to the manifold under higher engine loads. The primary venturi has a cross section which ranges from 20% to 30% of that of the secondary venturi. The secondary barrel has a flattened cross-sectional shape such as of a segment of a circle of an ellipse, and is located adjacent to the primary barrel. The intake manifold is of a duplex construction having primary and secondary common passages connected to the primary and secondary barrels, respectively, of the carburetor. The secondary passage of the manifold has a flattened cross-sectional shape such as of a segment of a circle or an ellipse, and is positioned adjacent to the primary passage. The primary passage extends through a region where the secondary passage is divided into a plurality of secondary branches, and is located immediately in front of the shortest one of the secondary branch. The primary passage is also branched into a plurality of primary branches, the shortest of which is displaced out of axial alignment with a central axis of the intake manifold.

  15. A Method for Reducing the Temperature of Exhaust Manifolds

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1931-01-01

    This report describes tests conducted at the Langley Memorial Aeronautical Laboratory on an "air-inducting" exhaust manifold for aircraft engines. The exhaust gases from each cylinder port are discharged into the throat of an exhaust pipe which has a frontal bellmouth. Cooling air is drawn into the pipe, where it surrounds and mixes with the exhaust gases. Temperatures of the manifold shell and of the exhaust gases were obtained in flight for both a conventional manifold and the air-inducting manifold. The air-inducting manifold was installed on an engine which was placed on a test stand. Different fuels were sprayed on and into the manifold to determine whether the use of this manifold reduced the fire hazard. The flight tests showed reductions in manifold temperatures of several hundred degrees, to values below the ignition point of aviation gasoline. On the test stand when the engine was run at idling speeds fuels sprayed into the manifold ignited. It is believed that at low engine speeds the fuel remained in the manifold long enough to become thoroughly heated, and was then ignited by the exhaust gas which had not mixed with cooling air. The use of the air-inducting exhaust manifold must reduce the fire hazard by virtue of its lower operating temperature, but it is not a completely satisfactory solution of the problem.

  16. Toric Vaisman manifolds

    NASA Astrophysics Data System (ADS)

    Pilca, Mihaela

    2016-09-01

    Vaisman manifolds are strongly related to Kähler and Sasaki geometry. In this paper we introduce toric Vaisman structures and show that this relationship still holds in the toric context. It is known that the so-called minimal covering of a Vaisman manifold is the Riemannian cone over a Sasaki manifold. We show that if a complete Vaisman manifold is toric, then the associated Sasaki manifold is also toric. Conversely, a toric complete Sasaki manifold, whose Kähler cone is equipped with an appropriate compatible action, gives rise to a toric Vaisman manifold. In the special case of a strongly regular compact Vaisman manifold, we show that it is toric if and only if the corresponding Kähler quotient is toric.

  17. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants

    PubMed Central

    2009-01-01

    Introduction Air pollutant exposure has been associated with an increase in inflammatory markers and a decline in lung function in asthmatic children. Several studies suggest that dietary intake of fruits and vegetables might modify the adverse effect of air pollutants. Methods A total of 158 asthmatic children recruited at the Children's Hospital of Mexico and 50 non-asthmatic children were followed for 22 weeks. Pulmonary function was measured and nasal lavage collected and analyzed every 2 weeks. Dietary intake was evaluated using a 108-item food frequency questionnaire and a fruit and vegetable index (FVI) and a Mediterranean diet index (MDI) were constructed. The impact of these indices on lung function and interleukin-8 (IL-8) and their interaction with air pollutants were determined using mixed regression models with random intercept and random slope. Results FVI was inversely related to IL-8 levels in nasal lavage (p < 0.02) with a significant inverse trend (test for trend p < 0.001), MDI was positively related to lung function (p < 0.05), and children in the highest category of MDI had a higher FEV1 (test for trend p < 0.12) and FVC (test for trend p < 0.06) than children in the lowest category. A significant interaction was observed between FVI and ozone for FEV1 and FVC as was with MDI and ozone for FVC. No effect of diet was observed among healthy children. Conclusion Our results suggest that fruit and vegetable intake and close adherence to the Mediterranean diet have a beneficial effect on inflammatory response and lung function in asthmatic children living in Mexico City. PMID:20003306

  18. Manifolds, Tensors, and Forms

    NASA Astrophysics Data System (ADS)

    Renteln, Paul

    2013-11-01

    Preface; 1. Linear algebra; 2. Multilinear algebra; 3. Differentiation on manifolds; 4. Homotopy and de Rham cohomology; 5. Elementary homology theory; 6. Integration on manifolds; 7. Vector bundles; 8. Geometric manifolds; 9. The degree of a smooth map; Appendixes; References; Index.

  19. Intake port

    DOEpatents

    Mendler, Edward Charles

    2005-02-01

    The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.

  20. Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant

    SciTech Connect

    Holt, R.M.; Powers, D.W. )

    1990-12-01

    The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

  1. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  2. Oxygen intake in track and treadmill running with observations on the effect of air resistance

    PubMed Central

    Pugh, L. G. C. E.

    1970-01-01

    1. The relation of V̇O2 and speed was measured on seven athletes running on a cinder track and an all-weather track. The results were compared with similar observations on four athletes running on a treadmill. 2. In treadmill running the relation was linear and the zero intercept coincided with resting V̇O2. 3. In track running the relation was curvilinear, but was adequately represented by a linear regression over a range of speeds extending from 8·0 km/hr (2·2 m/sec) to 21·5 km/hr (6·0 m/sec). The slope of this line was substantially steeper than the regression line slope for treadmill running. 4. The influence of air resistance in running was estimated from measurements of V̇O2 on a subject running on a treadmill at constant speed against wind of varying velocity. 5. The extra O2 intake (ΔV̇O2) associated with wind increased as the square of wind velocity. If wind velocity and running velocity are equal, as in running on a track in calm air, ΔV̇O2 will increase as the cube of velocity. 6. It was estimated that the energy cost of overcoming air resistance in track running is about 8% of total energy cost at 21·5 km/hr (5000 m races) and 16% for sprinting 100 m in 10·0 sec. ImagesFig. 4 PMID:5532903

  3. Oxygen intake in track and treadmill running with observations on the effect of air resistance.

    PubMed

    Pugh, L G

    1970-05-01

    1. The relation of V(O2) and speed was measured on seven athletes running on a cinder track and an all-weather track. The results were compared with similar observations on four athletes running on a treadmill.2. In treadmill running the relation was linear and the zero intercept coincided with resting V(O2).3. In track running the relation was curvilinear, but was adequately represented by a linear regression over a range of speeds extending from 8.0 km/hr (2.2 m/sec) to 21.5 km/hr (6.0 m/sec). The slope of this line was substantially steeper than the regression line slope for treadmill running.4. The influence of air resistance in running was estimated from measurements of V(O2) on a subject running on a treadmill at constant speed against wind of varying velocity.5. The extra O(2) intake (DeltaV(O2)) associated with wind increased as the square of wind velocity. If wind velocity and running velocity are equal, as in running on a track in calm air, DeltaV(O2) will increase as the cube of velocity.6. It was estimated that the energy cost of overcoming air resistance in track running is about 8% of total energy cost at 21.5 km/hr (5000 m races) and 16% for sprinting 100 m in 10.0 sec.

  4. Causes for "ghost" manifolds

    NASA Astrophysics Data System (ADS)

    Borok, S.; Goldfarb, I.; Gol'dshtein, V.

    2009-05-01

    The paper concerns intrinsic low-dimensional manifold (ILDM) method suggested in [Maas U, Pope SB. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, combustion and flame 1992;88:239-64] for dimension reduction of models describing kinetic processes. It has been shown in a number of publications [Goldfarb I, Gol'dshtein V, Maas U. Comparative analysis of two asymptotic approaches based on integral manifolds. IMA J Appl Math 2004;69:353-74; Kaper HG, Kaper TJ, Asymptotic analysis of two reduction methods for systems of chemical reactions. Phys D 2002;165(1-2):66-93; Rhodes C, Morari M, Wiggins S. Identification of the low order manifolds: validating the algorithm of Maas and Pope. Chaos 1999;9(1):108-23] that the ILDM-method works successfully and the intrinsic low-dimensional manifolds belong to a small vicinity of invariant slow manifolds. The ILDM-method has a number of disadvantages. One of them is appearance of so-called "ghost"-manifolds, which do not have connection to the system dynamics [Borok S, Goldfarb I, Gol'dshtein V. "Ghost" ILDM - manifolds and their discrimination. In: Twentieth Annual Symposium of the Israel Section of the Combustion Institute, Beer-Sheva, Israel; 2004. p. 55-7; Borok S, Goldfarb I, Gol'dshtein V. About non-coincidence of invariant manifolds and intrinsic low-dimensional manifolds (ILDM). CNSNS 2008;71:1029-38; Borok S, Goldfarb I, Gol'dshtein V, Maas U. In: Gorban AN, Kazantzis N, Kevrekidis YG, Ottinger HC, Theodoropoulos C, editors. "Ghost" ILDM-manifolds and their identification: model reduction and coarse-graining approaches for multiscale phenomena. Berlin-Heidelberg-New York: Springer; 2006. p. 55-80; Borok S, Goldfarb I, Gol'dshtein V. On a modified version of ILDM method and its asymptotic analysis. IJPAM 2008; 44(1): 125-50; Bykov V, Goldfarb I, Gol'dshtein V, Maas U. On a modified version of ILDM approach: asymptotic analysis based on integral manifolds. IMA J Appl Math 2006

  5. AGARD WG13 aerodynamics of high speed air intakes: Assessment of CFD results

    NASA Technical Reports Server (NTRS)

    Bissinger, N. C.; Benson, T. J.; Bradley, R. G., Jr.

    1992-01-01

    A brief review of the work accomplished by the numerical subgroup of AGARD Working Group 13 on the aerodynamics of high speed air intakes is presented. This work comprised the selection of test cases for which experimental data were available. The test cases were chosen to range in complexity from normal-shock/boundary-layer interaction to full forebody-inlet combinations. Computations for these test cases were solicited from a large number of organizations and individual researchers within the NATO countries. The computation methods reached from Euler solvers (with and without boundary layer corrections) to full Reynolds averaged Navier-Stokes codes. The group compared these results with the test data available for each test case. A short overview of the CFD methods employed, a description of the test cases selected, and some of the comparisons between CFD solutions and test data are presented. The conclusions and recommendations drawn from this assessment are given.

  6. Compressed gas manifold

    SciTech Connect

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  7. High-precision measurements of mercury vapor in air: Design of a six-port-manifold mass flow controller system and evaluation of mass flow errors at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun; Lindberg, Steven E.

    1994-03-01

    We constructed an atmospheric sampling system for Hg vapor that utilizes a single vacuum pump connected via a manifold to six separate mass flow controllers (MFC). The manifold system reduces the size and power requirements for collection of replicate samples, is ideally suited for use on meteorological towers, and achieves the precise control of air-sampling volumes required for computing air/surface exchange rates from concentration gradients of Hg vapor. In testing our air sampling systems, we found consistent calibration errors between the manufacturer's calibrations and a standard bubble flow meter. Errors as high as 30% decreased systematically with increasing flow rate to values of 3-5% at near-maximum flow. The relative error patterns established between adjacent MFC units in each system were found to be relatively stable over time. Using gold-coated sand amalgamation traps for Hg vapor and the flow correction factors computed from our calibrations, we routinely achieve precision for replicate measurements of Hg vapor in background air of 0.5-2% (expressed as relative standard errors of mean concentrations of 1.5-3.5 ng/m3). Application of the flow correction factors measurably decreases the level of bias between mean concentrations of Hg vapor measured with adjacent sampling systems and is necessary to reduce uncertainty associated with quantifying gradients in atmospheric concentrations.

  8. 10 CFR Appendix B to Part 20 - Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Annual Limits on Intake (ALIs) and Derived Air... Release to Sewerage B Appendix B to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION... Hydrogen H 1 Indium In 49 Iodine I 53 Iridium Ir 77 Iron Fe 26 Krypton Kr 36 Lanthanum La 57 Lead Pb...

  9. Intake fraction variability between air pollution emission sources inside an urban area.

    PubMed

    Tainio, Marko; Holnicki, Piotr; Loh, Miranda M; Nahorski, Zbigniew

    2014-11-01

    The cost-effective mitigation of adverse health effects caused by air pollution requires information on the contribution of different emission sources to exposure. In urban areas the exposure potential of different sources may vary significantly depending on emission height, population density, and other factors. In this study, we quantified this intraurban variability by predicting intake fraction (iF) for 3,066 emission sources in Warsaw, Poland. iF describes the fraction of the pollutant that is inhaled by people in the study area. We considered the following seven pollutants: particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), benzo[a] pyrene (BaP), nickel (Ni), cadmium (Cd), and lead (Pb). Emissions for these pollutants were grouped into four emission source categories (Mobile, Area, High Point, and Other Point sources). The dispersion of the pollutants was predicted with the CALPUFF dispersion model using the year 2005 emission rate data and meteorological records. The resulting annual average concentrations were combined with population data to predict the contribution of each individual source to population exposure. The iFs for different pollutant-source category combinations varied between 51 per million (PM from Mobile sources) and 0.013 per million (sulfate PM from High Point sources). The intraurban iF variability for Mobile sources primary PM emission was from 4 per million to 100 per million with the emission-weighted iF of 44 per million. These results propose that exposure due to intraurban air pollution emissions could be decreased more effectively by specifically targeting sources with high exposure potency rather than all sources.

  10. 40 CFR 1066.615 - NOX intake-air humidity correction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vapor pressure at the ambient dry bulb temperature. RH = relative humidity of ambient air M air = molar mass of air. p atmos = atmospheric pressure. ER28AP14.106 Where: x NOXdexh = measured dilute...

  11. Manifold tool guide

    DOEpatents

    Djordjevic, A.

    1982-07-08

    A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.

  12. Manifold tool guide

    DOEpatents

    Djordjevic, A.

    1983-12-27

    A tool guide is described that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into the cross pipe for cleaning, inspection, etc. 3 figs.

  13. Manifold tool guide

    DOEpatents

    Djordjevic, Aleksandar

    1983-12-27

    A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.

  14. Potential benefits of oxygen-enriched intake air in a vehicle powered by a spark-ignition engine

    SciTech Connect

    Ng, H.K.; Sekar, R.R.

    1994-04-01

    A production vehicle powered by a spark-ignition engine (3.1-L Chevrolet Lumina, model year 1990) was tested. The test used oxygen-enriched intake air containing 25 and 28% oxygen by volume to determine (1) if the vehicle would run without difficulties and (2) if emissions benefits would result. Standard Federal Test Procedure (FTP) emissions test cycles were run satisfactorily. Test results of catalytic converter-out emissions (emissions out of the converter) showed that both carbon monoxide and hydrocarbons were reduced significantly in all three phases of the emissions test cycle. Test results of engine-out emissions (emissions straight out of the engine, with the converter removed) showed that carbon monoxide was significantly reduced in the cold phase. All emission test results were compared with those for normal air (21% oxygen). The catalytic converter also had an improved carbon monoxide conversion efficiency under the oxygen-enriched-air conditions. Detailed results of hydrocarbon speciation indicated large reductions in 1,3-butadiene, formaldehyde, acetaldehyde, and benzene from the engine with the oxygen-enriched air. Catalytic converter-out ozone was reduced by 60% with 25%-oxygen-content air. Although NO{sub x} emissions increased significantly, both for engine-out and catalytic converter-out emissions, we anticipate that they can be ameliorated in the near future with new control technologies. The automotive industry currently is developing exhaust-gas control technologies for an oxidizing environment; these technologies should reduce NO{sub x} emissions more efficiently in vehicles that use oxygen-enriched intake air. On the basis of estimates made from current data, several production vehicles that had low NO{sub x} emissions could meet the 2004 Tier II emissions standards with 25%-oxygen-content air.

  15. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  16. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, Douglas R.; Rawlinson, K. Scott

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  17. Yamabe flow on Berwald manifolds

    NASA Astrophysics Data System (ADS)

    Azami, Shahroud; Razavi, Asadollah

    2015-12-01

    Studying the geometric flow plays a powerful role in mathematics and physics. We introduce the Yamabe flow on Finsler manifolds and we will prove the existence and uniqueness for solution of Yamabe flow on Berwald manifolds.

  18. Hashing on nonlinear manifolds.

    PubMed

    Shen, Fumin; Shen, Chunhua; Shi, Qinfeng; van den Hengel, Anton; Tang, Zhenmin; Shen, Heng Tao

    2015-06-01

    Learning-based hashing methods have attracted considerable attention due to their ability to greatly increase the scale at which existing algorithms may operate. Most of these methods are designed to generate binary codes preserving the Euclidean similarity in the original space. Manifold learning techniques, in contrast, are better able to model the intrinsic structure embedded in the original high-dimensional data. The complexities of these models, and the problems with out-of-sample data, have previously rendered them unsuitable for application to large-scale embedding, however. In this paper, how to learn compact binary embeddings on their intrinsic manifolds is considered. In order to address the above-mentioned difficulties, an efficient, inductive solution to the out-of-sample data problem, and a process by which nonparametric manifold learning may be used as the basis of a hashing method are proposed. The proposed approach thus allows the development of a range of new hashing techniques exploiting the flexibility of the wide variety of manifold learning approaches available. It is particularly shown that hashing on the basis of t-distributed stochastic neighbor embedding outperforms state-of-the-art hashing methods on large-scale benchmark data sets, and is very effective for image classification with very short code lengths. It is shown that the proposed framework can be further improved, for example, by minimizing the quantization error with learned orthogonal rotations without much computation overhead. In addition, a supervised inductive manifold hashing framework is developed by incorporating the label information, which is shown to greatly advance the semantic retrieval performance.

  19. Manifold Insulation for Solar Collectors

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of computer analysis of effects of various manifold insulation detailed in 23-page report show that if fluid is distributed to and gathered from array of solar collectors by external rather than internal manifold, effectiveness of manifold insulation has major influence on efficiency. Report describes required input data and presents equations that govern computer model. Provides graphs comparing collector efficiencies for representative manifold sizes and insulations.

  20. Microwave waveguide manifold and method

    DOEpatents

    Staehlin, John H.

    1987-01-01

    A controllably electrically coupled, physically intersecting plural waveguide manifold assembly wherein the intersecting waveguide elements are fabricated in integral unitary relationship from a single piece of metal in order to avoid the inaccuracies and difficult-to-control fabrication steps associated with uniting separate waveguide elements into a unitary structure. An X-band aluminum airborne radar manifold example is disclosed, along with a fabrication sequence for the manifold and the electrical energy communicating apertures joining the manifold elements.

  1. Microwave waveguide manifold and method

    DOEpatents

    Staehlin, John H.

    1987-12-01

    A controllably electrically coupled, physically intersecting plural waveguide manifold assembly wherein the intersecting waveguide elements are fabricated in integral unitary relationship from a single piece of metal in order to avoid the inaccuracies and difficult-to-control fabrication steps associated with uniting separate waveguide elements into a unitary structure. An X-band aluminum airborne radar manifold example is disclosed, along with a fabrication sequence for the manifold and the electrical energy communicating apertures joining the manifold elements.

  2. Invariant manifolds and global bifurcations.

    PubMed

    Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M; Sandstede, Björn

    2015-09-01

    Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems. PMID:26428557

  3. Invariant manifolds and global bifurcations.

    PubMed

    Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M; Sandstede, Björn

    2015-09-01

    Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems.

  4. Invariant manifolds and global bifurcations

    NASA Astrophysics Data System (ADS)

    Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M.; Sandstede, Björn

    2015-09-01

    Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems.

  5. Partially integrated exhaust manifold

    SciTech Connect

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  6. Seafloor manifold center installed

    SciTech Connect

    Edmiston, K.

    1982-07-01

    The Shell/Esso Underwater Manifold Center (UMC), designed and tested as a diverless production facility, is a significant step toward really deep water oil and gas production. In May 1982, the 2100 metric ton unit was towed 645 miles from its Dutch fabrication yard and precisely emplaced in 500 ft water in the Cormorant field in only 6 days. When fully installed with all of its wells drilled and testing completed, the UMC will have cost an estimated $700 million. During its anticipated 25 yr operating life, the UMC is expected to produce ca 110 million bbl from the central Cormorant area. Design and operational criteria are described.

  7. Global Intraurban Intake Fractions for Primary Air Pollutants from Vehicles and Other Distributed Sources

    PubMed Central

    2012-01-01

    We model intraurban intake fraction (iF) values for distributed ground-level emissions in all 3646 global cities with more than 100 000 inhabitants, encompassing a total population of 2.0 billion. For conserved primary pollutants, population-weighted median, mean, and interquartile range iF values are 26, 39, and 14–52 ppm, respectively, where 1 ppm signifies 1 g inhaled/t emitted. The global mean urban iF reported here is roughly twice as large as previous estimates for cities in the United States and Europe. Intake fractions vary among cities owing to differences in population size, population density, and meteorology. Sorting by size, population-weighted mean iF values are 65, 35, and 15 ppm, respectively, for cities with populations larger than 3, 0.6–3, and 0.1–0.6 million. The 20 worldwide megacities (each >10 million people) have a population-weighted mean iF of 83 ppm. Mean intraurban iF values are greatest in Asia and lowest in land-rich high-income regions. Country-average iF values vary by a factor of 3 among the 10 nations with the largest urban populations. PMID:22332712

  8. Modeling and Control Systems Design for Air Intake System of Diesel Engines for Improvement of Transient Characteristic

    NASA Astrophysics Data System (ADS)

    Ejiri, Arata; Sasaki, Jun; Kinoshita, Yusuke; Fujimoto, Junya; Maruyama, Tsugito; Shimotani, Keiji

    For the purpose of contributing to global environment protection, several research studies have been conducted involving clean-burning diesel engines. In recent diesel engines with Exhaust Gas Recirculation (EGR) systems and a Variable Nozzle Turbocharger (VNT), mutual interference between EGR and VNT has been noted. Hence, designing and adjusting control of the conventional PID controller is particularly difficult at the transient state in which the engine speed and fuel injection rate change. In this paper, we formulate 1st principal model of air intake system of diesel engines and transform it to control oriented model including an engine steady state model and a transient model. And we propose a model-based control system with the LQR Controller, Saturation Compensator, the Dynamic Feed-forward and Disturbance Observer using a transient model. Using this method, we achieved precise reference tracking and emission reduction in transient mode test with the real engine evaluations.

  9. Air-consumption parameters for automatic mixture control of aircraft engines

    NASA Technical Reports Server (NTRS)

    Shames, Sidney J

    1945-01-01

    Data obtained from Navy calibration tests of an 18-cylinder, two-row, radial engine of 3350-cubic-inch displacement and a 14-cylinder, two-row, radial engine of 2600-cubic-inch displacement (carburetor types) were analyzed to show the correlation between the air consumption of these engines and the parameters that evaluate the air consumption from intake-manifold temperature and pressure, exhaust back pressure, and engine speed.

  10. Fuel cell manifold sealing system

    DOEpatents

    Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.

    1980-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  11. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOEpatents

    Roth, Gregory T.; Sellnau, Mark C.

    2016-08-09

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder of the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.

  12. Flow distribution in the manifold of PEM fuel cell stack

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Hsien; Jung, Shiauh-Ping; Yen, Shi-Chern

    In this study, the pressure variation and the flow distribution in the manifold of a fuel-cell stack are simulated by a computational fluid dynamics (CFD) approach. Two dimensional stack model composed of 72 cells filled with porous media is constructed to evaluate pressure drop caused by channel flow resistance. In order to simplify this model, electrochemical reactions, heat and mass transport phenomena are ignored and air is treated as working fluid to investigate flow distribution in stacks. Design parameters such as the permeability of the porous media, the manifold width and the air feeding rate were changed to estimate uniformity of the flow distribution in the manifold. A momentum-balance theory and a pressure-drop model are presented to explain the physical mechanism of flow distribution. Modeling results indicate that both the channel resistance and the manifold width can enhance the uniformity of the flow distribution. In addition, a lower air feeding rate can also enhance the uniformity of flow distribution. However, excessive pressure drop is not beneficial for realistic applications of a fuel-cell stack and hence enhanced manifold width is a better solution for flow distribution.

  13. Pluripotential theory on quaternionic manifolds

    NASA Astrophysics Data System (ADS)

    Alesker, Semyon

    2012-05-01

    On any quaternionic manifold of dimension greater than 4 a class of plurisubharmonic functions (or, rather, sections of an appropriate line bundle) is introduced. Then a Monge-Ampère operator is defined. It is shown that it satisfies a version of the theorems of A. D. Alexandrov and Chern-Levine-Nirenberg. For more special classes of manifolds analogous results were previously obtained in Alesker (2003) [1] for the flat quaternionic space Hn and in Alesker and Verbitsky (2006) [5] for hypercomplex manifolds. One of the new technical aspects of the present paper is the systematic use of the Baston differential operators, for which we also prove a new multiplicativity property.

  14. Generating maps, invariant manifolds, conjugacy

    NASA Astrophysics Data System (ADS)

    Chaperon, Marc

    2015-01-01

    The idea of generating functions and maps is presented, first in global symplectic geometry and then in the theory of invariant manifolds, as introduced by McGehee and Sander in 1996. Their result on the stable manifold theorem is generalised and simplified; the proofs no longer use any functional analysis. Then comes an original "non-autonomous" version of the previous results, yielding-besides Pesin's invariant laminations-seemingly unrelated results on invariant manifolds and conjugacies, presented in the end after a basic example.

  15. Model reduction by manifold boundaries

    NASA Astrophysics Data System (ADS)

    Transtrum, Mark

    2015-03-01

    Mathemtical models of physical systems can be interpreted as manifolds of predictions embedded in the space of data. For models of complex systems with many parameters, the corresponding model manifold is very high-dimensional but often very thin. This ``low effective dimensionality'' has been described as a hyper-ribbon and is characteristic of systems exhibiting simple, emergent behavior. I discuss a new model reduction method, the manifold boundary approximation method, which constructs a series of models by iteratively approximating the high-dimensional, thin manifold by its boundary. This model reduction method unifies many different model reduction techniques, such as renormalization group and continuum limits, while greatly expanding the domain of tractable models. I demonstrate with a model of a complex signaling network from systems biology. The method produces a series of approximations which reveal how microscopic parameters are systematically ``compressed'' into a few macroscopic degrees of freedom, effectively building a bridge between the microscopic and the macroscopic descriptions.

  16. Manifold-valued Dirichlet Processes

    PubMed Central

    Kim, Hyunwoo J.; Xu, Jia; Vemuri, Baba C.; Singh, Vikas

    2016-01-01

    Statistical models for manifold-valued data permit capturing the intrinsic nature of the curved spaces in which the data lie and have been a topic of research for several decades. Typically, these formulations use geodesic curves and distances defined locally for most cases — this makes it hard to design parametric models globally on smooth manifolds. Thus, most (manifold specific) parametric models available today assume that the data lie in a small neighborhood on the manifold. To address this ‘locality’ problem, we propose a novel nonparametric model which unifies multivariate general linear models (MGLMs) using multiple tangent spaces. Our framework generalizes existing work on (both Euclidean and non-Euclidean) general linear models providing a recipe to globally extend the locally-defined parametric models (using a mixture of local models). By grouping observations into sub-populations at multiple tangent spaces, our method provides insights into the hidden structure (geodesic relationships) in the data. This yields a framework to group observations and discover geodesic relationships between covariates X and manifold-valued responses Y, which we call Dirichlet process mixtures of multivariate general linear models (DP-MGLM) on Riemannian manifolds. Finally, we present proof of concept experiments to validate our model. PMID:26973982

  17. Star product and contact Weyl manifold

    NASA Astrophysics Data System (ADS)

    Yoshioka, Akira

    2016-09-01

    Contact algebra is introduced, which is a Lie algebra given as a one-dimesional exrention of a Weyl algebra. A contact Lie algebra bundle called a contact Weyl manifold is considered over a symplectic manifold which contains a Weyl manifold as a subbundle. A relationship is discussed between deformation quantization on s symplectic manifold and a Weyl manifold over the symplectic manifold. The contact Weyl manifold has a canonical connection which gives rise the relation, and is regarded as an extension of Fedosov connection.

  18. Flowfield visualization for SSME hot gas manifold

    NASA Technical Reports Server (NTRS)

    Roger, Robert P.

    1988-01-01

    The objective of this research, as defined by NASA-Marshall Space Flight Center, was two-fold: (1) to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME), and (2) to provide analytical support for SSME related numerical computational experiments, being performed by the Computational Fluid Dynamics staff in the Aerophysics Division of the Structures and Dynamics Laboratory at NASA-MSFC. Numerical results of HGM were calculations to complement both water flow visualization experiments and air flow visualization experiments and air experiments in two-duct geometries performed at NASA-MSFC and Rocketdyne. In addition, code modification and improvement efforts were to strengthen the CFD capabilities of NASA-MSFC for producing reliable predictions of flow environments within the SSME.

  19. Parallel spinors on flat manifolds

    NASA Astrophysics Data System (ADS)

    Sadowski, Michał

    2006-05-01

    Let p(M) be the dimension of the vector space of parallel spinors on a closed spin manifold M. We prove that every finite group G is the holonomy group of a closed flat spin manifold M(G) such that p(M(G))>0. If the holonomy group Hol(M) of M is cyclic, then we give an explicit formula for p(M) another than that given in [R.J. Miatello, R.A. Podesta, The spectrum of twisted Dirac operators on compact flat manifolds, Trans. Am. Math. Soc., in press]. We answer the question when p(M)>0 if Hol(M) is a cyclic group of prime order or dim⁡M≤4.

  20. Linear readout of object manifolds

    NASA Astrophysics Data System (ADS)

    Chung, SueYeon; Lee, Daniel D.; Sompolinsky, Haim

    2016-06-01

    Objects are represented in sensory systems by continuous manifolds due to sensitivity of neuronal responses to changes in physical features such as location, orientation, and intensity. What makes certain sensory representations better suited for invariant decoding of objects by downstream networks? We present a theory that characterizes the ability of a linear readout network, the perceptron, to classify objects from variable neural responses. We show how the readout perceptron capacity depends on the dimensionality, size, and shape of the object manifolds in its input neural representation.

  1. Stochastic dynamics on slow manifolds

    NASA Astrophysics Data System (ADS)

    Constable, George W. A.; McKane, Alan J.; Rogers, Tim

    2013-07-01

    The theory of slow manifolds is an important tool in the study of deterministic dynamical systems, giving a practical method by which to reduce the number of relevant degrees of freedom in a model, thereby often resulting in a considerable simplification. In this paper we demonstrate how the same basic methodology may also be applied to stochastic dynamical systems, by examining the behaviour of trajectories conditioned on the event that they do not depart the slow manifold. We apply the method to two models: one from ecology and one from epidemiology, achieving a reduction in model dimension and illustrating the high quality of the analytical approximations.

  2. Robotic Welding Of Injector Manifold

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Shelley, D. Mark

    1992-01-01

    Brief report presents history, up through October 1990, of continuing efforts to convert from manual to robotic gas/tungsten arc welding in fabrication of main injector inlet manifold of main engine of Space Shuttle. Includes photographs of welding machinery, welds, and weld preparations. Of interest to engineers considering establishment of robotic-welding facilities.

  3. [Estimation of arsenic accumulative intake and residents' health effects in an air pollution area--relationship between arsenic accumulative intake level and arsenicism prevalence].

    PubMed

    Shang, Qi; Ren, Xiuqin; Li, Jinrong

    2002-10-01

    This paper reports the results of epidemiological survey on health effects of residents exposed to arsenic in a pollution area and estimation of arsenic accumulative intake level (EAAIL) based on calculating accumulative rice consumption and via inhalation way. 795 persons were sampled randomly from the polluted area, among whom 674 persons and 83 persons were diagnosed with Chronic Arsenic Absorption (CAA) and Chronic Arsenicism (CA) according to the National Diagnose Standard respectively. There were 60.98% CAA in 30 years old and younger age-groups and 97.59% CA in 30 years old and older age-groups. The one youngest case of CA occurred in 15 years old age group, while its EAAIL was at 1846.47 mg. The highest EAAIL was at 8706.47 mg. The rate of CA had gone obviously up at 30 years old age group. Its EAAIL was at 3833.42 mg. One equation of relationship between the rate of CA (%) and EAAIL (mg) was fitted by means of curve fitting, its is followed: Y = X1.843/e12.694 -2.866, r2 = 0.945.

  4. Hermitian metrics on F-manifolds

    NASA Astrophysics Data System (ADS)

    David, Liana; Hertling, Claus

    2016-09-01

    An F-manifold is complex manifold with a multiplication on the holomorphic tangent bundle, which satisfies a certain integrability condition. Important examples are Frobenius manifolds and especially base spaces of universal unfoldings of isolated hypersurface singularities. This paper reviews the construction of hermitian metrics on F-manifolds from tt∗ geometry. It clarifies the logic between several notions. It also introduces a new canonical hermitian metric. Near irreducible points it makes the manifold almost hyperbolic. This holds for the singularity case and will hopefully lead to applications there.

  5. Geodesic Monte Carlo on Embedded Manifolds

    PubMed Central

    Byrne, Simon; Girolami, Mark

    2013-01-01

    Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024

  6. Flexible fuel cell gas manifold system

    DOEpatents

    Cramer, Michael; Shah, Jagdish; Hayes, Richard P.; Kelley, Dana A.

    2005-05-03

    A fuel cell stack manifold system in which a flexible manifold body includes a pan having a central area, sidewall extending outward from the periphery of the central area, and at least one compound fold comprising a central area fold connecting adjacent portions of the central area and extending between opposite sides of the central area, and a sidewall fold connecting adjacent portions of the sidewall. The manifold system further includes a rail assembly for attachment to the manifold body and adapted to receive pins by which dielectric insulators are joined to the manifold assembly.

  7. Geodesic Monte Carlo on Embedded Manifolds.

    PubMed

    Byrne, Simon; Girolami, Mark

    2013-12-01

    Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton-Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024

  8. Point-based manifold harmonics.

    PubMed

    Liu, Yang; Prabhakaran, Balakrishnan; Guo, Xiaohu

    2012-10-01

    This paper proposes an algorithm to build a set of orthogonal Point-Based Manifold Harmonic Bases (PB-MHB) for spectral analysis over point-sampled manifold surfaces. To ensure that PB-MHB are orthogonal to each other, it is necessary to have symmetrizable discrete Laplace-Beltrami Operator (LBO) over the surfaces. Existing converging discrete LBO for point clouds, as proposed by Belkin et al., is not guaranteed to be symmetrizable. We build a new point-wisely discrete LBO over the point-sampled surface that is guaranteed to be symmetrizable, and prove its convergence. By solving the eigen problem related to the new operator, we define a set of orthogonal bases over the point cloud. Experiments show that the new operator is converging better than other symmetrizable discrete Laplacian operators (such as graph Laplacian) defined on point-sampled surfaces, and can provide orthogonal bases for further spectral geometric analysis and processing tasks.

  9. Symmetries from the solution manifold

    NASA Astrophysics Data System (ADS)

    Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco

    2015-07-01

    We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.

  10. Computing Slow Manifolds of Saddle Type

    NASA Astrophysics Data System (ADS)

    Guckenheimer, John; Kuehn, Christian

    2009-01-01

    Slow manifolds are important geometric structures in the state spaces of dynamical systems with multiple time scales. This paper introduces an algorithm for computing trajectories on slow manifolds that are normally hyperbolic with both stable and unstable fast manifolds. We present two examples of bifurcation problems where these manifolds play a key role and a third example in which saddle-type slow manifolds are part of a traveling wave profile of a partial differential equation. Initial value solvers are incapable of computing trajectories on saddle-type slow manifolds, so the slow manifold of saddle type (SMST) algorithm presented here is formulated as a boundary value method. We take an empirical approach here to assessing the accuracy and effectiveness of the algorithm.

  11. Manifold seal structure for fuel cell stack

    DOEpatents

    Collins, William P.

    1988-01-01

    The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.

  12. Anomalies, conformal manifolds, and spheres

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan

    2016-03-01

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space {M} is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail {N}=(2,2) and {N}=(0,2) supersymmetric theories in d = 2 and {N}=2 supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For {N}=(2,2) theories in d = 2 and {N}=2 theories in d = 4 we also show that the relation between the sphere partition function and the Kähler potential of {M} follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  13. Model Reduction by Manifold Boundaries

    NASA Astrophysics Data System (ADS)

    Transtrum, Mark K.; Qiu, Peng

    2014-08-01

    Understanding the collective behavior of complex systems from their basic components is a difficult yet fundamental problem in science. Existing model reduction techniques are either applicable under limited circumstances or produce "black boxes" disconnected from the microscopic physics. We propose a new approach by translating the model reduction problem for an arbitrary statistical model into a geometric problem of constructing a low-dimensional, submanifold approximation to a high-dimensional manifold. When models are overly complex, we use the observation that the model manifold is bounded with a hierarchy of widths and propose using the boundaries as submanifold approximations. We refer to this approach as the manifold boundary approximation method. We apply this method to several models, including a sum of exponentials, a dynamical systems model of protein signaling, and a generalized Ising model. By focusing on parameters rather than physical degrees of freedom, the approach unifies many other model reduction techniques, such as singular limits, equilibrium approximations, and the renormalization group, while expanding the domain of tractable models. The method produces a series of approximations that decrease the complexity of the model and reveal how microscopic parameters are systematically "compressed" into a few macroscopic degrees of freedom, effectively building a bridge between the microscopic and the macroscopic descriptions.

  14. Anomalies, conformal manifolds, and spheres

    DOE PAGES

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less

  15. Manifold learning for robot navigation.

    PubMed

    Keeratipranon, Narongdech; Maire, Frederic; Huang, Henry

    2006-10-01

    In this paper we introduce methods to build a SOM that can be used as an isometric map for mobile robots. That is, given a dataset of sensor readings collected at points uniformly distributed with respect to the ground, we wish to build a SOM whose neurons (prototype vectors in sensor space) correspond to points uniformly distributed on the ground. Manifold learning techniques have already been used for dimensionality reduction of sensor space in navigation systems. Our focus is on the isometric property of the SOM. For reliable path-planning and information sharing between several robots, it is desirable that the robots build an internal representation of the sensor manifold, a map, that is isometric with the environment. We show experimentally that standard Non-Linear Dimensionality Reduction (NLDR) algorithms do not provide isometric maps for range data and bearing data. However, the auxiliary low dimensional manifolds created can be used to improve the distribution of the neurons of a SOM (that is, make the neurons more evenly distributed with respect to the ground). We also describe a method to create an isometric map from a sensor readings collected along a polygonal line random walk.

  16. Computational fluid dynamics as a design tool for the hot gas manifold of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Ziebarth, J. P.; Barson, S.; Rosen, R.

    1986-01-01

    The paper discusses the application of computational fluid dynamics as a design tool for the Hot Gas Manifold of the Space Shuttle Main Engine. An improved Hot Gas Manifold configuration was arrived at computationally. This configuration was then built and air flow tested. Testing verified this configuration to be a substantial improvement over existing flight designs.

  17. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  18. Polybrominated diphenyl ethers in the air and comparison of the daily intake and uptake through inhalation by Shanghai residents with those through other matrices and routes.

    PubMed

    Li, Chunlei; Zhao, Zhishen; Lei, Bingli; An, Jing; Zhang, Xinyu; Yu, Yingxin

    2015-02-01

    To obtain a comprehensive understanding of the main source and route of human exposure to polybrominated diphenyl ethers (PBDEs), the daily intake and uptakes through inhalation, ingestion, and dermal contact for Shanghai residents were estimated on the basis of the PBDE concentrations in the air obtained in the present study and previous data reported in the literature. The PBDE concentrations in the gas and particle phases collected in Shanghai were 0.99-57.5 and 0.1-234 pg/m(3), respectively. The contamination levels of PBDEs in the air in Shanghai were similar to or slightly lower than the data from other regions. The estimated total daily intakes of PBDEs through the three routes were 607 and 1,636 ng/day for children and adults, respectively, while they decreased to 63.0 and 93.1 ng/day when the uptake efficiency (which is the fraction of contaminants that reaches the systemic circulation) of PBDEs was added to calculation. The results showed that dust is the main source of human exposure to PBDEs when PBDE uptake efficiency was not considered. It accounted for 66.2-79.2 % of the total PBDE intake. However, food is the main source, which accounted for 66.6-75.1 %, when the uptake efficiency was added to calculation. Among the three routes, dermal contact (53.1-76.6 %) is the main pathway, whereas ingestion (84.7-92.9 %) is the main one when the uptake efficiency was considered. Furthermore, risk assessment showed that the PBDE exposure amount would not cause obvious non-cancer and cancer risks to local residents.

  19. Comparison of vitamin A intake from breast milk and from complementary foods in the diet of six-month old infants in Jujuy and Buenos Aires.

    PubMed

    Greco, Carola Beatriz; López, Laura Beatriz; Rodríguez, Viviana; Dyner, Luis; Gibson, Verónica; Pinotti, Luisa Virginia; Ronayne de Ferrer, Patricia Ana

    2014-10-01

    The objective of this study was to compare the dietary pattern of two socio-culturally different populations, focusing on the vitamin A intake from breast milk and from the most commonly consumed complementary foods. Dietary surveys on six-month old infant feeding were administered to breastfeeding mothers in Jujuy (n= 44) and Buenos Aires (n= 95).For milk, the level of retinol was determined by liquid chromatography; for foods, calorie and vitamin A values were estimated. In Jujuy and Buenos Aires, 75.6% and 64.5% of infants were receiving complementary foods at six months old, and more than 50% had started earlier. Milk retinol ranged from 0.02 to 1.19 μg/ mL and from 0.09 to 1.94 μg/mL in mothers in Jujuy and Buenos Aires, respectively.Values <0.30 μg/mL, indicative of vitamin A deficiency, were observed in 67.4% and 26.1% of milk samples, respectively. Usually consumed foods may provide sufficient vitamin A for Buenos Aires participants, but insufficient for those in Jujuy.

  20. Magnetic Curves in Cosymplectic Manifolds

    NASA Astrophysics Data System (ADS)

    Druţă-Romaniuc, Simona-Luiza; Inoguchi, Jun-ichi; Munteanu, Marian Ioan; Nistor, Ana Irina

    2016-08-01

    In this paper we classify the magnetic trajectories with respect to contact magnetic fields in cosymplectic manifolds of arbitrary dimension. We classify Killing magnetic curves in product spaces M2 × R , recalling also explicit description of magnetic curves in E3 , S2 × R and H2 × R . Finally, we prove a reduction theorem for magnetic curves in the cosymplectic space form M bar 2 n(k) × R , in order to show that the (2n+1)-dimensional case reduces to the 3-dimensional one.

  1. GLSMs for partial flag manifolds

    NASA Astrophysics Data System (ADS)

    Donagi, Ron; Sharpe, Eric

    2008-12-01

    In this paper we outline some aspects of nonabelian gauged linear sigma models. First, we review how partial flag manifolds (generalizing Grassmannians) are described physically by nonabelian gauged linear sigma models, paying attention to realizations of tangent bundles and other aspects pertinent to (0, 2) models. Second, we review constructions of Calabi-Yau complete intersections within such flag manifolds, and properties of the gauged linear sigma models. We discuss a number of examples of nonabelian GLSMs in which the Kähler phases are not birational, and in which at least one phase is realized in some fashion other than as a complete intersection, extending previous work of Hori-Tong. We also review an example of an abelian GLSM exhibiting the same phenomenon. We tentatively identify the mathematical relationship between such non-birational phases, as examples of Kuznetsov's homological projective duality. Finally, we discuss linear sigma model moduli spaces in these gauged linear sigma models. We argue that the moduli spaces being realized physically by these GLSMs are precisely Quot and hyperquot schemes, as one would expect mathematically.

  2. Characterizing humans on Riemannian manifolds.

    PubMed

    Tosato, Diego; Spera, Mauro; Cristani, Marco; Murino, Vittorio

    2013-08-01

    In surveillance applications, head and body orientation of people is of primary importance for assessing many behavioral traits. Unfortunately, in this context people are often encoded by a few, noisy pixels so that their characterization is difficult. We face this issue, proposing a computational framework which is based on an expressive descriptor, the covariance of features. Covariances have been employed for pedestrian detection purposes, actually a binary classification problem on Riemannian manifolds. In this paper, we show how to extend to the multiclassification case, presenting a novel descriptor, named weighted array of covariances, especially suited for dealing with tiny image representations. The extension requires a novel differential geometry approach in which covariances are projected on a unique tangent space where standard machine learning techniques can be applied. In particular, we adopt the Campbell-Baker-Hausdorff expansion as a means to approximate on the tangent space the genuine (geodesic) distances on the manifold in a very efficient way. We test our methodology on multiple benchmark datasets, and also propose new testing sets, getting convincing results in all the cases.

  3. Characterizing humans on Riemannian manifolds.

    PubMed

    Tosato, Diego; Spera, Mauro; Cristani, Marco; Murino, Vittorio

    2013-08-01

    In surveillance applications, head and body orientation of people is of primary importance for assessing many behavioral traits. Unfortunately, in this context people are often encoded by a few, noisy pixels so that their characterization is difficult. We face this issue, proposing a computational framework which is based on an expressive descriptor, the covariance of features. Covariances have been employed for pedestrian detection purposes, actually a binary classification problem on Riemannian manifolds. In this paper, we show how to extend to the multiclassification case, presenting a novel descriptor, named weighted array of covariances, especially suited for dealing with tiny image representations. The extension requires a novel differential geometry approach in which covariances are projected on a unique tangent space where standard machine learning techniques can be applied. In particular, we adopt the Campbell-Baker-Hausdorff expansion as a means to approximate on the tangent space the genuine (geodesic) distances on the manifold in a very efficient way. We test our methodology on multiple benchmark datasets, and also propose new testing sets, getting convincing results in all the cases. PMID:23787347

  4. Sasaki-like almost contact complex Riemannian manifolds

    NASA Astrophysics Data System (ADS)

    Ivanov, Stefan; Manev, Hristo; Manev, Mancho

    2016-09-01

    A Sasaki-like almost contact complex Riemannian manifold is defined as an almost contact complex Riemannian manifold whose complex cone is a holomorphic complex Riemannian manifold. Explicit compact and non-compact examples are given. A canonical construction producing a Sasaki-like almost contact complex Riemannian manifold from a holomorphic complex Riemannian manifold is provided as an S1-solvable extension.

  5. Sasakian manifolds and M-theory

    NASA Astrophysics Data System (ADS)

    Figueroa-O'Farrill, José; Santi, Andrea

    2016-05-01

    We extend the link between Einstein Sasakian manifolds and Killing spinors to a class of η-Einstein Sasakian manifolds, both in Riemannian and Lorentzian settings, characterizing them in terms of generalized Killing spinors. We propose a definition of supersymmetric M-theory backgrounds on such a geometry and find a new class of such backgrounds, extending previous work of Haupt, Lukas and Stelle.

  6. Manifold Coal-Slurry Transport System

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Estus, J. M.; Lavin, M. L.

    1986-01-01

    Feeding several slurry pipes into main pipeline reduces congestion in coal mines. System based on manifold concept: feeder pipelines from each working entry joined to main pipeline that carries coal slurry out of panel and onto surface. Manifold concept makes coal-slurry haulage much simpler than existing slurry systems.

  7. Heisenberg symmetry and hypermultiplet manifolds

    NASA Astrophysics Data System (ADS)

    Antoniadis, Ignatios; Derendinger, Jean-Pierre; Marios Petropoulos, P.; Siampos, Konstantinos

    2016-04-01

    We study the emergence of Heisenberg (Bianchi II) algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N = 2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U (1) × U (1) at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry - as opposed to Heisenberg ⋉ U (1). We finally discuss the realization of the latter by gauging appropriate Sp (2 , 4) generators in N = 2 conformal supergravity.

  8. A Light-Activated Reaction Manifold.

    PubMed

    Hiltebrandt, Kai; Elies, Katharina; D'hooge, Dagmar R; Blinco, James P; Barner-Kowollik, Christopher

    2016-06-01

    We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels.

  9. Langevin dynamics of polymeric manifolds in melts

    NASA Astrophysics Data System (ADS)

    Rostiashvili, V. G.; Rehkopf, M.; Vilgis, T. A.

    1999-03-01

    The Martin-Siggia-Rose generating functional (MSR-GF) technique is used for treating the polymeric D-dimensional-manifold melt dynamics. The one- (test-) manifold dynamics and the collective dynamics are considered separately. The test-manifold dynamics is obtained by integrating out the melt collective variables. This is done within the dynamic random-phase approximation (RPA). The resulting effective-action functional of the test manifold is treated by making use of the self-consistent Hartree approximation. As a consequence, the generalized Rouse equation of the test manifold is derived, and its static and dynamic properties are studied. By making use the MSR-GF technique, the fluctuations around the RPA of the collective variables - mass density and response-field density - are investigated. As a result, the equations for the correlation and response functions are derived. The memory kernel can be specified for the ideal glass transition as a sum of all `water-melon' diagrams.

  10. 10 CFR Appendix B to Part 20 - Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...,” and “Water,” are applicable to the assessment and control of dose to the public, particularly in the...). Consideration of non-stochastic limits has not been included in deriving the air and water effluent... water concentrations were derived by taking the most restrictive occupational stochastic oral...

  11. 10 CFR Appendix B to Part 20 - Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...,” and “Water,” are applicable to the assessment and control of dose to the public, particularly in the...). Consideration of non-stochastic limits has not been included in deriving the air and water effluent... water concentrations were derived by taking the most restrictive occupational stochastic oral...

  12. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  13. Loops in Reeb Graphs of 2-Manifolds

    SciTech Connect

    Cole-McLaughlin, K; Edelsbrunner, H; Harer, J; Natarajan, V; Pascucci, V

    2004-12-16

    Given a Morse function f over a 2-manifold with or without boundary, the Reeb graph is obtained by contracting the connected components of the level sets to points. We prove tight upper and lower bounds on the number of loops in the Reeb graph that depend on the genus, the number of boundary components, and whether or not the 2-manifold is orientable. We also give an algorithm that constructs the Reeb graph in time O(n log n), where n is the number of edges in the triangulation used to represent the 2-manifold and the Morse function.

  14. Loops in Reeb Graphs of 2-Manifolds

    SciTech Connect

    Cole-McLaughlin, K; Edelsbrunner, H; Harer, J; Natarajan, V; Pascucci, V

    2003-02-11

    Given a Morse function f over a 2-manifold with or without boundary, the Reeb graph is obtained by contracting the connected components of the level sets to points. We prove tight upper and lower bounds on the number of loops in the Reeb graph that depend on the genus, the number of boundary components, and whether or not the 2-manifold is orientable. We also give an algorithm that constructs the Reeb graph in time O(n log n), where n is the number of edges in the triangulation used to represent the 2-manifold and the Morse function.

  15. Can changing the timing of outdoor air intake reduce indoor concentrations of traffic-related pollutants in schools?

    PubMed

    MacNeill, M; Dobbin, N; St-Jean, M; Wallace, L; Marro, L; Shin, T; You, H; Kulka, R; Allen, R W; Wheeler, A J

    2016-10-01

    Traffic emissions have been associated with a wide range of adverse health effects. Many schools are situated close to major roads, and as children spend much of their day in school, methods to reduce traffic-related air pollutant concentrations in the school environment are warranted. One promising method to reduce pollutant concentrations in schools is to alter the timing of the ventilation so that high ventilation time periods do not correspond to rush hour traffic. Health Canada, in collaboration with the Ottawa-Carleton District School Board, tested the effect of this action by collecting traffic-related air pollution data from four schools in Ottawa, Canada, during October and November 2013. A baseline and intervention period was assessed in each school. There were statistically significant (P < 0.05) reductions in concentrations of most of the pollutants measured at the two late-start (9 AM start) schools, after adjusting for outdoor concentrations and the absolute indoor-outdoor temperature difference. The intervention at the early-start (8 AM start) schools did not have significant reductions in pollutant concentrations. Based on these findings, changing the timing of the ventilation may be a cost-effective mechanism of reducing traffic-related pollutants in late-start schools located near major roads.

  16. IS-321-312-001 TEP-to-HTEP manifold interface sheet

    SciTech Connect

    Willms, R Scott; Carlson, Bryan J; Coons, James E; Kubic, William L

    2008-01-01

    The Tokamak Exhaust Processing System (TEP) receives hydrogen-like and air-like gas streams from the High Tritium Exhaust Processing (HTEP) manifold. Gases from the torus roughing pump are pumped into the HTEP manifold before entering TEP. This interface sheet describes the TEP-HTEP material stream interface, both the physical elements that make up the interface as well as the gas streams that will flow through the interface. The functions of this interface are to: Provide a physical connection for the transport of hydrogen-like and air-like gases from the HTEP manifold to TEP. Provide seals to prevent the unncessary release of tritium to the surrounding environment. Provide valves that can be actuated to stop or prevent the flow of gas into TEP.

  17. Adiabatic limits on Riemannian Heisenberg manifolds

    SciTech Connect

    Yakovlev, A A

    2008-02-28

    An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.

  18. Manifold based methods in facial expression recognition

    NASA Astrophysics Data System (ADS)

    Xie, Kun

    2013-07-01

    This paper describes a novel method for facial expression recognition based on non-linear manifold techniques. The graph-based algorithms are designed to treat structure in data, and regularize accordingly. This same goal is shared by several other algorithms, from linear method principal components analysis (PCA) to modern variants such as Laplacian eigenmaps. In this paper we focus on manifold learning for dimensionality reduction and clustering using Laplacian eigenmaps for facial expression recognition. We evaluate the algorithm by using all the pixels and selected features respectively and compare the performance of the proposed non-linear manifold method with the previous linear manifold approach, and the non linear method produces higher recognition rate than the facial expression representation using linear methods.

  19. Calabi-Yau manifolds and their degenerations.

    PubMed

    Tosatti, Valentino

    2012-07-01

    Calabi-Yau manifolds are geometric objects of central importance in several branches of mathematics, including differential geometry, algebraic geometry, and mathematical physics. In this paper, we give a brief introduction to the subject aimed at a general mathematical audience and present some of our results that shed some light on the possible ways in which families of Calabi-Yau manifolds can degenerate. PMID:22257362

  20. Computer calculation of Witten's 3-manifold invariant

    NASA Astrophysics Data System (ADS)

    Freed, Daniel S.; Gompf, Robert E.

    1991-10-01

    Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant.

  1. L2-cohomology and complete Hamiltonian manifolds

    NASA Astrophysics Data System (ADS)

    Mazzeo, Rafe; Pelayo, Álvaro; Ratiu, Tudor S.

    2015-01-01

    A classical theorem of Frankel for compact Kähler manifolds states that a Kähler S1-action is Hamiltonian if and only if it has fixed points. We prove a metatheorem which says that when the Hodge theory holds on non-compact manifolds, Frankel's theorem still holds. Finally, we present several concrete situations in which the assumptions of the metatheorem hold.

  2. A Light-Activated Reaction Manifold.

    PubMed

    Hiltebrandt, Kai; Elies, Katharina; D'hooge, Dagmar R; Blinco, James P; Barner-Kowollik, Christopher

    2016-06-01

    We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels. PMID:27151599

  3. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    PubMed

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  4. Normal hyperbolicity and unbounded critical manifolds

    NASA Astrophysics Data System (ADS)

    Kuehn, Christian

    2014-06-01

    This work is motivated by mathematical questions arising in differential equation models for autocatalytic reactions. We extend the local theory of singularities in fast-slow polynomial vector fields to classes of unbounded manifolds which lose normal hyperbolicity due to an alignment of the tangent and normal bundles. A projective transformation is used to localize the unbounded problem. Then the blow-up method is employed to characterize the loss of normal hyperbolicity for the transformed slow manifolds. Our analysis yields a rigorous scaling law for all unbounded manifolds which exhibit a power-law decay for the alignment with a fast subsystem domain. Furthermore, the proof also provides a technical extension of the blow-up method itself by augmenting the analysis with an optimality criterion for the blow-up exponents.

  5. Infinitely many singular interactions on noncompact manifolds

    SciTech Connect

    Kaynak, Burak Tevfik Turgut, O. Teoman

    2015-05-15

    We show that the ground state energy is bounded from below when there are infinitely many attractive delta function potentials placed in arbitrary locations, while all being separated at least by a minimum distance, on two dimensional non-compact manifold. To facilitate the reading of the paper, we first present the arguments in the setting of Cartan–Hadamard manifolds and then subsequently discuss the general case. For this purpose, we employ the heat kernel techniques as well as some comparison theorems of Riemannian geometry, thus generalizing the arguments in the flat case following the approach presented in Albeverio et al. (2004). - Highlights: • Schrödinger-operator for infinitely many singular interactions on noncompact manifolds. • Proof of the finiteness of the ground-state energy.

  6. Isoperimetric inequality on conformally hyperbolic manifolds

    SciTech Connect

    Kesel'man, V M

    2003-04-30

    It is shown that on an arbitrary non-compact Riemannian manifold of conformally hyperbolic type the isoperimetric inequality can be taken by a conformal change of the metric to the same canonical linear form as in the case of the standard hyperbolic Lobachevskii space. Both the absolute isoperimetric inequality and the relative one (for manifolds with boundary) are obtained. This work develops the results and methods of a joint paper with Zorich, in which the absolute isoperimetric inequality was obtained under a certain additional condition; the resulting statements are definitive in a certain sense.

  7. Sparse Density Estimation on the Multinomial Manifold.

    PubMed

    Hong, Xia; Gao, Junbin; Chen, Sheng; Zia, Tanveer

    2015-11-01

    A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion for the finite mixture model. Since the constraint on the mixing coefficients of the finite mixture model is on the multinomial manifold, we use the well-known Riemannian trust-region (RTR) algorithm for solving this problem. The first- and second-order Riemannian geometry of the multinomial manifold are derived and utilized in the RTR algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with an accuracy competitive with those of existing kernel density estimators. PMID:25647665

  8. Holomorphic Parabolic Geometries and Calabi-Yau Manifolds

    NASA Astrophysics Data System (ADS)

    McKay, Benjamin

    2011-09-01

    We prove that the only complex parabolic geometries on Calabi-Yau manifolds are the homogeneous geometries on complex tori. We also classify the complex parabolic geometries on homogeneous compact Kähler manifolds.

  9. Calabi-Yau manifolds from noncommutative Hermitian U (1 ) instantons

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Seok

    2015-05-01

    We show that Calabi-Yau manifolds are emergent from the commutative limit of six-dimensional noncommutative Hermitian U (1 ) instantons. Therefore, we argue that the noncommutative Hermitian U (1 ) instantons correspond to quantized Calabi-Yau manifolds.

  10. Limit cycles of linear vector fields on manifolds

    NASA Astrophysics Data System (ADS)

    Llibre, Jaume; Zhang, Xiang

    2016-10-01

    It is well known that linear vector fields on the manifold {{{R}}n} cannot have limit cycles, but this is not the case for linear vector fields on other manifolds. We study the periodic orbits of linear vector fields on different manifolds, and motivate and present an open problem on the number of limit cycles of linear vector fields on a class of {{C}1} connected manifold.

  11. Fluid manifold design for a solar energy storage tank

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Hewitt, H. C.; Griggs, E. I.

    1975-01-01

    A design technique for a fluid manifold for use in a solar energy storage tank is given. This analytical treatment generalizes the fluid equations pertinent to manifold design, giving manifold pressures, velocities, and orifice pressure differentials in terms of appropriate fluid and manifold geometry parameters. Experimental results used to corroborate analytical predictions are presented. These data indicate that variations in discharge coefficients due to variations in orifices can cause deviations between analytical predictions and actual performance values.

  12. Manifold gasket accommodating differential movement of fuel cell stack

    SciTech Connect

    Kelley, Dana A.; Farooque, Mohammad

    2007-11-13

    A gasket for use in a fuel cell system having at least one externally manifolded fuel cell stack, for sealing the manifold edge and the stack face. In accordance with the present invention, the gasket accommodates differential movement between the stack and manifold by promoting slippage at interfaces between the gasket and the dielectric and between the gasket and the stack face.

  13. Gleason grading of prostate histology utilizing manifold regularization via statistical shape model of manifolds

    NASA Astrophysics Data System (ADS)

    Sparks, Rachel; Madabhushi, Anant

    2012-03-01

    Gleason patterns of prostate cancer histopathology, characterized primarily by morphological and architectural attributes of histological structures (glands and nuclei), have been found to be highly correlated with disease aggressiveness and patient outcome. Gleason patterns 4 and 5 are highly correlated with more aggressive disease and poorer patient outcome, while Gleason patterns 1-3 tend to reflect more favorable patient outcome. Because Gleason grading is done manually by a pathologist visually examining glass (or digital) slides, subtle morphologic and architectural differences of histological attributes may result in grading errors and hence cause high inter-observer variability. Recently some researchers have proposed computerized decision support systems to automatically grade Gleason patterns by using features pertaining to nuclear architecture, gland morphology, as well as tissue texture. Automated characterization of gland morphology has been shown to distinguish between intermediate Gleason patterns 3 and 4 with high accuracy. Manifold learning (ML) schemes attempt to generate a low dimensional manifold representation of a higher dimensional feature space while simultaneously preserving nonlinear relationships between object instances. Classification can then be performed in the low dimensional space with high accuracy. However ML is sensitive to the samples contained in the dataset; changes in the dataset may alter the manifold structure. In this paper we present a manifold regularization technique to constrain the low dimensional manifold to a specific range of possible manifold shapes, the range being determined via a statistical shape model of manifolds (SSMM). In this work we demonstrate applications of the SSMM in (1) identifying samples on the manifold which contain noise, defined as those samples which deviate from the SSMM, and (2) accurate out-of-sample extrapolation (OSE) of newly acquired samples onto a manifold constrained by the SSMM. We

  14. Kernel Manifold Alignment for Domain Adaptation.

    PubMed

    Tuia, Devis; Camps-Valls, Gustau

    2016-01-01

    The wealth of sensory data coming from different modalities has opened numerous opportunities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. However, multimodal architectures must rely on models able to adapt to changes in the data distribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation problem as domain adaptation. In this paper, instead of adapting the trained models themselves, we alternatively focus on finding mappings of the data sources into a common, semantically meaningful, representation domain. This field of manifold alignment extends traditional techniques in statistics such as canonical correlation analysis (CCA) to deal with nonlinear adaptation and possibly non-corresponding data pairs between the domains. We introduce a kernel method for manifold alignment (KEMA) that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a discriminative alignment preserving each manifold inner structure, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible, which allows transfer across-domains and data synthesis. To authors' knowledge this is the first method addressing all these important issues at once. We also present a reduced-rank version of KEMA for computational

  15. Kernel Manifold Alignment for Domain Adaptation

    PubMed Central

    Tuia, Devis; Camps-Valls, Gustau

    2016-01-01

    The wealth of sensory data coming from different modalities has opened numerous opportunities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. However, multimodal architectures must rely on models able to adapt to changes in the data distribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation problem as domain adaptation. In this paper, instead of adapting the trained models themselves, we alternatively focus on finding mappings of the data sources into a common, semantically meaningful, representation domain. This field of manifold alignment extends traditional techniques in statistics such as canonical correlation analysis (CCA) to deal with nonlinear adaptation and possibly non-corresponding data pairs between the domains. We introduce a kernel method for manifold alignment (KEMA) that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a discriminative alignment preserving each manifold inner structure, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible, which allows transfer across-domains and data synthesis. To authors’ knowledge this is the first method addressing all these important issues at once. We also present a reduced-rank version of KEMA for computational

  16. Fuel-air ratio controlled carburetion system

    SciTech Connect

    Abbey, H. G.

    1980-02-12

    An automatic control system is disclosed supplying a fuel-air mixture to an internal combustion engine including a variable-venturi carburetor. Air is fed into the input of the venturi, the air passing through the throat thereof whose effective area is adjusted by a mechanism operated by a servo motor. Fuel is fed into the input of the venturi from a fuel reservoir through a main path having a fixed orifice and an auxiliary path formed by a metering valve operated by an auxiliary fuel-control motor. The differential air pressure developed between the inlet of the venturi and the throat thereof is sensed to produce an airvelocity command signal that is applied to a controller adapted to compare the command signal with the servo motor set point to produce an output for governing the servo motor to cause it to seek a null point, thereby defining a closed process control loop. The intake manifold vacuum, which varies in degree as a function of load and speed conditions is sensed to govern the auxiliary fuel-control motor accordingly, is at the same time converted into an auxiliary signal which is applied to the controller in the closed loop to modulate the command signal in a manner establishing an optimum air-fuel ratio under the varying conditions of load and speed.

  17. Kaluza-Klein towers on general manifolds

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Kurt; Levin, Janna; Zukowski, Claire

    2014-04-01

    A higher dimensional universe with compactified extra dimensions admits a four-dimensional description consisting of an infinite Kaluza-Klein tower of fields. We revisit the problem of describing the free part of the complete Kaluza-Klein tower of gauge fields, p forms, gravity, and flux compactifications. In contrast to previous studies, we work with a generic internal manifold of any dimension, completely at the level of the action, in a gauge-invariant formulation and without resorting to the equations of motion or analysis of propagators. We demonstrate that the physical fields and Stückelberg fields are naturally described by ingredients of the Hodge decomposition and its analog for symmetric tensors. The spectrum of states and stability conditions, in terms of the eigenvalues of various Laplacians on the internal manifold, is easily read from the action.

  18. Natural cutoffs via compact symplectic manifolds

    NASA Astrophysics Data System (ADS)

    Nozari, K.; Gorji, M. A.; Hosseinzadeh, V.; Vakili, B.

    2016-01-01

    In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system. The results show that while local deformations are necessary to have cutoffs, they are not sufficient. In fact, the cutoffs can be realized from globally-deformed Hamiltonian systems that are defined on compact symplectic manifolds. By taking the universality of quantum gravity effects into account, we then conclude that quantum gravity cutoffs are global (topological) properties of the symplectic manifolds. We justify our results by considering three well-known examples: the Moyal, Snyder and polymer-deformed Hamiltonian systems.

  19. Manifold Learning by Preserving Distance Orders.

    PubMed

    Ataer-Cansizoglu, Esra; Akcakaya, Murat; Orhan, Umut; Erdogmus, Deniz

    2014-03-01

    Nonlinear dimensionality reduction is essential for the analysis and the interpretation of high dimensional data sets. In this manuscript, we propose a distance order preserving manifold learning algorithm that extends the basic mean-squared error cost function used mainly in multidimensional scaling (MDS)-based methods. We develop a constrained optimization problem by assuming explicit constraints on the order of distances in the low-dimensional space. In this optimization problem, as a generalization of MDS, instead of forcing a linear relationship between the distances in the high-dimensional original and low-dimensional projection space, we learn a non-decreasing relation approximated by radial basis functions. We compare the proposed method with existing manifold learning algorithms using synthetic datasets based on the commonly used residual variance and proposed percentage of violated distance orders metrics. We also perform experiments on a retinal image dataset used in Retinopathy of Prematurity (ROP) diagnosis.

  20. Potts-model critical manifolds revisited

    NASA Astrophysics Data System (ADS)

    Scullard, Christian R.; Lykke Jacobsen, Jesper

    2016-03-01

    We compute critical polynomials for the q-state Potts model on the Archimedean lattices, using a parallel implementation of the algorithm of Jacobsen (2014 J. Phys. A: Math. Theor 47 135001) that gives us access to larger sizes than previously possible. The exact polynomials are computed for bases of size 6 × 6 unit cells, and the root in the temperature variable v={{{e}}}K-1 is determined numerically at q = 1 for bases of size 8 × 8. This leads to improved results for bond percolation thresholds, and for the Potts-model critical manifolds in the real (q, v) plane. In the two most favourable cases, we find now the kagome-lattice threshold to eleven digits and that of the (3,{12}2) lattice to thirteen. Our critical manifolds reveal many interesting features in the antiferromagnetic region of the Potts model, and determine accurately the extent of the Berker-Kadanoff phase for the lattices studied.

  1. Modular categories and 3-manifold invariants

    SciTech Connect

    Tureav, V.G. )

    1992-06-01

    The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds.

  2. A Further Examination of Manifold Theory

    NASA Astrophysics Data System (ADS)

    Treuthardt, Patrick; Grouchy, Rebecca

    2015-08-01

    Manifold theory, an alternative to density wave theory, proposes that the spiral structure found in disk galaxies is the result of chaotic orbits guided by invariant manifolds. One prediction by this theory is that galaxies with stronger bars have more open spiral arms (i.e. larger pitch angles, P) compared to galaxies with weaker bars. A study by Martínez-García examined a limited sample of 27 galaxies from the Ohio State University Bright Galaxy Survey (OSUBGS) and found a trend between the overall perturbation strength in a galaxy, Qt(r), and P. While Qt(r) is a good measure of bar strength, it is affected by spiral arm torques. Our analysis advances that of Martínez-García by studying approximately 100 galaxies from the OSUBGS that have separate bar and spiral perturbation strength calculations and comparing these values to robust measurements of P via an algorithm developed by Davis et al.

  3. Manifold Learning by Preserving Distance Orders

    PubMed Central

    Akcakaya, Murat; Orhan, Umut; Erdogmus, Deniz

    2014-01-01

    Nonlinear dimensionality reduction is essential for the analysis and the interpretation of high dimensional data sets. In this manuscript, we propose a distance order preserving manifold learning algorithm that extends the basic mean-squared error cost function used mainly in multidimensional scaling (MDS)-based methods. We develop a constrained optimization problem by assuming explicit constraints on the order of distances in the low-dimensional space. In this optimization problem, as a generalization of MDS, instead of forcing a linear relationship between the distances in the high-dimensional original and low-dimensional projection space, we learn a non-decreasing relation approximated by radial basis functions. We compare the proposed method with existing manifold learning algorithms using synthetic datasets based on the commonly used residual variance and proposed percentage of violated distance orders metrics. We also perform experiments on a retinal image dataset used in Retinopathy of Prematurity (ROP) diagnosis. PMID:25045195

  4. Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.

    PubMed

    Jayasumana, Sadeep; Hartley, Richard; Salzmann, Mathieu; Li, Hongdong; Harandi, Mehrtash

    2015-12-01

    In this paper, we develop an approach to exploiting kernel methods with manifold-valued data. In many computer vision problems, the data can be naturally represented as points on a Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds, usual Euclidean computer vision and machine learning algorithms yield inferior results on such data. In this paper, we define Gaussian radial basis function (RBF)-based positive definite kernels on manifolds that permit us to embed a given manifold with a corresponding metric in a high dimensional reproducing kernel Hilbert space. These kernels make it possible to utilize algorithms developed for linear spaces on nonlinear manifold-valued data. Since the Gaussian RBF defined with any given metric is not always positive definite, we present a unified framework for analyzing the positive definiteness of the Gaussian RBF on a generic metric space. We then use the proposed framework to identify positive definite kernels on two specific manifolds commonly encountered in computer vision: the Riemannian manifold of symmetric positive definite matrices and the Grassmann manifold, i.e., the Riemannian manifold of linear subspaces of a Euclidean space. We show that many popular algorithms designed for Euclidean spaces, such as support vector machines, discriminant analysis and principal component analysis can be generalized to Riemannian manifolds with the help of such positive definite Gaussian kernels. PMID:26539851

  5. Manifold learning-based subspace distance for machinery damage assessment

    NASA Astrophysics Data System (ADS)

    Sun, Chuang; Zhang, Zhousuo; He, Zhengjia; Shen, Zhongjie; Chen, Binqiang

    2016-03-01

    Damage assessment is very meaningful to keep safety and reliability of machinery components, and vibration analysis is an effective way to carry out the damage assessment. In this paper, a damage index is designed by performing manifold distance analysis on vibration signal. To calculate the index, vibration signal is collected firstly, and feature extraction is carried out to obtain statistical features that can capture signal characteristics comprehensively. Then, manifold learning algorithm is utilized to decompose feature matrix to be a subspace, that is, manifold subspace. The manifold learning algorithm seeks to keep local relationship of the feature matrix, which is more meaningful for damage assessment. Finally, Grassmann distance between manifold subspaces is defined as a damage index. The Grassmann distance reflecting manifold structure is a suitable metric to measure distance between subspaces in the manifold. The defined damage index is applied to damage assessment of a rotor and the bearing, and the result validates its effectiveness for damage assessment of machinery component.

  6. Para-Kähler-Einstein structures on Walker 4-manifolds

    NASA Astrophysics Data System (ADS)

    Iscan, Murat; Caglar, Gulnur

    2016-11-01

    A 4-dimensional Walker manifold (M4,g,D) is a semi-Riemannian manifold (M4,g) of signature (++--) (or neutral), which admits a field of null 2-plane. The goal of this paper is to study certain almost paracomplex structures φ on 4-dimensional Walker manifolds. We discuss when these structures are integrable and when the para-Kähler forms are symplectic. We show that such a Walker 4-manifold can carry a class of indefinite para-Kähler-Einstein 4-manifolds, examples of indefinite para-Kähler 4-manifolds, and also almost indefinite para-Hermitian-Einstein 4-manifold. Finally, we give a counterexample for the almost para-Hemitian version of Goldberg conjecture.

  7. Excitable neurons, firing threshold manifolds and canards.

    PubMed

    Mitry, John; McCarthy, Michelle; Kopell, Nancy; Wechselberger, Martin

    2013-01-01

    We investigate firing threshold manifolds in a mathematical model of an excitable neuron. The model analyzed investigates the phenomenon of post-inhibitory rebound spiking due to propofol anesthesia and is adapted from McCarthy et al. (SIAM J. Appl. Dyn. Syst. 11(4):1674-1697, 2012). Propofol modulates the decay time-scale of an inhibitory GABAa synaptic current. Interestingly, this system gives rise to rebound spiking within a specific range of propofol doses. Using techniques from geometric singular perturbation theory, we identify geometric structures, known as canards of folded saddle-type, which form the firing threshold manifolds. We find that the position and orientation of the canard separatrix is propofol dependent. Thus, the speeds of relevant slow synaptic processes are encoded within this geometric structure. We show that this behavior cannot be understood using a static, inhibitory current step protocol, which can provide a single threshold for rebound spiking but cannot explain the observed cessation of spiking for higher propofol doses. We then compare the analyses of dynamic and static synaptic inhibition, showing how the firing threshold manifolds of each relate, and why a current step approach is unable to fully capture the behavior of this model. PMID:23945278

  8. Practical experience applied to the design of injection and sample manifolds to perform in-place surveillance tests according to ANSI/ASME N-510

    SciTech Connect

    Banks, E.M.; Wikoff, W.O.; Shaffer, L.L.

    1997-08-01

    At the current level of maturity and experience in the nuclear industry, regarding testing of air treatment systems, it is now possible to design and qualify injection and sample manifolds for most applications. While the qualification of sample manifolds is still in its infancy, injection manifolds have reached a mature stage that helps to eliminate the {open_quotes}hit or miss{close_quotes} type of design. During the design phase, manifolds can be adjusted to compensate for poor airflow distribution, laminar flow conditions, and to take advantage of any system attributes. Experience has shown that knowing the system attributes before the design phase begins is an essential element to a successful manifold design. The use of a spreadsheet type program commonly found on most personal computers can afford a greater flexibility and a reduction in time spent in the design phase. The experience gained from several generations of manifold design has culminated in a set of general design guidelines. Use of these guidelines, along with a good understanding of the type of testing (theoretical and practical), can result in a good manifold design requiring little or no field modification. The requirements for manifolds came about because of the use of multiple banks of components and unconventional housing inlet configurations. Multiple banks of adsorbers and pre and post HEPA`s required that each bank be tested to insure that each one does not exceed a specific allowable leakage criterion. 5 refs., 5 figs., 1 tab.

  9. Comparative Performance of Engines Using a Carburetor, Manifold Injection, and Cylinder Injection

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Clark, J Denny

    1939-01-01

    The comparative performance was determined of engines using three methods of mixing the fuel and the air: the use of a carburetor, manifold injection, and cylinder injection. The tests were made of a single-cylinder engine with a Wright 1820-G air-cooled cylinder. Each method of mixing the fuel and the air was investigated over a range of fuel-air ratios from 0.10 to the limit of stable operation and at engine speeds of 1,500 and 1,900 r.p.m. The comparative performance with a fuel-air ratio of 0.08 was investigated for speeds from 1,300 to 1,900 r.p.m. The results show that the power obtained with each method closely followed the volumetric efficiency; the power was therefore the highest with cylinder injection because this method had less manifold restriction. The values of minimum specific fuel consumption obtained with each method of mixing of fuel and air were the same. For the same engine and cooling conditions, the cylinder temperatures are the same regardless of the method used for mixing the fuel and the air.

  10. SSME hot gas manifold flow comparison test

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Dill, C. C.

    1988-01-01

    An account is given of the High Pressure Fuel Turbopump (HPFT) component of NASA's Alternate Turbopump Development effort, which is aimed at the proper aerodynamic integration of the current Phase II three-duct SSME Hot Gas Manifold (HGM) and the future 'Phase II-plus' two-duct HGM. Half-scale water flow tests of both HGM geometries were conducted to provide initial design data for the HPFT. The results reveal flowfield results and furnish insight into the performance differences between the two HGM flowpaths. Proper design of the HPFT can potentially secure significant flow improvements in either HGM configuration.

  11. The Design-To-Cost Manifold

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1990-01-01

    Design-to-cost is a popular technique for controlling costs. Although qualitative techniques exist for implementing design to cost, quantitative methods are sparse. In the launch vehicle and spacecraft engineering process, the question whether to minimize mass is usually an issue. The lack of quantification in this issue leads to arguments on both sides. This paper presents a mathematical technique which both quantifies the design-to-cost process and the mass/complexity issue. Parametric cost analysis generates and applies mathematical formulas called cost estimating relationships. In their most common forms, they are continuous and differentiable. This property permits the application of the mathematics of differentiable manifolds. Although the terminology sounds formidable, the application of the techniques requires only a knowledge of linear algebra and ordinary differential equations, common subjects in undergraduate scientific and engineering curricula. When the cost c is expressed as a differentiable function of n system metrics, setting the cost c to be a constant generates an n-1 dimensional subspace of the space of system metrics such that any set of metric values in that space satisfies the constant design-to-cost criterion. This space is a differentiable manifold upon which all mathematical properties of a differentiable manifold may be applied. One important property is that an easily implemented system of ordinary differential equations exists which permits optimization of any function of the system metrics, mass for example, over the design-to-cost manifold. A dual set of equations defines the directions of maximum and minimum cost change. A simplified approximation of the PRICE H(TM) production-production cost is used to generate this set of differential equations over [mass, complexity] space. The equations are solved in closed form to obtain the one dimensional design-to-cost trade and design-for-cost spaces. Preliminary results indicate that cost

  12. Optical manifold for light-emitting diodes

    DOEpatents

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver

    2008-06-03

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  13. M-theory and G2 manifolds

    NASA Astrophysics Data System (ADS)

    Becker, Katrin; Becker, Melanie; Robbins, Daniel

    2015-11-01

    In this talk we report on recent progress in describing compactifications of string theory and M-theory on G2 and Spin(7) manifolds. We include the infinite set of α’-corrections and describe the entire tower of massless and massive Kaluza-Klein modes resulting from such compactifications. Contribution to the ‘Focus Issue on Gravity, Supergravity and Fundamental Physics: the Richard Arnowitt Symposium’, to be published in Physica Scripta. Based on a talk delivered by Becker at the workshop ‘Superstring Perturbation Theory’ at the Perimeter Institute, 22-24 April 2015.

  14. Modified pressure loss model for T-junctions of engine exhaust manifold

    NASA Astrophysics Data System (ADS)

    Wang, Wenhui; Lu, Xiaolu; Cui, Yi; Deng, Kangyao

    2014-11-01

    The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.

  15. Holomorphicity and the Walczak formula on Sasakian manifolds

    NASA Astrophysics Data System (ADS)

    Brînzănescu, Vasile; Slobodeanu, Radu

    2006-12-01

    The Walczak formula is a very nice tool for understanding the geometry of a Riemannian manifold equipped with two orthogonal complementary distributions. M. Svensson [Holomorphic foliations, harmonic morphisms and the Walczak formula, J. London Math. Soc. (2) 68 (3) (2003) 781-794] has shown that this formula simplifies to a Bochner-type formula when we are dealing with Kähler manifolds and holomorphic (integrable) distributions. We show in this paper that such results have a counterpart in Sasakian geometry. To this end, we build on a theory of (contact) holomorphicity on almost contact metric manifolds. Some other applications for (pseudo-)harmonic morphisms on Sasaki manifolds are outlined.

  16. Fuel rod assembly to manifold attachment

    DOEpatents

    Donck, Harry A.; Veca, Anthony R.; Snyder, Jr., Harold J.

    1980-01-01

    A fuel element is formed with a plurality of fuel rod assemblies detachably connected to an overhead support with each of the fuel rod assemblies having a gas tight seal with the support to allow internal fission gaseous products to flow without leakage from the fuel rod assemblies into a vent manifold passageway system on the support. The upper ends of the fuel rod assemblies are located at vertically extending openings in the support and upper threaded members are threaded to the fuel rod assemblies to connect the latter to the support. The preferred threaded members are cap nuts having a dome wall encircling an upper threaded end on the fuel rod assembly and having an upper sealing surface for sealing contact with the support. Another and lower seal is achieved by abutting a sealing surface on each fuel rod assembly with the support. A deformable portion on the cap nut locks the latter against inadvertent turning off the fuel rod assembly. Orienting means on the fuel rod and support primarily locates the fuel rods azimuthally for reception of a deforming tool for the cap nut. A cross port in the fuel rod end plug discharges into a sealed annulus within the support, which serves as a circumferential chamber, connecting the manifold gas passageways in the support.

  17. Efficient orbit integration by manifold correction methods.

    PubMed

    Fukushima, Toshio

    2005-12-01

    Triggered by a desire to investigate, numerically, the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correct on methods. The main trick is to rigorously retain the consistency of physical relations, such as the orbital energy, the orbital angular momentum, or the Laplace integral, of a binary subsystem. This maintenance is done by applying a correction to the integrated variables at each integration step. Typical methods of correction are certain geometric transformations, such as spatial scaling and spatial rotation, which are commonly used in the comparison of reference frames, or mathematically reasonable operations, such as modularization of angle variables into the standard domain [-pi, pi). The form of the manifold correction methods finally evolved are the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an indefinitely long period. In perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset of which depends on the type and magnitude of the perturbations. This feature is also realized for highly eccentric orbits by applying the same idea as used in KS-regularization. In particular, the introduction of time elements greatly enhances the performance of numerical integration of KS-regularized orbits, whether the scaling is applied or not.

  18. Multiple Manifold Clustering Using Curvature Constrained Path

    PubMed Central

    Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba

    2015-01-01

    The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819

  19. Carbohydrate intake.

    PubMed

    Leturque, Armelle; Brot-Laroche, Edith; Le Gall, Maude

    2012-01-01

    Carbohydrates represent more than 50% of the energy sources present in most human diets. Sugar intake is regulated by metabolic, neuronal, and hedonic factors, and gene polymorphisms are involved in determining sugar preference. Nutrigenomic adaptations to carbohydrate availability have been evidenced in metabolic diseases, in the persistence of lactose digestion, and in amylase gene copy number. Furthermore, dietary oligosaccharides, fermentable by gut flora, can modulate the microbiotal diversity to the benefit of the host. Genetic diseases linked to mutations in the disaccharidase genes (sucrase-isomaltase, lactase) and in sugar transporter genes (sodium/glucose cotransporter 1, glucose transporters 1 and 2) severely impact carbohydrate intake. These diseases are revealed upon exposure to food containing the offending sugar, and withdrawal of this sugar from the diet prevents disease symptoms, failure to thrive, and premature death. Tailoring the sugar composition of diets to optimize wellness and to prevent the chronic occurrence of metabolic diseases is a future goal that may yet be realized through continued development of nutrigenetics and nutrigenomics approaches. PMID:22656375

  20. 30 CFR 57.22215 - Separation of intake and return air (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... openings to the surface— (1) Ventilation tubing approved by MSHA in accordance with 30 CFR part 7 or... for separation of air currents. Such wall or partition shall be constructed of reinforced concrete...

  1. 46 CFR 95.16-25 - Manifold and cylinder arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VESSELS FIRE PROTECTION EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-25 Manifold... accordance with 46 CFR 147.60(b) and 49 CFR part 180. (d) The cylinders in a common manifold must be: (1) Of... pressure....

  2. Interference evaluation between manifold and wet Christmas tree CP systems

    SciTech Connect

    Brasil, S.L.D.C.; Baptista, W.

    2000-05-01

    Offshore production wells are controlled by valves installed in the marine soil, called wet Christmas trees (WCTs). A manifold receives the production of several wells and transports it to the platform. The manifold is cathodically protected by Al anodes and the WCT by Zn anodes. A computer simulation was carried out to evaluate the interference between the equipment cathodic protection systems.

  3. Variable volume combustor with nested fuel manifold system

    DOEpatents

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  4. Manifold to uniformly distribute a solid-liquid slurry

    DOEpatents

    Kern, Kenneth C.

    1983-01-01

    This invention features a manifold that divides a stream of coal particles and liquid into several smaller streams maintaining equal or nearly equal mass compositions. The manifold consists of a horizontal, variable area header having sharp-edged, right-angled take-offs which are oriented on the bottom of the header.

  5. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo lines serving different tanks enter a pumproom and connect to the same pump: (1) Each cargo line...

  6. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo lines serving different tanks enter a pumproom and connect to the same pump: (1) Each cargo line...

  7. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo lines serving different tanks enter a pumproom and connect to the same pump: (1) Each cargo line...

  8. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo lines serving different tanks enter a pumproom and connect to the same pump: (1) Each cargo line...

  9. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo lines serving different tanks enter a pumproom and connect to the same pump: (1) Each cargo line...

  10. Consistent Pauli reduction on group manifolds

    NASA Astrophysics Data System (ADS)

    Baguet, A.; Pope, C. N.; Samtleben, H.

    2016-01-01

    We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSsbnd NS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G × G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk-Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3 ×S3 and on similar product spaces. The construction is another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.

  11. Vortex Counting and Lagrangian 3-Manifolds

    NASA Astrophysics Data System (ADS)

    Dimofte, Tudor; Gukov, Sergei; Hollands, Lotte

    2011-12-01

    To every 3-manifold M one can associate a two-dimensional {mathcal{N}=(2, 2)} supersymmetric field theory by compactifying five-dimensional {mathcal{N}=2} super-Yang-Mills theory on M. This system naturally appears in the study of half-BPS surface operators in four-dimensional {mathcal{N}=2} gauge theories on one hand, and in the geometric approach to knot homologies, on the other. We study the relation between vortex counting in such two-dimensional {mathcal{N}=(2, 2)} supersymmetric field theories and the refined BPS invariants of the dual geometries. In certain cases, this counting can also be mapped to the computation of degenerate conformal blocks in two-dimensional CFT's. Degenerate limits of vertex operators in CFT receive a simple interpretation via geometric transitions in BPS counting.

  12. Moduli of Vortices and Grassmann Manifolds

    NASA Astrophysics Data System (ADS)

    Biswas, Indranil; Romão, Nuno M.

    2013-05-01

    We use the framework of Quot schemes to give a novel description of the moduli spaces of stable n-pairs, also interpreted as gauged vortices on a closed Riemann surface Σ with target {Mat_{r × n}({C})}, where n ≥ r. We then show that these moduli spaces embed canonically into certain Grassmann manifolds, and thus obtain natural Kähler metrics of Fubini-Study type. These spaces are smooth at least in the local case r = n. For abelian local vortices we prove that, if a certain "quantization" condition is satisfied, the embedding can be chosen in such a way that the induced Fubini-Study structure realizes the Kähler class of the usual L 2 metric of gauged vortices.

  13. Geometric solitons of Hamiltonian flows on manifolds

    SciTech Connect

    Song, Chong; Sun, Xiaowei; Wang, Youde

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  14. Pizzetti Formulae for Stiefel Manifolds and Applications

    NASA Astrophysics Data System (ADS)

    Coulembier, Kevin; Kieburg, Mario

    2015-10-01

    Pizzetti's formula explicitly shows the equivalence of the rotation invariant integration over a sphere and the action of rotation invariant differential operators. We generalize this idea to the integrals over real, complex, and quaternion Stiefel manifolds in a unifying way. In particular, we propose a new way to calculate group integrals and try to uncover some algebraic structures which manifest themselves for some well-known cases like the Harish-Chandra integral. We apply a particular case of our formula to an Itzykson-Zuber integral for the coset . This integral naturally appears in the calculation of the two-point correlation function in the transition of the statistics of the Poisson ensemble and the Gaussian orthogonal ensemble in random matrix theory.

  15. Double field theory on group manifolds

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Hassler, Falk; Lüst, Dieter

    2015-02-01

    A new version of double field theory (DFT) is derived for the exactly solvable background of an in general left-right asymmetric WZW model in the large level limit. This generalizes the original DFT that was derived via expanding closed string field theory on a torus up to cubic order. The action and gauge transformations are derived for fluctuations around the generalized group manifold background up to cubic order, revealing the appearance of a generalized Lie derivative and a corresponding C-bracket upon invoking a new version of the strong constraint. In all these quantities a background dependent covariant derivative appears reducing to the partial derivative for a toroidal background. This approach sheds some new light on the conceptual status of DFT, its background (in-)dependence and the up-lift of non-geometric Scherk-Schwarz reductions.

  16. Initial experience with an Underwater Manifold Centre

    SciTech Connect

    Osborne, J.M.

    1984-10-01

    In July 1983 comingled production from the first two completed wells of the Shell/Esso Underwater Manifold Centre (the UMC), reached the Cormorant Alpha platform. This moment was the culmination of design and development effort which had begun as early as the spring of 1975. But being both the largest subsea system to become operational in the North Sea, and the first designed to the production of several subsea wells, whilst injecting into others, how would the UMC continue to perform. This paper details the operational experience gained to date with the UMC, tracing its brief history since it was first powered up in September 1982 to the present. This is discussed in the main body of the paper under the headings: Commissioning Experience; Operating Experience; Reliability and Maintenance.

  17. Dual manifold system and method for fluid transfer

    DOEpatents

    Doktycz, Mitchel J.; Bryan, William Louis; Kress, Reid

    2003-05-27

    A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.

  18. Dual manifold system and method for fluid transfer

    DOEpatents

    Doktycz, Mitchel J.; Bryan, William Louis; Kress, Reid

    2003-09-30

    A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.

  19. Method for producing a fuel cell manifold seal

    DOEpatents

    Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.

    1982-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  20. Cardiac Autonomic Dysfunction: Particulate Air Pollution Effects Are Modulated by Epigenetic Immunoregulation of Toll‐like Receptor 2 and Dietary Flavonoid Intake

    PubMed Central

    Zhong, Jia; Colicino, Elena; Lin, Xinyi; Mehta, Amar; Kloog, Itai; Zanobetti, Antonella; Byun, Hyang‐Min; Bind, Marie‐Abèle; Cantone, Laura; Prada, Diddier; Tarantini, Letizia; Trevisi, Letizia; Sparrow, David; Vokonas, Pantel; Schwartz, Joel; Baccarelli, Andrea A.

    2015-01-01

    Background Short‐term fine particles (PM2.5) exposure is associated with reduced heart rate variability, a strong predictor of cardiac mortality among older people. Identifying modifiable factors that confer susceptibility is essential for intervention. We evaluated whether Toll‐like receptor 2 (TLR2) methylation, a reversible immune‐epigenetic process, and its dietary modulation by flavonoids and methyl nutrients, modify susceptibility to heart rate variability effects following PM2.5 exposure. Methods and Results We measured heart rate variability and PM2.5 repeatedly over 11 years (1275 total observations) among 573 elderly men from the Normative Aging Study. Blood TLR2 methylation was analyzed using pyrosequencing. Daily flavonoid and methyl nutrients intakes were assessed through the Food Frequency Questionnaire (FFQ). Every 10 μg/m3 increase in 48‐hour PM2.5 moving average was associated with 7.74% (95% CI: −1.21% to 15.90%; P=0.09), 7.46% (95% CI: 0.99% to 13.50%; P=0.02), 14.18% (95% CI: 1.14% to 25.49%; P=0.03), and 12.94% (95% CI: −2.36% to 25.96%; P=0.09) reductions in root mean square of successive differences, standard deviation of normal‐to‐normal intervals, low‐frequency power, and high‐frequency power, respectively. Higher TLR2 methylation exacerbated the root mean square of successive differences, standard deviation of normal‐to‐normal intervals, low‐frequency, and high‐frequency reductions associated with heightened PM2.5 (Pinteraction=0.006, 0.03, 0.05, 0.04, respectively). Every interquartile‐range increase in flavonoid intake was associated with 5.09% reduction in mean TLR2 methylation (95% CI: 0.12% to 10.06%; P=0.05) and counteracted the effects of PM2.5 on low frequency (Pinteraction=0.05). No significant effect of methyl nutrients on TLR2 methylation was observed. Conclusions Higher TLR2 methylation may confer susceptibility to adverse cardiac autonomic effects of PM2.5 exposure in older individuals. Higher

  1. Forced air heater

    SciTech Connect

    Livezey, D.J.

    1980-09-23

    An air heating chamber is supported to project into a stove through an opening provided in the rear wall of the stove by a mounting plate mounted to the exterior of the stove rear wall. The mounting plate which forms the exterior end wall of the heating chamber, includes laterally spaced heating chamber inlet and outlet openings. A blower is detachably mounted to the exterior of the mounting plate in registration with the heating chamber inlet opening to deliver cool forced air into the heating chamber. After circulating therethrough, the air exits the heating chamber through the outlet opening and flows into a hot air manifold, which is also detachably mounted to the exterior of the mounting plate. The manifold includes an upwardly extending inlet chamber with a hot air inlet at its lower end aligned with the heating chamber outlet opening. A horizontal outlet chamber is attached to the top end of the inlet chamber to extend laterally along the back of the stove. Hot air outlets are provided at each end of the manifold outlet chamber to discharge the heated air horizontally over the top and towards the front of the stove.

  2. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOEpatents

    Parry, G.W.

    1988-04-21

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.

  3. Diffusion Harmonics and Dual Geometry on Carnot Manifolds

    NASA Astrophysics Data System (ADS)

    Constantin, Sarah

    The "curse of dimensionality" motivates the importance of techniques for computing low-dimensional approximations of high-dimensional data. It is often necessary to use nonlinear techniques to recover a low-dimensional manifold embedded via a nonlinear map in a high-dimensional space; this family of techniques is referred to as "manifold learning." The accuracy of manifold-learning-based approximations is founded on asymptotic results that assume the data is drawn from a low-dimensional Riemannian manifold. However, in natural datasets, this assumption is often overly restrictive. In the first part of this thesis we examine a more general class of manifolds known as Carnot manifolds, a type of sub-Riemannian manifold that governs natural phenomena such as chemical kinetics and configuration spaces of jointed objects. We find that diffusion maps can be generalized to Carnot manifolds and that the projection onto diffusion harmonics gives an almost isometric embedding; as a side effect, the diffusion distance is a computationally fast estimate for the shortest distance between two points on a Carnot manifold. We apply this theory to biochemical network data and observe that the chemical kinetics of the EGFR network are governed by a Carnot, but not Riemannian, manifold. In the second part of this thesis we examine the Heisenberg group, a classical example of a Carnot manifold. We obtain a representation-theoretic proof that the eigenfunctions of the sub-Laplacian on SU(2) approach the eigenfunctions of the sub-Laplacian on the Heisenberg group, in the limit as the radius of the sphere becomes large, in analogy with the limiting relationship between the Fourier series on the circle and the Fourier transform on the line. This result also illustrates how projecting onto the sub-Laplacian eigenfunctions of a non-compact Carnot manifold can be locally approximated by projecting onto the sub-Laplacian eigenfunctions of a tangent compact Carnot manifold. In the third part

  4. 30 CFR 57.22215 - Separation of intake and return air (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... openings to the surface— (1) Ventilation tubing approved by MSHA in accordance with 30 CFR part 7 or...) Where multiple shafts are used for ventilation and a single shaft contains a curtain wall or partition for separation of air currents. Such wall or partition shall be constructed of reinforced concrete...

  5. 30 CFR 57.22215 - Separation of intake and return air (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... openings to the surface— (1) Ventilation tubing approved by MSHA in accordance with 30 CFR part 7 or...) Where multiple shafts are used for ventilation and a single shaft contains a curtain wall or partition for separation of air currents. Such wall or partition shall be constructed of reinforced concrete...

  6. Complete manifolds with bounded curvature and spectral gaps

    NASA Astrophysics Data System (ADS)

    Schoen, Richard; Tran, Hung

    2016-08-01

    We study the spectrum of complete noncompact manifolds with bounded curvature and positive injectivity radius. We give general conditions which imply that their essential spectrum has an arbitrarily large finite number of gaps. In particular, for any noncompact covering of a compact manifold, there is a metric on the base so that the lifted metric has an arbitrarily large finite number of gaps in its essential spectrum. Also, for any complete noncompact manifold with bounded curvature and positive injectivity radius we construct a metric uniformly equivalent to the given one (also of bounded curvature and positive injectivity radius) with an arbitrarily large finite number of gaps in its essential spectrum.

  7. Performance Predictions of Supersonic Intakes with Isentropic-Compression Forebody

    NASA Astrophysics Data System (ADS)

    Nakashima, K.; Saito, Tsutomu

    Intake is an important component of next generation air-breathing engines such as Ram/Scram jet engines, as well as conventional jet-propulsion systems. The supersonic intake decelerates compresses the air inflow by shocks or compression waves to appropriate flow conditions for a specific engine system. The performance of supersonic intakes is evaluated mainly by the mass flow rate and the total pressure recovery rate.

  8. Semi-supervised domain adaptation on manifolds.

    PubMed

    Cheng, Li; Pan, Sinno Jialin

    2014-12-01

    In real-life problems, the following semi-supervised domain adaptation scenario is often encountered: we have full access to some source data, which is usually very large; the target data distribution is under certain unknown transformation of the source data distribution; meanwhile, only a small fraction of the target instances come with labels. The goal is to learn a prediction model by incorporating information from the source domain that is able to generalize well on the target test instances. We consider an explicit form of transformation functions and especially linear transformations that maps examples from the source to the target domain, and we argue that by proper preprocessing of the data from both source and target domains, the feasible transformation functions can be characterized by a set of rotation matrices. This naturally leads to an optimization formulation under the special orthogonal group constraints. We present an iterative coordinate descent solver that is able to jointly learn the transformation as well as the model parameters, while the geodesic update ensures the manifold constraints are always satisfied. Our framework is sufficiently general to work with a variety of loss functions and prediction problems. Empirical evaluations on synthetic and real-world experiments demonstrate the competitive performance of our method with respect to the state-of-the-art. PMID:25314712

  9. TESTING DISTANCE ESTIMATORS WITH THE FUNDAMENTAL MANIFOLD

    SciTech Connect

    Zaritsky, Dennis; Zabludoff, Ann I.; Gonzalez, Anthony H.

    2012-03-20

    We demonstrate how the Fundamental Manifold (FM) can be used to cross-calibrate distance estimators even when those 'standard candles' are not found in the same galaxy. Such an approach greatly increases the number of distance measurements that can be utilized to check for systematic distance errors and the types of estimators that can be compared. Here we compare distances obtained using Type Ia supernova (SN Ia), Cepheids, surface brightness fluctuations, the luminosity of the tip of the red giant branch, circumnuclear masers, eclipsing binaries, RR Lyrae stars, and the planetary nebulae luminosity functions. We find no significant discrepancies (differences are <2{sigma}) between distance methods, although differences at the {approx}10% level cannot yet be ruled out. The potential exists for significant refinement because the data used here are heterogeneous B-band magnitudes that will soon be supplanted by homogeneous, near-infrared magnitudes. We illustrate the use of FM distances to (1) revisit the question of the metallicity sensitivity of various estimators, confirming the dependence of SN Ia distances on host galaxy metallicity, and (2) provide an alternative calibration of H{sub 0} that replaces the classical ladder approach in the use of extragalactic distance estimators with one that utilizes data over a wide range of distances simultaneously.

  10. Learning the manifold of quality ultrasound acquisition.

    PubMed

    El-Zehiry, Noha; Yan, Michelle; Good, Sara; Fang, Tong; Zhou, S Kevin; Grady, Leo

    2013-01-01

    Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of "good quality" images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images.

  11. Killing superalgebras for Lorentzian four-manifolds

    NASA Astrophysics Data System (ADS)

    de Medeiros, Paul; Figueroa-O'Farrill, José; Santi, Andrea

    2016-06-01

    We determine the Killing superalgebras underpinning field theories with rigid unextended supersymmetry on Lorentzian four-manifolds by re-interpreting them as filtered deformations of mathbb{Z} -graded subalgebras with maximum odd dimension of the N = 1 Poincaré superalgebra in four dimensions. Part of this calculation involves computing a Spencer cohomology group which, by analogy with a similar result in eleven dimensions, prescribes a notion of Killing spinor, which we identify with the defining condition for bosonic supersymmetric backgrounds of minimal off-shell supergravity in four dimensions. We prove that such Killing spinors always generate a Lie superalgebra, and that this Lie superalgebra is a filtered deformation of a subalgebra of the N = 1 Poincaré superalgebra in four dimensions. Demanding the flatness of the connection defining the Killing spinors, we obtain equations satisfied by the maximally supersymmetric backgrounds. We solve these equations, arriving at the classification of maximally supersymmetric backgrounds whose associated Killing superalgebras are precisely the filtered deformations we classify in this paper.

  12. Learning the manifold of quality ultrasound acquisition.

    PubMed

    El-Zehiry, Noha; Yan, Michelle; Good, Sara; Fang, Tong; Zhou, S Kevin; Grady, Leo

    2013-01-01

    Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of "good quality" images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images. PMID:24505657

  13. Underwater manifold marks North Sea first

    SciTech Connect

    Steven, R.R.

    1981-01-01

    In the 12 years since commercial oil was first discovered in the area, the North Sea has been the stimulus for technologic development unrivalled in the history of the petroleum industry. However, technology still has a long way to go before the North Sea can be mastered, insuring that there will be no let-up as long as there is oil to be found. Evidence for this will be provided later this year when Shell UK exploration and production, on behalf of Shell and Esso, installs an Underwater Manifold Center (UMC) in 490 ft of water as part of the $650-million development of the Central Cormorant field, northeast of Shetland. While the East Shetland Basin can no longer be described as frontier territory in terms of environment and water depth, Shell/Esso's UMC is certainly in the frontier class. The manfold center is characterized as a revolution in underwater techniques and an extremely important landmark, not only in North Sea history but in world oil production. The UMC will have future applications in 3 distinct situations. It will be suitable for economically developing satellite fields out of reach of a centrally installed platform. It also will foster exploitation of marginal oil deposits in combination with a floating platform and possible surface storage. However, perhaps the most exciting possibility raised by the UMC is its application in deep-water production.

  14. Fixed points, stable manifolds, weather regimes, and their predictability

    SciTech Connect

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-10-27

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemble forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.

  15. Conformally flat Lorentzian manifolds with special holonomy groups

    SciTech Connect

    Galaev, A S

    2013-09-30

    We obtain a local classification of conformally flat Lorentzian manifolds with special holonomy groups. The corresponding local metrics are certain extensions of Riemannian spaces of constant sectional curvature to Walker metrics. Bibliography: 28 titles.

  16. Fixed points, stable manifolds, weather regimes, and their predictability.

    PubMed

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-12-01

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model's fixed points in phase space. The model dynamics is characterized by the coexistence of multiple "weather regimes." To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, "bred vectors" and singular vectors. These results are then verified in the framework of ensemble forecasts issued from "clouds" (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.

  17. Supervised learning for neural manifold using spatiotemporal brain activity

    NASA Astrophysics Data System (ADS)

    Kuo, Po-Chih; Chen, Yong-Sheng; Chen, Li-Fen

    2015-12-01

    Objective. Determining the means by which perceived stimuli are compactly represented in the human brain is a difficult task. This study aimed to develop techniques for the construction of the neural manifold as a representation of visual stimuli. Approach. We propose a supervised locally linear embedding method to construct the embedded manifold from brain activity, taking into account similarities between corresponding stimuli. In our experiments, photographic portraits were used as visual stimuli and brain activity was calculated from magnetoencephalographic data using a source localization method. Main results. The results of 10 × 10-fold cross-validation revealed a strong correlation between manifolds of brain activity and the orientation of faces in the presented images, suggesting that high-level information related to image content can be revealed in the brain responses represented in the manifold. Significance. Our experiments demonstrate that the proposed method is applicable to investigation into the inherent patterns of brain activity.

  18. Identifying manifolds underlying group motion in Vicsek agents

    NASA Astrophysics Data System (ADS)

    Gajamannage, K.; Butail, S.; Porfiri, M.; Bollt, E. M.

    2015-12-01

    Collective motion of animal groups often undergoes changes due to perturbations. In a topological sense, we describe these changes as switching between low-dimensional embedding manifolds underlying a group of evolving agents. To characterize such manifolds, first we introduce a simple mapping of agents between time-steps. Then, we construct a novel metric which is susceptible to variations in the collective motion, thus revealing distinct underlying manifolds. The method is validated through three sample scenarios simulated using a Vicsek model, namely, switching of speed, coordination, and structure of a group. Combined with a dimensionality reduction technique that is used to infer the dimensionality of the embedding manifold, this approach provides an effective model-free framework for the analysis of collective behavior across animal species.

  19. Twisted Fock representations of noncommutative Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Sako, Akifumi; Umetsu, Hiroshi

    2016-09-01

    We introduce twisted Fock representations of noncommutative Kähler manifolds and give their explicit expressions. The twisted Fock representation is a representation of the Heisenberg like algebra whose states are constructed by applying creation operators to a vacuum state. "Twisted" means that creation operators are not Hermitian conjugate of annihilation operators in this representation. In deformation quantization of Kähler manifolds with separation of variables formulated by Karabegov, local complex coordinates and partial derivatives of the Kähler potential with respect to coordinates satisfy the commutation relations between the creation and annihilation operators. Based on these relations, we construct the twisted Fock representation of noncommutative Kähler manifolds and give a dictionary to translate between the twisted Fock representations and functions on noncommutative Kähler manifolds concretely.

  20. Fixed points, stable manifolds, weather regimes, and their predictability

    DOE PAGES

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-10-27

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less

  1. Constructive methods of invariant manifolds for kinetic problems

    NASA Astrophysics Data System (ADS)

    Gorban, Alexander N.; Karlin, Iliya V.; Zinovyev, Andrei Yu.

    2004-06-01

    The concept of the slow invariant manifold is recognized as the central idea underpinning a transition from micro to macro and model reduction in kinetic theories. We present the Constructive Methods of Invariant Manifolds for model reduction in physical and chemical kinetics, developed during last two decades. The physical problem of reduced description is studied in the most general form as a problem of constructing the slow invariant manifold. The invariance conditions are formulated as the differential equation for a manifold immersed in the phase space ( the invariance equation). The equation of motion for immersed manifolds is obtained ( the film extension of the dynamics). Invariant manifolds are fixed points for this equation, and slow invariant manifolds are Lyapunov stable fixed points, thus slowness is presented as stability. A collection of methods to derive analytically and to compute numerically the slow invariant manifolds is presented. Among them, iteration methods based on incomplete linearization, relaxation method and the method of invariant grids are developed. The systematic use of thermodynamics structures and of the quasi-chemical representation allow to construct approximations which are in concordance with physical restrictions. The following examples of applications are presented: nonperturbative deviation of physically consistent hydrodynamics from the Boltzmann equation and from the reversible dynamics, for Knudsen numbers Kn∼1; construction of the moment equations for nonequilibrium media and their dynamical correction (instead of extension of list of variables) to gain more accuracy in description of highly nonequilibrium flows; determination of molecules dimension (as diameters of equivalent hard spheres) from experimental viscosity data; model reduction in chemical kinetics; derivation and numerical implementation of constitutive equations for polymeric fluids; the limits of macroscopic description for polymer molecules, etc.

  2. Covariant Star Product for Exterior Differential Forms on Symplectic Manifolds

    SciTech Connect

    McCurdy, Shannon; Zumino, Bruno

    2010-02-10

    After a brief description of the Z-graded differential Poisson algebra, we introduce a covariant star product for exterior differential forms and give an explicit expression for it up to second order in the deformation parameter h, in the case of symplectic manifolds. The graded differential Poisson algebra endows the manifold with a connection, not necessarily torsion-free, and places upon the connection various constraints.

  3. Dimensionality reduction of collective motion by principal manifolds

    NASA Astrophysics Data System (ADS)

    Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.

    2015-01-01

    While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.

  4. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    PubMed

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  5. STAR CLUSTERS, GALAXIES, AND THE FUNDAMENTAL MANIFOLD

    SciTech Connect

    Zaritsky, Dennis; Zabludoff, Ann I.; Gonzalez, Anthony H. E-mail: azabludoff@as.arizona.edu

    2011-02-01

    We explore whether global observed properties, specifically half-light radii, mean surface brightness, and integrated stellar kinematics, suffice to unambiguously differentiate galaxies from star clusters, which presumably formed differently and lack dark matter halos. We find that star clusters lie on the galaxy scaling relationship referred to as the fundamental manifold (FM), on the extension of a sequence of compact galaxies, and so conclude that there is no simple way to differentiate star clusters from ultracompact galaxies. By extending the validity of the FM over a larger range of parameter space and a wider set of objects, we demonstrate that the physics that constrains the resulting baryon and dark matter distributions in stellar systems is more general than previously appreciated. The generality of the FM implies (1) that the stellar spatial distribution and kinematics of one type of stellar system do not arise solely from a process particular to that set of systems, such as violent relaxation for elliptical galaxies, but are instead the result of an interplay of all processes responsible for the generic settling of baryons in gravitational potential wells, (2) that the physics of how baryons settle is independent of whether the system is embedded within a dark matter halo, and (3) that peculiar initial conditions at formation or stochastic events during evolution do not ultimately disturb the overall regularity of baryonic settling. We also utilize the relatively simple nature of star clusters to relate deviations from the FM to the age of the stellar population and find that stellar population models systematically and significantly overpredict the mass-to-light ratios of old, metal-rich clusters. We present an empirical calibration of stellar population mass-to-light ratios with age and color. Finally, we use the FM to estimate velocity dispersions for the low surface brightness, outer halo clusters that lack such measurements.

  6. The world problem: on the computability of the topology of 4-manifolds

    NASA Technical Reports Server (NTRS)

    vanMeter, J. R.

    2005-01-01

    Topological classification of the 4-manifolds bridges computation theory and physics. A proof of the undecidability of the homeomorphy problem for 4-manifolds is outlined here in a clarifying way. It is shown that an arbitrary Turing machine with an arbitrary input can be encoded into the topology of a 4-manifold, such that the 4-manifold is homeomorphic to a certain other 4-manifold if and only if the corresponding Turing machine halts on the associated input. Physical implications are briefly discussed.

  7. Diffusion in narrow channels on curved manifolds

    NASA Astrophysics Data System (ADS)

    Chacón-Acosta, Guillermo; Pineda, Inti; Dagdug, Leonardo

    2013-12-01

    In this work, we derive a general effective diffusion coefficient to describe the two-dimensional (2D) diffusion in a narrow and smoothly asymmetric channel of varying width, embedded on a curved surface, in the simple diffusion of non-interacting, point-like particles under no external field. To this end, we extend the generalization of the Kalinay-Percus' projection method [J. Chem. Phys. 122, 204701 (2005); Kalinay-Percus', Phys. Rev. E 74, 041203 (2006)] for the asymmetric channels introduced in [L. Dagdug and I. Pineda, J. Chem. Phys. 137, 024107 (2012)], to project the anisotropic two-dimensional diffusion equation on a curved manifold, into an effective one-dimensional generalized Fick-Jacobs equation that is modified according to the curvature of the surface. For such purpose we construct the whole expansion, writing the marginal concentration as a perturbation series. The lowest order in the perturbation parameter, which corresponds to the Fick-Jacobs equation, contains an additional term that accounts for the curvature of the surface. We explicitly obtain the first-order correction for the invariant effective concentration, which is defined as the correct marginal concentration in one variable, and we obtain the first approximation to the effective diffusion coefficient analogous to Bradley's coefficient [Phys. Rev. E 80, 061142 (2009)] as a function of the metric elements of the surface. In a straightforward manner, we study the perturbation series up to the nth order, and derive the full effective diffusion coefficient for two-dimensional diffusion in a narrow asymmetric channel, with modifications according to the metric terms. This expression is given as D(ξ )=D_0/w^' (ξ )}√{g_1/g_2} lbrace arctan [√{g_2/g_1}(y^' }_0(ξ )+w^' }(ξ )/2)]-arctan [√{g_2/g_1}(y^' }_0(ξ )-w^' }(ξ )/2)] rbrace, which is the main result of our work. Finally, we present two examples of symmetric surfaces, namely, the sphere and the cylinder, and we study certain

  8. Analysis of the fluid-pressure responses of the Rustler Formation at H-16 to the construction of the air-intake shaft at the Waste Isolation Pilot Plant (WIPP) site

    SciTech Connect

    Alvis, J.D.; Saulnier, G.J. Jr.

    1990-03-01

    The construction of the air-intake shaft (AIS) at the Waste Isolation Pilot Plant (WIPP) site in 1987 and 1988 initiated fluid-pressure responses which were used to estimate the hydrologic properties of the Culebra Dolomite, Magenta Dolomite, and Forty-niner Members of the Rustler Formation. Fluid-pressure responses were monitored with downhole transducers. The AIS pilot hole,remained open and draining to the underground facility for about three months. The pilot hole was then upreamed from the underground facility to land surface. The pilot hole was drilled and reamed using a bentonite-mud-based brine as a drilling fluid. The well-test simulator GTFM was used to analyze the fluid-pressure responses of the Culebra and Magenta dolomites and the Forty-niner claystone. A cement-invasion skin was used in simulating the Culebra dolomite's drilling/reaming period. A mud-filter-cake skin was used to create reduced wellbore pressures in simulating the pilot-hole drilling/reaming periods of the Magenta dolomite and Forty-niner claystone. 26 refs., 70 figs., 10 tabs.

  9. Analysis on singular spaces: Lie manifolds and operator algebras

    NASA Astrophysics Data System (ADS)

    Nistor, Victor

    2016-07-01

    We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called "Lie manifolds" -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory.

  10. Manifold Learning for Biomarker Discovery in MR Imaging

    NASA Astrophysics Data System (ADS)

    Wolz, Robin; Aljabar, Paul; Hajnal, Joseph V.; Rueckert, Daniel

    We propose a framework for the extraction of biomarkers from low-dimensional manifolds representing inter- and intra-subject brain variation in MR image data. The coordinates of each image in such a low-dimensional space captures information about structural shape and appearance and, when a phenotype exists, about the subject's clinical state. A key contribution is that we propose a method for incorporating longitudinal image information in the learned manifold. In particular, we compare simultaneously embedding baseline and follow-up scans into a single manifold with the combination of separate manifold representations for inter-subject and intra-subject variation. We apply the proposed methods to 362 subjects enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and classify healthy controls, subjects with Alzheimer's disease (AD) and subjects with mild cognitive impairment (MCI). Learning manifolds based on both the appearance and temporal change of the hippocampus, leads to correct classification rates comparable with those provided by state-of-the-art automatic segmentation estimates of hippocampal volume and atrophy. The biomarkers identified with the proposed method are data-driven and represent a potential alternative to a-priori defined biomarkers derived from manual or automated segmentations.

  11. Light transport on path-space manifolds

    NASA Astrophysics Data System (ADS)

    Jakob, Wenzel Alban

    -stepping limitations of the theory, they often suffer from unusably slow convergence; improvements to this situation have been hampered by the lack of a thorough theoretical understanding. We address these problems by developing a new theory of path-space light transport which, for the first time, cleanly incorporates specular scattering into the standard framework. Most of the results obtained in the analysis of the ideally smooth case can also be generalized to rendering of glossy materials and volumetric scattering so that this dissertation also provides a powerful new set of tools for dealing with them. The basis of our approach is that each specular material interaction locally collapses the dimension of the space of light paths so that all relevant paths lie on a submanifold of path space. We analyze the high-dimensional differential geometry of this submanifold and use the resulting information to construct an algorithm that is able to "walk" around on it using a simple and efficient equation-solving iteration. This manifold walking algorithm then constitutes the key operation of a new type of Markov Chain Monte Carlo (MCMC) rendering method that computes lighting through very general families of paths that can involve arbitrary combinations of specular, near-specular, glossy, and diffuse surface interactions as well as isotropic or highly anisotropic volume scattering. We demonstrate our implementation on a range of challenging scenes and evaluate it against previous methods.

  12. Anomalies of E8 Gauge Theory on String Manifolds

    NASA Astrophysics Data System (ADS)

    Sati, Hisham

    In this paper we revisit the subject of anomaly cancelation in string theory and M-theory on manifolds with string structure and give three observations. First, that on string manifolds there is no E8 × E8 global anomaly in heterotic string theory. Second, that the description of the anomaly in the phase of the M-theory partition function of Diaconescu-Moore-Witten extends from the spin case to the string case. Third, that the cubic refinement law of Diaconescu-Freed-Moore for the phase of the M-theory partition function extends to string manifolds. The analysis relies on extending from invariants which depend on the spin structure to invariants which instead depend on the string structure. Along the way, the one-loop term is refined via the Witten genus.

  13. On conformally recurrent manifolds of dimension greater than 4

    NASA Astrophysics Data System (ADS)

    Mantica, Carlo Alberto; Molinari, Luca Guido

    2016-03-01

    Conformally recurrent pseudo-Riemannian manifolds of dimension n ≥ 5 are investigated. The Weyl tensor is represented as a Kulkarni-Nomizu product. If the square of the Weyl tensor is non-zero, a covariantly constant symmetric tensor is constructed, that is quadratic in the Weyl tensor. Then, by Grycak’s theorem, the explicit expression of the traceless part of the Ricci tensor is obtained, up to a scalar function. The Ricci tensor has at most two distinct eigenvalues, and the recurrence vector is an eigenvector. Lorentzian conformally recurrent manifolds are then considered. If the square of the Weyl tensor is non-zero, the manifold is decomposable. A null recurrence vector makes the Weyl tensor of algebraic type IId or higher in the Bel-Debever-Ortaggio classification, while a time-like recurrence vector makes the Weyl tensor purely electric.

  14. Why Deep Learning Works: A Manifold Disentanglement Perspective.

    PubMed

    Brahma, Pratik Prabhanjan; Wu, Dapeng; She, Yiyuan

    2016-10-01

    Deep hierarchical representations of the data have been found out to provide better informative features for several machine learning applications. In addition, multilayer neural networks surprisingly tend to achieve better performance when they are subject to an unsupervised pretraining. The booming of deep learning motivates researchers to identify the factors that contribute to its success. One possible reason identified is the flattening of manifold-shaped data in higher layers of neural networks. However, it is not clear how to measure the flattening of such manifold-shaped data and what amount of flattening a deep neural network can achieve. For the first time, this paper provides quantitative evidence to validate the flattening hypothesis. To achieve this, we propose a few quantities for measuring manifold entanglement under certain assumptions and conduct experiments with both synthetic and real-world data. Our experimental results validate the proposition and lead to new insights on deep learning. PMID:26672049

  15. Qualitative Features of High Lift Hovering Dynamics and Inertial Manifolds

    NASA Astrophysics Data System (ADS)

    Gustafson, K.; Leben, R.; McArthur, J.; Mundt, M.

    1996-03-01

    Hovering aerodynamics, such as that practiced by dragonflys, hummingbirds, and certain other small insects, utilizes special patterns of vorticity to generate high lift flows. Such lift as we measure it computationally on the airfoil surface is in good agreement with downstream thrust measured in the physical laboratory. In this paper we examine the qualitative signatures of this dynamical system. A connection to the theory of inertial manifolds, more specifically the instance of time-dependent slow manifolds, is initiated. Additional interest attaches to the fact that in our compact computational domain, the forcing is on the boundary. Because of its highly oscillatory nature, in this dynamics one proceeds rapidly up the bifurcation ladder at relatively low Reynolds numbers. Thus, aside from its intrinsic interest, the hover model provides an attractive vehicle for a better understanding of dynamical system attractor dynamics and inertial manifold theory.

  16. Why Deep Learning Works: A Manifold Disentanglement Perspective.

    PubMed

    Brahma, Pratik Prabhanjan; Wu, Dapeng; She, Yiyuan

    2016-10-01

    Deep hierarchical representations of the data have been found out to provide better informative features for several machine learning applications. In addition, multilayer neural networks surprisingly tend to achieve better performance when they are subject to an unsupervised pretraining. The booming of deep learning motivates researchers to identify the factors that contribute to its success. One possible reason identified is the flattening of manifold-shaped data in higher layers of neural networks. However, it is not clear how to measure the flattening of such manifold-shaped data and what amount of flattening a deep neural network can achieve. For the first time, this paper provides quantitative evidence to validate the flattening hypothesis. To achieve this, we propose a few quantities for measuring manifold entanglement under certain assumptions and conduct experiments with both synthetic and real-world data. Our experimental results validate the proposition and lead to new insights on deep learning.

  17. Locating an atmospheric contamination source using slow manifolds

    NASA Astrophysics Data System (ADS)

    Tang, Wenbo; Haller, George; Baik, Jong-Jin; Ryu, Young-Hee

    2009-04-01

    Finite-size particle motion in fluids obeys the Maxey-Riley equations, which become singular in the limit of infinitesimally small particle size. Because of this singularity, finding the source of a dispersed set of small particles is a numerically ill-posed problem that leads to exponential blowup. Here we use recent results on the existence of a slow manifold in the Maxey-Riley equations to overcome this difficulty in source inversion. Specifically, we locate the source of particles by projecting their dispersed positions on a time-varying slow manifold, and by advecting them on the manifold in backward time. We use this technique to locate the source of a hypothetical anthrax release in an unsteady three-dimensional atmospheric wind field in an urban street canyon.

  18. On pseudo-Riemannian manifolds with many Killing spinors

    SciTech Connect

    Alekseevsky, D. V.; Cortes, V.

    2009-02-02

    Let M be a pseudo-Riemannian spin manifold of dimension n and signature s and denote by N the rank of the real spinor bundle. We prove that M is locally homogeneous if it admits more than (3/4)N independent Killing spinors with the same Killing number, unless n {identical_to} 1(mod 4) and s {identical_to} 3(mod 4). We also prove that M is locally homogeneous if it admits k{sub +} independent Killing spinors with Killing number {lambda} and k{sub -} independent Killing spinors with Killing number -{lambda} such that k{sub +}+k{sub -}>(3/2)N, unless n {identical_to} s {identical_to} 3(mod 4). Similarly, a pseudo-Riemannian manifold with more than (3/4)N independent conformal Killing spinors is conformally locally homogeneous. For (positive or negative) definite metrics, the bounds (3/4)N and (3/2)N in the above results can be relaxed to (1/2)N and N, respectively. Furthermore, we prove that a pseudo-Riemannnian spin manifold with more than (3/4)N parallel spinors is flat and that (1/4)N parallel spinors suffice if the metric is definite. Similarly, a Riemannnian spin manifold with more than (3/8)N Killing spinors with the Killing number {lambda}(set-membership sign)R has constant curvature 4{lambda}{sup 2}. For Lorentzian or negative definite metrics the same is true with the bound (1/2)N. Finally, we give a classification of (not necessarily complete) Riemannian manifolds admitting Killing spinors, which provides an inductive construction of such manifolds.

  19. On the genus two free energies for semisimple Frobenius manifolds

    NASA Astrophysics Data System (ADS)

    Dubrovin, Boris; Liu, Si-Qi; Zhang, Youjin

    2012-07-01

    We represent the genus two free energy of an arbitrary semisimple Frobenius manifold as the sum of contributions associated with dual graphs of certain stable algebraic curves of genus two plus the so-called "genus two G-function." Conjecturally, the genus two G-function vanishes for a series of important examples of Frobenius manifolds associated with simple singularities, as well as for ℙ1-orbifolds with positive Euler characteristics. We explain the reasons for the conjecture and prove it in particular cases.

  20. Geometry and physics of pseudodifferential operators on manifolds

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Napolitano, George M.

    2016-09-01

    A review is made of the basic tools used in mathematics to define a calculus for pseudodifferential operators on Riemannian manifolds endowed with a connection: existence theorem for the function that generalizes the phase; analogue of Taylor's theorem; torsion and curvature terms in the symbolic calculus; the two kinds of derivative acting on smooth sections of the cotangent bundle of the Riemannian manifold; the concept of symbol as an equivalence class. Physical motivations and applications are then outlined, with emphasis on Green functions of quantum field theory and Parker's evaluation of Hawking radiation.

  1. Distributed mean curvature on a discrete manifold for Regge calculus

    NASA Astrophysics Data System (ADS)

    Conboye, Rory; Miller, Warner A.; Ray, Shannon

    2015-09-01

    The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.

  2. Two-dimensional manifolds with metrics of revolution

    SciTech Connect

    Sabitov, I Kh

    2000-10-31

    This is a study of the topological and metric structure of two-dimensional manifolds with a metric that is locally a metric of revolution. In the case of compact manifolds this problem can be thoroughly investigated, and in particular it is explained why there are no closed analytic surfaces of revolution in R{sup 3} other than a sphere and a torus (moreover, in the smoothness class C{sup {infinity}} such surfaces, understood in a certain generalized sense, exist in any topological class)

  3. Gaussian weighted neighborhood connectivity of nonlinear line attractor for learning complex manifolds

    NASA Astrophysics Data System (ADS)

    Aspiras, Theus H.; Asari, Vijayan K.; Sakla, Wesam

    2015-03-01

    The human brain has the capability to process high quantities of data quickly for detection and recognition tasks. These tasks are made simpler by the understanding of data, which intentionally removes redundancies found in higher dimensional data and maps the data onto a lower dimensional space. The brain then encodes manifolds created in these spaces, which reveal a specific state of the system. We propose to use a recurrent neural network, the nonlinear line attractor (NLA) network, for the encoding of these manifolds as specific states, which will draw untrained data towards one of the specific states that the NLA network has encoded. We propose a Gaussian-weighted modular architecture for reducing the computational complexity of the conventional NLA network. The proposed architecture uses a neighborhood approach for establishing the interconnectivity of neurons to obtain the manifolds. The modified NLA network has been implemented and tested on the Electro-Optic Synthetic Vehicle Model Database created by the Air Force Research Laboratory (AFRL), which contains a vast array of high resolution imagery with several different lighting conditions and camera views. It is observed that the NLA network has the capability for representing high dimensional data for the recognition of the objects of interest through its new learning strategy. A nonlinear dimensionality reduction scheme based on singular value decomposition has found to be very effective in providing a low dimensional representation of the dataset. Application of the reduced dimensional space on the modified NLA algorithm would provide fast and more accurate recognition performance for real time applications.

  4. Intake technologies: Research status: Final report

    SciTech Connect

    McGroddy, P.M.; Matousek, J.A.

    1989-03-01

    This report summarizes recent research activities related to fish protection at water intake structures, with particular emphasis on research reported on or conducted at pumped cooling-water intakes. Information gathered from 51 organizations (33 utilities, seven equipment manufacturers, six research organizations, two private engineering firms, one steel mill, and two government agencies) is provided along with specific summaries of EPRI-sponsored research on behavioral barriers at pumped and hydroelectric facilities. The level of research activity indicted by utilities at pumped intakes has decreased recently, although the interest in potential plant operational impact mitigative techniques remains high. Two studies sponsored by EPRI at pumped cooling-water intake structures evaluated the individual and combined deterrent capabilities of three devices: an air bubble curtain, pneumatic guns, and underwater strobe lights. A study conducted during 1985 and 1986 at Ontario Hydro's nearshore test facility, located in Lake Ontario off the Pickering Nuclear Generating Station intake, indicated that all three devices and combinations of devices elicited an avoidance response in alewife. The pneumatic gun exhibited the highest deterrent capability and the air bubble curtain the lowest. Studies conducted using the same deterrent devices at the intake of Central Hudson Gas and Electric Corporation's Roseton Generating Station on the Hudson River did not indicate an overall avoidance response; some species-specific responses to the devices were noted. 22 refs., 9 tabs.

  5. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOEpatents

    Parry, Gareth W.

    1989-01-01

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.

  6. 40 CFR 1065.325 - Intake-flow calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recommend using a calibration subsonic venturi, ultrasonic flow meter or laminar flow element. We recommend... Intake-flow calibration. (a) Calibrate intake-air flow meters upon initial installation. Follow the... remove system components for off-site calibration. When installing a flow meter with an...

  7. A new construction of Calabi-Yau manifolds: Generalized CICYs

    NASA Astrophysics Data System (ADS)

    Anderson, Lara B.; Apruzzi, Fabio; Gao, Xin; Gray, James; Lee, Seung-Joo

    2016-05-01

    We present a generalization of the complete intersection in products of projective space (CICY) construction of Calabi-Yau manifolds. CICY three-folds and four-folds have been studied extensively in the physics literature. Their utility stems from the fact that they can be simply described in terms of a 'configuration matrix', a matrix of integers from which many of the details of the geometries can be easily extracted. The generalization we present is to allow negative integers in the configuration matrices which were previously taken to have positive semi-definite entries. This broadening of the complete intersection construction leads to a larger class of Calabi-Yau manifolds than that considered in previous work, which nevertheless enjoys much of the same degree of calculational control. These new Calabi-Yau manifolds are complete intersections in (not necessarily Fano) ambient spaces with an effective anticanonical class. We find examples with topology distinct from any that has appeared in the literature to date. The new manifolds thus obtained have many interesting features. For example, they can have smaller Hodge numbers than ordinary CICYs and lead to many examples with elliptic and K3-fibration structures relevant to F-theory and string dualities.

  8. Some remarks on the Gromov width of homogeneous Hodge manifolds

    NASA Astrophysics Data System (ADS)

    Loi, Andrea; Mossa, Roberto; Zuddas, Fabio

    2014-09-01

    We provide an upper bound for the Gromov width of compact homogeneous Hodge manifolds (M, ω) with b2(M) = 1. As an application we obtain an upper bound on the Seshadri constant ɛ(L) where L is the ample line bundle on M such that c1(L) = [(ω )/(π )].

  9. Conceptual development of the Laser Beam Manifold (LBM)

    NASA Technical Reports Server (NTRS)

    Campbell, W.; Owen, R. B.

    1979-01-01

    The laser beam manifold, a device for transforming a single, narrow, collimated beam of light into several beams of desired intensity ratios is described. The device consists of a single optical substrate with a metallic coating on both optical surfaces. By changing the entry point, the number of outgoing beams can be varied.

  10. Generating Grids For Computing Flow In A Manifold

    NASA Technical Reports Server (NTRS)

    Anderson, Peter G.

    1993-01-01

    Establishing computer code modified to apply to complicated shapes. Grids for computing flows in manifold of complicated shape generated by use of modified version of geometry module of LWIND computer code. Code adaptable to other computations of flows in different geometries.

  11. Nonparametric Bayes Classification and Hypothesis Testing on Manifolds

    PubMed Central

    Bhattacharya, Abhishek; Dunson, David

    2012-01-01

    Our first focus is prediction of a categorical response variable using features that lie on a general manifold. For example, the manifold may correspond to the surface of a hypersphere. We propose a general kernel mixture model for the joint distribution of the response and predictors, with the kernel expressed in product form and dependence induced through the unknown mixing measure. We provide simple sufficient conditions for large support and weak and strong posterior consistency in estimating both the joint distribution of the response and predictors and the conditional distribution of the response. Focusing on a Dirichlet process prior for the mixing measure, these conditions hold using von Mises-Fisher kernels when the manifold is the unit hypersphere. In this case, Bayesian methods are developed for efficient posterior computation using slice sampling. Next we develop Bayesian nonparametric methods for testing whether there is a difference in distributions between groups of observations on the manifold having unknown densities. We prove consistency of the Bayes factor and develop efficient computational methods for its calculation. The proposed classification and testing methods are evaluated using simulation examples and applied to spherical data applications. PMID:22754028

  12. Special geometries associated to quaternion-Kähler 8-manifolds

    NASA Astrophysics Data System (ADS)

    Gambioli, A.; Nagatomo, Y.; Salamon, S.

    2015-05-01

    We develop a calculus of differential forms on a quaternion-Kähler manifold M4n admitting an isometric circle action. This is used to study three fundamental examples of such actions on the quaternionic projective plane and the construction of G2 and half-flat structures on quotients of M8 and its hypersurfaces.

  13. 92. STARBOARD CATAPULT HYDRAULIC MANIFOLD FORWARD LOOKING AFT SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. STARBOARD CATAPULT HYDRAULIC MANIFOLD - FORWARD LOOKING AFT SHOWING THE SEVEN (7) DISCHARGE LINES FROM THE SEVEN (7) HYDRAULIC PUMPS THROUGH SHUT-OFF VALVES TO ACCUMULATOR TANKS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  14. Bounding the heat trace of a Calabi-Yau manifold

    NASA Astrophysics Data System (ADS)

    Fiset, Marc-Antoine; Walcher, Johannes

    2015-09-01

    The SCHOK bound states that the number of marginal deformations of certain two-dimensional conformal field theories is bounded linearly from above by the number of relevant operators. In conformal field theories defined via sigma models into Calabi-Yau manifolds, relevant operators can be estimated, in the point-particle approximation, by the low-lying spectrum of the scalar Laplacian on the manifold. In the strict large volume limit, the standard asymptotic expansion of Weyl and Minakshisundaram-Pleijel diverges with the higher-order curvature invariants. We propose that it would be sufficient to find an a priori uniform bound on the trace of the heat kernel for large but finite volume. As a first step in this direction, we then study the heat trace asymptotics, as well as the actual spectrum of the scalar Laplacian, in the vicinity of a conifold singularity. The eigenfunctions can be written in terms of confluent Heun functions, the analysis of which gives evidence that regions of large curvature will not prevent the existence of a bound of this type. This is also in line with general mathematical expectations about spectral continuity for manifolds with conical singularities. A sharper version of our results could, in combination with the SCHOK bound, provide a basis for a global restriction on the dimension of the moduli space of Calabi-Yau manifolds.

  15. Subsea manifolds optimization -- The combination of mature and new technologies

    SciTech Connect

    Paulo, C.A.S.

    1996-12-31

    Subsea equipment can now be considered a mature option for offshore field developments. In Brazil, since the first oil in Campos Basin, different concepts ranging from one-atmosphere chambers to deepwater guidelineless X-mas trees, have been tested, contributing to this development. The experience acquired during these years makes it possible to combine the proven systems with new technologies being developed, for the design of subsea manifolds. The main target is more efficiency and cost reduction. When choosing a manifold concept, a usual rule is applicable: the simpler the better. The maturity, confidence and reliability obtained, allow the usage of resident hydraulically actuated valves, simplifying considerably the manifold arrangement. Other contributions come from: the reduction of piping bend radius allowed by the new pigs; the increased reliability of subsea instrumentation and chokes, allowing elimination of the gas-lift-test flowline; and the development of the direct vertical connection, that turns subsea tie-ins into very fast and easy operations. Combining all that with the new technology of a multiphase meter (to eliminate the test flowline and even the test separator on the platform), one can achieve a cost effective solution. This paper describes the possibilities of simplifying the subsea manifolds and presents a comparison of different designs. The usage of mature technology combined with the new developments, can help the industry to make deep water developments profitable, worldwide.

  16. Experimental investigation of a manifold heat-pipe heat exchanger

    SciTech Connect

    Konev, S.V.; Wang Tszin` Lyan`; D`yakov, I.I.

    1995-12-01

    Results of experimental investigations of a heat exchanger on a manifold water heat pipe are given. An analysis is made of the temperature distribution along the heat-transfer agent path as a function of the transferred heat power. The influence of the degree of filling with the heat transfer agent on the operating characteristics of the construction is considered.

  17. 33 CFR 149.110 - What are the requirements for pipeline end manifold shutoff valves?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pipeline end manifold shutoff valves? 149.110 Section 149.110 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Pollution Prevention Equipment § 149.110 What are the requirements for pipeline end manifold shutoff valves? Each pipeline end manifold must have a shutoff valve capable of operating both...

  18. 33 CFR 149.110 - What are the requirements for pipeline end manifold shutoff valves?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pipeline end manifold shutoff valves? 149.110 Section 149.110 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Pollution Prevention Equipment § 149.110 What are the requirements for pipeline end manifold shutoff valves? Each pipeline end manifold must have a shutoff valve capable of operating both...

  19. 33 CFR 149.110 - What are the requirements for pipeline end manifold shutoff valves?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pipeline end manifold shutoff valves? 149.110 Section 149.110 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Pollution Prevention Equipment § 149.110 What are the requirements for pipeline end manifold shutoff valves? Each pipeline end manifold must have a shutoff valve capable of operating both...

  20. 33 CFR 149.110 - What are the requirements for pipeline end manifold shutoff valves?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pipeline end manifold shutoff valves? 149.110 Section 149.110 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Pollution Prevention Equipment § 149.110 What are the requirements for pipeline end manifold shutoff valves? Each pipeline end manifold must have a shutoff valve capable of operating both...

  1. 33 CFR 149.110 - What are the requirements for pipeline end manifold shutoff valves?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pipeline end manifold shutoff valves? 149.110 Section 149.110 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Pollution Prevention Equipment § 149.110 What are the requirements for pipeline end manifold shutoff valves? Each pipeline end manifold must have a shutoff valve capable of operating both...

  2. 21 CFR 870.4290 - Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass adaptor, stopcock, manifold... Devices § 870.4290 Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting. (a) Identification. A cardiopulmonary bypass adaptor, stopcock, manifold, or fitting is a device used in cardiovascular...

  3. Prediction of pressure fluctuation in sounding rockets and manifolded recovery systems

    NASA Technical Reports Server (NTRS)

    Laudadio, J. F.

    1972-01-01

    The determination of altitude by means of barometric sensors in sounding rocket applications is discussed. A method for predicting the performance of such sensing systems is needed. A method is developed for predicting the pressure-time response of a volume subjected to subsonic air flow through from one to four passages. The pressure calculation is based on one-dimensional gas flow with friction. A computed program has been developed which solves the differential equations using a self-starting predictor-corrector integration technique. The input data required are the pressure sensing system dimensions, pressure forcing function(s) at the inlet port(s), and a trajectory over the time of analysis (altitude-velocity-time), if the forcing function is trajectory dependent. The program then computes the pressure-temperature history of the gas in the manifold over the time interval specified.

  4. Dietary Reference Intakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dietary Reference Intakes (DRI) are recommendations intended to provide a framework for nutrient intake evaluation, as well as meal planning on the basis of nutrient adequacy. They are nutrient, not food based recommendations, created with chronic disease risk reduction as the primary goal, as ...

  5. Near-field/far-field array manifold of an acoustic vector-sensor near a reflecting boundary.

    PubMed

    Wu, Yue Ivan; Lau, Siu-Kit; Wong, Kainam Thomas

    2016-06-01

    The acoustic vector-sensor (a.k.a. the vector hydrophone) is a practical and versatile sound-measurement device, with applications in-room, open-air, or underwater. It consists of three identical uni-axial velocity-sensors in orthogonal orientations, plus a pressure-sensor-all in spatial collocation. Its far-field array manifold [Nehorai and Paldi (1994). IEEE Trans. Signal Process. 42, 2481-2491; Hawkes and Nehorai (2000). IEEE Trans. Signal Process. 48, 2981-2993] has been introduced into the technical field of signal processing about 2 decades ago, and many direction-finding algorithms have since been developed for this acoustic vector-sensor. The above array manifold is subsequently generalized for outside the far field in Wu, Wong, and Lau [(2010). IEEE Trans. Signal Process. 58, 3946-3951], but only if no reflection-boundary is to lie near the acoustic vector-sensor. As for the near-boundary array manifold for the general case of an emitter in the geometric near field, the far field, or anywhere in between-this paper derives and presents that array manifold in terms of signal-processing mathematics. Also derived here is the corresponding Cramér-Rao bound for azimuth-elevation-distance localization of an incident emitter, with the reflected wave shown to play a critical role on account of its constructive or destructive summation with the line-of-sight wave. The implications on source localization are explored, especially with respect to measurement model mismatch in maximum-likelihood direction finding and with regard to the spatial resolution between coexisting emitters. PMID:27369140

  6. A Brownian dynamics algorithm for colloids in curved manifolds.

    PubMed

    Castro-Villarreal, Pavel; Villada-Balbuena, Alejandro; Méndez-Alcaraz, José Miguel; Castañeda-Priego, Ramón; Estrada-Jiménez, Sendic

    2014-06-01

    The many-particle Langevin equation, written in local coordinates, is used to derive a Brownian dynamics simulation algorithm to study the dynamics of colloids moving on curved manifolds. The predictions of the resulting algorithm for the particular case of free particles diffusing along a circle and on a sphere are tested against analytical results, as well as with simulation data obtained by means of the standard Brownian dynamics algorithm developed by Ermak and McCammon [J. Chem. Phys. 69, 1352 (1978)] using explicitly a confining external field. The latter method allows constraining the particles to move in regions very tightly, emulating the diffusion on the manifold. Additionally, the proposed algorithm is applied to strong correlated systems, namely, paramagnetic colloids along a circle and soft colloids on a sphere, to illustrate its applicability to systems made up of interacting particles. PMID:24907998

  7. A Brownian dynamics algorithm for colloids in curved manifolds.

    PubMed

    Castro-Villarreal, Pavel; Villada-Balbuena, Alejandro; Méndez-Alcaraz, José Miguel; Castañeda-Priego, Ramón; Estrada-Jiménez, Sendic

    2014-06-01

    The many-particle Langevin equation, written in local coordinates, is used to derive a Brownian dynamics simulation algorithm to study the dynamics of colloids moving on curved manifolds. The predictions of the resulting algorithm for the particular case of free particles diffusing along a circle and on a sphere are tested against analytical results, as well as with simulation data obtained by means of the standard Brownian dynamics algorithm developed by Ermak and McCammon [J. Chem. Phys. 69, 1352 (1978)] using explicitly a confining external field. The latter method allows constraining the particles to move in regions very tightly, emulating the diffusion on the manifold. Additionally, the proposed algorithm is applied to strong correlated systems, namely, paramagnetic colloids along a circle and soft colloids on a sphere, to illustrate its applicability to systems made up of interacting particles.

  8. Gravity duals of supersymmetric gauge theories on three-manifolds

    NASA Astrophysics Data System (ADS)

    Farquet, Daniel; Lorenzen, Jakob; Martelli, Dario; Sparks, James

    2016-08-01

    We study gravity duals to a broad class of {N} = 2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1) × U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.

  9. Hausdorff dimension of a particle path in a quantum manifold

    SciTech Connect

    Nicolini, Piero; Niedner, Benjamin

    2011-01-15

    After recalling the concept of the Hausdorff dimension, we study the fractal properties of a quantum particle path. As a novelty we consider the possibility for the space where the particle propagates to be endowed with a quantum-gravity-induced minimal length. We show that the Hausdorff dimension accounts for both the quantum mechanics uncertainty and manifold fluctuations. In addition the presence of a minimal length breaks the self-similarity property of the erratic path of the quantum particle. Finally we establish a universal property of the Hausdorff dimension as well as the spectral dimension: They both depend on the amount of resolution loss which affects both the path and the manifold when quantum gravity fluctuations occur.

  10. Fitting manifold surfaces to three-dimensional point clouds.

    PubMed

    Grimm, Cindy M; Crisco, Joseph J; Laidlaw, David H

    2002-02-01

    We present a technique for fitting a smooth, locally parameterized surface model (called the manifold surface model) to unevenly scattered data describing an anatomical structure. These data are acquired from medical imaging modalities such as CT scans or MRI. The manifold surface is useful for problems which require analyzable or parametric surfaces fitted to data acquired from surfaces of arbitrary topology (e.g., entire bones). This surface modeling work is part of a larger project to model and analyze skeletal joints, in particular the complex of small bones within the wrist and hand. To demonstrate the suitability of this model we fit to several different bones in the hand, and to the same bone from multiple people.

  11. Application of Low Dimensional Manifolds in NO(x) Prediction

    NASA Technical Reports Server (NTRS)

    Norris, A. T.

    1997-01-01

    A new post-processing technique has been developed, based on the Intrinsic Low Dimensional Manifold (ILDM) method of Maas and Pope. The ILDM method is a dynamical systems approach to the simplification of large chemical kinetic mechanisms. By identifying low-dimensional attracting manifolds, the method allows complex full mechanisms to be parameterized by just a few variables: In effect, generating reduced chemical mechanisms by an automatic procedure. These resulting mechanisms however, still retain all the species used in the full mechanism. The NO(x) post-processor takes an ILDM reduced mechanism and attempts to map this mechanism to the results of a CFD calculation. This mapping allows the NO(x) concentrations at each grid node to be obtained from the ILDM reduced mechanism, as well as other trace species of interest. Because a mapping procedure is used, this method is very fast, being able to process one million node calculations in just a few minutes.

  12. Fuel cell stack with internal manifolds for reactant gases

    DOEpatents

    Schnacke, Arthur W.

    1985-01-01

    A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.

  13. Fuel cell stack with internal manifolds for reactant gases

    DOEpatents

    Schnacke, A.W.

    1983-10-12

    A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.

  14. Shell's underwater manifold ready for launching. [North Sea

    SciTech Connect

    Not Available

    1982-02-01

    A description is given of the first commercial underwater manifold center (UMC) in the Cormorant field 90 miles northeast of Shelland in the United Kingdom. The massive UMC, weighing 2,425 tons, is 172-ft long, 139-ft wide, and 50-ft high. Pipelines will connect the UMC to the South Cormorant platform more than 4 miles away. The UMC can handle up to nine wells, which are either drilled through it or tied back to it from outlying locations. The system is designed to produce 50,000 b/d of oil and inject 56,000 b/d of water. A discussion is presented of structure design, manifolding and valving, pipelines, and maintenance.

  15. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOEpatents

    Rodgers, John C.

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  16. Compact surfaces of constant Gaussian curvature in Randers manifolds

    NASA Astrophysics Data System (ADS)

    Cui, Ningwei

    2016-08-01

    The flag curvature of a Finsler surface is called the Gaussian curvature in Finsler geometry. In this paper, we characterize the surfaces of constant Gaussian curvature (CGC) in the Randers 3-manifold. Then we give a classification of the orientable closed CGC surfaces in two Randers space forms, which are the non-Euclidean Minkowski-Randers 3-space (K = 0) and the Bao-Shen sphere (K = 1).

  17. Curved manifolds with conserved Runge-Lenz vectors

    SciTech Connect

    Ngome, J.-P.

    2009-12-15

    van Holten's algorithm is used to construct Runge-Lenz-type conserved quantities, induced by Killing tensors, on curved manifolds. For the generalized Taub-Newman-Unti-Tamburino metric, the most general external potential such that the combined system admits a conserved Runge-Lenz-type vector is found. In the multicenter case, the subclass of two-center metric exhibits a conserved Runge-Lenz-type scalar.

  18. FAST TRACK COMMUNICATION: Lorentzian manifolds and scalar curvature invariants

    NASA Astrophysics Data System (ADS)

    Coley, Alan; Hervik, Sigbjørn; Pelavas, Nicos

    2010-05-01

    We discuss (arbitrary-dimensional) Lorentzian manifolds and the scalar polynomial curvature invariants constructed from the Riemann tensor and its covariant derivatives. Recently, we have shown that in four dimensions a Lorentzian spacetime metric is either \\mathcal {I}-non-degenerate, and hence locally characterized by its scalar polynomial curvature invariants, or is a degenerate Kundt spacetime. We present a number of results that generalize these results to higher dimensions and discuss their consequences and potential physical applications.

  19. Localising Dehn's lemma and the loop theorem in 3-manifolds

    NASA Astrophysics Data System (ADS)

    Aitchison, I. R.; Hyam Rubinstein, J.

    2004-09-01

    We give a new proof of Dehn's lemma and the loop theorem. This is a fundamental tool in the topology of 3-manifolds. Dehn's lemma was originally formulated by Dehn, where an incorrect proof was given. A proof was finally given by Papakyriakopolous in his famous 1957 paper where the fundamental idea of towers of coverings was introduced. This was later extended to the loop theorem, and the version used most frequently was given by Stallings.

  20. Underwater manifold centre-drilled cuttings disposal system

    SciTech Connect

    Biddlestone, P.A.

    1983-09-01

    During the construction of the Central Cormorant Underwater Manifold Centre (UMC), it was recognised that the cuttings produced during the drilling of template wells would interfere with UMC operations, if deposited on top of the structure. A dual system was developed and installed on the Stadrill (the unit planned to drill the wells) to remove the cuttings from the rig to the seabed away from the UMC.

  1. Logarithmic Sobolev Inequalities on Path Spaces Over Riemannian Manifolds

    NASA Astrophysics Data System (ADS)

    Hsu, Elton P.

    Let Wo(M) be the space of paths of unit time length on a connected, complete Riemannian manifold M such that γ(0) =o, a fixed point on M, and ν the Wiener measure on Wo(M) (the law of Brownian motion on M starting at o).If the Ricci curvature is bounded by c, then the following logarithmic Sobolev inequality holds:

  2. Energy minimization on manifolds for docking flexible molecules

    PubMed Central

    Mirzaei, Hanieh; Zarbafian, Shahrooz; Villar, Elizabeth; Mottarella, Scott; Beglov, Dmitri; Vajda, Sandor; Paschalidis, Ioannis Ch.; Vakili, Pirooz; Kozakov, Dima

    2015-01-01

    In this paper we extend a recently introduced rigid body minimization algorithm, defined on manifolds, to the problem of minimizing the energy of interacting flexible molecules. The goal is to integrate moving the ligand in six dimensional rotational/translational space with internal rotations around rotatable bonds within the two molecules. We show that adding rotational degrees of freedom to the rigid moves of the ligand results in an overall optimization search space that is a manifold to which our manifold optimization approach can be extended. The effectiveness of the method is shown for three different docking problems of increasing complexity. First we minimize the energy of fragment-size ligands with a single rotatable bond as part of a protein mapping method developed for the identification of binding hot spots. Second, we consider energy minimization for docking a flexible ligand to a rigid protein receptor, an approach frequently used in existing methods. In the third problem we account for flexibility in both the ligand and the receptor. Results show that minimization using the manifold optimization algorithm is substantially more efficient than minimization using a traditional all-atom optimization algorithm while producing solutions of comparable quality. In addition to the specific problems considered, the method is general enough to be used in a large class of applications such as docking multidomain proteins with flexible hinges. The code is available under open source license (at http://cluspro.bu.edu/Code/Code_Rigtree.tar), and with minimal effort can be incorporated into any molecular modeling package. PMID:26478722

  3. Burning invariant manifolds in spatially disordered advection-reaction-diffusion

    NASA Astrophysics Data System (ADS)

    Bargteil, Dylan; Solomon, Tom; Mahoney, John; Mitchell, Kevin

    2012-02-01

    We introduce burning invariant manifolds (BIMs) which act as barriers to front propagation, similar to the role played by invariant manifolds as barriers to passive transport in two-dimensional flows. We present experimental studies of BIMs in a spatially disordered, time-independent flow. We generate the flow with a magnetohydrodynamic technique that uses a DC current and a disordered pattern of permanent magnets. The velocity field is determined from this flow using particle tracking velocimetry, and reaction fronts are produced using the Ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical reaction. We use the experimental velocity field and a three-dimensional set of ODEs to predict from theory the location and orientation of BIMs. These predicted BIMs are found to match up well with the propagation barriers observed experimentally in the same flow using the BZ reaction. We explore the nature of BIMs as one-sided barriers, in contrast to invariant manifolds that act as barriers for passive transport in all directions. We also explore the role of projection singularities in the theory and how these singularities affect front behavior.

  4. Localization using omnivision-based manifold particle filters

    NASA Astrophysics Data System (ADS)

    Wong, Adelia; Yousefhussien, Mohammed; Ptucha, Raymond

    2015-01-01

    Developing precise and low-cost spatial localization algorithms is an essential component for autonomous navigation systems. Data collection must be of sufficient detail to distinguish unique locations, yet coarse enough to enable real-time processing. Active proximity sensors such as sonar and rangefinders have been used for interior localization, but sonar sensors are generally coarse and rangefinders are generally expensive. Passive sensors such as video cameras are low cost and feature-rich, but suffer from high dimensions and excessive bandwidth. This paper presents a novel approach to indoor localization using a low cost video camera and spherical mirror. Omnidirectional captured images undergo normalization and unwarping to a canonical representation more suitable for processing. Training images along with indoor maps are fed into a semi-supervised linear extension of graph embedding manifold learning algorithm to learn a low dimensional surface which represents the interior of a building. The manifold surface descriptor is used as a semantic signature for particle filter localization. Test frames are conditioned, mapped to a low dimensional surface, and then localized via an adaptive particle filter algorithm. These particles are temporally filtered for the final localization estimate. The proposed method, termed omnivision-based manifold particle filters, reduces convergence lag and increases overall efficiency.

  5. Self-Aligning Manifolds for Matching Disparate Medical Image Datasets.

    PubMed

    Baumgartner, Christian F; Gomez, Alberto; Koch, Lisa M; Housden, James R; Kolbitsch, Christoph; McClelland, Jamie R; Rueckert, Daniel; King, Andy P

    2015-01-01

    Manifold alignment can be used to reduce the dimensionality of multiple medical image datasets into a single globally consistent low-dimensional space. This may be desirable in a wide variety of problems, from fusion of different imaging modalities for Alzheimer's disease classification to 4DMR reconstruction from 2D MR slices. Unfortunately, most existing manifold alignment techniques require either a set of prior correspondences or comparability between the datasets in high-dimensional space, which is often not possible. We propose a novel technique for the 'self-alignment' of manifolds (SAM) from multiple dissimilar imaging datasets without prior correspondences or inter-dataset image comparisons. We quantitatively evaluate the method on 4DMR reconstruction from realistic, synthetic sagittal 2D MR slices from 6 volunteers and real data from 4 volunteers. Additionally, we demonstrate the technique for the compounding of two free breathing 3D ultrasound views from one volunteer. The proposed method performs significantly better for 4DMR reconstruction than state-of-the-art image-based techniques. PMID:26221687

  6. Finitely many Dirac-delta interactions on Riemannian manifolds

    SciTech Connect

    Altunkaynak, Baris; Erman, Fatih; Turgut, O. Teoman

    2006-08-15

    This work is intended as an attempt to study the nonperturbative renormalization of bound state problem of finitely many Dirac-delta interactions on Riemannian manifolds, S{sup 2}, H{sup 2}, and H{sup 3}. We formulate the problem in terms of a finite dimensional matrix, called the characteristic matrix {phi}. The bound state energies can be found from the characteristic equation {phi}(-{nu}{sup 2})A=0. The characteristic matrix can be found after a regularization and renormalization by using a sharp cut-off in the eigenvalue spectrum of the Laplacian, as it is done in the flat space, or using the heat kernel method. These two approaches are equivalent in the case of compact manifolds. The heat kernel method has a general advantage to find lower bounds on the spectrum even for compact manifolds as shown in the case of S{sup 2}. The heat kernels for H{sup 2} and H{sup 3} are known explicitly, thus we can calculate the characteristic matrix {phi}. Using the result, we give lower bound estimates of the discrete spectrum.

  7. Empirical low-dimensional manifolds in composition space

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Pope, Stephen B.; Chen, Jacqueline H.

    2012-11-01

    To reduce the computational cost of turbulent combustion simulations with a detailed chemical mechanism, it is useful to find a low-dimensional manifold in composition space that can approximate the full system dynamics. Most previous low-dimensional manifolds in turbulent combustion are based on the governing conservation equations or thermochemistry and their application involves certain assumptions. On the other hand, empirical low-dimensional manifolds (ELDMs) are constructed based on samples of the compositions observed in experiments or in direct numerical simulation (DNS). Plane and curved ELDMs can be obtained using principal component analysis (PCA) and multivariate adaptive spline regression (MARS), respectively. Both PCA and MARS are applied to the DNS datasets of a non-premixed CO/H2 temporally evolving jet flame (Hawkes et al., 2007) and an ethylene lifted jet flame (Yoo et al., 2011). We observe that it requires very high dimensions to represent the species mass fractions accurately by a plane ELDM, while better accuracy can be achieved by curved ELDMs with lower dimensions. In addition, the effect of differential diffusion on ELDMs is examined in large-eddy simulations with PDF modeling. This work is supported in part by the Combustion Energy Frontier Research Center funded by the DOE.

  8. Canonical Correlation Analysis on Riemannian Manifolds and Its Applications

    PubMed Central

    Kim, Hyunwoo J.; Adluru, Nagesh; Bendlin, Barbara B.; Johnson, Sterling C.; Vemuri, Baba C.; Singh, Vikas

    2014-01-01

    Canonical correlation analysis (CCA) is a widely used statistical technique to capture correlations between two sets of multi-variate random variables and has found a multitude of applications in computer vision, medical imaging and machine learning. The classical formulation assumes that the data live in a pair of vector spaces which makes its use in certain important scientific domains problematic. For instance, the set of symmetric positive definite matrices (SPD), rotations and probability distributions, all belong to certain curved Riemannian manifolds where vector-space operations are in general not applicable. Analyzing the space of such data via the classical versions of inference models is rather sub-optimal. But perhaps more importantly, since the algorithms do not respect the underlying geometry of the data space, it is hard to provide statistical guarantees (if any) on the results. Using the space of SPD matrices as a concrete example, this paper gives a principled generalization of the well known CCA to the Riemannian setting. Our CCA algorithm operates on the product Riemannian manifold representing SPD matrix-valued fields to identify meaningful statistical relationships on the product Riemannian manifold. As a proof of principle, we present results on an Alzheimer’s disease (AD) study where the analysis task involves identifying correlations across diffusion tensor images (DTI) and Cauchy deformation tensor fields derived from T1-weighted magnetic resonance (MR) images. PMID:25317426

  9. Hyperspectral target detection using manifold learning and multiple target spectra

    DOE PAGES

    Ziemann, Amanda K.; Theiler, James; Messinger, David W.

    2016-03-31

    Imagery collected from satellites and airborne platforms provides an important tool for remotely analyzing the content of a scene. In particular, the ability to remotely detect a specific material within a scene is of critical importance in nonproliferation and other applications. The sensor systems that process hyperspectral images collect the high-dimensional spectral information necessary to perform these detection analyses. For a d-dimensional hyperspectral image, however, where d is the number of spectral bands, it is common for the data to inherently occupy an m-dimensional space with m << d. In the remote sensing community, this has led to recent interestmore » in the use of manifold learning, which seeks to characterize the embedded lower-dimensional, nonlinear manifold that the data discretely approximate. The research presented in this paper focuses on a graph theory and manifold learning approach to target detection, using an adaptive version of locally linear embedding that is biased to separate target pixels from background pixels. Finally, this approach incorporates multiple target signatures for a particular material, accounting for the spectral variability that is often present within a solid material of interest.« less

  10. Triangulated manifold meshing method preserving molecular surface topology.

    PubMed

    Chen, Minxin; Tu, Bin; Lu, Benzhuo

    2012-09-01

    Generation of manifold mesh is an urgent issue in mathematical simulations of biomolecule using boundary element methods (BEM) or finite element method (FEM). Defects, such as not closed mesh, intersection of elements and missing of small structures, exist in surface meshes generated by most of the current meshing method. Usually the molecular surface meshes produced by existing methods need to be revised carefully by third party software to ensure the surface represents a continuous manifold before being used in a BEM and FEM calculations. Based on the trace technique proposed in our previous work, in this paper, we present an improved meshing method to avoid intersections and preserve the topology of the molecular Gaussian surface. The new method divides the whole Gaussian surface into single valued pieces along each of x, y, z directions by tracing the extreme points along the fold curves on the surface. Numerical test results show that the surface meshes produced by the new method are manifolds and preserve surface topologies. The result surface mesh can also be directly used in surface conforming volume mesh generation for FEM type simulation. PMID:23117290

  11. Constructing reference metrics on multicube representations of arbitrary manifolds

    NASA Astrophysics Data System (ADS)

    Lindblom, Lee; Taylor, Nicholas W.; Rinne, Oliver

    2016-05-01

    Reference metrics are used to define the differential structure on multicube representations of manifolds, i.e., they provide a simple and practical way to define what it means globally for tensor fields and their derivatives to be continuous. This paper introduces a general procedure for constructing reference metrics automatically on multicube representations of manifolds with arbitrary topologies. The method is tested here by constructing reference metrics for compact, orientable two-dimensional manifolds with genera between zero and five. These metrics are shown to satisfy the Gauss-Bonnet identity numerically to the level of truncation error (which converges toward zero as the numerical resolution is increased). These reference metrics can be made smoother and more uniform by evolving them with Ricci flow. This smoothing procedure is tested on the two-dimensional reference metrics constructed here. These smoothing evolutions (using volume-normalized Ricci flow with DeTurck gauge fixing) are all shown to produce reference metrics with constant scalar curvatures (at the level of numerical truncation error).

  12. Curvature properties of some class of warped product manifolds

    NASA Astrophysics Data System (ADS)

    Deszcz, Ryszard; Głogowska, Małgorzata; Jełowicki, Jan; Zafindratafa, Georges

    2016-10-01

    We prove that warped product manifolds with p-dimensional base, p = 1, 2, satisfy some pseudosymmetry type curvature conditions. These conditions are formed from the metric tensor g, the Riemann-Christoffel curvature tensor R, the Ricci tensor S and the Weyl conformal curvature C of the considered manifolds. The main result of the paper states that if p = 2 and the fiber is a semi-Riemannian space of constant curvature (when n is greater or equal to 5) then the (0, 6)-tensors R ṡ R - Q(S,R) and C ṡ C of such warped products are proportional to the (0, 6)-tensor Q(g,C) and the tensor C is a linear combination of some Kulkarni-Nomizu products formed from the tensors g and S. We also obtain curvature properties of this kind of quasi-Einstein and 2-quasi-Einstein manifolds, and in particular, of the Goedel metric, generalized spherically symmetric metrics and generalized Vaidya metrics.

  13. Incorporating unsteady flow-effects in flamelet-generated manifolds

    SciTech Connect

    Delhaye, S.; Somers, L.M.T.; van Oijen, J.A.; de Goey, L.P.H.

    2008-10-15

    Detailed simulations are performed for a series of steady and unsteady nonpremixed flames. A specific type of unsteady flamelet simulations are considered, i.e., flamelets subjected to (temporally) varying strain-rates. It is observed that the unsteady flame trajectories move closely along a 2D manifold describing the set of steady diffusion flames in composition space. Using the 2D manifold, unsteady simulations are performed. It is shown that there is a phase shift in the species mass fractions between the detailed simulations and the 2D FGM simulations. This phase shift can be avoided when an additional controlling variable is used. Using unsteady flamelet simulations, a 3D manifold is generated, which is parameterized using three controlling variables. Furthermore, this 3D FGM accurately predicts a broad range of the strain-rate parameters: the mean strain-rate, the applied amplitude, and the frequency of the sinusoidally varying strain-rate. Finally, it is shown that the aforementioned phase shift between the detailed simulations and the 3D FGM simulations disappears. (author)

  14. Characteristic classes of Q-manifolds: Classification and applications

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Mosman, E. A.; Sharapov, A. A.

    2010-05-01

    A Q-manifold M is a supermanifold endowed with an odd vector field Q squaring to zero. The Lie derivative LQ along Q makes the algebra of smooth tensor fields on M into a differential algebra. In this paper, we define and study the invariants of Q-manifolds called characteristic classes. These take values in the cohomology of the operator LQ and, given an affine symmetric connection with curvature R, can be represented by universal tensor polynomials in the repeated covariant derivatives of Q and R up to some finite order. As usual, the characteristic classes are proved to be independent of the choice of the affine connection used to define them. The main result of the paper is a complete classification of the intrinsic characteristic classes, which, by definition, do not vanish identically on flat Q-manifolds. As an illustration of the general theory we interpret some of the intrinsic characteristic classes as anomalies in the BV and BFV-BRST quantization methods of gauge theories. An application to the theory of (singular) foliations is also discussed.

  15. Metastatic liver tumour segmentation from discriminant Grassmannian manifolds

    NASA Astrophysics Data System (ADS)

    Kadoury, Samuel; Vorontsov, Eugene; Tang, An

    2015-08-01

    The early detection, diagnosis and monitoring of liver cancer progression can be achieved with the precise delineation of metastatic tumours. However, accurate automated segmentation remains challenging due to the presence of noise, inhomogeneity and the high appearance variability of malignant tissue. In this paper, we propose an unsupervised metastatic liver tumour segmentation framework using a machine learning approach based on discriminant Grassmannian manifolds which learns the appearance of tumours with respect to normal tissue. First, the framework learns within-class and between-class similarity distributions from a training set of images to discover the optimal manifold discrimination between normal and pathological tissue in the liver. Second, a conditional optimisation scheme computes non-local pairwise as well as pattern-based clique potentials from the manifold subspace to recognise regions with similar labelings and to incorporate global consistency in the segmentation process. The proposed framework was validated on a clinical database of 43 CT images from patients with metastatic liver cancer. Compared to state-of-the-art methods, our method achieves a better performance on two separate datasets of metastatic liver tumours from different clinical sites, yielding an overall mean Dice similarity coefficient of 90.7+/- 2.4 in over 50 tumours with an average volume of 27.3 mm3.

  16. Manifold regularized non-negative matrix factorization with label information

    NASA Astrophysics Data System (ADS)

    Li, Huirong; Zhang, Jiangshe; Wang, Changpeng; Liu, Junmin

    2016-03-01

    Non-negative matrix factorization (NMF) as a popular technique for finding parts-based, linear representations of non-negative data has been successfully applied in a wide range of applications, such as feature learning, dictionary learning, and dimensionality reduction. However, both the local manifold regularization of data and the discriminative information of the available label have not been taken into account together in NMF. We propose a new semisupervised matrix decomposition method, called manifold regularized non-negative matrix factorization (MRNMF) with label information, which incorporates the manifold regularization and the label information into the NMF to improve the performance of NMF in clustering tasks. We encode the local geometrical structure of the data space by constructing a nearest neighbor graph and enhance the discriminative ability of different classes by effectively using the label information. Experimental comparisons with the state-of-the-art methods on theCOIL20, PIE, Extended Yale B, and MNIST databases demonstrate the effectiveness of MRNMF.

  17. Fuel-air control device

    SciTech Connect

    Norman, J.

    1981-12-15

    The invention concerns a device for controlling the vehicles fuel-air mixture by regulating the air in the ventilation passage leading to the engine air intake from the crankcase. In a vehicle provided with a PCV valve, the device is located in the ventilation passage leading from the crankcase to the engine air intake and the device is downstream of the PCV valve. The device admits outside air to the ventilation passage to lean the gas mixture when the engine creates a vacuum less than 8 psi in the ventilation passage.

  18. Investigation of the flow field inside the manifold of a real operated fuel cell stack using optical measurements and Computational Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Schmieder, Felix; Kinaci, Mustafa E.; Wartmann, Jens; König, Jörg; Büttner, Lars; Czarske, Jürgen; Burgmann, Sebastian; Heinzel, Angelika

    2016-02-01

    The versatility of fuel cells enables a wide range of applications. Usually fuel cells are combined to stacks such that the reactant supply of the single cells is achieved via a pipe branching system, the manifold. The overall performance significantly depends on cell flow rates which are related to the fluidic interaction of the manifold and the cells. Computational Fluid Dynamics (CFD) simulations, which are often used to find a suitable design, lack experimental flow data for validation of the numerical results. To enable flow measurements within the small geometries of the manifold and to provide reliable velocity information inside a real fuel cell stack, a low-coherence Laser Doppler Anemometer (LDA) is applied, which uses multi-mode laser light to achieve a spatial resolution of <100 μm. The use of fluorescent particles and backward scatter mode make the sensor highly suitable for the application in small manifold geometries like in fuel cell stacks. Sensor and measurement technique are validated in simplified stack models and the applicability to air flows is demonstrated. Finally, for the first time, velocity profiles with high spatial resolution inside an operated fuel cell stack are presented, which serve as benchmark for CFD to find an optimal geometry.

  19. 30 CFR 36.23 - Engine intake system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... construct flame arresters. (c) Air shutoff valve. The intake system shall include a valve, operable from the operator's compartment, to shut off the air supply to the engine. This valve shall be constructed to permit its operation only after the fuel supply to the engine is shut off. In reverse operation the...

  20. 30 CFR 36.23 - Engine intake system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... construct flame arresters. (c) Air shutoff valve. The intake system shall include a valve, operable from the operator's compartment, to shut off the air supply to the engine. This valve shall be constructed to permit its operation only after the fuel supply to the engine is shut off. In reverse operation the...

  1. 30 CFR 36.23 - Engine intake system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... construct flame arresters. (c) Air shutoff valve. The intake system shall include a valve, operable from the operator's compartment, to shut off the air supply to the engine. This valve shall be constructed to permit its operation only after the fuel supply to the engine is shut off. In reverse operation the...

  2. 30 CFR 36.23 - Engine intake system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... construct flame arresters. (c) Air shutoff valve. The intake system shall include a valve, operable from the operator's compartment, to shut off the air supply to the engine. This valve shall be constructed to permit its operation only after the fuel supply to the engine is shut off. In reverse operation the...

  3. 30 CFR 36.23 - Engine intake system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construct flame arresters. (c) Air shutoff valve. The intake system shall include a valve, operable from the operator's compartment, to shut off the air supply to the engine. This valve shall be constructed to permit its operation only after the fuel supply to the engine is shut off. In reverse operation the...

  4. Exposure to motor vehicle emissions: An intake fraction approach

    SciTech Connect

    Marshall, Julian D.

    2002-05-01

    Motor vehicles are a significant source of population exposure to air pollution. Focusing on California's South Coast Air Basin as a case study, the author combines ambient monitoring station data with hourly time-activity patterns to determine the population intake of motor vehicle emissions during 1996-1999. Three microenvironments are considered wherein the exposure to motor vehicle emissions is higher than in ambient air: in and near vehicles, inside a building that is near a freeway, and inside a residence with an attached garage. Total motor vehicle emissions are taken from the EMFAC model. The 15 million people in the South Coast inhale 0.0048% of primary, nonreactive compounds emitted into the basin by motor vehicles. Intake of motor vehicle emissions is 46% higher than the average ambient concentration times the average breathing rate, because of microenvironments and because of temporal and spatial correlation among breathing rates, concentrations, and population densities. Intake fraction (iF) summarizes the emissions-to-intake relationship as the ratio of population intake to total emissions. iF is a population level exposure metric that incorporates spatial, temporal, and interindividual variability in exposures. iFs can facilitate the calculation of population exposures by distilling complex emissions-transport-receptor relationships. The author demonstrates this point by predicting the population intake of various primary gaseous emissions from motor vehicles, based on the intake fraction for benzene and carbon monoxide.

  5. Dictionary Pair Learning on Grassmann Manifolds for Image Denoising.

    PubMed

    Zeng, Xianhua; Bian, Wei; Liu, Wei; Shen, Jialie; Tao, Dacheng

    2015-11-01

    Image denoising is a fundamental problem in computer vision and image processing that holds considerable practical importance for real-world applications. The traditional patch-based and sparse coding-driven image denoising methods convert 2D image patches into 1D vectors for further processing. Thus, these methods inevitably break down the inherent 2D geometric structure of natural images. To overcome this limitation pertaining to the previous image denoising methods, we propose a 2D image denoising model, namely, the dictionary pair learning (DPL) model, and we design a corresponding algorithm called the DPL on the Grassmann-manifold (DPLG) algorithm. The DPLG algorithm first learns an initial dictionary pair (i.e., the left and right dictionaries) by employing a subspace partition technique on the Grassmann manifold, wherein the refined dictionary pair is obtained through a sub-dictionary pair merging. The DPLG obtains a sparse representation by encoding each image patch only with the selected sub-dictionary pair. The non-zero elements of the sparse representation are further smoothed by the graph Laplacian operator to remove the noise. Consequently, the DPLG algorithm not only preserves the inherent 2D geometric structure of natural images but also performs manifold smoothing in the 2D sparse coding space. We demonstrate that the DPLG algorithm also improves the structural SIMilarity values of the perceptual visual quality for denoised images using the experimental evaluations on the benchmark images and Berkeley segmentation data sets. Moreover, the DPLG also produces the competitive peak signal-to-noise ratio values from popular image denoising algorithms.

  6. Subspaces indexing model on Grassmann manifold for image search.

    PubMed

    Wang, Xinchao; Li, Zhu; Tao, Dacheng

    2011-09-01

    Conventional linear subspace learning methods like principal component analysis (PCA), linear discriminant analysis (LDA) derive subspaces from the whole data set. These approaches have limitations in the sense that they are linear while the data distribution we are trying to model is typically nonlinear. Moreover, these algorithms fail to incorporate local variations of the intrinsic sample distribution manifold. Therefore, these algorithms are ineffective when applied on large scale datasets. Kernel versions of these approaches can alleviate the problem to certain degree but face a serious computational challenge when data set is large, where the computing involves Eigen/QP problems of size N × N. When N is large, kernel versions are not computationally practical. To tackle the aforementioned problems and improve recognition/searching performance, especially on large scale image datasets, we propose a novel local subspace indexing model for image search termed Subspace Indexing Model on Grassmann Manifold (SIM-GM). SIM-GM partitions the global space into local patches with a hierarchical structure; the global model is, therefore, approximated by piece-wise linear local subspace models. By further applying the Grassmann manifold distance, SIM-GM is able to organize localized models into a hierarchy of indexed structure, and allow fast query selection of the optimal ones for classification. Our proposed SIM-GM enjoys a number of merits: 1) it is able to deal with a large number of training samples efficiently; 2) it is a query-driven approach, i.e., it is able to return an effective local space model, so the recognition performance could be significantly improved; 3) it is a common framework, which can incorporate many learning algorithms. Theoretical analysis and extensive experimental results confirm the validity of this model.

  7. Connections on a non-symmetric (generalized) Riemannian manifold and gravity

    NASA Astrophysics Data System (ADS)

    Ivanov, Stefan; Zlatanović, Milan

    2016-04-01

    Connections with (skew-symmetric) torsion on a non-symmetric Riemannian manifold satisfying the Einstein metricity condition (non-symmetric gravitation theory (NGT) with torsion) are considered. It is shown that an almost Hermitian manifold is NGT with torsion if and only if it is a nearly Kähler manifold. In the case of an almost contact metric manifold the NGT with torsion spaces are characterized and a possibly new class of almost contact metric manifolds is extracted. Similar considerations lead to a definition of a particular class of almost para-Hermitian and almost paracontact metric manifolds. Conditions are given in terms of the corresponding Nijenhuis tensors and the exterior derivative of the skew-symmetric part of the non-symmetric Riemannian metric.

  8. Stalactite basin structure of dynamical systems with transient chaos in an invariant manifold

    NASA Astrophysics Data System (ADS)

    Dronov, Vasily; Ott, Edward

    2000-06-01

    Dynamical systems with invariant manifolds occur in a variety of situations (e.g., identical coupled oscillators, and systems with a symmetry). We consider the case where there is both a nonchaotic attractor (e.g., a periodic orbit) and a nonattracting chaotic set (or chaotic repeller) in the invariant manifold. We consider the character of the basins for the attracting nonchaotic set in the invariant manifold and another attractor not in the invariant manifold. It is found that the boundary separating these basins has an interesting structure: The basin of the attractor not in the invariant manifold is characterized by thin cusp shaped regions ("stalactites") extending down to touch the nonattracting chaotic set in the invariant manifold. We also develop theoretical scalings applicable to these systems, and compare with numerical experiments.

  9. Stalactite basin structure of dynamical systems with transient chaos in an invariant manifold.

    PubMed

    Dronov, Vasily; Ott, Edward

    2000-06-01

    Dynamical systems with invariant manifolds occur in a variety of situations (e.g., identical coupled oscillators, and systems with a symmetry). We consider the case where there is both a nonchaotic attractor (e.g., a periodic orbit) and a nonattracting chaotic set (or chaotic repeller) in the invariant manifold. We consider the character of the basins for the attracting nonchaotic set in the invariant manifold and another attractor not in the invariant manifold. It is found that the boundary separating these basins has an interesting structure: The basin of the attractor not in the invariant manifold is characterized by thin cusp shaped regions ("stalactites") extending down to touch the nonattracting chaotic set in the invariant manifold. We also develop theoretical scalings applicable to these systems, and compare with numerical experiments. (c) 2000 American Institute of Physics.

  10. Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds

    NASA Astrophysics Data System (ADS)

    Guth, Larry; Lubotzky, Alexander

    2014-08-01

    Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance nɛ. Their rate is evaluated via Euler characteristic arguments and their distance using {Z}_2-systolic geometry. This construction answers a question of Zémor ["On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction," in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259-273], who asked whether homological codes with such parameters could exist at all.

  11. Piecewise linear manifolds: Einstein metrics and Ricci flows

    NASA Astrophysics Data System (ADS)

    Schrader, Robert

    2016-05-01

    This article provides an attempt to extend concepts from the theory of Riemannian manifolds to piecewise linear (p.l.) spaces. In particular we propose an analogue of the Ricci tensor, which we give the name of an Einstein vector field. On a given set of p.l. spaces we define and discuss (normalized) Einstein flows. p.l. Einstein metrics are defined and examples are provided. Criteria for flows to approach Einstein metrics are formulated. Second variations of the total scalar curvature at a specific Einstein space are calculated. Dedicated to Ludwig Faddeev on the occasion of his 80th birthday.

  12. Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds

    SciTech Connect

    Guth, Larry; Lubotzky, Alexander

    2014-08-15

    Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance n{sup ε}. Their rate is evaluated via Euler characteristic arguments and their distance using Z{sub 2}-systolic geometry. This construction answers a question of Zémor [“On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction,” in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259–273], who asked whether homological codes with such parameters could exist at all.

  13. Mücket-Treder's Two-Body Problem: Infinity Manifold

    NASA Astrophysics Data System (ADS)

    Mioc, Vasile

    The two-body problem in the Mücket-Treder post-Newtonian classical field is revisited. Starting from the motion equations and first integrals in standard polar coordinates, we apply McGehee-type transformations of the first and second kind to suitably describe the escape/capture dynamics. To this end, the infinity manifold is defined, and the flow on it is depicted. The behaviour of orbits that neighbour infinity is wholly similar to the cases corresponding to some relativistic models.

  14. Air fuel ratio control apparatus and method for an internal combustion engine with a turbocharger

    SciTech Connect

    Sawamoto, K.; Ikeura, K.; Morita, T.; Yamaguchi, H.

    1984-05-29

    Normally, an air-fuel ratio is controlled in accordance with the engine speed and the intake air quantity of an internal combustion engine with a turbocharger. When the output pressure of the turbocharger increases excessively, an intake relief valve opens to decrease the intake air quantity. In this case, the fuel injection quantity is controlled solely in accordance with the engine speed.

  15. An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds is reported. A FORTRAN computer program was written for the computation of the thermal performance of solar thermal collector arrays with and without external manifolds. Arrays constructed from two example solar thermal collectors are computated. Typical external manifold sizes and thermal insulations are presented graphically and are compared with the thermal performance of the collector alone.

  16. Seiberg-Witten invariants on manifolds with Riemannian foliations of codimension 4

    NASA Astrophysics Data System (ADS)

    Kordyukov, Yuri; Lejmi, Mehdi; Weber, Patrick

    2016-09-01

    We define Seiberg-Witten equations on closed manifolds endowed with a Riemannian foliation of codimension 4. When the foliation is taut, we show compactness of the moduli space under some hypothesis satisfied for instance by closed K-contact manifolds. Furthermore, we prove some vanishing and non-vanishing results and we highlight that the invariants may be used to distinguish different foliations on diffeomorphic manifolds.

  17. The Kastler-Kalau-Walze type theorem for six-dimensional manifolds with boundary

    SciTech Connect

    Wang, Jian; Wang, Yong E-mail: wangy581@nenu.edu.cn

    2015-05-15

    In this paper, we define lower dimensional volumes of spin manifolds with boundary. We compute the lower dimensional volume V ol{sub 6}{sup (1,3)} for 6-dimensional spin manifolds with boundary and derive the gravity on boundary from the noncommutative residue associated with Dirac operators. For 6-dimensional manifolds with boundary, we also get a Kastler-Kalau-Walze type theorem for a general fourth order operator.

  18. LCK rank of locally conformally Kähler manifolds with potential

    NASA Astrophysics Data System (ADS)

    Ornea, Liviu; Verbitsky, Misha

    2016-09-01

    An LCK manifold with potential is a quotient of a Kähler manifold X equipped with a positive Kähler potential f, such that the monodromy group acts on X by holomorphic homotheties and multiplies f by a character. The LCK rank is the rank of the image of this character, considered as a function from the monodromy group to real numbers. We prove that an LCK manifold with potential can have any rank between 1 and b1(M) . Moreover, LCK manifolds with proper potential (ones with rank 1) are dense. Two errata to our previous work are given in the last section.

  19. A general Kastler-Kalau-Walze type theorem for manifolds with boundary

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wang, Yong

    2016-11-01

    In this paper, we establish a general Kastler-Kalau-Walze type theorem for any dimensional manifolds with boundary which generalizes the results in [Y. Wang, Lower-dimensional volumes and Kastler-Kalau-Walze type theorem for manifolds with boundary, Commun. Theor. Phys. 54 (2010) 38-42]. This solves a problem of the referee of [J. Wang and Y. Wang, A Kastler-Kalau-Walze type theorem for five-dimensional manifolds with boundary, Int. J. Geom. Meth. Mod. Phys. 12(5) (2015), Article ID: 1550064, 34 pp.], which is a general expression of the lower dimensional volumes in terms of the geometric data on the manifold.

  20. Completing the web of ℤ3-quotients of complete intersection Calabi-Yau manifolds

    NASA Astrophysics Data System (ADS)

    Candelas, P.; Constantin, A.

    2012-04-01

    We complete the study of smooth $Z_3$-quotients of complete intersection Calabi-Yau threefolds by discussing the six new manifolds that admit free $Z_3$ actions that were discovered discovered recently by Braun. These manifolds were missed in an earlier work and complete the web of smooth $Z_3$-quotients in a nice way. We discuss the transitions between these manifolds and include also the other manifolds of the web. This leads to the conclusion that the web of $Z_3$-free quotients of complete intersection Calabi-Yau threefolds is connected by conifold transitions.

  1. Eight-manifolds with G structure in eleven dimensional supergravity

    SciTech Connect

    Conamhna, Oisin A.P. Mac

    2005-10-15

    We extend the refined G-structure classification of supersymmetric solutions of 11 dimensional supergravity. We derive necessary and sufficient conditions for the existence of an arbitrary number of Killing spinors whose common isotropy group contains a compact factor acting irreducibly in eight spatial dimensions and which embeds in (Spin(7)xR{sup 8})xR. We use these conditions to explicitly derive the general local bosonic solution of the Killing spinor equation admitting an N=4 SU(4) structure embedding in a (Spin(7)xR{sup 8})xR structure, up to an eight-manifold of SU(4) holonomy. Subject to very mild assumptions on the form of the metric, we explicitly derive the general local bosonic solutions of the Killing spinor equation for N=6 Sp(2) structures and N=8 SU(2)xSU(2) structures embedding in a (Spin(7)xR{sup 8})xR structure, again up to eight-manifolds of special holonomy. We construct several other classes of explicit solutions, including some for which the preferred local structure group defined by the Killing spinors does not correspond to any holonomy group in 11 dimensions. We also give a detailed geometrical characterization of all supersymmetric spacetimes in 11 dimensions admitting G-structures with structure groups of the form (GxR{sup 8})xR.

  2. Manifold learning to interpret JET high-dimensional operational space

    NASA Astrophysics Data System (ADS)

    Cannas, B.; Fanni, A.; Murari, A.; Pau, A.; Sias, G.; JET EFDA Contributors, the

    2013-04-01

    In this paper, the problem of visualization and exploration of JET high-dimensional operational space is considered. The data come from plasma discharges selected from JET campaigns from C15 (year 2005) up to C27 (year 2009). The aim is to learn the possible manifold structure embedded in the data and to create some representations of the plasma parameters on low-dimensional maps, which are understandable and which preserve the essential properties owned by the original data. A crucial issue for the design of such mappings is the quality of the dataset. This paper reports the details of the criteria used to properly select suitable signals downloaded from JET databases in order to obtain a dataset of reliable observations. Moreover, a statistical analysis is performed to recognize the presence of outliers. Finally data reduction, based on clustering methods, is performed to select a limited and representative number of samples for the operational space mapping. The high-dimensional operational space of JET is mapped using a widely used manifold learning method, the self-organizing maps. The results are compared with other data visualization methods. The obtained maps can be used to identify characteristic regions of the plasma scenario, allowing to discriminate between regions with high risk of disruption and those with low risk of disruption.

  3. Data assimilation on the exponentially accurate slow manifold.

    PubMed

    Cotter, Colin

    2013-05-28

    I describe an approach to data assimilation making use of an explicit map that defines a coordinate system on the slow manifold in the semi-geostrophic scaling in Lagrangian coordinates, and apply the approach to a simple toy system that has previously been proposed as a low-dimensional model for the semi-geostrophic scaling. The method can be extended to Lagrangian particle methods such as Hamiltonian particle-mesh and smooth-particle hydrodynamics applied to the rotating shallow-water equations, and many of the properties will remain for more general Eulerian methods. Making use of Hamiltonian normal-form theory, it has previously been shown that, if initial conditions for the system are chosen as image points of the map, then the fast components of the system have exponentially small magnitude for exponentially long times as ε→0, and this property is preserved if one uses a symplectic integrator for the numerical time stepping. The map may then be used to parametrize initial conditions near the slow manifold, allowing data assimilation to be performed without introducing any fast degrees of motion (more generally, the precise amount of fast motion can be selected).

  4. Manifold regularized multitask feature learning for multimodality disease classification.

    PubMed

    Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang

    2015-02-01

    Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. PMID:25277605

  5. Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking.

    PubMed

    Wang, Qi; Lin, Jianzhe; Yuan, Yuan

    2016-06-01

    Saliency detection has been a hot topic in recent years, and many efforts have been devoted in this area. Unfortunately, the results of saliency detection can hardly be utilized in general applications. The primary reason, we think, is unspecific definition of salient objects, which makes that the previously published methods cannot extend to practical applications. To solve this problem, we claim that saliency should be defined in a context and the salient band selection in hyperspectral image (HSI) is introduced as an example. Unfortunately, the traditional salient band selection methods suffer from the problem of inappropriate measurement of band difference. To tackle this problem, we propose to eliminate the drawbacks of traditional salient band selection methods by manifold ranking. It puts the band vectors in the more accurate manifold space and treats the saliency problem from a novel ranking perspective, which is considered to be the main contributions of this paper. To justify the effectiveness of the proposed method, experiments are conducted on three HSIs, and our method is compared with the six existing competitors. Results show that the proposed method is very effective and can achieve the best performance among the competitors. PMID:27008675

  6. Peptides and Food Intake

    PubMed Central

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  7. Peptides and food intake.

    PubMed

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  8. Quasitoric manifolds and small covers over properly coloured polytopes: immersions and embeddings

    NASA Astrophysics Data System (ADS)

    Baralić, D.; Grujić, V.

    2016-04-01

    We construct small covers and quasitoric manifolds over n-dimensional simple polytopes which allow proper colourings of facets with n colours. We calculate the Stiefel-Whitney classes of these manifolds as obstructions to immersions and embeddings into Euclidean spaces. The largest dimension required for embedding is achieved in the case n is a power of two.Bibliography: 11 titles.

  9. Polyhedral representation of invariant manifolds applied to orbit transfers in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Pontani, Mauro; Teofilatto, Paolo

    2016-02-01

    Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth-Moon system and in alternative multibody environments. This work proposes and describes an intuitive polyhedral interpolative approach for each state component associated with manifold trajectories, both in two and in three dimensions. An adequate grid of data, coming from the numerical propagation of a finite number of manifold trajectories, is employed. Accuracy of this representation is evaluated with reference to the invariant manifolds associated with a two-dimensional Lyapunov orbit and a three-dimensional Halo orbit, and is proven to be satisfactory, with the exclusion of limited regions of the manifolds. As a first, preliminary application, the polyhedral interpolation technique allows identifying the orbits in the proximity of the interior collinear libration point as either asymptotic, transit, or bouncing trajectories. Then, two applications to orbital maneuvering are addressed. First, the globally optimal two-impulse transfer between a specified low Earth orbit and a Lyapunov orbit (through its stable manifold) is determined. Second, the minimum-time low-thrust transfer from the same terminal orbits is found using again the stable manifold. These applications prove the effectiveness of the polyhedral interpolative technique and represent the premise for its application also to different problems involving invariant manifold dynamics.

  10. Tensor calculus with open-source software: the SageManifolds project

    NASA Astrophysics Data System (ADS)

    Gourgoulhon, Eric; Bejger, Michal; Mancini, Marco

    2015-04-01

    The SageManifolds project aims at extending the mathematics software system Sage towards differential geometry and tensor calculus. Like Sage, SageManifolds is free, open- source and is based on the Python programming language. We discuss here some details of the implementation, which relies on Sage's parent/element framework, and present a concrete example of use.

  11. GENERAL: Lower-Dimensional Volumes and Kastler-Kalau-Walze Type Theorem for Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Wang, Yong

    2010-07-01

    In this paper, we define lower-dimensional volumes of spin manifolds with boundary. We compute the lower-dimensional volume Vol(2,2) for 5-dimensional and 6-dimensional spin manifolds with boundary and we also get the Kastler-Kalau-Walze type theorem in this case.

  12. A Dynamical Model of General Intelligence: The Positive Manifold of Intelligence by Mutualism

    ERIC Educational Resources Information Center

    Van Der Maas, Han L. J.; Dolan, Conor V.; Grasman, Raoul P. P. P.; Wicherts, Jelte M.; Huizenga, Hilde M.; Raijmakers, Maartje E. J.

    2006-01-01

    Scores on cognitive tasks used in intelligence tests correlate positively with each other, that is, they display a positive manifold of correlations. The positive manifold is often explained by positing a dominant latent variable, the g factor, associated with a single quantitative cognitive or biological process or capacity. In this article, a…

  13. Manifold Learning for Multivariate Variable-Length Sequences With an Application to Similarity Search.

    PubMed

    Ho, Shen-Shyang; Dai, Peng; Rudzicz, Frank

    2016-06-01

    Multivariate variable-length sequence data are becoming ubiquitous with the technological advancement in mobile devices and sensor networks. Such data are difficult to compare, visualize, and analyze due to the nonmetric nature of data sequence similarity measures. In this paper, we propose a general manifold learning framework for arbitrary-length multivariate data sequences driven by similarity/distance (parameter) learning in both the original data sequence space and the learned manifold. Our proposed algorithm transforms the data sequences in a nonmetric data sequence space into feature vectors in a manifold that preserves the data sequence space structure. In particular, the feature vectors in the manifold representing similar data sequences remain close to one another and far from the feature points corresponding to dissimilar data sequences. To achieve this objective, we assume a semisupervised setting where we have knowledge about whether some of data sequences are similar or dissimilar, called the instance-level constraints. Using this information, one learns the similarity measure for the data sequence space and the distance measures for the manifold. Moreover, we describe an approach to handle the similarity search problem given user-defined instance level constraints in the learned manifold using a consensus voting scheme. Experimental results on both synthetic data and real tropical cyclone sequence data are presented to demonstrate the feasibility of our manifold learning framework and the robustness of performing similarity search in the learned manifold.

  14. Retrieving handwriting by combining word spotting and manifold ranking

    NASA Astrophysics Data System (ADS)

    Peña Saldarriaga, Sebastián; Morin, Emmanuel; Viard-Gaudin, Christian

    2012-01-01

    Online handwritten data, produced with Tablet PCs or digital pens, consists in a sequence of points (x, y). As the amount of data available in this form increases, algorithms for retrieval of online data are needed. Word spotting is a common approach used for the retrieval of handwriting. However, from an information retrieval (IR) perspective, word spotting is a primitive keyword based matching and retrieval strategy. We propose a framework for handwriting retrieval where an arbitrary word spotting method is used, and then a manifold ranking algorithm is applied on the initial retrieval scores. Experimental results on a database of more than 2,000 handwritten newswires show that our method can improve the performances of a state-of-the-art word spotting system by more than 10%.

  15. Flexible Refinement of Protein-Ligand Docking on Manifolds.

    PubMed

    Mirzaei, Hanieh; Villar, Elizabeth; Mottarella, Scott; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Kozakov, Dima; Vakili, Pirooz

    2013-01-01

    Our work is motivated by energy minimization of biological macromolecules, an essential step in computational docking. By allowing some ligand flexibility, we generalize a recently introduced novel representation of rigid body minimization as an optimization on the [Formula: see text] manifold, rather than on the commonly used Special Euclidean group SE(3). We show that the resulting flexible docking can also be formulated as an optimization on a Lie group that is the direct product of simpler Lie groups for which geodesics and exponential maps can be easily obtained. Our computational results for a local optimization algorithm developed based on this formulation show that it is about an order of magnitude faster than the state-of-the-art local minimization algorithms for computational protein-small molecule docking. PMID:24830567

  16. Decision Manifold Approximation for Physics-Based Simulations

    NASA Technical Reports Server (NTRS)

    Wong, Jay Ming; Samareh, Jamshid A.

    2016-01-01

    With the recent surge of success in big-data driven deep learning problems, many of these frameworks focus on the notion of architecture design and utilizing massive databases. However, in some scenarios massive sets of data may be difficult, and in some cases infeasible, to acquire. In this paper we discuss a trajectory-based framework that quickly learns the underlying decision manifold of binary simulation classifications while judiciously selecting exploratory target states to minimize the number of required simulations. Furthermore, we draw particular attention to the simulation prediction application idealized to the case where failures in simulations can be predicted and avoided, providing machine intelligence to novice analysts. We demonstrate this framework in various forms of simulations and discuss its efficacy.

  17. Numerical manifold method based on the method of weighted residuals

    NASA Astrophysics Data System (ADS)

    Li, S.; Cheng, Y.; Wu, Y.-F.

    2005-05-01

    Usually, the governing equations of the numerical manifold method (NMM) are derived from the minimum potential energy principle. For many applied problems it is difficult to derive in general outset the functional forms of the governing equations. This obviously strongly restricts the implementation of the minimum potential energy principle or other variational principles in NMM. In fact, the governing equations of NMM can be derived from a more general method of weighted residuals. By choosing suitable weight functions, the derivation of the governing equations of the NMM from the weighted residual method leads to the same result as that derived from the minimum potential energy principle. This is demonstrated in the paper by deriving the governing equations of the NMM for linear elasticity problems, and also for Laplace's equation for which the governing equations of the NMM cannot be derived from the minimum potential energy principle. The performance of the method is illustrated by three numerical examples.

  18. Scene recognition by manifold regularized deep learning architecture.

    PubMed

    Yuan, Yuan; Mou, Lichao; Lu, Xiaoqiang

    2015-10-01

    Scene recognition is an important problem in the field of computer vision, because it helps to narrow the gap between the computer and the human beings on scene understanding. Semantic modeling is a popular technique used to fill the semantic gap in scene recognition. However, most of the semantic modeling approaches learn shallow, one-layer representations for scene recognition, while ignoring the structural information related between images, often resulting in poor performance. Modeled after our own human visual system, as it is intended to inherit humanlike judgment, a manifold regularized deep architecture is proposed for scene recognition. The proposed deep architecture exploits the structural information of the data, making for a mapping between visible layer and hidden layer. By the proposed approach, a deep architecture could be designed to learn the high-level features for scene recognition in an unsupervised fashion. Experiments on standard data sets show that our method outperforms the state-of-the-art used for scene recognition.

  19. The Moduli Space of Asymptotically Cylindrical Calabi-Yau Manifolds

    NASA Astrophysics Data System (ADS)

    Conlon, Ronan J.; Mazzeo, Rafe; Rochon, Frédéric

    2015-09-01

    We prove that the deformation theory of compactifiable asymptotically cylindrical Calabi-Yau manifolds is unobstructed. This relies on a detailed study of the Dolbeault-Hodge theory and its description in terms of the cohomology of the compactification. We also show that these Calabi-Yau metrics admit a polyhomogeneous expansion at infinity, a result that we extend to asymptotically conical Calabi-Yau metrics as well. We then study the moduli space of Calabi-Yau deformations that fix the complex structure at infinity. There is a Weil-Petersson metric on this space, which we show is Kähler. By proving a local families L 2-index theorem, we exhibit its Kähler form as a multiple of the curvature of a certain determinant line bundle.

  20. Multispectral Electrical Impedance Tomography using Optimization over Manifolds

    NASA Astrophysics Data System (ADS)

    Fouchard, A.; Bonnet, S.; David, O.

    2016-10-01

    Electrical impedance tomography under spectral constraints uses a material basis decomposition to combine the different information embedded in the tissue spectra. This approach offers an alternative to static imaging while benefiting from systemic error cancellation using difference data. It suits well cases where no prior solution is known and the contrast lies entirely between frequencies, e.g. to diagnose acute stroke or cancer. In this work, a computational framework is presented to deal with the extra frequency dimensions and the constraints during reconstruction. A fraction volume approach is demonstrated with explicit Euclidean gradient, usage of a finite volume element solver and minimization over the oblique manifold. It is applied to synthetic data. Parameter estimations are compared between a monofrequency inversion and the proposed multispectral implementation. Results suggest that the proposed workflow enables to reduce the computational workload of multispectral inversion while ensuring valid proportions of materials within each control volume.

  1. Landtesting the underwater Manifold Centre for the Central Cormorant field

    SciTech Connect

    Brady, M.M.

    1983-05-01

    This paper describes the commissioning on land prior to installation of the Underwater Manifold Centre (UMC) for the Central Cormorant field. The test programme was unique in its scope and depth requiring 15 months and 11 million pounds to complete. Included in the paper are guidelines to assist future projects as well as summaries of technical results and a list of the principal problems that were encountered. Management practices utilised to guide the programme to its successful completion are emphasised throughout. Finally, the paper concludes that the landtest programme was a cost-effective and indispensable step which resulted in the UMC being installed in May, 1982 with full confidence, especially in the essential high technology components.

  2. Underwater Manifold Centre - drilled-cuttings disposal system

    SciTech Connect

    Biddlestone, P.A.

    1983-01-01

    During the construction of the Central Cormorant Underwater Manifold Centre (UMC), it was recognized that the cuttings produced during the drilling of template wells would interfere with UMC operations, if deposited on top of the structure. A dual system was developed and installed on the Stadrill (the unit planned to drill the wells) to remove the cuttings from the rig to the seabed away from the UMC. The system as conceived and designed has been successful; it fulfills the requirements for flexibility, reliability, and efficiency. Its dependence on equipment external to the rig is minimal and after the capital outlay, the running costs are only for extra crew to operate the equipment and for maintenance. However, the system has been tailor-made for the UMC, the Stadrill, and the conditions prevailing in the Cormorant area.

  3. Multimodal manifold-regularized transfer learning for MCI conversion prediction.

    PubMed

    Cheng, Bo; Liu, Mingxia; Suk, Heung-Il; Shen, Dinggang; Zhang, Daoqiang

    2015-12-01

    As the early stage of Alzheimer's disease (AD), mild cognitive impairment (MCI) has high chance to convert to AD. Effective prediction of such conversion from MCI to AD is of great importance for early diagnosis of AD and also for evaluating AD risk pre-symptomatically. Unlike most previous methods that used only the samples from a target domain to train a classifier, in this paper, we propose a novel multimodal manifold-regularized transfer learning (M2TL) method that jointly utilizes samples from another domain (e.g., AD vs. normal controls (NC)) as well as unlabeled samples to boost the performance of the MCI conversion prediction. Specifically, the proposed M2TL method includes two key components. The first one is a kernel-based maximum mean discrepancy criterion, which helps eliminate the potential negative effect induced by the distributional difference between the auxiliary domain (i.e., AD and NC) and the target domain (i.e., MCI converters (MCI-C) and MCI non-converters (MCI-NC)). The second one is a semi-supervised multimodal manifold-regularized least squares classification method, where the target-domain samples, the auxiliary-domain samples, and the unlabeled samples can be jointly used for training our classifier. Furthermore, with the integration of a group sparsity constraint into our objective function, the proposed M2TL has a capability of selecting the informative samples to build a robust classifier. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database validate the effectiveness of the proposed method by significantly improving the classification accuracy of 80.1 % for MCI conversion prediction, and also outperforming the state-of-the-art methods.

  4. Multimodal manifold-regularized transfer learning for MCI conversion prediction.

    PubMed

    Cheng, Bo; Liu, Mingxia; Suk, Heung-Il; Shen, Dinggang; Zhang, Daoqiang

    2015-12-01

    As the early stage of Alzheimer's disease (AD), mild cognitive impairment (MCI) has high chance to convert to AD. Effective prediction of such conversion from MCI to AD is of great importance for early diagnosis of AD and also for evaluating AD risk pre-symptomatically. Unlike most previous methods that used only the samples from a target domain to train a classifier, in this paper, we propose a novel multimodal manifold-regularized transfer learning (M2TL) method that jointly utilizes samples from another domain (e.g., AD vs. normal controls (NC)) as well as unlabeled samples to boost the performance of the MCI conversion prediction. Specifically, the proposed M2TL method includes two key components. The first one is a kernel-based maximum mean discrepancy criterion, which helps eliminate the potential negative effect induced by the distributional difference between the auxiliary domain (i.e., AD and NC) and the target domain (i.e., MCI converters (MCI-C) and MCI non-converters (MCI-NC)). The second one is a semi-supervised multimodal manifold-regularized least squares classification method, where the target-domain samples, the auxiliary-domain samples, and the unlabeled samples can be jointly used for training our classifier. Furthermore, with the integration of a group sparsity constraint into our objective function, the proposed M2TL has a capability of selecting the informative samples to build a robust classifier. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database validate the effectiveness of the proposed method by significantly improving the classification accuracy of 80.1 % for MCI conversion prediction, and also outperforming the state-of-the-art methods. PMID:25702248

  5. Multimodal manifold-regularized transfer learning for MCI conversion prediction

    PubMed Central

    Cheng, Bo; Liu, Mingxia; Suk, Heung-Il; Shen, Dinggang; Zhang, Daoqiang

    2015-01-01

    As the early stage of Alzheimer's disease (AD), mild cognitive impairment (MCI) has high chance to convert to AD. Effective prediction of such conversion from MCI to AD is of great importance for early diagnosis of AD and also for evaluating AD risk pre-symptomatically. Unlike most previous methods that used only the samples from a target domain to train a classifier, in this paper, we propose a novel multimodal manifold-regularized transfer learning (M2TL) method that jointly utilizes samples from another domain (e.g., AD vs. normal controls (NC)) as well as unlabeled samples to boost the performance of the MCI conversion prediction. Specifically, the proposed M2TL method includes two key components. The first one is a kernel-based maximum mean discrepancy criterion, which helps eliminate the potential negative effect induced by the distributional difference between the auxiliary domain (i.e., AD and NC) and the target domain (i.e., MCI converters (MCI-C) and MCI non-converters (MCI-NC)). The second one is a semi-supervised multimodal manifold-regularized least squares classification method, where the target-domain samples, the auxiliary-domain samples, and the unlabeled samples can be jointly used for training our classifier. Furthermore, with the integration of a group sparsity constraint into our objective function, the proposed M2TL has a capability of selecting the informative samples to build a robust classifier. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database validate the effectiveness of the proposed method by significantly improving the classification accuracy of 80.1 % for MCI conversion prediction, and also outperforming the state-of-the-art methods. PMID:25702248

  6. T4 fibrations over Calabi-Yau two-folds and non-Kähler manifolds in string theory

    NASA Astrophysics Data System (ADS)

    Lin, Hai

    2016-08-01

    We construct a geometric model of eight-dimensional manifolds and realize them in the context of type II string theory. These eight-manifolds are constructed by non-trivial T4 fibrations over Calabi-Yau two-folds. These give rise to eight-dimensional non-Kähler Hermitian manifolds with SU (4) structure. The eight-manifold is also a circle fibration over a seven-dimensional G2 manifold with skew torsion. The eight-manifolds of this type appear as internal manifolds with SU (4) structure in type IIB string theory with F3 and F7 fluxes. These manifolds have generalized calibrated cycles in the presence of fluxes.

  7. Viscous flow computations for elliptical two-duct version of the SSME hot gas manifold

    NASA Technical Reports Server (NTRS)

    Roger, R. P.

    1986-01-01

    The objective of the effort was to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME). The numerical results were to complement both water flow and air flow experiments in the two-duct geometry performed at NASA-MSFC and Rocketdyne. The three-dimensional character of the HGM consists of two essentially different geometries. The first part of the construction is a concentric shell duct structure which channels the gases from a turbine exit into the second part comprised of two cylindrically shaped transfer ducts. The initial concentric shell portion can be further subdivided into a turnaround section and a bowl section. The turnaround duct (TAD) changes the direction of the mean flow by 180 degress from a smaller radius to a larger radius duct which discharges into the bowl. The cylindrical transfer ducts are attached to the bowl on one side thus providing a plane of symmetry midway between the two. Centerline flow distance from the TAD inlet to the transfer duct exit is approximately two feet. Details of the approach used to numerically simulate laminar or turbulent flow in the HGM geometry are presented. Computational results are presented and discussed.

  8. Design and development of the Waukesha Custom Engine Control Air/Fuel Module

    SciTech Connect

    Moss, D.W.

    1996-12-31

    The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuel composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.

  9. Manifold structures of unstable periodic orbits and the appearance of periodic windows in chaotic systems.

    PubMed

    Kobayashi, Miki U; Saiki, Yoshitaka

    2014-02-01

    Manifold structures of the Lorenz system, the Hénon map, and the Kuramoto-Sivashinsky system are investigated in terms of unstable periodic orbits embedded in the attractors. Especially, changes of manifold structures are focused on when some parameters are varied. The angle between a stable manifold and an unstable manifold (manifold angle) at every sample point along an unstable periodic orbit is measured using the covariant Lyapunov vectors. It is found that the angle characterizes the parameter at which the periodic window corresponding to the unstable periodic orbit finishes, that is, a saddle-node bifurcation point. In particular, when the minimum value of the manifold angle along an unstable periodic orbit at a parameter is small (large), the corresponding periodic window exists near (away from) the parameter. It is concluded that the window sequence in a parameter space can be predicted from the manifold angles of unstable periodic orbits at some parameter. The fact is important because the local information in a parameter space characterizes the global information in it. This approach helps us find periodic windows including very small ones.

  10. Subspace learning of dynamics on a shape manifold: a generative modeling approach.

    PubMed

    Yi, Sheng; Krim, Hamid

    2014-11-01

    In this paper, we propose a novel subspace learning algorithm of shape dynamics. Compared to the previous works, our method is invertible and better characterizes the nonlinear geometry of a shape manifold while retaining a good computational efficiency. In this paper, using a parallel moving frame on a shape manifold, each path of shape dynamics is uniquely represented in a subspace spanned by the moving frame, given an initial condition (the starting point and starting frame). Mathematically, such a representation may be formulated as solving a manifold-valued differential equation, which provides a generative modeling of high-dimensional shape dynamics in a lower dimensional subspace. Given the parallelism and a path on a shape manifold, the parallel moving frame along the path is uniquely determined up to the choice of the starting frame. With an initial frame, we minimize the reconstruction error from the subspace to shape manifold. Such an optimization characterizes well the Riemannian geometry of the manifold by imposing parallelism (equivalent as a Riemannian metric) constraints on the moving frame. The parallelism in this paper is defined by a Levi-Civita connection, which is consistent with the Riemannian metric of the shape manifold. In the experiments, the performance of the subspace learning is extensively evaluated using two scenarios: 1) how the high dimensional geometry is characterized in the subspace and 2) how the reconstruction compares with the original shape dynamics. The results demonstrate and validate the theoretical advantages of the proposed approach. PMID:25248183

  11. Fault diagnosis for manifold absolute pressure sensor(MAP) of diesel engine based on Elman neural network observer

    NASA Astrophysics Data System (ADS)

    Wang, Yingmin; Zhang, Fujun; Cui, Tao; Zhou, Jinlong

    2016-03-01

    Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can't be diagnosed easily using model-based methods. Thus, a fault diagnosis method based on Elman neural network observer is proposed. By comparing simulation results of intake pressure based on BP network and Elman neural network, lower sampling error magnitude is gained using Elman neural network, and the error is less volatile. Forecast accuracy is between 0.015-0.017 5 and sample error is controlled within 0-0.07. Considering the output stability and complexity of solving comprehensively, Elman neural network with a single hidden layer and with 44 nodes is presented as intake system observer. By comparing the relations of confidence intervals of the residual value between the measured and predicted values, error variance and failures in various fault types. Then four typical MAP faults of diesel engine can be diagnosed: complete failure fault, bias fault, precision degradation fault and drift fault. The simulation results show: intake pressure is observable and selection of diagnostic strategy parameter reasonably can increase the accuracy of diagnosis; the proposed fault diagnosis method only depends on data and structural parameters of observer, not depends on the nonlinear model of air intake system. A fault diagnosis method is proposed not depending system model to observe intake pressure, and bias fault and precision degradation fault of MAP of diesel engine can be diagnosed based on residuals.

  12. Technology Solutions Case Study: Sealed Air-Return Plenum Retrofit

    SciTech Connect

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory researchers greatly improved indoor air quality and HVAC performance by replacing an old, leaky air handler with a new air handler with an air-sealed return plenum with filter; they also sealed the ducts, and added a fresh air intake.

  13. Intake fraction of nonreactive vehicle emissions in US urban areas

    NASA Astrophysics Data System (ADS)

    Marshall, Julian D.; Teoh, Soon-Kay; Nazaroff, William W.

    Intake fraction, which is the fraction of emissions that are inhaled by people, quantifies the "exposure efficiency" of an emission source. We use three methods to estimate intake fractions for vehicle emissions in US urban areas. First, we use a one-compartment steady-state mass-balance model, incorporating meteorological and demographic data. Second, we use an empirical emissions-to-concentration relationship for vehicle carbon monoxide developed for 15 US urban areas. Third, we analyze model results for benzene and diesel particulate matter from the US Environmental Protection Agency's National-scale Air Toxics Assessment (NATA). The population-weighted mean intraurban intake fraction for nonreactive gaseous vehicle emissions in US urban areas is estimated to be in the range 7-21 per million, with a best estimate of 14 per million. The intake fraction for diesel particles is 4 per million, based on NATA results. An intake fraction of 4 per million means that 4 mg of pollution are inhaled per kg emitted. Intake fraction values for urban vehicle emissions are usually higher in winter than in summer because of seasonal variability in the atmospheric mixing height. The results presented in this work can be used in health risk assessments, cost-benefit analyses, and other investigations that require a summary of the emission-to-intake relationship.

  14. Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takeji

    The reduction of intake of outdoor air volume in air conditioned buildings, adopted as the strategy for saving energy, has caused sick building syndrome abroad. Such symptoms of sick building as headache, stimuli of eye and nose and lethargy, appears to result from cigarette smoke, folmaldehyde and volatile organic carbons. On the other hand, in airtight residences not only carbon monoxide and nitrogen oxides from domestic burning appliances but also allergens of mite, fungi, pollen and house dust, have become a subject of discussion. Moreover, asbestos and radon of carcinogen now attract a great deal of attention. Those indoor air pollutants are discussed.

  15. Applications of lagrangian coherent structures to expression of invariant manifolds in astrodynamics

    NASA Astrophysics Data System (ADS)

    Qi, Rui; Xu, Shi Jie

    2014-05-01

    This paper investigates the relationship between invariant manifold and Lagrangian coherent structure (LCS) in dynamical systems. LCS is defined as the ridge of finite-time Lyapunov exponent (FTLE) field, and is proving to be excellent platform for studies of stable and unstable manifold in flows with arbitrary time dependence. In this study, the LCS tool is applied to autonomous systems, simple pendulum and planar circular restricted three-body problem (PCR3BP), and also non-autonomous ones, double-gyre flow and bicircular problem (BCP). A comparison between LCS and invariant manifold is presented.

  16. Encoding quantum information in a stabilized manifold of a superconducting cavity

    NASA Astrophysics Data System (ADS)

    Touzard, S.; Leghtas, Z.; Mundhada, S. O.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    In a superconducting Josephson circuit architecture, we activate a multi-photon process between two modes by applying microwave drives at specific frequencies. This creates a pairwise exchange of photons between a high-Q cavity and the environment. The resulting open dynamical system develops a two-dimensional quasi-energy ground state manifold. Can we encode, protect and manipulate quantum information in this manifold? We experimentally investigate the convergence and escape rates in and out of this confined subspace. Finally, using quantum Zeno dynamics, we aim to perform gates which maintain the state in the protected manifold at all times. Work supported by: ARO, ONR, AFOSR and YINQE.

  17. Laser beam manifold and particle photography system for use in fluid velocity measurements

    NASA Technical Reports Server (NTRS)

    Owen, R. B.; Campbell, C. W.

    1980-01-01

    A laser beam manifold and particle photography system has been developed for use in fluid velocity measurements. The laser manifold is a device which transforms a single laser beam into several uniform parallel beams. By orienting two manifolds mutually perpendicular, an optical grid can be formed which acts as a reference for fluid velocity measurements. This optical grid is for all practical purposes totally nonperturbing to the flow. Tracer particles moving in the plane of the grid are then photographed to yield fluid velocities that can be measured relative to the optical grid. System construction and theory are presented.

  18. Stable and unstable invariant manifolds in a partially chaotic magnetic configuration generated by nonlinear reconnection

    SciTech Connect

    Borgogno, D.; Grasso, D.; Pegoraro, F.; Schep, T. J.

    2008-10-15

    A numerical contour dynamics code has been employed to calculate the stable and unstable manifolds related to two interacting magnetic island chains. The magnetic configuration is generated by a nonlinear reconnection process described in D. Borgogno et al. [Phys. Plasmas. 12, 032309 (2005)]. The appearance of the first homoclinic and heteroclinic intersections of the dominant manifolds are shown and one of the associated uniformly hyperbolic orbits is given. The stickiness of the field lines around the island and the eventual development of global stochasticity are discussed. The basic geometry of the magnetic configuration is periodic so that the structure of the manifolds may be compared with the one obtained with Poincare plots.

  19. Three-dimensional representations of the tube manifolds of the planar restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Lega, Elena; Guzzo, Massimiliano

    2016-06-01

    The stable and unstable manifolds of the Lyapunov orbits of the Lagrangian equilibrium points L1, L2 play a key role in the understanding of the complicated dynamics of the circular restricted three-body problem. By developing a recent technique of computation of the stable and unstable manifolds, based on the use of Fast Lyapunov Indicators modified by the introduction of a filtering window function, we compute sample three-dimensional representations of the manifolds which show an original vista about their complicated development in the phase-space.

  20. Superconformal algebras and string compactification on manifolds with SU( n) holonomy

    NASA Astrophysics Data System (ADS)

    Eguchi, Tohru; Ooguri, Hirosi; Taormina, Anne; Yang, Sung-Kil

    1989-03-01

    We discuss string compactifications on manifolds with SU( n) holonomy by making use of representation theories of extended superconformal algebras. In particular, string compactification on K 3 surfaces is discussed in detail. We calculate loop-space indices and show that all c = 6 superconformal field theories describe string propagation on manifolds with SU(2) holonomy. We study Gepner's models based on the tensoring of N = 2 minimal series and point out that some of these models are identified as orbifolds. We also discuss c = 9 superconformal field theories and their relation to Calabi-Yau manifolds.

  1. Sodium intake and cardiovascular health.

    PubMed

    O'Donnell, Martin; Mente, Andrew; Yusuf, Salim

    2015-03-13

    Sodium is an essential nutrient. Increasing sodium intake is associated with increasing blood pressure, whereas low sodium intake results in increased renin and aldosterone levels. Randomized controlled trials have reported reductions in blood pressure with reductions in sodium intake, to levels of sodium intake <1.5 g/d, and form the evidentiary basis for current population-wide guidelines recommending low sodium intake. Although low sodium intake (<2.0 g/d) has been achieved in short-term feeding clinical trials, sustained low sodium intake has not been achieved by any of the longer term clinical trials (>6-month duration). It is assumed that the blood pressure-lowering effects of reducing sodium intake to low levels will result in large reductions in cardiovascular disease globally. However, current evidence from prospective cohort studies suggests a J-shaped association between sodium intake and cardiovascular events, based on studies from >300 000 people, and suggests that the lowest risk of cardiovascular events and death occurs in populations consuming an average sodium intake range (3-5 g/d). The increased risk of cardiovascular events associated with higher sodium intake (>5 g/d) is most prominent in those with hypertension. A major deficit in the field is the absence of large randomized controlled trials to provide definitive evidence on optimal sodium intake for preventing cardiovascular events. Pending such trials, current evidence would suggest a recommendation for moderate sodium intake in the general population (3-5 g/d), with targeting the lower end of the moderate range among those with hypertension.

  2. The manifold zoology of anelastic dynamos with variable conductivity

    NASA Astrophysics Data System (ADS)

    Dietrich, Wieland; Jones, Chris

    2015-04-01

    Whereas the dynamo processes in terrestrial planets is strongly influenced by the overlying rocky mantle, the induction of global magnetic fields in gas giants is mainly affected by internal properties, such as the rapid outward decay of static density, pressure and temperature throughout the gaseous shell. Further for Jupiter and Saturn it is well known that the transition from metallic to molecular hydrogen leads to a steep decrease in the electrical conductivity. This drop-off radius is closer to the surface for heavy Jupiter (at 90% of its respective radius), but much deeper for the less massive Saturn (65%). From the modelling perspective this leads to an inner conducting shell where the magnetic fields dominate the dynamics, and outer hydro dynamic shell where the strong Coriolis force reigns. Within this study we parametrise the conductivity drop-off radius and investigate the interaction between these shells, such as the emergence of differential rotation and induction of magnetic fields. Remarkably, we could identify numerous rather different self-consistent dynamo solutions. E.g., hemispherical dynamos, quadrupolar dynamos, octupolar dynamos, dipolar dynamo waves or many mixed modes, such as solutions where the quadrupole is stable in time and the dipole periodically reverses. In summary, our results suggest anelastic dynamo models with variable conductivity yield manifold different solutions in close poriximity in the parameter space. Unfortunately for Saturn-like models with deep conductivity drop-off, Saturn-like magnetic field (stable, strongly dipolar) seemed rather unlikely.

  3. Mapping the human cerebral cortex using 3-D medial manifolds

    NASA Astrophysics Data System (ADS)

    Szekely, Gabor; Brechbuehler, Christian; Kuebler, Olaf; Ogniewicz, Robert; Budinger, Thomas F.

    1992-09-01

    Novel imaging technologies provide a detailed look at structure and function of the tremendously complex and variable human brain. Optimal exploitation of the information stored in the rapidly growing collection of acquired and segmented MRI data calls for robust and reliable descriptions of the individual geometry of the cerebral cortex. A mathematical description and representation of 3-D shape, capable of dealing with form of variable appearance, is at the focus of this paper. We base our development on the Medial Axis Transformation (MAT) customarily defined in 2-D although the concept generalizes to any number of dimensions. Our implementation of the 3-D MAT combines full 3-D Voronoitesselation generated by the set of all border points with regularization procedures to obtain geometrically and topologically correct medial manifolds. The proposed algorithm was tested on synthetic objects and has been applied to 3-D MRI data of 1 mm isotropic resolution to obtain a description of the sulci in the cerebral cortex. Description and representation of the cortical anatomy is significant in clinical applications, medical research, and instrumentation developments.

  4. Multimodal Medical Image Fusion by Adaptive Manifold Filter.

    PubMed

    Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images. PMID:26664494

  5. Stretch fast dynamo mechanism via conformal mapping in Riemannian manifolds

    SciTech Connect

    Garcia de Andrade, L. C.

    2007-10-15

    Two new analytical solutions of the self-induction equation in Riemannian manifolds are presented. The first represents a twisted magnetic flux tube or flux rope in plasma astrophysics, where the rotation of the flow implies that the poloidal field is amplified from toroidal field, in the spirit of dynamo theory. The value of the amplification depends on the Frenet torsion of the magnetic axis of the tube. Actually this result illustrates the Zeldovich stretch, twist, and fold method to generate dynamos from straight and untwisted ropes. Based on the fact that this problem was previously handled, using a Riemannian geometry of twisted magnetic flux ropes [Phys Plasmas 13, 022309 (2006)], investigation of a second dynamo solution, conformally related to the Arnold kinematic fast dynamo, is obtained. In this solution, it is shown that the conformal effect on the fast dynamo metric enhances the Zeldovich stretch, and therefore a new dynamo solution is obtained. When a conformal mapping is performed in an Arnold fast dynamo line element, a uniform stretch is obtained in the original line element.

  6. Surrogate based wind farm layout optimization using manifold mapping

    NASA Astrophysics Data System (ADS)

    Kaja Kamaludeen, Shaafi M.; van Zuijle, Alexander; Bijl, Hester

    2016-09-01

    High computational cost associated with the high fidelity wake models such as RANS or LES serves as a primary bottleneck to perform a direct high fidelity wind farm layout optimization (WFLO) using accurate CFD based wake models. Therefore, a surrogate based multi-fidelity WFLO methodology (SWFLO) is proposed. The surrogate model is built using an SBO method referred as manifold mapping (MM). As a verification, optimization of spacing between two staggered wind turbines was performed using the proposed surrogate based methodology and the performance was compared with that of direct optimization using high fidelity model. Significant reduction in computational cost was achieved using MM: a maximum computational cost reduction of 65%, while arriving at the same optima as that of direct high fidelity optimization. The similarity between the response of models, the number of mapping points and its position, highly influences the computational efficiency of the proposed method. As a proof of concept, realistic WFLO of a small 7-turbine wind farm is performed using the proposed surrogate based methodology. Two variants of Jensen wake model with different decay coefficients were used as the fine and coarse model. The proposed SWFLO method arrived at the same optima as that of the fine model with very less number of fine model simulations.

  7. Flowing on Riemannian manifold: domain adaptation by shifting covariance.

    PubMed

    Cui, Zhen; Li, Wen; Xu, Dong; Shan, Shiguang; Chen, Xilin; Li, Xuelong

    2014-12-01

    Domain adaptation has shown promising results in computer vision applications. In this paper, we propose a new unsupervised domain adaptation method called domain adaptation by shifting covariance (DASC) for object recognition without requiring any labeled samples from the target domain. By characterizing samples from each domain as one covariance matrix, the source and target domain are represented into two distinct points residing on a Riemannian manifold. Along the geodesic constructed from the two points, we then interpolate some intermediate points (i.e., covariance matrices), which are used to bridge the two domains. By utilizing the principal components of each covariance matrix, samples from each domain are further projected into intermediate feature spaces, which finally leads to domain-invariant features after the concatenation of these features from intermediate points. In the multiple source domain adaptation task, we also need to effectively integrate different types of features between each pair of source and target domains. We additionally propose an SVM based method to simultaneously learn the optimal target classifier as well as the optimal weights for different source domains. Extensive experiments demonstrate the effectiveness of our method for both single source and multiple source domain adaptation tasks.

  8. Geometry of the double tangent bundles of Banach manifolds

    NASA Astrophysics Data System (ADS)

    Suri, Ali

    2013-12-01

    In this paper for a vector bundle (v.b.) (p,E,M), we show that at the presence of a (possibly nonlinear) connection on (p,E.M), TE on M admits a v.b. structure. This fact is followed by a suitable converse which asserts that a v.b. structure for TE over M yields a linear connection on the original bundle (p,E,M). Moreover we clarify the relation between v.b. structures and also the induced bundle morphisms which will be used for classification of these v.b. structures. Afterwards the concept of second order connections on a manifold M is introduced which leads us to interesting geometric tools on the bundle of accelerations. In fact by using the v.b. structure for σ:TTM⟶M, we will study the geometric tools on the second order tangent bundle. The concepts of second order covariant derivative, first and second order auto-parallel curve, the appropriate exponential mapping and second order Lie derivative are introduced.

  9. 106. R4 COMPRESSOR WITH FREON INTAKE LINE IN MECHANICAL EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. R-4 COMPRESSOR WITH FREON INTAKE LINE IN MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Apparatus and method for treating air from a turbocharger

    SciTech Connect

    Mann, D.O.

    1987-11-24

    This patent describes an apparatus for cooling and removing moisture from compressed air passing from a turbocharger and the like to an intake of an engine comprising: an air duct connecting the turbocharger to the intake of the engine; heat pipes extending across the air duct for receiving heat from the compressed air passing through the air duct; a portion of the heat pipes extending from the air duct into a zone of ambient air external to the air duct for transferring heat received from the compressed air to the ambient air thus cooling the compressed air; and a lower extension of the air duct forming a coalescer zone receiving the compressed air after cooling by the heat pipes extending across the air duct for removing moisture therefrom.

  11. Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra

    NASA Astrophysics Data System (ADS)

    van den Berg, Jan Bouwe; Mireles James, Jason D.; Reinhardt, Christian

    2016-08-01

    We develop techniques for computing the (un)stable manifold at a hyperbolic equilibrium of an analytic vector field. Our approach is based on the so-called parametrization method for invariant manifolds. A feature of this approach is that it leads to a posteriori analysis of truncation errors which, when combined with careful management of round off errors, yields a mathematically rigorous enclosure of the manifold. The main novelty of the present work is that, by conjugating the dynamics on the manifold to a polynomial rather than a linear vector field, the computer-assisted analysis is successful even in the case when the eigenvalues fail to satisfy non-resonance conditions. This generically occurs in parametrized families of vector fields. As an example, we use the method as a crucial ingredient in a computational existence proof of a connecting orbit in an amplitude equation related to a pattern formation model that features eigenvalue resonances.

  12. Estimating Turaev-Viro three-manifold invariants is universal for quantum computation

    SciTech Connect

    Alagic, Gorjan; Reichardt, Ben W.; Jordan, Stephen P.; Koenig, Robert

    2010-10-15

    The Turaev-Viro invariants are scalar topological invariants of compact, orientable 3-manifolds. We give a quantum algorithm for additively approximating Turaev-Viro invariants of a manifold presented by a Heegaard splitting. The algorithm is motivated by the relationship between topological quantum computers and (2+1)-dimensional topological quantum field theories. Its accuracy is shown to be nontrivial, as the same algorithm, after efficient classical preprocessing, can solve any problem efficiently decidable by a quantum computer. Thus approximating certain Turaev-Viro invariants of manifolds presented by Heegaard splittings is a universal problem for quantum computation. This establishes a relation between the task of distinguishing nonhomeomorphic 3-manifolds and the power of a general quantum computer.

  13. Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer

    DOEpatents

    Grossman, Mark W.; Evans, Roger

    1991-01-01

    A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the .sup.196 Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of .+-.0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour.

  14. Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer

    DOEpatents

    Grossman, M.W.; Evans, R.

    1991-11-26

    A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the [sup 196]Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of [+-]0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour. 8 figures.

  15. Conjugate Heat Transfer Analyses on the Manifold for Ramjet Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.

    2006-01-01

    Three-dimensional conjugate heat transfer analyses on the manifold located upstream of the ramjet fuel injector are performed using CFdesign, a finite-element computational fluid dynamics (CFD) software. The flow field of the hot fuel (JP-7) flowing through the manifold is simulated and the wall temperature of the manifold is computed. The three-dimensional numerical results of the fuel temperature are compared with those obtained using a one-dimensional analysis based on empirical equations, and they showed a good agreement. The numerical results revealed that it takes around 30 to 40 sec to reach the equilibrium where the fuel temperature has dropped about 3 F from the inlet to the exit of the manifold.

  16. Slow manifold structure in explosive kinetics. 2. Extension to higher dimensional systems.

    PubMed

    Giona, M; Adrover, A; Creta, F; Valorani, M

    2006-12-21

    This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations or on the deformation of m-dimensional volume elements (if the manifold is m-dimensional) and of the complementary (n - m)-elements in the normal orthogonal complement. The latter approach, based on elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume elements can be related to suitable local stretching rates, and local analysis can be performed directly from the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions.

  17. Estimating the Dimension of an Inertial Manifold from Unstable Periodic Orbits.

    PubMed

    Ding, X; Chaté, H; Cvitanović, P; Siminos, E; Takeuchi, K A

    2016-07-01

    We provide numerical evidence that a finite-dimensional inertial manifold on which the dynamics of a chaotic dissipative dynamical system lives can be constructed solely from the knowledge of a set of unstable periodic orbits. In particular, we determine the dimension of the inertial manifold for the Kuramoto-Sivashinsky system and find it to be equal to the "physical dimension" computed previously via the hyperbolicity properties of covariant Lyapunov vectors.

  18. Estimating the Dimension of an Inertial Manifold from Unstable Periodic Orbits.

    PubMed

    Ding, X; Chaté, H; Cvitanović, P; Siminos, E; Takeuchi, K A

    2016-07-01

    We provide numerical evidence that a finite-dimensional inertial manifold on which the dynamics of a chaotic dissipative dynamical system lives can be constructed solely from the knowledge of a set of unstable periodic orbits. In particular, we determine the dimension of the inertial manifold for the Kuramoto-Sivashinsky system and find it to be equal to the "physical dimension" computed previously via the hyperbolicity properties of covariant Lyapunov vectors. PMID:27447508

  19. Analytical Approximation Method for the Center Manifold in the Nonlinear Output Regulation Problem

    NASA Astrophysics Data System (ADS)

    Suzuki, Hidetoshi; Sakamoto, Noboru; Celikovský, Sergej

    In nonlinear output regulation problems, it is necessary to solve the so-called regulator equations consisting of a partial differential equation and an algebraic equation. It is known that, for the hyperbolic zero dynamics case, solving the regulator equations is equivalent to calculating a center manifold for zero dynamics of the system. The present paper proposes a successive approximation method for obtaining center manifolds and shows its effectiveness by applying it for an inverted pendulum example.

  20. Analytical invariant manifolds near unstable points and the structure of chaos

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Christos; Contopoulos, George; Katsanikas, Matthaios

    2014-08-01

    It is known that the asymptotic invariant manifolds around an unstable periodic orbit in conservative systems can be represented by convergent series (Cherry, Proc Lond Math Soc ser 2, 27:151-170, 1926; Moser, Commun Pure Appl Math 9:673, 1956 and 11:257, 1958; Moser, Giorgilli, Discret Contin Dyn Syst 7:855, 2001). The unstable and stable manifolds intersect at an infinity of homoclinic points, generating a complicated homoclinic tangle. In the case of simple mappings it was found (Da Silva Ritter et al., Phys D 29:181, 1987) that the domain of convergence of the formal series extends to infinity along the invariant manifolds. This allows in practice the study of the homoclinic tangle using only series. However in the case of Hamiltonian systems, or mappings with a finite analyticity domain, the convergence of the series along the asymptotic manifolds is also finite. Here, we provide numerical indications that the convergence does not reach any homoclinic points. We discuss in detail the convergence problem in various cases and we find the degree of approximation of the analytical invariant manifolds to the real (numerical) manifolds as (i) the order of truncation of the series increases, and (ii) we use higher numerical precision in computing the coefficients of the series. Then we introduce a new method of series composition, by using action-angle variables, that allows the calculation of the asymptotic manifolds up to an a arbitrarily large extent. This is the first case of an analytic development that allows the computation of the invariant manifolds and their intersections in a Hamiltonian system for an extent long enough to allow the study of homoclinic chaos by analytical means.

  1. Modeling and mitigating noise in graph and manifold representations of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Jin, Can; Bachmann, Charles M.

    2015-05-01

    Over the past decade, manifold and graph representations of hyperspectral imagery (HSI) have been explored widely in HSI applications. There are a large number of data-driven approaches to deriving manifold coordinate representations including Isometric Mapping (ISOMAP)1, Local Linear Embedding (LLE)2, Laplacian Eigenmaps (LE)3, Diffusion Kernels (DK)4, and many related methods. Improvements to specific algorithms have been developed to ease computational burden or otherwise improve algorithm performance. For example, the best way to estimate the size of the locally linear neighborhoods used in graph construction have been addressed6 as well as the best method of linking the manifold representation with classifiers in applications. However, the problem of how to model and mitigate noise in manifold representations of hyperspectral imagery has not been well studied and remains a challenge for graph and manifold representations of hyperspectral imagery and their application. It is relatively easy to apply standard linear methods to remove noise from the data in advance of further processing, however, these approaches by and large treat the noise model in a global sense, using statistics derived from the entire data set and applying the results globally over the data set. Graph and manifold representations by their nature attempt to find an intrinsic representation of the local data structure, so it is natural to ask how can one best represent the noise model in a local sense. In this paper, we explore the approaches to modeling and mitigating noise at a local level, using manifold coordinates of local spectral subsets. The issue of landmark selection of the current landmark ISOMAP algorithm5 is addressed and a workflow is proposed to make use of manifold coordinates of local spectral subsets to make optimal landmark selection and minimize the effect of local noise.

  2. The relative isoperimetric inequality on a conformally parabolic manifold with boundary

    SciTech Connect

    Kesel'man, Vladimir M

    2011-07-31

    For an arbitrary noncompact n-dimensional Riemannian manifold with a boundary of conformally parabolic type it is proved that there exists a conformal change of metric such that a relative isoperimetric inequality of the same form as in the closed n-dimensional Euclidean half-space holds on the manifold with the new metric. This isoperimetric inequality is asymptotically sharp. Bibliography: 6 titles.

  3. Kinematics of the Milky Way spiral arms driven by the invariant manifolds

    NASA Astrophysics Data System (ADS)

    Romero-Gomez, M.; Athanassoula, E.; Antoja, T.; Figueras, F.

    2011-11-01

    Here we present the analysis and properties of the Milky Way stellar arms. We apply the recent theory of the invariant manifolds to obtain the locus of the spiral arms and rings of a bar galactic potential. This theory is based on the dynamics driven by the invariant manifolds of unstable periodic orbits. The invariant manifolds are asymptotic orbits that act as a tube that can trap and drive material (Romero-Gomez et al. 2006, 2007; Athanassoula, Romero-Gomez & Masdemont 2009; Athanassoula et al. 2010). We compute the invariant manifolds of a barred potential, where no spiral perturbation is induced. We briefly explain the details of the dynamics driven by the manifolds and we compare the properties and locus obtained by the potentials used in the literature to describe the Galactic bar. In particular, we compare the kinematics given by both the manifolds and the CO emission from observations (Dame, Hartmann & Thaddeus 2001). To do so we plot longitude -- heliocentric radial velocity diagrams, (l,v)-diagrams. We observe that the kinematics driven by the orbits reproduce well the Galactic Molecular Ring and, in some cases, the 3 kpc arms.

  4. A Low-Dimensional Principal Manifold as the "Attractor Backbone" of a Chaotic Beam System

    NASA Astrophysics Data System (ADS)

    Bollt, Erik M.; Skufca, Joseph D.

    We model an elastic beam subject to a contact load which displaces under a chaotic external forcing, motivated by application of a ship carrying either a crane, or fluids in internal tanks. This model not only has rich dynamics and relevance in its own right, it gives rise to a Partial Differential Equation (PDE) whose solutions are chaotic, with an attractor whose points lie "near" a low-dimensional curve. This form identifies a data-driven dimensionality reduction which encapsulates a Cartesian product, approximately, of a principal manifold, corresponding to spatial regularity, against a temporal complex dynamics of the intrinsic variable of the manifold. The principal manifold element serves to translate the complex information at one site to all other sites on the beam. Although points of the attractor do not lie on the principal manifold, they lie sufficiently close that we describe that manifold as a "backbone" running through the attractor, allowing the manifold to serve as a suitable space to approximate behaviors.

  5. Morse-Novikov cohomology of locally conformally Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Ornea, Liviu; Verbitsky, Misha

    2009-03-01

    A locally conformally Kähler (LCK) manifold is a complex manifold admitting a Kähler covering, with the monodromy acting on this covering by holomorphic homotheties. We define three cohomology invariants, the Lee class, the Morse-Novikov class, and the Bott-Chern class, of an LCK-structure. These invariants play together the same role as the Kähler class in Kähler geometry. If these classes coincide for two LCK-structures, the difference between these structures can be expressed by a smooth potential, similar to the Kähler case. We show that the Morse-Novikov class and the Bott-Chern class of a Vaisman manifold vanish. Moreover, for any LCK-structure on a manifold, admitting a Vaisman structure, we prove that its Morse-Novikov class vanishes. We show that a compact LCK-manifold M with vanishing Bott-Chern class admits a holomorphic embedding into a Hopf manifold, if dimCM⩾3, a result which parallels the Kodaira embedding theorem.

  6. Experimental Investigation on Liquid Metal Flow Distribution in Insulating Manifold under Uniform Magnetic Field

    NASA Astrophysics Data System (ADS)

    Miura, Masato; Ueki, Yoshitaka; Yokomine, Takehiko; Kunugi, Tomoaki

    2012-11-01

    Magnetohydrodynamics (MHD) problem which is caused by interaction between electrical conducting fluid flow and the magnetic field is one of the biggest problem in the liquid metal blanket of the fusion reactor. In the liquid metal blanket concept, it is necessary to distribute liquid metal flows uniformly in the manifold because imbalance of flow rates should affect the heat transfer performance directly, which leads to safety problem. While the manifold is insulated electrically as well as the flow duct, the 3D-MHD effect on the flowing liquid metal in the manifold is more apparent than that in straight duct. With reference to the flow distribution in this concept, the liquid metal flow in the electrical insulating manifold under the uniform transverse magnetic field is investigated experimentally. In this study, GaInSn is selected as working fluid. The experimental system includes the electrical magnet and the manifold test section which is made of acrylic resin for perfectly electrical insulation. The liquid metal flows in a non-symmetric 180°-turn with manifold, which consists of one upward channel and two downward channels. The flow rates in each channel are measured by electromagnetic flow meters for several combinations Reynolds number and Hartman number. The effects of magnetic field on the uniformity of flow distribution are cleared.

  7. Quantization of Chern-Simons Theories on Manifolds with Boundaries

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe Roberto

    The subject matter of this thesis deals with Chern -Simons Topological Field Theories in 2 + 1 space-time dimensions on manifolds with boundaries. We develop elementary canonical methods for the quantization of Abelian and non-Abelian Chern-Simons actions, only using well known ideas in gauge theories and quantum gravity. In particular, our approach does not involve choice of gauge or delicate manipulations of functional integrals. When the spacial slice is a disc, it yields Witten's edge states carrying a representation of the Kac -Moody algebra. The canonical expression for the generators of diffeomorphisms acting on the boundary of the disc are also found, and it is established that they are the Chern -Simons version of the Sugawara construction. The formalism is then extended to the inclusion of sources. The quantum states of a source with a fixed spatial location are shown to be those of a conformal family. The internal states of a source are not thus associated with just a single ray of a Hilbert space. Vertex operators for both abelian and non-abelian sources are constructed. The regularized abelian Wilson line is proved to be a vertex operator. The spin-statistics theorem is established for Chern-Simons dynamics even though the sources are not described by relativistic quantum fields. The proof employs particularly simple and transparent geometrical methods. These results are finally applied to the Chern -Simons formulation of gravity in 2 + 1 dimensions, due to Witten. Here also, when the spatial slice is a disc, edge states are found, carrying a representation of the ISO(2,1) Kac-Moody algebra. The appropriate vertex operator is constructed also for this theory. It is shown that when acting on the vacuum it creates particles with a discrete mass spectrum. The lowest mass particle induces a cylindrical space time geometry, while higher mass particles give an n-fold covering of the cylinder.

  8. Cohomogeneity one manifolds of Spin(7) and G2 holonomy

    NASA Astrophysics Data System (ADS)

    Cvetič, M.; Gibbons, G. W.; Lü, H.; Pope, C. N.

    2002-05-01

    In this paper, we look for metrics of cohomogeneity one in D=8 and 7 dimensions with Spin(7) and G2 holonomy, respectively. In D=8, we first consider the case of principal orbits that are S7, viewed as an S3 bundle over S4 with triaxial squashing of the S3 fibers. This gives a more general system of first-order equations for Spin(7) holonomy than has been solved previously. Using numerical methods, we establish the existence of new nonsingular asymptotically locally conical (ALC) Spin(7) metrics on line bundles over CP3, with a nontrivial parameter that characterizes the homogeneous squashing of CP3. We then consider the case where the principal orbits are the Aloff-Wallach spaces N(k,l)=SU(3)/U(1), where the integers k and l characterize the embedding of U(1). We find new ALC and asymptotically conical (AC) metrics of Spin(7) holonomy, as solutions of the first-order equations that we obtained previously [M. Cvetič, G. W. Gibbons, H. Lü, and C. N. Pope, Nucl. Phys. B617, 151 (2001)]. These include certain explicit ALC metrics for all N(k,l), and numerical and perturbative results for ALC families with AC limits. We then study D=7 metrics of G2 holonomy, and find new explicit examples, which, however, are singular, where the principal orbits are the flag manifold SU(3)/[U(1)×U(1)]. We also obtain numerical results for new nonsingular metrics with principal orbits that are S3×S3. Additional topics include a detailed and explicit discussion of the Einstein metrics on N(k,l), and an explicit parametrization of SU(3).

  9. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  10. Chapter 11: Dietary reference intakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dietary Reference Intakes (DRI) are a set of recommendations intended to provide guidance in evaluating nutrient intakes and planning meals on the basis of nutrient adequacy. In contrast to their predecessor, Recommended Dietary Allowances last published in 1989, the DRIs differ in two ways: th...

  11. Vitamin K Intake and Atherosclerosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been hypothesized that insufficient intake of vitamin K may increase soft tissue calcification due to impaired gamma-carboxylation of the vitamin K-dependent protein, matrix gamma-carboxyglutamic acid (MGP). The evidence to support this putative role of vitamin K intake in atherosclerosis is ...

  12. A manifold learning approach to target detection in high-resolution hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ziemann, Amanda K.

    Imagery collected from airborne platforms and satellites provide an important medium for remotely analyzing the content in a scene. In particular, the ability to detect a specific material within a scene is of high importance to both civilian and defense applications. This may include identifying "targets" such as vehicles, buildings, or boats. Sensors that process hyperspectral images provide the high-dimensional spectral information necessary to perform such analyses. However, for a d-dimensional hyperspectral image, it is typical for the data to inherently occupy an m-dimensional space, with m << d. In the remote sensing community, this has led to a recent increase in the use of manifold learning, which aims to characterize the embedded lower-dimensional, non-linear manifold upon which the hyperspectral data inherently lie. Classic hyperspectral data models include statistical, linear subspace, and linear mixture models, but these can place restrictive assumptions on the distribution of the data; this is particularly true when implementing traditional target detection approaches, and the limitations of these models are well-documented. With manifold learning based approaches, the only assumption is that the data reside on an underlying manifold that can be discretely modeled by a graph. The research presented here focuses on the use of graph theory and manifold learning in hyperspectral imagery. Early work explored various graph-building techniques with application to the background model of the Topological Anomaly Detection (TAD) algorithm, which is a graph theory based approach to anomaly detection. This led towards a focus on target detection, and in the development of a specific graph-based model of the data and subsequent dimensionality reduction using manifold learning. An adaptive graph is built on the data, and then used to implement an adaptive version of locally linear embedding (LLE). We artificially induce a target manifold and incorporate it into

  13. Effect of piano-key shape inlet on critical submergence at a vertical pipe intake

    NASA Astrophysics Data System (ADS)

    Shemshi, R.; Kabiri-Samani, A.

    2012-11-01

    Intake vortices are the result of angular momentum conservation at the flow constriction, where angular velocity increases with a decrease in the cross sectional area. The common solution for avoiding air-entrainment and swirl is to provide sufficient submergence to the intake. If the required approach flow conditions can not be met to avoid swirl and air entrainment, other approaches for preventing vortices at water intakes are considered. There are several means of avoiding air-entrainment, where the most cost-effective option is often determined by a physical model study. Among the most economical and common measures of reducing the effect of air-entrainment and swirl strength, is the optimized shape of inlet for instance by installing a Piano-Key inlet over the pipe intake. If Piano-Key inlet is used, then, its' optimum geometry should be studied experimentally. Since there is not any realized guidance for the use of Piano-Key inlets in pipe intakes, hence, a comprehensive set of model experiments have been carried out using Piano-Key inlets with different dimensions, with respect to the vertical pipe intakes, and four different pipe diameters of (D=) 75, 100, 125 and 150 mm. Results showed that by employing a Piano-Key inlet over the vertical pipe intake, the critical submergence reduces significantly. Fianally, according to the results, the effect of Piano-Key inlet geometry on critical submergence were evaluated in the form of realized relationships which would be of practical interest for design engineers.

  14. Power plant intake entrainment analysis

    SciTech Connect

    Edinger, J.E.; Kolluru, V.S.

    2000-04-01

    Power plant condenser cooling water intake entrainment of fish eggs and larvae is becoming an issue in evaluating environmental impacts around the plants. Methods are required to evaluate intake entrainment on different types of water bodies. Presented in this paper is a derivation of the basic relationships for evaluating entrainment from the standing crop of fish eggs and larvae for different regions of a water body, and evaluating the rate of entrainment from the standing crop. These relationships are coupled with a 3D hydrodynamic and transport model that provides the currents and flows required to complete the entrainment evaluation. Case examples are presented for a simple river system, and for the more complex Delaware River Estuary with multiple intakes. Example evaluations are made for individual intakes, and for the cumulative impacts of multiple intakes.

  15. Dietary intake of nutrients with adequate intake values in the dietary reference intakes for Japanese.

    PubMed

    Tsuboyama-Kasaoka, Nobuyo; Takizawa, Asuka; Tsubota-Utsugi, Megumi; Nakade, Makiko; Imai, Eri; Kondo, Akiko; Yoshida, Kazue; Okuda, Nagako; Nishi, Nobuo; Takimoto, Hidemi

    2013-01-01

    The Adequate Intake (AI) values in the Dietary Reference Intakes for Japanese (DRIs-J) 2010 were mainly determined based on the median intakes from 2 y of pooled data (2005-2006) from the National Health and Nutrition Survey-Japan (NHNS-J). However, it remains unclear whether 2 y of pooled data from the NHNS-J are appropriate for evaluating the intake of the population. To clarify the differences in nutrient intakes determined from 2 and 7 y of pooled data, we analyzed selected nutrient intake levels by sex and age groups using NHNS-J data. Intake data were obtained from 64,624 individuals (age: ≥1 y; 47.4% men) who completed a semi-weighed 1-d household dietary record that was part of the NHNS-J conducted annually in Japan from 2003 to 2009. There were no large differences between the median intakes calculated from 2 or 7 y of pooled data for n-6 or n-3 polyunsaturated fatty acids (PUFAs), vitamin D, pantothenic acid, potassium, or phosphorus. When the AI values and median intakes were compared, there was no large difference in the values for n-6 or n-3 PUFAs, pantothenic acid, or phosphorus. Conversely, the AI values for vitamin D and potassium differed from the median intakes of these nutrients for specific sex and age groups, because values were not based on NHNS-J data. Our results indicate that 2 y of pooled data from the NHNS-J adequately reflect the population's intake, and that the current system for determination of AI values will be applicable for future revisions.

  16. The Geometric Median on Riemannian Manifolds with Application to Robust Atlas Estimation

    PubMed Central

    Fletcher, P. Thomas; Venkatasubramanian, Suresh; Joshi, Sarang

    2009-01-01

    One of the primary goals of computational anatomy is the statistical analysis of anatomical variability in large populations of images. The study of anatomical shape is inherently related to the construction of transformations of the underlying coordinate space, which map one anatomy to another. It is now well established that representing the geometry of shapes or images in Euclidian spaces undermines our ability to represent natural variability in populations. In our previous work we have extended classical statistical analysis techniques, such as averaging, principal components analysis, and regression, to Riemannian manifolds, which are more appropriate representations for describing anatomical variability. In this paper we extend the notion of robust estimation, a well established and powerful tool in traditional statistical analysis of Euclidian data, to manifold-valued representations of anatomical variability. In particular, we extend the geometric median, a classic robust estimator of centrality for data in Euclidean spaces. We formulate the geometric median of data on a Riemannian manifold as the minimizer of the sum of geodesic distances to the data points. We prove existence and uniqueness of the geometric median on manifolds with non-positive sectional curvature and give sufficient conditions for uniqueness on positively curved manifolds. Generalizing the Weiszfeld procedure for finding the geometric median of Euclidean data, we present an algorithm for computing the geometric median on an arbitrary manifold. We show that this algorithm converges to the unique solution when it exists. In this paper we exemplify the robustness of the estimation technique by applying the procedure to various manifolds commonly used in the analysis of medical images. Using this approach, we also present a robust brain atlas estimation technique based on the geometric median in the space of deformable images. PMID:19056498

  17. Dietary Salt Intake and Hypertension

    PubMed Central

    2014-01-01

    Over the past century, salt has been the subject of intense scientific research related to blood pressure elevation and cardiovascular mortalities. Moderate reduction of dietary salt intake is generally an effective measure to reduce blood pressure. However, recently some in the academic society and lay media dispute the benefits of salt restriction, pointing to inconsistent outcomes noted in some observational studies. A reduction in dietary salt from the current intake of 9-12 g/day to the recommended level of less than 5-6 g/day will have major beneficial effects on cardiovascular health along with major healthcare cost savings around the world. The World Health Organization (WHO) strongly recommended to reduce dietary salt intake as one of the top priority actions to tackle the global non-communicable disease crisis and has urged member nations to take action to reduce population wide dietary salt intake to decrease the number of deaths from hypertension, cardiovascular disease and stroke. However, some scientists still advocate the possibility of increased risk of CVD morbidity and mortality at extremes of low salt intake. Future research may inform the optimal sodium reduction strategies and intake targets for general populations. Until then, we have to continue to build consensus around the greatest benefits of salt reduction for CVD prevention, and dietary salt intake reduction strategies must remain at the top of the public health agenda. PMID:25061468

  18. Analysis and classification of collective behavior using generative modeling and nonlinear manifold learning.

    PubMed

    Butail, Sachit; Bollt, Erik M; Porfiri, Maurizio

    2013-11-01

    In this paper, we build a framework for the analysis and classification of collective behavior using methods from generative modeling and nonlinear manifold learning. We represent an animal group with a set of finite-sized particles and vary known features of the group structure and motion via a class of generative models to position each particle on a two-dimensional plane. Particle positions are then mapped onto training images that are processed to emphasize the features of interest and match attainable far-field videos of real animal groups. The training images serve as templates of recognizable patterns of collective behavior and are compactly represented in a low-dimensional space called embedding manifold. Two mappings from the manifold are derived: the manifold-to-image mapping serves to reconstruct new and unseen images of the group and the manifold-to-feature mapping allows frame-by-frame classification of raw video. We validate the combined framework on datasets of growing level of complexity. Specifically, we classify artificial images from the generative model, interacting self-propelled particle model, and raw overhead videos of schooling fish obtained from the literature. PMID:23933104

  19. Liver DCE-MRI Registration in Manifold Space Based on Robust Principal Component Analysis

    PubMed Central

    Feng, Qianjin; Zhou, Yujia; Li, Xueli; Mei, Yingjie; Lu, Zhentai; Zhang, Yu; Feng, Yanqiu; Liu, Yaqin; Yang, Wei; Chen, Wufan

    2016-01-01

    A technical challenge in the registration of dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging in the liver is intensity variations caused by contrast agents. Such variations lead to the failure of the traditional intensity-based registration method. To address this problem, a manifold-based registration framework for liver DCE-MR time series is proposed. We assume that liver DCE-MR time series are located on a low-dimensional manifold and determine intrinsic similarities between frames. Based on the obtained manifold, the large deformation of two dissimilar images can be decomposed into a series of small deformations between adjacent images on the manifold through gradual deformation of each frame to the template image along the geodesic path. Furthermore, manifold construction is important in automating the selection of the template image, which is an approximation of the geodesic mean. Robust principal component analysis is performed to separate motion components from intensity changes induced by contrast agents; the components caused by motion are used to guide registration in eliminating the effect of contrast enhancement. Visual inspection and quantitative assessment are further performed on clinical dataset registration. Experiments show that the proposed method effectively reduces movements while preserving the topology of contrast-enhancing structures and provides improved registration performance. PMID:27681452

  20. Out-of-Sample Generalizations for Supervised Manifold Learning for Classification.

    PubMed

    Vural, Elif; Guillemot, Christine

    2016-03-01

    Supervised manifold learning methods for data classification map high-dimensional data samples to a lower dimensional domain in a structure-preserving way while increasing the separation between different classes. Most manifold learning methods compute the embedding only of the initially available data; however, the generalization of the embedding to novel points, i.e., the out-of-sample extension problem, becomes especially important in classification applications. In this paper, we propose a semi-supervised method for building an interpolation function that provides an out-of-sample extension for general supervised manifold learning algorithms studied in the context of classification. The proposed algorithm computes a radial basis function interpolator that minimizes an objective function consisting of the total embedding error of unlabeled test samples, defined as their distance to the embeddings of the manifolds of their own class, as well as a regularization term that controls the smoothness of the interpolation function in a direction-dependent way. The class labels of test data and the interpolation function parameters are estimated jointly with an iterative process. Experimental results on face and object images demonstrate the potential of the proposed out-of-sample extension algorithm for the classification of manifold-modeled data sets. PMID:26812722

  1. Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.

    PubMed

    Peng, Yong; Lu, Bao-Liang; Wang, Suhang

    2015-05-01

    Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. PMID:25634552

  2. Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Luo, Fulin; Liu, Jiamin; Yang, Yaqiong

    2015-08-01

    Sparse manifold clustering and embedding (SMCE) adaptively selects neighbor points from the same manifold and approximately spans a low-dimensional affine subspace, but it does not explicitly give a projection matrix and encounters the out-of-sample problem. To overcome this drawback, we propose a new dimensionality reduction method, called sparse manifold embedding (SME), based on graph embedding and sparse representation for hyperspectral image (HSI). It utilizes the sparse coefficients of affine subspace to construct a similarity graph and preserves this sparse similarity in embedding space. Furthermore, we try to make full use of the prior label information to design a novel supervised learning method termed sparse discriminant manifold embedding (SDME). SDME not only inherits the merits of the sparsity property of affine subspace but also boosts the compactness of intra-manifold, which achieves discriminating features and further improves the classification performance of HSI. Experiments on two real hyperspectral data sets (Indian Pines and PaviaU) show the benefits of the proposed SME and SDME methods.

  3. Analysis and classification of collective behavior using generative modeling and nonlinear manifold learning.

    PubMed

    Butail, Sachit; Bollt, Erik M; Porfiri, Maurizio

    2013-11-01

    In this paper, we build a framework for the analysis and classification of collective behavior using methods from generative modeling and nonlinear manifold learning. We represent an animal group with a set of finite-sized particles and vary known features of the group structure and motion via a class of generative models to position each particle on a two-dimensional plane. Particle positions are then mapped onto training images that are processed to emphasize the features of interest and match attainable far-field videos of real animal groups. The training images serve as templates of recognizable patterns of collective behavior and are compactly represented in a low-dimensional space called embedding manifold. Two mappings from the manifold are derived: the manifold-to-image mapping serves to reconstruct new and unseen images of the group and the manifold-to-feature mapping allows frame-by-frame classification of raw video. We validate the combined framework on datasets of growing level of complexity. Specifically, we classify artificial images from the generative model, interacting self-propelled particle model, and raw overhead videos of schooling fish obtained from the literature.

  4. Access to Mars from Earth-Moon Libration Point Orbits:. [Manifold and Direct Options

    NASA Technical Reports Server (NTRS)

    Kakoi, Masaki; Howell, Kathleen C.; Folta, David

    2014-01-01

    This investigation is focused specifically on transfers from Earth-Moon L(sub 1)/L(sub 2) libration point orbits to Mars. Initially, the analysis is based in the circular restricted three-body problem to utilize the framework of the invariant manifolds. Various departure scenarios are compared, including arcs that leverage manifolds associated with the Sun-Earth L(sub 2) orbits as well as non-manifold trajectories. For the manifold options, ballistic transfers from Earth-Moon L(sub 2) libration point orbits to Sun-Earth L(sub 1)/L(sub 2) halo orbits are first computed. This autonomous procedure applies to both departure and arrival between the Earth-Moon and Sun-Earth systems. Departure times in the lunar cycle, amplitudes and types of libration point orbits, manifold selection, and the orientation/location of the surface of section all contribute to produce a variety of options. As the destination planet, the ephemeris position for Mars is employed throughout the analysis. The complete transfer is transitioned to the ephemeris model after the initial design phase. Results for multiple departure/arrival scenarios are compared.

  5. Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling.

    PubMed

    Ding, Meng; Fan, Guolian

    2015-11-01

    We present new multilayer joint gait-pose manifolds (multilayer JGPMs) for complex human gait motion modeling, where three latent variables are defined jointly in a low-dimensional manifold to represent a variety of body configurations. Specifically, the pose variable (along the pose manifold) denotes a specific stage in a walking cycle; the gait variable (along the gait manifold) represents different walking styles; and the linear scale variable characterizes the maximum stride in a walking cycle. We discuss two kinds of topological priors for coupling the pose and gait manifolds, i.e., cylindrical and toroidal, to examine their effectiveness and suitability for motion modeling. We resort to a topologically-constrained Gaussian process (GP) latent variable model to learn the multilayer JGPMs where two new techniques are introduced to facilitate model learning under limited training data. First is training data diversification that creates a set of simulated motion data with different strides. Second is the topology-aware local learning to speed up model learning by taking advantage of the local topological structure. The experimental results on the Carnegie Mellon University motion capture data demonstrate the advantages of our proposed multilayer models over several existing GP-based motion models in terms of the overall performance of human gait motion modeling.

  6. Access to Mars from Earth-Moon libration point orbits: Manifold and direct options

    NASA Astrophysics Data System (ADS)

    Kakoi, Masaki; Howell, Kathleen C.; Folta, David

    2014-09-01

    This investigation is focused specifically on transfers from Earth-Moon L1/L2 libration point orbits to Mars. Initially, the analysis is based on the circular restricted three-body problem to utilize the framework of the invariant manifolds. Various departure scenarios are compared, including arcs that leverage manifolds associated with the Sun-Earth L2 orbits as well as non-manifold trajectories. For the manifold options, ballistic transfers from Earth-Moon L2 libration point orbits to Sun-Earth L1/L2 halo orbits are first computed. This autonomous procedure applies to both departure and arrival between the Earth-Moon and Sun-Earth systems. Departure times in the lunar cycle, amplitudes and types of libration point orbits, manifold selection, and the orientation/location of the surface of section all contribute to produce a variety of options. As the destination planet, the ephemeris position for Mars is employed throughout the analysis. The complete transfer is transitioned to the ephemeris model after the initial design phase. Results for multiple departure/arrival scenarios are compared.

  7. Manifold regularized multitask learning for semi-supervised multilabel image classification.

    PubMed

    Luo, Yong; Tao, Dacheng; Geng, Bo; Xu, Chao; Maybank, Stephen J

    2013-02-01

    It is a significant challenge to classify images with multiple labels by using only a small number of labeled samples. One option is to learn a binary classifier for each label and use manifold regularization to improve the classification performance by exploring the underlying geometric structure of the data distribution. However, such an approach does not perform well in practice when images from multiple concepts are represented by high-dimensional visual features. Thus, manifold regularization is insufficient to control the model complexity. In this paper, we propose a manifold regularized multitask learning (MRMTL) algorithm. MRMTL learns a discriminative subspace shared by multiple classification tasks by exploiting the common structure of these tasks. It effectively controls the model complexity because different tasks limit one another's search volume, and the manifold regularization ensures that the functions in the shared hypothesis space are smooth along the data manifold. We conduct extensive experiments, on the PASCAL VOC'07 dataset with 20 classes and the MIR dataset with 38 classes, by comparing MRMTL with popular image classification algorithms. The results suggest that MRMTL is effective for image classification. PMID:22997267

  8. Manifold regularized multitask learning for semi-supervised multilabel image classification.

    PubMed

    Luo, Yong; Tao, Dacheng; Geng, Bo; Xu, Chao; Maybank, Stephen J

    2013-02-01

    It is a significant challenge to classify images with multiple labels by using only a small number of labeled samples. One option is to learn a binary classifier for each label and use manifold regularization to improve the classification performance by exploring the underlying geometric structure of the data distribution. However, such an approach does not perform well in practice when images from multiple concepts are represented by high-dimensional visual features. Thus, manifold regularization is insufficient to control the model complexity. In this paper, we propose a manifold regularized multitask learning (MRMTL) algorithm. MRMTL learns a discriminative subspace shared by multiple classification tasks by exploiting the common structure of these tasks. It effectively controls the model complexity because different tasks limit one another's search volume, and the manifold regularization ensures that the functions in the shared hypothesis space are smooth along the data manifold. We conduct extensive experiments, on the PASCAL VOC'07 dataset with 20 classes and the MIR dataset with 38 classes, by comparing MRMTL with popular image classification algorithms. The results suggest that MRMTL is effective for image classification.

  9. Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics

    SciTech Connect

    Goto, Shin-itiro

    2015-07-15

    It has been proposed that equilibrium thermodynamics is described on Legendre submanifolds in contact geometry. It is shown in this paper that Legendre submanifolds embedded in a contact manifold can be expressed as attractors in phase space for a certain class of contact Hamiltonian vector fields. By giving a physical interpretation that points outside the Legendre submanifold can represent nonequilibrium states of thermodynamic variables, in addition to that points of a given Legendre submanifold can represent equilibrium states of the variables, this class of contact Hamiltonian vector fields is physically interpreted as a class of relaxation processes, in which thermodynamic variables achieve an equilibrium state from a nonequilibrium state through a time evolution, a typical nonequilibrium phenomenon. Geometric properties of such vector fields on contact manifolds are characterized after introducing a metric tensor field on a contact manifold. It is also shown that a contact manifold and a strictly convex function induce a lower dimensional dually flat space used in information geometry where a geometrization of equilibrium statistical mechanics is constructed. Legendre duality on contact manifolds is explicitly stated throughout.

  10. Preliminary Study of Geosynchronous Orbit Transfers from LEO using Invariant Manifolds

    NASA Astrophysics Data System (ADS)

    Davis, Kathryn E.; Anderson, Rodney L.; Born, George H.

    2011-07-01

    The invariant manifolds of libration point orbits (LPOs) in the Sun-Earth/Moon system are used to construct low-energy transfers from Low Earth Orbits (LEOs) to geosynchronous orbits. A maneuver is performed in LEO to insert onto a stable manifold trajectory of an LPO. The spacecraft travels to the host LPO and then follows an unstable manifold trajectory back to a geosynchronous orbit, where an orbit insertion maneuver is performed. The gravitational effects of the Sun-Earth/Moon three-body system act in such a way that large plane changes between the initial and final orbits at Earth may be realized without the execution of any plane change maneuvers. The maneuver costs of the transfers that employ invariant manifolds are compared to those using traditional techniques. The transfers that employ manifold trajectories can lower the cost of traditional Hohmann transfers by up to 3.15 km/s for transfers involving large differences in initial and final inclinations. The decrease in fuel expenditure is accompanied by an increase in time of flight; transfer durations are slightly over one year.

  11. On perturbative instability of Pope-Warner solutions on Sasaki-Einstein manifolds

    NASA Astrophysics Data System (ADS)

    Pilch, Krzysztof; Yoo, Isaiah

    2013-09-01

    Given a Sasaki-Einstein manifold, M 7, there is the supersymmetric AdS 4 × M 7 Freund-Rubin solution of eleven-dimensional supergravity and the corresponding non-supersymmetric solutions: the perturbatively stable skew-whiffed solution, the perturbatively unstable Englert solution, and the Pope-Warner solution, which is known to be perturbatively unstable when M 7 is the seven-sphere or, more generally, a tri-Sasakian manifold. We show that similar perturbative instability of the Pope-Warner solution will arise for any regular Sasaki-Einstein manifold, M 7, admitting a basic, primitive, transverse (1,1)-eigenform of the Hodge-de Rham Laplacian with the eigenvalue in the range between and . Existence of such (1,1)-forms on all homogeneous Sasaki-Einstein manifolds can be shown explicitly using the Kähler quotient construction or the standard harmonic expansion. The latter shows that the instability arises from the coupling between the Pope-Warner background and Kaluza-Klein scalar modes that at the supersymmetric point lie in a long Z-vector supermultiplet. We also verify that the instability persists for the orbifolds of homogeneous Sasaki-Einstein manifolds that have been discussed recently.

  12. Slow manifold structure in explosive kinetics. 1. Bifurcations of points-at-infinity in prototypical models.

    PubMed

    Creta, F; Adrover, A; Cerbelli, S; Valorani, M; Giona, M

    2006-12-21

    This article analyzes in detail the global geometric properties (structure of the slow and fast manifolds) of prototypical models of explosive kinetics (the Semenov model for thermal explosion and the chain-branching model). The concepts of global or generalized slow manifolds and the notions of heterogeneity and alpha-omega inversion for invariant manifolds are introduced in order to classify the different geometric features exhibited by two-dimensional kinetic schemes by varying model parameters and to explain the phenomena that may occur in model reduction practice. This classification stems from the definition of suitable Lyapunov-type numbers and from the analysis of normal-to-tangent stretching rates. In the case of the Semenov model, we show that the existence of a global slow manifold and its properties are controlled by a transcritical bifurcation of the points-at-infinity, which can be readily identified by analyzing the Poincaré projected system. The issue of slow manifold uniqueness and the implications of the theory with regard to the practical definition of explosion limits are thoroughly addressed.

  13. Use of a chemical tracer to evaluate water movement through two automatic watering rack manifolds during flushing.

    PubMed

    Malatesta, P F; Schwartz, L H

    1985-02-01

    A sodium fluorescein solution was introduced into an upfeed serpentine and a horizontal automatic watering rack manifold. Water samples were collected from nine drinking valves on each manifold prior to and after flushing at 12 pounds per square inch water pressure for 15 seconds, one minute, and five minutes. The water samples were assayed for fluorescein and it was found that the chemical was effectively removed by flushing from the upfeed serpentine manifold, while significant levels of fluorescein remained in the horizontal manifold even after five minutes flushing.

  14. Power Plant Water Intake Assessment.

    ERIC Educational Resources Information Center

    Zeitoun, Ibrahim H.; And Others

    1980-01-01

    In order to adequately assess the impact of power plant cooling water intake on an aquatic ecosystem, total ecosystem effects must be considered, rather than merely numbers of impinged or entrained organisms. (Author/RE)

  15. Fiber Intake and Childhood Appendicitis.

    ERIC Educational Resources Information Center

    Brender, Jean D.; And Others

    1985-01-01

    Parents of 135 children with appendicitis and of 212 comparison children were interviewed about their children's diet. Results suggest that a liberal intake of whole-grain breads and cereals may decrease the risk of appendicitis during childhood. (KH)

  16. Observations of the J = 10 manifold of the pure rotational band of phosphine on Saturn

    NASA Technical Reports Server (NTRS)

    Haas, M. R.; Erickson, E. F.; Goorvitch, D.; Mckibbin, D. D.; Rank, D. M.

    1986-01-01

    Saturn was observed in the vicinity of the J = 10 manifold of the pure rotational band of phosphine on 1984 July 10 and 12 from NASA's Kuiper Airborne Observatory with the facility far-infrared cooled grating spectrometer. On each night observations of the full disk plus rings were made at 4 to 6 discrete wavelengths which selectively sampled the manifold and the adjacent continuum. The previously reported detection of this manifold is confirmed. After subtraction of the flux due to the rings, the data are compared with disk-averaged models of Saturn. It is found that PH3 must be strongly depleted above the thermal inversion (approx. 70 mbar). The best fitting models consistent with other observational constaints indicate that PH3 is significantly depleted at even deeper atmospheric levels ( or = 500 mbar), implying an eddy diffusion coefficient for Saturn of 10 to the 4 cm sq/sec.

  17. Natural star-products on symplectic manifolds and related quantum mechanical operators

    SciTech Connect

    Błaszak, Maciej Domański, Ziemowit

    2014-05-15

    In this paper is considered a problem of defining natural star-products on symplectic manifolds, admissible for quantization of classical Hamiltonian systems. First, a construction of a star-product on a cotangent bundle to an Euclidean configuration space is given with the use of a sequence of pair-wise commuting vector fields. The connection with a covariant representation of such a star-product is also presented. Then, an extension of the construction to symplectic manifolds over flat and non-flat pseudo-Riemannian configuration spaces is discussed. Finally, a coordinate free construction of related quantum mechanical operators from Hilbert space over respective configuration space is presented. -- Highlights: •Invariant representations of natural star-products on symplectic manifolds are considered. •Star-products induced by flat and non-flat connections are investigated. •Operator representations in Hilbert space of considered star-algebras are constructed.

  18. Stable and unstable invariant manifolds in a partially chaotic magnetic configuration generated by nonlinear reconnection

    NASA Astrophysics Data System (ADS)

    Borgogno, D.; Grasso, D.; Pegoraro, F.; Schep, T. J.

    2008-10-01

    A numerical contour dynamics code has been employed to calculate the stable and unstable manifolds related to two interacting magnetic island chains. The magnetic configuration is generated by a nonlinear reconnection process described in D. Borgogno et al. [Phys. Plasmas. 12, 032309 (2005)]. The appearance of the first homoclinic and heteroclinic intersections of the dominant manifolds are shown and one of the associated uniformly hyperbolic orbits is given. The stickiness of the field lines around the island and the eventual development of global stochasticity are discussed. The basic geometry of the magnetic configuration is periodic so that the structure of the manifolds may be compared with the one obtained with Poincaré plots.

  19. Numerical Manifold Method for the Forced Vibration of Thin Plates during Bending

    PubMed Central

    Jun, Ding; Song, Chen; Wei-Bin, Wen; Shao-Ming, Luo; Xia, Huang

    2014-01-01

    A novel numerical manifold method was derived from the cubic B-spline basis function. The new interpolation function is characterized by high-order coordination at the boundary of a manifold element. The linear elastic-dynamic equation used to solve the bending vibration of thin plates was derived according to the principle of minimum instantaneous potential energy. The method for the initialization of the dynamic equation and its solution process were provided. Moreover, the analysis showed that the calculated stiffness matrix exhibited favorable performance. Numerical results showed that the generalized degrees of freedom were significantly fewer and that the calculation accuracy was higher for the manifold method than for the conventional finite element method. PMID:24883403

  20. Control strategies on stable manifolds for energy-efficient swing-ups of double pendula

    NASA Astrophysics Data System (ADS)

    Flaßkamp, Kathrin; Timmermann, Julia; Ober-Blöbaum, Sina; Trächtler, Ansgar

    2014-09-01

    Optimal control problems for mechanical systems often arise in technical applications. To find solutions with minimal control effort, the system's natural, uncontrolled dynamics can be used. Promising candidates to be considered for energy-efficient trajectories are highly dynamic, but uncontrolled motions on (un)stable manifolds of equilibria. In this contribution, we propose a control strategy for mechanical systems which sequences uncontrolled trajectories on (un)stable manifolds with short control manoeuvres to design a feedforward control. In particular, we present optimal swing-up solutions for a double pendulum which are based on trajectories on the stable manifold of the pendulum's up-up equilibrium. To demonstrate the advantages of our approach compared to a black-box optimisation, we perform a post-optimisation with the optimal control sequence as an initial guess. The numerical results are evaluated in a simulation environment for the double pendulum on a cart and applied to a real test rig.

  1. Coherent Quantum Dynamics in Steady-State Manifolds of Strongly Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2014-12-01

    Recently, it has been realized that dissipative processes can be harnessed and exploited to the end of coherent quantum control and information processing. In this spirit, we consider strongly dissipative quantum systems admitting a nontrivial manifold of steady states. We show how one can enact adiabatic coherent unitary manipulations, e.g., quantum logical gates, inside this steady-state manifold by adding a weak, time-rescaled, Hamiltonian term into the system's Liouvillian. The effective long-time dynamics is governed by a projected Hamiltonian which results from the interplay between the weak unitary control and the fast relaxation process. The leakage outside the steady-state manifold entailed by the Hamiltonian term is suppressed by an environment-induced symmetrization of the dynamics. We present applications to quantum-computation in decoherence-free subspaces and noiseless subsystems and numerical analysis of nonadiabatic errors.

  2. Confining the state of light to a quantum manifold by engineered two-photon loss

    NASA Astrophysics Data System (ADS)

    Leghtas, Zaki

    2015-03-01

    Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have experimentally confined the state of a harmonic oscillator to the quantum manifold spanned by two coherent states of opposite phases. In particular, we have observed a Schrodinger cat state spontaneously squeeze out of vacuum, before decaying into a classical mixture. This was accomplished by designing a superconducting microwave resonator whose coupling to a cold bath is dominated by photon pair exchange. This experiment opens new avenues in the fields of nonlinear quantum optics and quantum information, where systems with multi-dimensional steady state manifolds can be used as error corrected logical qubits.

  3. Confining the state of light to a quantum manifold by engineered two-photon loss

    NASA Astrophysics Data System (ADS)

    Leghtas, Z.; Touzard, S.; Pop, I. M.; Kou, A.; Vlastakis, B.; Petrenko, A.; Sliwa, K. M.; Narla, A.; Shankar, S.; Hatridge, M. J.; Reagor, M.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    2015-02-01

    Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have confined the state of a superconducting resonator to the quantum manifold spanned by two coherent states of opposite phases and have observed a Schrödinger cat state spontaneously squeeze out of vacuum before decaying into a classical mixture. This experiment points toward robustly encoding quantum information in multidimensional steady-state manifolds.

  4. A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Satyaki; Matouš, Karel

    2016-05-01

    A new manifold-based reduced order model for nonlinear problems in multiscale modeling of heterogeneous hyperelastic materials is presented. The model relies on a global geometric framework for nonlinear dimensionality reduction (Isomap), and the macroscopic loading parameters are linked to the reduced space using a Neural Network. The proposed model provides both homogenization and localization of the multiscale solution in the context of computational homogenization. To construct the manifold, we perform a number of large three-dimensional simulations of a statistically representative unit cell using a parallel finite strain finite element solver. The manifold-based reduced order model is verified using common principles from the machine-learning community. Both homogenization and localization of the multiscale solution are demonstrated on a large three-dimensional example and the local microscopic fields as well as the homogenized macroscopic potential are obtained with acceptable engineering accuracy.

  5. Human intake fractions of pesticides via greenhouse tomato consumption: comparing model estimates with measurements for Captan.

    PubMed

    Juraske, R; Antón, A; Castells, F; Huijbregts, M A J

    2007-04-01

    Human intake due to pesticide residues in food commodities can be much higher than those related to water consumption and air inhalation, stressing the importance to correctly estimate pesticide uptake into plants and predict subsequent intake by humans. We calculated the human intake fraction of captan via tomato consumption taking into account the time between pesticide application and harvest, the time between harvest and consumption, the absorption of spray deposit on plant surfaces, transfer properties through the cuticle, degradation inside the plant and loss due to food processing. Human population intake fractions due to ingestion were calculated for complete, washed and peeled tomatoes. The calculated intake fractions were compared with measurements derived from an experimental setup in a Mediterranean greenhouse. The fraction of captan applied in the greenhouse as plant treatment that eventually is ingested by the human population is on average 10(-2)-10(-5), depending on the time between pesticide application and ingestion of tomatoes and the processing step considered. Model and experimentally derived intake fractions deviated less than a factor of 2 for complete and washed tomatoes and a factor of 3 for peeled tomatoes. Intake fractions due to air inhalation and consumption of drinking water are expected to be significantly lower (5-9 orders of magnitude) than those induced by the intake of tomatoes in this case study.

  6. Protein leverage and energy intake.

    PubMed

    Gosby, A K; Conigrave, A D; Raubenheimer, D; Simpson, S J

    2014-03-01

    Increased energy intakes are contributing to overweight and obesity. Growing evidence supports the role of protein appetite in driving excess intake when dietary protein is diluted (the protein leverage hypothesis). Understanding the interactions between dietary macronutrient balance and nutrient-specific appetite systems will be required for designing dietary interventions that work with, rather than against, basic regulatory physiology. Data were collected from 38 published experimental trials measuring ad libitum intake in subjects confined to menus differing in macronutrient composition. Collectively, these trials encompassed considerable variation in percent protein (spanning 8-54% of total energy), carbohydrate (1.6-72%) and fat (11-66%). The data provide an opportunity to describe the individual and interactive effects of dietary protein, carbohydrate and fat on the control of total energy intake. Percent dietary protein was negatively associated with total energy intake (F = 6.9, P < 0.0001) irrespective of whether carbohydrate (F = 0, P = 0.7) or fat (F = 0, P = 0.5) were the diluents of protein. The analysis strongly supports a role for protein leverage in lean, overweight and obese humans. A better appreciation of the targets and regulatory priorities for protein, carbohydrate and fat intake will inform the design of effective and health-promoting weight loss diets, food labelling policies, food production systems and regulatory frameworks.

  7. Cylindrical isomorphic mapping applied to invariant manifold dynamics for Earth-Moon Missions

    NASA Astrophysics Data System (ADS)

    Giancotti, Marco; Pontani, Mauro; Teofilatto, Paolo

    2014-11-01

    Several families of periodic orbits exist in the context of the circular restricted three-body problem. This work studies orbital motion of a spacecraft among these periodic orbits in the Earth-Moon system, using the planar circular restricted three-body problem model. A new cylindrical representation of the spacecraft phase space (i.e., position and velocity) is described, and allows representing periodic orbits and the related invariant manifolds. In the proximity of the libration points, the manifolds form a four-fold surface, if the cylindrical coordinates are employed. Orbits departing from the Earth and transiting toward the Moon correspond to the trajectories located inside this four-fold surface. The isomorphic mapping under consideration is also useful for describing the topology of the invariant manifolds, which exhibit a complex geometrical stretch-and-folding behavior as the associated trajectories reach increasing distances from the libration orbit. Moreover, the cylindrical representation reveals extremely useful for detecting periodic orbits around the primaries and the libration points, as well as the possible existence of heteroclinic connections. These are asymptotic trajectories that are ideally traveled at zero-propellant cost. This circumstance implies the possibility of performing concretely a variety of complex Earth-Moon missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining a suitable, convenient end-of-life strategy for spacecraft placed in any of the unstable orbits. The final disposal orbit is an externally confined trajectory, never approaching the Earth or the Moon, and can be entered by means of a single velocity impulse (of modest magnitude) along the right unstable manifold that emanates from the Lyapunov orbit at L_2.

  8. A new approach for magnetic curves in 3D Riemannian manifolds

    SciTech Connect

    Bozkurt, Zehra Gök, Ismail Yaylı, Yusuf Ekmekci, F. Nejat

    2014-05-15

    A magnetic field is defined by the property that its divergence is zero in a three-dimensional oriented Riemannian manifold. Each magnetic field generates a magnetic flow whose trajectories are curves called as magnetic curves. In this paper, we give a new variational approach to study the magnetic flow associated with the Killing magnetic field in a three-dimensional oriented Riemann manifold, (M{sup 3}, g). And then, we investigate the trajectories of the magnetic fields called as N-magnetic and B-magnetic curves.

  9. Mirror symmetry, D-brane superpotentials and Ooguri-Vafa invariants of Calabi-Yau manifolds

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Shan; Yang, Fu-Zhong

    2015-12-01

    The D-brane superpotential is very important in the low energy effective theory. As the generating function of all disk instantons from the worldsheet point of view, it plays a crucial role in deriving some important properties of the compact Calabi-Yau manifolds. By using the generalized GKZ hypergeometric system, we will calculate the D-brane superpotentials of two non-Fermat type compact Calabi-Yau hypersurfaces in toric varieties, respectively. Then according to the mirror symmetry, we obtain the A-model superpotentials and the Ooguri-Vafa invariants for the mirror Calabi-Yau manifolds. Supported by Y4JT01VJ01 and NSFC(11475178)

  10. Non-rigid registration of medical images based on ordinal feature and manifold learning

    NASA Astrophysics Data System (ADS)

    Li, Qi; Liu, Jin; Zang, Bo

    2015-12-01

    With the rapid development of medical imaging technology, medical image research and application has become a research hotspot. This paper offers a solution to non-rigid registration of medical images based on ordinal feature (OF) and manifold learning. The structural features of medical images are extracted by combining ordinal features with local linear embedding (LLE) to improve the precision and speed of the registration algorithm. A physical model based on manifold learning and optimization search is constructed according to the complicated characteristics of non-rigid registration. The experimental results demonstrate the robustness and applicability of the proposed registration scheme.

  11. On embeddings of almost complex manifolds in almost complex Euclidean spaces

    NASA Astrophysics Data System (ADS)

    Di Scala, Antonio J.; Kasuya, Naohiko; Zuddas, Daniele

    2016-03-01

    We prove that any compact almost complex manifold (M2m , J) of real dimension 2 m admits a pseudo-holomorphic embedding in (R 4 m + 2 , J ˜) for a suitable positive almost complex structure J ˜ . Moreover, we give a necessary and sufficient condition, expressed in terms of the Segre class sm(M , J) , for the existence of an embedding or an immersion in (R4m , J ˜) . We also discuss the pseudo-holomorphic embeddings of an almost complex 4-manifold in (R6 , J ˜) .

  12. Pompano subsea development: Template/manifold, tree and ROV intervention systems

    SciTech Connect

    Beckmann, M.M.; Byrd, M.L.; Holt, J.; Riley, J.W.; Snell, C.K.; Tyer, C.; Brewster, D.

    1996-12-31

    BP Exploration`s Pompano Subsea Development, in 1,865 ft of water in the Gulf of Mexico, uses a subsea production system to produce oil to a host platform 4{1/2} miles away. The 10-slot subsea template/manifold supports Through FlowLine (TFL) wells, which are controlled by means of an electrohydraulic control system. All process components of the system are retrievable with ROV intervention. This paper describes the template/manifold system, TFL tree system and ROV intervention systems.

  13. A note on collapse, entropy, and vanishing of the Yamabe invariant of symplectic 4-manifolds

    NASA Astrophysics Data System (ADS)

    Suárez-Serrato, Pablo; Torres, Rafael

    2014-12-01

    We make use of F-structures and technology developed by Paternain-Petean to compute minimal entropy, minimal volume, and Yamabe invariant of symplectic 4-manifolds, as well as to study their collapse with sectional curvature bounded from below. À la Gompf, we show that these invariants vanish on symplectic 4-manifolds that realize any given finitely presented group as their fundamental group. We extend to the symplectic realm a result of LeBrun which relates the Kodaira dimension with the Yamabe invariant of compact complex surfaces.

  14. Geodesics on Calabi-Yau manifolds and winding states in non-linear sigma models

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Douglas, Michael R.

    2013-12-01

    We conjecture that a non-flat D-real-dimensional compact Calabi-Yau manifold, such as a quintic hypersurface with D=6, or a K3 manifold with D=4, has locally length minimizing closed geodesics, and that the number of these with length less than L grows asymptotically as L^{D}. We also outline the physical arguments behind this conjecture, which involve the claim that all states in a nonlinear sigma model can be identified as 'momentum' and 'winding' states in the large volume limit.

  15. Towards Multi-level Optimization: Space-Mapping and Manifold-Mapping

    SciTech Connect

    Echeverria, D; Tong, C

    2006-07-24

    In this report we study space-mapping and manifold-mapping, two multi-level optimization techniques that aim at accelerating expensive optimization procedures with the aid of simple auxiliary models. Manifold-mapping improves in accuracy the solution given by space-mapping. In this report, the two mentioned techniques are basically described and then applied in the solving of two minimization problems. Several coarse models are tried, both from a two and a three level perspective. The results with these simple tests confirm the speed-up expected for the multi-level approach.

  16. Electric controlled air incinerator for radioactive wastes

    DOEpatents

    Warren, Jeffery H.; Hootman, Harry E.

    1981-01-01

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburner chamber for off-gases. The latter is formed by a plurality of vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary magazine feeds waste to a horizontal tube forming the primary combustion chamber.

  17. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    used to provide accurate information about the amount of air entering the engine so that the amount of fuel can be adjusted to give the most efficient combustion. The ideal mass-flow sensor would be a rugged design that minimizes the disturbance to the flow stream and provides an accurate reading of both smooth and turbulent flows; NASA's design satisfies these requirements better than any existing design. Most of the mass-flow sensors used today are the hot wire variety. Hot wires can be fragile and cannot accurately measure a turbulent or reversing flow, which is often encountered in an intake manifold. Other types of mass-flow sensors include pitot tubes, vane anemometers, and thermocouple rakes-all of which suffer from some type of performance problem. Because it solves these performance problems while maintaining a simple design that lends itself to low-cost manufacturing techniques, NASA s thin-film resistance temperature detector air-mass-flow sensor should lead to more widespread use of mass-flow sensors.

  18. Salt intake and kidney disease.

    PubMed

    Boero, Roberto; Pignataro, Angelo; Quarello, Francesco

    2002-01-01

    We have reviewed the role of salt intake in kidney diseases, particularly in relation to renal hemodynamics, renal excretion of proteins, renal morphological changes and progression of chronic renal failure. High salt intake may have detrimental effects on glomerular hemodynamics, inducing hyperfiltration and increasing the filtration fraction and glomerular pressure. This may be particularly important in elderly, obese, diabetic or black patients, who have a high prevalence of salt-sensitivity. Changes in salt intake may influence urinary excretion of proteins in patients with essential hypertension, or diabetic and non diabetic nephropathies. Moreover, high sodium intake may blunt the antiproteinuric effect of various drugs, including angiotensin-converting-enzyme inhibitors and calcium antagonists. Experimental studies show a direct tissue effect of salt on the kidney, independent of its ability to increase blood pressure, inducing hypertrophy, fibrosis and a decrease in glomerular basement membrane anionic sites. However, no firm conclusion can be drawn about the relationship between salt consumption and progression of chronic renal failure, because most information comes from conflicting, small, retrospective, observational studies. In conclusion, it would appear that restriction of sodium intake is an important preventive and therapeutic measure in patients with chronic renal diseases of various origin, or at risk of renal damage, such as hypertensive or diabetic patients.

  19. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  20. Flux formulation of DFT on group manifolds and generalized Scherk-Schwarz compactifications

    NASA Astrophysics Data System (ADS)

    du Bosque, Pascal; Hassler, Falk; Lüst, Dieter

    2016-02-01

    A flux formulation of Double Field Theory on group manifold is derived and applied to study generalized Scherk-Schwarz compactifications, which give rise to a bosonic subsector of half-maximal, electrically gauged supergravities. In contrast to the flux formulation of original DFT, the covariant fluxes split into a fluctuation and a background part. The latter is connected to a 2 D-dimensional, pseudo Riemannian manifold, which is isomorphic to a Lie group embedded into O( D,D). All fields and parameters of generalized diffeomorphisms are supported on this manifold, whose metric is spanned by the background vielbein E A I ∈ GL(2 D). This vielbein takes the role of the twist in conventional generalized Scherk-Schwarz compactifications. By doing so, it solves the long standing problem of constructing an appropriate twist for each solution of the embedding tensor. Using the geometric structure, absent in original DFT, E A I is identified with the left invariant Maurer-Cartan form on the group manifold, in the same way as it is done in geometric Scherk-Schwarz reductions. We show in detail how the Maurer-Cartan form for semisimple and solvable Lie groups is constructed starting from the Lie algebra. For all compact embeddings in O(3 , 3), we calculate E A I .